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ABSTRACT 1 

Begomoviruses (family Geminiviridae, genus Begomovirus) significantly hamper 2 

crop production and threaten food security around the world. The frequent emergence 3 

of new begomovirus genotypes is facilitated by high mutation frequencies and the 4 

propensity to recombine and reassort. Homologous recombination has been especially 5 

implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes, 6 

which cause cassava mosaic disease (CMD). Cassava (Manihot esculenta) is a staple 7 

food crop throughout Africa, and an important industrial crop in Asia, two continents 8 

where production is severely constrained by CMD. The CMD species complex is 9 

comprised of 11 bipartite begomovirus species with ample distribution throughout Africa 10 

and the Indian subcontinent. While recombination is regarded as a frequent occurrence 11 

for CMBs, a revised, systematic assessment of recombination and its impact on CMB 12 

phylogeny is currently lacking. We assembled datasets of all publicly available, full-13 

length DNA-A (n=880) and DNA-B (n=369) nucleotide sequences from the 11 14 

recognized CMB species. Phylogenetic networks and complementary recombination 15 

detection methods revealed extensive recombination among the CMB sequences. Six 16 

out of the eleven species have descended from unique interspecies recombination 17 

events. Estimates of recombination and mutation rates revealed that all species 18 

experience mutation more frequently than recombination, but measures of population 19 

divergence indicate that recombination is largely responsible for the genetic differences 20 

between species. Our results support that recombination has significantly impacted the 21 

CMB phylogeny and is driving speciation in the CMD species complex. 22 
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IMPORTANCE 23 

Cassava mosaic disease (CMD) is a significant threat to cassava production throughout 24 

Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species 25 

exhibiting accelerated rates of evolution, driven by high frequencies of mutation and 26 

genetic exchange. Here, we present a systematic analysis of the contribution of genetic 27 

exchange to cassava mosaic virus diversity. Most of these species emerged as a result 28 

of genetic exchange. This is the first study to report the significant impact of genetic 29 

exchange on speciation in a group of viruses. 30 
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INTRODUCTION 31 

Viruses in the Geminiviridae family are major constraints to agricultural crop 32 

production and pose serious threats to global food security, especially those in the 33 

genus Begomovirus (1). Begomoviruses are dicot-infecting, whitefly-transmitted 34 

pathogens that severely limit many economically important crops in tropical and 35 

subtropical regions around the world (2). Begomovirus genomes consist of either one 36 

(monopartite) or two (bipartite) circular single-stranded DNA (ssDNA) genetic segments, 37 

each independently encapsidated in twinned, quasi-icosohedral particles (3). There are 38 

424 established begomovirus species in the 2019 International Committee on the 39 

Taxonomy of Viruses (ICTV) master species list, the largest number of species for any 40 

virus genus. The frequent emergence of begomovirus genotypes and persistence of 41 

begomovirus disease epidemics is facilitated by increased agricultural trade of infected 42 

plant materials, the spread of polyphagous whitefly vector biotypes (1, 4, 5), and the 43 

accelerated rate of begomovirus evolution that stems from the vast amount of genetic 44 

diversity and the consequent adaptive potential found within populations (6).  45 

Genetic diversity is generated by a combination of mutations and genetic 46 

exchange processes (i.e., recombination and reassortment). While mutations are the 47 

fundamental source of genetic variation, genetic exchange fuels diversity by combining 48 

extant mutations from distinct genomes to produce new haplotypes. Begomoviruses 49 

have high mutation frequencies (7) and substitution rates (comparable to those of RNA 50 

viruses) (8, 9) which independently enable the efficient exploration of both sequence 51 

space and adaptive landscapes in changing environmental conditions. However, 52 

recombination has also been extensively documented among begomoviruses and is 53 
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implicated in the diversification of different disease complexes affecting a variety of 54 

crops (10–13). Recombination and reassortment can introduce significant variation in a 55 

single event and profoundly impact virus evolution by preventing the accumulation of 56 

deleterious mutations (14, 15) and potentially allowing access to novel phenotypes that 57 

would be difficult to attain by mutation alone. Some phenotypic modifications associated 58 

with genetic exchange in viruses include the modulation of virulence, novel strain 59 

emergence, evasion of host immunity and antiviral resistance (16, 17).Therefore, 60 

examining patterns of viral genetic exchange is critical to understanding virus evolution 61 

and can help inform the development of control strategies. 62 

Cassava mosaic begomoviruses (CMBs) are the causative agents of cassava 63 

mosaic disease (CMD), which frequently limits crop production in this staple food for 64 

~800 million people around the world (18).  In 2019, Africa was the leading continent in 65 

terms of cassava yield, accounting for over 63% of the 303 million tons produced, 66 

followed by Asia with 28% (http://www.fao.org/faostat/en/#data/QC/). While the general 67 

resiliency of cassava against droughts and its tolerance of poor soil conditions has led 68 

to its widespread adoption in these regions, its susceptibility to CMD presents a major 69 

biotic constraint on production in these two continents. There are 11 identified species 70 

in the CMD species complex. Nine CMB species are found in Africa: African cassava 71 

mosaic virus (ACMV), African cassava mosaic Burkina Faso virus (ACMBFV), Cassava 72 

mosaic Madagascar virus (CMMGV), South African cassava mosaic virus (SACMV), 73 

East African cassava mosaic virus (EACMV), East African cassava Cameroon virus 74 

(EACMCV), East African cassava Kenya virus (EACMKV), East African cassava Malawi 75 

virus (EACMMV), and East African cassava mosaic Zanzibar virus (EACMZV). Two 76 
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additional CMB species, Indian cassava mosaic virus (ICMV) and Sri Lankan cassava 77 

mosaic virus (SLCMV), have been found exclusively in Asia. The African CMB species 78 

are extensively distributed throughout sub-Saharan Africa (19) and are one of the 79 

largest threats to cassava yield, accounting for up to US$2.7 billion in annual losses 80 

(20). Although initial reports placed the Asian CMBs solely in the Indian sub-continent, 81 

SLCMV has expanded its distribution in recent years from India and Sri Lanka into 82 

Cambodia, Vietnam, Thailand, and China (21–24). 83 

CMB genomes are bipartite, comprised of two circular segments of similar size 84 

(~2.8 kb) which are referred to as DNA-A and DNA-B. On the virion-sense strand of the 85 

ssDNA genome, DNA-A has two partially overlapping genes that encode the coat (AV1) 86 

and pre-coat (AV2) proteins. The complementary strand of DNA-A encodes the 87 

replication-associated protein (AC1), the transcriptional activator protein (AC2), a 88 

replication enhancer (AC3) and an RNA-silencing suppressor (AC4). The DNA-B 89 

segment encodes for two proteins - a nuclear shuttle protein in the virion sense (BV1) 90 

and a movement protein in the complementary sense (BC1) (25, 26). Although 91 

genetically distinct, both segments share a common region (CR) of ~200 nucleotides 92 

that includes a stem loop structure with the conserved nonanucleotide TAATATTAC 93 

where rolling-circle replication is initiated. Additionally, the CR contains several 94 

regulatory elements including multiple copies of cis-elements known as iterons which 95 

are binding sites for the replication-associated protein (27).  96 

Analyses from field samples have revealed that both CMB segments are 97 

frequently evolving through homologous recombination (and “recombination” is 98 

presumed to be homologous recombination in this manuscript) (28–34). Most notably, 99 
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recombination contributed to the emergence of a highly virulent hybrid of ACMV and 100 

EACMV isolates known as EACMV-Uganda (EACMV-UG) that caused severe disease 101 

outbreaks in East and Central Africa in the 1990s (35, 36). Due to the frequent 102 

characterization of emergent recombinants and the fact that distinct CMBs are 103 

commonly found infecting the same plant (37–39), recombination is regarded as a 104 

widespread phenomenon that significantly impacts CMB biodiversity and evolution.  105 

Here we present a systematic analysis of recombination and its influence on the 106 

evolution of the CMD species complex. By applying several recombination analysis 107 

tools to datasets of publicly available CMB sequences, we mapped a complex 108 

recombination history where inter-species recombination events correlated with the 109 

emergence of most (6/11) CMB species. While mutation was estimated to occur more 110 

often than recombination in all our datasets, our findings support interspecies 111 

recombination as the main driver of diversity at a macroevolutionary scale. 112 

RESULTS 113 

A total of 880 full-length DNA-A sequences and 369 DNA-B sequences from the 114 

eleven established CMB species were downloaded from NCBI GenBank (Table 1). The 115 

DNA-A isolates were classified based on the begomovirus 91% nucleotide identity 116 

species demarcation threshold. Pairwise nucleotide identity comparisons (Supplemental 117 

file 1) resulted in the reassignment of four isolates previously identified as EACMV 118 

sequences to EACMCV (accessions: AY211887, AY795983, JX473582, MG250164). 119 

Because the species definition does not extend to the DNA-B segment, DNA-B 120 

sequences were identified according to their species designation in GenBank (DNA-B 121 

segments are typically classified based on DNA-A sequences isolated from the same 122 
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host sample or by highest nucleotide identity to an extant DNA-B sequence when no 123 

corresponding DNA-A sequence is available). Our datasets are imbalanced with respect 124 

to genomic segment (DNA-B is less frequently sampled than DNA-A) and geography 125 

(the sample size was larger for African CMBs relative to Asian CMBs). We present 126 

results for DNA-A followed by DNA-B. 127 

Likely recombinant origin for 6 of 11 CMB species. Since recombination is a major 128 

contributor to begomovirus evolution, standard phylogenetic approaches cannot fully 129 

recapitulate the evolutionary history of CMBs. Therefore, we used a split-network 130 

analysis to examine evolutionary relationships within the CMB phylogeny. The network 131 

(Fig.1A) showed most sequences in tight clusters based on the 11 species. Some 132 

divergent isolates were found near the main clusters in the SACMV, EACMKV and 133 

EACMV clades, suggestive of phylogenetic conflict and, potentially, recombination 134 

causing the divergence in those sequences. Multiple edges connecting branches of 135 

SLCMV and ICMV isolates indicate complicated patterns of recombination among the 136 

Asian CMBs, consistent with previous reports (40). The highly reticulate structure of the 137 

network implies an extensive history of recombination, both within and between species.  138 

 To further explore and characterize recombination among the CMB DNA-A 139 

sequences, the all-species alignment (n=880) was analyzed using RDP4. An initial scan 140 

did not detect recombination between the Asian and African sequences. We split these 141 

sequences into two data sets (African n=851; Asian n=29) with the rationale that 142 

reducing the number of gaps in the alignments would improve accuracy of 143 

recombination detection. We performed RDP4 analysis on the two multiple alignments 144 

separately (with stringent settings, described in the Methods section) and identified a 145 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438541
http://creativecommons.org/licenses/by-nc/4.0/


Crespo-Bellido et al. 

total of 24 high-confidence recombination events (Table 1): 16 for the African CMB data 146 

set and 8 for the Asian data set. Six unique events were supported in all representatives 147 

of individual species (depicted in Fig. 1B; similarity plots in Fig. A1 and A2), suggesting 148 

a recombinant origin for six out of the eleven species: ACMBFV, EACMCV, EACMKV, 149 

EACMMV, EACMZV and SLCMV. We refer to these events as ‘macroevolutionary,’ 150 

based on the hypothesis, discussed below, that the recombination events led to the 151 

original splitting of each relevant species cluster from “parent” species clusters. Most of 152 

these events have been reported previously, except for that associated with SLCMV. 153 

Similarity plots for all 24 high-confidence events using the best candidate parental 154 

sequences identified by RDP4 are presented in the appendix. 155 

As in Tiendrébéogo et al. (32), ACMBFV was identified as a recombinant of 156 

ACMV with a recombinant fragment spanning most of the AC1 ORF, the entire AC4 157 

ORF and a portion of the CR. Despite RDP4 choosing CMMGV as the minor parent for 158 

this event in our analysis, low nucleotide identity (<80%) within the recombinant region 159 

makes it an unlikely parental sequence (Fig. A1). BLAST analysis of the recombinant 160 

portion identified a tomato leaf curl Cameroon virus (ToLCCMV) sequence as the 161 

closest ‘relative’ currently in GenBank, which is consistent with the previous report. The 162 

EACMCV and EACMZV macroevolutionary recombination events (events 2 and 5; Fig. 163 

A1) corroborate results from previous recombination analyses where they were 164 

characterized as recombinants (29, 30). No significant virus donor was identified for the 165 

EACMCV recombinant fragment, but its major parent was likely EACMV. EACMMV has 166 

been described as an EACMV-like recombinant (28, 41), yet RDP4 suggested SACMV 167 

as the most likely major parent in our analysis. The conflict between these results is 168 
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most likely due to the very high degree of similarity between the regions covering AC3, 169 

AC2 and the 3’ end of AC1 in SACMV and EACMV (Fig. 2A), which suggests a shared 170 

evolutionary history for that region among the two species. Since high similarity can 171 

confound recombination detection, it becomes hard to unambiguously detect correct 172 

breakpoints and potential parental sequences. However, analysis with similarity plots 173 

showing a drop-off in similarity at one of the boundaries of this region between EACMV 174 

and EACMMV, points to SACMV being the more likely major parental species (scenario 175 

1 illustrated in Fig. 2B). The high-sequence-similarity region also affects candidate 176 

parent sequence identification for EACMKV (Fig. 2C, discussed below). 177 

Curiously, the single available CMMGV sequence, which has been previously 178 

characterized as recombinant (33), did not display any putative recombinant regions 179 

within its genome. It was reported that CMMGV had minor fragments donated by both 180 

SACMV and EACMZV-like sequences. However, a close examination using the 181 

distance plot and phylogenetic tree construction tools in RDP4 revealed that only one 182 

SACMV sequence (the minor parent identified by Harimalala et al., and the first SACMV 183 

isolate ever fully sequenced (42)); accession number: AF155806) had high similarity in 184 

the AV1 recombinant region with CMMGV (event 10; Fig. A4), whereas all other 185 

SACMV genomes did not. As a result, it seems more plausible that CMMGV acted as 186 

donor to that single SACMV isolate. In the case of the second minor fragment, our 187 

RDP4 analysis suggested that CMMGV was the donor virus and EACMZV the recipient 188 

(event 5; Fig. A1), contrary to what was argued previously (33). At the moment, we 189 

cannot distinguish the direction in which the fragment was donated so there is no 190 

definitive evidence as to whether CMMGV is a recombinant species.  191 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438541
http://creativecommons.org/licenses/by-nc/4.0/


Crespo-Bellido et al. 

The results showed frequent recombination between ICMV and SLCMV, which 192 

made it difficult to resolve the recombination profiles within the Asian CMB data set. 193 

This issue is suggested by the statistically undetermined breakpoints in the SLCMV 194 

species-wide event involving ICMV and an unknown minor parent (event 6; Fig. A6), 195 

which points to likely overprinting by subsequent recombination events. Only 16 out of 196 

19 SLCMV sequences were predicted to be descendants of this event. However, the 197 

three remaining SLCMV isolates (accessions: AJ314737, KP455484, and AJ890226) 198 

showed evidence of a similar event between ICMV and an SLCMV-like isolate with 199 

almost the same breakpoints (event 21; Fig. A7). Altogether, we interpret these results 200 

as evidence for a recombinant origin for SLCMV. 201 

Other high confidence DNA-A events confirm previously described recombinants. 202 

In addition to the six macroevolutionary events, 18 other events were detected in the 203 

DNA-A datasets (Table 2). Among these events, the most well-represented event was 204 

that of the famous EACMV-UG recombinant (event 7; Fig. A3), found in 97 of the 228 205 

EACMV sequences. Of the 10 other non-macroevolutionary events in the African data 206 

set, most were associated with either EACMKV or SACMV as the recombinants (5 and 207 

3 events, respectively). Recombinants with evidence of events 8, 9, 12, 13, 14, 15 and 208 

17 (Fig. A3-A5) were collected in one of the most comprehensive CMB sampling studies 209 

to date, which took place in Madagascar (34). The EACMKV isolate in event 13 210 

(accession: KJ888083) presented an interesting case as it was classified as EACMKV 211 

by having 91.02% nucleotide identity to only one other EACMKV isolate (accession: 212 

KJ888079; Supplemental file 1), suggesting the event caused just enough divergence to 213 

where the sequence narrowly satisfies the criterion to be classified as EACMKV. A 214 
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BLAST analysis revealed an EACMCV isolate from Madagascar (accession: KJ888077) 215 

as a highly similar recombinant donor, which was not identified by RDP4 as a parent 216 

despite being present in the dataset.  217 

Recombination event 11 could conflict with the recombinant origin for all other 218 

EACMKVs, as all EACMKV sequences match both this and the profile suggested in 219 

event 3 (Fig. 2B). We maintain that event 3 is the more likely origin of the EACMKV 220 

species on the basis that it was detected in all EACMKV sequences in our analysis. 221 

However, the alternative recombinant origin where an EACMV sequence acts as the 222 

major parent is consistent with the first characterization of an EACMKV isolate (31) and 223 

remains a possibility. This highlights once more the challenge in characterizing events 224 

involving SACMV and EACMV-like sequences due to their region of high similarity (Fig. 225 

2A). No evidence of recombination was found among EACMZV and EACMMV isolates. 226 

Despite having a smaller pool of sequences, 4 genetic exchanges between 227 

SLCMV and ICMV were identified in the Asian data set. Three of those events (6, 19 228 

and 21; Fig. A6-A7) had breakpoints in the region of overlap between AC2 and AC3, 229 

suggesting a potential hotspot of recombination between these species. 230 

Mutation occurs more frequently than recombination within the DNA-A segment 231 

of all CMB species. We estimated nucleotide diversity (π) within all species (except for 232 

CMMGV and ACMBFV, which each had fewer than 5 sequences, Table 1) as a 233 

measure of standing genetic diversity. Nucleotide diversity for all species was within the 234 

same order of magnitude and ranged from 0.012 (for EACMMV) to 0.074 (for ICMV, 235 

Table 3). No associations were observed between diversity and sample size. 236 

Additionally, we estimated per-generation, population-scaled rates of recombination (ρ) 237 
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and mutation (θ) to assess the frequency of recombination within each species relative 238 

to mutation (ρ/θ). We further tested for the presence of recombination by calculating 239 

correlations between estimates of linkage disequilibrium (r2) and physical distance (d) 240 

and used a likelihood permutation test (LPT) of recombination (Table 3) with LDhat (43). 241 

The correlation between r2 and d was negative across all datasets, consistent 242 

with the expectation of linkage disequilibrium decay as distance is increased in the 243 

presence of recombination. The LPT indicated recombination in all species except 244 

EACMMV, which was consistent with the ρ=0 estimate for that species. Across all 245 

populations, mutation was the dominant evolutionary mechanism in terms of frequency 246 

when compared to recombination, as displayed by <1 values of the ρ/θ ratio (typically < 247 

0.03). Interestingly, the highest ρ/θ value was observed for ACMV (0.22), which was 248 

involved in three interspecies recombination events detected thus far (events 1, 7 and 249 

9), but none within the species. SACMV and EACMKV were the other two clades with 250 

higher contributions of recombination, which were also the two most featured species in 251 

our RDP4 results for the African CMB sequence alignment.  252 

Sequence divergence between DNA-A recombinant species and their 253 

hypothesized major parents suggests interspecies recombination as the major 254 

contributor to phylogenetic divergence. The average number of pairwise nucleotide 255 

differences per site within species (π) and between recombinant and predicted major 256 

parental species (DXY) were estimated in sliding windows to assess the effect of the 257 

macroevolutionary recombination events on phylogenetic divergence (Fig. 3). In every 258 

comparison, there was a pronounced increase over the genome-wide average of DXY in 259 

regions associated with macroevolutionary recombination events. This suggests 260 
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appreciably different evolutionary histories in those regions compared to the rest of the 261 

genome, which supports species-wide recombination events as drivers of greater 262 

divergence than mutational and other minor recombination events. A noticeable peak in 263 

DXY within the CR and 5’ end of AV2 in the EACMCV-EACMV comparison was 264 

observed (Fig. 3). This region was detectably recombinant in one EACMCV sequence 265 

(event 17, accession: KJ888049). Close examination of the alignment in this region 266 

suggested that 23 of the remaining 27 EACMCV sequences may have an undetected 267 

recombination event in this region, but likely with different breakpoints from event 17.  268 

All samples with evidence of the undetected event and event 17 were sampled in West 269 

Africa, Comoros or Madagascar while the three EACMCV isolates without a 270 

recombination event in that part of the genome were sampled in East Africa. This 271 

supports the hypothesis that EACMCV originated in East Africa and acquired a second 272 

recombinant fragment in the West African isolates (41), and it is possible that the West 273 

African genotype has now been introduced to the Comoros and Madagascar. The 274 

uncharacterized event and event 17 clearly have contributed to the divergence within 275 

EACMCV (as evidenced in a spike in EACMCV nucleotide diversity; Fig. 3) and 276 

between EACMV and EACMCV. Similarly, a downstream increase in DXY and π for 277 

EACMV within the AV1 3’ end was observed, corresponding to the region of the 278 

EACMV-Ug recombination event (event 7). While these are examples of how small 279 

recombination events have contributed to the phylogenetic divergence between 280 

species, our results show that the larger, ancestral inter-species recombination events 281 

are the driving force behind evolutionary divergence at the CMB species level. 282 
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Fewer high-confidence DNA-B recombination events. Due to the high levels of 283 

divergence between DNA-B isolates, an all-“species” DNA-B alignment was difficult to 284 

construct. Therefore, we split the DNA-B sequences into three broad groups: EACMV-285 

like (EACMV, SACMV, EACMKV, EACMMV, EACMZV, EACMCV) + CMMGV (n=243), 286 

ICMV-SLCMV (n=22) and ACMV-ACMBFV (n=104), and conducted phylogenetic 287 

network (Fig. 4A) and RDP4 analyses (Table 4) on each group separately. For the 288 

EACMV-like group, we observe a network with sporadic reticulations indicating some 289 

recombination. The DNA-B sequences from most species do not form monophyletic 290 

clades, with isolates from EACMV, EACMKV and SACMV spread out around the 291 

network. Isolates from EACMCV, which have been reported as clearly distinct from the 292 

rest of the EACMV-like DNA-B segments (44), are separated from the center of the 293 

network by long branches, indicating large genetic distances between them and the rest 294 

of the EACMV-like DNA-B segments. Similarly, a long branch separates CMMGV from 295 

all other clusters. 296 

 The ICMV-SLCMV network is more compact than the EACMV-like group, 297 

signifying a higher degree of genetic similarity between all isolates. All the SLCMVs are 298 

closely related to one another, and the branches for both SLCMV and ICMV isolates 299 

show some reticulation. The ACMV-ACMBFV sequences are also genetically very 300 

similar and have the least reticulation of the three networks (Fig. 4A).  301 

 A total of 10 recombination events were identified in the DNA-B data sets: 7 302 

events in the EACMV-like group and 3 events in the ICMV-SLCMV group (designated 303 

B1-B10, Table 4). No events were detected in the ACMV-ACMBFV sequences. Of the 304 

10 events, 2 could be considered as ancestral clade-founding events (Fig. 4B). We refer 305 
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to these events as ‘clade-founding’ rather than ‘macroevolutionary’ to emphasize that 306 

this classification is distinct from the DNA-A-based species definition. Event B1 is 307 

associated with CMMGV (Fig. A9), which had an EACMKV isolate as a closely related 308 

major parent and a recombinant fragment from an unknown virus that spanned most of 309 

BC1 and the 5’ portion of the CR. This event was previously reported (33). Event B2 310 

was associated with SLCMV (Fig. A9), where all 12 sequences had evidence of the 311 

event. In this event, ICMV was observed as major parent with a fragment in the 5’-CR 312 

from an unknown parent. From a BLAST analysis, we identified that the fragment most 313 

likely originated from an SLCMV DNA-A sequence. This event has been described 314 

before and is believed to explain the evolution of SLCMV from a putative monopartite 315 

begomovirus, where an SLCMV-like sequence “captured” an ICMV DNA-B segment by 316 

donating the Rep-binding iteron sequences necessary for replication (45).  317 

 In addition to these two well-supported clade-forming events, there are several  318 

other recombination events that may have had a similar impact. Seven out of the 9 319 

EACMCV DNA-B sequences show evidence of event B3 (Fig. A9), and it is plausible 320 

that this recombination event defined the common ancestor of all 9 EACMCV DNA-B 321 

sequences. However, the lack of statistical support in the other two sequences prevents 322 

us from calling it an ancestral recombination event for all EACMCV DNA-B isolates. 323 

Similarly, event B4 (Fig. A10) is observed in 8 different sequences classified as either 324 

EACMKV or EACMV, which suggests recombination was the mechanism of emergence 325 

for this small circulating clade. Event B8 (Fig. A9) is another example of an event that 326 

possibly led to the emergence of a small clade, identified in two EACMKV isolates 327 

(accessions: JF909228 and JF909227) collected in the Seychelles archipelago (46). 328 
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 No recombination meeting our 5-out-of-7-methods RDP4 threshold was found in 329 

the ACMV-ACMBFV DNA-B group. However, one event in the single ACMBFV DNA-B 330 

sequence available was detected by 4 methods. This event was not detected in the 331 

original report of ACMBFV (32) but similarity plots (Fig. A8) provide additional evidence 332 

of recombination. It seems likely that ACMBFV DNA-A “captured” an ACMV DNA-B 333 

segment via recombination, creating an ACMBFV DNA-B segment with a compatible 334 

replication-associated protein binding site (Fig. A8), similar to the scenario proposed for 335 

SLCMV DNA-B (45). An alternative possibility is that an ACMV DNA-B molecule 336 

recombined directly with a different virus segment (based on best BLAST hit, potentially 337 

a relative of tomato leaf curl Nigeria virus – accession: FJ685621). 338 

Mutation occurs more frequently than recombination within CMB DNA-B groups. 339 

Nucleotide diversity and rates of mutation and recombination were estimated for ACMV-340 

ACMBFV, EACMCV and ICMV-SLCMV groupings (Table 5). The high degree of 341 

similarity within these groups justifies them being defined as individual “populations” for 342 

these analyses. The other species were not included in this analysis because of our 343 

inability to define meaningful populations. Nucleotide diversity estimates for the ACMV-344 

ACMBFV DNA-B cluster were higher (0.067) than for ACMV DNA-A (Table 3, 0.033). 345 

The same was observed for the EACMCV DNA-A and DNA-B segments (0.048 and 346 

0.088, respectively). However, we estimate a slightly higher standing genetic variation in 347 

the ICMV DNA-A sequences (0.074) than in the ICMV-SLCMV DNA-B group (0.062), 348 

indicating comparable levels of variability among the examined sequences.  349 

 We found evidence of linkage disequilibrium decay in all three datasets using the 350 

r2 measure, and the LPT indicated the presence of recombination in all groups. The ρ/θ 351 
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ratio ranged from 0.008-0.145, showing that mutation is much more frequent than 352 

recombination for DNA-B. Overall these within-group results for DNA-B (Table 5) were 353 

very similar to those for DNA-A (Table 3). 354 

DISCUSSION 355 

 Recombination is an important and pervasive mechanism that contributes 356 

significantly to plant virus evolution (47) and is broadly documented among 357 

begomovirus species (10-13, 16). Our updated recombination profile of all sampled 358 

CMB full genomic segments to date reveals widespread intra- and inter-species 359 

recombination. A variety of complementary recombination analyses indicate that the 360 

majority of CMB species (6/11) have a recombinant origin. For the first time, we show a 361 

recombinant origin of SLCMV DNA-A, which likely descended from genetic exchange 362 

between an ICMV-like isolate and an unidentified begomovirus DNA-A segment. 363 

Surprisingly our analysis did not support a recombinant origin of the single isolate of 364 

CMMGV, though it had been considered previously to be the product of genetic 365 

exchange between major parent distantly related to CMBs and minor parents SACMV 366 

and EACMZV (33). Instead, our analyses consider CMMGV to be a parental virus, 367 

contributing to the creation of EACMZV and an SACMV recombinant (42). Although no 368 

macroevolutionary signals of recombination were detected in SACMV, ACMV, CMMGV, 369 

EACMV and ICMV, it is possible that events associated with their emergence occurred 370 

so long ago that the distinguishing patterns of polymorphism created by recombination 371 

have been erased by subsequent mutations and cannot be detected. In the case of 372 

SACMV, an argument has been made for it having a recombinant origin based on 373 

molecular analyses and phylogenetic incongruencies observed in different parts of the 374 
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genome where the AV1 ORF and CR resemble tomato yellow leaf curl virus isolates, 375 

the AC2, AC3 and AC1 3’ end are closely related to EACMV, and the 5’ end of 376 

AC1/AC4 ORF portion seems to have a distinct evolutionary history (41, 42, 48, 49). 377 

Regardless of the undetectable contribution of recombination to all CMB DNA-As, we 378 

have strong evidence for recombination leading to speciation in the majority of currently 379 

defined CMB species. 380 

 Although parentage cannot be definitively established in some cases, fragments 381 

derived from EACMKV and SACMV lineages seem to have a high propensity for inter-382 

species recombination (34). We also observe frequent recombination between both 383 

Asian CMB species, which supports past reporting of ICMV and SLCMV as a 384 

recombinogenic pair (50). Unsurprisingly, no recombination was detected between 385 

isolates originating in Asia and those from Africa. At this moment, there are no reports 386 

of Asian CMBs infecting cassava crops in Africa and there is only one study where an 387 

African CMB (i.e., EACMZV) has been sampled in cassava crops in Asia, specifically in 388 

the West Asian country of Oman (51), where ICMV and SLCMV have never been 389 

identified. While we lack experimental or field evidence that Asian and African CMB 390 

species have the capability to recombine and produce viable viral progeny, it is probable 391 

that these viruses have had limited opportunities to coinfect the same host plant. 392 

However, ACMV isolates have been recovered in cotton crops in the South Asian 393 

country of Pakistan and ACMV recombinant fragments have been detected in cotton-394 

infecting begomoviruses even though cassava is not cultivated there (52). This 395 

suggests an exchange of CMB species between Africa and Southern Asia and hints at 396 

the role of alternative plant hosts on the emergence of inter-species recombinant 397 
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begomoviruses (53). Continuous CMB surveillance efforts are needed to ensure 398 

endemic viral species are not spread across continents via international trade and are 399 

not given the opportunity to spread and potentially recombine with native 400 

begomoviruses. Countries heavily involved in agricultural trade such as Oman should 401 

receive special attention as they can become a sink for divergent begomovirus species 402 

and potentially a hub for the emergence of novel recombinant begomoviruses (54). 403 

While mutation is more frequent, retained recombination events are more 404 

significant. Estimates of the DNA-A relative rates of recombination and mutation (ρ/θ) 405 

show that mutations occur more often than recombination within all the analyzed clades, 406 

which is consistent with previous analysis based on the Rep and CP genes of other 407 

begomovirus species (55). Notably, while no recombination was readily detected in any 408 

of the ACMV sequences with RDP4, the LPT detected a signal of recombination, and 409 

our ACMV DNA-A dataset had the highest frequency of genetic exchange relative to 410 

mutation. Since recombination signals were detected within the ACMV sequences, we 411 

interpret these results collectively to mean most ACMV recombination is intra-specific 412 

(illustrated in Fig. 1), which is difficult to detect with the methods used by RDP4. The 413 

lack of ACMV recombinants involving other CMB species, which has been mentioned in 414 

the literature (20, 41), might be explained by potential genome incompatibility and 415 

selection against mosaic sequences where donor fragments from divergent CMBs could 416 

disrupt intra-genomic interactions and gene coadaptation (56, 57).  417 

Mutation is clearly the more frequent process when compared to recombination 418 

within all CMB species, confirming the conclusions of previous studies which show that 419 

the genetic diversity in begomovirus populations is predominantly shaped by mutation 420 
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(10, 55). However, the relative contributions of these processes to the evolution of 421 

CMBs is not necessarily a function of their frequency. The DXY sliding-window plots 422 

reveal that single recombination events are correlated with most of the divergence 423 

between putative parental species and their recombinant progeny species (Fig. 3). We 424 

conclude that the relatively higher rates of mutation relative to recombination on a 425 

microevolutionary scale are not reflective of the influence of recombination at the 426 

macroevolutionary scale, where inter-species recombination is the driving force behind 427 

the emergence of the majority of CMB species. While reports of begomovirus species 428 

that have emerged through recombination are common (58–62), this is the first time a 429 

systematic analysis of recombination and its contribution to species diversity is 430 

performed within all known species of a begomovirus disease complex. 431 

Although “speciation” does not directly apply to DNA-B sequences it is clear that 432 

intersegment recombination has played a significant role in the evolution of viruses such 433 

as SLCMV and, potentially, ACMBFV. Indeed, the trans-replicational capture of 434 

divergent DNA-B segments/satellite molecules by DNA-A sequences via recombination 435 

involving Rep-binding sites is a documented mechanism that has led to new 436 

associations resulting in different disease phenotypes (45, 63, 64). Additionally, it 437 

represents a plausible explanation for the potential evolutionary transition to bipartite 438 

begomoviruses from monopartite ancestors (44). Ultimately, this phenomenon has and 439 

continues to contribute to the genomic modularity of begomoviruses, which in turn can 440 

influence their evolvability.  441 

The phylogenetic networks among the DNA-B groups (Fig. 4) were comparatively 442 

less reticulated than the DNA-A network (Fig. 1), and fewer high-confidence 443 
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recombination events and recombinants were detected. Despite these comparisons, it is 444 

not yet clear if begomovirus DNA-B sequences are more or less prone to recombination 445 

than DNA-A more broadly. The expectation is that the genomic structure of DNA-B 446 

segments (where there are no overlapping genes and a larger proportion of noncoding 447 

regions relative to the highly overlapping and mostly coding DNA-A segments) imposes 448 

fewer selective constraints on recombinants than in DNA-A sequences (44, 65) and can 449 

tolerate greater nucleotide diversity, which we do observe (Tables 3, 5). However, there 450 

are several factors that might explain why fewer recombinants were detected among the 451 

DNA-B datasets. No reliable, complete alignments were obtained due to the high 452 

divergence of DNA-B segments, hindering our ability to characterize recombination 453 

events using RDP4. RDP4 analyses were also explicitly set up to be conservative and 454 

to test for intrasegment recombination in this study, so additional events involving DNA-455 

A and DNA-B segments might have been missed. Additionally, CMB DNA-B sequences 456 

are infrequently sampled compared to DNA-A sequences (Table 1), which reduces our 457 

ability to detect recombination both by having a lower number of exemplar parental 458 

sequences in our datasets and by having fewer representative DNA-B sequences. A 459 

recent study suggests that recombination occurs more frequently in DNA-B segments of 460 

New World begomoviruses relative to their cognate DNA-As, but this pattern may be 461 

virus-specific (66). Moreover, previous research suggests that DNA-A and DNA-B 462 

sequences have been subjected to different evolutionary pressures which have resulted 463 

in distinct evolutionary histories for the two segments, with further segment-specific 464 

differences found between New World and Old World begomoviruses (44). Regardless 465 

of the absolute rate of recombination differences that may exist between DNA-A and 466 
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DNA-B segments, ρ/θ values for groups of DNA-B sequences follow the trend of DNA-A 467 

segments, which suggests that mutations occur more frequently than recombination 468 

events. 469 

Like mutations, viral recombination events are usually deleterious (67–69). 470 

However, previous studies of begomovirus recombination have shown that there is a 471 

subset of fit recombinants that can be generated in the lab (70, 71) and be observed in 472 

nature (72). Recombination can additionally recover functional full-length genomes from 473 

populations with defective geminiviruses (69, 73, 74). Since begomovirus phenotypes 474 

associated with recombination include altered disease severity (75, 76), host range 475 

expansion (76, 77) and resistance-breaking (78, 79), recombination is also a major 476 

contributor to the epidemic potential of these viruses. Consequently, recombination is a 477 

markedly important evolutionary mechanism with epidemiological implications for 478 

begomovirus emergence. Knowledge about mechanistic patterns and selective 479 

determinants of fit CMB recombinants should be incorporated in the development of 480 

anti-viral strategies to reduce the likelihood of the emergence of virulent recombinants. 481 

This is especially important in the context of breeding CMD-resistant cassava varieties 482 

which has been the most effective approach for disease control to date (80). 483 

Species constructed on sequence divergence are ripe for speciation by 484 

recombination. It should be noted that recombination as a driver of speciation is also a 485 

function of the way the community defines species in Begomovirus. Current taxonomy 486 

guidelines state that a begomovirus species is defined as a group of DNA-A isolates 487 

sharing ≥91% pairwise nucleotide sequence identity and any new isolate is assigned to 488 

a species if it shares at least 91% nt sequence identity to any one isolate from that 489 
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species (81). As we increase surveying efforts of natural CMB biodiversity with 490 

improving sequencing techniques, a larger fraction of the tolerated sequence diversity 491 

within each species will be found.  It will be increasingly unlikely that sufficient mutations 492 

to create >9% sequence diversity will accumulate quickly enough without any 493 

intermediates being sampled. These cataloged intermediates then shift the goal posts 494 

for “speciation,” as a novel species would have to have >9% sequence divergence from 495 

them. Consequently, recombination may be the main way to obtain enough genetic 496 

variation to cross the species demarcation threshold for begomoviruses and is therefore 497 

the likely predominant mechanism of speciation for the entire genus. 498 

Virus speciation is often discussed in terms of ecological factors, where host 499 

specificities and virus-host interactions lead to the evolution of diverged lineages that 500 

develop into different viral species (82–85). Under this model, frequent recombination 501 

homogenizes viral diversity, and only when recombination is limited do lineages 502 

diversify (86, 87). Here, by zooming in to the CMD species complex, we provide 503 

evidence that diversity at the species level can be predominantly shaped by 504 

recombination as well. Recombination has also been implicated as a direct mechanism 505 

of speciation in other virus groups, e.g., Luteovirideae (88), Bromoviridae (89), 506 

Reoviridae (90) and Papillomaviridae (91). Additionally, recombination has shaped 507 

some deep phylogenetic relationships among viruses. Within Geminiviridae, most 508 

genera have emerged from ancient inter-generic recombination events (92–97). For 509 

higher taxonomic ranks, it is apparent that the origins of multiple families within 510 

Cressdnaviricota, including Geminiviridae (98, 99), can be traced to independent 511 

recombination events involving prokaryotic plasmids and diverse plant and animal RNA 512 
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viruses (100). These and other recombination events in deep phylogeny have led to 513 

both modular patterns of virus evolution and polyphyletic groupings across the 514 

Baltimore classifications (101).  515 

The general trend of speciation via recombination for CMBs might not be true for 516 

species in other virus families. For instance, a recent review of potyviruses found 517 

recombination to be common within populations but uncommon as a mechanism of 518 

speciation (102). In picornaviruses, whose species demarcation is defined by a 519 

significant degree of amino acid identity, it has been concluded that recombination limits 520 

speciation and members of distinct species based on current taxonomic schemes are 521 

so diverged that they are generally presumed to be incompatible (103). Our contrasting 522 

results are likely due to the narrow way that novel species are determined in 523 

begomoviruses (<91% nucleotide identity for the DNA-A segment). However, as more 524 

viral groups move to nucleotide identity as species demarcation criteria as a way to 525 

integrate the wealth of viral diversity known from genetic sequences alone (104), our 526 

conclusions from CMBs may prove more broadly applicable. 527 

MATERIALS AND METHODS 528 

CMB sequence data sets. Two data sets comprised of all full-length DNA-A and DNA-529 

B nucleotide sequences corresponding to the 11 recognized CMB species were 530 

downloaded from the GenBank database via NCBI Taxonomy Browser 531 

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi) between January and 532 

July 2019. The 11 species analyzed here (and corresponding virus abbreviations) are 533 

African cassava mosaic virus (ACMV), African cassava mosaic Burkina Faso virus 534 

(ACMBFV), Cassava mosaic Madagascar virus (CMMGV), South African cassava 535 
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mosaic virus (SACMV), East African cassava mosaic virus (EACMV), East African 536 

cassava Cameroon virus (EACMCV), East African cassava Kenya virus (EACMKV), 537 

East African cassava Malawi virus (EACMMV), East African cassava mosaic Zanzibar 538 

virus (EACMZV), Sri Lankan cassava mosaic virus (SLCMV) and Indian cassava 539 

mosaic virus (ICMV). All sequences were organized to begin at the nick site of the 540 

conserved nonanucleotide motif at the origin of replication (5’-TAATATT//AC-3’).  541 

Alignments and sample classification. All multiple sequence alignments were 542 

constructed using the MUSCLE method (105) as implemented in MEGA X (106) and 543 

manually corrected using AliView v1.26 (107). Multiple alignments have been archived 544 

as Zenodo records: 11 species DNA-A alignment (https://zenodo.org/record/4029589), 545 

CMMGV, EACMCV, EACMV, EACMKV, EACMMV, EACMZV, SACMV DNA-B 546 

alignment (https://zenodo.org/record/3965023), ACMV and ACMBFV DNA-B alignment 547 

(https://zenodo.org/record/3964979), and ICMV and SLCMV DNA-B 548 

(https://zenodo.org/record/3964977). 549 

A pairwise nucleotide identity matrix was calculated for complete DNA-A 550 

sequences using SDT v1.2 (108) and was used to assign each DNA-A sequence to a 551 

viral species according to the ICTV-approved begomovirus species demarcation 552 

threshold of >91% DNA-A identity (81). For DNA-B sequences, the species assignment 553 

listed in GenBank was used; species definitions for DNA-B are less distinct, as 554 

discussed in the text.  555 

Phylogenetic network analysis. Phylogenetic networks, which can capture conflicting 556 

phylogenetic signals such as those caused by recombination, were inferred from the 557 

alignments using the distance-based Neighbor-Net method (109) implemented in 558 
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SplitsTree4 v4.14 (110). Distances were corrected with a GTR + G model of sequence 559 

evolution using base frequencies, rate heterogeneity and gamma shape parameters 560 

estimated with jModelTest v2.1.6 (111) on XSEDE. 561 

Recombination detection and similarity plots. Putative recombinants, and major and 562 

minor “parents” within the data sets were determined using the RDP (112), GeneConv 563 

(11), Bootscan (113), MaxChi (114), Chimaera (115), SiScan (116), and 3Seq (117) 564 

recombination detection methods implemented on the RDP4 v4.100 suite (118). The 565 

terms ‘major parent’ and ‘minor parent’ are used by RDP4 to refer to sequences that 566 

have respectively contributed the larger and smaller fractions to the recombinant and 567 

are regarded as closest relatives to the true isolates involved in the event. Analyses 568 

were performed with default settings, while also enabling Chimaera and 3Seq for 569 

primary scan, and a Bonferroni-corrected P-value cutoff of 0.05 was used. Only events 570 

supported by at least five of the seven methods were considered high-confidence 571 

events. Breakpoint positions, putative recombinants and “parental” sequences were 572 

evaluated and manually adjusted when necessary using the available breakpoint cross-573 

checking tools and phylogenetic tree construction methods available in RDP4. RDP4 574 

results files have been archived as Zenodo records: RDP4 results for ACMBFV, ACMV, 575 

CMMGV, EACMCV, EACMV, EACMKV, EACMMV, EACMZV, SACMV DNA-A 576 

(https://zenodo.org/record/4592854), RDP4 results for ICMV and SLCMV DNA-A 577 

(https://zenodo.org/record/4592926), RDP4 results for EACMV-like + CMMGV DNA-B 578 

(7 "species") (https://zenodo.org/record/3965029), RDP4 results for ACMV and 579 

ACMBFV DNA-B (https://zenodo.org/record/3975834), and (RDP4 results for ICMV and 580 

SLCMV DNA-B (https://zenodo.org/record/3975838). Events were considered as 581 
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macroevolutionary recombination events when all members of a designated species 582 

had evidence of said event. A BLASTn analysis of the ‘non-redundant nucleotide’ 583 

database in NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was performed to identify the 584 

species whose members have sequences most similar to the “Unknown” recombinant 585 

fragments in our data sets. 586 

 Based on RDP4 results, similarity analyses comparing the recombinants to their 587 

putative parental sequences were performed using SimPlot v3.5.1 (119). All plots were 588 

done using the Kimura 2-parameter distance model with a sliding window size of 100 589 

and a step size of 10. For the the similarity plots in Figure 2, analyses were done by 590 

comparing 50% consensus sequences of all members of the compared species, 591 

respectively (except in the case of 2C where the best candidate sequence was used). 592 

Similarity plots for events in Tables 2 and 4 were made comparing the best candidate 593 

recombinant and parent sequences reported by RDP4 and are presented in the 594 

appendix. 595 

Estimates for the relative rates of recombination and mutation, linkage 596 

disequilibrium correlations with distance and likelihood permutation tests of 597 

recombination. LDhat v2.2 (43) was used to infer composite likelihood estimates 598 

(CLEs) of population-scaled recombination rates (𝜌 = 2𝑁𝑒𝑟) and estimates of 599 

population-scaled mutation rates (𝜃𝑤 = 2𝑁𝑒𝜇) with the PAIRWISE and CONVERT 600 

packages, respectively. This program uses an extension of Hudson’s composite-601 

likelihood method (120), which estimates the population recombination rate by 602 

combining the coalescent likelihoods of all pairwise comparisons of segregating sites. 603 

The extension in LDhat allows for a finite-sites mutation model, which makes it 604 
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appropriate for sets of sequences with high mutation rates such as the ones found in 605 

viral genomes.  606 

CONVERT was used with all default settings. While using PAIRWISE, a gene-607 

conversion model with an average tract length of 500 nt was fitted, and a precomputed 608 

likelihood lookup table for per-site θ=0.01 with a maximum 2𝑁𝑒𝑟 of 100 and 101-point 609 

size grid was used to obtain the CLEs of 𝜌. Since precomputed likelihood lookup tables 610 

for data sets larger than n=100 are not available, the COMPLETE package was used 611 

with GNU parallel (https://zenodo.org/record/3903853) to generate a likelihood lookup 612 

table for per-site θ=0.01 that can accommodate data sets of up to 320 sequences to use 613 

for the larger data sets in this study. File available as “LDhat coalescent likelihood 614 

lookup table for 320 sequences with theta = 0.01” (https://zenodo.org/record/3934350). 615 

𝜌/𝜃𝑤 estimate was obtained as the relative rate of recombination and mutation in the 616 

history of the samples within each analyzed clade. Additionally, PAIRWISE was used to 617 

obtain the correlation between estimates of linkage disequilibrium (r2 ) and physical 618 

distance (d), and to test for the presence of recombination using the likelihood 619 

permutation test (LPT) developed by McVean et al. (43). 620 

Standing genetic diversity and divergence between parental and recombinant 621 

species. The per-site standing genetic diversity of each species was assessed by 622 

calculating nucleotide diversity π (121), which is the average number of pairwise 623 

nucleotide differences per site between sequences within a clade. To obtain absolute 624 

measures of divergence between recombinant and parental species, per-site DXY (121) 625 

was calculated. DXY refers to the average number of pairwise differences between 626 
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sequences from two clades while excluding all intra-clade comparisons and is 627 

calculated as: 628 

𝐷𝑋𝑌 =∑𝑋𝑖
𝑖𝑗

𝑌𝑗𝑑𝑖𝑗 629 

where, in two clades, X and Y, dij measures the number of nucleotide differences 630 

between the ith haplotype from X and the jth haplotype from Y. All per-site estimates 631 

were obtained with DnaSP v6.12 (122). When estimating nucleotide diversity, 632 

gaps/missing information were excluded only in pairwise comparisons. For sliding 633 

window analyses, a sliding window size of 100 nt (including gaps) and a step size of 10 634 

nt were used. 635 

Data availability. As noted above, multiple alignments, RDP4 results and the 636 

generated LDhat likelihood lookup table have been deposited as Zenodo records. 637 

Alignment for DNA-A:   638 

11 species DNA-A alignment (https://zenodo.org/record/4029589), 639 

Alignments for DNA-B:  640 

CMMGV, EACMCV, EACMV, EACMKV, EACMMV, EACMZV, SACMV DNA-B 641 

alignment (https://zenodo.org/record/3965023)  642 

ACMV and ACMBFV DNA-B alignment (https://zenodo.org/record/3964979) 643 

ICMV and SLCMV DNA-B (https://zenodo.org/record/3964977) 644 

RDP4 results for DNA-A: 645 

RDP4 results for ACMBFV, ACMV, CMMGV, EACMCV, EACMV, EACMKV, 646 

EACMMV, EACMZV, SACMV DNA-A (https://zenodo.org/record/4592854) 647 

RDP4 results for ICMV and SLCMV DNA-A (https://zenodo.org/record/4592926) 648 

RDP4 results for DNA-B: 649 
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RDP4 results for EACMV-like + CMMGV DNA-B (7 "species") 650 

(https://zenodo.org/record/3965029)  651 

RDP4 results for ACMV and ACMBFV DNA-B 652 

(https://zenodo.org/record/3975834) 653 

(RDP4 results for ICMV and SLCMV DNA-B (https://zenodo.org/record/3975838) 654 

LDhat coalescent likelihood lookup table for 320 sequences with theta = 0.01 655 

(https://zenodo.org/record/3934350) 656 
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MAIN FIGURE LEGENDS 1009 

Figure 1. Phylogenetic network analysis for all CMB species DNA-A segments 1010 

and schematic of identified macroevolutionary recombination events. (A) 1011 

Neighbor-net network analysis for all CMB species DNA-A segments. Distances were 1012 

transformed using a GTR + G model. The numbers correspond to the clade-wide events 1013 

shared by all members of a species reported in Table 2 and depicted in 1B. Colors 1014 

representing each species are: ACMV: pink, ACMBFV: yellow, SACMV: green, 1015 

EACMKV: brown, EACMZV: red, EACMV: teal, EACMCV: orange, EACMMV: blue, 1016 

CMMGV: spring green, ICMV: turquoise, SLCMV: purple.  The descendants of a well-1017 

studied recombination event between ACMV and EACMV (EACMV-UG) are circled in 1018 

gray. (B) Linearized DNA-A schematic representations of putative ancestral 1019 

recombination events based on breakpoint and parental species predicted by RDP4.  1020 

Figure 2. Similarity plots showing similarity between EACMV and SACMV (A) and 1021 

alternative recombinant origins for the EACMMV (B) and EACMKV (C) DNA-A 1022 

segments. Plots are comparing the similarity of 50% consensus sequences of the 1023 

plotted species (except for 2C where best candidate EACMCV_JX473582 was used) 1024 

against a 50% consensus sequence of the query species. The Kimura-2-Parameter 1025 

model of sequence evolution was used to correct distances and a sliding window size of 1026 

100nt with a step size of 10nt was used. Above each plot, Scenario 1 represents the 1027 

macroevolutionary events associated with the queried species based on RDP4 results 1028 

while Scenario 2 represents the plausible alternative recombinant origin. The black line 1029 
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above the schematics depicts the conserved region between EACMV and SACMV 1030 

sequences, derived from panel 2A. 1031 

Figure 3.  Sliding window plots of nucleotide diversity (π) and population 1032 

divergence (DXY) for CMB DNA-A recombinant-major parental clade combinations. 1033 

DXY  between species is plotted in black and the grey dashed line represents the DXY 1034 

average between the compared datasets. The shaded area depicts the predicted 1035 

recombinant fragment based on RDP4 analyses.  1036 

Figure 4. Phylogenetic network analysis for all CMB species DNA-B segments 1037 

and schematic of identified clade-forming recombination events (A) Neighbor-net 1038 

network analysis for groups of CMB DNA-B segments. Distances were transformed 1039 

using a GTR + G model. The numbers correspond to the events reported in Table 2 and 1040 

depicted in 4B. (B) Linearized DNA-B schematic representations of putative species-1041 

spanning recombination events based on breakpoint and parental species predicted by 1042 

RDP4.  1043 

APPENDIX FIGURE LEGENDS 1044 

Appendix: Distance plots and schematic diagrams for all high-confidence 1045 

recombination events. The distance plots that follow confirm the plausibility of the 1046 

RDP4-identified recombination events listed in Tables 2 and 4. Note that Kimura-2-1047 

parameter-model-corrected similarities calculated by SimPlot are distinct from percent 1048 

nucleotide identity but are presented on the conventional scale. 1049 

Figure A1. Similarity plots for four African CMB DNA-A macroevolutionary 1050 

recombination events. Note that BLAST analysis suggests that a ToLCCMV-like virus 1051 
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was a more likely donor for Event 1 (Figure 1) but similarity for the closest sequence in 1052 

the dataset (CMMGV) is plotted. 1053 

Figure A2. Similarity plot for EACMKV DNA-A macroevolutionary recombination 1054 

event, exemplifed by AJ717578. Note that the y-axis limits differ from other graphs. 1055 

Figure A3. Similarity plots for 3 African CMB DNA-A recombinant haplotypes. 1056 

Note that the y-axis limits differ from other graphs. Comparisons correspond to RDP4 1057 

results for events 7-9. 1058 

Figure A4. Similarity plots for 4 African CMB DNA-A recombination events. 1059 

Comparisons correspond to RDP4 results for events 10-13. The color used to represent 1060 

EACMV sequences in event 11 is slightly different from other graphs to increase color 1061 

contrast. 1062 

Figure A5. Similarity plots for 4 African CMB DNA-A recombination events. 1063 

Comparisons correspond to RDP4 results for events 14-17. Note that event 16 1064 

corresponds to the KE2 recombinant haplotype described in Bull et al. (31). The color 1065 

used to represent EACMV sequences in event 16 is slightly different from other graphs 1066 

to increase color contrast. 1067 

Figure A6. Similarity plots for 4 Asian CMB DNA-A recombination events. 1068 

Comparisons correspond to RDP4 results for macroevolutionary event 6 and events 18-1069 

20. 1070 

Figure A7. Similarity plots for 4 Asian CMB DNA-A recombination events. 1071 

Comparisons correspond to RDP4 results for events 21-24. 1072 
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Figure A8. Similarity plot for ACMBFV DNA-B putative recombination event and 1073 

sequence alignments depicting potential recombination scenarios. Note that the 1074 

sole available ACMBFV DNA-B sequence did not meet our criterion for a high-1075 

confidence recombination event, as described above, but is highlighted for comparison 1076 

to SLCMV DNA-B. The putative Rep protein binding site of the ACMBFV DNA-B isolate 1077 

includes a single core Rep (AC1) binding sequence (GGGGT, highlighted in blue) with a 1078 

potential inverted repeat (GGACC, highlighted in green). Scenario 1 shows the 1079 

possibility that ACMBFV DNA-B originated from a recombination event involving an 1080 

ACMBFV DNA-A that donated part of the CR to an ACMV DNA-B, which has a distinct 1081 

binding site (27) (GGAGA, highlighted in pink). Scenario 2 shows the possibility that 1082 

ACMBFV DNA-B originated from a recombination event involving a different virus 1083 

segment and ACMV DNA-B. Based on best BLAST hit, the minor parent for Scenario 2 1084 

could be a relative of a tomato leaf curl Nigeria virus (ToLCNGV) segment (accession: 1085 

FJ685621). The single Rep-binding sequence and inverted repeat for ToLCNGV match 1086 

the ones for ACMBFV DNA-B and have been characterized previously (123). The C1 1087 

ORF TATA box for each sequence is shown in a box. Grey sites in the aligned 1088 

sequences correspond to sites that are distinct from the ACMBFV DNA-B sequence. 1089 

Figure A9. Similarity plots for 4 EACMV-like DNA-B recombination events. 1090 

Comparisons correspond to RDP4 results for clade forming event B1 and events B3, 1091 

B7-B8. 1092 

Figure A10. Similarity plots for 3 EACMV-like DNA-B recombination events 1093 

resulting from relatively similar sequences. Comparisons correspond to RDP4 1094 

results for events B4-B6. 1095 
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Figure A11. Similarity plots for 3 Asian CMB DNA-B events. Comparisons 1096 

correspond to RDP4 results for clade-forming event B2 and events  B9-B10.1097 
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TABLES AND FIGURES 

Table 1. Sample sizes by designated species for DNA-A and DNA-B sequences used in this 

study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continent   Species  Sample size 

    
DNA-A DNA-B 

Africa  ACMBFV  4 1 

 
 ACMV  311 103 

 
 SACMV  132 96 

 
 EACMV  228 56 

 
 EACMCV  28 9 

 
 EACMKV  114 67 

  EACMMV  15 1 

  EACMZV  18 13 

 
 CMMGV  1 1 

Total    851 347 

Asia  SLCMV  19 12 

   ICMV  10 10 
Total    29 22 
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FIGURE 1 
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Table 2. List of recombination events detected in CMB DNA-A sequences 

 

aActual breakpoint is undetermined; most likely overprinted by subsequent recombination event  
bBLASTn result with highest percent identity to fragment 
cR, RDP; G, GeneConv; B, Bootscan; M, MaxChi; C, Chimera; S, SisScan; T, 3SEQ 

  

 Event 

number 

 

Recombinant 
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FIGURE 2 
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Table 3. Descriptive statistics of CMB DNA-A species’ diversity and the contributions of 

mutation and recombination to that diversity 

 
π=nucleotide diversity; average number of pairwise differences per site for samples within a clade 
S= number of segregating sites 
r2= square of the correlation coefficient between sites 
d= physical distance 
LPT= likelihood permutation test for the presence of recombination 
ρ= population-scaled recombination rate 
θw= Watterson’s infinite-sites estimator of the population-scaled mutation rate (θ) 

 

 

 

 

 

 

 

 

 

 

Clade  # seqs π S r2, d LPT p-value ρ θW ρ/θW 

ACMV 311 0.033 1317 -0.041 0 46 208.54 0.22 

SACMV 132 0.014 863 -0.104 0 28 158.17 0.18 

EACMV 228 0.057 1249 -0.072 0 6 208.02 0.029 

EACMCV 28 0.048 712 -0.176 0 4 182.97 0.022 

EACMKV 114 0.043 986 -0.188 0 13 185.72 0.070 

EACMZV 18 0.031 352 -0.036 0 2 102.34 0.020 

EACMMV 15 0.012 146 -0.01 0.68 0 44.9 NA 

SLCMV 19 0.024 349 -0.147 0 2 99.85 0.020 
ICMV 10 0.074 533 -0.043 0 4 188.41 0.021 
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FIGURE 3 
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FIGURE 4 
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Table 4. List of recombination events detected in CMB DNA-B sequences 

 

aBLASTn result with highest percent identity to fragment 
bR, RDP; G, GeneConv; B, Bootscan; M, MaxChi; C, Chimera; S, SisScan; T, 3SEQ 

 

 

 

 

 

 

 

 

 

 

Event 
number   Recombinant   Region   
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        Begin End             

B1  CMMGV  1564 2730  EACMKV  Unknown  RGBMCST 

B2  SLCMV  2596 2714  ICMV  

Unknown 
(SLCMV DNA-A)a 

 RGMCST 
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B4  EACMKV, EACMV 
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B5  EACMZV  504 1535  EACMZV  EACMZV  RGBMCST 

B6  EACMV  2740 2113  EACMV  EACMZV  RGMST 
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B9  ICMV  1871 2527  ICMV  Unknown  RGBMCST 

B10   ICMV   46 265   ICMV   Unknown   RGMCT 
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Table 5. Descriptive statistics of CMB DNA-B groups’ genetic diversity and the contributions of 

mutation and recombination to that diversity. 

 
π = nucleotide diversity; average number of pairwise differences per site for samples within a clade 
S = number of segregating sites 
r2 = square of the correlation coefficient between sites 
d = physical distance 
LPT = likelihood permutation test for the presence of recombination 
ρ = population-scaled recombination rate 
θw = Watterson’s infinite-sites estimator of the population-scaled mutation rate (θ) 

 

 

 

 

 

 

 

 

Clade  # seqs π S r2, d LPT p-value ρ θw ρ/θW 

ACMV-ACMBFV 104 0.067 1335 -0.009 0.003 28 193.31 0.145 

EACMCV 9 0.088 711 -0.005 0 3 261.60 0.011 

ICMV-SLCMV 22 0.062 881 -0.036 0 2 241.68 0.008 
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