

1 **Re-investigating the coughing rat model of pertussis to understand *Bordetella pertussis***
2 **pathogenesis**

3

4 Jesse M. Hall^{1,2}, Jason Kang^{1,2}, Sophia M. Kenney^{1,2}, Ting Y. Wong^{1,2}, Graham J. Bitzer^{1,2},
5 Claire O. Kelly^{1,2}, Caleb A. Kisamore^{1,2}, Dylan T. Boehm^{1,2,*}, Megan A. DeJong^{1,2}, M. Allison
6 Wolf^{1,2}, Emel Sen-Kilic^{1,2}, Alexander M. Horspool^{1,2}, Justin R Bevere^{1,2}, Mariette Barbier^{1,2}, &
7 F. Heath Damron^{1,2, #}

8

9 ¹ Department of Microbiology, Immunology and Cell Biology, School of Medicine, West
10 Virginia University, Morgantown, WV

11 ² Vaccine Development Center, WVU Health Sciences Center, Morgantown, WV

12

13 Running title: Coughing rat model of pertussis

14

15 #Address correspondence to F. Heath Damron, fdamron@hsc.wvu.edu

16 *Present address: Vaccine and Gene Therapy Institute at Oregon Health Sciences University, 18
17 Beaverton, Oregon, USA

18

19

20

21

22

23

24

25 **Abstract**

26 *Bordetella pertussis* (*Bp*) is a highly contagious bacterium that is the causative agent of whooping
27 cough (pertussis). Currently, acellular pertussis vaccines (aP; DTaP; Tdap) are used to prevent
28 pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the
29 re-emergence of pertussis. Furthermore, recent work performed by the CDC suggest that current
30 circulating strains are genetically distinct from strains of the past. Emergence of genetically
31 diverging strains combined with waning aP vaccine efficacy call for re-evaluation of current
32 animal models of pertussis. In this study, we used the rat model of pertussis to compare two
33 genetically divergent strains Tohama 1 and D420. We intranasally challenged seven-week-old
34 Sprague-Dawley rats with 10^8 viable Tohama 1 and D420 and measured the hallmark
35 signs/symptoms of *Bp* infection such as neutrophilia, pulmonary inflammation, and paroxysmal
36 cough using whole body plethysmography. Onset of cough occurred between 2-4 days after *Bp*
37 challenge averaging five coughs per fifteen minutes, with peak coughing occurring at day eight
38 post infection averaging upward of thirteen coughs per fifteen minutes. However, we observed an
39 increase of coughs in rats infected with clinical isolate D420 through 12 days post challenge. The
40 rats exhibited increased bronchial restriction following *Bp* infection. Histology of the lung and
41 flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection
42 induced higher production of anti-*Bp* IgM antibodies compared to Tohama 1 infection. The
43 coughing rat model provides a way of characterizing disease manifestation differences between
44 *Bp* strains.

45

46

47

48 **Introduction**

49 Whooping cough (pertussis) is a respiratory disease that is caused by the bacterium *Bordetella*
50 *pertussis* (*Bp*). Pertussis is characterized by severe leukocytosis, bronchopneumonia,
51 hypoglycemia, and paroxysmal cough (1, 2). During the catarrhal stage, *Bp* colonizes the upper
52 respiratory epithelium. Once colonization occurs, *Bp* releases toxins such as pertussis toxin (PT),
53 adenylate cyclase toxin (ACT) as well as others. Following the catarrhal stage is the paroxysmal
54 stage that is characterized by severe coughing episodes. Innate and adaptive immune responses
55 result in clearance of the bacterium allowing for the patient or host to convalesce. Despite
56 extensive research, a full understanding of *Bp* pathogenesis remains elusive for reasons such as:
57 vaccine pressure, lack of predictive models, and strain evolution (3). One of the major reasons for
58 this gap of knowledge is the lack of a suitable animal model that shares common disease symptoms
59 as seen in humans. Besides non-human primates, rats are the only other known model of pertussis
60 that share similar coughing manifestation as seen in humans (4). As of now, the origin or the
61 trigger of cough has yet to be determined (5). The rat model of pertussis offers a potential animal
62 model that can be used to evaluate *Bp* pathogenesis.

63

64 In 1938, Hornibrook and Ashburn were the first to report that rats infected with *Bp* induced cough-
65 like paroxysms and bronchopneumonia as seen in humans (6). Hornibrook and Ashburn found that
66 young rats were capable of being infected and the bacterium could be cultured from the lungs (6).
67 Infected rats produced coughs that could be heard from a distance of 20 feet (6). Twenty-six of the
68 thirty-one infected rats that did not succumb to the infection had pathology indicative of
69 inflammation in the lungs, most notably early neutrophil infiltration followed by recruitment of
70 mononuclear cells (6). The subsequent studies utilized intrabronchial inoculation of *Bp* encased in

71 agar beads and confirmed leukocytosis and paroxysmal cough by sound activated tape recorders
72 from 5 to 21 days post challenge (7, 8). Further development of the rat model led to the evaluation
73 of PT negative strains and the evaluation of coughs (9). Strain BP357, which is deficient in PT
74 resulted in low cough induction (9). Further evaluation of the rat model demonstrated leukocytosis,
75 weight loss, and paroxysmal cough in Sprague-Dawley rats during the course of *Bp* infection (10).
76 During the development phase of the acellular pertussis vaccine (aP, DTaP), the rat model was
77 used to test vaccine efficacy of various acellular pertussis formulations and was used to validate
78 protection against the onset of leukocytosis and cough (11). Recently, an intranasal rat model has
79 been used to evaluate bacterial factors responsible for cough in *Bordetella bronchiseptica* (*Bb*)
80 (12). BspR, which is an anti-sigma factor of *Bb*, plays some role in cough induction upon infection
81 (12). Collectively, these studies show that the pertussis rat model can be used to critically evaluate
82 *Bp* pathogenesis and disease progression.

83
84 In the 1940s, whole-cell pertussis (wP and DTP) vaccines were introduced to protect against *Bp*
85 infection (13). Widespread use of DTP in the United States led to a 90% decrease in the number
86 of reported *Bp* infections (13). Despite the efficacy of this vaccine, serious adverse side-effects
87 ensued, leading to the development of acellular pertussis vaccines. The antigens that are included
88 in the current aPs contain: filamentous hemagglutinin (FHA), fimbriae (FIM), PT, and pertactin
89 (PRN). After the switch from the wP to the aPs, there has been a significant increase in the number
90 of pertussis cases in the US and Europe (14). While nationwide vaccine coverage is 95% in the
91 United States, the incidence of *Bp* infections rose in the past 10 years as the number of aP
92 vaccinated only population has increased in size. (15). While vaccine coverage remains high, the
93 population dynamics are changing, and more people are aP immunized as the new generations are

94 born and as the wP only generations age. Numerous studies have demonstrated waning efficacy of
95 aPs in parallel with the emergence of genetically divergent strains of *Bp* (3, 16–21). Increased
96 surveillance of *Bp* has led to the identification of clinical isolates that do not express PRN, FIM,
97 and even PT the hallmark toxin of the organism (22). One plausible hypothesis to explain these
98 observations is that circulating *Bp* strains have evolved due to acellular vaccine pressure. While
99 we know the current strains are genetically different, we do not know if this genetic variability
100 affects virulence, disease burden, toxicity, or fitness of the pathogen (3).

101
102 Early rat studies were performed with intranasal administration of *Bp* for infection (6). Subsequent
103 rat challenge studies used *Bp* encased in agar beads for intrabronchial instillation (7–11, 23). While
104 the agar bead infection method was successful at establishing infection, we aimed to utilize the
105 simplicity of intranasal administration. We sought to re-investigate the coughing rat model of
106 pertussis to compare the pathogenesis of reference strain Tohama 1 to the recent clinical isolate
107 D420, which has been extensively studied in the baboon model of pertussis (24–30). Tohama 1
108 was first isolated from a case of whooping cough in 1954, while D420 was isolated in 2002 from
109 a critically ill infant in Texas (25, 31). Although Tohama 1 is now a reference strain that has been
110 widely used since Sato and Sato developed the aP but recent data has shown that this strain is an
111 considered an outlier (32, 33). Tohama 1 does express PRN but has lower expression of PT and
112 ACT (34). When Tohama 1 was used as a challenge strain in baboons, the baboons did not exhibit
113 symptoms of pertussis despite being infected (26). This led to the selection of recent clinical isolate
114 D420 as the baboon challenge strain, which readily infected and caused disease (26). With 48 years
115 of potential genetic divergence, we sought to understand the differences in pathogenesis between
116 these two commonly studied strains. D420 is known to infect mice and baboons and it belongs to

117 the clade (CDC013) of strains that represented 50% of isolates recovered in the US in 2000 (3).
118 However, it is important to note that D420 has an intact pertactin gene and it does express the PRN
119 protein as confirmed by shotgun proteomic analysis (data not shown).

120
121 In our current study, we aimed to re-establish an upper respiratory tract infection model in rats
122 following intranasal challenge with Tohama I and D420. We hypothesized that recent isolate D420
123 would induce a more severe disease profile compared to Tohama 1, as previous research
124 investigating pathogenesis in rhesus macaques noted that Tohama 1 infected animals did not
125 exhibit overt disease symptoms (26). Sprague-Dawley rats were intranasally challenged with *Bp*
126 and we characterized their disease progression profile over a twelve-day infection. Cough was
127 critically assessed utilizing whole body plethysmography (WBP). Bacterial colonization,
128 leukocytosis, and serological responses were measured as a result of infection. Rats challenged
129 with D420 had increased coughing, greater bacterial burden in the respiratory tract, and a more
130 robust IgM antibody response compared to Tohama 1. The coughing rat model of pertussis can
131 shed light on the pathogenesis of *Bp* and will likely be useful tool for pertussis vaccine evaluation.

132
133 **Results**
134 **D420 infected rats have increase number of coughs compared to strain Tohama 1 over the**
135 **entire course of infection.**

136 Over the past decade it is became clear that improvements to the acellular pertussis vaccine
137 strategy are needed due to the rise of PRN mutants, genomic divergence, and epidemiological data.
138 We believe in order to improve pertussis vaccines we need to better understand the pathogenesis
139 of *Bp* in an animal model that shares similar clinical manifestation of pertussis as seen in humans.

140 Here, we intranasally infected seven-week-old Sprague Dawley rats with 10^8 CFU of *Bp* strain
141 D420 or Tohama 1 (**Fig. 1**) in an effort establish infection and observe *Bp* induced cough. For
142 negative controls (no bacterial challenge), rats were intranasally administered sterile phosphate
143 buffer saline (PBS). Paroxysmal cough is the hallmark symptom of pertussis and is thought to play
144 a major role in transmission of the organism to a new host. To quantify respiratory function during
145 infection, we utilized whole body plethysmography (WBP). WBP instrumentation consists of
146 specialized containment chambers which monitor box flow, temperature, and airflow changes to
147 measure respiratory function. Counting coughs via WBP provides an extremely accurate and
148 unbiased way of counting coughs based on cough waveforms. Rat containment chambers were
149 placed inside a laminar flow hood and connected to a computer that would monitor the rats
150 breathing (**Fig. S1**). Early studies reported that *Bp* infection in young rats induced coughs that were
151 audible by ear (6) and in our preliminary studies this was apparent to us as well (data not shown).
152 Studies in the 1990s, of paroxysmal cough in rats were quantified with an analog sound recording
153 device (7). We hypothesized that rats infected with recent isolate D420 would induce more coughs
154 than reference strain Tohama 1, because rhesus macaques infected with Tohama 1 did not exhibit
155 overt disease symptoms but D420 induced robust coughing in baboons (26). *Bp* infected rats
156 developed cough at days 2-11 (**Fig. 2B-C**), while the mock infected rats (**Fig. 2A**) only had a few
157 isolated coughs, unrelated to infection. Days 1-3 post infection, the average cough count of rats
158 infected with Tohama 1 or D420 was less then 5 coughs per fifteen minutes. The average cough
159 count doubled by day 7 post infection with peak coughing occurring at day 8 post infection with
160 an average of 13 coughs per fifteen minutes of monitoring. After day 8, the average cough count
161 for rats infected with D420 remained above 10 coughs per fifteen minutes, while the rats infected
162 with Tohama 1 averaged less then 5 coughs. To summarize the cough data, the average cough

163 count over the course of infection is shown (**Fig. 2D**). We observed a significant increase in the
164 number of coughs at day eight post infection of *Bp* infected rats compared to the mock challenge
165 control. Rats infected with D420 coughed a total of 949 times, whereas rats infected with Tohama
166 1 coughed a total of 724 times over the entire twelve-day infection. To analyze differences in
167 cough count between strains, we utilized Area Under the Curve (AUC) analysis (**Fig. 2E**). AUC
168 analysis allows us to quantify the number of coughs over the entire course of infection per rat.
169 Upon this analysis, we note a significant increase in the number of coughs for rats infected with
170 D420 compared to the mock challenged rats over the twelve-day infection, while there was no
171 significant difference observed in Tohama 1 infected rats compared to mock challenge (non-
172 infected).

173 ***Bp* infection causes pulmonary distress.**

174 Infection with *Bp* leads to mucus production, lung damage, and invasion of cellular infiltrates into
175 the bronchioles of the lung (35). The lungs of infants with *Bp* exhibit edema, necrotizing
176 bronchiolitis, and inflammation in the lung leading to respiratory distress (35). WBP was used to
177 quantify the pulmonary distress over the course of infection. Pulmonary distress was measured by
178 calculating the enhanced pause (PenH) of the animal (**Fig. 3A-B**). The higher the PenH value, the
179 increased respiratory distress of the animal. Compared to the mock challenged rats both D420 and
180 Tohama 1 infected rats had an increase in PenH (**Fig. 3A-B**). We observed a significant increase
181 at day 9 with rats infected with D420 and at day 6 with rats infected with Tohama 1 compared to
182 mock challenge.

183

184 **Histological assessment of the lung and nasal cavity**

185 To further evaluate the inflammation in the lung, we utilized histology to confirm both acute and
186 chronic inflammation in response to *Bp* infection. At days 1, 3, 6, 9, and 12 post challenge the left
187 lobes were collected, sectioned, and stained with hematoxylin and eosin (H&E) (**Fig. 4A&C**).
188 Whole-lung images were taken to assess cellular infiltration (**Fig. S2A&B**). Once stained, the
189 blinded slides were then scored by a board-certified pathologist. Mock challenge animals exhibited
190 minimal inflammatory infiltrates consisting of focal accumulations of mononuclear cells in the
191 parenchyma and occasional infiltrates of neutrophils surrounding blood vessels (**Fig. 4A**). Rats
192 infected with Tohama 1 and D420 had significant increase in their acute inflammation scores
193 compared to mock challenge animals at day 1 and 3 post infection (**Fig. 4B**). Day 1 post infection
194 had the highest acute inflammation score (**Fig. 4B**). Rats exhibited mild to moderate neutrophil
195 infiltration of the parenchyma, blood vessels, and the bronchioles (**Fig. 4A**). Markers of acute
196 inflammation resolved after day 6 post challenge; however, infected rats at day 9 exhibited obvious
197 differences in the lung associated with mild to moderate infiltration of mononuclear cells and
198 higher chronic inflammation compared to mock challenge animals (**Fig. 4C**). Interestingly, rats
199 infected with D420 had significant higher chronic inflammation score compared to rats infected
200 with Tohama 1 (**Fig. 4D**). At day 12 post infection, we notice moderate resolution of inflammation
201 in both D420 and Tohama 1 infected rats (**Fig. 4B&D**). We also observed a significant increase in
202 lung weight, which can also be associated with elevated inflammation, at days 1 and 9 post
203 challenge in D420 infected rats compared to the mock challenge control (**Fig. S3A**). At day 12
204 post challenge rats infected with Tohama 1 had a significant increase in lung weight compared to
205 the mock challenge rats (**Fig. S3A**). These results confirm that *Bp* infection induces inflammation
206 in the lung of coughing Sprague-Dawley rats.

207

208 Due to the fact that *Bp* is a mucosal pathogen, we sought out to investigate any phenotypic changes
209 or inflammation in the Nasal-Associated Lymphoid Tissue (NALT) of pertussis infected rats via
210 histology. NALT helps elicit immunity against airborne and mucosal pathogens (36). The NALT
211 is located above the hard palate and studies have also shown that with the introduction of antigen
212 via vaccination or bacterial components, cellular expansion of the NALT ensues (37–41). The
213 NALT was stained with H&E, and we observed an increase in cellular infiltrate and a size
214 enlargement in the NALTs of *Bp* infected rats compared to the mock challenged (**Fig. S4A**).
215 ImageJ analysis was used to measure the area of both the left and right NALT of each animal (**Fig.**
216 **S4B**). We observed a significant increase in the area of the NALT of rats infected with D420 at
217 day 6 and 9 compared to mock challenge, while we only saw an increase in the NALT area in
218 Tohama 1 infected rats at day 9 post challenge compared to our mock challenge control (**Fig. S4B**).
219 This data could mark the potential cellular expansion of the NALT upon infection with *Bp*. Further
220 analysis of the expanding cell populations in the NALT will warrant more analysis especially in
221 the context of vaccine immunity.

222 **D420 infected rats have increased bacterial burden in the respiratory tract.**

223 We determined bacterial burden in the respiratory tract for Tohama I and D420 challenged rats at
224 days 1, 3, 6, 9, and 12. Over the coughing timeline, we see an overall decrease in viable bacteria
225 in the lung, trachea, and nasal cavity. In the lung, we observed a significant increase in the
226 recovered bacteria in the D420 infected rats compared to the Tohama 1 infected rats at both days
227 3 and 6 (**Fig. 5A**). The same trend is also seen in the nasal cavity at day 1 post infection (**Fig. 5C**).
228 We observed no difference in the viable bacteria recovered in the trachea (**Fig. 5B**). Previous
229 pertussis studies utilizing the rat model of pertussis noted weight loss from intrabronchial infection
230 of *Bp* strain 18-323 (10). *Bp* infection is sufficient to cause weight loss in rats (10). To confirm

231 this using intranasal infection, body weight was measured before challenge and upon euthanasia
232 to calculate percent weight change. We observed a significant decrease in weight gain in rats
233 infected with *Bp* strain D420 and Tohama 1 compared to the mock challenged at day 12 post
234 infection (**Fig. S3B-D**). Next, we aimed to compare the bacterial colonization between outbred
235 mice and rats in an effort to relatively compare the bacterial burden between models. We utilized
236 the bacterial burden data in CD1 mice and compared them to our data in rats (42). To address the
237 body weight differences between the mice and rats, we used the CFUs/organ and divided them by
238 their respective body weight for a crude comparison. Our data suggests that despite having a higher
239 initial challenge dose in the rat, the bacterial burden remaining in the respiratory tract is higher in
240 a mouse compared to the rat later during infection (**Fig. S5**). In general, the rat model is likely a
241 lower challenge dose per body weight model of pertussis compared to mouse models.

242 **Immunofluorescence confirms colonization of *Bp* in the lungs and nasal cavity.**

243 We next wanted to assess the location of bacterial colonization in the nasal cavity and visualize
244 any bacteria left behind following flushing of the nares. We sectioned the skulls after flushing the
245 nasal cavity and utilized Immunofluorescence (IF). After visually scanning the nasal cavity with
246 confocal microscopy, we found bacteria in the nasal turbinates and the NALT (**Fig. 6A&C**). We
247 also confirmed that the bacteria were trapped in the crypts between the epithelial cells (**Fig. 6B**).
248 The relative locations of where the bacteria were found in the nasal cavity can be seen in (**Fig.**
249 **S6A**). Our results show that *Bp* remained in the nasal cavity over the entire course of infection
250 even after flushing the nares and the bacteria also remained captured in the cilia of the nasal
251 turbinates (**Fig. S6B**). The flushing of the nasal cavity underrepresents the total number of *Bp* in
252 the nasal cavity. In the lung, *Bp* colonizes the bronchioles, while the alveolar spaces remain non-
253 colonized (**Fig. 6D&F**). IF was performed on the nasal cavity and lung of mock challenge animals

254 to access non-specific binding (**Fig. S7**). To assess any potential differences between the strains
255 we blindly manually counted the labeled microcolonies in the lung and nasal cavity. It is also
256 worthy to note, we found no differences in microcolony counts in the lung or nasal cavity between
257 the strains (**Fig. S6 C-D**) despite our observed differences in bacterial burden by CFU
258 enumeration. CFU is likely a better indicator of overall bacterial burden, but IF revealed that *Bp*
259 is hiding and well attached in distinct locations in the airway.

260 **Measurement of recruitment of neutrophils in response to *Bp* infection**

261 Previous studies utilizing the rat model of pertussis noted leukocytosis and an increase in the
262 amount of total white blood cells using agar-encased *Bp* for infection (8). Neutrophils circulating
263 through the blood were measured during intranasal infection by antibody staining and flow
264 cytometry, as *Bp* infection results in varying amounts of neutrophilia (35, 43). The percentage of
265 CD45+ neutrophils in the blood were increased of infected rats compared to the mock challenged
266 animals (**Fig. 7A**). Specifically, a significant increase in the number of circulating neutrophils in
267 the blood of rats infected with D420 at days 1 and 9, with Tohama 1 infected rats only having a
268 significant increase to mock challenge at day 9 (**Fig. 7A**). Next, cytokines concentrations in the
269 lung and serum were measured to identify factors that could contribute to the recruitment of
270 neutrophils, specifically IL-6 and IL-17. IL-6 is a potent inducer of Th17 polarization and been
271 found elevated during murine infection with *Bp* (42, 44–46). Surprisingly, we did not observe any
272 significant changes in IL-6 due to *Bp* infection (**Fig. 7B&C**). It has been well documented in the
273 mouse model that the production of IL-17 in pertussis plays a role in the increase of circulating
274 neutrophils (47). There were no significant changes in IL-17a in the serum or lungs of *Bp* infected
275 rats compared to mock challenge (**Fig. 7D&E**). Th1 and Th2 cytokines and chemokines in the
276 lung and serum were also measured (**Fig. S7-Fig. S10**). We did not observe an increase in the

277 induction of cytokines by infection overall; however in the serum, rats infected with D420 had a
278 significant increase in IL-5 compared to Tohama 1 infected rats at day 12 post infection (**Fig. S8**).
279 There was a significant increase in IL-5 and TNF-alpha at day 6 post infection in the lung in rats
280 infected with Tohama 1 compared to D420 (**Fig. S9**). We also observed significant increases in
281 chemokines MIP-1a, RANTES, MCP-3, MIP-2, and IP10 in rats infected with D420 at day 12 post
282 challenge in the serum compared to rats infected with Tohama 1 (**Fig. S10**). In the lung, MIP-2
283 and IP10 were increased in rats infected with D420 compared to mock challenge control (**Fig.**
284 **S11**). Despite slight differences highlighted above we did not observe a massive difference in the
285 cytokine and chemokine responses during infection.

286 **Serological analysis of *Bp* specific antibodies**

287 Enzyme-linked immunosorbent assays (ELISA) were performed to determine the serological
288 response generated from *Bp* infection. We measured IgM and IgG antibody titers in the serum to
289 whole bacterium and *Bp* associated virulence factors at days 1, 3, 6, 9, and 12 post infection. In
290 previous studies utilizing the rat model, intrabronchial infection induced the generation of IgG
291 antibody titers to sonicated *Bp* 28 days post infection (8). Intranasal infection of strain D420 has
292 generated significant anti-PT IgG antibody titers in the baboon model at days 17-19 of infection
293 (26). However, analysis of antibody titers generated against an intranasal pertussis infection in the
294 rat has yet to be determined and we wanted to characterize the primary antibody response to *Bp*.
295 We observed a significant 10-fold increase in the anti-*Bp* IgM antibody response at day 9 and an
296 almost 20-fold increase 12 days post challenge in rats infected with D420 compared to mock
297 challenge, while we also saw a significant 6-fold increase in anti-*Bp* IgM at day 12 post infection
298 to the amount of anti-*Bp* IgM from Tohama 1 infection (**Fig. 8A&B**). At day 12 post infection, we
299 observed that *Bp* infection induced significant production of anti-*Bp* IgG in the serum compared

300 to mock challenge animals (**Fig. 8C&D**). At day 12 post infection, Tohama 1 infected rats had a
301 significant increase, nearly double anti-*Bp* IgG antibody titers compared to rats infected with
302 D420. AUC analysis revealed a significant increase in anti-*Bp* IgM antibodies from rats infected
303 with D420 compared to Tohama 1 infected rats (**Fig. S12A**). However, no difference was observed
304 in AUC of the anti-*Bp* IgG antibody response over the total course of infection between the
305 bacterial challenge groups (**Fig. S12B**). It is also important to note we also did not see a significant
306 increase in the generation of antibodies titers to PT, ACT, PRN, and FHA in *Bp* infected rats
307 compared to mock challenge infected animals (**Fig. 8A-D**). Graphs representing statistical
308 significance of the antibody titers between D420 and Tohama 1 infected rats can be observed in
309 the supplementary data (**Fig. S13**).

310 **Discussion**

311 To date, the only known reservoir for *Bp* is humans, making the development of a suitable animal
312 model challenging. Multiple models have been studied to recapitulate similar disease symptoms
313 seen in humans, as well as provide insight into the pathogenesis of *Bp*. We set out to re-investigate
314 the rat model of pertussis that was originally introduced in 1938 (6). In our study, we have
315 confirmed that intranasal administration of *Bp* led to bacterial colonization of the upper and lower
316 respiratory tract (**Fig. 5**). Through intranasal instillation, bacteria were able to infect the nasal
317 cavity, trachea, and lung post challenge. This is important to note as infants with pertussis
318 experience pneumonia more frequently than adolescents and adults (35). Mouse models of
319 pertussis also rely on depositing large numbers of bacteria into the lung to establish infection (2).
320 Here, our data shows that through intranasal infection, we establish an infection of both the upper
321 and lower respiratory tract, resembling the infection seen in adolescents and adults with pertussis.

322

323 Previous reports have shown *Bp* infection of rats induced paroxysmal coughs, and these coughs
324 were counted by analog audio recordings (7). Utilizing WBP we are able to precisely and digitally
325 count coughs and measure respiratory capacity for the first time with rats infected with *Bp* (**Fig.**
326 **2&3**). Here, coughs induced from infection appeared at day 1-2 post challenge, with the number
327 of coughs gradually increasing with peak cough occurring at day 8 post challenge. Rats challenged
328 with intrabronchial instillation of *Bp* noted similar peak cough counts approximately 10 days post
329 challenge (48). This is also one of the first studies utilizing WBP to count coughs in rats with
330 bacterial infection. We did observe some infected rats that did not overtly cough. This reflects the
331 frequency of coughs in adolescents and adults (49). Previous studies using baboons also show that
332 *Bp* infection elicits severe coughs lasting over 2 weeks post challenge with peak coughs per hour
333 being at day 4 post challenge (26). It is also important to note that at peak coughing, the bacterial
334 burden was low, which was also observed in previous *Bp* infected rat research (7). The data suggest
335 that other factors could be playing a role in cough production despite the bacterial infection being
336 resolved. We have also observed that the increased bronchi restriction coincides with the increased
337 coughs during days 6-11 post challenge (**Fig. 3**). The decreased lung capacity and increase in
338 cough could be further associated with an increase of chronic inflammation in the lung (**Fig. 4**).
339 Our data suggests that the coughing rat model of pertussis can be used to potentially evaluate the
340 mechanism of cough, which still requires further investigation.
341
342 Initial studies characterizing the serum antibody response to rats infected with *Bp* noted an increase
343 antibody response to endotoxin correlated with the low amount of cultivable organisms in the lung
344 following intrabronchial challenge (7). Hall et al. demonstrated that rats infected with *Bp* become
345 sera positive to whole cell *Bp* lysate, FHA, and PT at 28 days post intrabronchial challenge (8).

346 Anti-FHA antibody titers were not detected until day 16 post challenge, while anti-PT antibody
347 titers were not detected until day 28 post challenge (23). In our study, we characterized the
348 antibody response following intranasal challenge of *Bp* over the whole infection timeline. Using
349 *Bp* coated ELISA plates, we detected anti-*Bp* IgG antibody titers in rats infected with *Bp* at day 9
350 post challenge with a significant increase compared to mock challenge observed at day 12 (**Fig.**
351 **8**). We also measured a significant increase in anti-*Bp* IgM antibody titers in rats infected with
352 D420 compared to the mock challenge and Tohama 1 infected animals (**Fig. 8**). One potential
353 hypothesis that could explain this observation is the genetic differences between the two strains as
354 D420 harbors the *ptxP3* allele, leading to an increase in PT production (25). PT has been shown
355 to suppress *Bp* antibody responses in the serum and limit expression of antigen presenting
356 receptors (50–53).

357 With the increased interest in developing new pertussis vaccines, it is imperative for the
358 development of animal models to evaluate the pathogenic potential of current emerging strains, as
359 well as identify any potential differences in disease burden between genetically divergent strains.
360 Sato and Sato first used *Bp* strain Tohama 1 in the development of the acellular pertussis vaccine,
361 and Tohama 1 is still being used in pertussis research today, notably due to its genetic malleability
362 (54). D420 has been instrumental in the development of the baboon model and has also been used
363 to study vaccine efficacy in regards to transmission in the baboon model (29). In our study, we
364 observed multiple differences between Tohama 1 and D420 ranging from coughing, bacterial
365 colonization, and serological responses (**Fig. 2, 5, 8**). We hypothesize that these observed
366 differences could be due to the increased amount of PT through the *ptxP3* allele of D420 (25).
367 Strains, such as D420, harboring the *ptxP3* allele lead to increase in virulence, PT production, and
368 prevalence (55, 56). A previous study utilizing the intranasal mouse model has shown an increase

369 in bacterial colonization with *ptxP3* strains (57). Parton et al. illustrated that infection with a PT
370 deficient strain was unable to induce cough (9). It is possible that there are other factors beyond
371 PT that can account for the observed virulence differences between Tohama I and D420. In the
372 rat model, unlike the mouse, we also did not measure any significant increases in IL-17 and IL-6
373 in the lung and serum following challenge. IL-17 and IL-6 are increased following *Bp* infection in
374 mice and baboon (30, 44, 58). Further investigation is needed to explain the observed differences.

375

376 In summary, we have demonstrated that the rat model of pertussis can be used as a tool to further
377 study *Bp* pathogenesis and recapitulate some of the similar symptoms of pertussis as seen in
378 humans. Pertussis is often described as a 100 day cough, because adolescents and adults extended
379 duration of coughing (59). Coughing episodes in infants with pertussis can lead to vomiting,
380 choking, gagging, and apneic episodes that can lead to seizures (60). Mice have not been used to
381 evaluate coughing manifestation in pertussis until recently, and baboons are expensive and limited
382 to specialized facilities (61). The coughing rat of pertussis provides feasibility through low
383 husbandry costs, availability of animals, and ease of use as a model. In this study, we carefully
384 compared two established strains that have been used in the pertussis field, Tohama 1 and D420.
385 In future studies, we aim to evaluate whole cell and acellular vaccine mediated immunity against
386 D420. Armed with this model, we can further our understanding of pathogenesis, host response
387 during pertussis, genetic divergence between strains, and vaccine-mediated immunity.

388 MATERIALS AND METHODS

389 ***Bordetella pertussis* strains and growth conditions.** *Bp* strain Tohama 1 was graciously provided
390 by Dr. Peter Sebo (Czech Academy of Sciences) and strain D420 was acquired from the CDC
391 Pertussis Lab provided by Drs. Maria L. Tondella and Michael Weigand. *Bp* strain Tohama 1 and

392 D420 were cultured on Bordet Gengou (BG) agar (RemelTM Cat. R45232) that was supplemented
393 with 15% defibrinated sheep blood (Hemostat Laboratories Cat. DSB500) (62). Bacteria were
394 cultured on BG plates for 48 hrs at 36°C. *Bp* was transferred from BG plates with polyester swabs
395 (Puritan Cat. 22-029-574) and transferred into 20 ml Stainer-Scholte liquid media (SSM) in new
396 125 ml flasks (Thermo Fisher Scientific Cat. FB500125) (63). The liquid cultures were grown for
397 24 hrs at 36°C inside a shaking incubator at 180 rpm.

398

399 **Intranasal challenge with *B. pertussis*.** Seven-week-old ~170g female Sprague-Dawley rats
400 (Charles River Cat. 001CD) were used for challenge. *Bp* was grown as described above. The rats
401 were then anesthetized with ketamine and xylazine 50-100/5-10 mg/kg and challenged with 10⁸
402 CFUs (100µl intranasally), administering two 50µl doses one in each nostril (**Fig. 1**). Body weight
403 of each rat was recorded before challenge and immediately post euthanasia. Rats were euthanized
404 at day 1, 3, 6, 9, and 12 post bacterial challenge. Mock challenge animals (no bacteria) were
405 administered 100µl of sterile endotoxin free phosphate buffer saline (PBS) (Thermo Fisher
406 Scientific Cat. TMS012A) intranasally. Upon euthanasia blood was collected via cardiac puncture
407 and transferred into ethylenediaminetetraacetic acid (EDTA) (BD Cat. 365974) and serum
408 separation (BD Cat. 026897) tubes. Blood collected in the EDTA tube was used for flow
409 cytometric analysis, while blood collected in the serum separation tubes were used to isolate the
410 serum via centrifugation (15,000 x g for 3 min) and used for serological and cytokine analysis.
411 Lung and trachea were excised and homogenized to determine bacterial burden. Upon removal,
412 the wet weight of the lungs was recorded. Lungs were then collected in gentleMACS C tubes
413 (Miltenyi Biotec) and homogenized using gentleMACSTM Dissociator (Cat. 130-095-927). The
414 trachea was homogenized using a Polytron homogenizer. To determine the bacterial burden in the

415 nares, 2mls of sterile 1x PBS was flushed through the nares and collected for plating. Serial
416 dilutions of the homogenates and nasal collection were plated on BG plates supplemented with
417 ceftibuten (Sigma-Aldrich Cat. SML0037) 10 μ g/ml to decrease growth of normal rat respiratory
418 tract flora.

419

420 **Analysis of coughing and bronchiole restriction using whole-body plethysmography.** To
421 quantify respiratory function during infection, we utilized a Buxco® FinePointe™ Whole Body
422 Plethysmograph instrument (WBP) (DSI). FinePointe™ software was used for collecting,
423 analyzing, and reporting the breathing data. Everyday post challenge for twelve consecutive days
424 at 5:00PM the rats were placed inside designated chambers to acclimate for 5 min. We chose this
425 time, not only due to rats being nocturnal, but this was the time the animals were most awake and
426 active as confirmed by video camera (data not shown). Following acclimation, the rat's respiratory
427 profile was recorded for 15 min. Each chamber is fitted with a transducer that measures the changes
428 in box flow and airflow of the subject. The chambers are also fitted with a screen pneumotach that
429 allows airflow in and out of the chamber that can be recorded. Coughs were counted during the
430 designated 15 min, and enhanced pause (PenH) was calculated to signify bronchiole restriction.
431 Coughs were counted based on large box flow changes of the subject, and changes in both humidity
432 and temperature of the air flowing in and out of the subject with classical cough-like waveforms.
433 Cough detection algorithm is applied with patented fuzzy logic criteria to determine if the event is
434 a cough (64). When analyzing the number of coughs, each cough in a multi-cough event was
435 counted individually.

436

437 **Histological assessment of the lung and nasal-associated lymphoid tissue.** Upon euthanasia,
438 the rat skull was excised, and the mandible removed. The skulls were fixed in 10% formalin (Fisher
439 Scientific Cat. SF98-4) for 48 hrs at 26 °C. After fixation, formalin was removed, and skulls were
440 frozen at -80 °C until decalcification. Skulls were de-calcified with Richard-Allan Scientific
441 decalcifying solution (Thermo Scientific Ref. 8340-1) at room temperature for 24-48 hrs and
442 embedded in paraffin. Samples were sectioned and stained with Hematoxylin-Eosin (H&E). A
443 Biotek Lionheart Fx was used to scan and image the NALT. ImageJ was used to trace and measure
444 the area of both the left and right NALT using the images from the Lionheart Fx. The left lobe of
445 the lung was excised and fixed in 10% formalin 48 hrs at 26 °C. The left lobe was then embedded
446 in paraffin and stained with H&E by the WVU Pathology Department. H&E stained sections were
447 used to characterize and score acute and chronic inflammation of the lung. All scorings were done
448 by a board-certified pathologist (iHisto). Individual scores were based on a standard qualitative
449 scoring criterion: (0 – none, 1 – minimal (rare), 2 – mild (slight), 3 – moderate, 4 – marked, 5 –
450 severe). Chronic inflammation was characterized by mononuclear infiltrates of the parenchyma,
451 blood vessels, and airway. Acute inflammation scores were assigned due to the presence of
452 neutrophils in the parenchyma, blood vessels, and airway. All examination and scoring were
453 performed blindly as no knowledge of treatment groups were known.

454

455 **Imaging of *Bp* in the lung and nasal cavity.** Detection of *Bp* in the nasal cavity and the lung were
456 quantified via immunofluorescence (IF) and confocal imaging. The left lobe of the lung and nasal
457 cavity were preserved and sectioned as described above. Sectioned samples underwent
458 deparaffination and rehydration using xylene and ethanol (100%-70%). Antigen retrieval was
459 performed by incubating samples in citrate buffer at 98 °C for 20 min. Samples were blocked using

460 5% Bovine Serum Albumin (BSA) (Fisher Scientific Cat. 159008) for 1 hr and primarily labeled
461 utilizing a polyclonal rabbit FHA antibody (Gift from Dr. Erik Hewlett) diluted in 1x PBS.
462 Secondary labeling occurred utilizing an anti-rabbit IgG conjugated with Texas Red (Fisher
463 Scientific Cat. T2767) diluted in 1x PBS. Samples were then covered in mounting media (Prolong
464 Gold Antifade reagent with DAPI Cat. 8961). Samples were imaged using a Nikon A1R confocal
465 microscope. Images were analyzed on DAPI channel and at wavelength 650nm for Texas-Red
466 acquisition. Images were acquired using 100x oil immersion lens (100x/1.40 Nikon Plan APO).
467 To identify any potential differences in IF between the two strains, all IF images were deidentified
468 and the microcolonies were manually counted blindly by four volunteers with 2-3 fields of view
469 used per sample.

470 **Flow cytometry analysis of phagocytes.** Neutrophil recruitment in the blood was evaluated by
471 flow cytometry. Blood samples upon collection were then lysed with Pharmylse buffer (BD
472 Biosciences Cat. 555899) for 20 min at room temperature, with slight vortexing throughout. The
473 remaining cells were centrifuged at 1,000 x g for 5 min and re-suspended in PBS + 1% fetal bovine
474 serum (FBS) (Gemini Bio Products Cat. 100-500) for 15 min on ice. Samples were then block with
475 anti-CD32 (BD Pharmingen Cat. 550270) antibody for 30 min at 4°C. After incubation, the cells
476 were stained with the appropriate antibody markers; CD45 Alexa flour 700 (Biolegend Cat.
477 202218), CD161 APC (Biolegend Cat. 205606), CD45R PE Cy7 (eBioscience Cat. 25-0460-82),
478 His48 FITC (eBioscience Cat. 11-0570-82), CD43 PE (Biolegend Cat. 202812), and CD3
479 VioGreen (Miltenyi Biotec Cat. 130-119-125) (65). After the addition of antibodies, the cells
480 incubated 1 hr at 4°C in the dark. To prepare the lung samples for flow cytometry, the lung
481 homogenate was pushed through a 70 µm cell strainer (BioDesign Cell MicroSives Cat. N70R),
482 creating a single-cell suspension. The suspension was centrifuged at 1,000 x g for 5 min. After

483 removal of the supernatant, the pellet was resuspended in Pharmlyse buffer and the cells incubated
484 at 37°C for 2 min. After incubation, the cells were centrifuged at 1,000 x g for 5 min, supernatant
485 was removed and blocked and labeled with antibody as described above. The lung and blood
486 samples were centrifuged at 1,000 x g for 5 min and the pellets were resuspended in 0.4%
487 paraformaldehyde and stored overnight at 4°C. Samples were washed with 1x PBS and
488 resuspended in 1x PBS for analysis. Cell samples were analyzed on a LSR Fortessa and samples
489 were gated and analyzed using FlowJo v10.

490 **Lung and serum cytokine and chemokine analysis.** Lung homogenate samples were centrifuged
491 at 19,000× g for 4 min and the supernatant was removed and stored at -80 °C. Quantitative
492 analysis of cytokines in the serum and lung homogenate was performed using ProcartaPlex
493 Multiplex Immunoassay kit: Cytokine & Chemokine 22-Plex Rat ProcartaPlex™ Panel (Cat.
494 EPX220-30122-901) per the manufacturer's instructions.

495

496 **Serological analysis.** Antibody titers of infected rats were measured by ELISA. *Bordetella*
497 *pertussis* specific ELISA plates were coated with 50 µl of 10⁸ *B. pertussis* grown as mentioned
498 above for infection. For measurement of antibody titers to FHA (Enzo ALX-630-123-0100), PRN
499 (GSK), PT (List Biological Laboratories #180), and ACT (Gift from Dr. Erik Hewlett), we coated
500 plates with 50 µl of each antigen at 1µg/ml. Once coated, plates incubated over night at 4°C. Plates
501 were washed with 1x PBS-Tween 20 and blocked with 5% skim milk for 2 hours at 37°C. Plates
502 were washed again and the serum from the challenge studies were serially diluted down the ELISA
503 plate and incubated for 2 hours at 37°C. After incubation, the plates were washed and coated with
504 100µl of secondary goat anti-rat IgG (SouthernBiotech Cat. 3030-04) and IgM (SouthernBiotech
505 Cat. 3020-04) antibody at a dilution of 1:2,000 in PBS + 5% milk. Once coated, the plate was

506 incubated for 1 hour at 37°C. Plates were then washed again with PBS-Tween 20 and 100 μ l *p*-
507 nitrophenyl phosphate substate (Thermo Scientific Cat. 37620) was added, prepared by
508 manufactures instructions, and the plate was developed for 30 min at room temperature for titers
509 to IgG and IgM. Biotek Synergy H1 microplate reader was used to measure the colorimetric signal
510 of the ELISA plate at A_{450} . Positive antibody titers were determined by any values that were higher
511 than the baseline. The baseline is set as double the average value of the blank, no serum added to
512 these wells. Generating Nightingale rose plots in Python: Data from individual mice were averaged
513 in Microsoft Excel and log transformed. Values were formatted in Excel to be compatible with
514 Python. Data were imported from .csv files using the pandas package and plotted using the
515 “Barpolar” representation feature in the plotly.graph_objects module. Samples with a titer less
516 than 50 were assigned a value of 0.

517

518 **Statistical analysis.** All data was analyzed using GraphPad Prism 7. The minimum biological
519 replicates for the challenge studies were four. For statistical comparisons between multiple groups
520 over the entire course of the infection a two-way analysis of variance (ANOVA) was used One-
521 way ANOVA was used for comparison between groups for each individual day with Tukey’s post
522 hoc test. Unpaired Student *t*-tests were used for area under the curve (AUC) analysis. Follow-up
523 statistical tests are annotated in figure legends.

524

525 **Data availability.** Data requests for figures provided can be addressed to the corresponding author.

526

527 **Ethics statement.** All studies were performed in accordance West Virginia University
528 Institutional Animal Care and Use Committee approved protocol 1811019148.6.

529 **ACKNOWLEDGMENTS**

530 The preliminary work on this project was in part supported by the Vaccine Development
531 Center at WVU-HSC through a Research Challenge Grant no. HEPC.dsr.18.6 from the Division
532 of Science and Research, WV Higher Education Policy Commission. The project was also
533 supported by NIH R01AI137155 (F.H.D) and CDC Contract (BAA) 75D301-19-R-67835
534 (F.H.D). Flow cytometry experiments were performed in the West Virginia University Flow
535 Cytometry Core Facility, which is supported by the National Institutes of Health equipment grant
536 number S10OD016165 and the Institutional Development Award (IDeA) from the National
537 Institute of General Medical Sciences of the National Institutes of Health under grant numbers
538 P30GM103488 (CoBRE) and P20GM103434 (INBRE).

539 JMH, DTB, and JK performed bacterial challenge. JMH, SMK, and JK monitored rat
540 coughing and respiratory function by whole body plethysmography. All authors participated in the
541 animal experiments. JMH and ESK contributed to flow cytometry panel design and analysis. JMH
542 and TYW prepared and ran flow cytometry samples. MAW and MAD performed cytokine
543 analysis. JMH analyzed H&E histology slides. JMH and GJB performed and analyzed
544 immunohistochemistry. JMH performed ELISA assays. JMH, MB, and FHD contributed to
545 experimental design. JMH wrote manuscript with critical revisions from all authors.

546 The authors would like to thank Dr. Kathleen Brundage (WVU Flow Cytometry & Single
547 Cell Core Facility) for assisting in flow cytometry and equipment instruction. The authors would
548 also like to thank Dr. Amanda Ammer (Microscope Imaging Facility) for support in imaging the
549 IF slides. The authors would also like to thank Dr. James Coad, Jacqueline Karakiozis, and Brice
550 Hickey (Pathology/Histology Core Facility) for the preparation of lung and nasal cavity for IF and
551 performing H&E on the lung and nasal cavity.

552 The authors would also like to acknowledge that figure 1 was Created with BioRender.com.

553

554 **References**

- 555 1. Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical
556 manifestations of respiratory infections due to *Bordetella pertussis* and other *Bordetella*
557 subspecies. *Clin Microbiol Rev* 18:326–382.
- 558 2. Melvin JA, Scheller E V., Miller JF, Cotter PA. 2014. *Bordetella pertussis* pathogenesis:
559 Current and future challenges. *Nat Rev Microbiol* 2014/03/13. 12:274–288.
- 560 3. Weigand MR, Peng Y, Loparev V, Batra D, Bowden KE, Burroughs M, Cassiday PK,
561 Davis JK, Johnson T, Juieng P, Knipe K, Mathis MH, Pruitt AM, Rowe L, Sheth M,
562 Tondella ML, Williams MM. 2017. The History of *Bordetella pertussis* Genome
563 Evolution Includes Structural Rearrangement. *J Bacteriol* 199:e00806-16.
- 564 4. Elahi S, Holmstrom J, Gerdts V. 2007. The benefits of using diverse animal models for
565 studying pertussis. *Trends Microbiol. Trends Microbiol.*
- 566 5. Cherry JD. 2015. The History of Pertussis (Whooping Cough); 1906–2015: Facts, Myths,
567 and Misconceptions. *Curr Epidemiol Reports* 2:120–130.
- 568 6. Hornibrook JW, Ashburn LL. 1939. A Study of Experimental Pertussis in the Young Rat.
569 *Public Heal Reports* 54:439.
- 570 7. Woods DE, Franklin R, Cryz SJ, Ganss M, Peppler M, Ewanowich C. 1989. Development
571 of a rat model for respiratory infection with *Bordetella pertussis*. *Infect Immun* 57:1018–
572 1024.
- 573 8. Hall E, Parton R, Wardlaw AC. 1994. Cough production, leucocytosis and serology of rats
574 infected intrabronchially with *Bordetella pertussis*. *J Med Microbiol* 40:205–213.

575 9. Parton R, Hall E, Wardlaw AC. 1994. Responses to *Bordetella pertussis* mutant strains
576 and to vaccination in the coughing rat model of pertussis. *J Med Microbiol* 40:307–312.

577 10. Hall E, Parton R, Wardlaw AC. 1997. Differences in coughing and other responses to
578 intrabronchial infection with *Bordetella pertussis* among strains of rats. *Infect Immun*
579 65:4711–4717.

580 11. Hall E, Parton R, Wardlaw AC. 1998. Responses to acellular pertussis vaccines and
581 component antigens in a coughing-rat model of pertussis. *Vaccine* 16:1595–603.

582 12. Nakamura K, Shinoda N, Hiramatsu Y, Ohnishi S, Kamitani S, Ogura Y, Hayashi T,
583 Horiguchi Y. 2019. BspR/BtrA, an Anti- σ Factor, Regulates the Ability of *Bordetella*
584 *bronchiseptica* To Cause Cough in Rats. *mSphere* <https://doi.org/10.1128/msphere.00093-19>.

586 13. Libster R, Edwards KM. 2012. Re-emergence of pertussis: what are the solutions? *Expert*
587 *Rev Vaccines* 11:1331–1346.

588 14. Hill HA, Elam-Evans LD, Yankey D, Singleton JA, Dietz V. 2016. Vaccination Coverage
589 Among Children Aged 19–35 Months — United States, 2015. *MMWR Morb Mortal*
590 *Wkly Rep* 65:1065–1071.

591 15. National, State, and Local Area Vaccination Coverage Among Children Aged 19–35
592 Months — United States, 2011.

593 16. Klein NP, Bartlett J, Fireman B, Baxter R. 2016. Waning Tdap Effectiveness in
594 Adolescents. *Pediatrics*.

595 17. Klein NP, Bartlett J, Rowhani-Rahbar A, Fireman B, Baxter R. 2012. Waning Protection
596 after Fifth Dose of Acellular Pertussis Vaccine in Children. *N Engl J Med* 367:1012–9.

597 18. Klein NP, Bartlett J, Fireman B, Rowhani-Rahbar A, Baxter R. 2013. Comparative

598 Effectiveness of Acellular Versus Whole-Cell Pertussis Vaccines in Teenagers. *Pediatrics*
599 131:e1716–e1722.

600 19. Sheridan SL, Frith K, Snelling TL, Grimwood K, McIntyre PB, Lambert SB. 2014.
601 Waning vaccine immunity in teenagers primed with whole cell and acellular pertussis
602 vaccine: recent epidemiology. *Expert Rev Vaccines* 13:1081–1106.

603 20. Sheridan SL, Ware RS, Grimwood K, Lambert SB. 2012. Number and order of whole cell
604 pertussis vaccines in infancy and disease protection. *JAMA - J Am Med Assoc.* American
605 Medical Association.

606 21. Tartof SY, Lewis M, Kenyon C, White K, Osborn A, Liko J, Zell E, Martin S, Messonnier
607 NE, Clark TA, Skoff TH. 2013. Waning Immunity to Pertussis Following 5 Doses of
608 DTaP. *Pediatrics* 2013/03/13. 131:e1047–e1052.

609 22. Williams MM, Sen KA, Weigand MR, Skoff TH, Cunningham VA, Halse TA, Tondella
610 ML. 2016. *Bordetella pertussis* strain lacking pertactin and pertussis toxin. *Emerg Infect*
611 Dis <https://doi.org/10.3201/eid2202.151332>.

612 23. Hall E, Parton R, Wardlaw AC. 1999. Time-course of infection and responses in a
613 coughing rat model of pertussis. *J Med Microbiol* 48:95–98.

614 24. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG,
615 Churcher CM, Bentley SD, Mungall KL, Cerdeño-Tárraga AM, Temple L, James K,
616 Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I,
617 Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin
618 N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond
619 D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S,
620 Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell

621 BG, Maskell DJ. 2003. Comparative analysis of the genome sequences of *Bordetella*
622 *pertussis*, *Bordetella parapertussis*, and *Bordetella bronchiseptica*. *Nat Genet* 2003/08/12.
623 35:32–40.

624 25. Boinett CJ, Harris SR, Langridge GC, Trainor EA, Merkel TJ, Parkhill J. 2015. Complete
625 Genome Sequence of *Bordetella pertussis* D420. *Genome Announc* 3.

626 26. Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. 2012. Nonhuman primate model of
627 pertussis. *Infect Immun* 2012/01/19. 80:1530–1536.

628 27. Warfel JM, Merkel TJ. 2014. The baboon model of pertussis: Effective use and lessons for
629 pertussis vaccines. *Expert Rev Vaccines* 13:1241–1252.

630 28. Pinto M V., Merkel TJ. 2017. Pertussis disease and transmission and host responses:
631 insights from the baboon model of pertussis. *J Infect* 74:S114–S119.

632 29. Warfel JM, Zimmerman LI, Merkel TJ. 2014. Acellular pertussis vaccines protect against
633 disease but fail to prevent infection and transmission in a nonhuman primate model. *Proc
634 Natl Acad Sci U S A* 111:787–792.

635 30. Warfel JM, Merkel TJ. 2013. *Bordetella pertussis* infection induces a mucosal IL-17
636 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates.
637 *Mucosal Immunol* 6:787–796.

638 31. KASUGA T, NAKASE Y, UKISHIMA K, TAKATSU K. 1954. Studies on *Haemophilus*
639 *pertussis*. V. Relation between the phase of bacilli and the progress of the whooping-
640 cough. *Kitasato Arch Exp Med* 27:57–62.

641 32. Caro V, Bouchez V, Guiso N. 2008. Is the Sequenced *Bordetella pertussis* strain Tohama
642 I representative of the species? *J Clin Microbiol* 46:2125–8.

643 33. Sato H, Sato Y. 1985. Protective antigens of *Bordetella pertussis* mouse-protection test

644 against intracerebral and aerosol challenge of *B. pertussis*. *Dev Biol Stand* 61:461–7.

645 34. Barbier M, Boehm DT, Sen-Kilic E, Bonnin C, Pinheiro T, Hoffman C, Gray M, Hewlett

646 E, Damron FH. 2017. Modulation of pertussis and adenylate cyclase toxins by sigma

647 factor RpoE in *Bordetella pertussis*. *Infect Immun* 85.

648 35. Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, Wu K, Goldsmith

649 CS, Greer PW, Montague JL, Eliason MT, Holman RC, Guarner J, Shieh W, Zaki SR.

650 2008. Pathology and Pathogenesis of Fatal *Bordetella pertussis* Infection in Infants. *Clin*

651 *Infect Dis* 47:328–338.

652 36. Takaki H, Ichimiya S, Matsumoto M, Seya T. 2018. Mucosal Immune Response in Nasal-

653 Associated Lymphoid Tissue upon Intranasal Administration by Adjuvants. *J Innate*

654 *Immun* 10:515–521.

655 37. Asanuma H, Hodson Thompson A, Iwasaki T, Sato Y, Inaba Y, Aizawa C, Kurata T,

656 Tamura S ichi. 1997. Isolation and characterization of mouse nasal-associated lymphoid

657 tissue. *J Immunol Methods* 202:123–131.

658 38. Debertin AS, Tschernig T, Tönjes H, Kleemann WJ, Tröger HD, Pabst R. 2003. Nasal-

659 associated lymphoid tissue (NALT): frequency and localization in young children. *Clin*

660 *Exp Immunol* 134:503–507.

661 39. Hirano T, Kodama S, Moriyama M, Kawano T, Suzuki M. 2009. The role of Toll-like

662 receptor 4 in eliciting acquired immune responses against nontypeable *Haemophilus*

663 *influenzae* following intranasal immunization with outer membrane protein. *Int J Pediatr*

664 *Otorhinolaryngol* 73:1657–1665.

665 40. Petukhova G, Naikhin A, Chirkova T, Donina S, Korenkov D, Rudenko L. 2009.

666 Comparative studies of local antibody and cellular immune responses to influenza

667 infection and vaccination with live attenuated reassortant influenza vaccine (LAIV)
668 utilizing a mouse nasal-associated lymphoid tissue (NALT) separation method. *Vaccine*
669 27:2580–2587.

670 41. Zuercher AW, Coffin SE, Thurnheer MC, Fundova P, Cebra JJ. 2002. Nasal-Associated
671 Lymphoid Tissue Is a Mucosal Inductive Site for Virus-Specific Humoral and Cellular
672 Immune Responses. *J Immunol* 168:1796–1803.

673 42. Boehm DT, Hall JM, Wong TY, DiVenere A, Sen-Kilic E, Bevere JR, Bradford SD,
674 Blackwood CB, Elkins C, DeRoos KA, Gray MC, Cooper CG, Varney ME, Maynard JA,
675 Hewlett EL, Barbier M, Damron FH. 2018. Evaluation of adenylate cyclase toxoid antigen
676 in acellular pertussis vaccines using a *Bordetella pertussis* challenge model in mice. *Infect*
677 *Immun IAI*.00857-17.

678 43. Sawal M, Cohen M, Irazuzta JE, Kumar R, Kirton C, Brundler M-A, Evans CA, Wilson
679 JA, Raffeeq P, Azaz A, Rotta AT, Vora A, Vohra A, Abboud P, Mirkin LD, Cooper M,
680 Dishop MK, Graf JM, Petros A, Klonin H. 2009. Fulminant pertussis: A multi-center
681 study with new insights into the clinico-pathological mechanisms. *Pediatr Pulmonol*
682 44:970–980.

683 44. Boehm DT, Wolf MA, Hall JM, Wong TY, Sen-Kilic E, Basinger HD, Dziadowicz SA,
684 Gutierrez M de la P, Blackwood CB, Bradford SD, Begley KA, Witt WT, Varney ME,
685 Barbier M, Damron FH. 2019. Intranasal acellular pertussis vaccine provides mucosal
686 immunity and protects mice from *Bordetella pertussis*. *npj Vaccines* 4:1–12.

687 45. Zhang X, Goel T, Goodfield LL, Muse SJ, Harvill ET. 2011. Decreased Leukocyte
688 Accumulation and Delayed *Bordetella pertussis* Clearance in IL-6-/- Mice. *J Immunol*
689 186:4895–4904.

690 46. Wolf MA, Boehm DT, DeJong MA, Wong TY, Sen-Kilic E, Hall JM, Blackwood CB,
691 Weaver KL, Kelly CO, Kisamore CA, Bitzer GJ, Bevere JR, Barbier M, Damron FH.
692 2020. Intranasal immunization with acellular pertussis vaccines results in long-term
693 immunity to *Bordetella pertussis* in mice . Infect Immun IAI.00607-20.

694 47. Andreasen C, Carbonetti NH. 2009. Role of neutrophils in response to *Bordetella*
695 *pertussis* infection in mice. Infect Immun2008/12/24. 77:1182–1188.

696 48. Wardlaw AC, Hall E, Parton R. 1993. Coughing rat model of pertussis. Biologicals 21:27–
697 29.

698 49. Kilgore PE, Salim AM, Zervos MJ, Schmitt H-J. 2016. Pertussis: Microbiology, Disease,
699 Treatment, and Prevention. Clin Microbiol Rev 29:449–86.

700 50. Connelly CE, Sun Y, Carbonetti NH. 2012. Pertussis toxin exacerbates and prolongs
701 airway inflammatory responses during *Bordetella pertussis* infection. Infect Immun
702 80:4317–4332.

703 51. Carbonetti NH, Artamonova G V, Andreasen C, Dudley E, Mays RM, Worthington ZE V.
704 2004. Suppression of Serum Antibody Responses by Pertussis Toxin after Respiratory
705 Tract Colonization by *Bordetella pertussis* and Identification of an Immunodominant
706 Lipoprotein. Infect Immun 72:3350–3358.

707 52. Shumilla JA, Lacaille V, Hornell TMC, Huang J, Narasimhan S, Relman DA, Mellins ED.
708 2004. *Bordetella pertussis* Infection of Primary Human Monocytes Alters HLA-DR
709 Expression. Infect Immun 72:1450–1462.

710 53. Martino A, Volpe E, Auricchio G, Colizzi V, Baldini PM. 2006. Influence of Pertussis
711 toxin on CD1a isoform expression in human dendritic cells. J Clin Immunol 26:153–159.

712 54. Weiss AA, Falkow S. 1982. Plasmid Transfer to *Bordetella pertussis*: Conjugation and

713 Transformation Downloaded from JOURNAL OF BACTERIOLOGY.

714 55. Mooi FR, Van Loo IHM, Van Gent M, He Q, Bart MJ, Heuvelman KJ, De Greeff SC,
715 Diavatopoulos D, Teunis P, Nagelkerke N, Mertsola J. 2009. *Bordetella pertussis* strains
716 with increased toxin production associated with pertussis resurgence. *Emerg Infect Dis*
717 15:1206–1213.

718 56. Advani A, Gustafsson L, Carlsson RM, Donnelly D, Hallander HO. 2007. Clinical
719 outcome of pertussis in Sweden: Association with pulsed-field gel electrophoresis profiles
720 and serotype. *APMIS* 115:736–742.

721 57. King AJ, Van Der Lee S, Mohangoo A, Van Gent M, Van Der Ark A, Van De
722 Waterbeemd B. Genome-Wide Gene Expression Analysis of *Bordetella pertussis* Isolates
723 Associated with a Resurgence in Pertussis: Elucidation of Factors Involved in the
724 Increased Fitness of Epidemic Strains <https://doi.org/10.1371/journal.pone.0066150>.

725 58. Andreasen C, Powell DA, Carbonetti NH. 2009. Pertussis toxin stimulates IL-17
726 production in response to *Bordetella pertussis* infection in mice. *PLoS One* 4:e7079.

727 59. Lee GM, Lett S, Schauer S, Lebaron C, Murphy T V, Rusinak D, Lieu TA. 2004. Societal
728 Costs and Morbidity of Pertussis in Adolescents and Adults.

729 60. Cherry JD. 2016. Pertussis in young infants throughout the world. *Clin Infect Dis*
730 63:S119–S122.

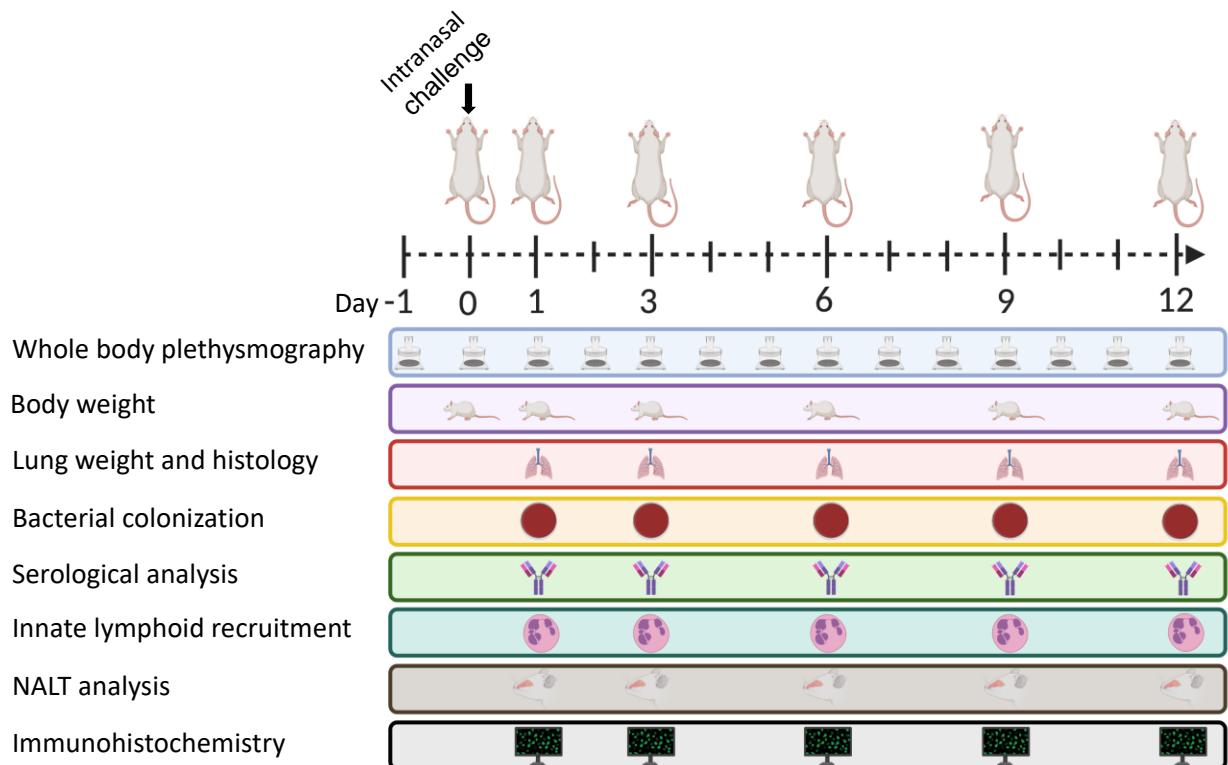
731 61. Hiramatsu Y, Suzuki K, Nishida T, Onoda N, Satoh T, Akira S, Ikawa M, Ikeda H, Kamei
732 J, Derouiche S, Tominaga M, Horiguchi Y. 2020. Lipooligosaccharide, Vag8, and
733 pertussis toxin of *Bordetella pertussis* cooperatively cause coughing in mice. *bioRxiv*.
734 *bioRxiv*.

735 62. Bordet J, Gengou O. 1906. Le Microbe de la Coqueluche. *Les Ann l’Institut Pasteur*

736 20:731–741.

737 63. Stainer DW, Scholte MJ. 1970. A Simple Chemically Defined Medium for the Production
738 of Phase I *Bordetella pertussis*. J Gen Microbiol1970/10/01. 63:211–220.

739 64. Lomask J, Larson R. 2006. United States Patent US007104962B2. US 7,104,962 B2.


740 65. Barnett-Vanes A, Sharrock A, Birrell MA, Rankin S. 2016. A Single 9-Colour Flow
741 Cytometric Method to Characterise Major Leukocyte Populations in the Rat: Validation in
742 a Model of LPS-Induced Pulmonary Inflammation

743 <https://doi.org/10.1371/journal.pone.0142520>.

744

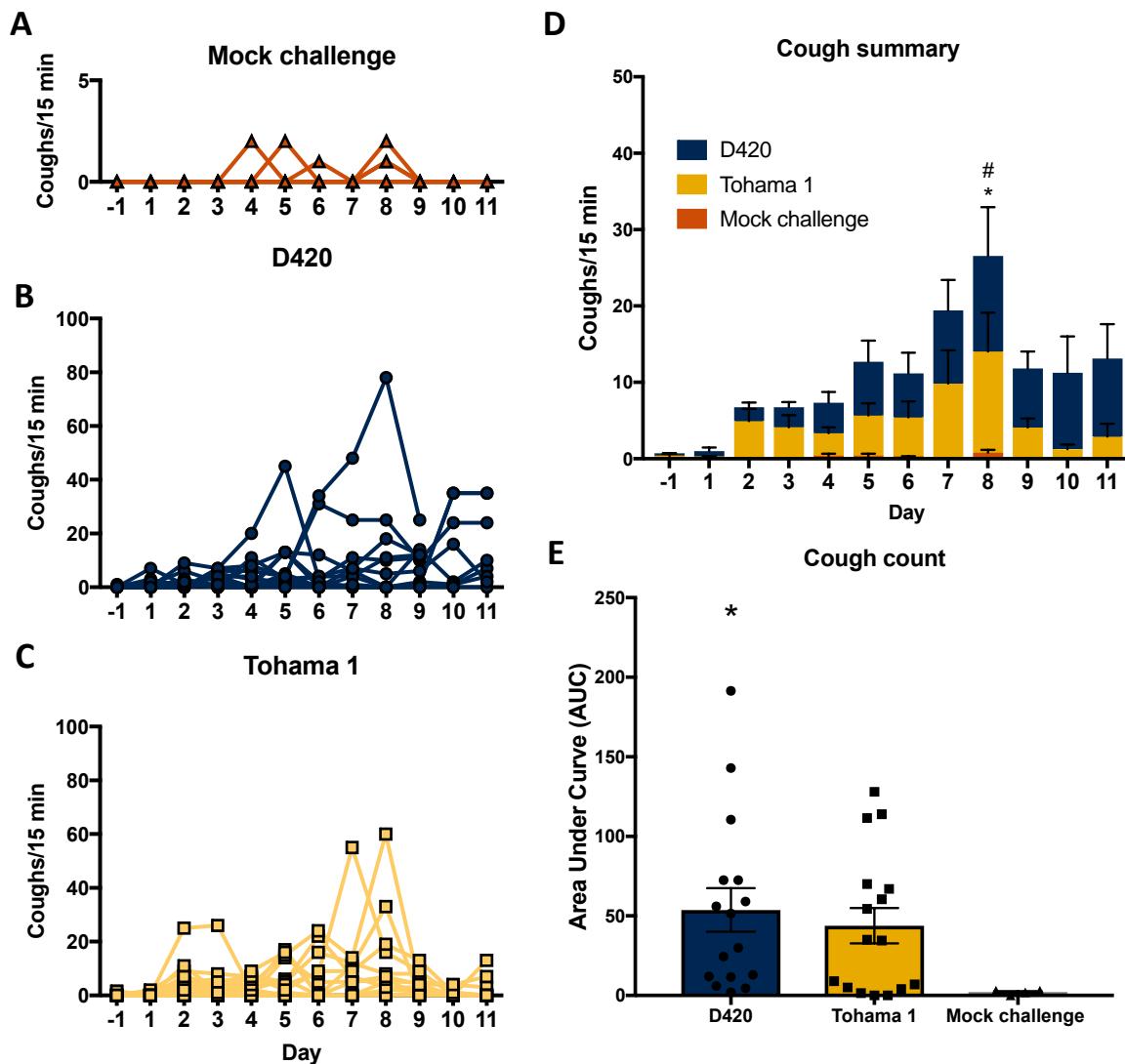
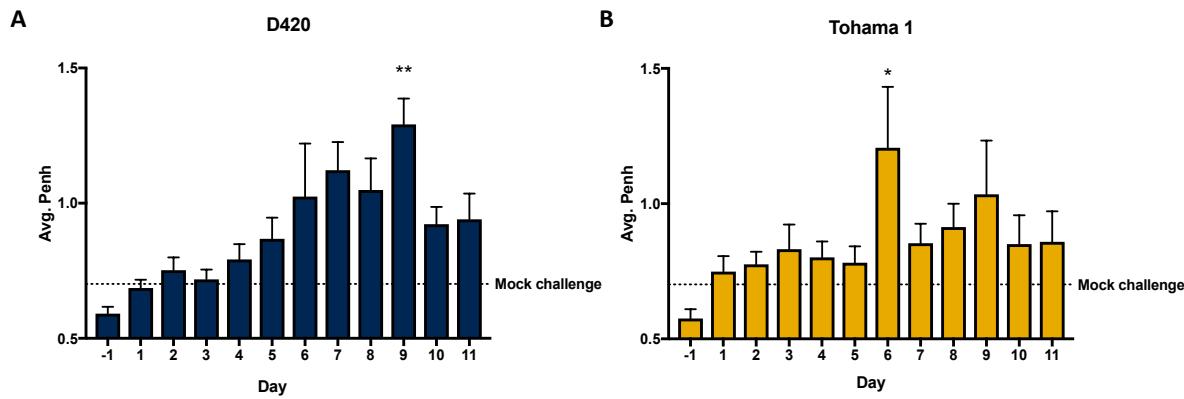

745 **FIGURES**

Figure 1:

746 **FIG 1** Experimental design of intranasal infection of *Bp*. Schematic representation of Sprague-
747 Dawley rats intranasally infected with *Bp*. Whole body plethysmography was used to measure
748 cough and analyze lung function over the course of a twelve-day infection. Body weight, Bacterial
749 burden of the respiratory tract, innate lymphoid recruitment, and antibody titers were measured at
750 the days 1, 3, 6, 9, and 12 post challenge. The left lobe of the lung and NALT were sectioned and
751 stained with hematoxylin and eosin for histological analysis and immunohistochemistry was
752 performed to visualize bacteria in the left lobe of the lung and nasal cavity.


Figure 2:

753 **FIG 2** Infection of *Bordetella pertussis* induces cough in Sprague-Dawley rats. Coughs were
754 measured each day of the twelve-day infection using whole body plethysmography. Coughs were
755 counted for (A) mock challenge rats, (B) rats infected with D420, and (C) rats infected with
756 Tohama 1. (D) Summary of results (A-C) shown as mean \pm SEM ($n=4-8$). (E) Area under the
757 curve is represented as averages of coughs per fifteen minutes for each rat. P values were
758 determined by two-way ANOVA followed by a Bonferroni comparison test and unpaired Student

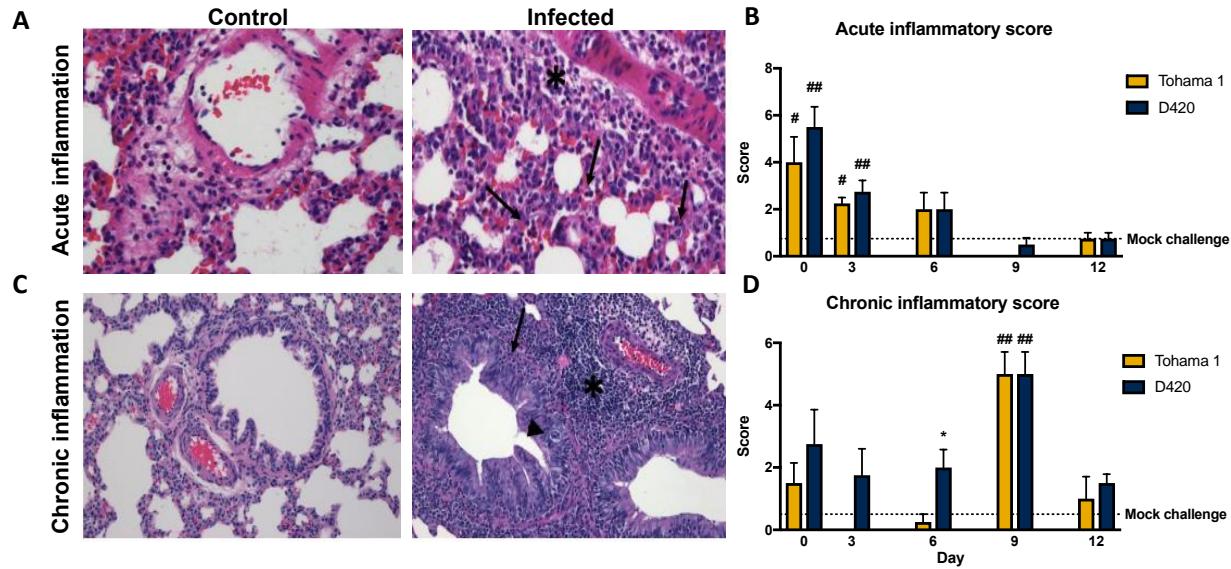

759 t-test for AUC, $*P < 0.05$ D420 compared to the mock challenged control group, $\#P < 0.05$ Tohama
760 1 compared to the mock challenged control group.

Figure 3:

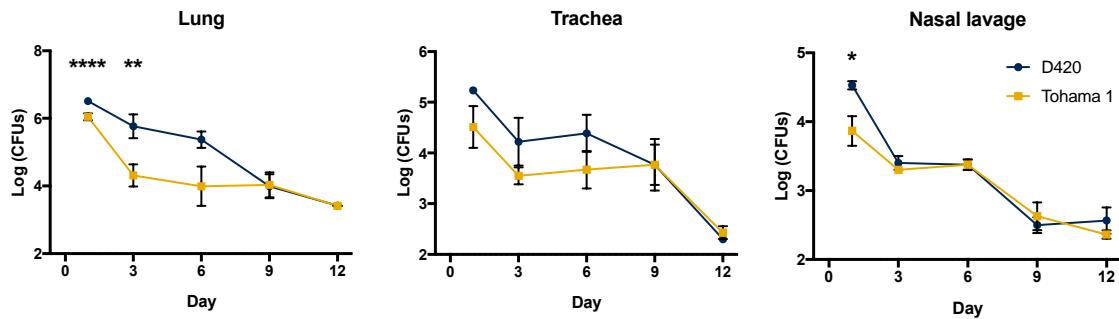
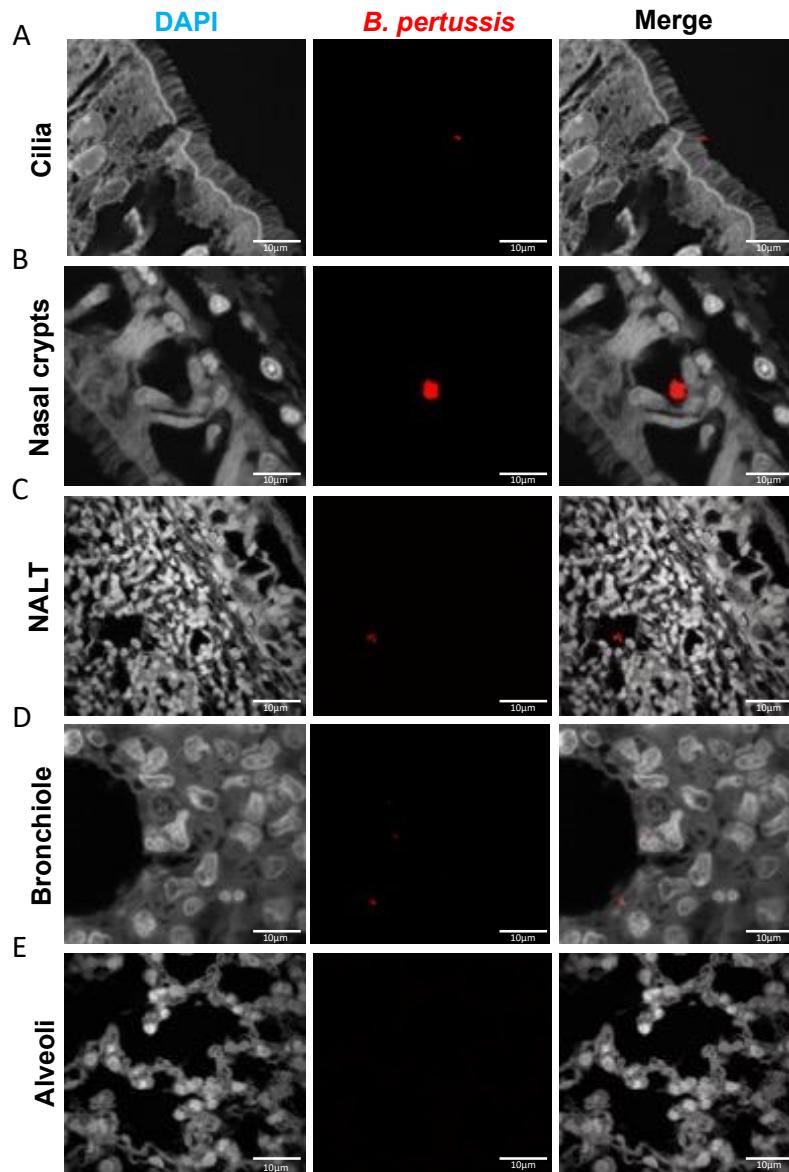

761 **FIG 3** *Bordetella pertussis* infection impairs respiratory capacity. Over the course of infection,
762 Sprague-Dawley rat's respiratory function was analyzed using whole body plethysmography. Each
763 day at 5p.m., rat's bronchial restriction was determined by utilizing WBP by calculating for PenH.
764 Penh was calculated for (A) D420 and (B) Tohama 1. Results shown as mean \pm SEM ($n = 4-8$).
765 P values were determined by two-way ANOVA, $*P < 0.05$, $**P < 0.01$ compared to the mock
766 challenge group followed by Dunnett's comparison test.

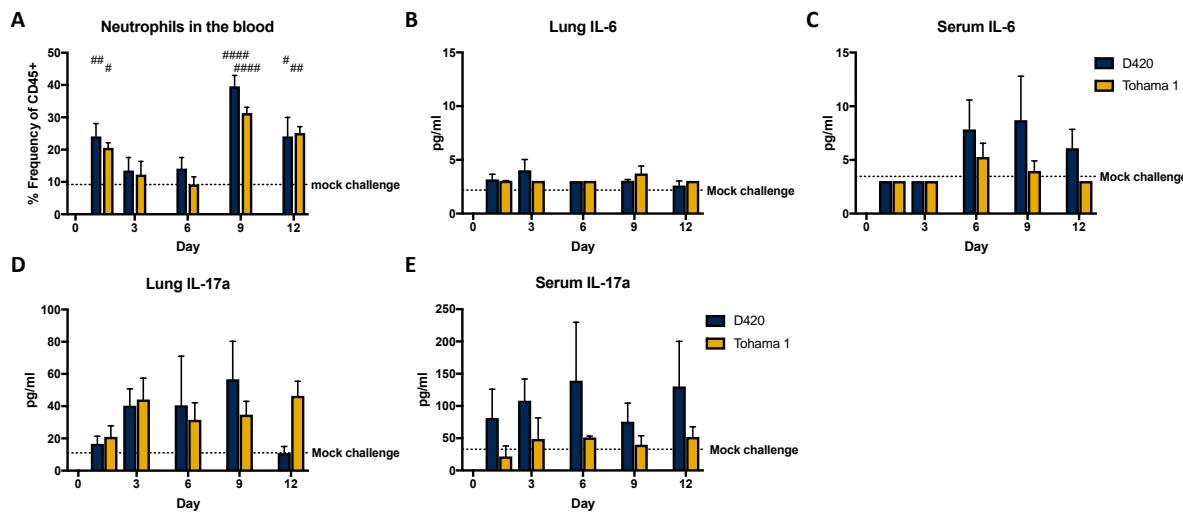
Figure 4:

767 **FIG 4** *Bordetella pertussis* infection induces acute and chronic inflammation in the lung of
768 Sprague-Dawley rats. The left lobe of the lung was sectioned and stained with hematoxylin and
769 eosin from rats infected with D420, Tohama 1, or the PBS control. **(A)** Representative images of
770 acute inflammation demonstrating neutrophil recruitment around surrounding blood vessel
771 (asterisk) and parenchyma (arrows) at 400x magnification. **(B)** Average acute inflammatory score
772 of the lung by the predominance of neutrophils in the parenchyma, blood vessels, and airways. **(C)**
773 Representative images of chronic inflammation showing mononuclear cells surrounding the blood
774 vessel (asterisk), lamina propria (arrow), and bronchioles (arrowhead) at 200x magnification. **(D)**
775 Average chronic inflammatory score of the lung characterized by mononuclear infiltrates in the
776 parenchyma, blood vessels, and airway. Histological assessment was determined blinded with no
777 knowledge of the treatment groups. Results are shown as mean \pm SEM ($n=4$) P values were
778 determined by one-way ANOVA followed by Dunnett's comparison test, $^*P < 0.05$ compared
779 between challenge groups. $^{\#}P < 0.05$, $^{\#\#}P < 0.01$ compared to mock challenge.


Figure 5:

780 **FIG 5** Analysis of bacterial burden over the course of *Bp* infection. Bacteria were quantified by
781 serially diluted CFUs following intranasal challenge. CFU counts were determined from (A) lung
782 homogenate (B) trachea and (C) nasal lavage. Results are shown as mean \pm SEM ($n = 4$) P values
783 were determined by two-way ANOVA corrected with Bonferroni comparison test, $*P < 0.05$,
784 $**P < 0.01$, $****P < 0.0001$ compared between D420 and Tohama 1.

785


Figure 6:

786 **FIG 6** Immunofluorescence (IF) staining of *Bp* localization in the respiratory tract. *Bp* was labeled
787 using a polyclonal antibody to FHA and counter tagged with a fluorescently conjugated antibody
788 (Texas-Red). Sections were counterstained with DAPI. (A-C) Representative images of *Bp* in the
789 nasal cavity over the course of infection. *Bp* was found captured in the cilia of the nasal cavity as

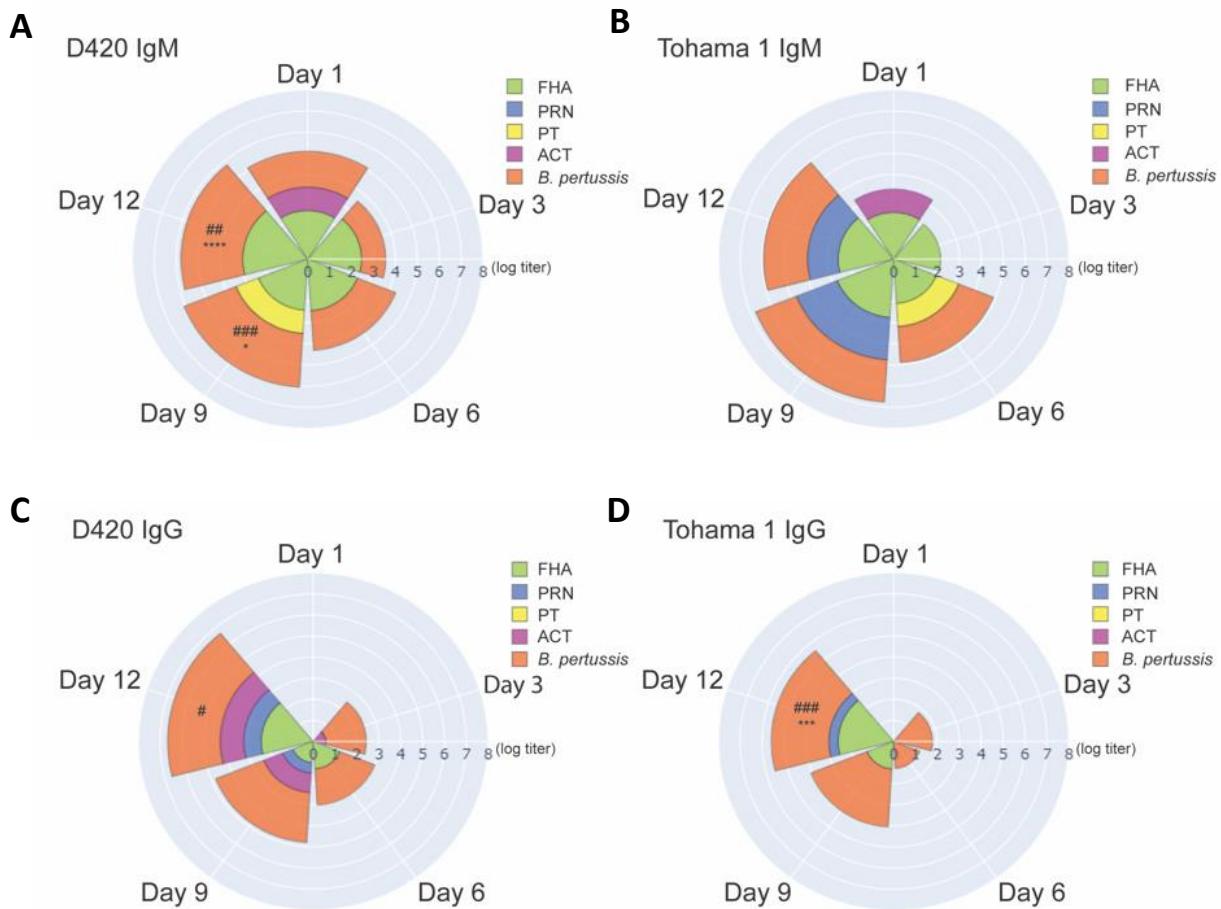

790 well as the NALT. **(D-E)** Representative images of the bronchiole and alveoli of infected rats. *Bp*
791 was found localized in the bronchioles over the course of infection and absent in the alveoli.

Figure 7:

792 **FIG 7** Neutrophil recruitment and proinflammatory cytokine production after challenge
793 determined by flow cytometry and multiplex immunoassay analysis. **(A)** Blood neutrophil count
794 of Sprague-Dawley rats infected with *Bp*. At days 1, 3, 6, 9 and 12 post infection, rats were
795 euthanized, and the blood was collected via cardiac puncture. Flow cytometry was used to quantify
796 the amount of neutrophils ($CD45^+ CD161^- B220^- CD43^+ His48^{hi}$) in the blood. Quantification of
797 the percentage of single, $CD45^+$ cells. Dotted line represents the average frequency of $CD45^+$
798 neutrophils in the mock challenge animals over the course of the study. **(B-C)** Analysis of cytokine
799 IL-6 from supernatant of lung homogenate and serum. **(D-E)** analysis of cytokine IL-17 in the
800 serum and lung homogenate supernatant. Cytokines analyzed using ProcartaPlex multiplex
801 immunoassay kit. Results shown as mean \pm SEM ($n = 4$). Dotted line represents the average mock
802 challenged cytokine levels measured. *P* values were determined by one-way ANOVA followed by
803 Tukey comparison test, $^*P < 0.05$, $^{**}P < 0.01$, $^{****}P < 0.0001$ compared to mock challenge.

Figure 8:

804 **FIG 8** Measurement of serum antibody titers over the course of *Bp* infection. ELISA was used to
805 compare serological responses from rats IN challenge with *Bp*. Total IgM (A-B) and IgG (C-D)
806 serum antibody titers were measured from challenged rats against *Bp*, FHA, PRN, PT, and ACT.
807 ($n = 4$). *P* values were determined by two-way ANOVA corrected with Bonferroni comparison
808 test, $*P < 0.05$, $***P < 0.001$, $****P < 0.0001$ compared between infection groups. For
809 comparison to mock challenged control group one-way ANOVA was used followed by Tukey
810 comparison test, $#P < 0.05$, $##P < 0.01$, $###P < 0.001$.

