

Genomic resources for the North American water vole (*Microtus richardsoni*) and the montane vole (*Microtus montanus*)

Drew J. Duckett^{1*}, Jack Sullivan², Stacy Pirro³, Bryan C. Carstens¹

¹Department of Evolution, Ecology, and Organismal Biology. The Ohio State University. 1315 Kinnear Rd., Columbus OH, 43212

²Department of Biological Sciences, Box 443051, University of Idaho, Moscow ID, 83844-3051

1 ³Iridian Genomes, Inc., 6213 Swords Way, Bethesda MD 20817

*email: duckettdj@gmail.com

2 Abstract

3 *Background:* Voles of the genus *Microtus* are important research organisms, yet genomic
4 resources in the genus are lacking. Providing such resources would benefit future studies of
5 immunology, phylogeography, cryptic diversity, and more. *Findings:* We sequenced and
6 assembled nuclear genomes from two subspecies of water vole (*Microtus richardsoni*) and from
7 the montane vole (*Microtus montanus*). The water vole genomes were sequenced with Illumina
8 and 10X Chromium plus Illumina sequencing, resulting in assemblies with ~1,600,000 and
9 ~30,000 scaffolds respectively. The montane vole was assembled into ~13,000 scaffolds using
10 Illumina sequencing also. In addition to the nuclear assemblies, mitochondrial genome
11 assemblies were also performed for both species. We conducted a structural and functional
12 annotation for the best water vole nuclear genome, which resulted in ~24,500 annotated genes,
13 with 83% of these receiving functional annotations. Finally, we find that assembly quality
14 statistics for our nuclear assemblies fall within the range of genomes previously published in the
15 genus *Microtus*, making the water vole and montane vole genomes useful additions to currently
16 available genomic resources.

17

18 *Keywords:* genome assembly; genome annotation; mitochondrial genome; 10X Chromium;
19 Illumina sequencing

20

21

22

23

24

25 Context

26 The genus *Microtus* consists of 62 species of voles distributed throughout North America,
27 Europe, and Asia [1]. *Microtus* is believed to have experienced rapid speciation and
28 diversification, with all speciation events occurring within the past four million years [2, 3], and
29 it has been suggested that some nominal species, such as *M. pennsylvanicus*, contain cryptic
30 diversity [4]. *Microtus* has been an important model system across multiple biological
31 disciplines, including studies of adaptation (e.g., [5]), infectious disease (e.g., [6]), parental care
32 (e.g., [7]), and population dynamics (reviewed in [8]). The rapid radiation of *Microtus* voles has
33 hindered systematic classification, leading to multiple taxonomic revisions and conflicting
34 phylogenetic analyses [1, 9, 10]. Consequently, both species boundaries and relationships among
35 species are difficult to infer. Genomic resources within *Microtus* will help resolve these
36 questions, and resources have steadily increased in recent years. Currently, four *Microtus* species
37 have assembled genomes on GenBank, two European species (*M. agrestis* and *M. arvalis*) and
38 two North American species (*M. ochrogaster*; [11], and *M. oeconomus*). The present study
39 provides resources for two additional species: *M. richardsoni* and *M. montanus*.

40 The North American water vole (*M. richardsoni*) is adapted to a semiaquatic lifestyle, relying
41 on alpine and sub-alpine streams for creating burrows and escaping predators [12]. Like other
42 semiaquatic mammals (e.g., otters), it is likely that adaptations to this lifestyle have been driven
43 by natural selection [13-15]. Water voles are among the largest species of *Microtus* and are
44 known for making runways of stamped-down vegetation along streams through frequent
45 movement [12, 16]. Unlike most other vole species, *M. richardsoni* does not appear to
46 experience regular population boom and bust cycles, although population size in the species may
47 be correlated to levels of precipitation [17]. Despite being listed as *Least Concern* by the IUCN

48 Redlist [18], the species is listed as *Critically Imperiled* by the Wyoming Natural Diversity
49 Database due to its specific habitat requirements, which can be substantially degraded by
50 livestock grazing [19]. *Microtus richardsoni* occupies a large, disjunct distribution in the Pacific
51 Northwest of North America, with habitat in the Cascades Mountains and the Rocky Mountains,
52 spanning from southern Canada into central Utah. Four subspecies are currently recognized: *M.*
53 *r. arvicolooides* in the Cascades Mountains, *M. r. richardsoni* in the Canadian Rocky Mountains,
54 *M. r. macropus* in the central Rocky Mountains and Wyoming, and *M. r. myllodontus* in Utah.
55 Due to the subspecific classifications and the disjunct range of the species, *M. richardsoni* has
56 been included in multiple studies of phylogeography in the Pacific Northwest [20-22]. These
57 studies were based solely on mitochondrial DNA, and the results of analyses that investigated
58 species limits and demographic history were limited to inferences that can be derived from a
59 single gene tree. Genomic resources for *M. richardsoni* will provide a rich source of data to
60 address these knowledge gaps.

61 The montane vole (*M. montanus*) is partially sympatric with *M. richardsoni* and can be found
62 throughout most of the water vole's range with the exception of the Canadian Rockies. However,
63 *M. montanus* can be found farther south and east including areas of California, Nevada,
64 Colorado, Arizona and New Mexico [23]. The species has been divided into fifteen subspecies,
65 including *M. m. canescens* in the Cascades Mountains., *M. m. nasus* in the central Rocky
66 Mountains, and *M. m. amosus* in northern Utah. Notably, *M. montanus* does not exhibit a break
67 in its range in the Columbia Basin, likely because it is not restricted to riparian areas like *M.*
68 *richardsoni*. The species as a whole is listed as *Least Concern* by the IUCN Redlist, but *M. m.*
69 *arizonicus* has been listed as endangered by the New Mexico State Game Commission
70 Regulation [23], and *M. m. ricularis* has been noted as being of concern due to a small range and

71 declining population size [24]. Genomic resources in *M. montanus* will provide a wealth of data
72 to assess subspecies boundaries, quantify gene flow among subspecies, and aid in conservation
73 efforts of threatened subspecies.

74 The present study provides two nuclear and one mitochondrial genome assembly for *M.*
75 *richardsoni* along with single nuclear and mitochondrial genome assemblies for *M. montanus*.
76 Furthermore, a structural and functional annotation are performed with one of the *M. richardsoni*
77 genomes to aid in future studies of adaptation. Genome-level comparisons are made between the
78 new genome assemblies and other *Microtus* genome assemblies to examine differences in
79 assembly quality and repeat content.

80

81 **Sequencing and Nuclear Genome Assembly**

82 Frozen tissue from a single *M. r. arvicoloides* individual collected from the southern Cascades
83 Mountain range (JMS_292; 44.016667N, -121.750000E; [20]) was sent to Hudson Alpha
84 (Huntsville, AL) for high molecular weight DNA extraction and 10X Chromium library
85 preparation [25]. In the 10X method, each extracted DNA fragment receives a different barcode
86 before the fragment is sheared for library preparation. After sequencing, these barcodes are used
87 to connect sequencing reads for a more contiguous assembly. After sequencing with a single run
88 on an Illumina HiSeqX, the resulting 150 base pair (bp) paired-end reads were input into
89 Supernova for *de novo* genome assembly with --maxreads=all [26].

90 Additional tissue was obtained from a single *M. r. macropus* individual collected from the
91 northern Rocky Mountains (JMG_88; 46.333333N, -114.633333E; [20]). DNA was extracted
92 using a Qiagen DNeasy Blood and Tissue Kit, and the DNA was sent for library preparation and
93 sequencing by Iridian Genomes, Inc (Bethesda, MD). 150bp paired-end reads were sequenced on

94 two runs of an Illumina HiSeqX. Genome assembly was performed using two different deBruijn
95 graph-based programs, SOAPdenovo and Discovar de novo [27, 28]. For SOAPdenovo, quality
96 trimming was performed using fastQC and Trimmomatic with settings ILLUMINACLIP:
97 2:30:10, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, and MINLEN:36 [29, 30].
98 SOAPdenovo assemblies were performed with settings max_rd_len=150, avg_ins=300,
99 reverse_seq=0, asm_flags=3, rd_len_cutoff=150, rank=1, pair_num_cutoff=3, and map_len=32.
100 SOAPdenovo was run with kmer values of 63, 89, 95, and 101 based on analysis of optimal kmer
101 values in kmerGenie [31]. Raw reads were used as input for *de novo* genome assembly with
102 Discovar as recommended in the program documentation.

103 In an attempt to provide the most contiguous assembly for *M. richardsoni*, a hybrid assembly
104 was performed using the ARCS+LINKS pipeline [32, 33]. The ARCS+LINKS pipeline uses
105 barcoding information from the 10X Chromium reads to scaffold the contigs from a separate
106 genome assembly. Barcoded reads from *M. r. arvicolooides* were mapped to the *M. r. macropus*
107 Discovar assembly with bwa mem [34] before converting the mapped reads to BAM format and
108 sorting with SAMTools [35]. ARCS and LINKS were then run with settings -s 98 -c 5 -l 0 -z
109 500 -d 0 -r 0.05 -m 50-10000 -e 30000 and -d 4000 -k 20 -l 5 -t 2 -a 0.3 -o 0 -a 0.3 -z 500
110 respectively.

111 As part of a separate project, a single *M. montanus* individual from Utah
112 (UMNH:Mamm:30891; 38.19381N, -111.5824E) was misidentified as *M. richardsoni*. DNA was
113 extracted from the sample using a Qiagen DNeasy Blood and Tissue Kit before being sent to the
114 University of California Davis Genome Center for library preparation and sequencing. Paired-
115 end 150bp sequences were collected with a single shared run on an Illumina NovaSeq. Species
116 identity was confirmed using the Barcode of Life Database (BOLD; [36]). Reads were checked

117 and trimmed for quality with fastQC and Trimmomatic as above before mapping reads to the
118 mitochondrial cytochrome oxidase I (COI) sequence of *M. r. macropus* [37] using bwa mem.
119 The resulting mapped reads were converted to BAM format, sorted, and indexed with
120 SAMTools. PCR duplicates were identified and removed with Picard [38], resulting reads were
121 piled with SAMTools mpileup using base and mapping quality scores of 30, consensus
122 sequences were generated with bcftools [39], and consensus sequences were converted to fastq
123 format using vcftools with a minimum depth filter of 5 and maximum depth filter of 10000 [35].
124 The resulting sequence was input into BOLD. Due to the low sequencing coverage, *de novo*
125 genome assembly was not appropriate for *M. montanus*. To provide a preliminary genome
126 sequence, a reference-guided genome assembly was performed with RaGOO [40]. Raw reads
127 were input into Discovar to generate an initial genome assembly, misassembly correction was
128 performed with RaGOO using reads trimmed with the same settings as the *M. r. macropus* reads,
129 and RaGOO was then used to scaffold the Discovar contigs onto the *M. r. arvicolaoides* assembly,
130 which is more closely related to *M. montanus* than the other available *Microtus* genome
131 assemblies [3]. Since *M. montanus* has less than half the chromosomes of *M. richardsoni* ($2n =$
132 22-24 in *montanus* versus 56 in *richardsoni* [41]), the possibility of structural errors in the *M.*
133 *montanus* assembly was examined by calculating the percentage of reads that mapped back to the
134 assembly using bwa mem and bamtools [42].

135 The final assemblies were submitted to GenBank [43], where screening was performed to
136 identify any contamination, and contaminated scaffolds were removed. All assemblies were
137 evaluated with QUAST [44], bbmap [45], custom Python scripts
138 (https://github.com/djlduckett/Genome_Resources/), and BUSCO using the Euarchontoglires
139 reference set [46]. After comparing assembly statistics from the different assemblies of *M. r.*

140 *macropus*, the Discovar assembly was selected as best because it had less fragmentation, higher
141 N50 and L50, and a higher BUSCO score than the SOAPdenovo assemblies (Table 1). Genome
142 sequencing of *M. r. arvicolooides* produced over 800 million (M) reads and 47x genome
143 sequencing coverage. The final genome assembly consisted of ~32 thousand (K) scaffolds with
144 an N50 of 2.3 megabase pairs (Mb), 1.3% missing data (N), and a BUSCO score of 85.8%.
145 Supernova estimated the length of the genome assembled to be ~2.4Gb and the total genome size
146 to be ~2.6 gigabase pairs (Gb). *Microtus richardsoni macropus* sequencing produced over 600M
147 reads and 35x coverage. Genome assembly with Discovar resulted in ~1.6M scaffolds with an
148 N50 of 16 kilobase pairs (Kb), 0.06% Ns, and a BUSCO score of 54.5%. Given that there are
149 many programs to perform *de novo* genome assembly from short reads, it is possible that another
150 program would have produced a more contiguous *M. r. macropus* assembly, but previous studies
151 have shown Discovar performs well compared to other programs [47, 48]. The hybrid assembly
152 produced with the ARCS+LINKS pipeline had ~1.6M scaffolds, an N50 of 38Kb, 0.09% Ns, and
153 a BUSCO score of 59.8%. Because of the poor quality of the hybrid assembly, it was not used
154 for further analyses, and the *M. richardsoni* subspecies assemblies were kept separate. It seems
155 likely that the high fragmentation of the hybrid assembly is due to the fragmentation of the
156 Discovar input assembly. Published results with this hybrid pipeline often include a much higher
157 sequencing coverage of the input contigs to produce a better starting point for the pipeline.
158 Therefore, additional Illumina sequencing with *M. r. macropus* in the future could substantially
159 improve the hybrid assembly. 108M reads (13x coverage) were used to produce the preliminary
160 *M. montanus* genome, resulting in ~13K scaffolds, an N50 of ~3.1Mb, 8.8% Ns, and a BUSCO
161 score of 82.6%. Additionally, 89.3% of reads mapped back to the *M. montanus* assembly.
162
163

164

Table 1

	Discovar	SOAPdenovo	SOAPdenovo	SOAPdenovo	SOAPdenovo
Kmer	NA	63	89	95	101
Length	2.54Gb	2.72Gb	2.88Gb	2.89Gb	3.21Gb
Scaffolds	1.6M	4.1M	4.0M	4.1M	6.7M
Max Scaffold	264Kb	186Kb	146Kb	174Kb	139Kb
N50	16.1Kb	4.5Kb	3.4Kb	3.4Kb	1.5Kb
L50	35.7K	117K	156K	163K	371K
BUSCO	54.5%	38.1%	37.1%	35.9%	25.9%
% N	0.06	1.45	0.99	0.94	0.90
% GC	42.13	41.92	41.91	41.92	41.98

165 Comparison of genome assembly strategies for *M. r. macropus*. NA: not applicable.

166

167 **Mitochondrial Genomes**

168 The complete mitochondrial genomes of *M. r. arvicoloides* and *M. montanus* were assembled
169 using the genomic sequencing reads. The mitochondrial genomes were assembled by both
170 mapping reads to a reference mitochondrial genome and using the reference-guided assembly
171 program Novoplasty [49]. For the mapping assembly, reads were mapped to the *M. r. macropus*
172 mitochondrial genome, using the same steps as the *M. montanus* BOLD analysis. The
173 mitochondrial assemblies were 16,285bp and 16,268bp in length with an average depth of
174 coverage of 7886x and 6805x for *M. r. arvicoloides* and *M. montanus* respectively. Reference
175 guided mitochondrial assemblies with Novoplasty used the *M. r. macropus* mitochondrial
176 genome as the reference along with settings *Genome Range=12000-22000, K-mer=33, Read*

177 *Length=150, and Insert size=400.* Because the *M. r. arvicolooides* dataset contained many reads,
178 25% of reads were subsampled to use for assembly, as suggested in the program documentation.
179 The assemblies for *M. r. arvicolooides* and *M. montanus* were 16,298bp and 16,319bp in length
180 with average depths of coverage of 5131x and 14,713x respectively. To compare mitochondrial
181 assemblies between methods, the assemblies were aligned using the MUSCLE plugin in
182 Geneious v. R9 with eight iterations and an open gap score of -1 [50, 51]. This comparison
183 showed the Novoplasty assemblies contained multiple insertions compared to the mapped
184 assemblies and the reference mitochondrial genome. These insertions were up to 13bp long in
185 multiple genes, including trnT, trnK, and ATP8. Comparison to other *Microtus* mitochondrial
186 genomes (*M. ochrogaster*; NC_027945.1 and *M. fortis*; NC_015243.1) showed that the
187 Novoplasty assemblies were the only mitochondrial assemblies to exhibit these insertions.
188 Therefore, the mapping assemblies were used for further analyses. The mapping assemblies for
189 both species included ambiguous bases, which were much more frequent for *M. montanus* than
190 *M. r. arvicolooides*. These may be the result of using the mitochondrial genome of a different
191 subspecies (for *M. r. arvicolooides*) or species (for *M. montanus*) for mapping the reads.
192 Additionally, the presence of nuclear DNA of mitochondrial origin (NUMTs; [52, 53]) may have
193 influenced these results. If mitochondrial segments have been incorporated into the nuclear
194 genomes and subsequent mutations have occurred, both nuclear and mitochondrial sequences
195 could be mapped to the same mitochondrial region during assembly and result in the ambiguous
196 bases observed here. It is likely that NUMTs are present, as they have been documented in other
197 species of *Microtus* [54-56]. Both mitochondrial genomes were annotated using MITOS [57].
198 The annotations each consisted of 22 tRNA genes, 2 rRNA genes, and 13 protein coding genes.
199

200 ***Microtus* Genome Assembly Comparison**

201 The available *Microtus* genome assemblies, *M. agrestis* (GCA_902806755.1), *M. arvalis*
202 (GCA_007455615.1), *M. ochrogaster* (GCA_000317375.1), and *M. oeconomus*
203 (GCA_007455595.1), were downloaded from GenBank. Assembly summary statistics were
204 calculated using QUAST, bbmap, and custom Python scripts
205 (https://github.com/djlduckett/Genome_Resources/). To compare repeat content among all
206 genomes, including the three produced by the current study, repeats were first identified *de novo*
207 using RepeatModeler [58]. RepeatMasker was then used to further identify repeats using a
208 combined repeat library that included the repeats identified from RepeatModeler and those from
209 the RepeatMasker *Rodentia* database [59]. The percentage of the genome consisting of each type
210 of repeat element was extracted from the RepeatMasker log file for each genome assembly.

211 All genome assemblies used some form of Illumina sequencing (Table 2), although assembly
212 continuity varied greatly among assemblies from 1366 scaffolds in *M. agrestis* to 1.6 M scaffolds
213 in *M. r. macropus*. Genome coverage was similarly varied, from 13x in *M. montanus* to 35x in
214 *M. r. macropus* to 77x in *M. arvalis* and *M. oeconomus*. The percent of repetitive regions ranged
215 from 31.7% in *M. montanus* to 44.1% in *M. arvalis* (Figure 1), and repeat content did not appear
216 to be associated with phylogenetic relatedness as repeats between the two subspecies of *M.*
217 *richardsoni* were not more similar to each other than to other *Microtus* species. However, it is
218 possible that the repeat content is affected by the continuity of the genome assemblies, and
219 further research is needed to confirm this relationship.

Table 2

Species	<i>M. agrestis</i>	<i>M. arvalis</i>	<i>M. montanus</i> *	<i>M. ochrogaster</i>	<i>M. oeconomus</i>	<i>M. r. arvicolaoides</i> *	<i>M. r. macropus</i> *
Distribution	Europe	Europe	North America	North America	North America	North America	North America
Year	2020	2019	2020	2012	2019	2020	2020
Accession (GCA_)	902806775.1	7455615.1	xxxxxxxxxxxx	317375.1	7455595.1	xxxxxxxxxxxx	xxxxxxxxxxxx
Sequencing	10X Chromium + Illumina	Illumina	Illumina	Illumina	Illumina	10X Chromium + Illumina	Illumina
Assembler	Supernova	Discovar	RaGOO	ALLPATHS	Discovar	Supernova	Discovar
Length	2.03Gb	2.62Gb	2.34Gb	2.29Gb	2.31Gb	2.36Gb	2.54Gb
Coverage	50	77	13	94	77	47	35
# Scaffolds	1,366	1,081,432	12,962	6,341	562,436	31,632	1,648,927
Longest Scaffold	56.96Mb	0.80Mb	748.72Mb	126.73Mb	0.93Mb	16.00Mb	0.26Mb
N50	13.35Mb	0.53Mb	3.08Mb	61.81Mb	0.11Mb	2.30Mb	0.02Mb
L50	45	11,870	91	14	5,556	278	35,660
%N	2.87	0.07	8.81	8	0.12	1.29	0.06
%GC	42.33	41.71	42.38	42.25	42.18	42.21	42.13

221 Genome assembly comparison among *Microtus* species. Assemblies with a * were produced by the present study. Note: in-depth methods for *M. agrestis* are not
 222 available, and it is possible that the assembly includes additional sequencing and/or methods.

223 **Genome Annotation**

224 The *M. r. arvicolaoides* genome assembly was annotated with the MAKER pipeline [60],
225 loosely following the tutorial provided by Daren Card (<https://gist.github.com/darencard/bb1001ac1532dd4225b030cf0cd61ce2>). Briefly, the pipeline consists of masking repeats
226 followed by multiple rounds of annotation with both evidence-based and ab-initio gene models.
227 Repeats were identified as described above. Complex repeats were then extracted from
228 RepeatMasker results using grep with keywords “Satellite” and “rich”. Within Maker, the
229 model_org argument was set to “simple” so Maker would soft mask simple repeats, and the
230 RepeatMasker results were provided to hard mask complex repeats. Evidence-based gene
231 discovery used protein and mRNA sequences from the previous genome annotation of *M.*
232 *ochrogaster* (GCF_000317375.1) as well as an additional RNASeq assembly from *M.*
233 *pennsylvanicus* (GSM3499528; [61]). Hidden Markov models (HMMs) for ab-initio gene
234 prediction were trained using both SNAP and Augustus [62, 63]. With SNAP, gene models
235 identified by MAKER were filtered using an Annotation Edit Distance (AED) of 0.5 and an
236 amino acid length of 50. After validating these models with SNAP’s Fathom utility, removing
237 likely errors, and including 1000bp surrounding each training sequence, the training sequences
238 were passed to the hmm-assembler script. For Augustus, training sequences plus 1000bp on each
239 side were obtained from the first round of MAKER mRNA annotations. Augustus was used to
240 train the HMM using the --long option in BUSCO and the Euarchontoglires reference set.
241 MAKER was then run again with the previously annotated gene models and the HMM models
242 from SNAP and Augustus. After the initial MAKER run, two cycles of ab-initio gene prediction
243 and annotation with MAKER were performed. To prevent overfitting, results were compared
244 after each round of MAKER. Because the increase in AED score was minimal between the first

246 and second rounds of ab-initio gene prediction, further analysis was conducted on the results
247 after the first round only. This round annotated ~24K genes with a mean gene length of 7445bp
248 (Table 3), which is within the range found in previous studies of *M. ochrogaster* (22,427 genes;
249 GCF_000317375.1) and *Arvicola amphibious* (25,136 genes; GCF_903992535.1). Of these
250 annotations all occurred on scaffolds greater than 1Kb in length and 97% occurred on scaffolds
251 greater than 10Kb in length.

252 Functional annotation of the *M. r. arvicolooides* genome was performed using GOfeat, an
253 online functional annotation tool that uses multiple protein databases including UniProt,
254 InterPro, and Pfam [64-67]. An input file for GOfeat was generated by supplying the genome
255 assembly FASTA file and the MAKER General Feature Format (GFF3) file to the Python
256 package gffread [68]. GOfeat annotated 83.49% of genes. Biological Processes accounted for
257 42.46% of annotations, Cellular Components accounted for 30.29%, and Molecular Functions
258 comprised 27.25%. The most frequent gene ontology (GO) terms were *positive regulation of*
259 *transcription by RNA polymerase II, negative regulation of transcription by RNA polymerase II,*
260 *and DNA-templated regulation of transcription* for Biological Processes, *cytoplasm* and *plasma*
261 *membrane* for Cellular Components, and *metal ion binding* and *calcium ion binding* for
262 Molecular Functions.

263

264

265

266

267

268

269

270

Table 3

	Before Gene Modeling	Gene Modeling Round 1	Gene Modeling Round 2
Genes	20,945	24,548	23,811
Exons	139,845	192,974	179,225
mRNA	20,945	24,548	23,811
tRNA	-	24,504	24,539
5' UTR	-	1,229	1,180
3' UTR	-	503	642
Mean Gene Length	-	7,445	7,132
AED < 0.50	0.993	0.881	0.888
AED < 0.25	0.672	0.543	0.520
BUSCO (Complete)	-	67.7%	70.5%

271 Structural annotation summary after each round of MAKER. UTR: untranslated region; AED: annotation edit
272 distance. Values with dashes were not analyzed prior to gene modeling with SNAP and Augustus.

273

274 Conclusion

275 The current study details the assembly and annotation of three nuclear and two mitochondrial
276 genomes. Compared to previously published nuclear genomes, the *M. r. arvicolooides* and *M.*
277 *montanus* genomes are of high quality as evidenced by the low number of scaffolds, high
278 N50/L50 values, and high BUSCO scores. While not as complete as the other *Microtus* genomes,
279 the nuclear genome of *M. r. macropus* will still be useful for mapping low coverage reads or
280 reduced representation sequencing data. Furthermore, the mitochondrial genomes contributed
281 here add to a growing number for the genus *Microtus* and reinforce earlier suggestions that high-
282 quality mitochondrial genomes can be obtained as byproducts of nuclear sequencing (e.g., [69,
283 70]). Overall, the data presented serve as an example that even though they do not include

284 chromosomal information, high-quality draft genomes can be produced from widely available
285 and very cost-effective methods like the 10X Chromium protocol. These references can aid a
286 variety of studies including those examining genus and species adaptation [71, 72],
287 phylogenetics [10], phylogeography [22, 73], and disease dynamics [6, 74]. However, some
288 activities, like exploring changes to chromosome structure, will not be possible due to the
289 fragmentation and lack of chromosomal mapping for these assemblies. Finally, the *M. r.*
290 *macropus* and *M. montanus* sequencing data and preliminary assemblies will serve as the
291 building blocks of more accurate reference genomes in the future.

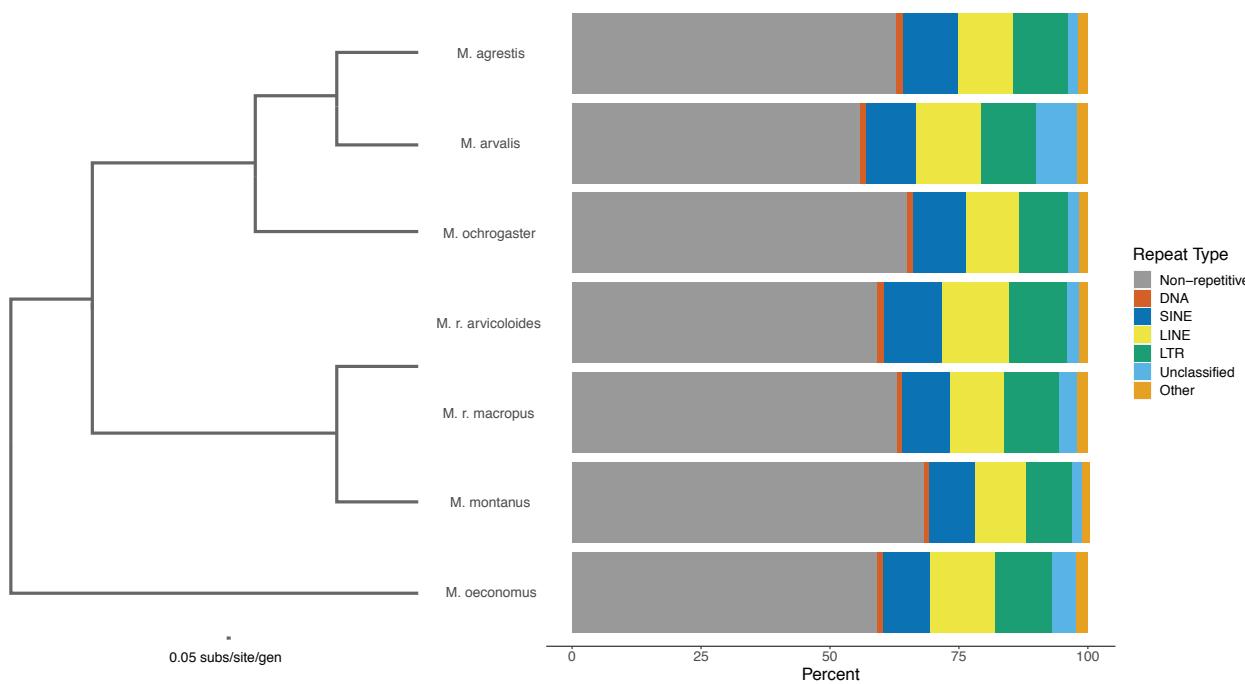
292

293 **Availability of Supporting Data and Materials**

294 Raw sequences, nuclear assemblies, and mitochondrial assemblies are available from GenBank
295 under BioProjects PRJNA673719, PRJNA509068, and PRJNA673873 for *M. r. arvicolooides*, *M.*
296 *r. macropus*, and *M. montanus* respectively. The custom python script used to calculate genome
297 assembly summary information is available on GitHub
298 (https://github.com/djlduckett/Genome_Resources/). Full BUSCO tables, structural annotation
299 gff files, functional annotation tables, and repeat libraries are available in the GigaScience data
300 repository (<http://gigadb.org/>).

301

302


303

304

305

306

307 **Figures:**

308

309 **Figure 1:** Repeat Content among *Microtus* genomes. SINE: short interspersed nuclear element; LINE: long
310 interspersed nuclear element; LTR: long terminal repeat; Other consists of small RNA, satellite, simple, and low
311 complexity repeats. The phylogeny displayed was recreated from [3] by pruning unincluded species from the data
312 alignment and rerunning RAxML [75] with the same settings used in the original analysis.

313

314 **Abbreviations**

315 BOLD: Barcode of Life Database; bp: base pair; COI: cytochrome oxidase I; M: million; K:
316 thousand; Gb: gigabase pairs; Mb: megabase pairs; Kb: kilobase pairs; SINE: short interspersed
317 nuclear element; LINE: long interspersed nuclear element; LTR: long terminal repeat; AED:
318 annotation edit distance; HMM: hidden Markov model; NUMT: nuclear DNA of mitochondrial
319 origin

320

321

322 **Competing Interests**

323 SP is the director of Iridian Genomes, Inc.

324

325 **Funding**

326 Sequencing was funded by Iridian Genomes, Inc., as well as the National Science Foundation
327 (DEB-1457519). Salary support for DD was provided by The Ohio State University and the
328 National Science Foundation (DBI-1945347).

329

330 **Author Contributions**

331 DD, JS, and BC conceived the study. JS, SP, and BC provided funding for sequencing. DD
332 performed DNA extractions, assembled genomes, and annotated genomes with input from SP.
333 DD and BC wrote the manuscript with input from JS and SP. DD and SP submitted the resources
334 to GenBank.

335

336 **Acknowledgements**

337 We thank Jeffrey Good and Eric Rickart/Utah Museum of Natural History for tissue samples,
338 Michael Broe for advice with genome assembly and annotation, and the Ohio Supercomputer
339 Center (OSC) for computational resources.

340

341

342

343

344

345 **References**

346 1. Wilson DE, Reeder DM, editors. *Mammal species of the world: a taxonomic and geographic*
347 reference. JHU Press; 2005.

348 2. Reig OA. Karyotypic repatterning as one triggering factor in cases of explosive speciation. In:
349 Fontdevila A, editor. *Evolutionary biology of transient unstable populations*. Springer, Berlin,
350 Heidelberg; 1989 p. 246-289.

351 3. Steppan SJ, Schenk JJ. Muroid rodent phylogenetics: 900-species tree reveals increasing
352 diversification rates. *PLoS one*. 2017;12:8.

353 4. Jackson DJ, Cook JA. A precarious future for distinctive peripheral populations of meadow voles
354 (*Microtus pennsylvanicus*). *Journal of Mammalogy*. 2020;101:1:36-51.

355 5. Monarca RI, Speakman JR, da Luz Mathias M. Energetics and thermal adaptation in semifossorial
356 pine-voles *Microtus lusitanicus* and *Microtus duodecimcostatus*. *Journal of Comparative*
357 *Physiology B*. 2019;189:2:309-18.

358 6. Wanelik KM, Begon M, Birtles RJ, Bradley JE, Friberg IM, Jackson JA, Taylor CH, Thomason AG,
359 Turner AK, Paterson S. A candidate tolerance gene identified in a natural population of field
360 voles (*Microtus agrestis*). *Molecular ecology*. 2018;27:4:1044-52.

361 7. Seelke AM, Perkeybile AM, Grunewald R, Bales KL, Krubitzer LA. Individual differences in cortical
362 connections of somatosensory cortex are associated with parental rearing style in prairie voles
363 (*Microtus ochrogaster*). *Journal of Comparative Neurology*. 2016;524:3:564-77.

364 8. Oli MK. Population cycles in voles and lemmings: state of the science and future directions.
365 *Mammal Review*. 2019;49:3:226-39.

366 9. Bailey V. Revision of American voles of the genus *Microtus*. *North American Fauna*. 1900;17:1-
367 88.

368 10. Barbosa S, Paupério J, Pavlova SV, Alves PC, Searle JB. The *Microtus* voles: Resolving the
369 phylogeny of one of the most speciose mammalian genera using genomics. *Molecular*
370 *phylogenetics and evolution*. 2018;125:85-92.

371 11. McGraw LA, Davis JK, Lowman JJ, ten Hallers BF, Koriabine M, Young LJ, De Jong PJ, Rudd MK,
372 Thomas JW. Development of genomic resources for the prairie vole (*Microtus ochrogaster*):
373 construction of a BAC library and vole-mouse comparative cytogenetic map. *BMC genomics*.
374 2010;11:1:1-8.

375 12. Klaus M, Beauvais GP. Water Vole (*Microtus richardsoni*): A Technical Conservation Assessment.
376 Prepared for USDA Forest Service, Rocky Mountain Region, Species Conservation Project. 2004.

377 13. Stein BR. Bone density and adaptation in semiaquatic mammals. *Journal of mammalogy*.
378 1989;70:3:467-76.

379 14. Dunstone N, Gorman ML, editors. *Behaviour and ecology of riparian mammals*. Cambridge
380 University Press; 2007.

381 15. Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, et al. Aquatic adaptation and depleted
382 diversity: a deep dive into the genomes of the sea otter and giant otter. *Molecular biology and*
383 *evolution*. 2019;36:12:2631-55.

384 16. Ludwig DR. *Microtus richardsoni*. *Mammalian Species*. 1984;223:1-6.

385 17. Klaus M, Moore RE, Vyse E. Impact of precipitation and grazing on the water vole in the
386 Beartooth Mountains of Montana and Wyoming, USA. *Arctic, Antarctic, and Alpine Research*.
387 1999;31:3:278-82.

388 18. Cassola, F. *Microtus richardsoni*. *The IUCN Red List of Threatened Species* 2016.

389 19. Wyoming Natural Diversity Database. University of Wyoming. 2020.
390 https://wyndd.org/species_list/.

391 20. Cartens BC, Brunsfeld SJ, Demboski JR, Good JM, Sullivan J. Investigating the evolutionary history
392 of the Pacific Northwest mesic forest ecosystem: hypothesis testing within a comparative
393 phylogeographic framework. *Evolution*. 2005;59:8:1639-52.

394 21. Carstens BC, Richards CL. Integrating coalescent and ecological niche modeling in comparative
395 phylogeography. *Evolution: International Journal of Organic Evolution*. 2007;61:6:1439-54.

396 22. Espíndola A, Ruffley M, Smith ML, Carstens BC, Tank DC, Sullivan J. Identifying cryptic diversity
397 with predictive phylogeography. *Proceedings of the Royal Society B: Biological Sciences*.
398 2016;283:1841:20161529.

399 23. Sera WE, Early CN. *Microtus montanus*. *Mammalian Species*. 2003;716:1-10.

400 24. Cassola, F. *Microtus montanus*. The IUCN Red List of Threatened Species 2016.

401 25. Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-
402 Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM, Mudivarti PA. Haplotyping germline and
403 cancer genomes with high-throughput linked-read sequencing. *Nature biotechnology*.
404 2016;34:3:303-11.

405 26. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome
406 sequences. *Genome research*. 2017;27:5:757-67.

407 27. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J. SOAPdenovo2: an
408 empirically improved memory-efficient short-read de novo assembler. *Gigascience*.
409 2012;1:1:2047-17.

410 28. Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R, Holmes L, Sogoloff B, Tabbaa D, Williams L, Russ
411 C, Nusbaum C. Comprehensive variation discovery in single human genomes. *Nature genetics*.
412 2014;46:12:1350.

413 29. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
414 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

415 30. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
416 Bioinformatics. 2014;30:15:2114-20.

417 31. Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly.
418 Bioinformatics. 2014;30:1:31-7.

419 32. Yeo S, Coombe L, Warren RL, Chu J, Birol I. ARCS: scaffolding genome drafts with linked reads.
420 Bioinformatics. 2018;34:5:725-31.

421 33. Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJ, Birol I. LINKS: Scalable,
422 alignment-free scaffolding of draft genomes with long reads. GigaScience. 2015;4:1:s13742-015.

423 34. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform.
424 Bioinformatics. 2010;26:5:589-95.

425 35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The
426 sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:16:2078-9.

427 36. Ratnasingham S, Hebert PD. BOLD: The Barcode of Life Data System (<http://www.barcodinglife.org>). Molecular ecology notes. 2007;7:3:355-64.

428 37. Alqahtani F, Duckett D, Pirro S, Mandoiu II. Complete mitochondrial genome of the water vole,
429 *Microtus richardsoni* (Cricetidae, Rodentia). Mitochondrial DNA Part B. 2020;5:3:2498-9. Broad
430 Institute. Picard tools. 2016. <http://github.com/broadinstitute/picard>.

431 38. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and
432 population genetical parameter estimation from sequencing data. Bioinformatics.
433 2011;27:21:2987-93.

434 39. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB, Schatz MC.
435 RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome biology.
436 2019;20:1:1-7.

438 40. Modi WS. Phylogenetic analyses of chromosomal banding patterns among the Nearctic
439 Arvicolidae (Mammalia: Rodentia). *Systematic Zoology*. 1987;36:2:109-36.

440 41. Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. BamTools: a C++ API and toolkit
441 for analyzing and managing BAM files. *Bioinformatics*. 2011;27:12:1691-2.

442 42. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank.
443 *Nucleic acids research*. 2012;41:D1:D36-42.

444 43. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome
445 assemblies. *Bioinformatics*. 2013;29:8:1072-5.

446 44. Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National
447 Lab.(LBNL), Berkeley, CA (United States); 2014. <https://jgi.doe.gov/data-and-tools/bbtools/>.

448 45. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome
449 assembly and annotation completeness with single-copy orthologs. *Bioinformatics*.
450 2015;31:19:3210-2.

451 46. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly
452 evaluation with QUAST-LG. *Bioinformatics*. 2018;34:13:i142-50.

453 47. Fernandez-Silva I, Henderson JB, Rocha LA, Simison WB. Whole-genome assembly of the coral
454 reef Pearlscale Pygmy Angelfish (*Centropyge vrolikii*). *Scientific reports*. 2018;8:1:1-1.

455 48. Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from
456 whole genome data. *Nucleic acids research*. 2017;45:4:e18-.

457 49. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,
458 Markowitz S, Duran C, Thaler T. Geneious Basic: an integrated and extendable desktop
459 software platform for the organization and analysis of sequence data. *Bioinformatics*.
460 2012;28:12:1647-9.

461 50. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

462 Nucleic acids research. 2004;32:5:1792-7.

463 51. Lopez JV, Yuhki N, Masuda R, Modi W, O'Brien SJ. Numt, a recent transfer and tandem

464 amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal of

465 molecular evolution. 1994;39:2:174-90.

466 52. Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies

467 (nuMountains) in sequenced nuclear genomes. PLoS Genet. 2010;6:2:e1000834.

468 53. Triant DA, DeWoody JA. Extensive mitochondrial DNA transfer in a rapidly evolving rodent has

469 been mediated by independent insertion events and by duplications. Gene. 2007;401:1-2:61-70.

470 54. Triant DA, DeWoody JA. Molecular analyses of mitochondrial pseudogenes within the nuclear

471 genome of arvicoline rodents. Genetica. 2008;132:1:21-33.

472 55. Triant DA, DeWoody JA. Demography and phylogenetic utility of numt pseudogenes in the

473 Southern Red-Backed Vole (*Myodes gapperi*). Journal of mammalogy. 2009;90:3:561-70.

474 56. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler

475 PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular

476 phylogenetics and evolution. 2013;69:2:313-9.

477 57. Smit AF, Hubley R. RepeatModeler Open-1.0. 2008. <http://www.repeatmasker.org> .

478 58. Smit AF, Hubley R, Green P. RepeatMasker Open-4.0. 2013. <http://www.repeatmasker.org> .

479 59. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Alvarado AS, Yandell M. MAKER:

480 an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome

481 research. 2008;18:1:188-96.

482 60. Young RL, Ferkin MH, Ockendon-Powell NF, Orr VN, Phelps SM, Pogány Á, Richards-Zawacki CL,

483 Summers K, Székely T, Trainor BC, Urrutia AO. Conserved transcriptomic profiles underpin

484 monogamy across vertebrates. *Proceedings of the National Academy of Sciences*.
485 2019;116:4:1331-6.

486 61. Korf I. Gene finding in novel genomes. *BMC bioinformatics*. 2004;5:1:59.

487 62. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel.
488 *Bioinformatics*. 2003;19:ii215-25.

489 63. Araujo FA, Barh D, Silva A, Guimaraes L, Ramos RT. GO FEAT: a rapid web-based functional
490 annotation tool for genomic and transcriptomic data. *Scientific reports*. 2018;8:1:1-4.

491 64. UniProt Consortium. UniProt: a hub for protein information. *Nucleic acids research*.
492 2015;43:D1:D204-12.

493 65. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L,
494 Duquenne L, Finn RD. InterPro: the integrative protein signature database. *Nucleic acids
495 research*. 2009;37:D211-5.

496 66. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon
497 S, Sonnhammer EL, Studholme DJ. The Pfam protein families database. *Nucleic acids research*.
498 2004;32:D138-41.

499 67. Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. *F1000Research*. 2020;9.

500 68. Voigt O, Erpenbeck D, Wörheide G. A fragmented metazoan organellar genome: the two
501 mitochondrial chromosomes of *Hydra magnipapillata*. *BMC genomics*. 2008;9:1:350.

502 69. Smith DR. Not seeing the genomes for the DNA. *Briefings in functional genomics*. 2012;11:4:289-
503 90.

504 70. Fink S, Excoffier L, Heckel G. Mitochondrial gene diversity in the common vole *Microtus arvalis*
505 shaped by historical divergence and local adaptations. *Molecular Ecology*. 2004;13:11:3501-14.

506 71. Fischer MC, Foll M, Excoffier L, Heckel G. Enhanced AFLP genome scans detect local adaptation
507 in high-altitude populations of a small rodent (*Microtus arvalis*). *Molecular Ecology*.
508 2011;20:7:1450-62.

509 72. Frey JK. Genetics of allopatric populations of the montane vole (*Microtus montanus*) and
510 Mogollon vole (*Microtus mogollonensis*) in the American Southwest. *Western North American
511 Naturalist*. 2009;69:2:215-22.

512 73. Tołkacz K, Alsarraf M, Kowalec M, Dwużnik D, Grzybek M, Behnke JM, Bajer A. Bartonella
513 infections in three species of *Microtus*: prevalence and genetic diversity, vertical transmission
514 and the effect of concurrent *Babesia microti* infection on its success. *Parasites & vectors*. 2018
515 Dec 1;11(1):491.

516 74. Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. *Organisms Diversity &
517 Evolution*. 2012;12:4:335-7.

518