

Crespo-Bellido et al.

Interspecies recombination has driven the macroevolution of cassava mosaic begomoviruses

Alvin Crespo-Bellido^a, J. Steen Hoyer^a, Divya Dubey^a, Ronica B. Jeannot^a, Siobain Duffy^a

^aDepartment of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey

Address correspondence to Siobain Duffy, duffy@sebs.rutgers.edu

Crespo-Bellido et al.

1 ABSTRACT

2 Begomoviruses (family *Geminiviridae*, genus *Begomovirus*) significantly hamper
3 crop production and threaten food security around the world. The frequent emergence
4 of new begomovirus genotypes is facilitated by high mutation frequencies and the
5 propensity to recombine and reassort. Homologous recombination has been especially
6 implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes,
7 which cause cassava mosaic disease (CMD). Cassava (*Manihot esculenta*) is a staple
8 food crop throughout Africa, and an important industrial crop in Asia, two continents
9 where production is severely constrained by CMD. The CMD species complex is
10 comprised of 11 bipartite begomovirus species with ample distribution throughout Africa
11 and the Indian subcontinent. While recombination is regarded as a frequent occurrence
12 for CMBs, a revised, systematic assessment of recombination and its impact on CMB
13 phylogeny is currently lacking. We assembled datasets of all publicly available, full-
14 length DNA-A (n=880) and DNA-B (n=369) nucleotide sequences from the 11
15 recognized CMB species. Phylogenetic networks and complementary recombination
16 detection methods revealed extensive recombination among the CMB sequences. Six
17 out of the eleven species have descended from unique interspecies recombination
18 events. Estimates of recombination and mutation rates revealed that all species
19 experience mutation more frequently than recombination, but measures of population
20 divergence indicate that recombination is largely responsible for the genetic differences
21 between species. Our results support that recombination has significantly impacted the
22 CMB phylogeny and is driving speciation in the CMD species complex.

Crespo-Bellido et al.

23 **IMPORTANCE**

24 Cassava mosaic disease (CMD) is a significant threat to cassava production throughout
25 Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species
26 exhibiting accelerated rates of evolution, driven by high frequencies of mutation and
27 genetic exchange. Here, we present a systematic analysis of the contribution of genetic
28 exchange to cassava mosaic virus diversity. Most of these species emerged as a result
29 of genetic exchange. This is the first study to report the significant impact of genetic
30 exchange on speciation in a group of viruses.

Crespo-Bellido et al.

31 **INTRODUCTION**

32 Viruses in the *Geminiviridae* family are major constraints to agricultural crop
33 production and pose serious threats to global food security, especially those in the
34 genus *Begomovirus* (1). Begomoviruses are dicot-infecting, whitefly-transmitted
35 pathogens that severely limit many economically important crops in tropical and
36 subtropical regions around the world (2). Begomovirus genomes consist of either one
37 (monopartite) or two (bipartite) circular single-stranded DNA (ssDNA) genetic segments,
38 each independently encapsidated in twinned, quasi-icosohedral particles (3). There are
39 424 established begomovirus species in the 2019 International Committee on the
40 Taxonomy of Viruses (ICTV) master species list, the largest number of species for any
41 virus genus. The frequent emergence of begomovirus genotypes and persistence of
42 begomovirus disease epidemics is facilitated by increased agricultural trade of infected
43 plant materials, the spread of polyphagous whitefly vector biotypes (1, 4, 5), and the
44 accelerated rate of begomovirus evolution that stems from the vast amount of genetic
45 diversity and the consequent adaptive potential found within populations (6).

46 Genetic diversity is generated by a combination of mutations and genetic
47 exchange processes (i.e., recombination and reassortment). While mutations are the
48 fundamental source of genetic variation, genetic exchange fuels diversity by combining
49 extant mutations from distinct genomes to produce new haplotypes. Begomoviruses
50 have high mutation frequencies (7) and substitution rates (comparable to those of RNA
51 viruses) (8, 9) which independently enable the efficient exploration of both sequence
52 space and adaptive landscapes in changing environmental conditions. However,
53 recombination has also been extensively documented among begomoviruses and is

Crespo-Bellido et al.

54 implicated in the diversification of different disease complexes affecting a variety of
55 crops (10–13). Recombination and reassortment can introduce significant variation in a
56 single event and profoundly impact virus evolution by preventing the accumulation of
57 deleterious mutations (14, 15) and potentially allowing access to novel phenotypes that
58 would be difficult to attain by mutation alone. Some phenotypic modifications associated
59 with genetic exchange in viruses include the modulation of virulence, novel strain
60 emergence, evasion of host immunity and antiviral resistance (16, 17). Therefore,
61 examining patterns of viral genetic exchange is critical to understanding virus evolution
62 and can help inform the development of control strategies.

63 Cassava mosaic begomoviruses (CMBs) are the causative agents of cassava
64 mosaic disease (CMD), which frequently limits crop production in this staple food for
65 ~800 million people around the world (18). In 2019, Africa was the leading continent in
66 terms of cassava yield, accounting for over 63% of the 303 million tons produced,
67 followed by Asia with 28% (<http://www.fao.org/faostat/en/#data/QC/>). While the general
68 resiliency of cassava against droughts and its tolerance of poor soil conditions has led
69 to its widespread adoption in these regions, its susceptibility to CMD presents a major
70 biotic constraint on production in these two continents. There are 11 identified species
71 in the CMD species complex. Nine CMB species are found in Africa: *African cassava*
72 *mosaic virus* (ACMV), *African cassava mosaic Burkina Faso virus* (ACMBFV), *Cassava*
73 *mosaic Madagascar virus* (CMMGV), *South African cassava mosaic virus* (SACMV),
74 *East African cassava mosaic virus* (EACMV), *East African cassava Cameroon virus*
75 (*EACMCV*), *East African cassava Kenya virus* (*EACMKV*), *East African cassava Malawi*
76 *virus* (*EACMMV*), and *East African cassava mosaic Zanzibar virus* (*EACMZV*). Two

Crespo-Bellido et al.

77 additional CMB species, *Indian cassava mosaic virus* (ICMV) and *Sri Lankan cassava*
78 *mosaic virus* (SLCMV), have been found exclusively in Asia. The African CMB species
79 are extensively distributed throughout sub-Saharan Africa (19) and are one of the
80 largest threats to cassava yield, accounting for up to US\$2.7 billion in annual losses
81 (20). Although initial reports placed the Asian CMBs solely in the Indian sub-continent,
82 SLCMV has expanded its distribution in recent years from India and Sri Lanka into
83 Cambodia, Vietnam, Thailand, and China (21–24).

84 CMB genomes are bipartite, comprised of two circular segments of similar size
85 (~2.8 kb) which are referred to as DNA-A and DNA-B. On the virion-sense strand of the
86 ssDNA genome, DNA-A has two partially overlapping genes that encode the coat (AV1)
87 and pre-coat (AV2) proteins. The complementary strand of DNA-A encodes the
88 replication-associated protein (AC1), the transcriptional activator protein (AC2), a
89 replication enhancer (AC3) and an RNA-silencing suppressor (AC4). The DNA-B
90 segment encodes for two proteins - a nuclear shuttle protein in the virion sense (BV1)
91 and a movement protein in the complementary sense (BC1) (25, 26). Although
92 genetically distinct, both segments share a common region (CR) of ~200 nucleotides
93 that includes a stem loop structure with the conserved nonanucleotide TAATATTAC
94 where rolling-circle replication is initiated. Additionally, the CR contains several
95 regulatory elements including multiple copies of cis-elements known as iterons which
96 are binding sites for the replication-associated protein (27).

97 Analyses from field samples have revealed that both CMB segments are
98 frequently evolving through homologous recombination (and “recombination” is
99 presumed to be homologous recombination in this manuscript) (28–34). Most notably,

Crespo-Bellido et al.

100 recombination contributed to the emergence of a highly virulent hybrid of ACMV and
101 EACMV isolates known as EACMV-Uganda (EACMV-UG) that caused severe disease
102 outbreaks in East and Central Africa in the 1990s (35, 36). Due to the frequent
103 characterization of emergent recombinants and the fact that distinct CMBs are
104 commonly found infecting the same plant (37–39), recombination is regarded as a
105 widespread phenomenon that significantly impacts CMB biodiversity and evolution.

106 Here we present a systematic analysis of recombination and its influence on the
107 evolution of the CMD species complex. By applying several recombination analysis
108 tools to datasets of publicly available CMB sequences, we mapped a complex
109 recombination history where inter-species recombination events correlated with the
110 emergence of most (6/11) CMB species. While mutation was estimated to occur more
111 often than recombination in all our datasets, our findings support interspecies
112 recombination as the main driver of diversity at a macroevolutionary scale.

113 **RESULTS**

114 A total of 880 full-length DNA-A sequences and 369 DNA-B sequences from the
115 eleven established CMB species were downloaded from NCBI GenBank (Table 1). The
116 DNA-A isolates were classified based on the begomovirus 91% nucleotide identity
117 species demarcation threshold. Pairwise nucleotide identity comparisons (Supplemental
118 file 1) resulted in the reassignment of four isolates previously identified as EACMV
119 sequences to EACMCV (accessions: AY211887, AY795983, JX473582, MG250164).
120 Because the species definition does not extend to the DNA-B segment, DNA-B
121 sequences were identified according to their species designation in GenBank (DNA-B
122 segments are typically classified based on DNA-A sequences isolated from the same

Crespo-Bellido et al.

123 host sample or by highest nucleotide identity to an extant DNA-B sequence when no
124 corresponding DNA-A sequence is available). Our datasets are imbalanced with respect
125 to genomic segment (DNA-B is less frequently sampled than DNA-A) and geography
126 (the sample size was larger for African CMBs relative to Asian CMBs). We present
127 results for DNA-A followed by DNA-B.

128 **Likely recombinant origin for 6 of 11 CMB species.** Since recombination is a major
129 contributor to begomovirus evolution, standard phylogenetic approaches cannot fully
130 recapitulate the evolutionary history of CMBs. Therefore, we used a split-network
131 analysis to examine evolutionary relationships within the CMB phylogeny. The network
132 (Fig.1A) showed most sequences in tight clusters based on the 11 species. Some
133 divergent isolates were found near the main clusters in the SACMV, EACMKV and
134 EACMV clades, suggestive of phylogenetic conflict and, potentially, recombination
135 causing the divergence in those sequences. Multiple edges connecting branches of
136 SLCMV and ICMV isolates indicate complicated patterns of recombination among the
137 Asian CMBs, consistent with previous reports (40). The highly reticulate structure of the
138 network implies an extensive history of recombination, both within and between species.

139 To further explore and characterize recombination among the CMB DNA-A
140 sequences, the all-species alignment (n=880) was analyzed using RDP4. An initial scan
141 did not detect recombination between the Asian and African sequences. We split these
142 sequences into two data sets (African n=851; Asian n=29) with the rationale that
143 reducing the number of gaps in the alignments would improve accuracy of
144 recombination detection. We performed RDP4 analysis on the two multiple alignments
145 separately (with stringent settings, described in the Methods section) and identified a

Crespo-Bellido et al.

146 total of 24 high-confidence recombination events (Table 1): 16 for the African CMB data
147 set and 8 for the Asian data set. Six unique events were supported in all representatives
148 of individual species (depicted in Fig. 1B; similarity plots in Fig. A1 and A2), suggesting
149 a recombinant origin for six out of the eleven species: ACMBFV, EACMCV, EACMKV,
150 EACMMV, EACMZV and SLCMV. We refer to these events as ‘macroevolutionary,’
151 based on the hypothesis, discussed below, that the recombination events led to the
152 original splitting of each relevant species cluster from “parent” species clusters. Most of
153 these events have been reported previously, except for that associated with SLCMV.
154 Similarity plots for all 24 high-confidence events using the best candidate parental
155 sequences identified by RDP4 are presented in the appendix.

156 As in Tiendrébéogo et al. (32), ACMBFV was identified as a recombinant of
157 ACMV with a recombinant fragment spanning most of the AC1 ORF, the entire AC4
158 ORF and a portion of the CR. Despite RDP4 choosing CMMGV as the minor parent for
159 this event in our analysis, low nucleotide identity (<80%) within the recombinant region
160 makes it an unlikely parental sequence (Fig. A1). BLAST analysis of the recombinant
161 portion identified a tomato leaf curl Cameroon virus (ToLCCMV) sequence as the
162 closest ‘relative’ currently in GenBank, which is consistent with the previous report. The
163 EACMCV and EACMZV macroevolutionary recombination events (events 2 and 5; Fig.
164 A1) corroborate results from previous recombination analyses where they were
165 characterized as recombinants (29, 30). No significant virus donor was identified for the
166 EACMCV recombinant fragment, but its major parent was likely EACMV. EACMMV has
167 been described as an EACMV-like recombinant (28, 41), yet RDP4 suggested SACMV
168 as the most likely major parent in our analysis. The conflict between these results is

Crespo-Bellido et al.

169 most likely due to the very high degree of similarity between the regions covering AC3,
170 AC2 and the 3' end of AC1 in SACMV and EACMV (Fig. 2A), which suggests a shared
171 evolutionary history for that region among the two species. Since high similarity can
172 confound recombination detection, it becomes hard to unambiguously detect correct
173 breakpoints and potential parental sequences. However, analysis with similarity plots
174 showing a drop-off in similarity at one of the boundaries of this region between EACMV
175 and EACMMV, points to SACMV being the more likely major parental species (scenario
176 1 illustrated in Fig. 2B). The high-sequence-similarity region also affects candidate
177 parent sequence identification for EACMKV (Fig. 2C, discussed below).

178 Curiously, the single available CMMGV sequence, which has been previously
179 characterized as recombinant (33), did not display any putative recombinant regions
180 within its genome. It was reported that CMMGV had minor fragments donated by both
181 SACMV and EACMZV-like sequences. However, a close examination using the
182 distance plot and phylogenetic tree construction tools in RDP4 revealed that only one
183 SACMV sequence (the minor parent identified by Harimalala et al., and the first SACMV
184 isolate ever fully sequenced (42)); accession number: AF155806) had high similarity in
185 the AV1 recombinant region with CMMGV (event 10; Fig. A4), whereas all other
186 SACMV genomes did not. As a result, it seems more plausible that CMMGV acted as
187 donor to that single SACMV isolate. In the case of the second minor fragment, our
188 RDP4 analysis suggested that CMMGV was the donor virus and EACMZV the recipient
189 (event 5; Fig. A1), contrary to what was argued previously (33). At the moment, we
190 cannot distinguish the direction in which the fragment was donated so there is no
191 definitive evidence as to whether CMMGV is a recombinant species.

Crespo-Bellido et al.

192 The results showed frequent recombination between ICMV and SLCMV, which
193 made it difficult to resolve the recombination profiles within the Asian CMB data set.
194 This issue is suggested by the statistically undetermined breakpoints in the SLCMV
195 species-wide event involving ICMV and an unknown minor parent (event 6; Fig. A6),
196 which points to likely overprinting by subsequent recombination events. Only 16 out of
197 19 SLCMV sequences were predicted to be descendants of this event. However, the
198 three remaining SLCMV isolates (accessions: AJ314737, KP455484, and AJ890226)
199 showed evidence of a similar event between ICMV and an SLCMV-like isolate with
200 almost the same breakpoints (event 21; Fig. A7). Altogether, we interpret these results
201 as evidence for a recombinant origin for SLCMV.

202 **Other high confidence DNA-A events confirm previously described recombinants.**

203 In addition to the six macroevolutionary events, 18 other events were detected in the
204 DNA-A datasets (Table 2). Among these events, the most well-represented event was
205 that of the famous EACMV-UG recombinant (event 7; Fig. A3), found in 97 of the 228
206 EACMV sequences. Of the 10 other non-macroevolutionary events in the African data
207 set, most were associated with either EACMKV or SACMV as the recombinants (5 and
208 3 events, respectively). Recombinants with evidence of events 8, 9, 12, 13, 14, 15 and
209 17 (Fig. A3-A5) were collected in one of the most comprehensive CMB sampling studies
210 to date, which took place in Madagascar (34). The EACMKV isolate in event 13
211 (accession: KJ888083) presented an interesting case as it was classified as EACMKV
212 by having 91.02% nucleotide identity to only one other EACMKV isolate (accession:
213 KJ888079; Supplemental file 1), suggesting the event caused just enough divergence to
214 where the sequence narrowly satisfies the criterion to be classified as EACMKV. A

Crespo-Bellido et al.

215 BLAST analysis revealed an EACMCV isolate from Madagascar (accession: KJ888077)
216 as a highly similar recombinant donor, which was not identified by RDP4 as a parent
217 despite being present in the dataset.

218 Recombination event 11 could conflict with the recombinant origin for all other
219 EACMKVs, as all EACMKV sequences match both this and the profile suggested in
220 event 3 (Fig. 2B). We maintain that event 3 is the more likely origin of the EACMKV
221 species on the basis that it was detected in all EACMKV sequences in our analysis.
222 However, the alternative recombinant origin where an EACMV sequence acts as the
223 major parent is consistent with the first characterization of an EACMKV isolate (31) and
224 remains a possibility. This highlights once more the challenge in characterizing events
225 involving SACMV and EACMV-like sequences due to their region of high similarity (Fig.
226 2A). No evidence of recombination was found among EACMZV and EACMMV isolates.

227 Despite having a smaller pool of sequences, 4 genetic exchanges between
228 SLCMV and ICMV were identified in the Asian data set. Three of those events (6, 19
229 and 21; Fig. A6-A7) had breakpoints in the region of overlap between AC2 and AC3,
230 suggesting a potential hotspot of recombination between these species.

231 **Mutation occurs more frequently than recombination within the DNA-A segment**
232 **of all CMB species.** We estimated nucleotide diversity (π) within all species (except for
233 CMMGV and ACMBFV, which each had fewer than 5 sequences, Table 1) as a
234 measure of standing genetic diversity. Nucleotide diversity for all species was within the
235 same order of magnitude and ranged from 0.012 (for EACMMV) to 0.074 (for ICMV,
236 Table 3). No associations were observed between diversity and sample size.
237 Additionally, we estimated per-generation, population-scaled rates of recombination (ρ)

Crespo-Bellido et al.

238 and mutation (θ) to assess the frequency of recombination within each species relative
239 to mutation (p/θ). We further tested for the presence of recombination by calculating
240 correlations between estimates of linkage disequilibrium (r^2) and physical distance (d)
241 and used a likelihood permutation test (LPT) of recombination (Table 3) with LDhat (43).

242 The correlation between r^2 and d was negative across all datasets, consistent
243 with the expectation of linkage disequilibrium decay as distance is increased in the
244 presence of recombination. The LPT indicated recombination in all species except
245 EACMMV, which was consistent with the $p=0$ estimate for that species. Across all
246 populations, mutation was the dominant evolutionary mechanism in terms of frequency
247 when compared to recombination, as displayed by <1 values of the p/θ ratio (typically $<$
248 0.03). Interestingly, the highest p/θ value was observed for ACMV (0.22), which was
249 involved in three interspecies recombination events detected thus far (events 1, 7 and
250 9), but none within the species. SACMV and EACMKV were the other two clades with
251 higher contributions of recombination, which were also the two most featured species in
252 our RDP4 results for the African CMB sequence alignment.

253 **Sequence divergence between DNA-A recombinant species and their
254 hypothesized major parents suggests interspecies recombination as the major
255 contributor to phylogenetic divergence.** The average number of pairwise nucleotide
256 differences per site within species (π) and between recombinant and predicted major
257 parental species (D_{XY}) were estimated in sliding windows to assess the effect of the
258 macroevolutionary recombination events on phylogenetic divergence (Fig. 3). In every
259 comparison, there was a pronounced increase over the genome-wide average of D_{XY} in
260 regions associated with macroevolutionary recombination events. This suggests

Crespo-Bellido et al.

261 appreciably different evolutionary histories in those regions compared to the rest of the
262 genome, which supports species-wide recombination events as drivers of greater
263 divergence than mutational and other minor recombination events. A noticeable peak in
264 D_{XY} within the CR and 5' end of AV2 in the EACMCV-EACMV comparison was
265 observed (Fig. 3). This region was detectably recombinant in one EACMCV sequence
266 (event 17, accession: KJ888049). Close examination of the alignment in this region
267 suggested that 23 of the remaining 27 EACMCV sequences may have an undetected
268 recombination event in this region, but likely with different breakpoints from event 17.
269 All samples with evidence of the undetected event and event 17 were sampled in West
270 Africa, Comoros or Madagascar while the three EACMCV isolates without a
271 recombination event in that part of the genome were sampled in East Africa. This
272 supports the hypothesis that EACMCV originated in East Africa and acquired a second
273 recombinant fragment in the West African isolates (41), and it is possible that the West
274 African genotype has now been introduced to the Comoros and Madagascar. The
275 uncharacterized event and event 17 clearly have contributed to the divergence within
276 EACMCV (as evidenced in a spike in EACMCV nucleotide diversity; Fig. 3) and
277 between EACMV and EACMCV. Similarly, a downstream increase in D_{XY} and π for
278 EACMV within the AV1 3' end was observed, corresponding to the region of the
279 EACMV-Ug recombination event (event 7). While these are examples of how small
280 recombination events have contributed to the phylogenetic divergence between
281 species, our results show that the larger, ancestral inter-species recombination events
282 are the driving force behind evolutionary divergence at the CMB species level.

Crespo-Bellido et al.

283 **Fewer high-confidence DNA-B recombination events.** Due to the high levels of
284 divergence between DNA-B isolates, an all-“species” DNA-B alignment was difficult to
285 construct. Therefore, we split the DNA-B sequences into three broad groups: EACMV-
286 like (EACMV, SACMV, EACMKV, EACMMV, EACMZV, EACMCV) + CMMGV (n=243),
287 ICMV-SLCMV (n=22) and ACMV-ACMBFV (n=104), and conducted phylogenetic
288 network (Fig. 4A) and RDP4 analyses (Table 4) on each group separately. For the
289 EACMV-like group, we observe a network with sporadic reticulations indicating some
290 recombination. The DNA-B sequences from most species do not form monophyletic
291 clades, with isolates from EACMV, EACMKV and SACMV spread out around the
292 network. Isolates from EACMCV, which have been reported as clearly distinct from the
293 rest of the EACMV-like DNA-B segments (44), are separated from the center of the
294 network by long branches, indicating large genetic distances between them and the rest
295 of the EACMV-like DNA-B segments. Similarly, a long branch separates CMMGV from
296 all other clusters.

297 The ICMV-SLCMV network is more compact than the EACMV-like group,
298 signifying a higher degree of genetic similarity between all isolates. All the SLCMVs are
299 closely related to one another, and the branches for both SLCMV and ICMV isolates
300 show some reticulation. The ACMV-ACMBFV sequences are also genetically very
301 similar and have the least reticulation of the three networks (Fig. 4A).

302 A total of 10 recombination events were identified in the DNA-B data sets: 7
303 events in the EACMV-like group and 3 events in the ICMV-SLCMV group (designated
304 B1-B10, Table 4). No events were detected in the ACMV-ACMBFV sequences. Of the
305 10 events, 2 could be considered as ancestral clade-founding events (Fig. 4B). We refer

Crespo-Bellido et al.

306 to these events as ‘clade-founding’ rather than ‘macroevolutionary’ to emphasize that
307 this classification is distinct from the DNA-A-based species definition. Event B1 is
308 associated with CMMGV (Fig. A9), which had an EACMKV isolate as a closely related
309 major parent and a recombinant fragment from an unknown virus that spanned most of
310 BC1 and the 5’ portion of the CR. This event was previously reported (33). Event B2
311 was associated with SLCMV (Fig. A9), where all 12 sequences had evidence of the
312 event. In this event, ICMV was observed as major parent with a fragment in the 5’-CR
313 from an unknown parent. From a BLAST analysis, we identified that the fragment most
314 likely originated from an SLCMV DNA-A sequence. This event has been described
315 before and is believed to explain the evolution of SLCMV from a putative monopartite
316 begomovirus, where an SLCMV-like sequence “captured” an ICMV DNA-B segment by
317 donating the Rep-binding iteron sequences necessary for replication (45).

318 In addition to these two well-supported clade-forming events, there are several
319 other recombination events that may have had a similar impact. Seven out of the 9
320 EACMCV DNA-B sequences show evidence of event B3 (Fig. A9), and it is plausible
321 that this recombination event defined the common ancestor of all 9 EACMCV DNA-B
322 sequences. However, the lack of statistical support in the other two sequences prevents
323 us from calling it an ancestral recombination event for all EACMCV DNA-B isolates.
324 Similarly, event B4 (Fig. A10) is observed in 8 different sequences classified as either
325 EACMKV or EACMV, which suggests recombination was the mechanism of emergence
326 for this small circulating clade. Event B8 (Fig. A9) is another example of an event that
327 possibly led to the emergence of a small clade, identified in two EACMKV isolates
328 (accessions: JF909228 and JF909227) collected in the Seychelles archipelago (46).

Crespo-Bellido et al.

329 No recombination meeting our 5-out-of-7-methods RDP4 threshold was found in
330 the ACMV-ACMBFV DNA-B group. However, one event in the single ACMBFV DNA-B
331 sequence available was detected by 4 methods. This event was not detected in the
332 original report of ACMBFV (32) but similarity plots (Fig. A8) provide additional evidence
333 of recombination. It seems likely that ACMBFV DNA-A “captured” an ACMV DNA-B
334 segment via recombination, creating an ACMBFV DNA-B segment with a compatible
335 replication-associated protein binding site (Fig. A8), similar to the scenario proposed for
336 SLCMV DNA-B (45). An alternative possibility is that an ACMV DNA-B molecule
337 recombined directly with a different virus segment (based on best BLAST hit, potentially
338 a relative of tomato leaf curl Nigeria virus – accession: FJ685621).

339 **Mutation occurs more frequently than recombination within CMB DNA-B groups.**
340 Nucleotide diversity and rates of mutation and recombination were estimated for ACMV-
341 ACMBFV, EACMVC and ICMV-SLCMV groupings (Table 5). The high degree of
342 similarity within these groups justifies them being defined as individual “populations” for
343 these analyses. The other species were not included in this analysis because of our
344 inability to define meaningful populations. Nucleotide diversity estimates for the ACMV-
345 ACMBFV DNA-B cluster were higher (0.067) than for ACMV DNA-A (Table 3, 0.033).
346 The same was observed for the EACMVC DNA-A and DNA-B segments (0.048 and
347 0.088, respectively). However, we estimate a slightly higher standing genetic variation in
348 the ICMV DNA-A sequences (0.074) than in the ICMV-SLCMV DNA-B group (0.062),
349 indicating comparable levels of variability among the examined sequences.

350 We found evidence of linkage disequilibrium decay in all three datasets using the
351 r^2 measure, and the LPT indicated the presence of recombination in all groups. The p/θ

Crespo-Bellido et al.

352 ratio ranged from 0.008-0.145, showing that mutation is much more frequent than
353 recombination for DNA-B. Overall these within-group results for DNA-B (Table 5) were
354 very similar to those for DNA-A (Table 3).

355 **DISCUSSION**

356 Recombination is an important and pervasive mechanism that contributes
357 significantly to plant virus evolution (47) and is broadly documented among
358 begomovirus species (10-13, 16). Our updated recombination profile of all sampled
359 CMB full genomic segments to date reveals widespread intra- and inter-species
360 recombination. A variety of complementary recombination analyses indicate that the
361 majority of CMB species (6/11) have a recombinant origin. For the first time, we show a
362 recombinant origin of SLCMV DNA-A, which likely descended from genetic exchange
363 between an ICMV-like isolate and an unidentified begomovirus DNA-A segment.

364 Surprisingly our analysis did not support a recombinant origin of the single isolate of
365 CMMGV, though it had been considered previously to be the product of genetic
366 exchange between major parent distantly related to CMBs and minor parents SACMV
367 and EACMZV (33). Instead, our analyses consider CMMGV to be a parental virus,
368 contributing to the creation of EACMZV and an SACMV recombinant (42). Although no
369 macroevolutionary signals of recombination were detected in SACMV, ACMV, CMMGV,
370 EACMV and ICMV, it is possible that events associated with their emergence occurred
371 so long ago that the distinguishing patterns of polymorphism created by recombination
372 have been erased by subsequent mutations and cannot be detected. In the case of
373 SACMV, an argument has been made for it having a recombinant origin based on
374 molecular analyses and phylogenetic incongruencies observed in different parts of the

Crespo-Bellido et al.

375 genome where the AV1 ORF and CR resemble tomato yellow leaf curl virus isolates,
376 the AC2, AC3 and AC1 3' end are closely related to EACMV, and the 5' end of
377 AC1/AC4 ORF portion seems to have a distinct evolutionary history (41, 42, 48, 49).
378 Regardless of the undetectable contribution of recombination to all CMB DNA-As, we
379 have strong evidence for recombination leading to speciation in the majority of currently
380 defined CMB species.

381 Although parentage cannot be definitively established in some cases, fragments
382 derived from EACMKV and SACMV lineages seem to have a high propensity for inter-
383 species recombination (34). We also observe frequent recombination between both
384 Asian CMB species, which supports past reporting of ICMV and SLCMV as a
385 recombinogenic pair (50). Unsurprisingly, no recombination was detected between
386 isolates originating in Asia and those from Africa. At this moment, there are no reports
387 of Asian CMBs infecting cassava crops in Africa and there is only one study where an
388 African CMB (i.e., EACMZV) has been sampled in cassava crops in Asia, specifically in
389 the West Asian country of Oman (51), where ICMV and SLCMV have never been
390 identified. While we lack experimental or field evidence that Asian and African CMB
391 species have the capability to recombine and produce viable viral progeny, it is probable
392 that these viruses have had limited opportunities to coinfect the same host plant.
393 However, ACMV isolates have been recovered in cotton crops in the South Asian
394 country of Pakistan and ACMV recombinant fragments have been detected in cotton-
395 infecting begomoviruses even though cassava is not cultivated there (52). This
396 suggests an exchange of CMB species between Africa and Southern Asia and hints at
397 the role of alternative plant hosts on the emergence of inter-species recombinant

Crespo-Bellido et al.

398 begomoviruses (53). Continuous CMB surveillance efforts are needed to ensure
399 endemic viral species are not spread across continents via international trade and are
400 not given the opportunity to spread and potentially recombine with native
401 begomoviruses. Countries heavily involved in agricultural trade such as Oman should
402 receive special attention as they can become a sink for divergent begomovirus species
403 and potentially a hub for the emergence of novel recombinant begomoviruses (54).

404 **While mutation is more frequent, retained recombination events are more**
405 **significant.** Estimates of the DNA-A relative rates of recombination and mutation (ρ/θ)
406 show that mutations occur more often than recombination within all the analyzed clades,
407 which is consistent with previous analysis based on the Rep and CP genes of other
408 begomovirus species (55). Notably, while no recombination was readily detected in any
409 of the ACMV sequences with RDP4, the LPT detected a signal of recombination, and
410 our ACMV DNA-A dataset had the highest frequency of genetic exchange relative to
411 mutation. Since recombination signals were detected within the ACMV sequences, we
412 interpret these results collectively to mean most ACMV recombination is intra-specific
413 (illustrated in Fig. 1), which is difficult to detect with the methods used by RDP4. The
414 lack of ACMV recombinants involving other CMB species, which has been mentioned in
415 the literature (20, 41), might be explained by potential genome incompatibility and
416 selection against mosaic sequences where donor fragments from divergent CMBs could
417 disrupt intra-genomic interactions and gene coadaptation (56, 57).

418 Mutation is clearly the more frequent process when compared to recombination
419 within all CMB species, confirming the conclusions of previous studies which show that
420 the genetic diversity in begomovirus populations is predominantly shaped by mutation

Crespo-Bellido et al.

421 (10, 55). However, the relative contributions of these processes to the evolution of
422 CMBs is not necessarily a function of their frequency. The D_{XY} sliding-window plots
423 reveal that single recombination events are correlated with most of the divergence
424 between putative parental species and their recombinant progeny species (Fig. 3). We
425 conclude that the relatively higher rates of mutation relative to recombination on a
426 microevolutionary scale are not reflective of the influence of recombination at the
427 macroevolutionary scale, where inter-species recombination is the driving force behind
428 the emergence of the majority of CMB species. While reports of begomovirus species
429 that have emerged through recombination are common (58–62), this is the first time a
430 systematic analysis of recombination and its contribution to species diversity is
431 performed within all known species of a begomovirus disease complex.

432 Although “speciation” does not directly apply to DNA-B sequences it is clear that
433 intersegment recombination has played a significant role in the evolution of viruses such
434 as SLCMV and, potentially, ACMBFV. Indeed, the trans-replicational capture of
435 divergent DNA-B segments/satellite molecules by DNA-A sequences via recombination
436 involving Rep-binding sites is a documented mechanism that has led to new
437 associations resulting in different disease phenotypes (45, 63, 64). Additionally, it
438 represents a plausible explanation for the potential evolutionary transition to bipartite
439 begomoviruses from monopartite ancestors (44). Ultimately, this phenomenon has and
440 continues to contribute to the genomic modularity of begomoviruses, which in turn can
441 influence their evolvability.

442 The phylogenetic networks among the DNA-B groups (Fig. 4) were comparatively
443 less reticulated than the DNA-A network (Fig. 1), and fewer high-confidence

Crespo-Bellido et al.

444 recombination events and recombinants were detected. Despite these comparisons, it is
445 not yet clear if begomovirus DNA-B sequences are more or less prone to recombination
446 than DNA-A more broadly. The expectation is that the genomic structure of DNA-B
447 segments (where there are no overlapping genes and a larger proportion of noncoding
448 regions relative to the highly overlapping and mostly coding DNA-A segments) imposes
449 fewer selective constraints on recombinants than in DNA-A sequences (44, 65) and can
450 tolerate greater nucleotide diversity, which we do observe (Tables 3, 5). However, there
451 are several factors that might explain why fewer recombinants were detected among the
452 DNA-B datasets. No reliable, complete alignments were obtained due to the high
453 divergence of DNA-B segments, hindering our ability to characterize recombination
454 events using RDP4. RDP4 analyses were also explicitly set up to be conservative and
455 to test for intrasegment recombination in this study, so additional events involving DNA-
456 A and DNA-B segments might have been missed. Additionally, CMB DNA-B sequences
457 are infrequently sampled compared to DNA-A sequences (Table 1), which reduces our
458 ability to detect recombination both by having a lower number of exemplar parental
459 sequences in our datasets and by having fewer representative DNA-B sequences. A
460 recent study suggests that recombination occurs more frequently in DNA-B segments of
461 New World begomoviruses relative to their cognate DNA-As, but this pattern may be
462 virus-specific (66). Moreover, previous research suggests that DNA-A and DNA-B
463 sequences have been subjected to different evolutionary pressures which have resulted
464 in distinct evolutionary histories for the two segments, with further segment-specific
465 differences found between New World and Old World begomoviruses (44). Regardless
466 of the absolute rate of recombination differences that may exist between DNA-A and

Crespo-Bellido et al.

467 DNA-B segments, p/θ values for groups of DNA-B sequences follow the trend of DNA-A
468 segments, which suggests that mutations occur more frequently than recombination
469 events.

470 Like mutations, viral recombination events are usually deleterious (67–69).
471 However, previous studies of begomovirus recombination have shown that there is a
472 subset of fit recombinants that can be generated in the lab (70, 71) and be observed in
473 nature (72). Recombination can additionally recover functional full-length genomes from
474 populations with defective geminiviruses (69, 73, 74). Since begomovirus phenotypes
475 associated with recombination include altered disease severity (75, 76), host range
476 expansion (76, 77) and resistance-breaking (78, 79), recombination is also a major
477 contributor to the epidemic potential of these viruses. Consequently, recombination is a
478 markedly important evolutionary mechanism with epidemiological implications for
479 begomovirus emergence. Knowledge about mechanistic patterns and selective
480 determinants of fit CMB recombinants should be incorporated in the development of
481 anti-viral strategies to reduce the likelihood of the emergence of virulent recombinants.
482 This is especially important in the context of breeding CMD-resistant cassava varieties
483 which has been the most effective approach for disease control to date (80).

484 **Species constructed on sequence divergence are ripe for speciation by**
485 **recombination.** It should be noted that recombination as a driver of speciation is also a
486 function of the way the community defines species in *Begomovirus*. Current taxonomy
487 guidelines state that a begomovirus species is defined as a group of DNA-A isolates
488 sharing $\geq 91\%$ pairwise nucleotide sequence identity and any new isolate is assigned to
489 a species if it shares at least 91% nt sequence identity to any one isolate from that

Crespo-Bellido et al.

490 species (81). As we increase surveying efforts of natural CMB biodiversity with
491 improving sequencing techniques, a larger fraction of the tolerated sequence diversity
492 within each species will be found. It will be increasingly unlikely that sufficient mutations
493 to create >9% sequence diversity will accumulate quickly enough without any
494 intermediates being sampled. These cataloged intermediates then shift the goal posts
495 for “speciation,” as a novel species would have to have >9% sequence divergence from
496 them. Consequently, recombination may be the main way to obtain enough genetic
497 variation to cross the species demarcation threshold for begomoviruses and is therefore
498 the likely predominant mechanism of speciation for the entire genus.

499 Virus speciation is often discussed in terms of ecological factors, where host
500 specificities and virus-host interactions lead to the evolution of diverged lineages that
501 develop into different viral species (82–85). Under this model, frequent recombination
502 homogenizes viral diversity, and only when recombination is limited do lineages
503 diversify (86, 87). Here, by zooming in to the CMD species complex, we provide
504 evidence that diversity at the species level can be predominantly shaped by
505 recombination as well. Recombination has also been implicated as a direct mechanism
506 of speciation in other virus groups, e.g., *Luteoviridae* (88), *Bromoviridae* (89),
507 *Reoviridae* (90) and *Papillomaviridae* (91). Additionally, recombination has shaped
508 some deep phylogenetic relationships among viruses. Within *Geminiviridae*, most
509 genera have emerged from ancient inter-generic recombination events (92–97). For
510 higher taxonomic ranks, it is apparent that the origins of multiple families within
511 *Cressnaviricota*, including *Geminiviridae* (98, 99), can be traced to independent
512 recombination events involving prokaryotic plasmids and diverse plant and animal RNA

Crespo-Bellido et al.

513 viruses (100). These and other recombination events in deep phylogeny have led to
514 both modular patterns of virus evolution and polyphyletic groupings across the
515 Baltimore classifications (101).

516 The general trend of speciation via recombination for CMBs might not be true for
517 species in other virus families. For instance, a recent review of potyviruses found
518 recombination to be common within populations but uncommon as a mechanism of
519 speciation (102). In picornaviruses, whose species demarcation is defined by a
520 significant degree of amino acid identity, it has been concluded that recombination limits
521 speciation and members of distinct species based on current taxonomic schemes are
522 so diverged that they are generally presumed to be incompatible (103). Our contrasting
523 results are likely due to the narrow way that novel species are determined in
524 begomoviruses (<91% nucleotide identity for the DNA-A segment). However, as more
525 viral groups move to nucleotide identity as species demarcation criteria as a way to
526 integrate the wealth of viral diversity known from genetic sequences alone (104), our
527 conclusions from CMBs may prove more broadly applicable.

528 **MATERIALS AND METHODS**

529 **CMB sequence data sets.** Two data sets comprised of all full-length DNA-A and DNA-
530 B nucleotide sequences corresponding to the 11 recognized CMB species were
531 downloaded from the GenBank database via NCBI Taxonomy Browser
532 (<https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi>) between January and
533 July 2019. The 11 species analyzed here (and corresponding virus abbreviations) are
534 *African cassava mosaic virus* (ACMV), *African cassava mosaic Burkina Faso virus*
535 (ACMBFV), *Cassava mosaic Madagascar virus* (CMMGV), *South African cassava*

Crespo-Bellido et al.

536 *mosaic virus* (SACMV), *East African cassava mosaic virus* (EACMV), *East African*
537 *cassava Cameroon virus* (EACMCV), *East African cassava Kenya virus* (EACMKV),
538 *East African cassava Malawi virus* (EACMMV), *East African cassava mosaic Zanzibar*
539 *virus* (EACMZV), *Sri Lankan cassava mosaic virus* (SLCMV) and *Indian cassava*
540 *mosaic virus* (ICMV). All sequences were organized to begin at the nick site of the
541 conserved nonanucleotide motif at the origin of replication (5'-TAATATT//AC-3').

542 **Alignments and sample classification.** All multiple sequence alignments were
543 constructed using the MUSCLE method (105) as implemented in MEGA X (106) and
544 manually corrected using AliView v1.26 (107). Multiple alignments have been archived
545 as Zenodo records: 11 species DNA-A alignment (<https://zenodo.org/record/4029589>),
546 CMMGV, EACMCV, EACMV, EACMKV, EACMMV, EACMZV, SACMV DNA-B
547 alignment (<https://zenodo.org/record/3965023>), ACMV and ACMBFV DNA-B alignment
548 (<https://zenodo.org/record/3964979>), and ICMV and SLCMV DNA-B
549 (<https://zenodo.org/record/3964977>).

550 A pairwise nucleotide identity matrix was calculated for complete DNA-A
551 sequences using SDT v1.2 (108) and was used to assign each DNA-A sequence to a
552 viral species according to the ICTV-approved begomovirus species demarcation
553 threshold of >91% DNA-A identity (81). For DNA-B sequences, the species assignment
554 listed in GenBank was used; species definitions for DNA-B are less distinct, as
555 discussed in the text.

556 **Phylogenetic network analysis.** Phylogenetic networks, which can capture conflicting
557 phylogenetic signals such as those caused by recombination, were inferred from the
558 alignments using the distance-based Neighbor-Net method (109) implemented in

Crespo-Bellido et al.

559 SplitsTree4 v4.14 (110). Distances were corrected with a GTR + G model of sequence
560 evolution using base frequencies, rate heterogeneity and gamma shape parameters
561 estimated with jModelTest v2.1.6 (111) on XSEDE.

562 **Recombination detection and similarity plots.** Putative recombinants, and major and
563 minor “parents” within the data sets were determined using the RDP (112), GeneConv
564 (11), Bootscan (113), MaxChi (114), Chimaera (115), SiScan (116), and 3Seq (117)
565 recombination detection methods implemented on the RDP4 v4.100 suite (118). The
566 terms ‘major parent’ and ‘minor parent’ are used by RDP4 to refer to sequences that
567 have respectively contributed the larger and smaller fractions to the recombinant and
568 are regarded as closest relatives to the true isolates involved in the event. Analyses
569 were performed with default settings, while also enabling Chimaera and 3Seq for
570 primary scan, and a Bonferroni-corrected P-value cutoff of 0.05 was used. Only events
571 supported by at least five of the seven methods were considered high-confidence
572 events. Breakpoint positions, putative recombinants and “parental” sequences were
573 evaluated and manually adjusted when necessary using the available breakpoint cross-
574 checking tools and phylogenetic tree construction methods available in RDP4. RDP4
575 results files have been archived as Zenodo records: RDP4 results for ACMBFV, ACMV,
576 CMMGV, EACMCV, EACMV, EACMKV, EACMMV, EACMZV, SACMV DNA-A
577 (<https://zenodo.org/record/4592854>), RDP4 results for ICMV and SLCMV DNA-A
578 (<https://zenodo.org/record/4592926>), RDP4 results for EACMV-like + CMMGV DNA-B
579 (7 “species”) (<https://zenodo.org/record/3965029>), RDP4 results for ACMV and
580 ACMBFV DNA-B (<https://zenodo.org/record/3975834>), and (RDP4 results for ICMV and
581 SLCMV DNA-B (<https://zenodo.org/record/3975838>). Events were considered as

Crespo-Bellido et al.

582 macroevolutionary recombination events when all members of a designated species
583 had evidence of said event. A BLASTn analysis of the ‘non-redundant nucleotide’
584 database in NCBI (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) was performed to identify the
585 species whose members have sequences most similar to the “Unknown” recombinant
586 fragments in our data sets.

587 Based on RDP4 results, similarity analyses comparing the recombinants to their
588 putative parental sequences were performed using SimPlot v3.5.1 (119). All plots were
589 done using the Kimura 2-parameter distance model with a sliding window size of 100
590 and a step size of 10. For the the similarity plots in Figure 2, analyses were done by
591 comparing 50% consensus sequences of all members of the compared species,
592 respectively (except in the case of 2C where the best candidate sequence was used).
593 Similarity plots for events in Tables 2 and 4 were made comparing the best candidate
594 recombinant and parent sequences reported by RDP4 and are presented in the
595 appendix.

596 **Estimates for the relative rates of recombination and mutation, linkage**
597 **disequilibrium correlations with distance and likelihood permutation tests of**
598 **recombination.** LDhat v2.2 (43) was used to infer composite likelihood estimates
599 (CLEs) of population-scaled recombination rates ($\rho = 2N_e r$) and estimates of
600 population-scaled mutation rates ($\theta^w = 2N_e \mu$) with the PAIRWISE and CONVERT
601 packages, respectively. This program uses an extension of Hudson’s composite-
602 likelihood method (120), which estimates the population recombination rate by
603 combining the coalescent likelihoods of all pairwise comparisons of segregating sites.
604 The extension in LDhat allows for a finite-sites mutation model, which makes it

Crespo-Bellido et al.

605 appropriate for sets of sequences with high mutation rates such as the ones found in
606 viral genomes.

607 CONVERT was used with all default settings. While using PAIRWISE, a gene-
608 conversion model with an average tract length of 500 nt was fitted, and a precomputed
609 likelihood lookup table for per-site $\theta=0.01$ with a maximum $2N_e r$ of 100 and 101-point
610 size grid was used to obtain the CLEs of ρ . Since precomputed likelihood lookup tables
611 for data sets larger than $n=100$ are not available, the COMPLETE package was used
612 with GNU parallel (<https://zenodo.org/record/3903853>) to generate a likelihood lookup
613 table for per-site $\theta=0.01$ that can accommodate data sets of up to 320 sequences to use
614 for the larger data sets in this study. File available as “LDhat coalescent likelihood
615 lookup table for 320 sequences with theta = 0.01” (<https://zenodo.org/record/3934350>).
616 ρ/θ^w estimate was obtained as the relative rate of recombination and mutation in the
617 history of the samples within each analyzed clade. Additionally, PAIRWISE was used to
618 obtain the correlation between estimates of linkage disequilibrium (r^2) and physical
619 distance (d), and to test for the presence of recombination using the likelihood
620 permutation test (LPT) developed by McVean et al. (43).

621 **Standing genetic diversity and divergence between parental and recombinant**
622 **species.** The per-site standing genetic diversity of each species was assessed by
623 calculating nucleotide diversity π (121), which is the average number of pairwise
624 nucleotide differences per site between sequences within a clade. To obtain absolute
625 measures of divergence between recombinant and parental species, per-site D_{XY} (121)
626 was calculated. D_{XY} refers to the average number of pairwise differences between

Crespo-Bellido et al.

627 sequences from two clades while excluding all intra-clade comparisons and is
628 calculated as:

629

$$D_{XY} = \sum_{ij} X_i Y_j d_{ij}$$

630 where, in two clades, X and Y, d_{ij} measures the number of nucleotide differences
631 between the i^{th} haplotype from X and the j^{th} haplotype from Y. All per-site estimates
632 were obtained with DnaSP v6.12 (122). When estimating nucleotide diversity,
633 gaps/missing information were excluded only in pairwise comparisons. For sliding
634 window analyses, a sliding window size of 100 nt (including gaps) and a step size of 10
635 nt were used.

636 **Data availability.** As noted above, multiple alignments, RDP4 results and the
637 generated LDhat likelihood lookup table have been deposited as Zenodo records.

638 Alignment for DNA-A:

639 11 species DNA-A alignment (<https://zenodo.org/record/4029589>),

640 Alignments for DNA-B:

641 CMMGV, EACMCV, EACMV, EACMKV, EACMMV, EACMZV, SACMV DNA-B
642 alignment (<https://zenodo.org/record/3965023>)

643 ACMV and ACMBFV DNA-B alignment (<https://zenodo.org/record/3964979>)

644 ICMV and SLCMV DNA-B (<https://zenodo.org/record/3964977>)

645 RDP4 results for DNA-A:

646 RDP4 results for ACMBFV, ACMV, CMMGV, EACMCV, EACMV, EACMKV,
647 EACMMV, EACMZV, SACMV DNA-A (<https://zenodo.org/record/4592854>)

648 RDP4 results for ICMV and SLCMV DNA-A (<https://zenodo.org/record/4592926>)

649 RDP4 results for DNA-B:

Crespo-Bellido et al.

650 RDP4 results for EACMV-like + CMMGV DNA-B (7 "species")
651 (<https://zenodo.org/record/3965029>)
652 RDP4 results for ACMV and ACMBFV DNA-B
653 (<https://zenodo.org/record/3975834>)
654 (RDP4 results for ICMV and SLCMV DNA-B (<https://zenodo.org/record/3975838>)
655 LDhat coalescent likelihood lookup table for 320 sequences with theta = 0.01
656 (<https://zenodo.org/record/3934350>)

657 **ACKNOWLEDGEMENTS**

658 We are grateful to all the research groups that have shared sequence data via GenBank
659 and the farmers who enabled collection of that data. We would like to thank members of
660 the Duffy lab at Rutgers University and our colleagues at the Hanley-Bowdoin lab in
661 North Carolina State University for feedback and a critical reading of this manuscript.
662 We also thank the staff of the Office of Advanced Research Computing (OARC) at
663 Rutgers for access to and maintenance of the Amarel cluster. This work was supported
664 by US NSF award OIA-1545553 to SD and an HHMI Gilliam Fellowship for Advanced
665 Study for ACB. DD was partly supported by the Aresty Undergraduate Research
666 Scholars Program at Rutgers University.

Crespo-Bellido et al.

667 **REFERENCES**

- 668 1. Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon L,
669 Rivera Bustamante RF, Zerbini FM, Adkins S, Legg JP, Kvarneden A, Wintermantel
670 WM, Sudarshana MR, Peterschmitt M, Lapidot M, Martin DP, Moriones E, Inoue-Nagata
671 AK, Gilbertson RL. 2018. World Management of Geminiviruses. *Annu Rev Phytopathol*
672 56:637–677.
- 673 2. Seal SE, vandenBosch F, Jeger MJ. 2006. Factors Influencing Begomovirus Evolution
674 and Their Increasing Global Significance: Implications for Sustainable Control. *CRC Crit
675 Rev Plant Sci* 25:23–46.
- 676 3. Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-
677 Bustamante R, Roumagnac P, Varsani A, Consortium IR. 2017. ICTV Virus Taxonomy
678 Profile: Geminiviridae. *J Gen Virol* 98:131–133.
- 679 4. Jones RAC. 2009. Plant virus emergence and evolution: Origins, new encounter
680 scenarios, factors driving emergence, effects of changing world conditions, and prospects
681 for control. *Virus Res* 141:113–130.
- 682 5. Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S. 2011. Emerging Virus Diseases
683 Transmitted by Whiteflies. *Annu Rev Phytopathol* 49:219–248.
- 684 6. Elena SF, Fraile A, Garcia-Arenal F. 2014. Chapter Three- Evolution and Emergence of
685 Plant Viruses, p. 161–191. *In Advances in Virus Research*.
- 686 7. Ge L, Zhang J, Zhou X, Li H. 2007. Genetic structure and population variability of tomato
687 yellow leaf curl China virus. *J Virol* 2007/03/21. 81:5902–5907.
- 688 8. Duffy S, Holmes EC. 2008. Phylogenetic Evidence for Rapid Rates of Molecular
689 Evolution in the Single-Stranded DNA Begomovirus Tomato Yellow Leaf Curl Virus. *J
690 Virol* 82:957 LP – 965.
- 691 9. Duffy S, Holmes EC. 2009. Validation of high rates of nucleotide substitution in
692 geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. *J Gen
693 Virol* 90:1539—1547.
- 694 10. Lima ATM, Sobrinho RR, Gonzalez-Aguilera J, Rocha CS, Silva SJC, Xavier CAD, Silva
695 N, Duffy S, Zerbini FM. 2013. Synonymous site variation due to recombination explains
696 higher genetic variability in begomovirus populations infecting non-cultivated hosts. *J Gen
697 Virol* 94:418–431.
- 698 11. Padidam M, Sawyer S, Fauquet CM. 1999. Possible Emergence of New Geminiviruses
699 by Frequent Recombination. *Virology* 225:218–225.
- 700 12. Lefevre P, Martin DP, Hoareau M, Naze F, Delatte H, Thierry M, Varsani A, Becker N,
701 Reynaud B, Lett J-M. 2007. Begomovirus ‘melting pot’ in the south-west Indian Ocean
702 islands: molecular diversity and evolution through recombination. *J Gen Virol* 88:3458–
703 3468.
- 704 13. Graham AP, Martin DP, Roye ME. 2010. Molecular characterization and phylogeny of two
705 begomoviruses infecting *Malvastrum americanum* in Jamaica: evidence of the
706 contribution of inter-species recombination to the evolution of malvaceous weed-
707 associated begomoviruses from the Northern Caribbean. *Virus Genes* 40:256–266.

Crespo-Bellido et al.

708 14. Muller HJ. 1964. The Relation of Recombination to Mutational Advance. *Mutat Res* 1:2–9.

709 15. Keightley PD, Otto SP. 2006. Interference among deleterious mutations favours sex and
710 recombination in finite populations. *Nature* 443:89–92.

711 16. Martin DP, Biagini P, Lefevre P, Golden M, Roumagnac P, Varsani A. 2011.
712 Recombination in Eukaryotic Single Stranded DNA Viruses. *Viruses* 3:1699–1738.

713 17. Simon-Loriere E, Holmes EC. 2011. Why do RNA viruses recombine? *Nat Rev Microbiol*
714 9:617–626.

715 18. Howeler R, Lutaladio N, Thomas GS. 2013. Save and grow: cassava. A guide to
716 sustainable production intensification. Food and Agriculture Organization of the United
717 Nations.

718 19. Jacobson AL, Duffy S, Sseruwagi P. 2018. Whitefly-transmitted viruses threatening
719 cassava production in Africa. *Curr Opin Virol* 33:167–176.

720 20. Patil BL, Fauquet CM. 2009. Cassava mosaic geminiviruses: actual knowledge and
721 perspectives. *Mol Plant Pathol* 10:685–701.

722 21. Wang HL, Cui XY, Wang XW, Liu SS, Zhang ZH, Zhou XP. 2015. First Report of Sri
723 Lankan cassava mosaic virus Infecting Cassava in Cambodia. *Plant Dis* 100:1029.

724 22. Uke A, Hoat TX, Quan M V, Liem N V, Ugaki M, Natsuaki KT. 2018. First Report of Sri
725 Lankan Cassava Mosaic Virus Infecting Cassava in Vietnam. *Plant Dis* 102:2669.

726 23. Wang D, Yao XM, Huang GX, Shi T, Wang GF, Ye J. 2018. First Report of Sri Lankan
727 Cassava Mosaic Virus Infected Cassava in China. *Plant Dis* 103:1437.

728 24. Siriwan W, Jimenez J, Hemniam N, Saokham K, Lopez-Alvarez D, Leiva AM, Martinez A,
729 Mwanzia L, Becerra Lopez-Lavalle LA, Cuellar WJ. 2020. Surveillance and diagnostics of
730 the emergent Sri Lankan cassava mosaic virus (Fam. Geminiviridae) in Southeast Asia.
731 *Virus Res* 285:197959.

732 25. Fondong VN. 2013. Geminivirus protein structure and function. *Mol Plant Pathol* 14:635–
733 649.

734 26. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. 2013. Geminiviruses:
735 masters at redirecting and reprogramming plant processes. *Nat Rev Microbiol* 11:777–
736 788.

737 27. Argüello-Astorga GR, Ruiz-Medrano R. 2001. An iteron-related domain is associated to
738 Motif 1 in the replication proteins of geminiviruses: identification of potential interacting
739 amino acid-base pairs by a comparative approach. *Arch Virol* 146:1465–1485.

740 28. Zhou X, Robinson DJ, Harrison BD. 1998. Types of variation in DNA-A among isolates of
741 East African cassava mosaic virus from Kenya, Malawi and Tanzania. *J Gen Virol*
742 79:2835–2840.

743 29. Fondong VN, Pita JS, Rey ME, de Kochko A, Beachy RN, Fauquet CM. 2000. Evidence
744 of synergism between African cassava mosaic virus and a new double-recombinant
745 geminivirus infecting cassava in Cameroon. *J Gen Virol Gen Virol* 81:287–297.

746 30. Maruthi MN, Seal S, Colvin J, Briddon RW, Bull SE. 2004. East African cassava mosaic
747 Zanzibar virus – a recombinant begomovirus species with a mild phenotype. *Arch Virol*
748 149:2365–2377.

Crespo-Bellido et al.

749 31. Bull SE, Briddon RW, Sserubombwe WS, Ngugi K, Markham PG, Stanley J. 2006.
750 Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. *J Gen Virol*
751 87:3053–3065.

752 32. Tiendrébéogo F, Lefeuvre P, Hoareau M, Harimalala MA, De Bruyn A, Villemot J, Traoré
753 VSE, Konaté G, Traoré AS, Barro N, Reynaud B, Traoré O, Lett J-M. 2012. Evolution of
754 African cassava mosaic virus by recombination between bipartite and monopartite
755 begomoviruses. *Virol J* 9.

756 33. Harimalala M, Lefeuvre P, de Bruyn A, Tiendrébéogo F, Hoareau M, Villemot J,
757 Ranomenjanahary S, Andrianjaka A, Reynaud B, Lett JM. 2012. A novel cassava-
758 infecting begomovirus from Madagascar: Cassava mosaic Madagascar virus. *Arch Virol*
759 157:2027–2030.

760 34. DeBruyn A, Harimalala M, Zinga I, Mabvakure BM, Hoareau M, Ravigné V, Walters M,
761 Reynaud B, Varsani A, Harkins GW, Martin DP, Lett J-M, Lefeuvre P. 2016. Divergent
762 evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in
763 Madagascar. *BMC Evol Biol* 16.

764 35. Zhou XP, Liu Y, Calvert L, Munoz C, Otim-Nape W, Robinson D, Harrison B. 1997.
765 Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in
766 Uganda has arisen by interspecific recombination. *J Gen Virol* 78:2101–2111.

767 36. Pita JS, Fondong VN, Sangaré A, Otim-Nape GW, Ogwale S, Fauquet CM. 2001.
768 Recombination, pseudorecombination and synergism of geminiviruses are determinant
769 keys to the epidemic of severe cassava mosaic disease in Uganda. *J Gen Virol* 82:655–
770 665.

771 37. Zinga I, Chiroleu F, Legg J, Lefeuvre P, Komba EK, Semballa S, Yandia SP,
772 Mandakombo NB, Reynaud B, Lett J-M. 2013. Epidemiological assessment of cassava
773 mosaic disease in Central African Republic reveals the importance of mixed viral infection
774 and poor health of plant cuttings. *Crop Prot* 44:6–12.

775 38. Harimalala M, Chiroleu F, Giraud-Carrier C, Hoareau M, Zinga I, Randriamampianina JA,
776 Velombola S, Ranomenjanahary S, Andrianjaka A, Reynaud B, Lefeuvre P, Lett J-M.
777 2015. Molecular epidemiology of cassava mosaic disease in Madagascar. *Plant Pathol*
778 64:501–507.

779 39. Mulenga RM, Legg JP, Ndunguru J, Miano DW, Mutitu EW, Chikoti PC, Alabi OJ. 2015.
780 Survey, Molecular Detection, and Characterization of Geminiviruses Associated with
781 Cassava Mosaic Disease in Zambia. *Plant Dis* 100:1379–1387.

782 40. Rothenstein D, Haible D, Dasgupta I, Dutt N, Patil BL, Jeske H. 2006. Biodiversity and
783 recombination of cassava-infecting begomoviruses from southern India. *Arch Virol*
784 151:55–69.

785 41. Ndunguru J, Legg JP, Aveling TAS, Thompson G, Fauquet CM. 2005. Molecular
786 biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in
787 Africa and evidence for East Africa being a center of diversity of cassava geminiviruses.
788 *Virol J* 2:1–23.

789 42. Berrie LC, Rybicki EP, Rey MEC. 2001. Complete nucleotide sequence and host range of
790 South African cassava mosaic virus: further evidence for recombination amongst
791 begomoviruses. *J Gen Virol* 82:53–58.

Crespo-Bellido et al.

792 43. Mcvean G, Awadalla P, Fearnhead P. 2002. A Coalescent-Based Method for Detecting
793 and Estimating Recombination From Gene Sequences. *Genetics* 160:1231–1241.

794 44. Briddon RW, Patil BL, Bagewadi B, Nawaz-Ui-Rehman MS, Fauquet CM. 2010. Distinct
795 evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses.
796 *BMC Evol Biol* 10.

797 45. Saunders K, Salim N, Mali VR, Malathi VG, Briddon R, Markham PG, Stanley J. 2002.
798 Characterisation of Sri Lankan Cassava Mosaic Virus and Indian Cassava Mosaic Virus:
799 Evidence for Acquisition of a DNA B Component by a Monopartite Begomovirus. *Virology*
800 293:63–74.

801 46. De Bruyn A, Villemot J, Lefevre P, Villar E, Hoareau M, Harimalala M, Abdoul-Karime
802 AL, Abdou-Chakour C, Reynaud B, Harkins GW, Varsani A, Martin DP, Lett J-M. 2012.
803 East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular
804 diversity, evolutionary history and geographical dissemination of a bipartite begomovirus.
805 *BMC Evol Biol* 12.

806 47. Pagán I. 2018. The diversity, evolution and epidemiology of plant viruses: A phylogenetic
807 view. *Infect Genet Evol* 65:187–199.

808 48. Berrie LC, Palmer KE, Rybicki EP, Hiyadat SH, Maxwell DP, Rey MEC. 1997. A new
809 isolate of African cassava mosaic virus in South Africa. *African J Root Tuber Crop* 2:49–
810 52.

811 49. Berrie LC, Palmer KE, Rybicki EP, Rey MEC. 1998. Molecular characterisation of a
812 distinct South African cassava infecting geminivirus. *Arch Virol* 143:2253–2260.

813 50. Borah BK, Dasgupta I. 2012. PCR-RFLP analysis indicates that recombination might be a
814 common occurrence among the cassava infecting begomoviruses in India. *Virus Genes*
815 45:327–332.

816 51. Khan AJ, Akhtar S, Al-Matrushi AM, Fauquet CM, Briddon RW. 2013. Introduction of East
817 African cassava mosaic Zanzibar virus to Oman harks back to “Zanzibar, the capital of
818 Oman.” *Virus Genes* 46:195–198.

819 52. Nawaz-ul-Rehman MS, Briddon RW, Fauquet CM. 2012. A Melting Pot of Old World
820 Begomoviruses and Their Satellites Infecting a Collection of *Gossypium* Species in
821 Pakistan. *PLoS One* 7:e40050.

822 53. García-Arenal F, Zerbini FM. 2019. Life on the Edge: Geminiviruses at the Interface
823 Between Crops and Wild Plant Hosts. *Annu Rev Virol* 6:411–433.

824 54. Khan AJ, Mansoor S, Briddon RW. 2014. Oman: a case for a sink of begomoviruses of
825 geographically diverse origins. *Trends Plant Sci* 19:67–70.

826 55. Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG,
827 Duffy S, Zerbini FM. 2017. The diversification of begomovirus populations is
828 predominantly driven by mutational dynamics. *Virus Evol* 3:1–14.

829 56. Martin DP, Lefevre P, Varsani A, Hoareau M, Semegni J-Y, Dijoux B, Vincent C,
830 Reynaud B, Lett J. 2011. Complex Recombination Patterns Arising during Geminivirus
831 Coinfections Preserve and Demarcate Biologically Important Intra-Genome Interaction
832 Networks. *PLoS Pathog* 7:1–14.

833 57. Escriu F, Fraile A, García-Arenal F. 2007. Constraints to Genetic Exchange Support

Crespo-Bellido et al.

834 Gene Coadaptation in a Tripartite RNA Virus. PLOS Pathog 3:e8.

835 58. Chen L-F, Rojas M, Kon T, Gamby K, Xoconostle-Cazares B, Gilbertson RL. 2009. A
836 severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel
837 recombinant begomovirus (Tomato yellow leaf curl Mali virus) and a betasatellite. Mol
838 Plant Pathol 10:415–430.

839 59. Lozano G, Trenado HP, Valverde RA, Navas-Castillo J. 2009. Novel begomovirus
840 species of recombinant nature in sweet potato (*Ipomoea batatas*) and *Ipomoea indica*:
841 taxonomic and phylogenetic implications. J Gen Virol 90:2550–2562.

842 60. Kumar Y, Hallan V, Zaidi AA. 2011. Chilli leaf curl Palampur virus is a distinct
843 begomovirus species associated with a betasatellite. Plant Pathol 60:1040–1047.

844 61. Xie Y, Zhao L, Jiao X, Jiang T, Gong H, Wang B, Briddon RW, Zhou X. 2013. A
845 recombinant begomovirus resulting from exchange of the C4 gene. J Gen Virol 94:1896–
846 1907.

847 62. Kesumawati E, Okabe S, Homma K, Fujiwara I, Zakaria S, Kanzaki S, Koeda S. 2019.
848 Pepper yellow leaf curl Aceh virus: a novel bipartite begomovirus isolated from chili
849 pepper, tomato, and tobacco plants in Indonesia. Arch Virol 164:2379–2383.

850 63. Jovel J, Reski G, Rothenstein D, Ringel M, Frischmuth T, Jeske H. 2004. *Sida micrantha*
851 mosaic is associated with a complex infection of begomoviruses different from *Abutilon*
852 mosaic virus. Arch Virol 149:829–841.

853 64. Haq QMI, Rouhibakhsh A, Ali A, Malathi VG. 2011. Infectivity analysis of a blackgram
854 isolate of Mungbean yellow mosaic virus and genetic assortment with MYMIV in selective
855 hosts. Virus Genes 42:429–439.

856 65. Ho ES, Kuchie J, Duffy S. 2014. Bioinformatic Analysis Reveals Genome Size Reduction
857 and the Emergence of Tyrosine Phosphorylation Site in the Movement Protein of New
858 World Bipartite Begomoviruses. PLoS One 9:e111957.

859 66. Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R,
860 Nascimento RN, Assunção I, Lima GSA, Lima ATM, Zerbini FM. 2020. Evolutionary
861 dynamics of bipartite begomoviruses revealed by complete genome analysis. bioRxiv
862 <https://doi.org/10.1101/2020.06.25.171728>.

863 67. Rokyta DR, Wichman HA. 2009. Genic Incompatibilities in Two Hybrid Bacteriophages.
864 Mol Biol Evol 26:2831–2839.

865 68. Davino S, Napoli C, Dellacroce C, Miozzi L, Noris E, Davino M, Accotto GP. 2009. Two
866 new natural begomovirus recombinants associated with the tomato yellow leaf curl
867 disease co-exist with parental viruses in tomato epidemics in Italy. Virus Res 143:15–23.

868 69. Monjane AL, Martin DP, Lakay F, Muhire BM, Pande D, Varsani A, Harkins G, Shepherd
869 DN, Rybicki EP. 2014. Extensive Recombination-Induced Disruption of Genetic
870 Interactions Is Highly Deleterious but Can Be Partially Reversed by Small Numbers of
871 Secondary Recombination Events. J Virol 88:7843 LP – 7851.

872 70. Vuillaume F, Thébaud G, Urbino C, Forfert N, Granier M, Froissart R, Blanc S,
873 Peterschmitt M. 2011. Distribution of the phenotypic effects of random homologous
874 recombination between two virus species. PLOS Pathog 2011/05/05. 7:e1002028–
875 e1002028.

Crespo-Bellido et al.

876 71. Urbino C, Reragui ZF, Granier M, Peterschmitt M. 2020. Fitness advantage of inter-
877 species TYLCV recombinants induced by beneficial intra-genomic interactions rather than
878 by specific mutations. *Virology* 542:20–27.

879 72. Fiallo-Olivé E, Trenado HP, Louro D, Navas-Castillo J. 2019. Recurrent speciation of a
880 tomato yellow leaf curl geminivirus in Portugal by recombination. *Sci Rep* 9:1332.

881 73. Etessami P, Watts J, Stanley J. 1989. Size reversion of African cassava mosaic virus
882 coat protein gene deletion mutants during infection of *Nicotiana benthamiana*. *J Gen Virol*
883 70:277—289.

884 74. van der Walt E, Rybicki EP, Varsani A, Polston JE, Billharz R, Donaldson L, Monjane AL,
885 Martin DP. 2009. Rapid host adaptation by extensive recombination. *J Gen Virol* 90:734–
886 746.

887 75. Hou YM, Gilbertson RL. 1996. Increased pathogenicity in a pseudorecombinant bipartite
888 geminivirus correlates with intermolecular recombination. *J Virol* 70:5430 LP – 5436.

889 76. García-Andrés S, Monci F, Navas-Castillo J, Moriones E. 2006. Begomovirus genetic
890 diversity in the native plant reservoir *Solanum nigrum*: evidence for the presence of a new
891 virus species of recombinant nature. *Virology* 350:433–442.

892 77. Lefevre P, Moriones E. 2015. Recombination as a motor of host switches and virus
893 emergence: Geminiviruses as case studies. *Curr Opin Virol* 10:14–19.

894 78. Briddon RW, Akbar F, Iqbal Z, Amrao L, Amin I, Saeed M, Mansoor S. 2014. Effects of
895 genetic changes to the begomovirus/betasatellite complex causing cotton leaf curl
896 disease in South Asia post-resistance breaking. *Virus Res* 186:114–119.

897 79. Belabess Z, Peterschmitt M, Granier M, Tahiri A, Blenzar A, Urbino C. 2016. The non-
898 canonical tomato yellow leaf curl virus recombinant that displaced its parental viruses in
899 southern Morocco exhibits a high selective advantage in experimental conditions. *J Gen
900 Virol* 97:3433–3445.

901 80. Fondong VN. 2017. The Search for Resistance to Cassava Mosaic Geminiviruses: How
902 Much We Have Accomplished, and What Lies Ahead. *Front Plant Sci* 8:1–19.

903 81. Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JCF,
904 Fiallo-Olivé E, Briddon RW, Hernández-Zepeda C, Idris A, Malathi VG, Martin DP,
905 Rivera-Bustamante R, Ueda S, Varsani A. 2015. Revision of Begomovirus taxonomy
906 based on pairwise sequence comparisons. *Arch Virol* 160:1593–1619.

907 82. Meyer JR, Dobias DT, Medina SJ, Servilio L, Gupta A, Lenski RE. 2016. Ecological
908 speciation of bacteriophage lambda in allopatry and sympatry. *Science* (80-) 354:1301–
909 1304.

910 83. Saxenhofer M, Schmidt S, Ulrich RG, Heckel G. 2019. Secondary contact between
911 diverged host lineages entails ecological speciation in a European hantavirus. *PLOS Biol*
912 17:e3000142.

913 84. Simmonds P, Aiewsakun P, Katzourakis A. 2019. Prisoners of war — host adaptation and
914 its constraints on virus evolution. *Nat Rev Microbiol* 17:321–328.

915 85. Chaikeeratisak V, Birkholz EA, Prichard AM, Egan ME, Mylvara A, Nonejuie P, Nguyen
916 KT, Sugie J, Meyer JR, Pogliano J. 2021. Viral speciation through subcellular genetic
917 isolation and virogenesis incompatibility. *Nat Commun* 12:342.

Crespo-Bellido et al.

918 86. Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. 1999. Evolutionary
919 relationships among diverse bacteriophages and prophages: All the world's a phage.
920 *Proc Natl Acad Sci* 96:2192 LP – 2197.

921 87. Breitbart M, Rohwer F. 2005. Here a virus, there a virus, everywhere the same virus?
922 *Trends Microbiol* 13:278–284.

923 88. Pagán I, Holmes EC. 2010. Long-term evolution of the Luteoviridae: time scale and mode
924 of virus speciation. *J Virol* 84:6177—6187.

925 89. Codoñer FM, Elena SF. 2008. The promiscuous evolutionary history of the family
926 *Bromoviridae*. *J Gen Virol* 89:1739–1747.

927 90. Yang Y, Gaspard G, McMullen N, Duncan R. 2020. Polycistronic Genome Segment
928 Evolution and Gain and Loss of FAST Protein Function during Fusogenic Orthoreovirus
929 Speciation. *Viruses* .

930 91. Borveto F, Bravo IG, Willemsen A. 2020. Papillomaviruses infecting cetaceans exhibit
931 signs of genome adaptation following a recombination event. *Virus Evol* 6.

932 92. Rybicki EP. 1994. A phylogenetic and evolutionary justification for three genera of
933 *Geminiviridae*. *Arch Virol* 139:49–77.

934 93. Briddon RW, Bedford ID, Tsai JH, Markham PG. 1996. Analysis of the nucleotide
935 sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus,
936 suggests a recombinant origin. *Virology* 219:387–394.

937 94. Varsani A, Shepherd DN, Dent K, Monjane AL, Rybicki EP, Martin DP. 2009. A highly
938 divergent South African geminivirus species illuminates the ancient evolutionary history of
939 this family. *Virol J* 6.

940 95. Briddon RW, Heydarnejad J, Khosrowfar F, Massumi H, Martin DP, Varsani A. 2010. Turnip
941 curly top virus, a highly divergent geminivirus infecting turnip in Iran. *Virus Res*
942 152:169–175.

943 96. Heydarnejad J, Keyvani N, Razavinejad S, Massumi H, Varsani A. 2013. Fulfilling Koch's
944 postulates for beet curly top Iran virus and proposal for consideration of new genus in the
945 family *Geminiviridae*. *Arch Virol* 158:435–443.

946 97. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW,
947 Rivera-Bustamante R, Murilo Zerbini F, Martin DP. 2017. Capulavirus and Grablovirus:
948 two new genera in the family *Geminiviridae*. *Arch Virol* 162:1819–1831.

949 98. Koonin E V, Ilyina T V. 1992. Geminivirus replication proteins are related to prokaryotic
950 plasmid rolling circle DNA replication initiator proteins. *J Gen Virol* 73:2763–2766.

951 99. Krupovic M, Ravantti JJ, Bamford DH. 2009. Geminiviruses: a tale of a plasmid becoming
952 a virus. *BMC Evol Biol* 9.

953 100. Kazlauskas D, Varsani A, Koonin E V, Krupovic M. 2019. Multiple origins of prokaryotic
954 and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. *Nat
955 Commun* 10.

956 101. Koonin E V, Dolja V V, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH.
957 2020. Global Organization and Proposed Megataxonomy of the Virus World. *Microbiol
958 Mol Biol Rev* 84:e00061-19.

Crespo-Bellido et al.

959 102. Gibbs AJ, Hajizadeh M, Ohshima K, Jones RAC. 2020. The Potyviruses: An Evolutionary
960 Synthesis Is Emerging. *Viruses* .

961 103. Lukashev AN. 2010. Recombination among picornaviruses. *Rev Med Virol* 20:327–337.

962 104. Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, Davison AJ,
963 Delwart E, Gorbatenya AE, Harrach B, Hull R, King AMQ, Koonin E V, Krupovic M, Kuhn
964 JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB,
965 Suttle CA, Tesh RB, van der Vlugt RA, Varsani A, Zerbini FM. 2017. Virus taxonomy in
966 the age of metagenomics. *Nat Rev Microbiol* 15:161–168.

967 105. Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high
968 throughput. *Nucleic Acids Res* 32:1792–1797.

969 106. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary
970 Genetics Analysis across Computing Platforms. *Mol Biol Evol* 35:1547–1549.

971 107. Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large
972 datasets. *Bioinformatics* 30:3276–3278.

973 108. Muhire BM, Varsani A, Martin DP. 2014. SDT: A virus classification tool based on
974 pairwise sequence alignment and identity calculation. *PLoS One* 9.

975 109. Bryant D, Moulton V. 2004. Neighbor-Net: An Agglomerative Method for the Construction
976 of Phylogenetic Networks. *Mol Biol Evol* 21:255–265.

977 110. Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies.
978 *Mol Biol Evol* 23:254–267.

979 111. Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new
980 heuristics and parallel computing. *Nat Methods* 9:772.

981 112. Martin D, Rybicki E. 2000. RDP: detection of recombination amongst aligned sequences .
982 *Bioinformatics* 16:562–563.

983 113. Salminen MO, Carr JK, Burke DS, McCutchan FE. 1995. Identification of Breakpoints in
984 Intergenotypic Recombinants of HIV Type 1 by Bootscanning. *AIDS Res Hum*
985 *Retroviruses* 11:1423–1425.

986 114. Smith JM. 1992. Analyzing the mosaic structure of genes. *J Mol Evol* 34:126–129.

987 115. Posada D, Crandall KA. 2001. Evaluation of methods for detecting recombination from
988 DNA sequences: Computer simulations. *Proc Natl Acad Sci* 98:13757–13762.

989 116. Gibbs MJ, Armstrong JS, Gibbs AJ. 2000. Sister-Scanning: a Monte Carlo procedure for
990 assessing signals in recombinant sequences. *Bioinformatics* 16:573–582.

991 117. Boni MF, Posada D, Feldman MW. 2007. An Exact Nonparametric Method for Inferring
992 Mosaic Structure in Sequence Triplets. *Genetics* 176:1035–1047.

993 118. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: Detection and
994 analysis of recombination patterns in virus genomes. *Virus Evol* 1:1–5.

995 119. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R,
996 Sheppard HW, Ray SC. 1999. Full-Length Human Immunodeficiency Virus Type 1
997 Genomes from Subtype C-Infected Seroconverters in India, with Evidence of Intersubtype
998 Recombination. *J Virol* 73:152–160.

Crespo-Bellido et al.

999 120. Hudson RR. 2001. Two-Locus Sampling Distributions and Their Application. *Genetics*
1000 159:1805 LP – 1817.

1001 121. Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of
1002 restriction endonucleases. *Proc Natl Acad Sci* 76:5269 LP – 5273.

1003 122. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-
1004 Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of
1005 large data sets. *Mol Biol Evol* 34:3299–3302.

1006 123. Kon T, Gilbertson RL. 2012. Two genetically related begomoviruses causing tomato leaf
1007 curl disease in Togo and Nigeria differ in virulence and host range but do not require a
1008 betasatellite for induction of disease symptoms. *Arch Virol* 157:107–120.

Crespo-Bellido et al.

1009 **MAIN FIGURE LEGENDS**

1010 **Figure 1. Phylogenetic network analysis for all CMB species DNA-A segments**

1011 **and schematic of identified macroevolutionary recombination events. (A)**

1012 Neighbor-net network analysis for all CMB species DNA-A segments. Distances were
1013 transformed using a GTR + G model. The numbers correspond to the clade-wide events
1014 shared by all members of a species reported in Table 2 and depicted in 1B. Colors
1015 representing each species are: ACMV: pink, ACMBFV: yellow, SACMV: green,
1016 EACMKV: brown, EACMZV: red, EACMV: teal, EACMCV: orange, EACMMV: blue,
1017 CMMGV: spring green, ICMV: turquoise, SLCMV: purple. The descendants of a well-
1018 studied recombination event between ACMV and EACMV (EACMV-UG) are circled in
1019 gray. (B) Linearized DNA-A schematic representations of putative ancestral
1020 recombination events based on breakpoint and parental species predicted by RDP4.

1021 **Figure 2. Similarity plots showing similarity between EACMV and SACMV (A) and**

1022 **alternative recombinant origins for the EACMMV (B) and EACMKV (C) DNA-A**

1023 **segments.** Plots are comparing the similarity of 50% consensus sequences of the
1024 plotted species (except for 2C where best candidate EACMCV_JX473582 was used)
1025 against a 50% consensus sequence of the query species. The Kimura-2-Parameter
1026 model of sequence evolution was used to correct distances and a sliding window size of
1027 100nt with a step size of 10nt was used. Above each plot, Scenario 1 represents the
1028 macroevolutionary events associated with the queried species based on RDP4 results
1029 while Scenario 2 represents the plausible alternative recombinant origin. The black line

Crespo-Bellido et al.

1030 above the schematics depicts the conserved region between EACMV and SACMV
1031 sequences, derived from panel 2A.

1032 **Figure 3. Sliding window plots of nucleotide diversity (π) and population
1033 divergence (D_{XY}) for CMB DNA-A recombinant-major parental clade combinations.**

1034 D_{XY} between species is plotted in black and the grey dashed line represents the D_{XY}
1035 average between the compared datasets. The shaded area depicts the predicted
1036 recombinant fragment based on RDP4 analyses.

1037 **Figure 4. Phylogenetic network analysis for all CMB species DNA-B segments
1038 and schematic of identified clade-forming recombination events** (A) Neighbor-net
1039 network analysis for groups of CMB DNA-B segments. Distances were transformed
1040 using a GTR + G model. The numbers correspond to the events reported in Table 2 and
1041 depicted in 4B. (B) Linearized DNA-B schematic representations of putative species-
1042 spanning recombination events based on breakpoint and parental species predicted by
1043 RDP4.

1044 **APPENDIX FIGURE LEGENDS**

1045 **Appendix:** Distance plots and schematic diagrams for all high-confidence
1046 recombination events. The distance plots that follow confirm the plausibility of the
1047 RDP4-identified recombination events listed in Tables 2 and 4. Note that Kimura-2-
1048 parameter-model-corrected similarities calculated by SimPlot are distinct from percent
1049 nucleotide identity but are presented on the conventional scale.

1050 **Figure A1. Similarity plots for four African CMB DNA-A macroevolutionary
1051 recombination events.** Note that BLAST analysis suggests that a ToLCCMV-like virus

Crespo-Bellido et al.

1052 was a more likely donor for Event 1 (Figure 1) but similarity for the closest sequence in
1053 the dataset (CMMGV) is plotted.

1054 **Figure A2. Similarity plot for EACMKV DNA-A macroevolutionary recombination**
1055 **event, exemplified by AJ717578.** Note that the y-axis limits differ from other graphs.

1056 **Figure A3. Similarity plots for 3 African CMB DNA-A recombinant haplotypes.**

1057 Note that the y-axis limits differ from other graphs. Comparisons correspond to RDP4
1058 results for events 7-9.

1059 **Figure A4. Similarity plots for 4 African CMB DNA-A recombination events.**

1060 Comparisons correspond to RDP4 results for events 10-13. The color used to represent
1061 EACMV sequences in event 11 is slightly different from other graphs to increase color
1062 contrast.

1063 **Figure A5. Similarity plots for 4 African CMB DNA-A recombination events.**

1064 Comparisons correspond to RDP4 results for events 14-17. Note that event 16
1065 corresponds to the KE2 recombinant haplotype described in Bull et al. (31). The color
1066 used to represent EACMV sequences in event 16 is slightly different from other graphs
1067 to increase color contrast.

1068 **Figure A6. Similarity plots for 4 Asian CMB DNA-A recombination events.**

1069 Comparisons correspond to RDP4 results for macroevolutionary event 6 and events 18-
1070 20.

1071 **Figure A7. Similarity plots for 4 Asian CMB DNA-A recombination events.**

1072 Comparisons correspond to RDP4 results for events 21-24.

Crespo-Bellido et al.

1073 **Figure A8. Similarity plot for ACMBFV DNA-B putative recombination event and**
1074 **sequence alignments depicting potential recombination scenarios.** Note that the
1075 sole available ACMBFV DNA-B sequence did not meet our criterion for a high-
1076 confidence recombination event, as described above, but is highlighted for comparison
1077 to SLCMV DNA-B. The putative Rep protein binding site of the ACMBFV DNA-B isolate
1078 includes a single core Rep (AC1) binding sequence (GGGGT, highlighted in blue) with a
1079 potential inverted repeat (GGACC, highlighted in green). Scenario 1 shows the
1080 possibility that ACMBFV DNA-B originated from a recombination event involving an
1081 ACMBFV DNA-A that donated part of the CR to an ACMV DNA-B, which has a distinct
1082 binding site (27) (GGAGA, highlighted in pink). Scenario 2 shows the possibility that
1083 ACMBFV DNA-B originated from a recombination event involving a different virus
1084 segment and ACMV DNA-B. Based on best BLAST hit, the minor parent for Scenario 2
1085 could be a relative of a tomato leaf curl Nigeria virus (ToLCNGV) segment (accession:
1086 FJ685621). The single Rep-binding sequence and inverted repeat for ToLCNGV match
1087 the ones for ACMBFV DNA-B and have been characterized previously (123). The C1
1088 ORF TATA box for each sequence is shown in a box. Grey sites in the aligned
1089 sequences correspond to sites that are distinct from the ACMBFV DNA-B sequence.

1090 **Figure A9. Similarity plots for 4 EACMV-like DNA-B recombination events.**

1091 Comparisons correspond to RDP4 results for clade forming event B1 and events B3,
1092 B7-B8.

1093 **Figure A10. Similarity plots for 3 EACMV-like DNA-B recombination events**
1094 **resulting from relatively similar sequences.** Comparisons correspond to RDP4
1095 results for events B4-B6.

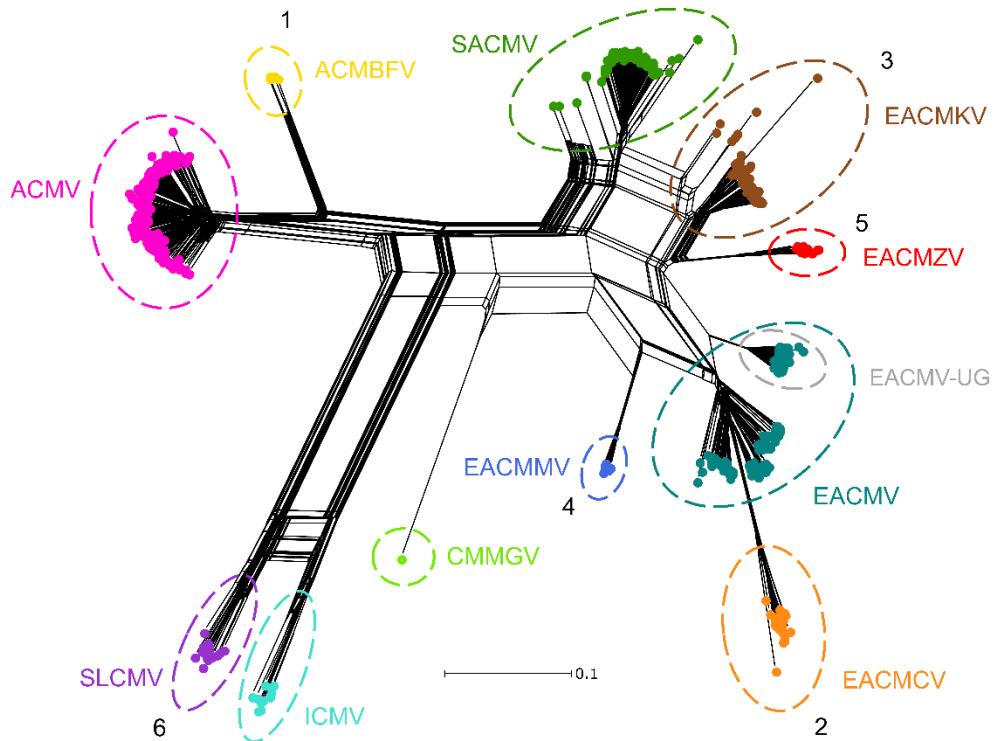
Crespo-Bellido et al.

1096 **Figure A11. Similarity plots for 3 Asian CMB DNA-B events.** Comparisons

1097 correspond to RDP4 results for clade-forming event B2 and events B9-B10.

Crespo-Bellido et al.

TABLES AND FIGURES


Table 1. Sample sizes by designated species for DNA-A and DNA-B sequences used in this study

Continent	Species	Sample size	
		DNA-A	DNA-B
Africa	ACMBFV	4	1
	ACMV	311	103
	SACMV	132	96
	EACMV	228	56
	EACMCV	28	9
	EACMKV	114	67
	EACMMV	15	1
	EACMZV	18	13
	CMMGV	1	1
	Total	851	347
Asia	SLCMV	19	12
	ICMV	10	10
Total		29	22

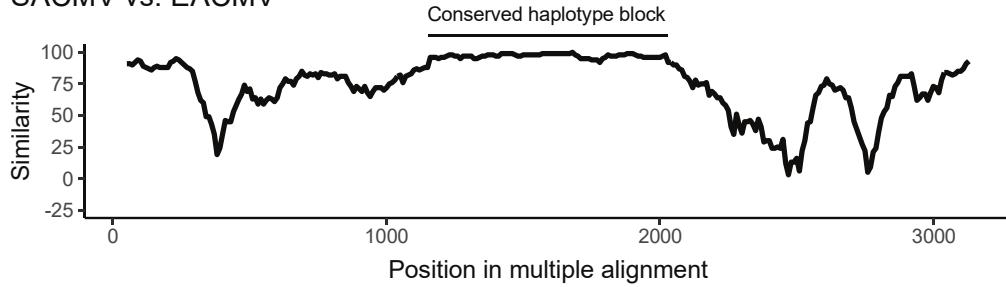
Crespo-Bellido et al.

FIGURE 1

A

B

Table 2. List of recombination events detected in CMB DNA-A sequences


	Event number	Recombinant	Region		Major Parent	Minor Parent	Methods ^c
			Begin	End			
Macroevolutionary recombination events	1	ACMBFV	1730	71	ACMV	Unknown (ToLCCMV) ^b	GBMCST
	2		1066	1834	EACMV	Unknown	RGMCST
	3	EACMKV	38	1076	SACMV	EACMCV	RGMCST
	4	EACMMV	1986	16	SACMV	EACMCV	RGMST
	5	EACMZV	2085	2762	EACMKV	CMMGV	RGMCST
	6	SLCMV	1346 ^a	2736 ^a	ICMV	Unknown	RBMCST
Other events	7	EACMV-UG	544	1008	EACMV	ACMV	RGBMCST
	8	SACMV	501	906 ^a	SACMV	EACMCV	RGBMCST
	9	SACMV	133	445	SACMV	ACMV	RBMCST
	10	SACMV	510	1103	SACMV	CMMGV	RGBMCST
	11	EACMKV	1839	2776	EACMV	SACMV	RGBMCST
	12	EACMKV	550	1053	EACMKV	SACMV	RBMCST
	13	EACMKV	1099 ^a	1840	SACMV	Unknown (EACMCV ^b)	RGBMCST
	14	EACMKV	591	1156	EACMV	CMMGV	RGBMCST
	15	EACMKV	766	1045 ^a	EACMKV	SACMV	RGBMCST
	16	EACMV	1619	2081	EACMV	SACMV	RGMCST
	17	EACMCV	19	186 ^a	EACMV	Unknown	RGBMCST
	18	ICMV	1770	15	SLCMV	ICMV	RGBMCST
	19	ICMV	1339	1869	ICMV	SLCMV	RGBMCST
	20	SLCMV	130	1307	SLCMV	ICMV	RGBMCST
	21	SLCMV	1339	2734	ICMV	SLCMV	RGBMCST
	22	ICMV	6	280	ICMV	Unknown	RGBMCST
	23	SLCMV	16 ^a	516 ^a	SLCMV	Unknown	RGBMCST
	24	ICMV	2719	329	ICMV	ICMV	RGMCST

^aActual breakpoint is undetermined; most likely overprinted by subsequent recombination event^bBLASTn result with highest percent identity to fragment^cR, RDP; G, GeneConv; B, Bootscan; M, MaxChi; C, Chimera; S, SisScan; T, 3SEQ

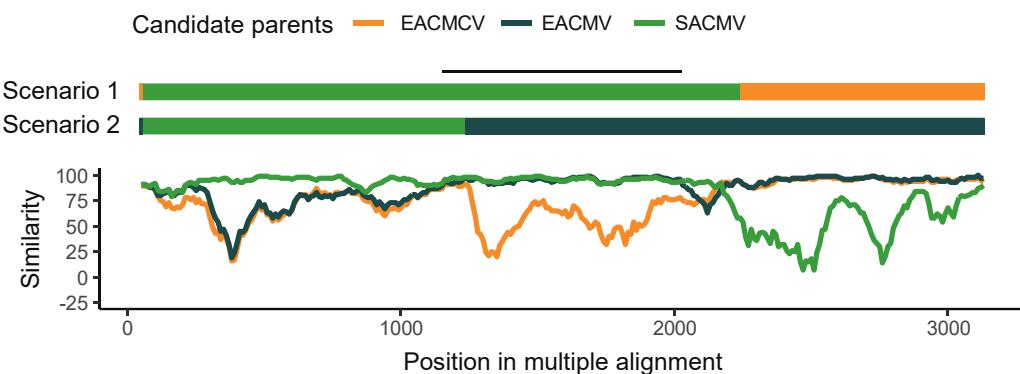
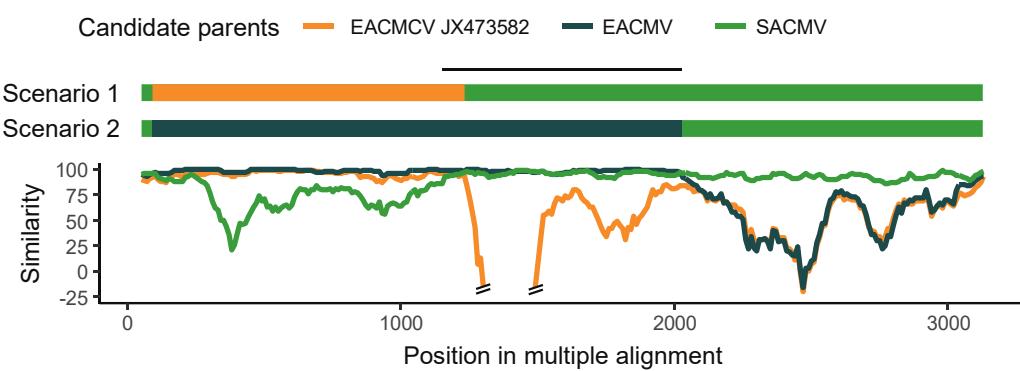

Crespo-Bellido et al.

FIGURE 2


A SACMV vs. EACMV

B EACMMV

C EACMKV

Crespo-Bellido et al.

Table 3. Descriptive statistics of CMB DNA-A species' diversity and the contributions of mutation and recombination to that diversity

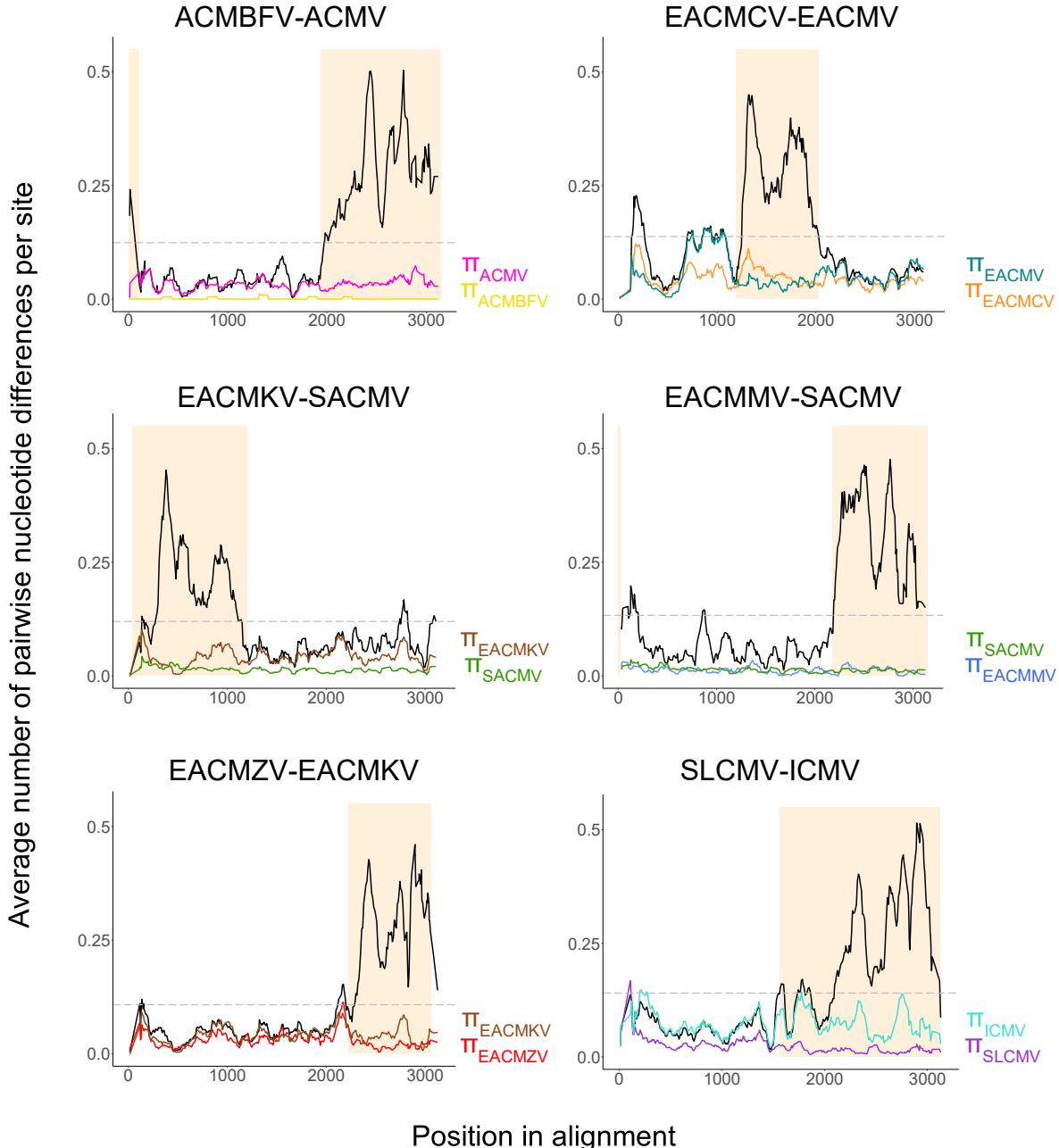
Clade	# seqs	π	S	r^2, d	LPT p-value	ρ	θ_w	ρ/θ_w
ACMV	311	0.033	1317	-0.041	0	46	208.54	0.22
SACMV	132	0.014	863	-0.104	0	28	158.17	0.18
EACMV	228	0.057	1249	-0.072	0	6	208.02	0.029
EACMCV	28	0.048	712	-0.176	0	4	182.97	0.022
EACMKV	114	0.043	986	-0.188	0	13	185.72	0.070
EACMZV	18	0.031	352	-0.036	0	2	102.34	0.020
EACMMV	15	0.012	146	-0.01	0.68	0	44.9	NA
SLCMV	19	0.024	349	-0.147	0	2	99.85	0.020
ICMV	10	0.074	533	-0.043	0	4	188.41	0.021

π =nucleotide diversity; average number of pairwise differences per site for samples within a clade

S= number of segregating sites

r^2 = square of the correlation coefficient between sites

d= physical distance


LPT= likelihood permutation test for the presence of recombination

ρ = population-scaled recombination rate

θ_w = Watterson's infinite-sites estimator of the population-scaled mutation rate (θ)

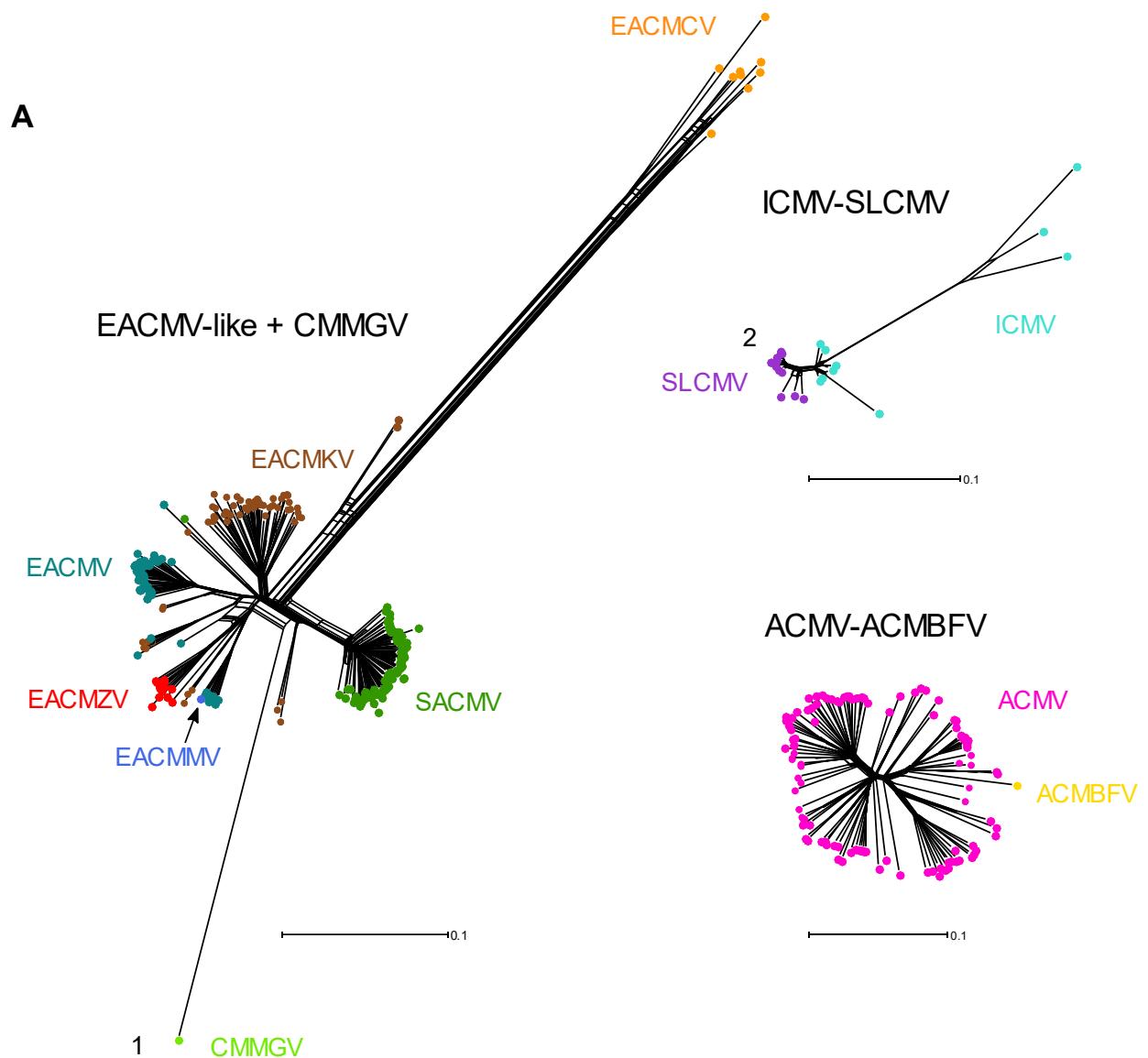

Crespo-Bellido et al.

FIGURE 3

Crespo-Bellido et al.

FIGURE 4

Crespo-Bellido et al.

Table 4. List of recombination events detected in CMB DNA-B sequences

Event number	Recombinant	Region		Major Parent	Minor Parent	Methods ^b
		Begin	End			
B1	CMMGV	1564	2730	EACMKV	Unknown	RGBMCST
B2	SLCMV	2596	2714	ICMV	Unknown (SLCMV DNA-A) ^a	RGMCST
B3	EACMCV	13	1546	Unknown	EACMKV	RBMCT
B4	EACMKV, EACMV	861	1650	EACMV	EACMV	RMCST
B5	EACMZV	504	1535	EACMZV	EACMZV	RGBMCST
B6	EACMV	2740	2113	EACMV	EACMZV	RGMST
B7	SACMV	2228	2292	SACMV	Unknown	RGBMCT
B8	EACMKV	1123	1458	EACMKV	EACMCV	RGBMCST
B9	ICMV	1871	2527	ICMV	Unknown	RGBMCST
B10	ICMV	46	265	ICMV	Unknown	RGMCT

^aBLASTn result with highest percent identity to fragment

^bR, RDP; G, GeneConv; B, Bootscan; M, MaxChi; C, Chimera; S, SisScan; T, 3SEQ

Crespo-Bellido et al.

Table 5. Descriptive statistics of CMB DNA-B groups' genetic diversity and the contributions of mutation and recombination to that diversity.

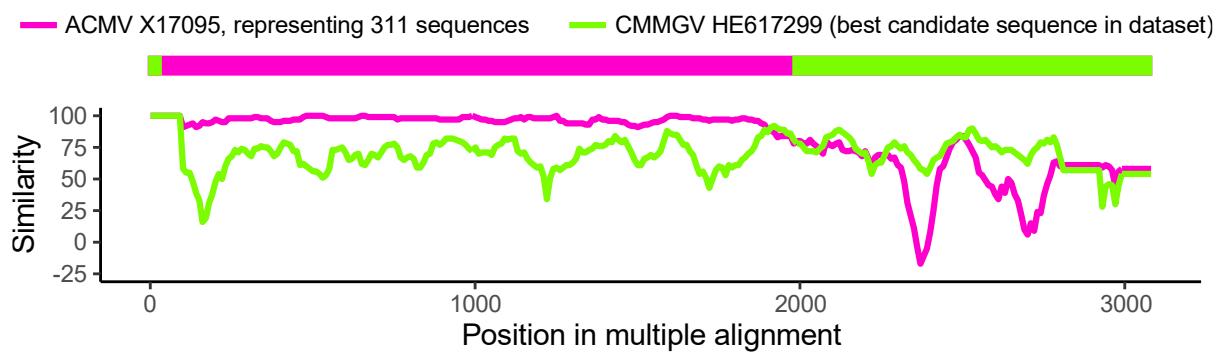
Clade	# seqs	π	S	r^2, d	LPT p-value	ρ	θ_w	ρ/θ_w
ACMV-ACMBFV	104	0.067	1335	-0.009	0.003	28	193.31	0.145
EACMCV	9	0.088	711	-0.005	0	3	261.60	0.011
ICMV-SLCMV	22	0.062	881	-0.036	0	2	241.68	0.008

π = nucleotide diversity; average number of pairwise differences per site for samples within a clade

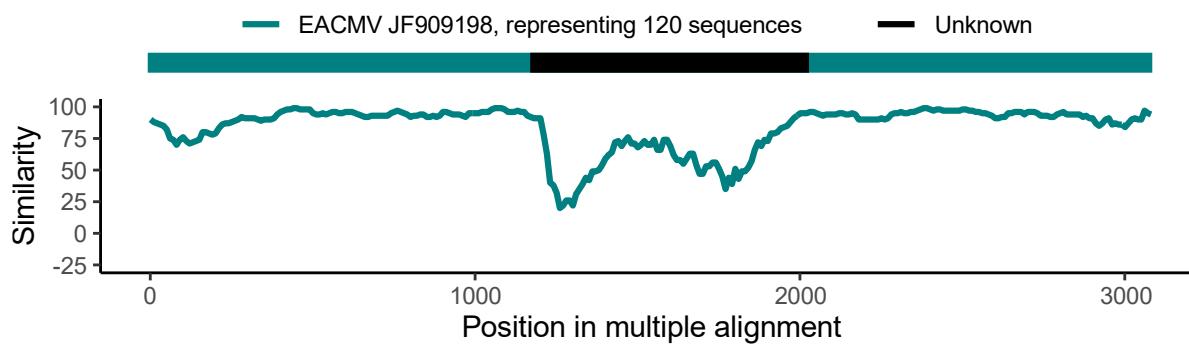
S = number of segregating sites

r^2 = square of the correlation coefficient between sites

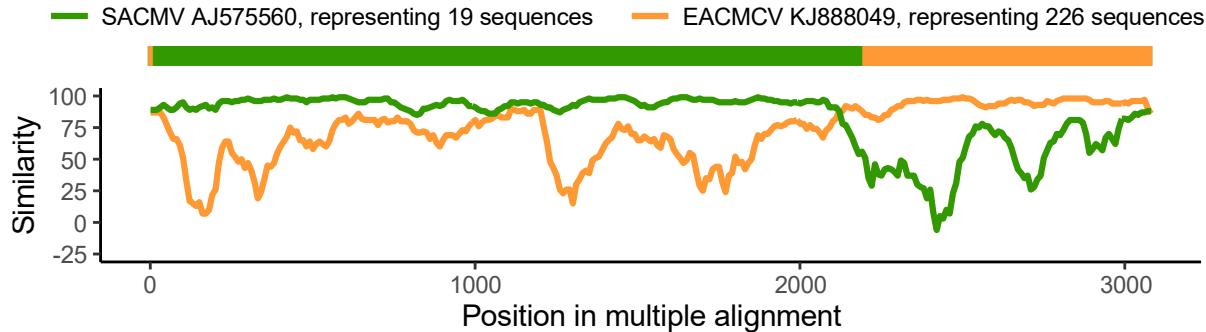
d = physical distance

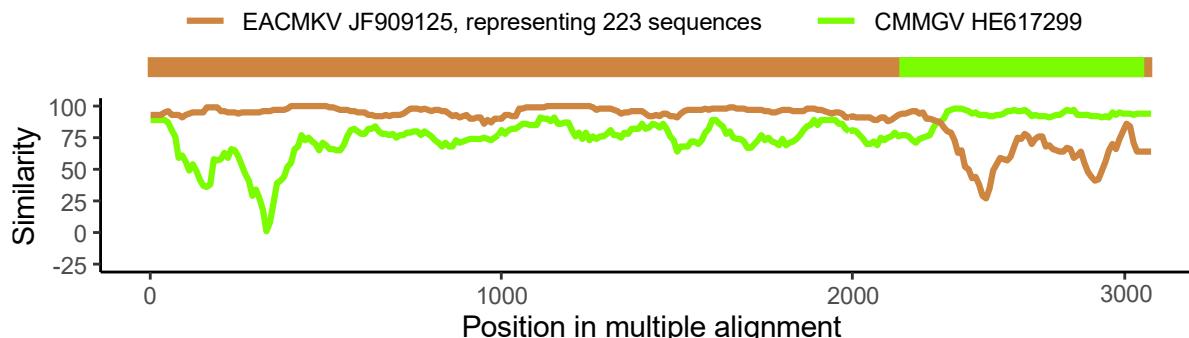

LPT = likelihood permutation test for the presence of recombination

ρ = population-scaled recombination rate

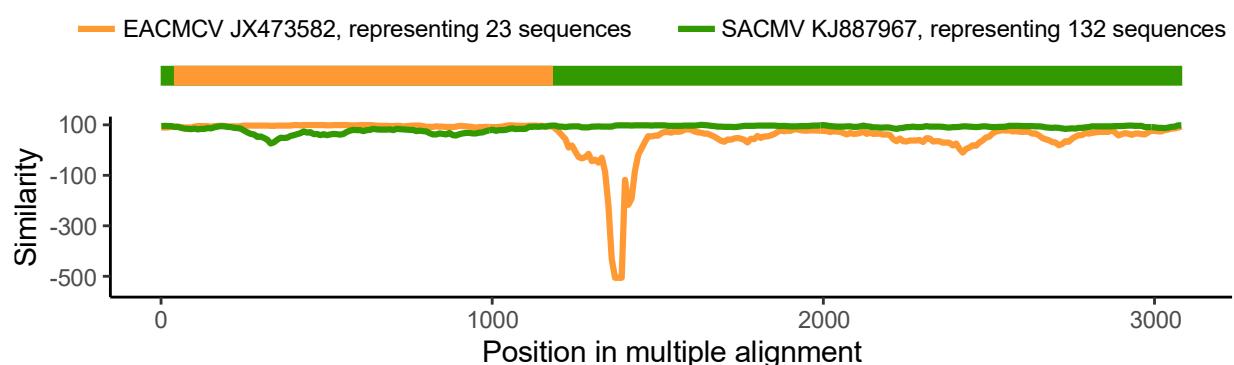

θ_w = Watterson's infinite-sites estimator of the population-scaled mutation rate (θ)

Crespo-Bellido et al.

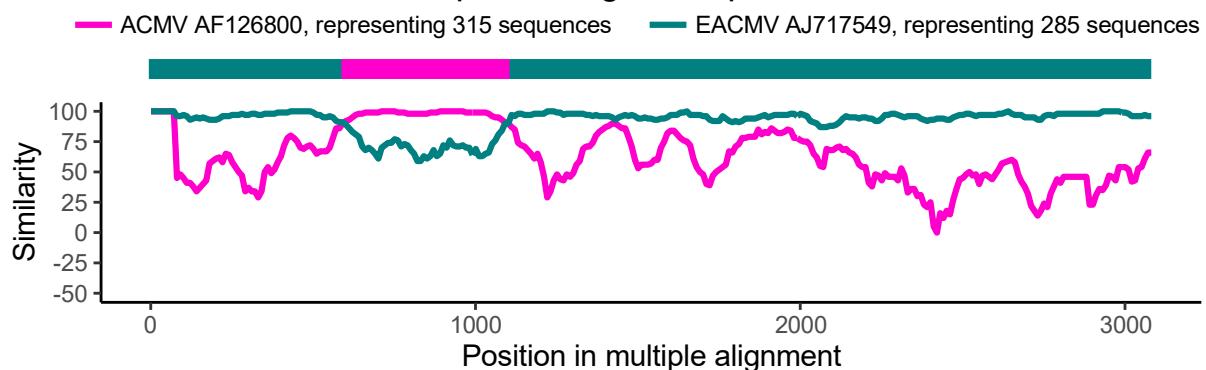

1. ACMBFV HE616779, representing 4 sequences


2. EACMCV JF909094, representing 28 sequences

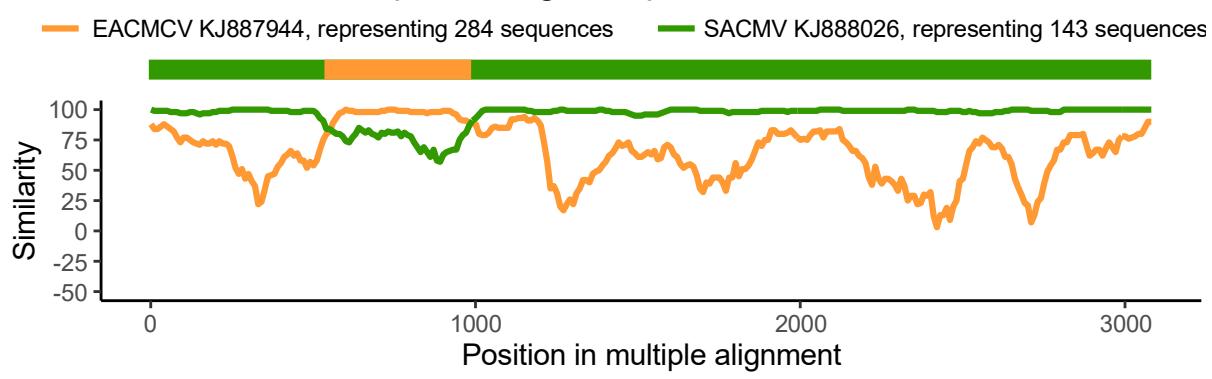
4. EACMMV AJ006458, representing 15 sequences



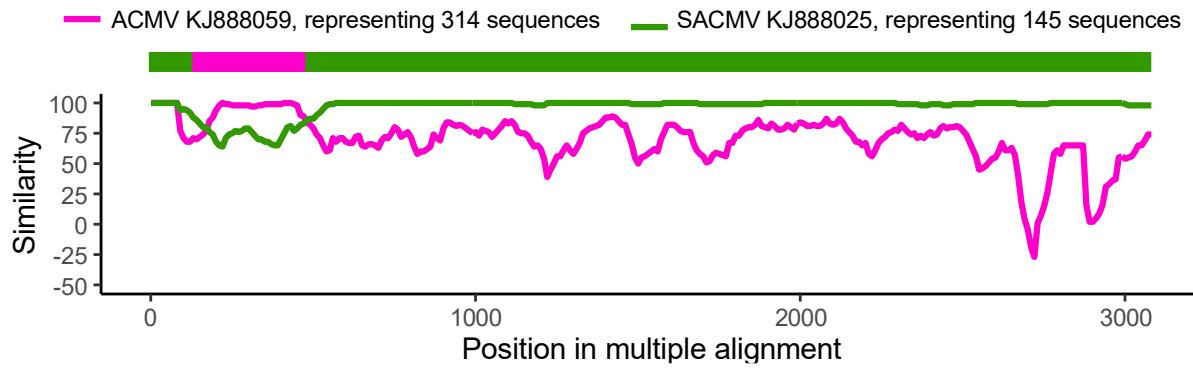
5. EACMZV AF422174, representing 18 sequences


Crespo-Bellido et al.

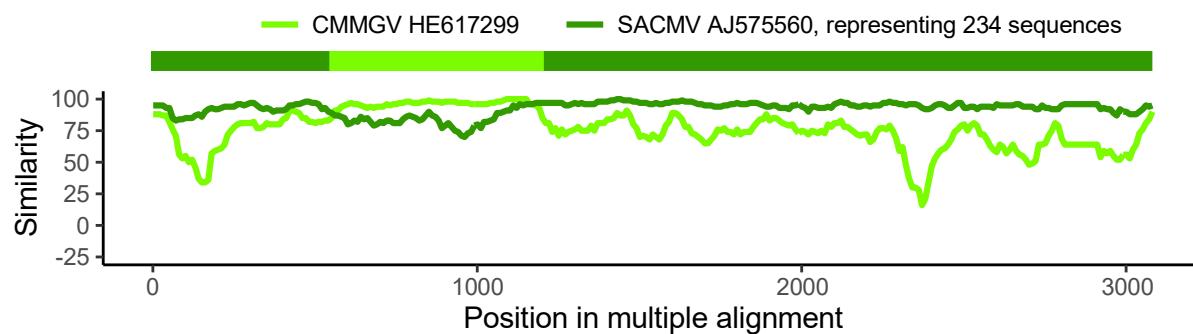
3. EACMKV AJ717578, representing 114 sequences



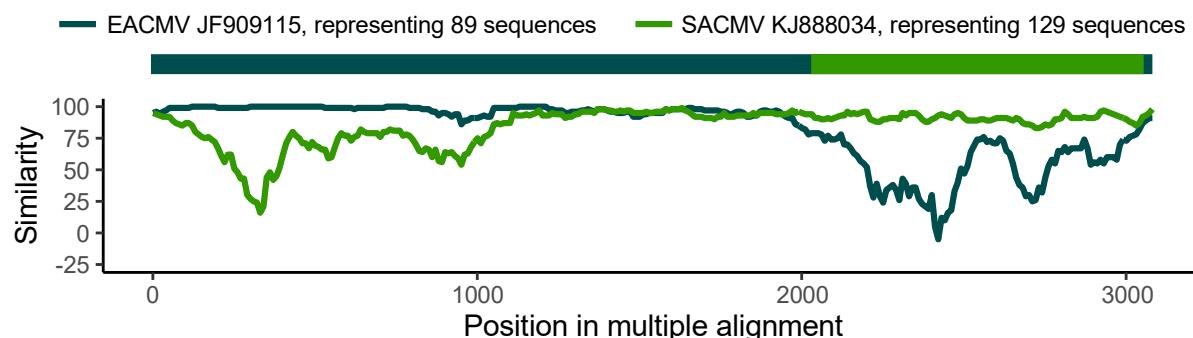
Crespo-Bellido et al.


7. EACMV UG AJ717517, representing 97 sequences

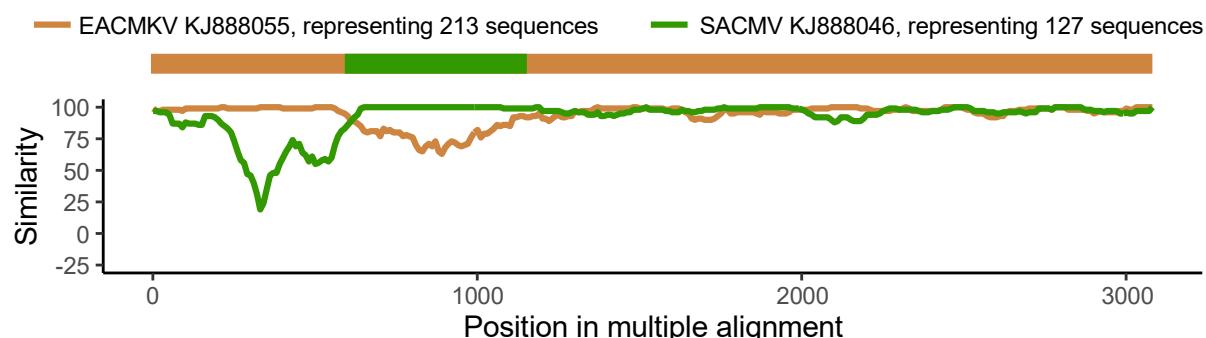
8. SACMV KJ888032, representing 2 sequences

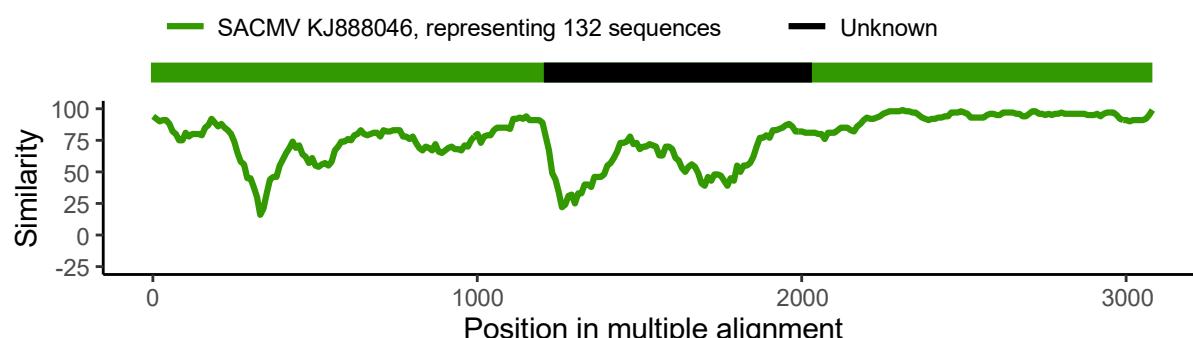


9. SACMV KJ888034, representing 2 sequences

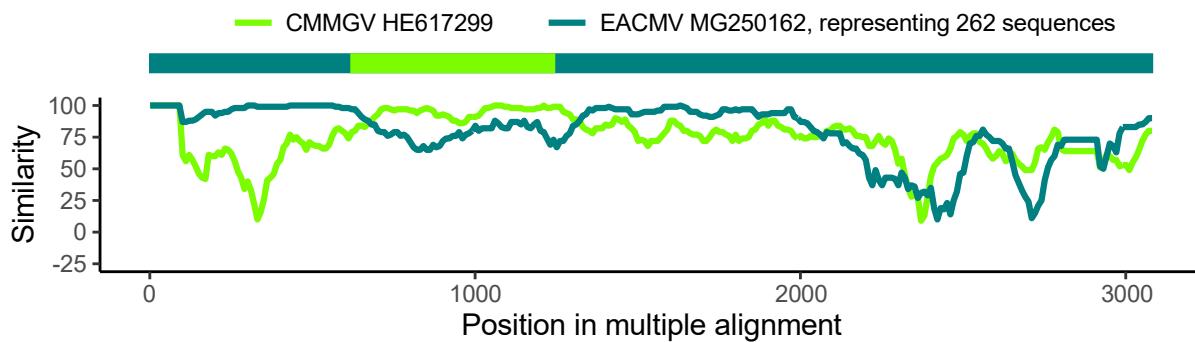


Crespo-Bellido et al.

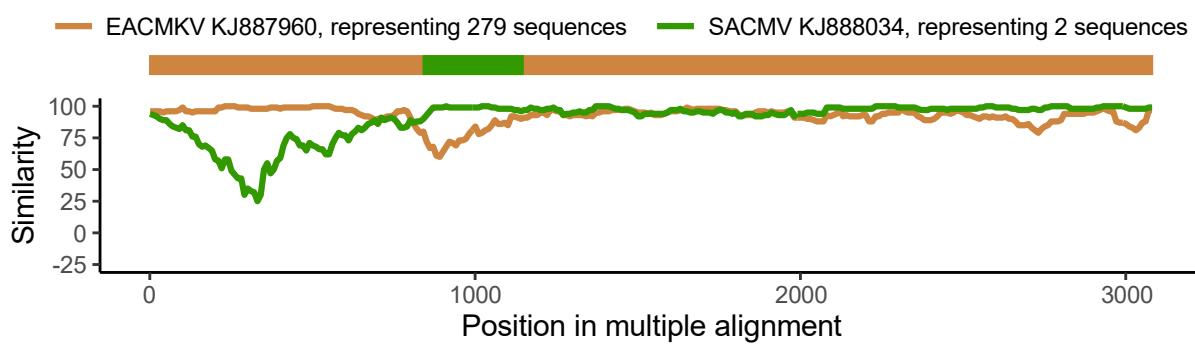

10. SACMV AF155806


11. EACMKV JF909125

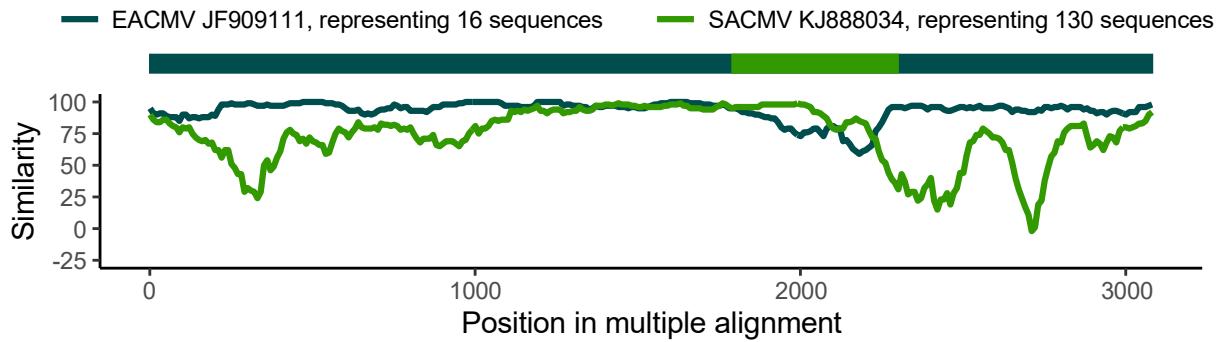
12. EACMKV KJ888058, representing 2 sequences

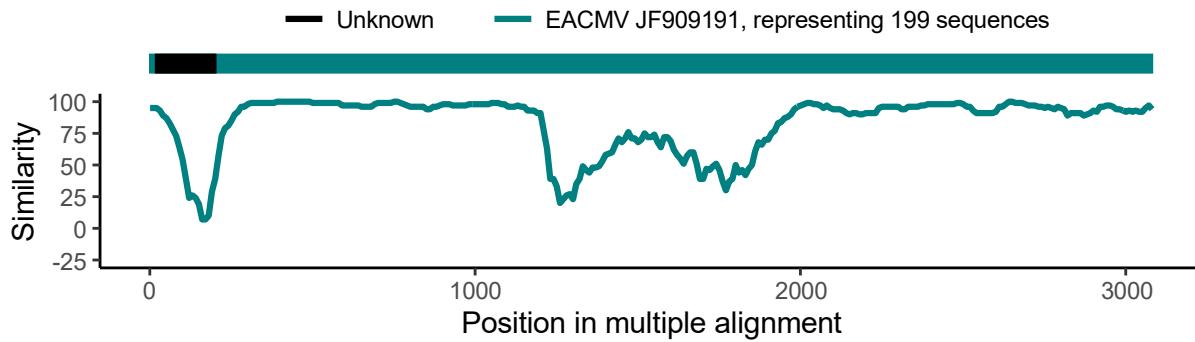


13. EACMKV KJ888083

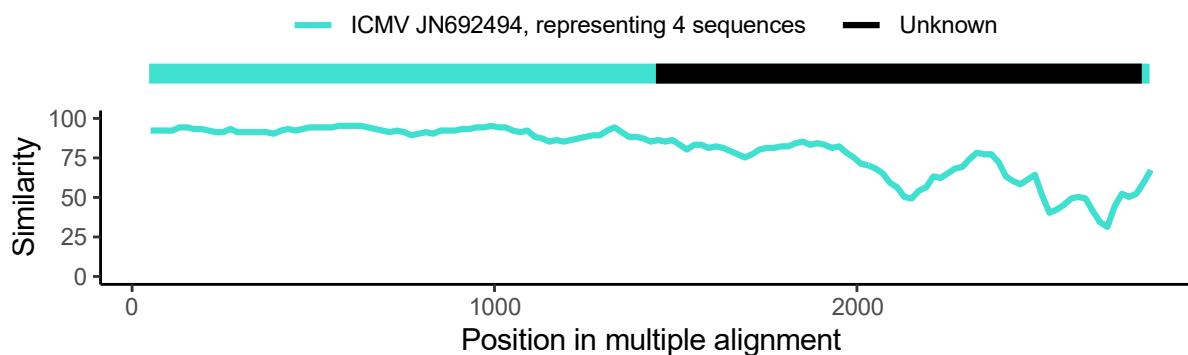


Crespo-Bellido et al.

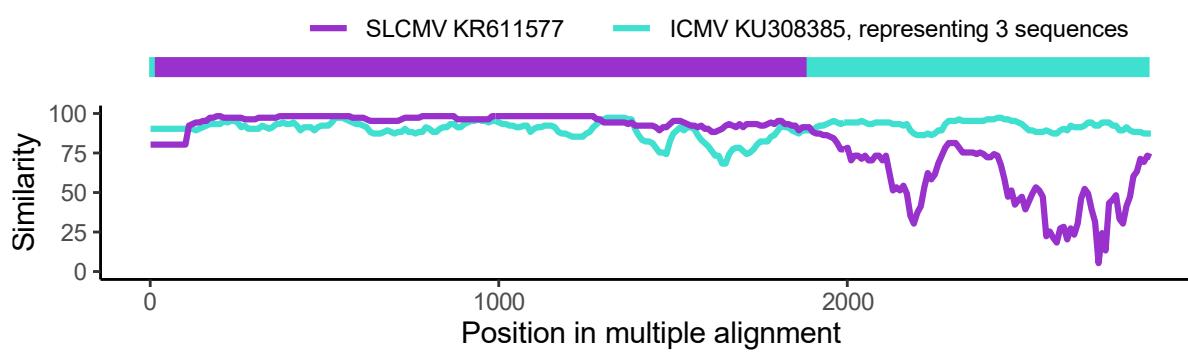

14. EACMKV KJ887959


15. EACMKV KJ887962

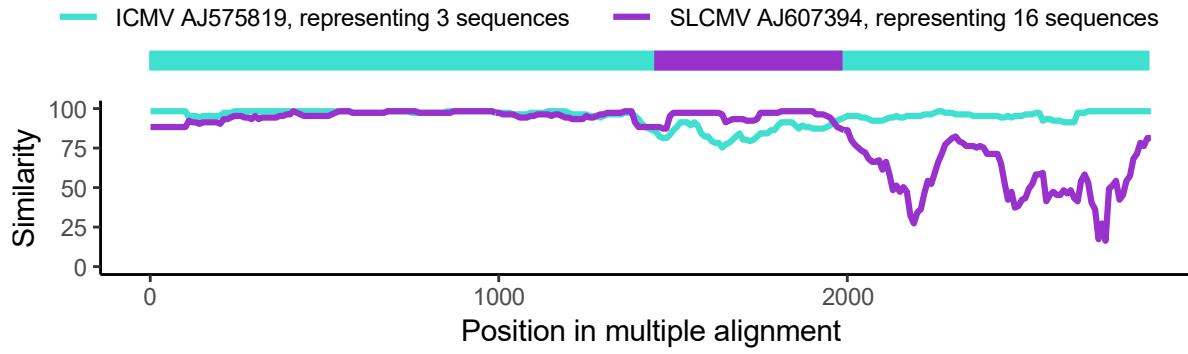
16. EACMV AJ717536, representing 9 sequences

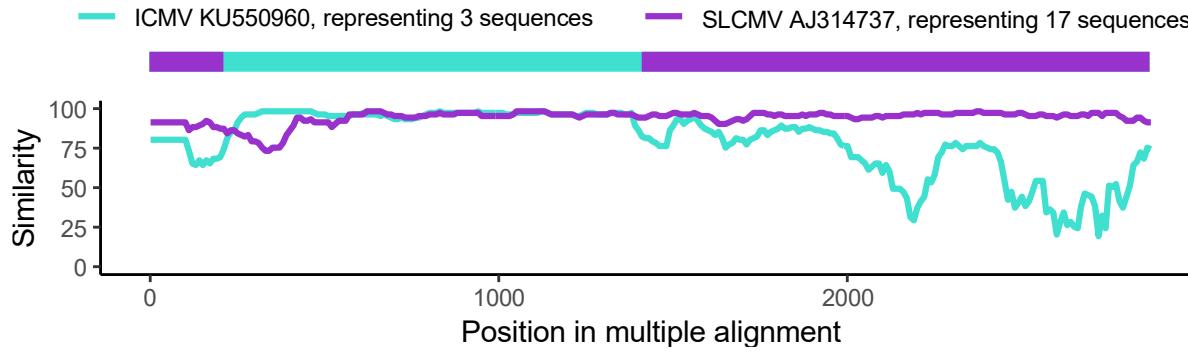


17. EACMCV KJ888049

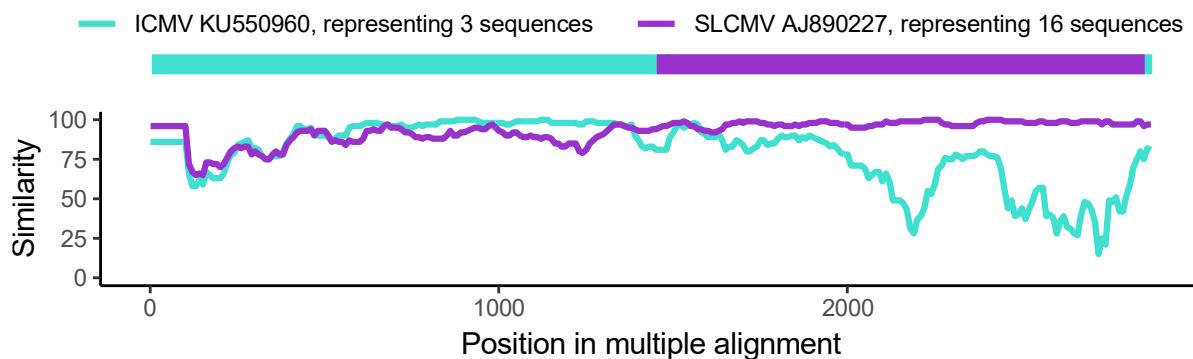


Crespo-Bellido et al.

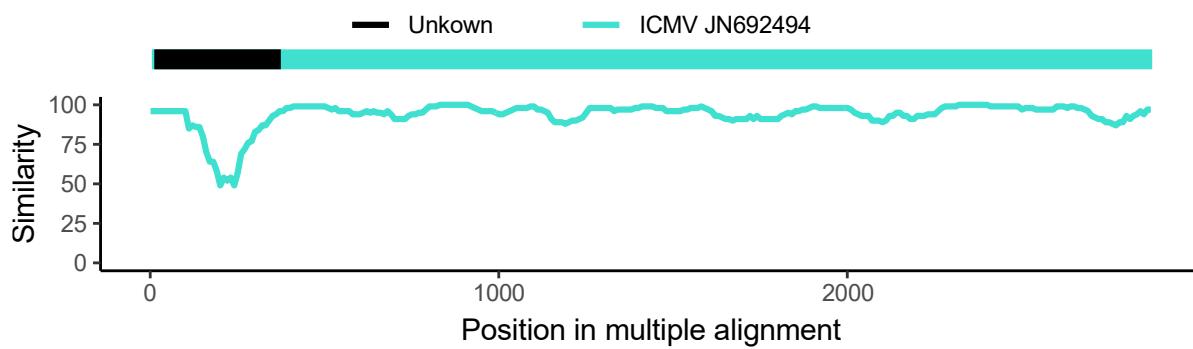

6. SLCMV KC424490, representing 16 sequences


18. ICMV AY730035

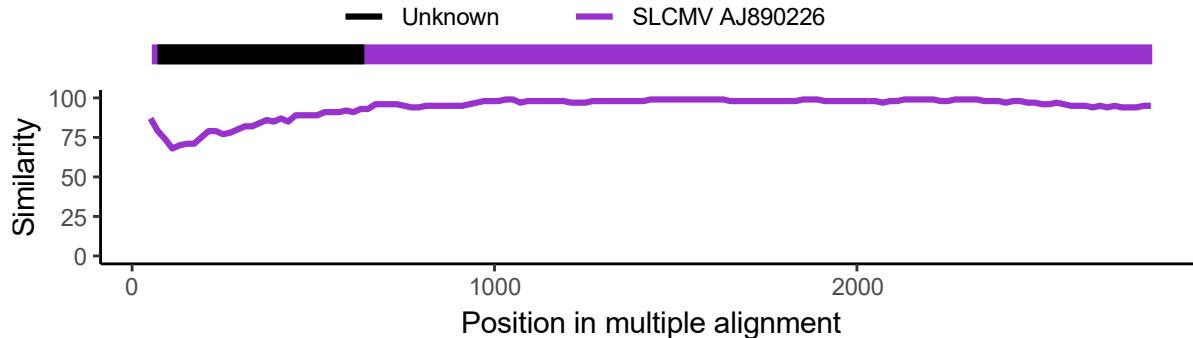
19. ICMV GQ924760

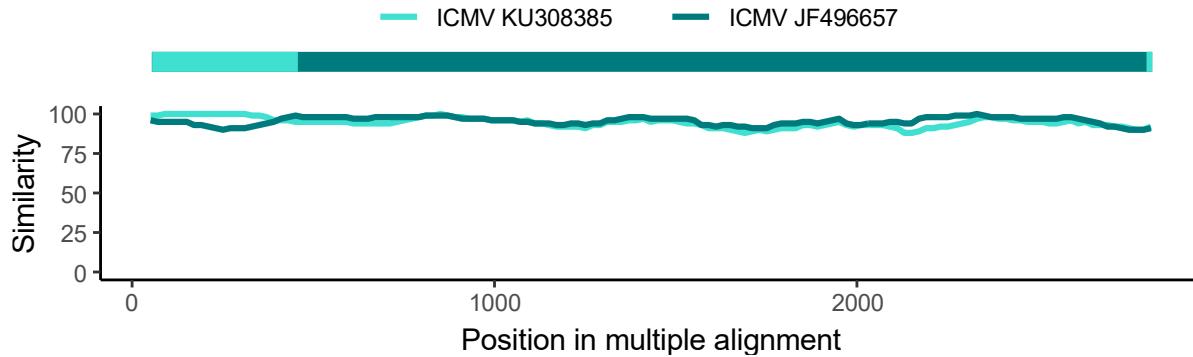


20. SLCMV KP455484

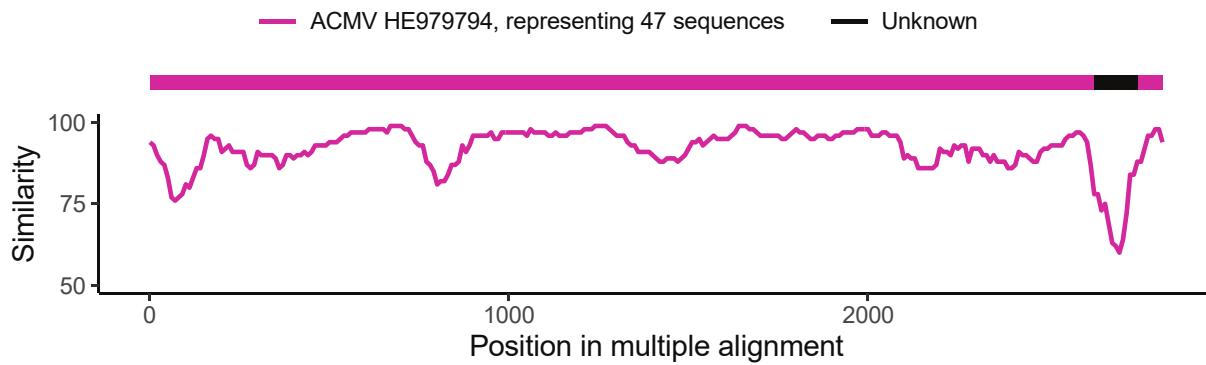


Crespo-Bellido et al.


21. SLCMV AJ314737, representing 3 sequences


22. ICMV JX518289

23. SLCMV AJ314737



24. ICMV JN692494

Crespo-Bellido et al.

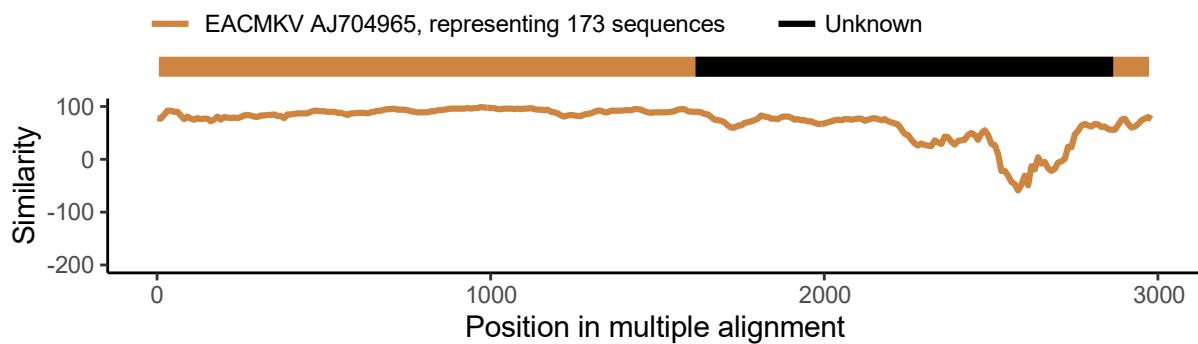
ACMBFV HE616778

Scenario 1: ACMBFV DNA-A as minor parent

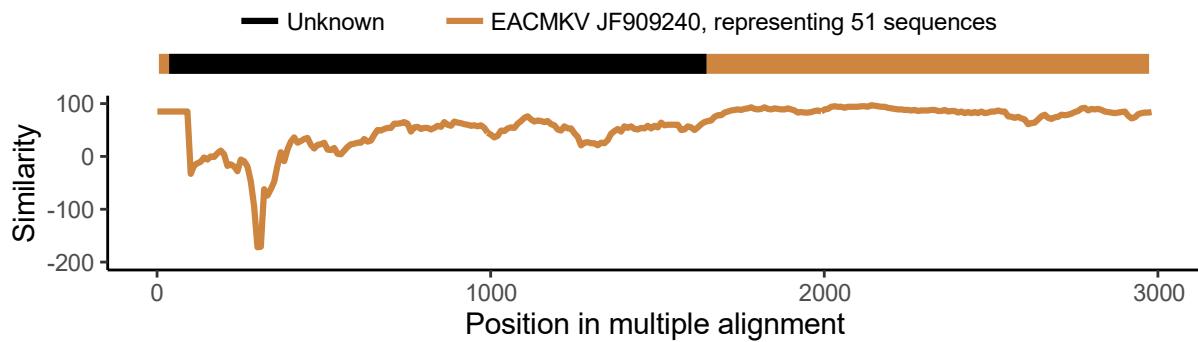
ACMBFV DNA-A GAGGAGGAGCCATTGGTCAACTAGCACCGATTGACTCTCTGIG-ATTATCCCTAGTGTATTGGGGTCTATATATACTTTAGACCCAAATGGCATTCTCGTAATAA---
ACMV DNA-B ---GAGACGCTC-----TCAACTAGA-----GACACTCTGAGCATCTC-CCTCTGTTAATTGGGGTCTATATATACTTTAGTTGTCCTCTAAATGGCATTCTTGTAAATAAGTT

ACMBFV DNA-B ---GAGACGCTC-----TCAACTAGCACCGATTGACTGCCCTGGATACTTCTCCCCTGTTAATTGGGGTCTATATATACTTTGCACCCAAATGGCATAATGGTAATAAGTT

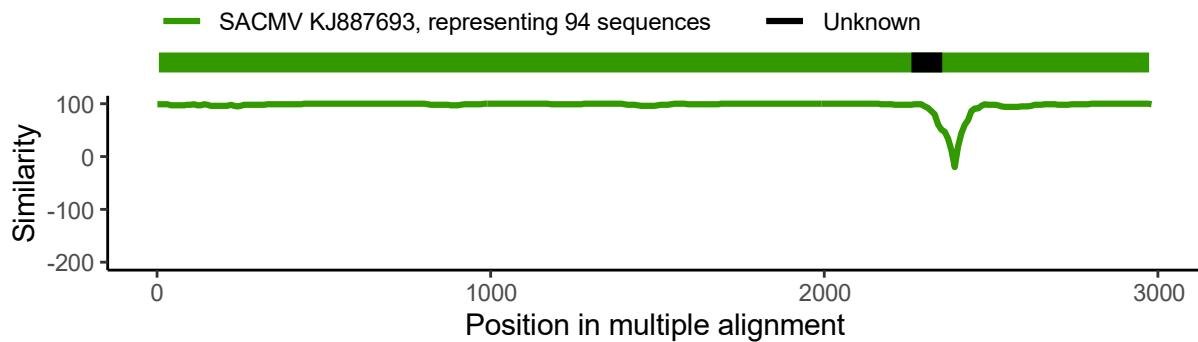
Core Rep-binding sequence Potential inverted repeat
TATA Box

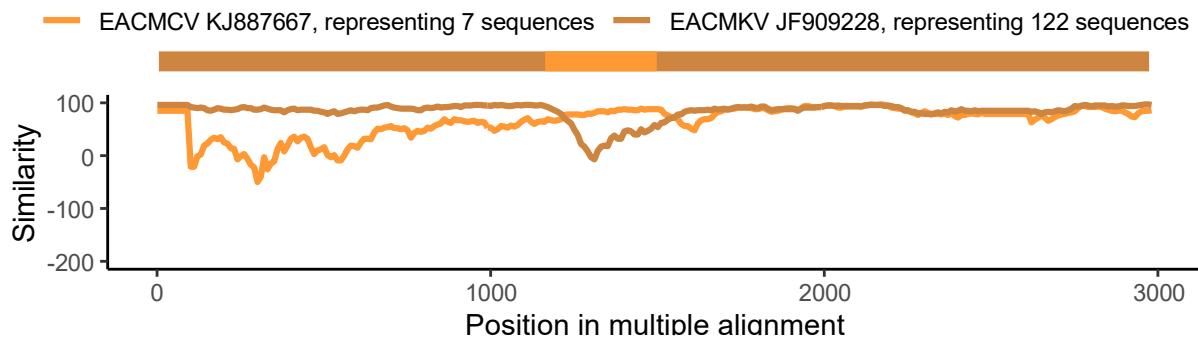

Scenario 2: ToLCNV-like virus as minor parent

ToLCNGV TTGGAGGAGCCATATGGTCAACTAGCACCCATTGACTGCCCTGGATACTTCTCCCCTGTTAATTGGGGTCTATATATACTTTAGACCCAAATGGCATAATGGTAATAA---
ACMV DNA-B ---GAGACGCTC-----TCAACTAGA-----GACACTCTGAGCATCTC-CCTCTGTTAATTGGGGTCTATATATACTTTAGTTGTCCTCTAAATGGCATTCTTGTAAATAAGTT

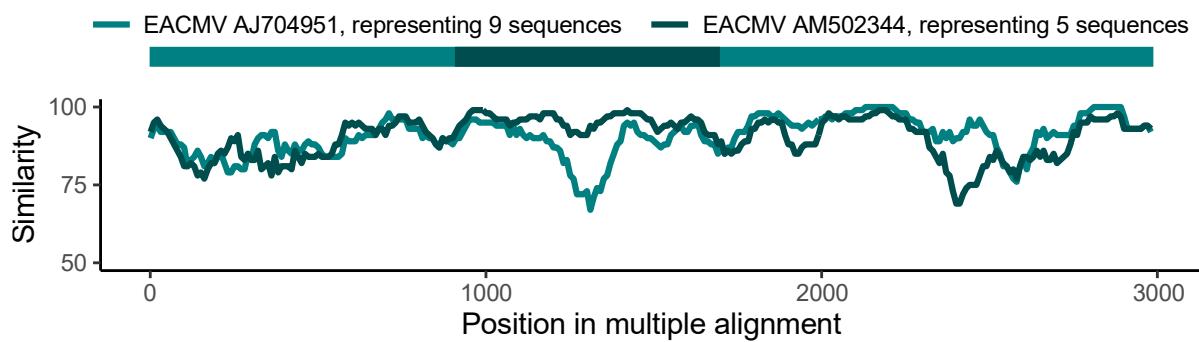

ACMBFV DNA-B ---GAGACGCTC-----TCAACTAGCACCGATTGACTGCCCTGGATACTTCTCCCCTGTTAATTGGGGTCTATATATACTTTGCACCCAAATGGCATAATGGTAATAAGTT

Crespo-Bellido et al.

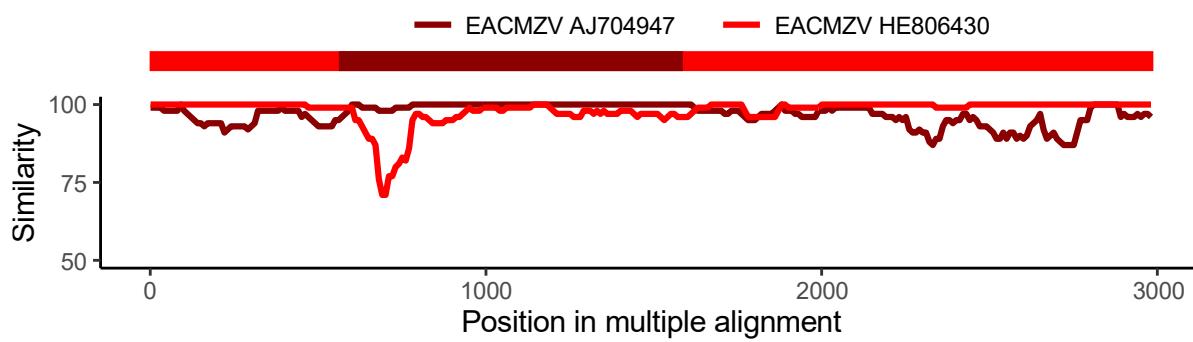

B1. CMMGV HE617300


B3. EACMCV AF112355, representing 7 sequences

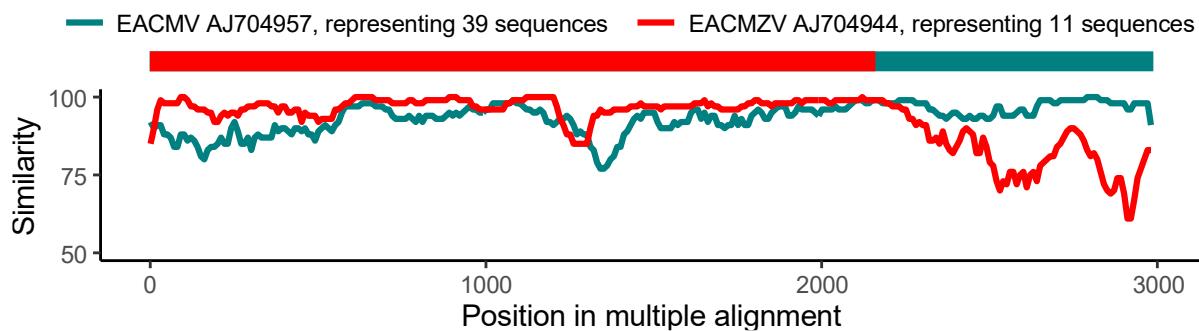
B7. SACMV KJ887694



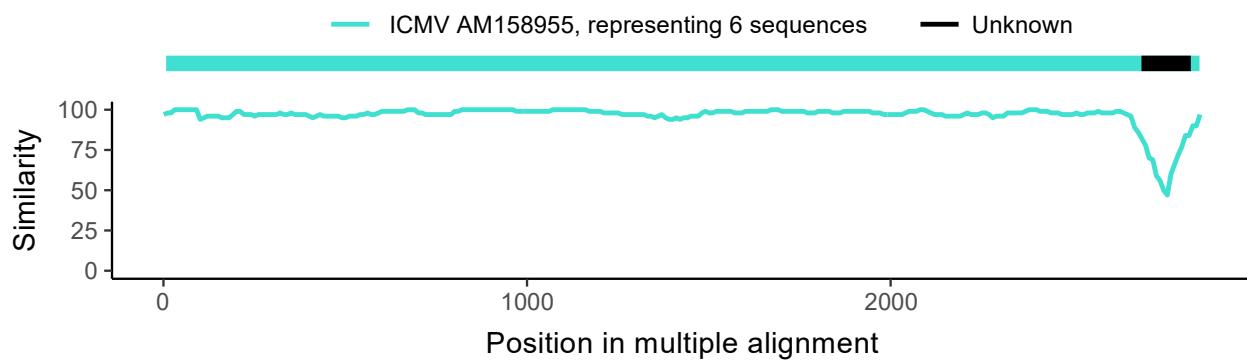
B8. EACMKV JF909227, representing 2 sequences



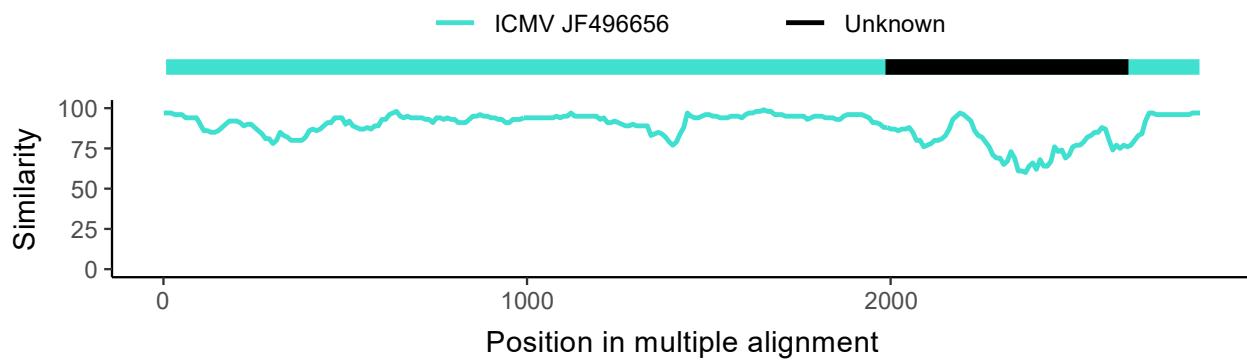
Crespo-Bellido et al.


B4. EACMKV AJ704966, representing 8 sequences

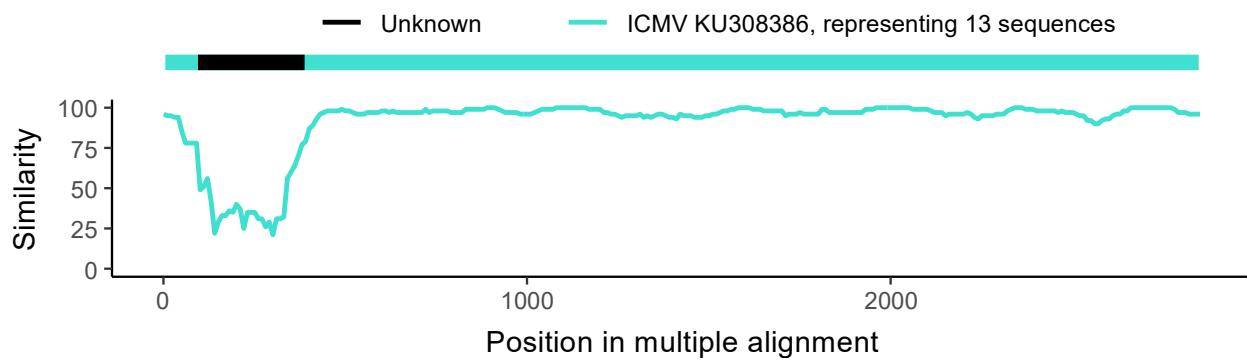
B5. EACMZV HE806429



B6. EACMV FN668380



Crespo-Bellido et al.


B2. SLCMV AJ575821, representing 12 sequences

B9. ICMV JX915744

B10. ICMV Z24759

