

1 Susceptibility of rosaceous fruits and apple cultivars to postharvest

2 rot by *Paecilomyces niveus*

4 Tristan W. Wang* and Kathie T. Hodge

5
6 Section of Plant Pathology and Plant
7 Cornell University, Ithaca, NY 14853

9 *Corresponding author
10 Email: tww57@cornell.edu

11 Abstract

12 Paecilomyces rot of apples is a postharvest disease caused by *Paecilomyces niveus*, a
13 problematic spoiling agent of fruit juices and derivatives. The fungus produces ascospores that
14 can survive food processing and germinate in finished fruit products. Processing apple fruits
15 infected with Paecilomyces rot can lead to *P. niveus* contaminated juices. Because the fungus
16 produces the mycotoxin patulin, juice spoilage by *P. niveus* is an important health hazard. Little
17 is known about the disease biology and control mechanisms of this recently described
18 postharvest disease. Following Koch's postulates, we determined that a range of previously
19 untested rosaceous fruits and popular apple cultivars are susceptible to Paecilomyces rot
20 infection. We also observed that two closely related food spoiling fungi, *Paecilomyces fulvus*
21 and *Paecilomyces variotti*, were unable to infect, cause symptoms in, or reproduce in wounded
22 fruits. Our results highlight the unique abilities of *Paecilomyces niveus* to infect a variety of

23 fruits, produce patulin, and form highly-resistant spores capable of spoiling normally shelf-
24 stable products.

25 Keywords: *Paecilomyces* rot, postharvest, Rosaceae, *Paecilomyces niveus*, patulin

26

27 **Introduction**

28 Patulin is a serious mycotoxin that can cause gastrointestinal, immunological, and neurological
29 damage, and is an important contaminant of apple products and their derivatives (Puel et al.
30 2010). One 2009 survey detected patulin in 23% of apple juices and ciders sampled from
31 Michigan retail grocery stores, with 11.3% of these samples containing patulin over the FDA
32 limit of 50ppb (Harris et al. 2009). Contamination by this mycotoxin is thought to occur through
33 postharvest fruit infection and food spoilage by patulin-producing microbes. At least 18
34 *Penicillium*, *Aspergillus*, and *Paecilomyces* species are known to produce patulin (Puel et al.
35 2010) and the mycotoxin has been detected in a wide variety of other fruit products including
36 pear, peach, cherry, apricot, orange, and mango juices and jams (Erdogan et al. 2018, Hussain
37 et al. 2020, Moake et al. 2005, Spadaro et al. 2008).

38 One important patulin producer, *Paecilomyces niveus* Stolk & Samson (*Byssochlamys nivea*
39 Westling), uniquely threatens juice production as it is a thermotolerant mold that creates
40 durable ascospores. The ascospores are the predominant structures responsible for *P. niveus*
41 food contamination. Contamination by *P. niveus* is a long-standing issue and the fungus has
42 been found to contaminate a wide variety of fruit products including apple-based products,
43 concentrated orange juice, strawberry puree, and tomato paste (Kotzekidou 1997, dos Santos
44 et al. 2018).

45 *Paecilomyces niveus* is a common soil fungus, found present in a third of New York orchard soil
46 samples (Biango-Daniels and Hodge 2018). It has been thought that *P. niveus* contamination of

47 food products is environmental, originating from soil, air, and equipment. Even small quantities
48 of this homothallic fungus pose a hazard for juice production as a single *P. niveus* spore can give
49 rise to heat-resistant ascospores. Recently, *P. niveus* was identified as the causal agent of
50 Paecilomyces rot, a postharvest disease of apples (Biango-Daniels and Hodge 2018) and citrus
51 fruits (Wang and Hodge 2020). Biango-Daniels et al. (2019) showed that processing apple fruits
52 infected with Paecilomyces rot can result in apple juice significantly contaminated with patulin
53 and viable *P. niveus* ascospores. Since the description of Paecilomyces rot (Biango-Daniels and
54 Hodge 2018), *Paecilomyces niveus* has been found infecting apples in a fruit market in China
55 (Khokhar et al. 2019). In addition, the fungus was observed growing on peas in Serbia (Dragic et
56 al. 2016) and on aphids in Brazil (Zawadneak et al. 2015).

57 The broad range of fruit products in which *P. niveus* and patulin have been found led us to
58 hypothesize that the fungus may be able to infect and reproduce in a range of fruits. In
59 addition, we sought to further characterize the disease biology of Paecilomyces rot by testing
60 the susceptibility of other popular apple cultivars (Empire, Fuji, Granny Smith, and Golden
61 Delicious). Lastly, we asked whether pathogenesis in our wound challenges was unique to *P.*
62 *niveus*. Like *P. niveus*, two closely related heat-resistant molds known to contaminate fruit
63 products, *Paecilomyces fulvus* and *Paecilomyces variotii*, produce heat-resistant ascospores
64 capable of surviving temperatures above 85°C (Houbraken et al. 2006, Samson et al. 2009). We
65 hypothesized that both can also cause symptoms, reproduce in apple fruits, and contaminate
66 apple products via infected apple fruits.

67 To test the preceding hypotheses, we tested the wound-infecting ability of *P. niveus* in fruits of
68 a variety of apple relatives: peaches, pears, sweet cherries and sour cherries. In addition, we
69 inoculated and compared lesion development in four popular apple cultivars. Lastly, to test for
70 the disease-causing abilities of *P. niveus* relatives in wounded apple fruits, we inoculated apple

71 fruits with *Paecilomyces variotii* and *Paecilomyces fulvus* and observed them for symptom
72 development.

73

74 Materials and methods

75 Fruit

76 Detached peach fruits (*Prunus persica*, cv. Lori Anne) (n=26) and pear fruits (*Pyrus communis*,
77 cv. Green D'Anjou) (n=31) were selected at a local supermarket based on their uniformity in
78 size, and absence of both wounds and disease symptoms. Sour cherries (*Prunus cerasus*, cv.
79 Montmorency) (n=40) and sweet cherries (*Prunus avium*, cv. Kristin) (n=31) were freshly picked
80 from a local New York orchard. For apple cultivar susceptibility testing, Empire (n=31), Fuji
81 (n=28), Golden Delicious (n=31), and Granny Smith (n=31) apples were purchased from a local
82 supermarket. These four cultivars were chosen based on their popularity in US markets. Three
83 of these cultivars (Empire, Fuji, and Granny Smith) have not previously been tested for
84 susceptibility to *Paecilomyces* rot. For susceptibility tests involving *P. fulvus* and *P. variotii*, 30
85 Empire apples were used for inoculation of each fungus.

86

87 Fungal pathogens

88 *Paecilomyces niveus* strain CO7, isolated from culled apple fruits in New York, was used to
89 inoculate fruits using the method described in Biango-Daniels and Hodge (2018). We have
90 sequenced the full genome of this strain (Biango-Daniels et al. 2018), and found that sequences
91 from ITS and BenA regions can reliably be used to confirm identity as *P. niveus*. *P. niveus* strain
92 MC4, isolated from New York residential garden soil and *P. niveus* strain 106-3, isolated from
93 New York orchard soil, were also used in fruit inoculation and identified using their ITS and
94 BenA regions. *Paecilomyces fulvus* strain 7, obtained from the Worobo lab collection and

95 originally isolated from spoiled food and *Paecilomyces variotii* strain 103-2, isolated from NY
96 soil, were identified morphologically and by sequencing of the ITS region.
97 To produce inoculum, fungi were grown from 5mm plugs taken from the edge of 2-week-old
98 colonies on PDA. Five plugs of *P. niveus* were cultured on PDA. The fungus was allowed to grow
99 in the dark for two weeks at 25°C, covering tyndallized toothpicks that had been autoclaved
100 twice: once in water and once in potato dextrose broth the following day. Control toothpicks
101 were similarly treated, but in the absence of the fungus. Both *P. fulvus* and *P. variotii* were
102 grown as described above to produce toothpick inoculum.

103

104 **Fruit handling, inoculation, and measurement**

105 Fruits were sanitized before fungal inoculation: Peach fruits were sterilized for 30s in 70%
106 ethanol, 2 min in 1% sodium hypochlorite, and 15s in 70% ethanol and then left to dry in a Class
107 IIB biological safety cabinet. Two treatment toothpicks and two control toothpicks were
108 inserted on opposite sides of the fruit's equator. The toothpicks served to both wound (1 cm
109 deep) and inoculate the fruits. Individual fruits and wounds were numbered. The peaches were
110 placed in moist chambers in a dark incubator at 25°C. Over the course of 2 to 3 weeks, fruits
111 and disease symptoms were observed. Horizontal and vertical diameters of lesions were
112 quantified using a digital caliper (VWR Carbon Fiber Composite) every other day. Fruits
113 displaying colonization or symptoms such as blue-green or brown sporulation, indicative of
114 other common postharvest diseases, were removed from the study and further analysis.
115 Pear and apple fruits were similarly sanitized and inoculated. Individual fruits of the four apple
116 cultivars were randomized in moist chambers. Both sour and sweet cherry fruits were wounded
117 only two times on opposite sides (5 mm deep), once with a treatment toothpick and once with
118 a control toothpick on opposite sides of the fruit, before being laid to rest in moist chambers.
119 To test for fruit susceptibility to other *P. niveus* strains, *P. niveus* MC4 and 106-3 were each

120 used to inoculate two Empire, Fuji, and Granny Smith apples in addition to three D'Anjou
121 pears.

122

123 **Statistical analysis**

124 To test for significance of lesion diameters, statistical analysis was done using two separate
125 linear mixed-effects models at day 6 and day 20 for apple fruits, day 2 and at day 12 for pear
126 fruits, and at day 2 and day 8 for peach and cherry fruits. These models were constructed in R
127 statistical programming software using the lmerTest and emmeans packages. Ggpubr, and
128 ggplot2 packages were used to construct models and visualize results. The models took into
129 consideration the fixed effects of the incubation chamber and the random fruit identification
130 number. To test for differences in cultivar resistance, differences in lesion growth were
131 measured using a one-way ANOVA, followed by a post hoc Tukey HSD test.

132 **Results**

133 **Lesion growth in peaches, pears, and cherries**

134 In all fruits tested for wound infection with *P. niveus*, spreading lesions were observed and
135 lesion diameters (\pm standard error) were measured every other day (Fig. 1). In peaches, pears,
136 and cherries, lesions developed at every inoculation point and grew rapidly over the course of 2
137 weeks. The average lesion diameters in peaches, sweet cherries, and sour cherries at day 2
138 were compared to average lesion diameters at day 8 ($P<2e-16$). Pear lesions at day 2 and 12
139 were similarly compared ($P<2e-16$). At two days, average treatment lesion diameters were
140 3.76 ± 0.54 mm ($n=26$) for Lori Anne peaches, 2.93 ± 0.25 mm ($n=31$) in D'Anjou pears, and
141 13.32 ± 0.86 mm ($n=40$) in Montmorency cherries. No lesions were detected in Kristin cherries
142 at two days. At 8 days postinoculation, average treatment lesion diameters were 30.01 ± 1.98
143 mm ($n=14$) for Lori Anne peaches, 16.51 ± 0.45 mm ($n=29$) for Montmorency cherries, and

144 13.32 ± 0.86 (n=18) for Kristin cherries. At 12 days, average treatment lesion diameter was
145 49.15 ± 0.41 mm (n=30) in D'Anjou pears.
146 Towards the end of the experiment, three out of 24 control toothpicks used in peaches on day
147 12 and one control toothpick out of 60 in pears on day 14 showed lesion development, likely
148 due to infection by a different postharvest pathogen, and were taken out of the experiment
149 and statistical analysis. No control toothpick in sweet and sour cherries showed detectable
150 lesion development throughout the experiment. Several fruits, particularly Lori Anne peaches
151 and Kristin sweet cherries, displayed symptoms of other postharvest infections in the duration
152 of the study and were removed from the study and further analysis.

153

154 **Fig. 1. Measurements of mean lesion diameter (± 1 standard error) over the course of 2 to 3**
155 **weeks incubation (25°C, ≥95% humidity) on Lori Anne peaches, D'Anjou pears, Montmorency**
156 **sour cherries, and Kristin sweet cherries inoculated with *Paecilomyces niveus*.** Lesions on
157 control toothpicks were nearly absent in peaches and pears and completely absent in both
158 Kristin and Montmorency cherries.

159

160 **Characterization of *Paecilomyces* rot in Rosaceae fruits**

161 In Lori Anne peaches, circular lesions developed at the site of inoculation (Fig. 2A). After 7 days
162 postinoculation, discoloration of the epidermis was light brown and the lesion was semi-firm to
163 the touch. Unlike the distinct lesion borders found in *Paecilomyces* rot in apples, lesion borders
164 in peaches were less distinct. White, branching surface hyphae could be seen in early stages of
165 the disease (1 week postinoculation), and extended deeply into the fruit. Fruit flesh
166 discoloration ranged from yellow-brown to brown. Necrotic tissue was not easily separable
167 from healthy tissue.

168 D'Anjou pear infections resulted in dark brown lesions that were generally circular and even in
169 discoloration (Fig. 2B). Lesions with sharp, distinct edges expanded radially from the point of
170 inoculation. Unlike *Paecilomyces* rot in apples which manifests as a hard rot and is spongy to
171 the touch, necrotic tissue within pear fruits was soft, wet, and fragile. Fruit epidermis on the
172 lesion surface became papery and brittle. After 14 days postinoculation, faint concentric rings
173 of varying brown shades and tufts of white hyphae can be observed at lenticels. Yellow-brown
174 internal rot spread deeply into the fruit. Diseased tissue was easily separable from healthy
175 tissue. Unique to pears, diseased flesh became translucent and extremely soft, which allowed
176 for clear visibility of pear sclereids.

177 In both Montmorency sour and Kristin sweet cherries (Fig. 2C and 2D), circular lesions
178 developed at the site of inoculation. Epidermal discoloration was brown, sometimes light-
179 brown close to the center of the lesion in sour cherry lesions and yellow-brown in sweet cherry
180 lesions. While lesion edges are distinct in sour cherries, lesion edges were less pronounced in
181 sweet cherries. After 14 days postinoculation, concentrated tufts of mycelia appeared on the
182 surface of sweet cherries. Rot extended deeply into the fruit in both sweet and sour cherries
183 resulting in an orange-brown to brown flesh discoloration. Necrotic tissue was soft and watery
184 and not easily separated from healthy tissue.

185

186 **Fig. 2. External and internal symptoms of infected rosaceous fruits.** Infected fruits, two weeks
187 postinoculation after incubation in dark, moist chambers (25°C, ≥95% humidity) of (A) Lori Anne
188 peaches and (B) D'Anjou pear with cross-sections of each. Close-up view of external developing
189 lesion and cross-section showing internal rot on (C) Montmorency and (D) Kristin cherry. Scale
190 bars are 3 mm.

191

192 **Completing Koch's postulates**

193 For peaches, pears, and cherries newly-tested for *Paecilomyces* rot, lesion surfaces of two
194 individual symptomatic fruits were sterilized with 70% ethanol. Infected interior flesh was
195 cultured for fungus. The isolated culture was then used to infect healthy fruits, and lesions
196 developed that were identical to those previously observed in the source peach, pear, and
197 cherry fruits. *P. niveus* was cultured from the newly infected fruits and identified
198 morphologically by its naked asci and white colonies that yellow with age, thereby completing
199 Koch's postulates (Samson et al. 2009).

200

201 **Apple cultivar-based susceptibility and *P. niveus* lesion size**

202 All four apple cultivars inoculated with *Paecilomyces niveus*, Golden Delicious, Empire, Granny
203 Smith and Fuji (the latter three have not previously been tested for susceptibility to
204 *Paecilomyces* rot), showed clear signs of lesion development 4 to 6 days postinoculation. Over
205 the next two to three weeks, lesions continued to grow rapidly and average diameters of
206 treatment lesions were measured every other day. At six days postinoculation, lesion diameters
207 (\pm standard error) were 6.44 ± 0.68 mm (n=31) on Empire, 9.30 ± 0.61 mm (n=28) on Fuji, $6.86 \pm$
208 0.47 (n= 31) on Golden Delicious, and 10 ± 0.73 (n = 29) on Granny Smith apples (Fig. 3A). At 20
209 days postinoculation, lesion diameters were 51.98 ± 4.28 mm (n = 31) on Empire, 33.52 ± 1.62
210 mm (n = 26) on Fuji, 14.49 ± 1.36 (n= 31) on Golden Delicious, and 33.38 ± 2.57 (n = 29) on
211 Granny Smith apples (Fig. 3A and 3B).

212

213 **Fig. 3. Comparison of *Paecilomyces* rot infected apple cultivars.** (a.) 16-day progression of
214 mean lesion diameter of four apple cultivars stored in the dark (25°C, $\geq 95\%$ humidity) infected
215 with *P. niveus*. (b.) Mean lesion diameters on infected apple cultivars at 20 days
216 postinoculation. (c.) From left to right: infected Empire, Granny Smith, and Fuji apples after two
217 weeks postinoculation.

218

219 **Pathogenicity of *Paecilomyces fulvus* and *P. variotii* in apple fruits**

220 We investigated whether two closely related *Paecilomyces* species, *P. fulvus* and *P. variotii*, can
221 also infect and grow in apple fruits. After three weeks, no noticeable symptoms developed in
222 Empire apples inoculated with either fungus. Apple fruits remained intact, and at the end of the
223 three-week period were cut in half for further observation. Wounding created by the toothpick
224 insertion remained identical to the control toothpick wound, and no rot or lesions developed.
225 There was no evidence these fungi were able to infect the apple.

226 **Discussion**

227 The Rosaceae is a large plant family that includes economically important fruit crops such as
228 peaches, pears, cherries, strawberries, and apples, the latter being the most consumed fruit in
229 the United States (USapple). Each year the US produces 240 million bushels of apples, a third of
230 which are processed into juices and other apple derivatives (USapple). In 2020/2021, the United
231 States also produced 658,000 tons of pears, 720,000 tons of fresh peach and nectarines, and
232 383,000 tons of cherries (USDA-FAS 2020a,b). Postharvest diseases are responsible for a 20–
233 25% loss of harvested fruits and vegetables in developed countries and even more in
234 developing countries (Nunes 2012). A 2018 study reported that 92% of juice manufacturers
235 surveyed have experienced fungal spoilage in finished products (Snyder and Worobo 2018).
236 *Paecilomyces* is a notorious genus that includes both important food spoiling fungi (*P. niveus*, *P.*
237 *fulvus*, *P. variotii*) and emerging opportunistic pathogens of humans (*P. variotii* and *P. formosus*)
238 (Heshmatnia et al. 2017). Unlike common postharvest pathogens of apples, *Paecilomyces*
239 *niveus* uniquely threatens juice production because it can not only produce the FDA-regulated
240 mycotoxin patulin, but can also infect apples as a postharvest disease and persist through juice
241 sterilization processing. Spoilage by *P. niveus* directly leads to contamination of finished food

242 products with patulin, and potentially other mycotoxins including byssochlamic acid,
243 byssochlamysol, and mycophenolic acid (Houbraken et al. 2006).

244 Data presented in this study suggest that *P. niveus*, a patulin-producing, heat-resistant mold,
245 can also be a wound-infecting pathogen of rosaceous fruits other than apples. *Paecilomyces*
246 *niveus* strain CO7, isolated from decaying apples, was able to grow, reproduce, and cause
247 symptoms in other fruits including pears, peaches, and both sweet and sour cherries. Two
248 additional *P. niveus* strains, MC4 and 106-3, were also confirmed through Koch's postulates to
249 be able to infect and reproduce in Empire, Fuji, Granny Smith apples and D'Anjou pears. We
250 also generated preliminary data to suggest that *P. niveus* can also rapidly infect strawberries
251 and raspberries, but these infections were often masked by other postharvest diseases,
252 complicating analysis. *Paecilomyces* rot manifested similarly across all these fruits, causing
253 lesions and internal rot at wound sites, consistent with the original description of the disease
254 (Biango-Daniels and Hodge 2018). Key differences in symptom development included profuse
255 mycelial growth on the surface of peaches, dense tufts of mycelia in cherries, and notable
256 disintegration of fruit flesh in pears. We observed that fruit disintegration from *P. niveus*
257 infection occurred at a faster rate in peach and pear fruits than it did in apple fruits. In addition,
258 all apple cultivars inoculated with *P. niveus*, were susceptible to *Paecilomyces* rot infection.
259 Interestingly, the rate of lesion growth in inoculated Golden Delicious apples was slower than
260 previously observed (Biango-Daniels and Hodge 2018) suggesting that other external factors
261 may influence lesion development.

262 We also tested the infectious abilities of two close relatives of *Paecilomyces niveus*:
263 *Paecilomyces fulvus* and *Paecilomyces variotii*. Neither fungus was observed to cause disease,
264 despite their close relationship with *P. niveus*, and their status as common heat-resistant
265 spoilage fungi of processed fruit products. These data provide a contrast to the infectious
266 abilities of *P. niveus*, a pathogen that can grow and reproduce in living fruits.

267 Our findings have implications for fruit growers and juice producers as they reveal that diseased
268 peaches, pears, and cherries can harbor large amounts of *P. niveus* spoilage inoculum. And
269 since *P. niveus* ascospores tolerate high heat, they can survive thermal processes, especially
270 when suspended in fruit products like strawberry puree (Silva 2015), pineapple juice (Ferreira et
271 al. 2009), canned tomato paste (Kotzekidou 1997), apple, and cranberry juice (Palou et al.
272 1998).

273 This study disproves the prevailing belief that *P. niveus* contamination can occur solely
274 from environmental sources, and suggests that diseased fruits can be a source of spoilage
275 inoculum. The sporadic nature of food spoilage makes it difficult to demonstrate this route of
276 contamination in real industrial processes. Our results also broaden the known host range of *P.*
277 *niveus* to include economically important and commonly processed fruits including peaches,
278 pears, sweet cherries, and sour cherries, and show that multiple popular apple cultivars are
279 susceptible to infection. Future work should address detection of infected fruits in the field and
280 the risk that *P. niveus* infection of fruits can be a source of spoilage inoculum.

281

282 Acknowledgements

283 We would like to thank Dr. Erika Mudrak for her assistance with statistical analyses. Aarzoo
284 Haideri, Amanda Wilson, and Eshan Mehrotra assisted with fruit inoculation, lesion
285 measurements, and photographs. Dr. Megan Biango-Daniels and the Worobo lab generously
286 provided *Paecilomyces* cultures.

287

288 Funding: This work was supported by the United States Department of Agriculture National
289 Institute of Food and Agriculture, Hatch projects 1002546 and 1020867.

290

291 Literature Cited

- 292 1. Biango-Daniels, M. N. and Hodge, K. T., 2018. *Paecilomyces* rot: a new apple disease. *Plant Dis.* 102:1581-1587.
- 293 2. Biango-Daniels, M. N., Snyder, A. B., Worobo, R. W., and Hodge, K. T., 2019. Fruit infected with *Paecilomyces*
294 *niveus*: A source of spoilage inoculum and patulin in apple juice concentrate? *Food Control.* 97:81-86.
- 295 3. Biango-Daniels, M. N., Wang, T. W., and Hodge, K. T. 2018. Draft genome sequence of the patulin-producing
296 fungus *Paecilomyces niveus* strain CO7. *Genome Announc.* 6:e00556-18.

297 4. Dragić, Vasiljka, Stevan Maširević, Sunčica Kocić-Tanackov, Marija Škrinjar, Melita Feldeždi, and Slobodan Vlajić.
298 2016. First appearance *Paecilomyces niveus* (Stock & Samson 1971) on pea in Serbia. *Biljni Lekar/Plant Doctor*.
299 44:175-180.

300 5. Erdoğan, Ahmet, Dipak Ghimire, Mustafa Gürses, Bülent Çetin, and Alper Baran. 2018. Patulin Contamination in
301 Fruit Juices and Its Control Measures. *Eur. J. Sci. Technol.* 14:39-48.

302 6. Houbraken, J., Samson, R. A., and Frisvad, J. C. 2006. *Byssochlamys*: significance of heat resistance and
303 mycotoxin production. *Adv. Exp. Med. Biol.* 571:211-224.

304 7. Harris, K.L., Bobe, G. and Bourquin, L.D., 2009. Patulin surveillance in apple cider and juice marketed in
305 Michigan. *J. Food Prot.* 72:1255-1261.

306 8. Heshmatnia, J., Marjani, M., Mahdaviani, S.A., Adimi, P., Pourabdollah, M., Tabarsi, P., Mahdavi, F., Jamaati, H.,
307 Adcock, I.M., Garssen, J. and Velayati, A., 2017. *Paecilomyces formosus* infection in an adult patient with
308 undiagnosed chronic granulomatous disease. *J. Clin. Immunol.* 37:342-346.

309 9. Hussain, Shabbir, Muhammad Rafique Asi, Mazhar Iqbal, Nisha Khalid, Syed Wajih-ul-Hassan, and Agustín Ariño.
310 2020. Patulin mycotoxin in mango and orange fruits, juices, pulps, and jams marketed in Pakistan. *Toxins* 12:52.

311 10. Khokhar, I., Wang, J., Mukhtar, I., Jia, Y., Ruth, N., Eltoukhy, A., Fan, S., Li, X., Wang, J., and Yan, Y. 2019. First
312 report of *Paecilomyces* rot on apples in China. *Plant Dis.* 103:774.

313 11. Kotzekidou, P. 1997. Heat resistance of *Byssochlamys nivea*, *Byssochlamys fulva* and *Neosartorya fischeri*
314 isolated from canned tomato paste. *J. Food Sci.* 62: 410-412.

315 12. Moake, Matthew M., Olga I. Padilla-Zakour, and Randy W. Worobo. 2005. Comprehensive review of patulin
316 control methods in foods. *Compr. Rev. Food Sci. Food Saf.* 4: 8-21.

317 13. Nunes, C.A., 2012. Biological control of postharvest diseases of fruit. *Eur. J. Plant Pathol.* 133:181-196.

318 14. Palou, E., A. López-Malo, G. V. Barbosa-Cánovas, J. Welti-Chanes, P. M. Davidson, and B. G. Swanson. 1998.
319 Effect of oscillatory high hydrostatic pressure treatments on *Byssochlamys nivea* ascospores suspended in fruit
320 juice concentrates. *Lett. Appl. Microbiol.* 27: 375-378.

321 15. Puel, O., Galtier, P., and Oswald, I. P. 2010. Biosynthesis and toxicological effects of patulin. *Toxins (Basel)*
322 2:613-631.

323 16. da Rocha Ferreira, Elisa Helena, Amauri Rosenthal, Verônica Calado, Jorge Saraiva, and Sónia Mendo. 2009.
324 *Byssochlamys nivea* inactivation in pineapple juice and nectar using high pressure cycles. *J. Food Eng.* 95:664-669.

325 17. Samson, R. A., J. Houbraken, J. Varga, and Jens Christian Frisvad. 2009. Polyphasic taxonomy of the heat
326 resistant ascomycete genus *Byssochlamys* and its *Paecilomyces* anamorphs. *Persoonia*. 22:14.

327 18. dos Santos, J.L.P., Samapundo, S., Biyikli, A., Van Impe, J., Akkermans, S., Höfte, M., Abatih, E.N., Sant'Ana, A.S.
328 and Devlieghere, F. 2018. Occurrence, distribution and contamination levels of heat-resistant moulds throughout
329 the processing of pasteurized high-acid fruit products. *Int. J. Food Microbiol.* 281:72-81.

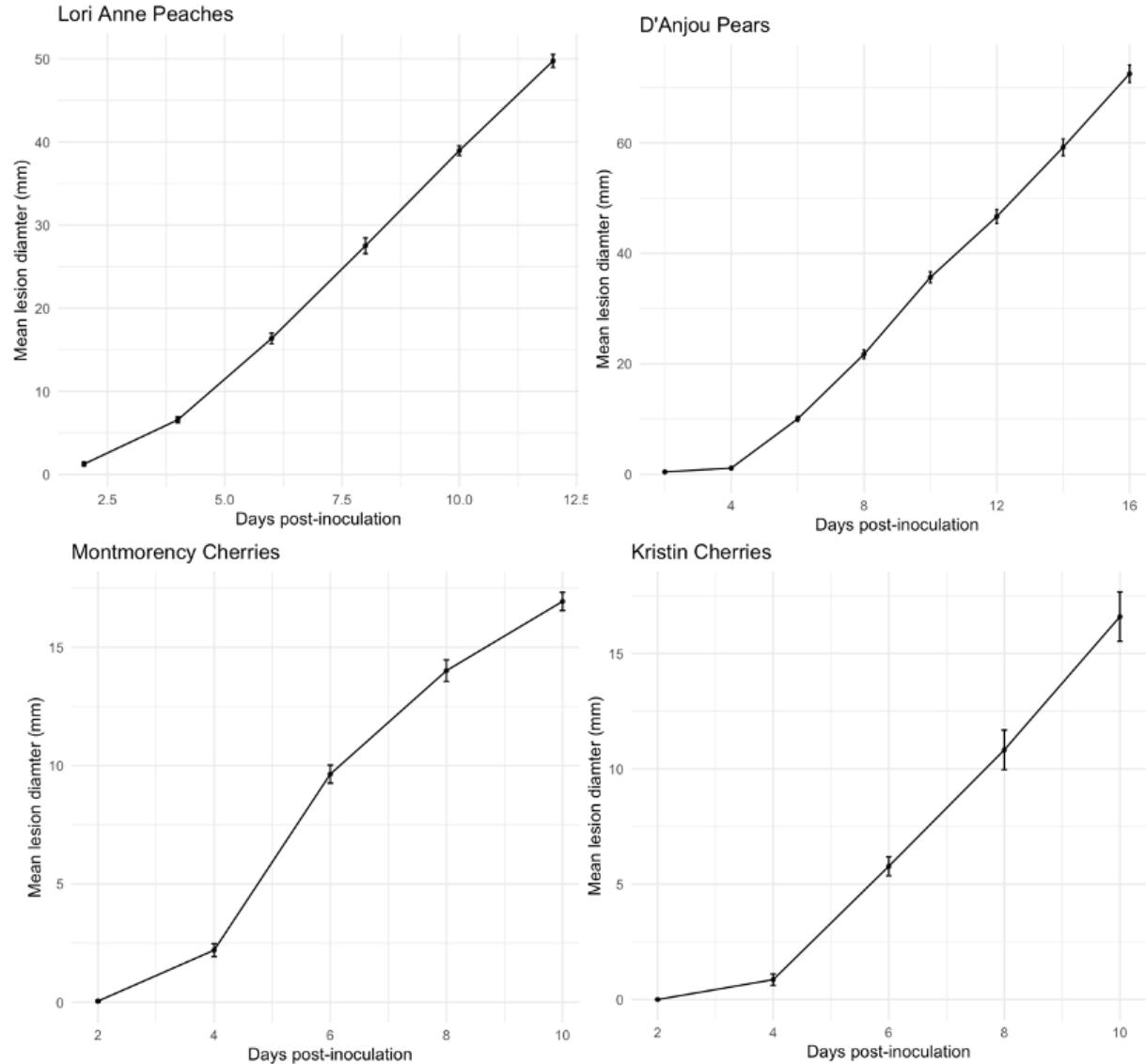
330 19. Silva, F. V. M. 2015 Inactivation of *Byssochlamys nivea* ascospores in strawberry puree by high pressure, power
331 ultrasound and thermal processing. *Int. J. Food Microbiol.* 214:129-136.

332 20. Snyder, A.B. and Worobo, R.W., 2018. The incidence and impact of microbial spoilage in the production of fruit
333 and vegetable juices as reported by juice manufacturers. *Food Control*, 85:144-150.

334 21. Spadaro, D., Angelo Garibaldi, and Maria Lodovica Gullino. 2008 Occurrence of patulin and its dietary intake
335 through pear, peach, and apricot juices in Italy. *Food Addit. Contam. B.* 1:134-139.

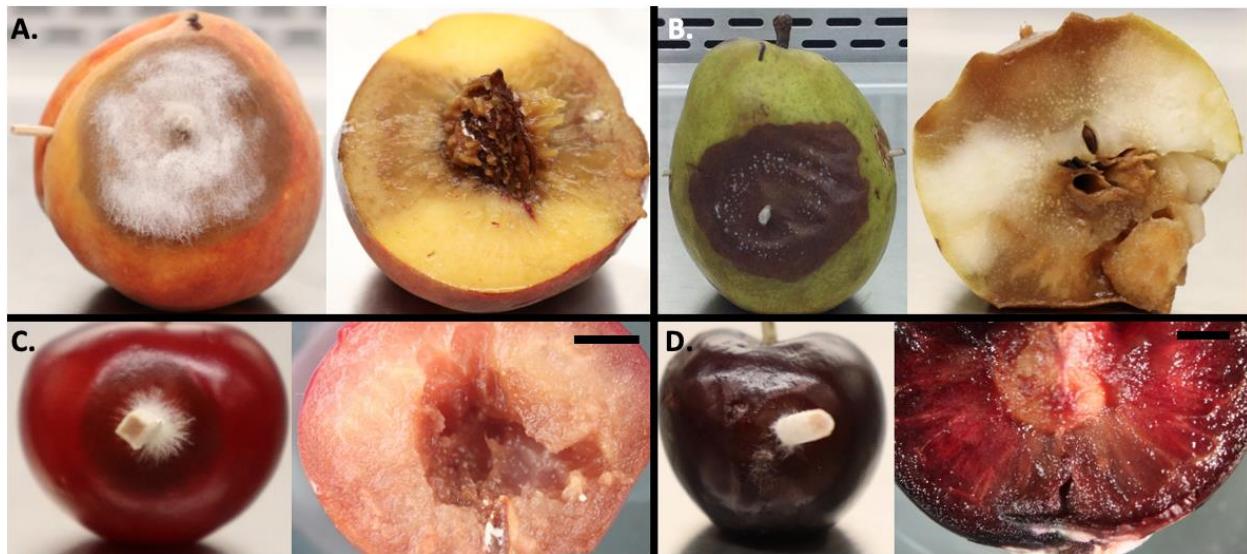
336 22. U.S. Apple Association. 2021. Industry at a glance. Online publication <https://usapple.org/industry-at-a-glance>

337 23. USDA-Foreign Agricultural Service (USDA-FAS). 2020. Fresh Apples, Grapes, and Pears: World Markets and
338 Trade. Foreign Agricultural Service, Washington, DC.

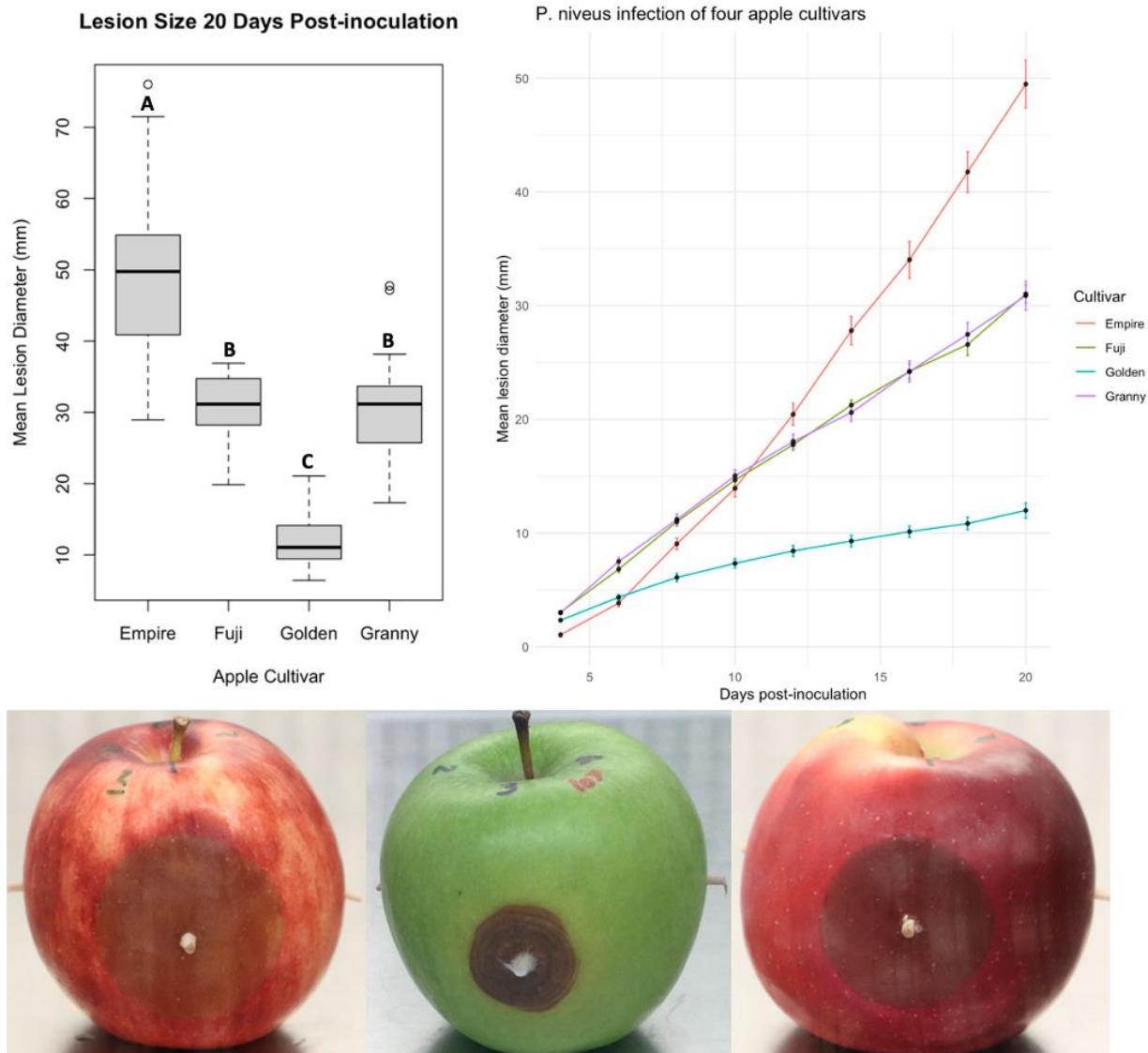

339 24. USDA-Foreign Agricultural Service (USDA-FAS). 2020. Fresh Peaches and Cherries: World Markets and Trade.
340 Foreign Agricultural Service, Washington, DC.

341 25. Wang, T. W., and Kathie T. H. 2020. *Paecilomyces niveus* as a Wound-Infecting Pathogen of Citrus: Oranges and
342 Clementines." *Plant Health Prog.* 21:333-334.

343 26. Zawadneak, M. A. C., I. C. Pimentel, D. Robl, P. Dalzoto, V. Vicente, D. R. Sosa-Gómez, M. Porsani, and F. L.
344 Cuquel. 2015. *Paecilomyces niveus* Stolk & Samson, 1971 (Ascomycota: Thermoascaceae) as a pathogen of
345 *Nasonovia ribisnigri* (Mosley, 1841)(Hemiptera, Aphididae) in Brazil. *Braz. J. of Biol.* 75:158-162.


346

347



348
349
350
351
352
353
354

Fig. 1. Measurements of mean lesion diameter (± 1 standard error) over the course of 2 to 3 weeks incubation (25°C , $\geq 95\%$ humidity) on Lori Anne peaches, D'Anjou pears, Montmorency sour cherries, and Kristin sweet cherries inoculated with *Paecilomyces niveus*. Lesions on control toothpicks were nearly absent in peaches and pears and completely absent in both Kristin and Montmorency cherries.

355
356
357 **Fig. 2. External and internal symptoms of infected rosaceous fruits.** Infected fruits, two weeks
358 postinoculation after incubation in dark, moist chambers (25°C, ≥95% humidity) of (A) Lori Anne
359 pears and (B) D'Anjou pear with cross-sections of each. Close-up view of external developing
360 lesion and cross-section showing internal rot on (C) Montmorency and (D) Kristin cherry. Scale
361 bars are 3 mm.
362

