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 2 

Abstract 2 

Background: Voles of the genus Microtus are important research organisms, yet genomic 3 

resources in the genus are lacking. Providing such resources would benefit future studies of 4 

immunology, phylogeography, cryptic diversity, and more. Findings: We sequenced and 5 

assembled nuclear genomes from two subspecies of water vole (Microtus richardsoni) and from 6 

the montane vole (Microtus montanus). The water vole genomes were sequenced with Illumina 7 

and 10X Chromium plus Illumina sequencing, resulting in assemblies with ~1,600,000 and 8 

~30,000 scaffolds respectively. The montane vole was assembled into ~13,000 scaffolds using 9 

Illumina sequencing also. In addition to the nuclear assemblies, mitochondrial genome 10 

assemblies were also performed for both species. We conducted a structural and functional 11 

annotation for the best water vole nuclear genome, which resulted in ~24,500 annotated genes, 12 

with 83% of these receiving functional annotations. Finally, we find that assembly quality 13 

statistics for our nuclear assemblies fall within the range of genomes previously published in the 14 

genus Microtus, making the water vole and montane vole genomes useful additions to currently 15 

available genomic resources. 16 
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 3 

Context 25 

     The genus Microtus consists of 62 species of voles distributed throughout North America, 26 

Europe, and Asia [1]. Microtus is believed to have experienced rapid speciation and 27 

diversification, with all speciation events occurring within the past four million years [2, 3], and 28 

it has been suggested that some nominal species, such as M. pennsylvanicus, contain cryptic 29 

diversity [4]. Microtus has been an important model system across multiple biological 30 

disciplines, including studies of adaptation (e.g., [5]), infectious disease (e.g., [6]), parental care 31 

(e.g., [7]), and population dynamics (reviewed in [8]). The rapid radiation of Microtus voles has 32 

hindered systematic classification, leading to multiple taxonomic revisions and conflicting 33 

phylogenetic analyses [1, 9, 10]. Consequently, both species boundaries and relationships among 34 

species are difficult to infer. Genomic resources within Microtus will help resolve these 35 

questions, and resources have steadily increased in recent years. Currently, four Microtus species 36 

have assembled genomes on GenBank, two European species (M. agrestis and M. arvalis) and 37 

two North American species (M. ochrogaster; [11], and M. oeconomus). The present study 38 

provides resources for two additional species: M. richardsoni and M. montanus.   39 

     The North American water vole (M. richardsoni) is adapted to a semiaquatic lifestyle, relying 40 

on alpine and sub-alpine streams for creating burrows and escaping predators [12]. Like other 41 

semiaquatic mammals (e.g., otters), it is likely that adaptations to this lifestyle have been driven 42 

by natural selection [13-15]. Water voles are among the largest species of Microtus and are 43 

known for making runways of stamped-down vegetation along streams through frequent 44 

movement [12, 16]. Unlike most other vole species, M. richardsoni does not appear to 45 

experience regular population boom and bust cycles, although population size in the species may 46 

be correlated to levels of precipitation [17]. Despite being listed as Least Concern by the IUCN 47 
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Redlist [18], the species is listed as Critically Imperiled by the Wyoming Natural Diversity 48 

Database due to its specific habitat requirements, which can be substantially degraded by 49 

livestock grazing [19]. Microtus richardsoni occupies a large, disjunct distribution in the Pacific 50 

Northwest of North America, with habitat in the Cascades Mountains and the Rocky Mountains, 51 

spanning from southern Canada into central Utah. Four subspecies are currently recognized: M. 52 

r. arvicoloides in the Cascades Mountains, M. r. richardsoni in the Canadian Rocky Mountains, 53 

M. r. macropus in the central Rocky Mountains and Wyoming, and M. r. myllodontus in Utah. 54 

Due to the subspecific classifications and the disjunct range of the species, M. richardsoni has 55 

been included in multiple studies of phylogeography in the Pacific Northwest [20-22]. These 56 

studies were based solely on mitochondrial DNA, and the results of analyses that investigated 57 

species limits and demographic history were limited to inferences that can be derived from a 58 

single gene tree. Genomic resources for M. richardsoni will provide a rich source of data to 59 

address these knowledge gaps. 60 

     The montane vole (M. montanus) is partially sympatric with M. richardsoni and can be found 61 

throughout most of the water vole’s range with the exception of the Canadian Rockies. However, 62 

M. montanus can be found farther south and east including areas of California, Nevada, 63 

Colorado, Arizona and New Mexico [23]. The species has been divided into fifteen subspecies, 64 

including M. m. canescens in the Cascades Mountains., M. m. nasus in the central Rocky 65 

Mountains, and M. m. amosus in northern Utah. Notably, M. montanus does not exhibit a break 66 

in its range in the Columbia Basin, likely because it is not restricted to riparian areas like M. 67 

richardsoni. The species as a whole is listed as Least Concern by the IUCN Redlist, but M. m. 68 

arizonicus has been listed as endangered by the New Mexico State Game Commission 69 

Regulation [23], and M. m. ricularis has been noted as being of concern due to a small range and 70 
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declining population size [24]. Genomic resources in M. montanus will provide a wealth of data 71 

to assess subspecies boundaries, quantify gene flow among subspecies, and aid in conservation 72 

efforts of threatened subspecies. 73 

     The present study provides two nuclear and one mitochondrial genome assembly for M. 74 

richardsoni along with single nuclear and mitochondrial genome assemblies for M. montanus. 75 

Furthermore, a structural and functional annotation are performed with one of the M. richardsoni 76 

genomes to aid in future studies of adaptation. Genome-level comparisons are made between the 77 

new genome assemblies and other Microtus genome assemblies to examine differences in 78 

assembly quality and repeat content.  79 

 80 

Sequencing and Nuclear Genome Assembly 81 

     Frozen tissue from a single M. r. arvicoloides individual collected from the southern Cascades 82 

Mountain range (JMS_292; 44.016667N, -121.750000E; [20]) was sent to Hudson Alpha 83 

(Huntsville, AL) for high molecular weight DNA extraction and 10X Chromium library 84 

preparation [25]. In the 10X method, each extracted DNA fragment receives a different barcode 85 

before the fragment is sheared for library preparation. After sequencing, these barcodes are used 86 

to connect sequencing reads for a more contiguous assembly. After sequencing with a single run 87 

on an Illumina HiSeqX, the resulting 150 base pair (bp) paired-end reads were input into 88 

Supernova for de novo genome assembly with --maxreads=all [26]. 89 

     Additional tissue was obtained from a single M. r. macropus individual collected from the 90 

northern Rocky Mountains (JMG_88; 46.333333N, -114.633333E; [20]). DNA was extracted 91 

using a Qiagen DNeasy Blood and Tissue Kit, and the DNA was sent for library preparation and 92 

sequencing by Iridian Genomes, Inc (Bethesda, MD). 150bp paired-end reads were sequenced on 93 
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 6 

two runs of an Illumina HiSeqX. Genome assembly was performed using two different deBruijn 94 

graph-based programs, SOAPdenovo and Discovar de novo [27, 28]. For SOAPdenovo, quality 95 

trimming was performed using fastQC and Trimmomatic with settings ILLUMINACLIP: 96 

2:30:10, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, and MINLEN:36 [29, 30]. 97 

SOAPdenovo assemblies were performed with settings max_rd_len=150, avg_ins=300, 98 

reverse_seq=0, asm_flags=3, rd_len_cutoff=150, rank=1, pair_num_cutoff=3, and map_len=32. 99 

SOAPdenovo was run with kmer values of 63, 89, 95, and 101 based on analysis of optimal kmer 100 

values in kmerGenie [31]. Raw reads were used as input for de novo genome assembly with 101 

Discovar as recommended in the program documentation.  102 

     In an attempt to provide the most contiguous assembly for M. richardsoni, a hybrid assembly 103 

was performed using the ARCS+LINKS pipeline [32, 33]. The ARCS+LINKS pipeline uses 104 

barcoding information from the 10X Chromium reads to scaffold the contigs from a separate 105 

genome assembly. Barcoded reads from M. r. arvicoloides were mapped to the M. r. macropus 106 

Discovar assembly with bwa mem [34] before converting the mapped reads to BAM format and 107 

sorting with SAMTools [35]. ARCS and LINKS were then run with settings –s 98 –c 5 –l 0 –z 108 

500 –d 0 –r 0.05 –m 50-10000 –e 30000 and –d 4000 –k 20 –l 5 –t 2 –a 0.3 –o 0 –a 0.3 –z 500 109 

respectively. 110 

     As part of a separate project, a single M. montanus individual from Utah 111 

(UMNH:Mamm:30891; 38.19381N, -111.5824E) was misidentified as M. richardsoni. DNA was 112 

extracted from the sample using a Qiagen DNeasy Blood and Tissue Kit before being sent to the 113 

University of California Davis Genome Center for library preparation and sequencing. Paired-114 

end 150bp sequences were collected with a single shared run on an Illumina NovaSeq. Species 115 

identity was confirmed using the Barcode of Life Database (BOLD; [36]). Reads were checked 116 
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 7 

and trimmed for quality with fastQC and Trimmomatic as above before mapping reads to the 117 

mitochondrial cytochrome oxidase I (COI) sequence of M. r. macropus [37] using bwa mem. 118 

The resulting mapped reads were converted to BAM format, sorted, and indexed with 119 

SAMTools. PCR duplicates were identified and removed with Picard [38], resulting reads were 120 

piled with SAMTools mpileup using base and mapping quality scores of 30, consensus 121 

sequences were generated with bcftools [39], and consensus sequences were converted to fastq 122 

format using vcfutils with a minimum depth filter of 5 and maximum depth filter of 10000 [35]. 123 

The resulting sequence was input into BOLD. Due to the low sequencing coverage, de novo 124 

genome assembly was not appropriate for M. montanus. To provide a preliminary genome 125 

sequence, a reference-guided genome assembly was performed with RaGOO [40]. Raw reads 126 

were input into Discovar to generate an initial genome assembly, misassembly correction was 127 

performed with RaGOO using reads trimmed with the same settings as the M. r. macropus reads, 128 

and RaGOO was then used to scaffold the Discovar contigs onto the M. r. arvicoloides assembly, 129 

which is more closely related to M. montanus than the other available Microtus genome 130 

assemblies [3]. Since M. montanus has less than half the chromosomes of M. richardsoni (2n = 131 

22-24 in montanus versus 56 in richardsoni [41]), the possibility of structural errors in the M. 132 

montanus assembly was examined by calculating the percentage of reads that mapped back to the 133 

assembly using bwa mem and bamtools [42].  134 

     The final assemblies were submitted to GenBank [43], where screening was performed to 135 

identify any contamination, and contaminated scaffolds were removed. All assemblies were 136 

evaluated with QUAST [44], bbmap [45], custom Python scripts 137 

(https://github.com/djlduckett/Genome_Resources/), and BUSCO using the Euarchontoglires 138 

reference set [46]. After comparing assembly statistics from the different assemblies of M. r. 139 
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 8 

macropus, the Discovar assembly was selected as best because it had less fragmentation, higher 140 

N50 and L50, and a higher BUSCO score than the SOAPdenovo assemblies (Table 1). Genome 141 

sequencing of M. r. arvicoloides produced over 800 million (M) reads and 47x genome 142 

sequencing coverage. The final genome assembly consisted of ~32 thousand (K) scaffolds with 143 

an N50 of 2.3 megabase pairs (Mb), 1.3% missing data (N), and a BUSCO score of 85.8%. 144 

Supernova estimated the length of the genome assembled to be ~2.4Gb and the total genome size 145 

to be ~2.6 gigabase pairs (Gb). Microtus richardsoni macropus sequencing produced over 600M 146 

reads and 35x coverage. Genome assembly with Discovar resulted in ~1.6M scaffolds with an 147 

N50 of 16 kilobase pairs (Kb), 0.06% Ns, and a BUSCO score of 54.5%. Given that there are 148 

many programs to perform de novo genome assembly from short reads, it is possible that another 149 

program would have produced a more contiguous M. r. macropus assembly, but previous studies 150 

have shown Discovar performs well compared to other programs [47, 48]. The hybrid assembly 151 

produced with the ARCS+LINKS pipeline had ~1.6M scaffolds, an N50 of 38Kb, 0.09% Ns, and 152 

a BUSCO score of 59.8%. Because of the poor quality of the hybrid assembly, it was not used 153 

for further analyses, and the M. richardsoni subspecies assemblies were kept separate. It seems 154 

likely that the high fragmentation of the hybrid assembly is due to the fragmentation of the 155 

Discovar input assembly. Published results with this hybrid pipeline often include a much higher 156 

sequencing coverage of the input contigs to produce a better starting point for the pipeline. 157 

Therefore, additional Illumina sequencing with M. r. macropus in the future could substantially 158 

improve the hybrid assembly. 108M reads (13x coverage) were used to produce the preliminary 159 

M. montanus genome, resulting in ~13K scaffolds, an N50 of ~3.1Mb, 8.8% Ns, and a BUSCO 160 

score of 82.6%. Additionally, 89.3% of reads mapped back to the M. montanus assembly. 161 

 162 

 163 
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 9 

Table 1 164 

 Discovar SOAPdenovo SOAPdenovo SOAPdenovo SOAPdenovo 

Kmer NA 63 89 95 101 

Length 2.54Gb 2.72Gb 2.88Gb 2.89Gb 3.21Gb 

Scaffolds 1.6M 4.1M 4.0M 4.1M 6.7M 

Max 
Scaffold 

 

264Kb 186Kb 146Kb 174Kb 139Kb 

N50 16.1Kb 4.5Kb 3.4Kb 3.4Kb 1.5Kb 

L50 35.7K 117K 156K 163K 371K 

BUSCO 54.5% 38.1% 37.1% 35.9% 25.9% 

% N 0.06 1.45 0.99 0.94 0.90 

% GC 42.13 41.92 41.91 41.92 41.98 

Comparison of genome assembly strategies for M. r. macropus. NA: not applicable. 165 

 166 

Mitochondrial Genomes 167 

     The complete mitochondrial genomes of M. r. arvicoloides and M. montanus were assembled 168 

using the genomic sequencing reads. The mitochondrial genomes were assembled by both 169 

mapping reads to a reference mitochondrial genome and using the reference-guided assembly 170 

program Novoplasty [49]. For the mapping assembly, reads were mapped to the M. r. macropus 171 

mitochondrial genome, using the same steps as the M. montanus BOLD analysis. The 172 

mitochondrial assemblies were 16,285bp and 16,268bp in length with an average depth of 173 

coverage of 7886x and 6805x for M. r. arvicoloides and M. montanus respectively. Reference 174 

guided mitochondrial assemblies with Novoplasty used the M. r. macropus mitochondrial 175 

genome as the reference along with settings Genome Range=12000-22000, K-mer=33, Read 176 
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Length=150, and Insert size=400. Because the M. r. arvicoloides dataset contained many reads, 177 

25% of reads were subsampled to use for assembly, as suggested in the program documentation. 178 

The assemblies for M. r. arvicoloides and M. montanus were 16,298bp and 16,319bp in length 179 

with average depths of coverage of 5131x and 14,713x respectively. To compare mitochondrial 180 

assemblies between methods, the assemblies were aligned using the MUSCLE plugin in 181 

Geneious v. R9 with eight iterations and an open gap score of -1 [50, 51]. This comparison 182 

showed the Novoplasty assemblies contained multiple insertions compared to the mapped 183 

assemblies and the reference mitochondrial genome. These insertions were up to 13bp long in 184 

multiple genes, including trnT, trnK, and ATP8. Comparison to other Microtus mitochondrial 185 

genomes (M. ochrogaster; NC_027945.1 and M. fortis; NC_015243.1) showed that the 186 

Novoplasty assemblies were the only mitochondrial assemblies to exhibit these insertions. 187 

Therefore, the mapping assemblies were used for further analyses. The mapping assemblies for 188 

both species included ambiguous bases, which were much more frequent for M. montanus than 189 

M. r. arvicoloides. These may be the result of using the mitochondrial genome of a different 190 

subspecies (for M. r. arvicoloides) or species (for M. montanus) for mapping the reads. 191 

Additionally, the presence of nuclear DNA of mitochondrial origin (NUMTs; [52, 53]) may have 192 

influenced these results. If mitochondrial segments have been incorporated into the nuclear 193 

genomes and subsequent mutations have occurred, both nuclear and mitochondrial sequences 194 

could be mapped to the same mitochondrial region during assembly and result in the ambiguous 195 

bases observed here. It is likely that NUMTs are present, as they have been documented in other 196 

species of Microtus [54-56]. Both mitochondrial genomes were annotated using MITOS [57]. 197 

The annotations each consisted of 22 tRNA genes, 2 rRNA genes, and 13 protein coding genes. 198 

 199 
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Microtus Genome Assembly Comparison 200 

     The available Microtus genome assemblies, M. agrestis (GCA_902806755.1), M. arvalis 201 

(GCA_007455615.1), M. ochrogaster (GCA_000317375.1), and M. oeconomus 202 

(GCA_007455595.1), were downloaded from GenBank. Assembly summary statistics were 203 

calculated using QUAST, bbmap, and custom Python scripts 204 

(https://github.com/djlduckett/Genome_Resources/). To compare repeat content among all 205 

genomes, including the three produced by the current study, repeats were first identified de novo 206 

using RepeatModeler [58]. RepeatMasker was then used to further identify repeats using a 207 

combined repeat library that included the repeats identified from RepeatModeler and those from 208 

the RepeatMasker Rodentia database [59]. The percentage of the genome consisting of each type 209 

of repeat element was extracted from the RepeatMasker log file for each genome assembly. 210 

     All genome assemblies used some form of Illumina sequencing (Table 2), although assembly 211 

continuity varied greatly among assemblies from 1366 scaffolds in M. agrestis to 1.6 M scaffolds 212 

in M. r. macropus. Genome coverage was similarly varied, from 13x in M. montanus to 35x in 213 

M. r. macropus to 77x in M. arvalis and M. oeconomus. The percent of repetitive regions ranged 214 

from 31.7% in M. montanus to 44.1% in M. arvalis (Figure 1), and repeat content did not appear 215 

to be associated with phylogenetic relatedness as repeats between the two subspecies of M. 216 

richardsoni were not more similar to each other than to other Microtus species. However, it is 217 

possible that the repeat content is affected by the continuity of the genome assemblies, and 218 

further research is needed to confirm this relationship. 219 
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Table 2 220 

Species M. agrestis M. arvalis M. montanus* M. ochrogaster M. oeconomus M. r. 
arvicoloides* 

M. r. macropus* 

Distribution Europe Europe North America North America North America North America North America 

Year 2020 2019 2020 2012 2019 2020 2020 

Accession 
(GCA_) 

 

902806775.1 7455615.1 xxxxxxxxxxx 317375.1 7455595.1 xxxxxxxxxxx xxxxxxxxxxx 

Sequencing 10X Chromium + 
Illumina 

Illumina Illumina Illumina Illumina 10X Chromium + 
Illumina 

Illumina 

Assembler Supernova Discovar RaGOO ALLPATHS Discovar Supernova Discovar 

Length 2.03Gb 2.62Gb 2.34Gb 2.29Gb 2.31Gb 2.36Gb 2.54Gb 

Coverage 50 77 13 94 77 47 35 

# Scaffolds 1,366 1,081,432 12,962 6,341 562,436 31,632 1,648,927 

Longest 
Scaffold 

 

56.96Mb 0.80Mb 748.72Mb 126.73Mb 0.93Mb 16.00Mb 0.26Mb 

N50 13.35Mb 0.53Mb 3.08Mb 61.81Mb 0.11Mb 2.30Mb 0.02Mb 

L50 45 11,870 91 14 5,556 278 35,660 

%N 2.87 0.07 8.81 8 0.12 1.29 0.06 

%GC 42.33 41.71 42.38 42.25 42.18 42.21 42.13 

Genome assembly comparison among Microtus species. Assemblies with a * were produced by the present study. Note: in-depth methods for M. agrestis are not 221 

available, and it is possible that the assembly includes additional sequencing and/or methods.222 
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Genome Annotation 223 

     The M. r. arvicoloides genome assembly was annotated with the MAKER pipeline [60], 224 

loosely following the tutorial provided by Daren Card (https://gist.github.com/darencard 225 

/bb1001ac1532dd4225b030cf0cd61ce2). Briefly, the pipeline consists of masking repeats 226 

followed by multiple rounds of annotation with both evidence-based and ab-initio gene models. 227 

Repeats were identified as described above. Complex repeats were then extracted from 228 

RepeatMasker results using grep with keywords “Satellite” and “rich”. Within Maker, the 229 

model_org argument was set to “simple” so Maker would soft mask simple repeats, and the 230 

RepeatMasker results were provided to hard mask complex repeats. Evidence-based gene 231 

discovery used protein and mRNA sequences from the previous genome annotation of M. 232 

ochrogaster (GCF_000317375.1) as well as an additional RNASeq assembly from M. 233 

pennsylvanicus (GSM3499528; [61]). Hidden Markov models (HMMs) for ab-initio gene 234 

prediction were trained using both SNAP and Augustus [62, 63]. With SNAP, gene models 235 

identified by MAKER were filtered using an Annotation Edit Distance (AED) of 0.5 and an 236 

amino acid length of 50. After validating these models with SNAP’s Fathom utility, removing 237 

likely errors, and including 1000bp surrounding each training sequence, the training sequences 238 

were passed to the hmm-assembler script. For Augustus, training sequences plus 1000bp on each 239 

side were obtained from the first round of MAKER mRNA annotations. Augustus was used to 240 

train the HMM using the --long option in BUSCO and the Euarchontoglires reference set. 241 

MAKER was then run again with the previously annotated gene models and the HMM models 242 

from SNAP and Augustus. After the initial MAKER run, two cycles of ab-initio gene prediction 243 

and annotation with MAKER were performed. To prevent overfitting, results were compared 244 

after each round of MAKER. Because the increase in AED score was minimal between the first 245 
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and second rounds of ab-initio gene prediction, further analysis was conducted on the results 246 

after the first round only. This round annotated ~24K genes with a mean gene length of 7445bp 247 

(Table 3), which is within the range found in previous studies of M. ochrogaster (22,427 genes; 248 

GCF_000317375.1) and Arvicola amphibious (25,136 genes; GCF_903992535.1). Of these 249 

annotations all occurred on scaffolds greater than 1Kb in length and 97% occurred on scaffolds 250 

greater than 10Kb in length. 251 

     Functional annotation of the M. r. arvicoloides genome was performed using GOfeat, an 252 

online functional annotation tool that uses multiple protein databases including UniProt, 253 

InterPro, and Pfam [64-67]. An input file for GOfeat was generated by supplying the genome 254 

assembly FASTA file and the MAKER General Feature Format (GFF3) file to the Python 255 

package gffread [68]. GOfeat annotated 83.49% of genes. Biological Processes accounted for 256 

42.46% of annotations, Cellular Components accounted for 30.29%, and Molecular Functions 257 

comprised 27.25%. The most frequent gene ontology (GO) terms were positive regulation of 258 

transcription by RNA polymerase II, negative regulation of transcription by RNA polymerase II, 259 

and DNA-templated regulation of transcription for Biological Processes, cytoplasm and plasma 260 

membrane for Cellular Components, and metal ion binding and calcium ion binding for 261 

Molecular Functions. 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 
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Table 3 270 

 Before Gene Modeling Gene Modeling Round 1 Gene Modeling Round 2 

Genes 20,945 24,548 23,811 

Exons 139,845 192,974 179,225 

mRNA 20,945 24,548 23,811 

tRNA - 	 24,504 24,539 

5’ UTR - 	 1,229 1,180 

3’ UTR - 	 503 642 

Mean Gene Length - 	 7,445 7,132 

AED < 0.50 0.993 0.881 0.888 

AED < 0.25 0.672 0.543 0.520 

BUSCO (Complete) - 	 67.7% 70.5% 

Structural annotation summary after each round of MAKER. UTR: untranslated region; AED: annotation edit 271 

distance. Values with dashes were not analyzed prior to gene modeling with SNAP and Augustus. 272 

 273 

Conclusion 274 

     The current study details the assembly and annotation of three nuclear and two mitochondrial 275 

genomes. Compared to previously published nuclear genomes, the M. r. arvicoloides and M. 276 

montanus genomes are of high quality as evidenced by the low number of scaffolds, high 277 

N50/L50 values, and high BUSCO scores. While not as complete as the other Microtus genomes, 278 

the nuclear genome of M. r. macropus will still be useful for mapping low coverage reads or 279 

reduced representation sequencing data. Furthermore, the mitochondrial genomes contributed 280 

here add to a growing number for the genus Microtus and reinforce earlier suggestions that high-281 

quality mitochondrial genomes can be obtained as byproducts of nuclear sequencing (e.g., [69, 282 

70]). Overall, the data presented serve as an example that even though they do not include 283 
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chromosomal information, high-quality draft genomes can be produced from widely available 284 

and very cost-effective methods like the 10X Chromium protocol. These references can aid a 285 

variety of studies including those examining genus and species adaptation [71, 72], 286 

phylogenetics [10], phylogeography [22, 73], and disease dynamics [6, 74]. However, some 287 

activities, like exploring changes to chromosome structure, will not be possible due to the 288 

fragmentation and lack of chromosomal mapping for these assemblies. Finally, the M. r. 289 

macropus and M. montanus sequencing data and preliminary assemblies will serve as the 290 

building blocks of more accurate reference genomes in the future.  291 

 292 

Availability of Supporting Data and Materials 293 

Raw sequences, nuclear assemblies, and mitochondrial assemblies are available from GenBank 294 

under BioProjects PRJNA673719, PRJNA509068, and PRJNA673873 for M. r. arvicoloides, M. 295 

r. macropus, and M. montanus respectively. The custom python script used to calculate genome 296 

assembly summary information is available on GitHub 297 

(https://github.com/djlduckett/Genome_Resources/). Full BUSCO tables, structural annotation 298 

gff files, functional annotation tables, and repeat libraries are available in the GigaScience data 299 

repository (http://gigadb.org/).  300 

 301 

 302 

 303 

 304 

 305 
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Figures: 307 

 308 

Figure 1: Repeat Content among Microtus genomes. SINE: short interspersed nuclear element; LINE: long 309 

interspersed nuclear element; LTR: long terminal repeat; Other consists of small RNA, satellite, simple, and low 310 

complexity repeats. The phylogeny displayed was recreated from [3] by pruning unincluded species from the data 311 

alignment and rerunning RAxML [75] with the same settings used in the original analysis. 312 

 313 

Abbreviations 314 

BOLD: Barcode of Life Database; bp: base pair; COI: cytochrome oxidase I; M: million; K: 315 

thousand; Gb: gigabase pairs; Mb: megabase pairs; Kb: kilobase pairs; SINE: short interspersed 316 

nuclear element; LINE: long interspersed nuclear element; LTR: long terminal repeat; AED: 317 

annotation edit distance; HMM: hidden Markov model; NUMT: nuclear DNA of mitochondrial 318 

origin 319 
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