

1 Establishment of a Patient-Derived, Magnetic Levitation-Based, 3D Spheroid Granuloma
2 Model for Human Tuberculosis.

3

4 Leigh A. Kotze^{a#}; Caroline G.G. Beltran^a; Dirk Lang^b; Andre G. Loxton^a; Susan Cooper^b;
5 Maynard Meiring^a; Brigitte Glanzmann^{a,c}; Craig Kinnear^{a,c}; Gerhard Walzl^a; Nelita du
6 Plessis^{a#}

7

8 ^aDST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African
9 Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology
10 and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University,
11 Cape Town, South Africa.

12 ^bConfocal and Light Microscopy Imaging Facility, University of Cape Town, Cape Town,
13 South Africa.

14 ^cSouth African Medical Research Council Genomics Centre.

15

16 Running Head: 3D Spheroid Granuloma Model for Human Tuberculosis

17

18 #Address correspondence to Nelita du Plessis, nelita@sun.ac.za and Leigh Kotze,
19 lakotze@sun.ac.za.

20

21

22

23

24

25

26

27

28

29

30 **ABSTRACT**

31 Tuberculous granulomas that develop in response to *Mycobacterium tuberculosis* (*M.tb*)
32 infection are highly dynamic entities shaped by the host immune response and disease
33 kinetics. Within this microenvironment, immune cell recruitment, polarization and activation is
34 driven not only by co-existing cell types and multi-cellular interactions, but also by *M.tb*-
35 mediated changes involving metabolic heterogeneity, epigenetic reprogramming and
36 rewiring of the transcriptional landscape of host cells. There is an increased appreciation of
37 the *in vivo* complexity, versatility and heterogeneity of the cellular compartment that
38 constitutes the tuberculosis (TB) granuloma, and the difficulty in translating findings from
39 animal models to human disease. Here we describe a novel biomimetic *in vitro* 3-dimentional
40 (3D) human lung granuloma model, resembling early “innate” and “adaptive” stages of the
41 TB granuloma spectrum, and present results of histological architecture, host transcriptional
42 characterization, mycobacteriological features, cytokine profiles and spatial distribution of
43 key immune cells. A range of manipulations of immune cell populations in these granulomas
44 will allow the study of host/pathogen pathways involved in the outcome of infection, as well
45 as pharmacological interventions.

46

47 **IMPORTANCE**

48 Tuberculosis is a highly infectious disease, with granulomas as its hallmark. Granulomas
49 play an important role in the control of *M.tb* infection and as such are crucial indicators for
50 our understanding of host resistance to TB. Correlates of risk and protection to *M.tb* are still
51 elusive, and the granuloma provides the perfect environment in which to study the immune
52 response to infection and broaden our understanding thereof; however, human granulomas
53 are difficult to obtain, and animal models are costly and do not always faithfully mimic human
54 immunity. In fact, most TB research is conducted *in vitro* on immortalized or primary immune
55 cells and cultured in 2D on flat, rigid plastic, which does not reflect *in vivo* characteristics. We
56 have therefore conceived a 3D, human *in vitro* granuloma model which allows researchers to

57 study features of granuloma-forming diseases, in an 3D structural environment resembling in
58 vivo granuloma architecture and cellular orientation.

59

60 **INTRODUCTION**

61 A hallmark of TB is the formation of granulomatous lesions in response to *M.tb*-infected
62 phagocytes, such as alveolar macrophages (AM) within the pulmonary space, inducing a
63 chronic inflammatory response. Additional macrophages are recruited to the site of infection
64 to form the “core” structure of the granuloma, characterized as an innate response to
65 infection. Recent literature shows that early *M.tb* infection occurs almost exclusively in
66 airway-resident alveolar macrophages, whereafter *M.tb*-infected, but not uninfected, alveolar
67 macrophages localize to the lung interstitium, preceding *M.tb* uptake by recruited monocyte-
68 derived macrophages and neutrophils (Cohen et al., 2018). Other immune cell types such as
69 interstitial macrophages, monocytes, dendritic cells, neutrophils, and lymphocytes (T- and B-
70 cells) are recruited to the site of infection where they are collected and organised around the
71 core to form mature granuloma structures to contribute to an adaptive immune response
72 (Davis and Ramakrishnan, 2009; Lin et al., 2006; Wolf et al., 2007). Granulomas are thus
73 the main site of the host-pathogen interaction, primarily aimed at preventing *M.tb*
74 dissemination, but during immune dysregulation, can also function as niche for *M.tb* survival
75 and persistence (Ehlers and Schaible, 2013).

76

77 During TB disease, the associated damage to host lung tissue, as evidenced by necrosis
78 and cavitation, which is associated with bacterial persistence and the development of drug-
79 resistant *M.tb*. Ultimately, TB patients harbour a range of granulomas, which may comprise a
80 spectrum of solid non-necrotizing, necrotic and caseous granulomas, each with its own
81 distinct microenvironment; these have been demonstrated to not be limited to active TB
82 patients, but are also observed in animals/non-human primates with both latent and
83 reactivation cases of TB (Flynn et al., 2011). The mere formation of granulomas is thus
84 insufficient for infection control, and instead, must function with the appropriate combination

85 of host control measures, for example the correct balance of pro- and anti-inflammatory
86 response mediators. The outcome of the host response to infection may be beneficial in that
87 some granulomas resolve completely (sterilizing cure), while others progress to caseation
88 and rupture, allowing for the uncontrolled dissemination of *M.tb* into the surrounding tissue –
89 both scenarios have been known to occur within the same individual (Barry et al., 2009). The
90 heterogeneity of granulomas even within the same patient highlights the need to study each
91 of these individual structures as a whole to assess host-pathogen interactions at an
92 individual granuloma level. Progress in understanding *M.tb* pathogenesis at a patient
93 granuloma-level has been poor due to the difficulty in obtaining fresh human TB
94 granulomatous lung tissue. For this reason, patient-driven immune responses to *M.tb* have
95 been mainly assessed in primary host immune cells, cultured *in vitro* as traditional cell
96 cultures on plastic plates optimized for tissue culture. Such traditional cell cultures with
97 uniform exposure to pathogen/immune mediators have served as important tools for
98 studying host-*M.tb* interactions. However, these non-physiological conditions fail to
99 recapitulate key elements of cells residing in the complex tissue microenvironment including
100 cell concentration and types, cell motility, multicellular interactions, cell expansion,
101 spatiotemporal kinetics and geometries (Duval et al., 2017; Nunes et al., 2019). Such
102 discrepancies present a significant barrier to interpretation and translation of findings from
103 basic science, vaccine immunogenicity-, drug efficacy- and prevention of infection studies,
104 ultimately limiting the impact of TB research on human health.

105

106 While animal models have contributed significantly to our understanding of the mammalian
107 immune system, numerous examples have shown that laboratory animal species do not
108 faithfully or in full, mimic human immunity or TB disease (Fonseca et al., 2017; Singh and
109 Gupta, 2018; Zhan et al., 2017). To overcome these obstacles, successful 3D *in vitro*
110 models can contribute to the ethos of the 3Rs of animal research by replacing the use of
111 animals in research with sentient material obtained from willing donors, thereby also
112 promoting human relevance (Herrmann et al., 2019). Advanced *in vitro* models (derived from

113 *in vivo* spatial information) that recapitulate the spatial interactions between recruited
114 monocytes, T-cells and B-cells in the context of the human lung granuloma, are lacking, but
115 are incredibly necessary for the future of TB research and the successful dissection of
116 disease pathology (Elkington et al., 2019).

117

118 In this study, we utilised primary human alveolar macrophages retrieved from the site of
119 disease and autologous adaptive immune cells isolated from the periphery, to successfully
120 establish an *in vitro* 3D granuloma model of human TB using magnetic cell levitation and
121 BCG infection. Magnetic cell levitation is a recently developed method used to generate
122 tumour spheroids during which tumour cells are pre-loaded with magnetic nanospheres
123 which electrostatically attach to cell membranes, to form multicellular spheroids suspended
124 in culture via an external magnetic field. Nanospheres subsequently detach from the cells,
125 allowing unsupported growth as the structure starts to mimic extracellular matrix (ECM)
126 conditions (Souza et al., 2010). Here we describe an *in vitro* model which could be used to
127 examine stages of granuloma formation, demonstrated here as early (innate) and late
128 (adaptive) granuloma types. These complex multidimensional structures are investigated at
129 morphological level and subsequently dissociated to assess single cell characteristics for
130 comparison to traditional cell cultures prepared using identical cell types, ratios, and
131 culturing conditions. We demonstrate, along with the method of construction, the possible
132 applications of this model, including a wide range of immunological assays. This model has
133 proven to be stable and reliable for the investigation of mycobacterial granulomas in a tissue
134 culture setting, opening the door for expansion of this model into additional molecular biology
135 avenues.

136

137 **METHODS**

138 **PRIMARY PROCESSING OF THE 3D SPHEROID GRANULOMAS**

139 **Study Subjects**

140 This proof-of-concept study enrolled three HIV-uninfected participants between the ages of
141 18 and 70 years who presented to the Pulmonology Division of Tygerberg Academic
142 Hospital with clinical indications of TB. These largely included clinical and radiological
143 abnormalities as determined by chest x-ray (CXR). Mycobacteria growth indicator tube
144 culture (MGIT) and/or GeneXpert MTB/RIF was performed. Written informed consent was
145 obtained from all participants, and a summary of their demographics is given (Table 1). The
146 study design was approved by the Stellenbosch University Ethics Review Committee (IRB
147 number N16/04/050).

148

149 **Sample Collection**

150 A visual outline of the methods used for this study is shown in Figure 1.
151 Bronchoscopies were performed on the study participants by qualified clinicians and nursing
152 staff according to international guidelines (Meyer et al. 2012a; Klech 1989) and
153 bronchoalveolar lavage done in a segmental bronchus with radiologically suspicious lesions
154 on CXR or computed tomography (CT). The lavage was performed by instilling sterile saline
155 solution at 37°C up to a maximum volume of 300ml in aliquots of 60ml at a time, with
156 aspiration between aliquots. Aspirated bronchoalveolar lavage (BAL) was collected in sterile
157 50ml polypropylene tubes (Falcon® 50ml Sterile Conical Centrifuge Tubes; Corning Inc.,
158 NY) and transported on ice to the laboratory. Immediately after bronchoscopy, peripheral
159 blood samples were collected by venepuncture into two 9ml sodium heparinised (NaHep)
160 vacutainers. Both BAL and peripheral blood samples were processed within 2 hours of
161 collection and processed under BSL3 and BSL2 conditions, respectively, owing to the high
162 infectious risk of BAL samples.

163

164 **Cell Isolations**

165 BAL cells (BALC) were isolated by centrifugation of BAL fluid (BALF) for 7 minutes at 300 x
166 g (4°C) following sterile filtration through a 70µm cell strainer (Falcon® 70µm Cell Strainer;

167 Corning Inc., NY) and successive wash steps with 1 X phosphate buffered saline (PBS). All
168 cells were counted, and the viability determined using the Trypan Blue (0.4%; Thermo Fisher
169 Scientific Inc., Waltham, MA) exclusion method (Strober 1997). BALC were cultured
170 overnight to isolate adherent cells (the majority of which are alveolar macrophages (AM))
171 from non-adherent cells (lymphocytes) should the fraction contain lymphocytes exceeding
172 30% of total cells, and then cryopreserved in cryomedia consisting of 10% dimethyl sulfoxide
173 (DMSO; Sigma-Aldrich Co., St. Louis, MO) and 90% fetal bovine serum (FBS; HyClone, GE
174 Healthcare Life Sciences, Illinois, USA).

175

176 Peripheral blood mononuclear cells (PBMC) were isolated from peripheral blood by
177 centrifugation using Ficoll density gradient medium (Histopaque-1077; Sigma Chemical Co.,
178 St. Louis, MO). Cells were counted and the viability determined using the Trypan Blue
179 exclusion method. PBMC were then used to isolate autologous CD3⁺ T cells using the
180 MACS® (magnetically activated cell sorting) MicroBead Isolation technique (Miltenyi Biotec,
181 Cologne, Germany) according to the manufacturer's instructions. Both the CD3⁺ T cells and
182 the CD3⁻ cell fractions were cryopreserved in cryomedia (described above).

183

184 **Thawing of Cryopreserved Cells**

185 Cryopreserved cells were thawed in a waterbath (37°C) and transferred to 10ml of warmed
186 complete RPMI-1640 media (supplemented with 1% L-glutamine (Sigma-Aldrich, St Louis,
187 Missouri, USA) and 10% FBS). Cells were centrifuged at 300 x g for 10 minutes and washed
188 twice. All cells were counted, and the viability determined using the Trypan Blue exclusion
189 method.

190

191 **AnaeroPack Experiment**

192 BALC were seeded in a 24-well low adherence plate at a concentration of 2x10⁶ cells per
193 500µl complete RPMI. A 2ml screw cap tube containing 2x10⁶ BALC in 500µl complete
194 RPMI was cultured separately and acted as the untreated control. 100µM Cobalt Chloride

195 (CoCl₂; Sigma-Aldrich; catalogue number:C8661-25G) was added to each well to stabilize
196 HIF-1α, before placing the plate in a lock-seal box. Working quickly, the AnaeroPack
197 (Mitsubishi Gas Chemical Co. INC) was removed from the protective foil and placed within
198 the lock-seal box next to the culture plate, and the box quickly sealed shut. The AnaeroPack
199 System is an easy anaerobic atmosphere cultivation method that has no need for either
200 water or catalyst. AnaeroPack creates an environment of <0.1% oxygen, and >15% CO₂.
201 Cells were incubated for 24 hours (37°C, 5% CO₂), after which 125µl 16% paraformaldehyde
202 (PFA; ThermoFisher Scientific, catalogue number: 28908) was immediately added to the
203 well and untreated control tube (to make a final concentration of 4% PFA) after opening the
204 lock-seal box. The box was re-sealed allowing for the cells to fix at room temperature for 20
205 minutes. Cells were transferred out of the plate to a 15ml Falcon tube and centrifuged at 400
206 x g for 10 minutes. The supernatant was removed, and the cells resuspended in 1ml 1XPBS.
207 Cytospins of 2x10⁵ BALC were then created for both the treated and untreated control cells
208 on poly-L-lysine-coated microscope slides (Sigma-Aldrich, Catalogue number: P0425-72EA),
209 to be used for immunofluorescent staining.

210

211 **BCG Infection**

212 Cultures of *Mycobacterium bovis* Bacille Calmette-Guerin (BCG) were grown in Difco
213 Middlebrook 7H9 (BD Pharmingen, San Diago, USA) supplemented with 0.2% glycerol
214 (Sigma-Aldrich), 0.05% Tween-80 (Sigma-Aldrich), and 10% Middlebrook Oleic Acid
215 Albumin Dextrose Catalase (OADC) enrichment (BD Pharmingen, San Diago, USA).
216 Aliquots of BCG cultures at an OD₆₀₀ of 0.8 were stored at -80°C in RPMI-1640 media
217 supplemented with 10% glycerol (Sigma-Aldrich). The number of viable bacteria was
218 assessed by thawing a frozen aliquot and plating serial dilutions onto Middlebrook 7H11 (BD
219 Pharmingen, San Diego, USA) agar plates. The plates were incubated at 37°C (5% CO₂) for
220 21 days and colonies counted manually thereafter to determine the number of viable
221 bacteria.

222

223 AM were thawed and rested at 37°C (5% CO₂) for 18 hours in complete RPMI-1640
224 supplemented with 1% L-glutamine (Sigma-Aldrich, St Louis, Missouri, USA), 10% FBS and
225 an antimycotic antibiotic containing 10,000U/ml penicillin, 10,000µg/ml streptomycin and
226 25µg/ml amphotericin B (Fungizone) (PSF; Lonza, Walkersville, MD, USA). The following
227 day, AM were washed in complete RPMI lacking PSF, centrifuged at 300 x g for 10 minutes
228 and then cultured at a density of 4x10⁵ cells/well in a 24-well low adherence culture plate
229 (Greiner Bio-One, North Carolina, USA). Both “Uninfected” and “Infected” wells were seeded
230 for comparison between infection states. “Infected” wells were infected with BCG (Pasteur
231 strain, MOI 1) and incubated for 4 hours. Extracellular bacteria were removed by incubating
232 cells (37°C, 5% CO₂) with complete RPMI supplemented with PSF for 1 hour, followed by
233 successive washes with complete RPMI lacking PSF.

234

235 **3D Granuloma Construction**

236 Magnetic cell levitation and -bioprinting are recently developed methods used to generate
237 3D tumor spheroids (Tseng et al., 2015, 2013). We have implemented this system to create
238 incipient, innate-style and mature, classic (adaptive)-style 3D lung granuloma types
239 resembling TB granulomas, which will henceforth be referred to as innate and adaptive
240 granulomas, respectively. It should be noted that all incubation periods mentioned in this
241 methods section are carried out in an incubator (37°C, 5% CO₂), and that paired BALC and
242 PBMC samples were used to build each spheroid.

243

244 In brief, BCG uninfected and infected AM were treated overnight with biocompatible
245 NanoShuttle™ (made from gold, iron oxide and poly-l-lysine; n3D Biosciences Inc., Greiner
246 Bio-One) at a concentration of 100µL per 1x10⁶ cells in low-adherence plates at a maximum
247 volume of 300µL per well (Haisler et al., 2013; Souza et al., 2010). The following day, the
248 NanoShuttle™-labelled AM were levitated using the magnetic levitating drive (n3D

249 Biosciences Inc., Greiner Bio-One) for 48 hours to cluster and assemble the granuloma core
250 (Figure 2a). This granuloma core consisting of only AM is considered the innate granuloma.
251 Concurrently, autologous CD3⁺ T cells were thawed, counted, and rested overnight in
252 complete RPMI in a separate 24-well culture plate. Adaptive granulomas were created 48
253 hours post-construction of the granuloma core, through addition of these autologous T cells
254 (6x10⁵/well) at a ratio of 40:60 (AM:T cells). We previously conducted a titration of cell ratios
255 and selected a macrophage to lymphocyte ratio that macroscopically resembles a TB lung
256 granuloma considered to harbour a median bacterial burden (Wong et al., 2018). This was
257 achieved by carefully removing the levitating drive from the culture plate (Figure 2b) and
258 replacing it with the magnetic printing drive (Figure 2c). Chemokine production by the AM
259 core allows for T cell migration to the granuloma structure, forming an outer lymphocytic cuff,
260 closely resembling the complex *in vivo*, organized mature classic human TB granulomas.
261 The adaptive granuloma was then incubated for 24 hours, after which the printing drive was
262 removed, and each granuloma dedicated to various downstream processes. For the innate
263 granulomas, no autologous T cells were added but the core was incubated for the same
264 period as the adaptive granulomas (Figure 2d). Nanospheres subsequently detach from the
265 cells, allowing unsupported growth as the structure starts to mimic extracellular matrix (ECM)
266 conditions. This model thus allows for the addition, enrichment, or depletion of specific
267 innate or adaptive immune cells or immune mediators to interrogate their potential
268 contribution to protective or nonprotective granulomatous responses.

269

270 **Traditional Cell Culture Control Construction**

271 As a control culture condition, traditional cell cultures were constructed in tandem with the
272 3D granuloma construction in a separate 24-well low adherence culture plate for each
273 participant. The exact same ratios of AM to T cells were used for these control cultures, the
274 only difference being that **no** NanoShuttleTM was added to the AM, and subsequently no
275 levitation- or printing drives were added to the culture plate to replicate cellular distributions

276 under normal *in vitro* culture conditions. Both “Uninfected” and “Infected” control cultures
277 were set up, for both innate and adaptive granuloma types.

278

279 **DOWNSTREAM PROCESSING OF THE 3D SPHEROID GRANULOMAS**

280 **3D Granuloma Embedding and Cryosectioning**

281 A pair of Uninfected and Infected granulomas had their supernatant carefully removed and
282 stored in separate 0.2mL Eppendorf tubes at -80°C for later cytokine response interrogation
283 using Luminex immunoassays. The structures were then washed twice with 300µL complete
284 RPMI, making sure to not disrupt the structures, and subsequently fixed with 300µL 4%
285 paraformaldehyde (PFA; ThermoFisher Scientific, Catalogue number: 28908) for 30 minutes
286 in the dark. Fixed structures were then embedded in tissue freezing media, OCT (Tissue-
287 Tek; USA), and stored at -80°C for later cryosectioning. Cryosections were made using a -
288 20°C Cryostat (Leica Biosystems), with sections being cut 7µM thick and mounted onto poly-
289 L-lysine-coated microscope slides (Sigma-Aldrich, Catalogue number: P0425-72EA). The
290 cryosections were numbered in order of cutting to allow for the “position” within the structure
291 to be inferred and picked for specific staining. Mounted sections were stored at -20°C until
292 immunohistochemistry staining could be performed. Sections were reserved for
293 immunofluorescent staining (sections from the centre of the 3D granuloma structure), H&E
294 staining (a section from near the centre) and ZN staining (a section from near the centre).
295 The processing described for “Immunofluorescent Staining”, “Immunofluorescent
296 Microscopy”, “H&E Staining”, “Ziehl-Neelsen Staining” and “Light Microscopy” was not done
297 for the traditional cell culture conditions.

298

299 **Staining and Microscopy**

300 **1. Immunofluorescent Staining**

301 All staining was done in a humidified chamber. Fixed granuloma sections (stored at -20°C)
302 were rehydrated in 1 X PBS for 10 minutes followed by two washes of 1 X PBS for 5
303 minutes. Sections were blocked with 1% Bovine Serum Albumin (BSA; Sigma-Aldrich,

304 Catalogue number: A7030) in PBS containing 0.1M glycine for 1 hour at room temperature
305 after which the sections were incubated with corresponding primary antibodies diluted in 1%
306 BSA in PBS overnight at 4°C in the dark. Antibody concentrations were as follows: alveolar
307 macrophage membranes were stained using CD206 PE-CF594 (Mouse Anti-Human CD206,
308 BD Biosciences; catalogue number: 564063) at a concentration of 4 μ L in a 50 μ L final
309 staining volume per section; and the universal T cell surface marker CD3 V450 (Mouse Anti-
310 Human CD3, BD Biosciences; catalogue number: 560365) was used at a concentration of
311 5 μ L in a 50 μ L final staining volume per section. To assess necrosis, the expression of the
312 necrotic marker, HMGB1, was assessed using Mouse Anti-Human HMGB1 (BioLegend,
313 catalogue number: 651408) at a concentration of 20 μ g/mL. HMGB1 stained sections were
314 counterstained with the nuclear stain, Hoechst (Life Technologies; catalogue number:
315 H3570), at a concentration of 1 μ g/mL. Following overnight incubation, sections were washed
316 three times in 1 X PBS for 5 minutes and the sections allowed to dry slightly before mounting
317 with DAKO mounting medium (Agilent Technologies) and allowing to airdry overnight in the
318 dark at room temperature. Slides were stored at 4°C in the dark until imaging. Unstained and
319 single stained controls were also prepared for each experiment to assess background and
320 signal specificity in each channel.

321 Immunofluorescent staining for cytopsin slides (see “**AnaeroPack Experiment**” Methods)
322 were performed as described above, with antibody concentrations as follows: BALC were
323 stained with Hoechst (Life Technologies; catalogue number: H3570) at a concentration of 1
324 μ g/mL; the hypoxia marker HIF-1 α AF488 (Mouse Anti-Human, BioLegend; catalogue
325 number: 359708) was used at a concentration of 2.5 μ g/mL final staining volume per section;
326 and the necrosis marker HMGB1 AF647 (Mouse Anti-Human, BioLegend; catalogue
327 number: 651408) was used at a concentration of 20 μ g/mL final staining volume per section.

328

329 **2. Immunofluorescent Microscopy**

330 Images were obtained using a Carl Zeiss LSM 880 Airyscan with Fast Airyscan Module
331 confocal microscope (Plan-Apochromat x63/1.40 oil DIC UV-VIS-IR M27 objective lens), and

332 the images were acquired using the ZEN software (Carl Zeiss). Acquisition settings for
333 imaging were identically set for all sections. Red channel: excitation wavelength (561nm),
334 emission wavelength (659nm), detection wavelength (585-733nm), pinhole (1.42 AU), frame
335 scan mode, detector gain (640); blue channel: excitation wavelength (405nm), emission
336 wavelength (432nm), detection wavelength (410-455nm), pinhole (2.17 AU), frame scan
337 mode, detector gain (724). 18x18 tile scans were acquired and stitched together.

338

339 **3. H&E Staining**

340 One section from both Uninfected and Infected granuloma structures, not reserved for
341 immunofluorescent staining and control slides, was stained using the Lillie Mayer H&E
342 method (Lillie, 1965) to visualise the overall compartmentalisation of the various cell types
343 added to the 3D structure without immunofluorescent stains. Briefly, the designated sections
344 were removed from storage and allowed to reach room temperature while placed in a
345 slanted position and rehydrated in dH₂O. Sections were then stained with alum haematoxylin
346 for 4 minutes, rinsed with tap water and differentiated with 0.3% acid alcohol for 2 seconds.
347 Sections were rinsed again with tap water, then rinsed in Scott's tap water substitute, and
348 rinsed again with tap water. Finally, sections were stained with Eosin for 2 minutes,
349 dehydrated, cleared and coverslips mounted using 1 drop of VectaMountTM (Vector
350 Laboratories, California, USA).

351

352 **4. Ziehl-Neelsen (ZN) Staining**

353 One section from both Uninfected and Infected granuloma structures, not reserved for
354 immunofluorescent staining and control slides, was stained using the ZN method to identify
355 the localisation of acid-fast bacteria within the 3D structure. Briefly, the designated sections
356 were removed from storage and allowed to reach room temperature while placed in a
357 slanted position. Sections were then flooded with carbol fuchsin and heated gently with a
358 flame until a vapour is emitted. Sections were immersed for 5 minutes, rinsed with dH₂O,
359 flooded with acid-alcohol, and allowed to stand for 2 minutes. Following this, sections were

360 rinsed with dH₂O, counterstained with methylene blue, allowed to stand for 2 minutes and
361 finally rinsed and allowed to dry. Dry sections were mounted with coverslips using 1 drop of
362 VectaMountTM.

363

364 **5. Light Microscopy**

365 H&E-stained sections and ZN-stained sections were visualised using the ZEISS Axio
366 Observer microscope, fitted with an Axiocam MRc 195 microscope camera, and the images
367 were acquired using the ZENlite imaging software (blue edition, version 1.1.1.0).

368

369 **Flow cytometry**

370 An Uninfected and Infected granuloma pair was mechanically dissociated (by gentle
371 pipetting) into single cells and transferred to respective sterile 15mL Falcon tube. Cells were
372 then centrifuged at 300 x g for 10 minutes and resuspended in 5mL complete RPMI and
373 washed. Washed cells were then resuspended in 300µL complete RPMI and transferred to a
374 sterile, 24-well culture plate (untreated), after which cells were incubated for 48 hours to
375 allow for adherence of the AM. Following incubation, the non-adherent fraction was
376 separated from the adherent cells and the wells washed twice. These cells were immediately
377 used for the flow cytometric investigation of the phenotypic and functional characteristics of
378 the non-adherent cellular fraction, namely T cells. The same procedure was followed for an
379 Uninfected and Infected traditional cell culture control pair. The adherent fraction was not
380 analysed by flow cytometry, due to the high levels of autofluorescence. To demonstrate this,
381 1x10⁶ total BALC and PBMC were transferred to two separate 5ml Falcon tubes and
382 centrifuged at 250 x g for 5 minutes. Both fractions were kept unstained and acquired on the
383 BD FACSTM Canto II, with gates being set using a pre-defined FMO from a stained PBMC
384 sample with the channels CD3 PE-Cy7, CD14 Pacific Blue, and anti-HLA-DR APC.

385

386 Non-adherent fractions were analysed by flow cytometry using the BD FACSTM Canto II, and
387 were stained to define their basic phenotypic profiles. Fractions were stained using anti-CD3

388 PE-Cy7 (BD Biosciences; catalogue number: 563423), anti-CD14 Pacific Blue (BD
389 Biosciences; catalogue number: 558121), anti-CD16 PerCP-Cy5.5 (BD Biosciences;
390 catalogue number: 565421), and anti-CD56 BV510 (BD Biosciences; catalogue number:
391 563041). Staining was performed for 30 minutes in the dark at room temperature, in a 50 μ l
392 staining volume. Titrations, compensation, and fluorescence-minus-one (FMO) for each
393 antibody was performed prior to analysis at the BD Stellenbosch University Flow Cytometry
394 Unit on Tygerberg Campus. Data was analysed using the third party FlowJo Software
395 v10.0.8. and the 3D granuloma structure data compared to that obtained for the traditional
396 cell culture control.

397

398 **RNA Sequencing**

399 **1. RNA Extractions**

400 An Uninfected and Infected granuloma pair was mechanically dissociated (by gentle
401 pipetting) into single cells and transferred to a sterile 2mL screw-cap tube. Cells were then
402 centrifuged at 300 x g for 10 minutes and vigorously resuspended in 350 μ L RLT Buffer
403 (Qiagen, Germany) by vortexing for 30 seconds. Cells were stored at -80°C for batched RNA
404 extractions to perform gene expression or RNASeq analysis. On the day of batched RNA
405 extractions, samples were removed from storage and allowed to thaw at room temperature.
406 RNA was extracted using the Qiagen RNeasy® Mini Kit according to the manufacturer's
407 instructions. Following isolation, 1 μ L of each sample was used to check RNA integrity using
408 a Nanodrop spectrophotometer (Thermo Fisher Scientific, Massachusetts, USA), with all
409 samples having a A260/A280 ratio of above 1.8. The remaining RNA was stored until RNA
410 Sequencing could be performed. The same procedure was followed for an Uninfected and
411 Infected traditional cell culture control pair.

412

413 **2. Library Preparation**

414 Total RNA was extracted from eleven samples; however, two samples did not meet the total
415 RNA (200ng) requirements for further processing. Total RNA was subjected to DNase
416 treatment and magnetic bead-based mRNA enrichment using the Dynabeads™ mRNA
417 Purification kit (Invitrogen™, Thermo Fisher Scientific, Waltham, MA, USA), according to the
418 protocol described in the *MGIEasy RNA Library Prep Set User Manual* prior to proceeding
419 with library construction. Library preparation was performed with the entire component of
420 mRNA for each sample using the *MGIEasy RNA Library Prep Kit* (MGI, Shenzen, China),
421 according to the manufacturer's instructions.

422

423 **3. Sequencing**

424 Massively parallel sequencing was performed at the South African Medical Research
425 Council (SAMRC)/Beijing Genomics Institute (BGI) Genomics Centre using DNA nanoball-
426 based technology on the MGISEQ-2000 using the appropriate reagents supplied in the
427 MGISEQ-2000RS High-Throughput Sequencing Kit. A paired-end sequencing strategy was
428 employed with a read length of 100bp (PE100). Sample libraries were loaded onto MGISEQ-
429 2000 FCL flow cells with the MGILD-200 automatic loader, and 18 FASTQ files generated (9
430 forward- and 9 reverse read files).

431

432 **4. Analysis**

433 Raw FASTQ files were assessed using FastQC (version 0.11.5). Reads with quality scores
434 less than 20 and length below 30 bp were all trimmed. The resulting high-quality sequences
435 were subsequently used in MultiQC, a module contained in Python (version 3.6.3), to
436 aggregate and summarise the results from multiple FastQC reports into a single HTML
437 report. Raw FASTQ files were then imported, annotated (human GRCh38.p13 dataset from
438 https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/), filtered (Counts per Million
439 (CPM) cut-off method), normalised, and analysed using statistical software based in R
440 (version 3.6.3). Differentially regulated transcripts were functionally annotated to gain an
441 overview of biological pathway regulation. Briefly, GO terms enrichment analysis was

442 conducted on the ensemble gene IDs using the Database for Annotation, Visualization and
443 Integrated Discovery (DAVID) v 6.8 (Huang et al., 2009a, 2009b), while the REVIGO
444 resource was used to summarise and visualize the most enriched GO terms (Supek et al.,
445 2011).

446

447 **Luminex® Immunoassay**

448 As mentioned previously in the methods section, a pair of Uninfected and Infected
449 granulomas had their supernatant removed and stored in separate 0.2mL Eppendorf tubes
450 at -80°C for later cytokine response interrogation using the Luminex immunoassay platform
451 (Luminex, Bio Rad Laboratories, Hercules, CA, USA). Supernatants were collected and
452 stored from structures throughout the culture period, beginning from 1-day to 4-days post
453 infection, at the beginning of each day's processing. The same procedure was followed for
454 an Uninfected and Infected traditional cell culture control pair. A one-plex kit was used to
455 measure the production of interleukin (IL)-22 (R&D Systems®, LXSAHM-01), and a four-plex
456 was used to measure the production of IL-2, IL-10, interferon (IFN)- γ , and tumor necrosis
457 factor (TNF) α (R&D Systems®, LXSAHM-04). Briefly, samples were removed from storage
458 and allowed to reach room temperature one hour before beginning the assay. Samples were
459 then vortexed and prepared for the assay according to the manufacturer's instructions.
460 Samples were not diluted as recommended by the manufacturer but run neat due to the
461 small number of cells used in culture and the restrictive lower limit of detection observed for
462 Luminex immunoassays. Samples were run on the Luminex® MAGPIX system. The beads
463 from each sample were acquired individually and analysed using the Bio-Plex ManagerTM
464 Software version 6.1 according to recommended settings. Instrument settings were adjusted
465 to ensure 50 bead events per region, with sample size set to 50 μ l for both kits.

466

467 **CFU Determination**

468 The supernatant from the remaining Uninfected and Infected granuloma pair was carefully
469 removed and the cells mechanically dissociated (by gentle pipetting) into single cells after
470 adding 300µL complete RPMI. Cells were then transferred to a sterile 15mL Falcon tube and
471 centrifuged at 300 x g for 10 minutes and resuspended in 200µL dH₂O to lyse the cells and
472 vortexed. Serial dilutions were prepared using this cell lysate using PBS-Tween80. The neat
473 cell lysate and serial dilutions were then plated out in duplicate on Middlebrook 7H11 agar
474 plates (BD Biosciences) for manual CFU determination after 21 days. The same procedure
475 was followed for an Uninfected and Infected traditional cell culture control pair.

476

477 **Statistical analysis**

478 Statistical analyses were performed using GraphPadPrism version 8 (GraphPad Software,
479 San Diego, CA). A p-value of less than 0.05 was considered significant. Tests for normality
480 could not be performed due to sample sizes being too small in this pilot study; data was,
481 therefore, treated as nonparametric throughout. Where two groups were compared the
482 Mann-Whitney t-test was used. The Kruskal-Wallis test was performed using Dunn's post-
483 test to correct for multiple comparisons where three or more groups were compared.

484

485 **RESULTS**

486

487 The results of this proof-of-concept study demonstrate that the *in vitro* 3D human granuloma
488 model is capable of being successfully interrogated using multiple molecular biology
489 platforms.

490

491 **Macroscopic and Microscopic Differences in Granuloma Structural Formation exist 492 due to cell composition and mycobacterial infection.**

493 NanoShuttleTM-labelled alveolar macrophages were levitated for 48 hours at the beginning of
494 the model construction, and granuloma cores were observed as hanging cultures with
495 spheroids suspended just underneath the surface of the culture media. After the first 24

496 hours of levitation, the magnetic levitation drive was removed briefly to investigate the
497 structural integrity of the granulomas without magnetic influence. The assembly of the AM
498 core could already be visualised at the 24-hour time point with BCG infected cores
499 appearing less “stable” than uninfected cores (Figure 3a), with this apparent instability
500 improving by the 48-hour culture time point (Figure 3b). At the end of the culture period,
501 slight macroscopic variations in the morphology of uninfected (Figure 3c) and BCG infected
502 (Figure 3d) innate granulomas could be seen, as well as between the uninfected (Figure 3e)
503 and BCG infected (Figure 3f) adaptive granulomas. A “cuff” of unlabelled autologous CD3⁺ T
504 cells were clearly seen to be surrounding the darker, NanoShuttleTM-labelled AM core
505 (Figure 3e and 3f), compared to the innate core lacking the “cuff” due to the lack of
506 autologous CD3⁺ T cells (Figure 3c and 3d). While these visual differences are important for
507 defining structural phenotypes during the early stages of this model’s development,
508 information regarding details like the infiltration of autologous CD3⁺ T cells into the AM core
509 could not be inferred without immunofluorescent microscopic assessment.

510

511 Granuloma structures were further investigated at cellular level to interrogate the
512 composition in a more detailed manner. For the uninfected granulomas, both H&E (Figure
513 4c) and ZN (Figure 4d) stains demonstrated that no acid-fast bacilli are present within the
514 AM core (Figure 4d). ZN staining of an infected granuloma structure demonstrated acid-fast
515 bacilli both near the cuff of the structure (Figure 4i) and in the core (Figure 4j). For both
516 infected and uninfected granulomas, the adaptive granuloma structures demonstrated a
517 “cuff” of autologous lymphocytes, based on known morphology, as seen using both H&E
518 (Figure 4g) and ZN (Figure 4h) staining. It is interesting to note that the core of the adaptive
519 granuloma structures was almost exclusively made up of macrophages (Figure 4c),
520 suggesting minimal infiltration by autologous CD3⁺ T cells from the “cuff” at this infection
521 time point. Inferences could suggest that the architecture of granulomas with non-infiltrating
522 lymphocytes encapsulating the AM core, represent a structural component of mycobacterial
523 infection control/failure (Gil et al., 2010; Lenaerts et al., 2015; Peyron et al., 2008);

524 alternatively, this could also be a methodological limitation whereby the CD3⁺ T cells have
525 simply not had sufficient time to migrate through the core.

526

527 **Magnetic levitation combined with bioprinting, successfully produces a**
528 **morphologically and physiologically relevant 3D TB lung granuloma.**

529 Confocal microscopy (Figure 5a) demonstrated that both the outer edges (Figure 5b) and
530 core (Figure 5c) of the innate granuloma is made up exclusively of AM (CD206 PE-CF594
531 (red)). A tile scan (Figure 6a) of the adaptive granuloma mid-section revealed a “cuff” of
532 autologous CD3⁺ T cells (Figure 6b), and an exclusively AM-dominant core (Figure 6c),
533 again demonstrating little-to-no autologous CD3⁺ T cells infiltrating the core. These findings
534 are synonymous with the inferences made about human granuloma structures from non-
535 human primate (NHP) models of TB (Flynn et al., 2015).

536

537 In addition to our 3D spheroid granuloma structures being morphologically relevant, it
538 remains important to use this model to recapitulate physiologically relevant events of *in vivo*
539 granulomas. It is well known that TB granulomas undergo structural and localised changes
540 during development and maturation. These changes often include the caseation of the core
541 through the process of necrosis which contributes to morbidity by causing tissue damage.
542 The caseous granuloma *in vivo* is notably hypoxic, driving the accumulation of hypoxia
543 inducible factor 1- α (HIF-1 α), and considered the hallmark of failed *M.tb* containment,
544 implicated in transmission (Belton et al., 2016; Canetti, 1955; Pagán and Ramakrishnan,
545 2014). HIF-1 α , which is ubiquitously expressed in the cytoplasm under normoxic conditions,
546 is used in this study as a hypoxia target (Hirschhaeuser et al., 2010), while necrotic cells are
547 known to release the high mobility group box 1 (HMGB1) protein from the nucleus into the
548 cell cytoplasm (Parasa et al., 2014). We compared the expression of HMGB1 and HIF-1 α in
549 our 3D spheroid granuloma model to traditional control cultures. Traditional cell culture
550 controls created using BAL cells in an AnaeroPack experiment displayed basal expression

551 patterns for both targets, synonymous with cells being non-necrotic and normoxic (Figure
552 7a). Following experimental manipulation of traditional cultures to induce a hypoxic
553 environment (Figure 7b), an upregulation in cytoplasmic expression of HIF-1 α , although no
554 nuclear translocation (indicative of a hypoxic cell) was observed (Figure 7c); however, the
555 cytoplasmic translocation (indicative of a necrotic cell) of HMGB1 from the nucleus to the
556 cytoplasm of BAL cells was achieved in traditional culture after experimental induction
557 (Figure 7d). In contrast, we investigated both targets within our 3D spheroid granuloma
558 model (Figure 7e), which did not require any additional experimental manipulation
559 whatsoever such as was necessary for the traditional cell culture controls. Here we
560 demonstrated that cytoplasmic translocation of HMGB1 successfully occurs in BAL
561 macrophages when located at the core of the 3D spheroid granuloma (Figure 7f) and
562 remains in the nucleus of T-cells at the cuff (Figure 7g), displaying a brightly stained rim. We
563 were unsuccessful in capturing any HIF-1 α immunofluorescent signals within the 3D
564 spheroid granuloma model and we propose that this is as a result of HIF-1 α being highly
565 ubiquitinated upon re-exposure to oxygen, making it difficult to target without knowing the
566 point at which hypoxia is induced during *M.tb* infection (Salceda and Caro, 1997). Our data
567 confirms that the core of the 3D spheroid granuloma contains AM, which are both necrotic
568 and non-necrotic, and a cuff of non-necrotic T-cells surrounds this core, recapitulating both
569 morphological and physiological characteristics of TB granulomas. While traditional cell
570 cultures require experimental manipulations for the induction of hypoxic and necrotic
571 responses seen *in vivo*, our 3D human spheroid granuloma can recapitulate the *in vivo*
572 granuloma microenvironment without external manipulation, by mimicking the spatial
573 organization and cellular interactions within the 3D conformation, which may allow for the
574 appropriate investigation of these forms of cell death.

575

576 **Single cell immune phenotyping of post-culture granuloma cells reveals maintained**
577 **viability and distinct immune phenotypes.**

578 The viability and cell number of mechanically disrupted 3D granuloma structures was
579 assessed via flow cytometry and compared to traditional cell culture controls. Innate
580 granuloma structures could not be assessed in this manner owing to the highly auto-
581 fluorescent nature of AM, making flow cytometry near-impossible on these cells (Figure 8).
582 Particulate matter found within the AM of smokers or persons exposed to biomass fuels
583 appear to be responsible for the autofluorescence, as is demonstrated by signals observed
584 in the red channel during lambda scanning on the confocal microscope (Figure 9) (Young et
585 al., 2019). Importantly, we could demonstrate that it was the AM and not the CD3⁺ T cells
586 which were autofluorescent. Therefore, only adaptive granuloma structures were
587 mechanically dissociated after the full culture period of six days as these could then be
588 cultured for adherence to separate the AM from the T cells. Following prolonged culture, we
589 have shown that the AM core becomes necrotic, and thus expect the cells to dye more easily
590 with Trypan blue compared to traditional cell culture controls. Using the Trypan blue
591 exclusion method, cell viability (Figure 10a) and cell number (Figure 10b) could be assessed
592 and compared for each structure. No statistically significant differences were observed
593 between the four groups for either cell viability or cell counts based on the small sample size.
594
595 We then investigated the ability to conduct single cell immune phenotyping on deconstructed
596 granuloma single cells following six days of culture. We also wanted to know how the 3D
597 conformation and resultant molecular signals, would impact cell frequencies, when
598 compared to traditional cell culture cultures. From the same mechanically dissociated
599 adaptive granuloma structures and corresponding traditional cell culture controls as used for
600 the assessment of viability, phenotyping by way of flow cytometry (FACSTM Canto II) could
601 be successfully performed on the non-adherent cell fraction. Autologous CD3⁺ T cells
602 (Figure 10c), CD3⁻CD14⁺ Myeloid cells (Figure 10d), CD3⁻CD16⁺ NK cells (Figure 10e), and
603 CD3⁺CD16⁺ NKT cells (Figure 10f) could be identified from the non-adherent cell fraction,
604 with CD3⁺ T cells proving to be the dominant cell subset. While none proved statistically
605 significant (Table 2), there were visible differences in the phenotypic profiles of the non-

606 adherent cell fractions of the uninfected- and infected- adaptive granuloma structures, as
607 well as the uninfected- and infected- traditional cell culture controls (referred to as a
608 “monolayer” within the figure). While the proof-of-concept nature of this study does not allow
609 for strong biological inferences made based on the results observed for the granuloma
610 structures and traditional cell cultures, our study does show promise for future investigations
611 where we plan to significantly increase the number of granuloma structures assessed.

612

613 **3D granulomas secrete pro-inflammatory cytokines into the extracellular environment,
614 signalling the recruitment of other immune cells.**

615 Traditional cell cultures are known for their capabilities of producing cytokines and
616 chemokines during short term cultures, as measured frequently by Luminex immunoassays.
617 Supernatants from 3D granuloma structures and traditional cell culture controls were
618 harvested throughout the culture period, and at the end of the six-day culture. The most
619 interesting differences to investigate would be the production of the selected cytokines from
620 both AM and autologous CD3⁺ T cells, comparing these between 3D granuloma structures
621 and traditional cell culture controls. We performed a Luminex immunoassay on the
622 harvested supernatants and measure the concentrations of IL-10 (Figure 11a), TNF- α
623 (Figure 11b), IFN- γ (Figure 11c), IL-2 (Figure 11d) and IL-22 (Figure 11e). Tests for
624 normality could not be performed due to the small sample size, but QQ plots of the data
625 showed the data could follow a Gaussian distribution if more datapoints were available. Data
626 was, therefore, treated as nonparametric data, with the Kruskal-Wallis test being performed
627 using Dunn’s post-test to correct for multiple comparisons. All cytokines assessed could be
628 successfully measured from the harvested supernatants, with the cytokine IFN- γ showing
629 high production in T cells prior to their addition to the granuloma structure, as would be
630 expected from a normal culture. While none of the cytokines showed statistically significant
631 differences between the groups, this was expected due to the low sample size, but was
632 performed regardless to demonstrate the viability of the generated 3D granuloma structures

633 over a long culture period and interact in a manner reminiscent of the *in vivo* human TB
634 granuloma. Of particular interest was the observation that the innate granulomas (both
635 uninfected (UIG) and BCG infected (IIG)) did not produce high levels of cytokines like TNF-
636 α , IFN- γ and IL-2 associated with T cell production and release, further supporting the
637 previous statement. Whilst not significantly different, the differences between the 3D
638 granuloma structures and the traditional cell controls could prove to be higher in the 3D
639 granuloma structures should we increase the sample size, as a few differences were already
640 apparent, for example IFN- γ .

641

642 **3D adaptive granuloma structures regulate mycobacterial replication.**

643 When total cell numbers from patient samples were not limiting, CFU were measured for
644 each granuloma structure using the cell lysate (Figure 12). For the purposes of this pilot
645 study, we were able to measure the initial uptake by AM after the 4-hour infection from two
646 of the participants which allowed for an indication of bacterial uptake prior to the long-term
647 culture of the 3D granuloma structures ($p = 0.2$) and traditional cell culture controls ($p = 0.8$).
648 Due to a lack of adequate cell numbers, the BCG infected innate traditional cell culture
649 control had a single datapoint only and was therefore excluded from analysis. Interestingly,
650 the BCG infected adaptive 3D granuloma displayed a trend for improved bacterial control
651 compared to the BCG infected traditional cell culture control, however with few datapoints
652 available, this was not significant ($p = 0.7$). It would also appear that for some individuals,
653 the 3D spheroid granulomas are more protective whereas others show the same level of
654 containment between traditional cultures and 3D spheroid granulomas. Increasing the
655 number of datapoints available for CFU count will be of value for determining the levels of
656 significance between bacterial uptake and level of control, but it shows promise that the
657 adaptive 3D granuloma structure shows a trend for improved bacterial control over the
658 traditional cell culture control conditions.

659

660 **Mycobacterial infection and spheroid configuration both alter the gene expression of**
661 **cells in 3D Spheroid granulomas.**

662 We evaluated the ability to extract quality RNA from individually dissociated 3D spheroid
663 granulomas and conducted bulk RNA sequencing on the cells. Total RNA was extracted
664 from eleven available samples, but two did not meet the total RNA requirement for
665 acquisition on the MGISEQ-2000; therefore, only nine samples were used for further
666 evaluations (table in Figure 13). FASTQC was used to assess the quality of the 18 FASTQ
667 files generated, and manual inspection of the quality score graphs of all 18 HTML reports
668 showed that the lowest 10th percentile value for any base at any position was 26; in all cases
669 the software issued a passing grade (Figure 14a, b, d, e). Another important quality metric to
670 consider is the proportion of bases seen at each position. All 18 reads (nine forward and
671 nine reverse reads) showed erratic behaviour in the first 10-13 bases before a transition to a
672 smooth curve for the rest of the read (Figure 14c, f). For RNA-Seq data this is expected and
673 is a result dependent on the specific library kit which was used. As a result, further cleaning,
674 or processing of the raw FASTQ files (for example, trimming of adaptor sequences) was not
675 required.

676

677 The geometrical impact of 3D granulomas on the biological responses of immune cells,
678 remains unexplored. We therefore compared the gene expression profile of the 3D spheroid
679 granuloma to the corresponding human subject's cells (matched cell origin, types, ratios,
680 numbers) in traditional cell culture. Results from this demonstrate that cells in 3D spheroid
681 granulomas up-regulate 640 genes and down-regulate 523 genes, when compared to those
682 in traditional culture (Figure 13a). Loose inferences based on the top ten differentially
683 expressed genes (Figure 13b) suggest that 3D spheroid granulomas could augment the
684 transcription of proteins related to inhibitory synapse development, a neuropeptide receptor,
685 a zinc finger transcription factor, and T cell activation, but curb those related to leptin,
686 hepcidin, actin filament proteins and a heparan sulphate-glucosamine enzyme. In total, we
687 identified 138 genes with significant differential expression between BCG-infected 3D

688 spheroid granulomas and BCG-infected traditional culture. These 138 differentially regulated
689 transcripts were functionally annotated to gain an overview of the biological pathway
690 regulation using GO enrichment analysis. The REVIGO resource was used to summarise
691 and visualize the most enriched GO terms for biological processes (Figure 15A), molecular
692 function (Figure 15B) and cellular components (Figure 15C) in an interactive graph.
693 Differential gene expression was also observed between uninfected and BCG-infected 3D
694 spheroid granulomas when innate 3D spheroid granulomas were investigated (Figure 13c),
695 while a multi-dimensional scaling plot of all datapoints demonstrated differences between
696 both participants from which RNA-Seq samples were available as observed by the grouping
697 in the first component between the two different participants (Figure 13d; smoker (green) vs
698 non-smoker (blue)).

699

700 While still very preliminary, our RNA-Seq data demonstrates the ability to successfully
701 isolate and sequence high-quality RNA from the 3D spheroid structures after prolonged
702 culture and infection. The preliminary data alludes to differential behaviour of host immune
703 cells based on structural organisation and conformation upon BCG-infection, as observed in
704 the differences between traditional cell culture and the 3D spheroid structures, which may, in
705 future, lead to the possibility of demonstrating that traditional cell culture methods do not
706 accurately reflect responses occurring at a granuloma level during mycobacterial infection.
707 Since this study developed the method of generating 3D spheroid granulomas, future studies
708 will include the comparison of larger numbers of participants to investigate this hypothesis.

709

710 **DISCUSSION**

711 Human responses to *M.tb* infection range in complexity, while the heterogeneity of TB
712 disease is unprecedented and challenging to model. Most infected individuals can mount a
713 protective immune response to control infection, resulting in a large proportion of these
714 individuals achieving sterilizing cure. Yet a small proportion will develop active TB disease
715 and some retain a latent infection where they are able to control infection but not achieve

716 sterilizing cure (Barry et al., 2009; Kapoor et al., 2013; O'Garra et al., 2013). Even within
717 individuals, granulomatous lesions present as dynamic and localised microenvironments
718 within the lung, each with their own unique organisation and ability to control infection,
719 ranging from sterilizing cure to immune failure (Barry et al., 2009; Ehlers and Schaible, 2013;
720 Kiran et al., 2016; Lin and Flynn, 2018).

721

722 A major knowledge gap is the exact nature, function and spatial organization of immune cells
723 constituting protective granulomas. A hallmark of progression to active TB disease is
724 changes to granuloma physiology, such as an increase in granuloma number and
725 distribution; as well as changes in granuloma function, such as poor *M.tb* replication control
726 and development of central necrosis and cavitation. These signify the host's inability to
727 eliminate bacilli and are indicative of failed immunity. As an added complexity, differences
728 exist in the rate and trajectory of granuloma progression, which is determined by features
729 such as host immunity and bacterial virulence (Guirado and Schlesinger, 2013; Russell et
730 al., 2009; Silva Miranda et al., 2012). Therefore, TB patients simultaneously harbour a range
731 of granulomas, comprising a spectrum of solid non-necrotizing, necrotic and caseous
732 granulomas, each with its distinct kinetics. Although the overall clinical picture is likely
733 defined by a set of the most poorly performing granulomas in a particular host, granulomas
734 from a single individual vary considerably in cellular composition, cytokine profile,
735 morphology, immune phenotype, and bacterial burden. It is therefore important to describe
736 host responses at the individual granuloma level.

737

738 While animal models have contributed significantly to our understanding of the mammalian
739 immune system, numerous examples have shown that laboratory species do not faithfully or
740 in full, mimic human immunity or TB disease (Fonseca et al., 2017; Singh and Gupta, 2018;
741 Zhan et al., 2017). A major deficiency in many mouse models, for example, is the lack of
742 necrotic lung lesions, which is the pathological hallmark advanced granulomas (Kramnik and
743 Beamer, 2016). Other species models such as rabbits and non-human primates, have been

744 useful in studying lung pathologies, but these models are expensive, laborious to maintain
745 and biological reagents are limited. The heterogeneity in host responses to *M.tb* infection is
746 currently more readily investigated in animal models such as cynomolgus macaques, with
747 findings that are translatable to human TB. As such, our understanding of the structure and
748 function of human TB granulomas is inferred from features reported for NHP TB granulomas.
749 Our 3D adaptive spheroid granuloma has here been demonstrated to resemble the structure
750 and features reported for NHP TB granulomas, as is evidenced by the spatial arrangement
751 of an autologous T-cell cuff surrounding an AM core (Figure 15; (Flynn et al., 2015;
752 Kauffman et al., 2018; Wong et al., 2018). This model allows for manipulation of biological
753 targets, and importantly, captures *in vivo* characteristics, such as cellular phenotype and
754 spatial organization as observed in *in vivo* human and NHP granulomas. This could have
755 multiple benefits over traditional culture methods and enable assessment of host responses
756 to *M.tb* in the context of intricate cellular interactions and visualization of granuloma
757 organization through 3D and quantitative analysis. The development of granuloma models
758 that accurately reflect the major pathophysiological conditions existing in the spectrum of *in*
759 *vivo* human pulmonary TB granulomas, both kinetically and in different clinical phases of
760 infection, is imperative. Ideally, this would require the use of cells derived from patients
761 within the spectrum of TB disease and be retrieved from the site-of-disease to fully
762 recapitulate physiological events occurring within the human lung when challenged with
763 *M.tb*. We have established a novel, laboratory-based, biologically relevant platform for
764 generating patient-derived 3D spheroid granulomas mimicking human TB. The platform
765 enables analysis of genomic, epigenetic, immunologic, structural, pathogen and treatment-
766 specific aspects of immune cells during granuloma evolution, to resemble human pulmonary
767 TB lesions more closely. The 3D spheroid granuloma model is assembled as a single,
768 organized structure in a culture well, consisting of human lung-derived AM, surrounded by
769 layers of autologous, peripherally recruited T-cells. This model has the potential to replicate
770 characteristics observed during granuloma evolution (Driver et al., 2012; Lenaerts et al.,
771 2015) such as hypoxia, nutrient concentration gradients, and for in-depth mechanistic

772 analysis of crucial lung granulomatous features observed in the spectrum from latent to
773 active TB.

774

775 Granulomas are known to be dynamic, organized structures with gene expression and
776 epigenetic profiles correlating with lesion type and developmental trajectory. Considering the
777 limitations associated with *in vivo* human research, few studies have explored the immune
778 environment within human lung granulomas (Kaplan et al., 2003; Kim et al., 2010; Mattila et
779 al., 2013). Results have however demonstrated that pooled analysis of different human lung
780 granuloma types may underestimate differences in gene expression specific to each lesion,
781 revealing a higher number of significantly differentially expressed genes in fibrotic nodules,
782 compared to the cavitary granulomas (Subbian et al., 2015). Thus, a distinct gene
783 expression pattern was observed for each granuloma type or stage, and increased
784 methylation was found in granulomas of patients with more severe disease (Gautam et al.,
785 2014; Mehra et al., 2013; Yang et al., 2019). Our granuloma model has alluded to these
786 observations, with the extraction of good quality RNA from this model proving that structures
787 generated from individuals along the spectrum of disease are likely capable of providing
788 detailed gene expression profiles for the various stages of infection.

789

790 The first guiding 3D model described for *M.tb* infection was described by Puissegur et al. in
791 2004 and has helped direct current model strategies (Puissegur et al., 2004). Since then, a
792 number of models have been established with varied success rates (reviewed by Elkington
793 et al., 2019), and with little focus being placed on primary human cells obtained from the site
794 of disease, one of the proposed requirements of an optimal model (Elkington et al., 2019;
795 Nunes et al., 2019). Most popularly, *in vitro* granuloma-like cell aggregates established using
796 *M.tb* infected PBMC have shown promise in generating cellular aggregates which mimic
797 granuloma formation (Crouser et al., 2017; Guirado et al., 2015). While easy to establish and
798 high throughput, this model of infected PBMC, form multiple structures within a culture well,
799 each structure at a different “stage” of granuloma development, which may limit some

800 aspects of granuloma investigations (Silva Miranda et al., 2012). PBMC granuloma models
801 also do not accurately represent the immune cell milieu and composition, or the defined
802 organizational structure, as observed for the 3D spheroid model. In addition to this, we have
803 demonstrated with various molecular tools the validity of employing such a model for the
804 investigation of *M.tb* infection without the limitations of traditional cell culture methods and
805 the need to acquire entire *in vivo* structures from procedures such as biopsies. The most
806 recently published *in vitro* granuloma model example using biopsy samples includes an adult
807 stem cell-derived airway organoid developed from cells retrieved from human lung biopsies
808 (Sachs et al., 2019). The limitation of such a model is that it requires the need for difficult to
809 obtain sample types, and complex organoid generation methods which do not include the
810 use of primary phagocytes such as alveolar macrophages which are essential for the initial
811 control of *M.tb* infection. Another important consideration for our model is that granuloma
812 formation is not limited to *M.tb* infection, but also occurs in several chronic infections
813 including *Schistosoma* spp., *S. enterica* and *L. monocytogenes*, and non-infectious diseases
814 like sarcoidosis (Crouser et al., 2017), which together cause millions of deaths. Our
815 granuloma model could therefore be adapted to depict these disease-specific granulomatous
816 features.

817

818 Our model is not without its limitations, however. The autofluorescent nature of alveolar
819 macrophages from the lungs of individuals in certain regions like Cape Town, South Africa,
820 display high carbon particulate matter which results in autofluorescence. We have
821 demonstrated that this limitation can be circumvented; alternatively, molecular techniques
822 like CyTOF could be used to investigate both the AM and autologous CD3⁺ T cell fractions
823 together, without the need to consider autofluorescence, as has previously been
824 demonstrated by our group (Young et al., 2019). The use of the magnetic levitation drive, for
825 one, prevents the unrestricted movement of NanoShuttleTM-labelled AM until the core is
826 stable, and therefore features of early AM movement could be missed. This model was
827 established using BCG as a model for TB owing to the benefits of being able to work with

828 this organism outside of a BSL3 environment. Considering the physiological differences
829 between BCG and H37Rv, the virulent laboratory strain of *M.tb*, this model needs to be
830 validated in a setting whereby H37Rv is used as the infectious agent instead of BCG. We
831 are confident, however, that the model we have established using BCG as a model organism
832 for *M.tb* will be translatable for not only *M.tb*, but other pulmonary pathogens which result in
833 the formation of pulmonary granulomas. As such, the results generated in this study during
834 the establishment of the 3D spheroid *in vitro* granuloma model should function to inform the
835 scientific community of the possibilities for which this model can be adapted.

836

837 Finally, our 3D spheroid *in vitro* granuloma model still requires comparative assessments to
838 *in vivo* granulomas with respect to the cellular components, cell phenotype, molecular and
839 epigenetic interactions, patterns of cytokine and chemokine secretion, mycobacterial
840 dormancy, and subcellular-dissemination and ultimately and impact on clinical outcome.
841 These are currently ongoing through planned human- and non-human primate studies.
842 Additionally, we are currently conducting a study whereby we have begun adding additional
843 cell types, such as B cells and myeloid-derived suppressor cells (MDSCs), to the 3D
844 spheroid granuloma as one would expect to see in a developing granuloma (Agrawal et al.,
845 2018; Flynn et al., 2011; Obregón-Henao et al., 2013). With that said, the current model
846 would provide insights into host-mycobacterial interactions at stages too early to address
847 within such *in vivo* models and eventually, serve as preferred platform for initial pre-clinical
848 testing of TB vaccine and drug candidates.

849

850 **ACKNOWLEDGEMENTS**

851 The authors acknowledge the financial support from the European & Developing Countries
852 Clinical Trials Partnership (EDCTP; CDF1546) and International Collaborations in Infectious
853 Disease Research (ICIDR): Biology and Biosignatures of anti-TB Treatment Response
854 (5U01IA115619/03). The authors would also like to acknowledge the doctors and nursing
855 staff of Ward A5, Pulmonology Division of Tygerberg Academic Hospital, especially Sr

856 Lauren Benting, for their willingness to assist in the collection of these samples for research
857 purposes. A special thanks also goes to Sr Ruth Wilson, a research nurse from the CLIME
858 laboratory in the Department of Molecular Biology and Human Genetics, Stellenbosch
859 University, for recruiting the participants for this study, without whom this study would not
860 have been possible. Lastly, the authors would like to thank Tracey Jooste from the South
861 African Medical Research Council (SAMRC) Genomics Centre for her expertise in RNA-
862 Sequencing.

863

864 **AUTHOR CONTRIBUTIONS STATEMENT**

865 LAK performed all the experiments necessary for the development and construction of the
866 3D *in vitro* spheroid granulomas, performed all the downstream processing of the structures
867 (excluding the RNA Sequencing and immunofluorescence staining) and wrote the
868 manuscript. CGGB performed all confocal microscopy experiments (including the
869 optimisation) for the visualisation of the 3D *in vitro* spheroid granulomas, with invaluable
870 assistance from DL and SC during the troubleshooting and optimisation of the
871 immunofluorescence staining of the structures. CGGB also assisted with the writing and
872 editing of the manuscript and performed the pathway analysis for the RNA sequencing data.
873 NDP conceptualised the 3D *in vitro* granuloma model, designing the experiments with LAK,
874 and assisted with the writing, review and editing of the manuscript. CK kindly performed the
875 RNA Sequencing, while BG and MM analysed the FASTQ data, including performing all the
876 quality control checks necessary for proceeding with the analysis. GW reviewed the
877 manuscript and was part of the initial conceptualisation of the project.

878

879 **CONFLICT OF INTEREST STATEMENT**

880 The authors declare that this research was performed in the absence of any commercial or
881 financial relationships that could be construed as potential conflict of interest.

882

883 **REFERENCES**

884 Agrawal, N., Streata, I., Pei, G., Weiner, J., Kotze, L., Bandermann, S., Lozza, L., Walzl, G.,
885 du Plessis, N., Ioana, M., Kaufmann, S.H.E., Dorhoi, A., 2018. Human Monocytic
886 Suppressive Cells Promote Replication of *Mycobacterium tuberculosis* and Alter
887 Stability of in vitro Generated Granulomas. *Front. Immunol.* 9, 2417.
888 <https://doi.org/10.3389/fimmu.2018.02417>

889 Barry, C.E., Boshoff, H.I., Dartois, V., Dick, T., Ehr, S., Flynn, J., Schnappinger, D.,
890 Wilkinson, R.J., Young, D., 2009. The spectrum of latent tuberculosis: rethinking the
891 biology and intervention strategies. *Nat. Rev. Microbiol.* 7, 845–855.
892 <https://doi.org/10.1038/nrmicro2236>

893 Belton, M., Brilha, S., Manavaki, R., Mauri, F., Nijran, K., Hong, Y.T., Patel, N.H., Dembek,
894 M., Tezera, L., Green, J., Moores, R., Aigbirhio, F., Al-Nahhas, A., Fryer, T.D.,
895 Elkington, P.T., Friedland, J.S., 2016. Hypoxia and tissue destruction in pulmonary
896 TB. *Thorax* 71, 1145–1153. <https://doi.org/10.1136/thoraxjnl-2015-207402>

897 Canetti, G., 1955. The Tuberle Bacillus in the Pulmonary Lesion of Man: Histobacteriology
898 and Its Bearing on the Therapy of Pulmonary Tuberculosis. Springer Publishing
899 Company.

900 Cohen, S.B., Gern, B.H., Delahaye, J.L., Adams, K.N., Plumlee, C.R., Winkler, J.K.,
901 Sherman, D.R., Gerner, M.Y., Urdahl, K.B., 2018. Alveolar Macrophages Provide an
902 Early *Mycobacterium tuberculosis* Niche and Initiate Dissemination. *Cell Host
903 Microbe* 24, 439-446.e4. <https://doi.org/10.1016/j.chom.2018.08.001>

904 Crouser, E.D., White, P., Caceres, E.G., Julian, M.W., Papp, A.C., Locke, L.W., Sadee, W.,
905 Schlesinger, L.S., 2017. A Novel In Vitro Human Granuloma Model of Sarcoidosis
906 and Latent Tuberculosis Infection. *Am. J. Respir. Cell Mol. Biol.* 57, 487–498.
907 <https://doi.org/10.1165/rcmb.2016-0321OC>

908 Davis, J.M., Ramakrishnan, L., 2009. The role of the granuloma in expansion and
909 dissemination of early tuberculous infection. *Cell* 136, 37–49.
910 <https://doi.org/10.1016/j.cell.2008.11.014>

911 Driver, E.R., Ryan, G.J., Hoff, D.R., Irwin, S.M., Basaraba, R.J., Kramnik, I., Lenaerts, A.J.,
912 2012. Evaluation of a Mouse Model of Necrotic Granuloma Formation Using
913 C3HeB/FeJ Mice for Testing of Drugs against *Mycobacterium tuberculosis*.
914 *Antimicrob. Agents Chemother.* 56, 3181–3195. <https://doi.org/10.1128/AAC.00217-12>

915

916 Duval, K., Grover, H., Han, L.-H., Mou, Y., Pegoraro, A.F., Fredberg, J., Chen, Z., 2017.
917 Modeling Physiological Events in 2D vs. 3D Cell Culture. *Physiology* 32, 266–277.
918 <https://doi.org/10.1152/physiol.00036.2016>

919 Ehlers, S., Schaible, U.E., 2013. The Granuloma in Tuberculosis: Dynamics of a Host–
920 Pathogen Collision. *Front. Immunol.* 3. <https://doi.org/10.3389/fimmu.2012.00411>

921 Elkington, P., Lerm, M., Kapoor, N., Mahon, R., Pienaar, E., Huh, D., Kaushal, D.,
922 Schlesinger, L.S., 2019. In Vitro Granuloma Models of Tuberculosis: Potential and
923 Challenges. *J. Infect. Dis.* 219, 1858–1866. <https://doi.org/10.1093/infdis/jiz020>

924 Flynn, J.L., Chan, J., Lin, P.L., 2011. Macrophages and control of granulomatous
925 inflammation in tuberculosis. *Mucosal Immunol.* 4, 271–278.
926 <https://doi.org/10.1038/mi.2011.14>

927 Flynn, J.L., Gideon, H.P., Mattila, J.T., Lin, P.L., 2015. Immunology studies in non-human
928 primate models of tuberculosis. *Immunol. Rev.* 264, 60–73.
929 <https://doi.org/10.1111/imr.12258>

930 Fonseca, K.L., Rodrigues, P.N.S., Olsson, I.A.S., Saraiva, M., 2017. Experimental study of
931 tuberculosis: From animal models to complex cell systems and organoids. *PLOS*
932 *Pathog.* 13, e1006421. <https://doi.org/10.1371/journal.ppat.1006421>

933 Gautam, U.S., Mehra, S., Ahsan, M.H., Alvarez, X., Niu, T., Kaushal, D., 2014. Role of TNF
934 in the altered interaction of dormant *Mycobacterium tuberculosis* with host
935 macrophages. *PloS One* 9, e95220. <https://doi.org/10.1371/journal.pone.0095220>

936 Gil, O., Díaz, I., Vilaplana, C., Tapia, G., Díaz, J., Fort, M., Cáceres, N., Pinto, S., Caylà, J.,
937 Corner, L., Domingo, M., Cardona, P.-J., 2010. Granuloma encapsulation is a key

938 factor for containing tuberculosis infection in minipigs. *PLoS One* 5, e10030.

939 <https://doi.org/10.1371/journal.pone.0010030>

940 Guirado, E., Mbawuike, U., Keiser, T.L., Arcos, J., Azad, A.K., Wang, S.-H., Schlesinger,

941 L.S., 2015. Characterization of Host and Microbial Determinants in Individuals with

942 Latent Tuberculosis Infection Using a Human Granuloma Model. *mBio* 6.

943 <https://doi.org/10.1128/mBio.02537-14>

944 Guirado, E., Schlesinger, L.S., 2013. Modeling the *Mycobacterium tuberculosis* Granuloma -

945 the Critical Battlefield in Host Immunity and Disease. *Front. Immunol.* 4, 98.

946 <https://doi.org/10.3389/fimmu.2013.00098>

947 Haisler, W.L., Timm, D.M., Gage, J.A., Tseng, H., Killian, T.C., Souza, G.R., 2013. Three-

948 dimensional cell culturing by magnetic levitation. *Nat. Protoc.* 8, 1940–1949.

949 <https://doi.org/10.1038/nprot.2013.125>

950 Herrmann, K., Pistollato, F., Stephens, M., 2019. Beyond the 3Rs: Expanding the Use of

951 Human-Relevant Replacement Methods in Biomedical Research. *Biomed. Res.*

952 *Altern. Methods Collect.*

953 Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., Kunz-Schughart,

954 L.A., 2010. Multicellular tumor spheroids: an underestimated tool is catching up

955 again. *J. Biotechnol.* 148, 3–15. <https://doi.org/10.1016/j.jbiotec.2010.01.012>

956 Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009a. Systematic and integrative analysis of

957 large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* 4, 44–57.

958 <https://doi.org/10.1038/nprot.2008.211>

959 Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009b. Bioinformatics enrichment tools: paths

960 toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.*

961 37, 1–13. <https://doi.org/10.1093/nar/gkn923>

962 Kaplan, G., Post, F.A., Moreira, A.L., Wainwright, H., Kreiswirth, B.N., Tanverdi, M.,

963 Mathema, B., Ramaswamy, S.V., Walther, G., Steyn, L.M., Barry, C.E., Bekker, L.-

964 G., 2003. *Mycobacterium tuberculosis* growth at the cavity surface: a

965 microenvironment with failed immunity. *Infect. Immun.* 71, 7099–7108.

966 <https://doi.org/10.1128/iai.71.12.7099-7108.2003>

967 Kapoor, N., Pawar, S., Sirakova, T.D., Deb, C., Warren, W.L., Kolattukudy, P.E., 2013.

968 Human granuloma in vitro model, for TB dormancy and resuscitation. *PLoS One* 8,

969 e53657. <https://doi.org/10.1371/journal.pone.0053657>

970 Kauffman, K.D., Sallin, M.A., Sakai, S., Kamenyeva, O., Kabat, J., Weiner, D., Sutphin, M.,

971 Schimel, D., Via, L., Barry, C.E., Wilder-Kofie, T., Moore, I., Moore, R., Barber, D.L.,

972 2018. Defective positioning in granulomas but not lung-homing limits CD4 T-cell

973 interactions with *Mycobacterium tuberculosis*-infected macrophages in rhesus

974 macaques. *Mucosal Immunol.* 11, 462–473. <https://doi.org/10.1038/mi.2017.60>

975 Kim, M.-J., Wainwright, H.C., Locketz, M., Bekker, L.-G., Walther, G.B., Dittrich, C., Visser,

976 A., Wang, W., Hsu, F.-F., Wiehart, U., Tsanova, L., Kaplan, G., Russell, D.G., 2010.

977 Caseation of human tuberculosis granulomas correlates with elevated host lipid

978 metabolism. *EMBO Mol. Med.* 2, 258–274. <https://doi.org/10.1002/emmm.201000079>

979 Kiran, D., Podell, B.K., Chambers, M., Basaraba, R.J., 2016. Host-directed therapy targeting

980 the *Mycobacterium tuberculosis* granuloma: a review. *Semin. Immunopathol.* 38,

981 167–183. <https://doi.org/10.1007/s00281-015-0537-x>

982 Kramnik, I., Beamer, G., 2016. Mouse models of human TB pathology: roles in the analysis

983 of necrosis and the development of host-directed therapies. *Semin. Immunopathol.*

984 38, 221–237. <https://doi.org/10.1007/s00281-015-0538-9>

985 Lenaerts, A., Barry, C.E., Dartois, V., 2015. Heterogeneity in tuberculosis pathology,

986 microenvironments and therapeutic responses. *Immunol. Rev.* 264, 288–307.

987 <https://doi.org/10.1111/imr.12252>

988 Lillie, R.D., 1965. *Histopathologic technic and practical histochemistry.*, 3rd ed. ed. Blakiston

989 Division, McGraw-Hill, New York.

990 Lin, P.L., Flynn, J.L., 2018. The End of the Binary Era: Revisiting the Spectrum of

991 Tuberculosis. *J. Immunol.* 201, 2541–2548.

992 <https://doi.org/10.4049/jimmunol.1800993>

993 Lin, P.L., Pawar, S., Myers, A., Pegu, A., Fuhrman, C., Reinhart, T.A., Capuano, S.V., Klein,
994 E., Flynn, J.L., 2006. Early events in *Mycobacterium tuberculosis* infection in
995 cynomolgus macaques. *Infect. Immun.* 74, 3790–3803.
996 <https://doi.org/10.1128/IAI.00064-06>

997 Mattila, J.T., Ojo, O.O., Kepka-Lenhart, D., Marino, S., Kim, J.H., Eum, S.Y., Via, L.E., Barry,
998 C.E., Klein, E., Kirschner, D.E., Morris, S.M., Lin, P.L., Flynn, J.L., 2013.
999 Microenvironments in tuberculous granulomas are delineated by distinct populations
1000 of macrophage subsets and expression of nitric oxide synthase and arginase
1001 isoforms. *J. Immunol. Baltim. Md* 1950 191, 773–784.
1002 <https://doi.org/10.4049/jimmunol.1300113>

1003 Mehra, S., Alvarez, X., Didier, P.J., Doyle, L.A., Blanchard, J.L., Lackner, A.A., Kaushal, D.,
1004 2013. Granuloma Correlates of Protection Against Tuberculosis and Mechanisms of
1005 Immune Modulation by *Mycobacterium tuberculosis*. *J. Infect. Dis.* 207, 1115–1127.
1006 <https://doi.org/10.1093/infdis/jis778>

1007 Nunes, A.S., Barros, A.S., Costa, E.C., Moreira, A.F., Correia, I.J., 2019. 3D tumor
1008 spheroids as in vitro models to mimic in vivo human solid tumors resistance to
1009 therapeutic drugs. *Biotechnol. Bioeng.* 116, 206–226.
1010 <https://doi.org/10.1002/bit.26845>

1011 Obregón-Henao, A., Henao-Tamayo, M., Orme, I.M., Ordway, D.J., 2013. Gr1intCD11b+
1012 Myeloid-Derived Suppressor Cells in *Mycobacterium tuberculosis* Infection. *PLoS*
1013 ONE 8. <https://doi.org/10.1371/journal.pone.0080669>

1014 O'Garra, A., Redford, P.S., McNab, F.W., Bloom, C.I., Wilkinson, R.J., Berry, M.P.R., 2013.
1015 The Immune Response in Tuberculosis. *Annu. Rev. Immunol.* 31, 475–527.
1016 <https://doi.org/10.1146/annurev-immunol-032712-095939>

1017 Pagán, A.J., Ramakrishnan, L., 2014. Immunity and Immunopathology in the Tuberculous
1018 Granuloma. *Cold Spring Harb. Perspect. Med.* 5.
1019 <https://doi.org/10.1101/cshperspect.a018499>

1020 Parasa, V.R., Rahman, M.J., Hoang, A.T.N., Svensson, M., Brighenti, S., Lerm, M., 2014.
1021 Modeling *Mycobacterium tuberculosis* early granuloma formation in experimental
1022 human lung tissue. *Dis. Model. Mech.* 7, 281–288.
1023 <https://doi.org/10.1242/dmm.013854>

1024 Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., Daffé, M.,
1025 Emile, J.-F., Marchou, B., Cardona, P.-J., de Chastellier, C., Altare, F., 2008. Foamy
1026 macrophages from tuberculous patients' granulomas constitute a nutrient-rich
1027 reservoir for *M. tuberculosis* persistence. *PLoS Pathog.* 4, e1000204.
1028 <https://doi.org/10.1371/journal.ppat.1000204>

1029 Puissegur, M.-P., Botanch, C., Duteyrat, J.-L., Delsol, G., Caratero, C., Altare, F., 2004. An
1030 in vitro dual model of mycobacterial granulomas to investigate the molecular
1031 interactions between mycobacteria and human host cells. *Cell. Microbiol.* 6, 423–
1032 433. <https://doi.org/10.1111/j.1462-5822.2004.00371.x>

1033 Russell, D.G., Cardona, P.-J., Kim, M.-J., Allain, S., Altare, F., 2009. Foamy macrophages
1034 and the progression of the human TB granuloma. *Nat. Immunol.* 10, 943–948.
1035 <https://doi.org/10.1038/ni.1781>

1036 Sachs, N., Papaspyropoulos, A., Zomer-van Ommen, D.D., Heo, I., Böttlinger, L., Klay, D.,
1037 Weeber, F., Huelsz-Prince, G., Iakobachvili, N., Amatngalim, G.D., de Ligt, J., van
1038 Hoeck, A., Proost, N., Viveen, M.C., Lyubimova, A., Teeven, L., Derakhshan, S.,
1039 Korving, J., Begthel, H., Dekkers, J.F., Kumawat, K., Ramos, E., van Oosterhout,
1040 M.F., Offerhaus, G.J., Wiener, D.J., Olimpio, E.P., Dijkstra, K.K., Smit, E.F., van der
1041 Linden, M., Jaksani, S., van de Ven, M., Jonkers, J., Rios, A.C., Voest, E.E., van
1042 Moorsel, C.H., van der Ent, C.K., Cuppen, E., van Oudenaarden, A., Coenjaerts,
1043 F.E., Meyارد, L., Bont, L.J., Peters, P.J., Tans, S.J., van Zon, J.S., Boj, S.F., Vries,
1044 R.G., Beekman, J.M., Clevers, H., 2019. Long-term expanding human airway
1045 organoids for disease modeling. *EMBO J.* 38, e100300.
1046 <https://doi.org/10.15252/embj.2018100300>

1047 Salceda, S., Caro, J., 1997. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly
1048 degraded by the ubiquitin-proteasome system under normoxic conditions. Its
1049 stabilization by hypoxia depends on redox-induced changes. *J. Biol. Chem.* 272,
1050 22642–22647. <https://doi.org/10.1074/jbc.272.36.22642>

1051 Silva Miranda, M., Breiman, A., Allain, S., Deknuydt, F., Altare, F., 2012. The tuberculous
1052 granuloma: an unsuccessful host defence mechanism providing a safety shelter for
1053 the bacteria? *Clin. Dev. Immunol.* 2012, 139127.
1054 <https://doi.org/10.1155/2012/139127>

1055 Singh, A.K., Gupta, U.D., 2018. Animal models of tuberculosis: Lesson learnt. *Indian J. Med.*
1056 *Res.* 147, 456–463. https://doi.org/10.4103/ijmr.IJMR_554_18

1057 Souza, G.R., Molina, J.R., Raphael, R.M., Ozawa, M.G., Stark, D.J., Levin, C.S., Bronk, L.F.,
1058 Ananta, J.S., Mandelin, J., Georgescu, M.-M., Bankson, J.A., Gelovani, J.G., Killian,
1059 T.C., Arap, W., Pasqualini, R., 2010. Three-dimensional Tissue Culture Based on
1060 Magnetic Cell Levitation. *Nat. Nanotechnol.* 5, 291–296.
1061 <https://doi.org/10.1038/nnano.2010.23>

1062 Subbian, S., Tsenova, L., Kim, M.-J., Wainwright, H.C., Visser, A., Bandyopadhyay, N.,
1063 Bader, J.S., Karakousis, P.C., Murrmann, G.B., Bekker, L.-G., Russell, D.G., Kaplan,
1064 G., 2015. Lesion-Specific Immune Response in Granulomas of Patients with
1065 Pulmonary Tuberculosis: A Pilot Study. *PLoS ONE* 10.
1066 <https://doi.org/10.1371/journal.pone.0132249>

1067 Supek, F., Bošnjak, M., Škunca, N., Šmuc, T., 2011. REVIGO Summarizes and Visualizes
1068 Long Lists of Gene Ontology Terms. *PLOS ONE* 6, e21800.
1069 <https://doi.org/10.1371/journal.pone.0021800>

1070 Tseng, H., Gage, J.A., Raphael, R.M., Moore, R.H., Killian, T.C., Grande-Allen, K.J., Souza,
1071 G.R., 2013. Assembly of a three-dimensional multitype bronchiole coculture model
1072 using magnetic levitation. *Tissue Eng. Part C Methods* 19, 665–675.
1073 <https://doi.org/10.1089/ten.TEC.2012.0157>

1074 Tseng, H., Gage, J.A., Shen, T., Haisler, W.L., Neeley, S.K., Shiao, S., Chen, J., Desai,
1075 P.K., Liao, A., Hebel, C., Raphael, R.M., Becker, J.L., Souza, G.R., 2015. A spheroid
1076 toxicity assay using magnetic 3D bioprinting and real-time mobile device-based
1077 imaging. *Sci. Rep.* 5. <https://doi.org/10.1038/srep13987>

1078 Wolf, A.J., Linas, B., Trevejo-Nuñez, G.J., Kincaid, E., Tamura, T., Takatsu, K., Ernst, J.D.,
1079 2007. *Mycobacterium tuberculosis* infects dendritic cells with high frequency and
1080 impairs their function *in vivo*. *J. Immunol. Baltim. Md* 1950 179, 2509–2519.
1081 <https://doi.org/10.4049/jimmunol.179.4.2509>

1082 Wong, E.A., Joslyn, L., Grant, N.L., Klein, E., Lin, P.L., Kirschner, D.E., Flynn, J.L., 2018.
1083 Low Levels of T Cell Exhaustion in Tuberculous Lung Granulomas. *Infect. Immun.*
1084 86. <https://doi.org/10.1128/IAI.00426-18>

1085 Yang, I.V., Konigsberg, I., MacPhail, K., Li, L., Davidson, E.J., Mroz, P.M., Hamzeh, N.,
1086 Gillespie, M., Silveira, L.J., Fingerlin, T.E., Maier, L.A., 2019. DNA Methylation
1087 Changes in Lung Immune Cells Are Associated with Granulomatous Lung Disease.
1088 *Am. J. Respir. Cell Mol. Biol.* 60, 96–105. <https://doi.org/10.1165/rcmb.2018-0177OC>

1089 Young, C., Ahlers, P., Hiemstra, A.M., Loxton, A.G., Gutschmidt, A., Malherbe, S.T., Walzl,
1090 G., Du Plessis, N., Koegelenberg, C.F.N., Kleynhans, L., Ronacher, K., Shaw, J.A.,
1091 Simon, D., McAnda, S., Swartz, K.C., the SU-IRG consortium, 2019. Performance
1092 and immune characteristics of bronchoalveolar lavage by research bronchoscopy in
1093 pulmonary tuberculosis and other lung diseases in the Western Cape, South Africa.
1094 *Transl. Med. Commun.* 4, 7. <https://doi.org/10.1186/s41231-019-0039-2>

1095 Zhan, L., Tang, J., Sun, M., Qin, C., 2017. Animal Models for Tuberculosis in Translational
1096 and Precision Medicine. *Front. Microbiol.* 8. <https://doi.org/10.3389/fmicb.2017.00717>

1097

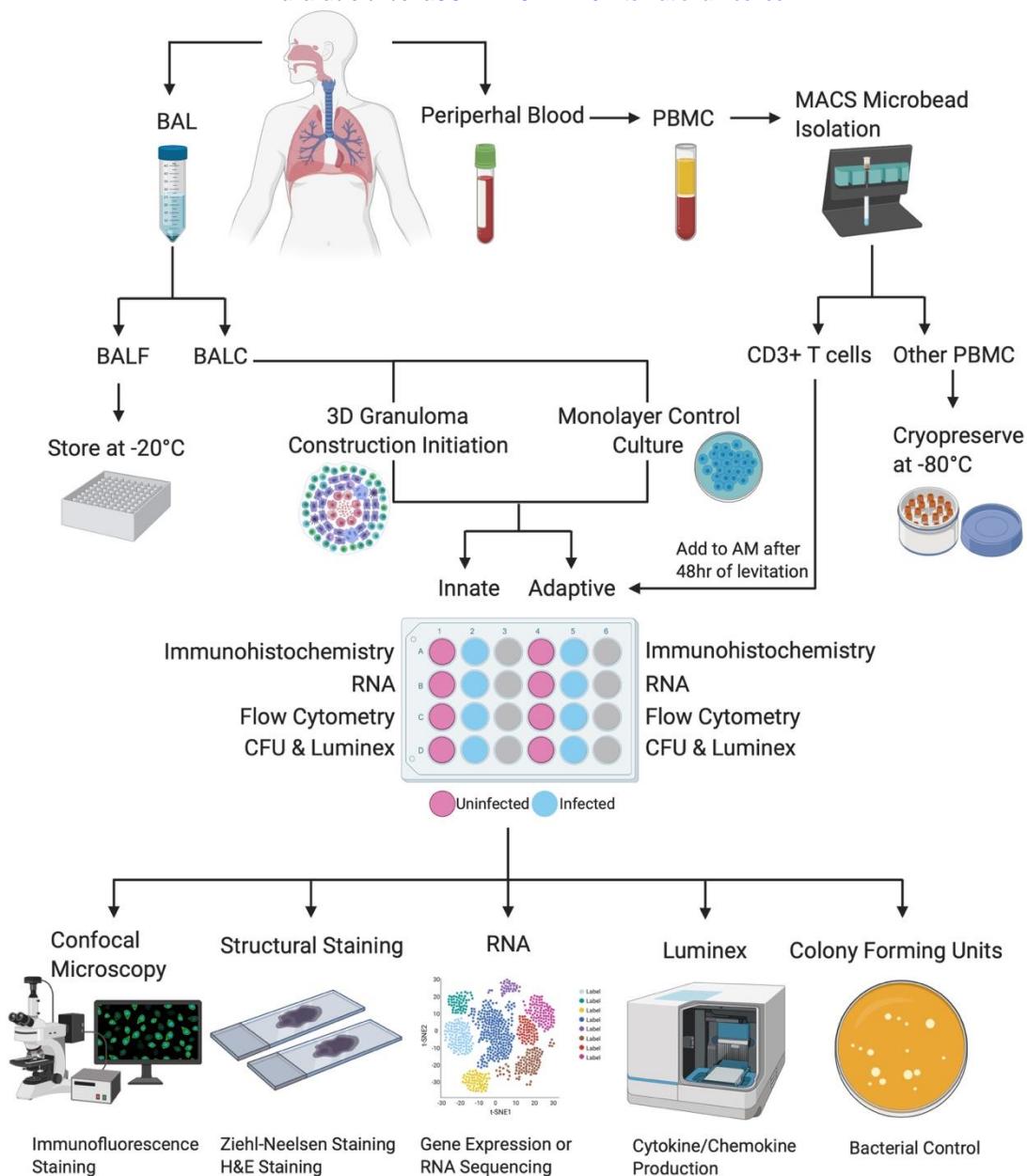


Figure 1: A basic representation of the workflow used to generate and analyse 3D *in vitro* human TB granulomas generated from a single participant. Briefly, BAL and peripheral blood are collected from the participant at the time of the bronchoscopy procedure, after which the BAL is processed to collect the cell pellet while the fluid is stored for other studies. The BAL cells (BALC) are then used to construct the alveolar macrophage core of the 3D structure and the traditional cell culture control (monolayer), in both uninfected and infected scenarios. Collected peripheral blood is processed for PBMC and then further processed to isolate autologous CD3⁺ T cells using the MACS MicroBead cell separation technique, with the CD3⁺ cellular fraction being stored for other studies. Autologous T cells are then added to the appropriate alveolar macrophage cores, those designated to become “adaptive” granuloma structures, after 48 hours of the core’s levitation or 48 hours of conventional culture in the case of the traditional cell culture control. Generated structures are then processed individually, in uninfected and infected pairs, for the respective downstream applications desired. These include embedding in tissue freezing media for subsequent cryosectioning and staining of the structures for immunofluorescence and confocal microscopy or staining for basic cellular structures like H&E staining or ZN staining for acid-fast bacterial detection (this is exclusively for the 3D structures and cannot be done for the traditional cell culture control cultures). Cells can also be stored for later RNA extractions and subsequent gene expression or RNA sequencing analyses. Supernatants can be stored for cytokine/chemokine production analyses using the Luminex immunoassay platform or similar platforms like ELISA, and cell lysates can be plated to determine CFU counts, thereby evaluating bacterial control.

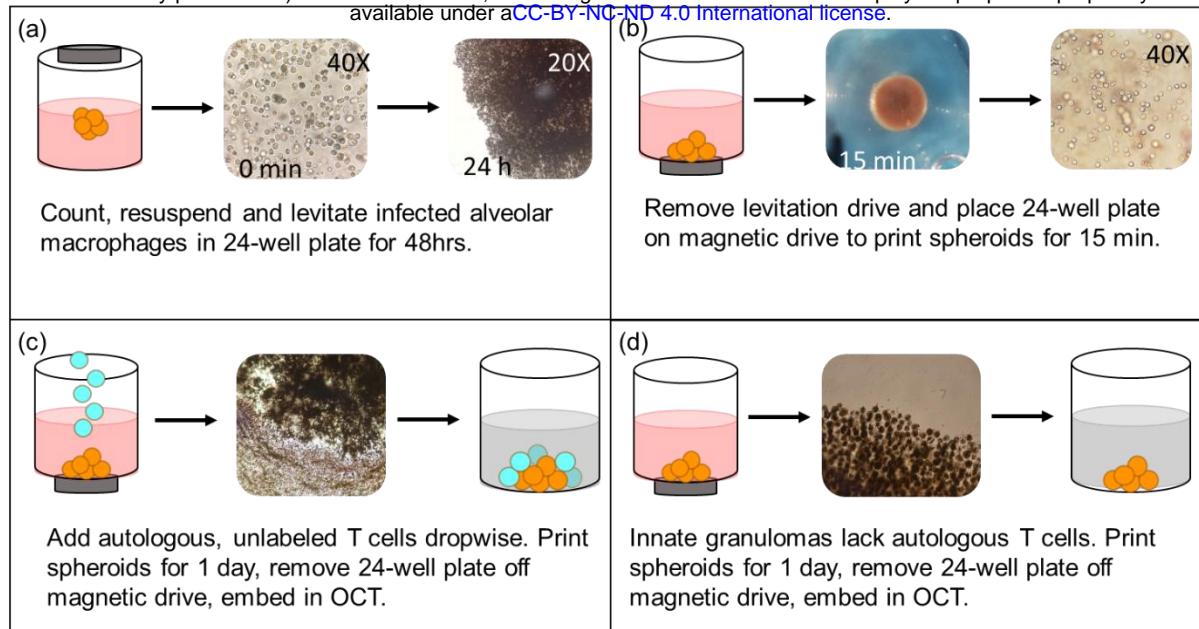


Figure 2: 3D Innate and Adaptive Granuloma construction using the n3D Biosciences Inc. magnetic levitation and printing drives. (a) The development of the granuloma core is accomplished through the levitation of NanoShuttle™-labelled alveolar macrophages for 48 hours. (b) The magnetic levitation drive is removed after 48 hours and immediately replaced by the magnetic printing drive below the 24-well culture plate which ensures that the 3D structure remains intact. (c) Autologous CD3+ T cells, not labelled with NanoShuttle™, are then carefully added to the alveolar macrophage core, and allowed to migrate via chemotactic gradients to the core to create the mature, adaptive granuloma. (d) Innate granulomas do not have the autologous CD3+ T cells added to the core but are rather left with the printing drive secured below the culture plate for the remainder of the experiment.

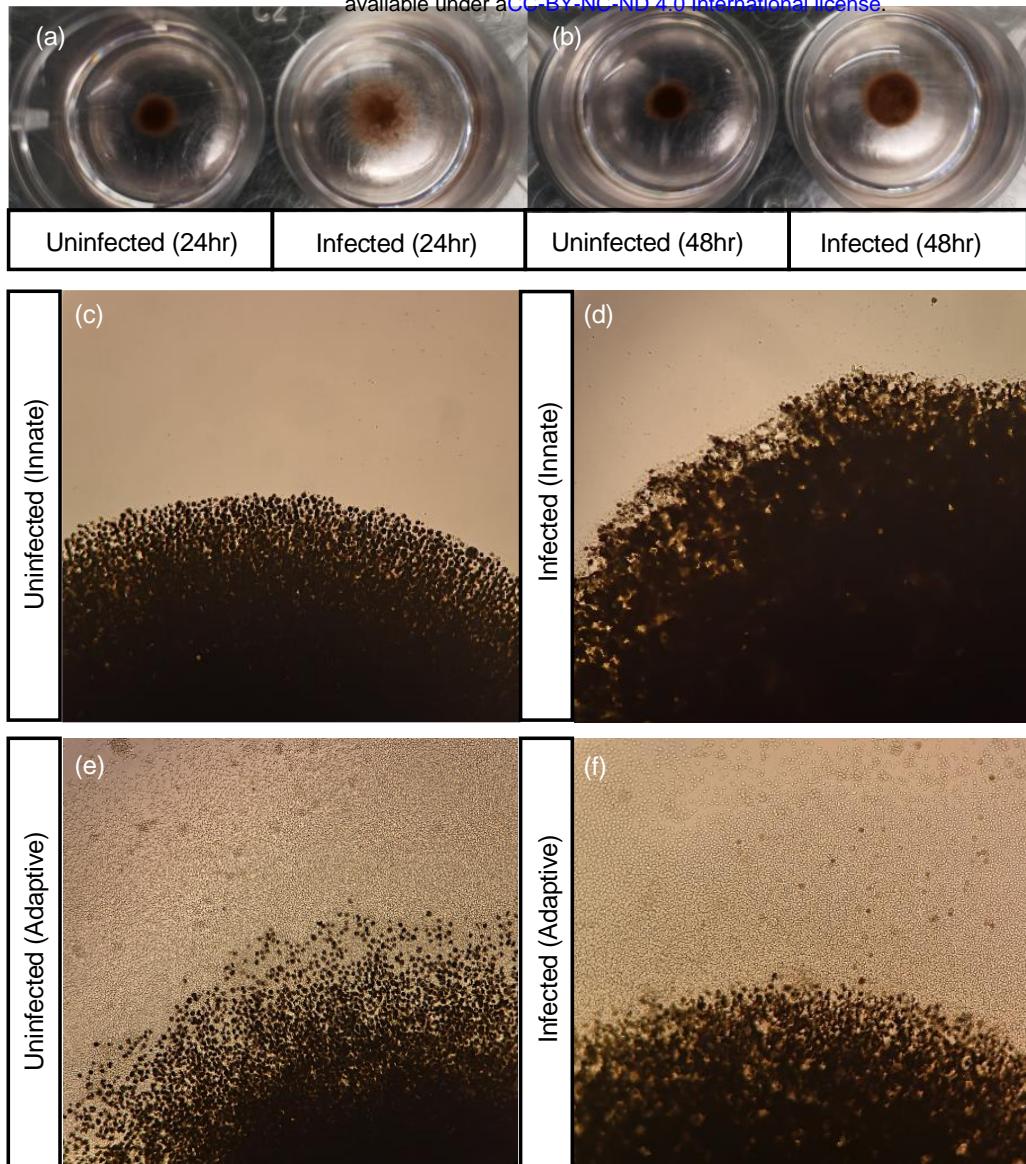


Figure 3: Visual differences in cellular organisation between uninfected and BCG infected granuloma structures can be observed after (a) 24- and (b) 48-hours of magnetic levitation, with BCG infected structures displaying less robust structural integrity (the magnetic levitation drive was removed briefly for these images to be taken). Differences in cellular organisation could also be visualised using light microscopy, with (c) uninfected and (d) BCG infected innate granuloma structures displaying a clear lack of a lymphocytic cuff at the end of the culture period. Both the (e) uninfected and (f) BCG infected adaptive granuloma structures displayed the presence of a lymphocytic cuff (unlabelled, clear cells) surrounding the NanoShuttle™-labelled AM core (darker cells) at the end of the culture period during which time both magnetic levitation and magnetic bioprinting was used. Images were taken using an inverted light microscope (20x magnification).

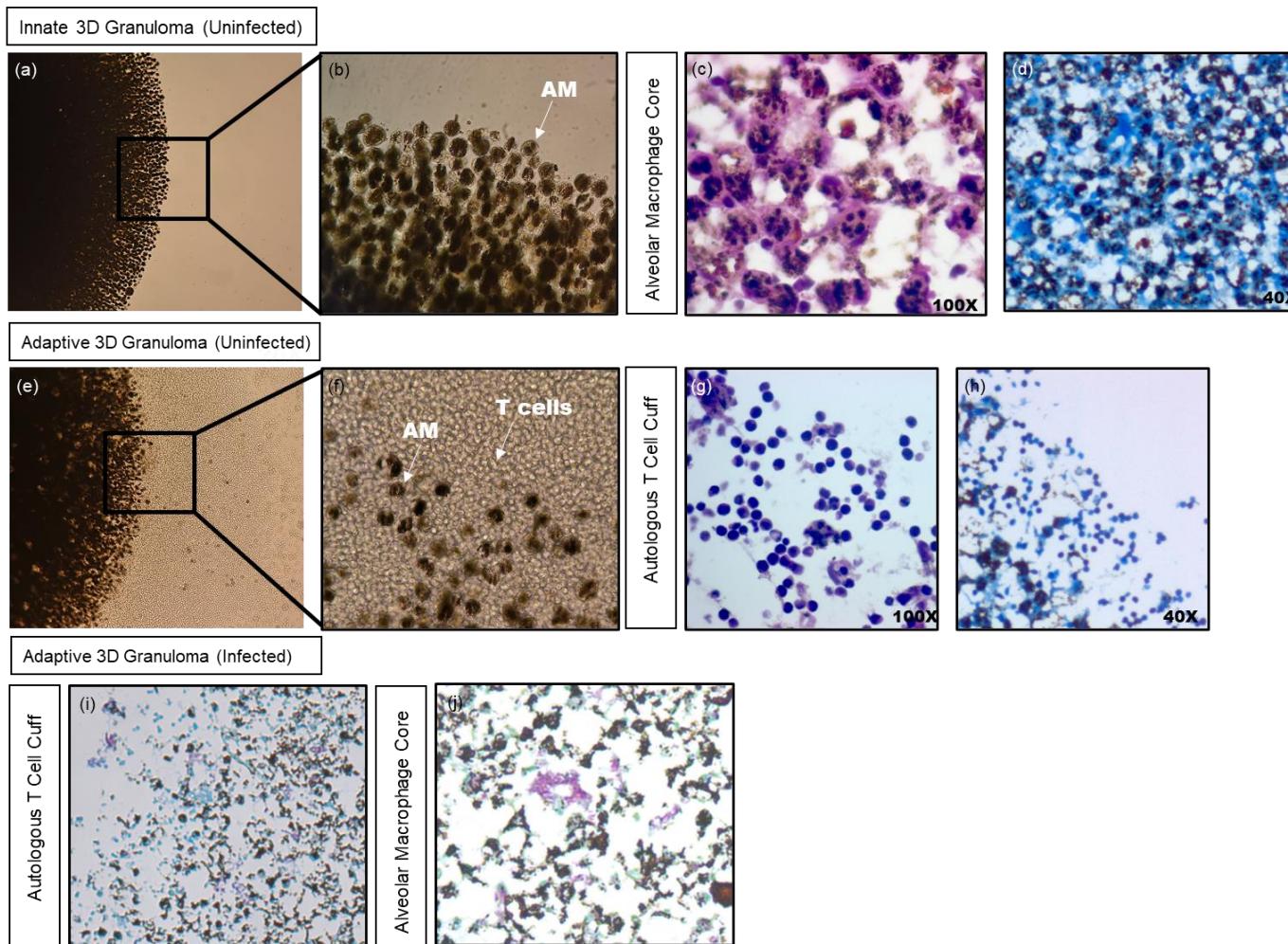


Figure 4: Demonstration of the various staining method outcomes performed using sections from an uninfected innate ((a)-(d)) and adaptive ((e)-(h)) 3D granuloma structure. Light microscopy of the (a) innate and (e) adaptive 3D granuloma structures clearly demonstrate the (b) alveolar macrophage core, with (f) CD3+ autologous T cells forming a cuff around the core in the adaptive granuloma structure. These observations are corroborated using the H&E staining method, once again demonstrating (c) the alveolar macrophage core and (g) CD3+ autologous T cell cuff. ZN staining of the sections demonstrated the uninfected nature of the structures, both in (d) the core and (h) the cuff, while ZN staining of infected sections demonstrated acid-fast bacilli both near (i) the cuff and (j) in the core of the structure.

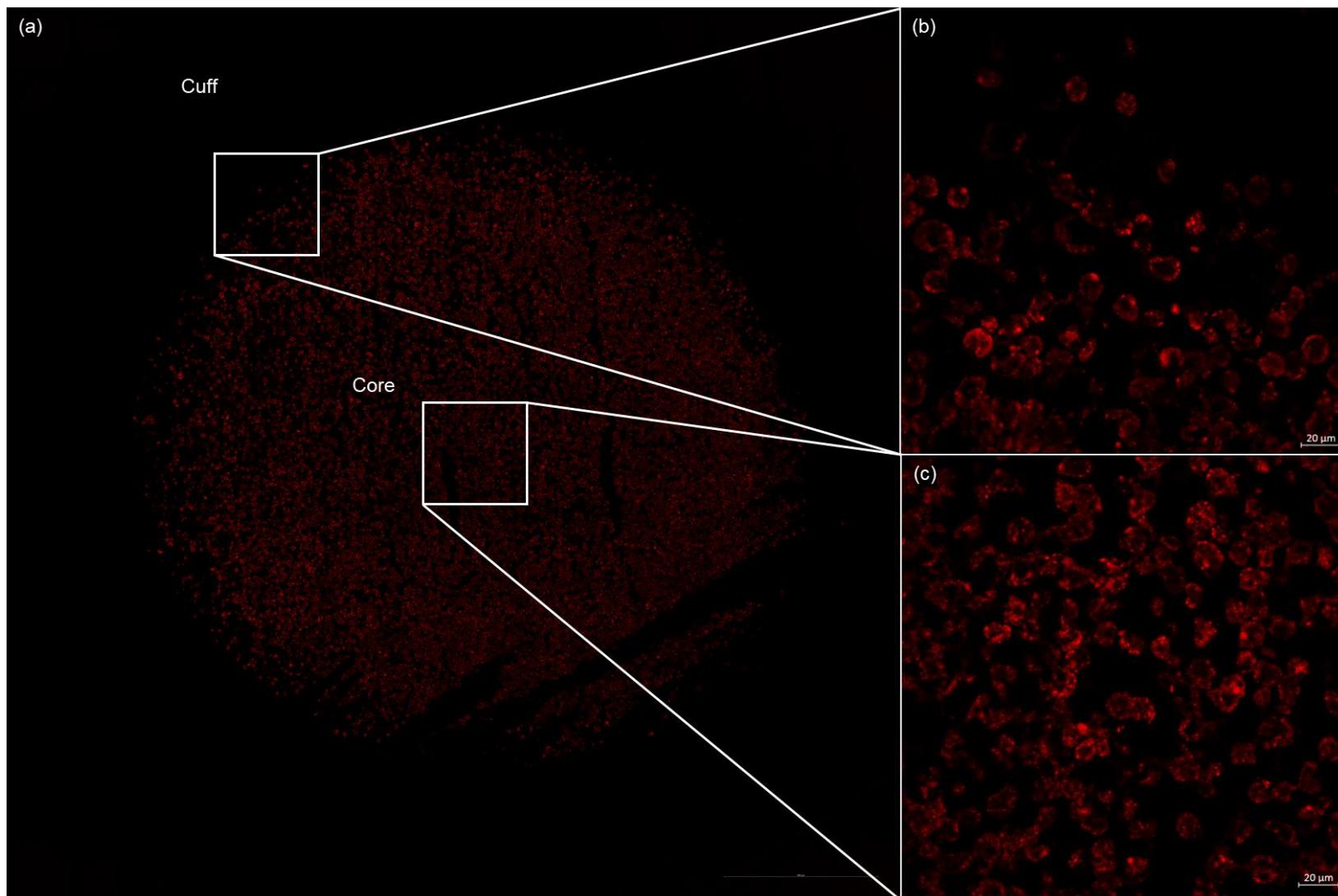


Figure 5: Tile scan (14x14) of a 3D uninfected innate granuloma structure depicting (a) the entire structure, (b) the “cuff” devoid of autologous CD3⁺ T cells, and (c) the exclusively AM-dominant core. AM were stained with CD206 PE-CF594 (red). Nuclei were left unstained.

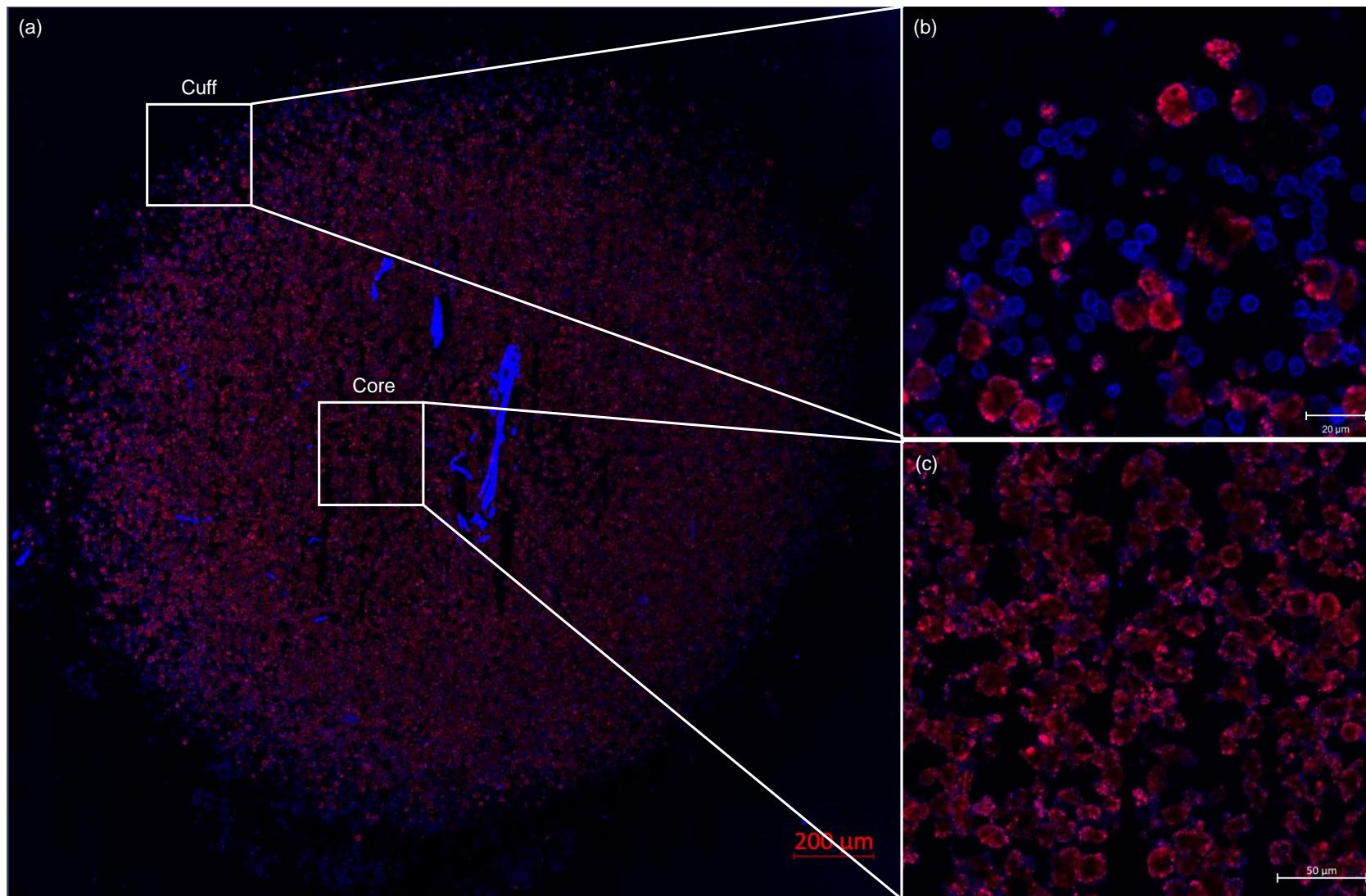


Figure 6: Tile scan (18x18) of a 3D uninfected adaptive granuloma structure depicting (a) the entire structure, (b) the autologous CD3⁺ T cell-dominant “cuff”, and (c) the exclusively AM-dominant core. AM were stained with CD206 PE-CF594 (red) and autologous CD3⁺ T cells were stained with CD3 V450 (blue). Nuclei were left unstained.

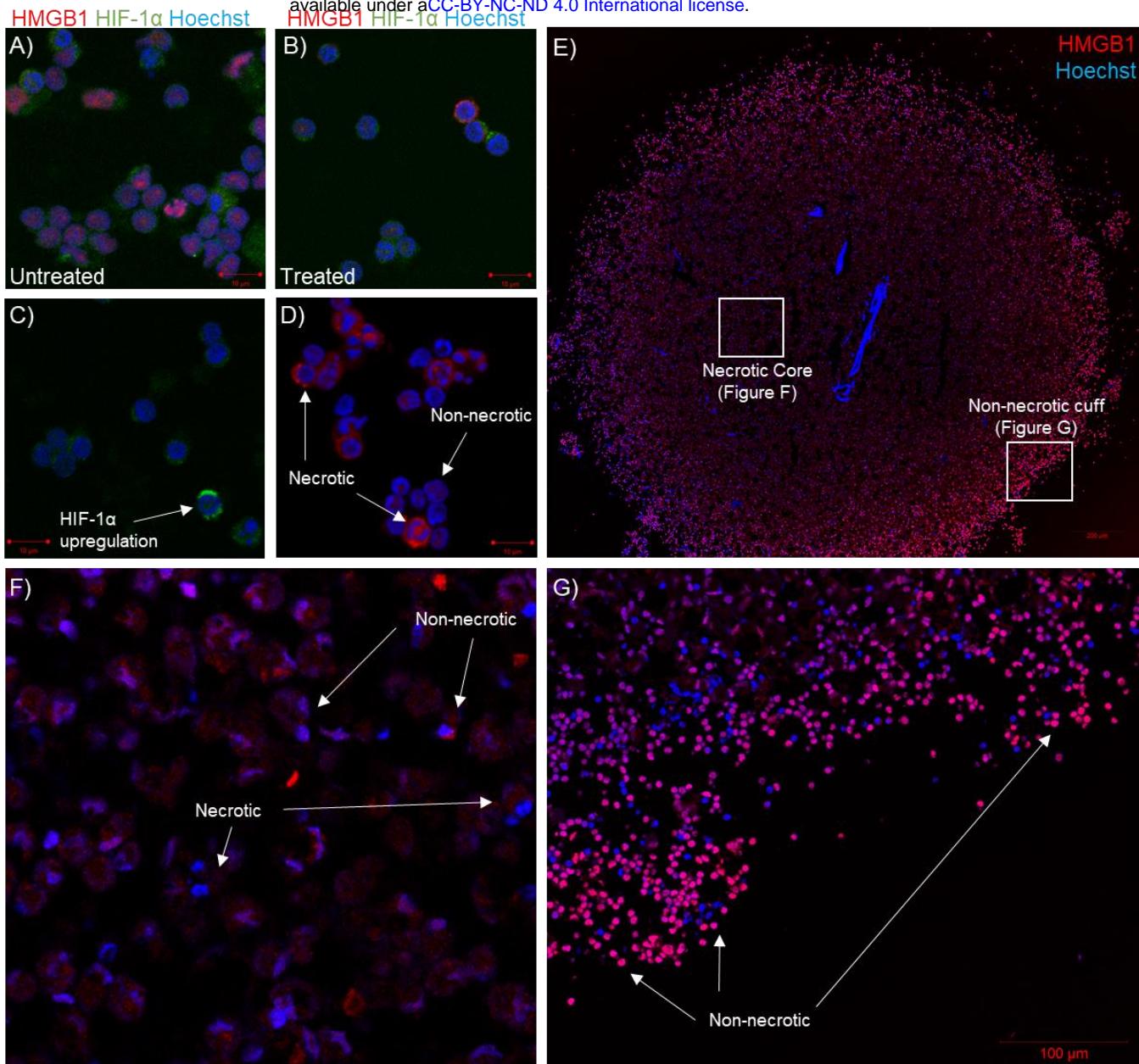


Figure 7: Confocal microscopy imaging of BAL cells **A**) under basal culture conditions (untreated) and **B**) under experimentally induced hypoxic conditions (treated), stained with HMGB1 (red), HIF-1 α (green) and Hoechst (nuclei). Single stains of **C**) the HIF-1 α and **D**) the HMGB1 markers under chemically induced hypoxic conditions demonstrated unsuccessful capturing of HIF-1 α nuclear translocation during hypoxia, but successful capturing of cytoplasmic translocation of HMGB1 proteins, indicative of necrosis. Confocal microscopy imaging of **E**) the entire 3D human TB granuloma section stained with HMGB1 (red) demonstrated the establishment of an oxygen gradient resulting in **F**) an AM core of both necrotic and non-necrotic cells, and **G**) a cuff of non-necrotic cells.

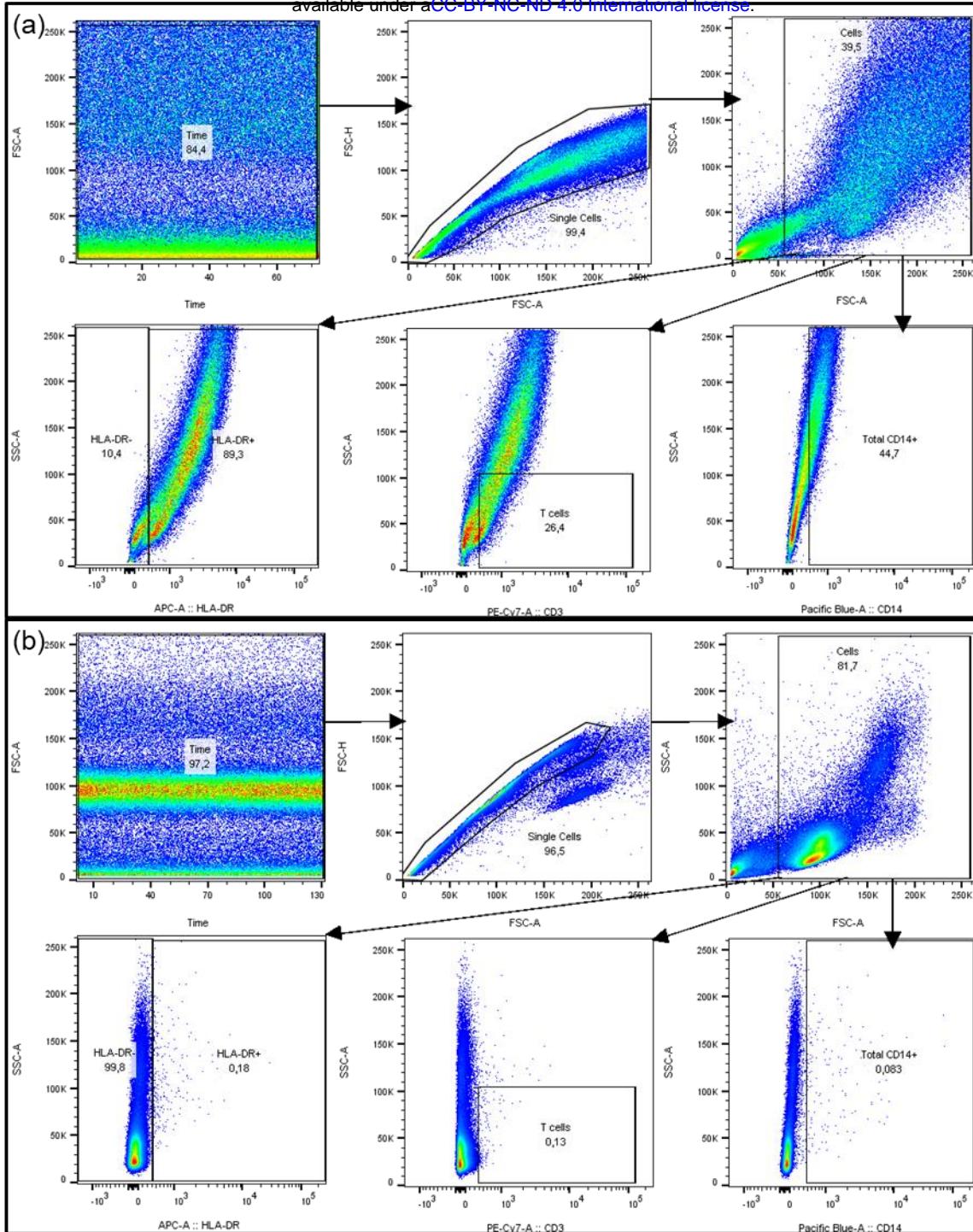


Figure 8: (a) Unstained total BALC run on the BD FACS™Canto II demonstrate positive autofluorescent signals compared to (b) unstained PBMC. Gates were set using FMO quality control checks set using a PBMC sample.

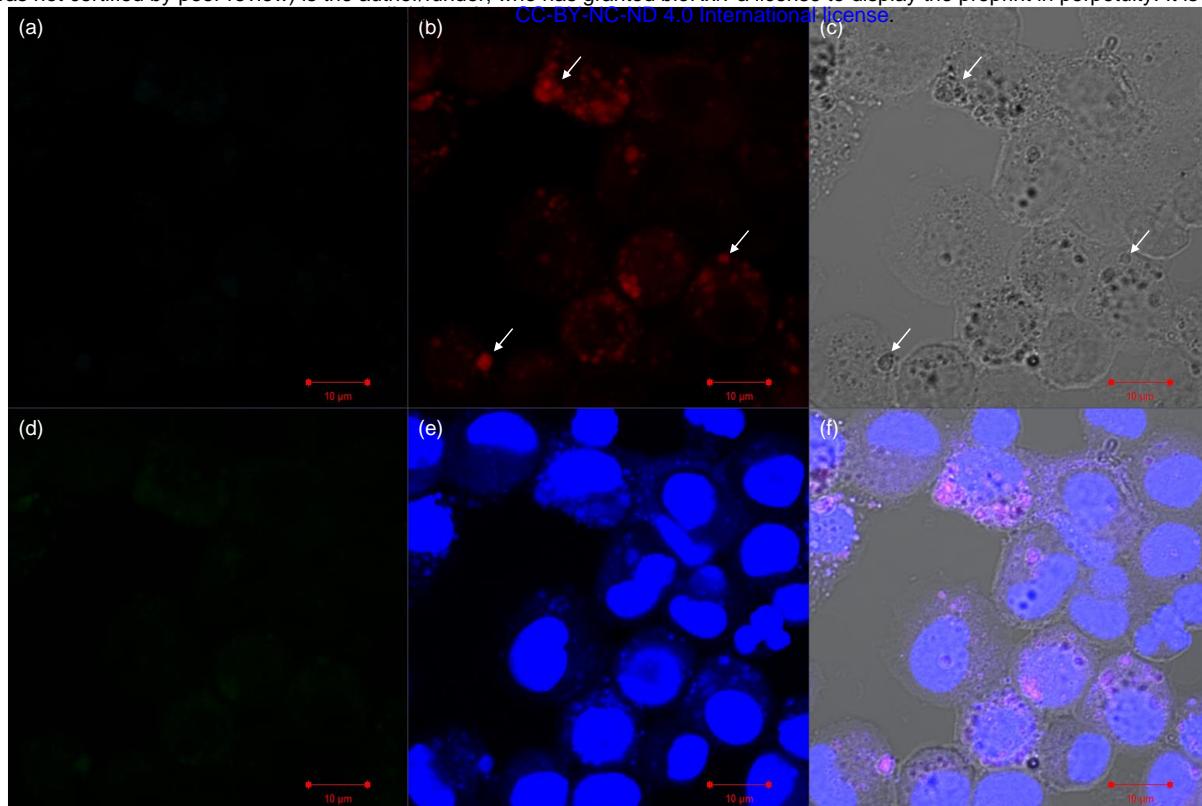


Figure 9: Unstained alveolar macrophages stained with Hoechst (nuclear stain) alone for slide orientation and focus. Auto-fluorescent signal was detected in the red (b), green (d) and blue (e) channels, with the red signal originating from the particulate matter-containing vesicles identifiable under brightfield (c) and the overlay (f). White arrows indicate particulate matter-containing vesicles.

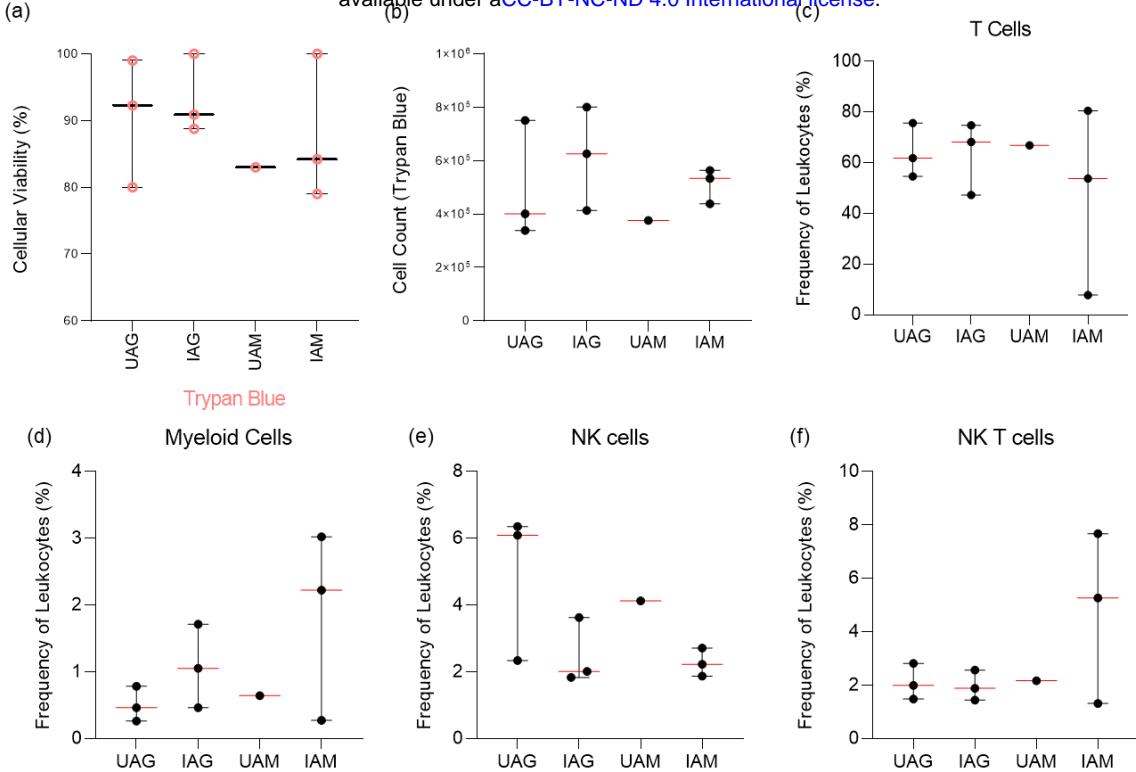


Figure 10: From each granuloma structure from each participant, the viability of mechanically dissociated granuloma structure single cells could be determined using the (a) Trypan Blue exclusion method (pink, circular datapoints). (b) Viable cells could be counted using the Trypan Blue exclusion method, and using flow cytometry, the frequency of various immune cell phenotypes could be assessed after the 48-hour adherence period to remove AM, including (c) CD3⁺ T cells, (d) CD3⁻CD14⁺ Myeloid Cells, (e) CD3⁻CD16⁺ Natural killer (NK) cells, and (f) CD3⁺CD16⁺ NK T cells. Cell counts and viability data are representative of cellular integrity after the final 48-hour incubation for adherence for both uninfected- (n = 3) and infected- (n = 3) granuloma structures, as well as uninfected- (n = 1) and infected- (n = 3) traditional cell cultures (monolayer). Each point represents a single data point; error bars are representative of the median and range. Abbreviations: UAG – Uninfected adaptive granuloma; IAG – Infected adaptive granuloma; UAM – Uninfected adaptive monolayer; IAM – Infected adaptive traditional.

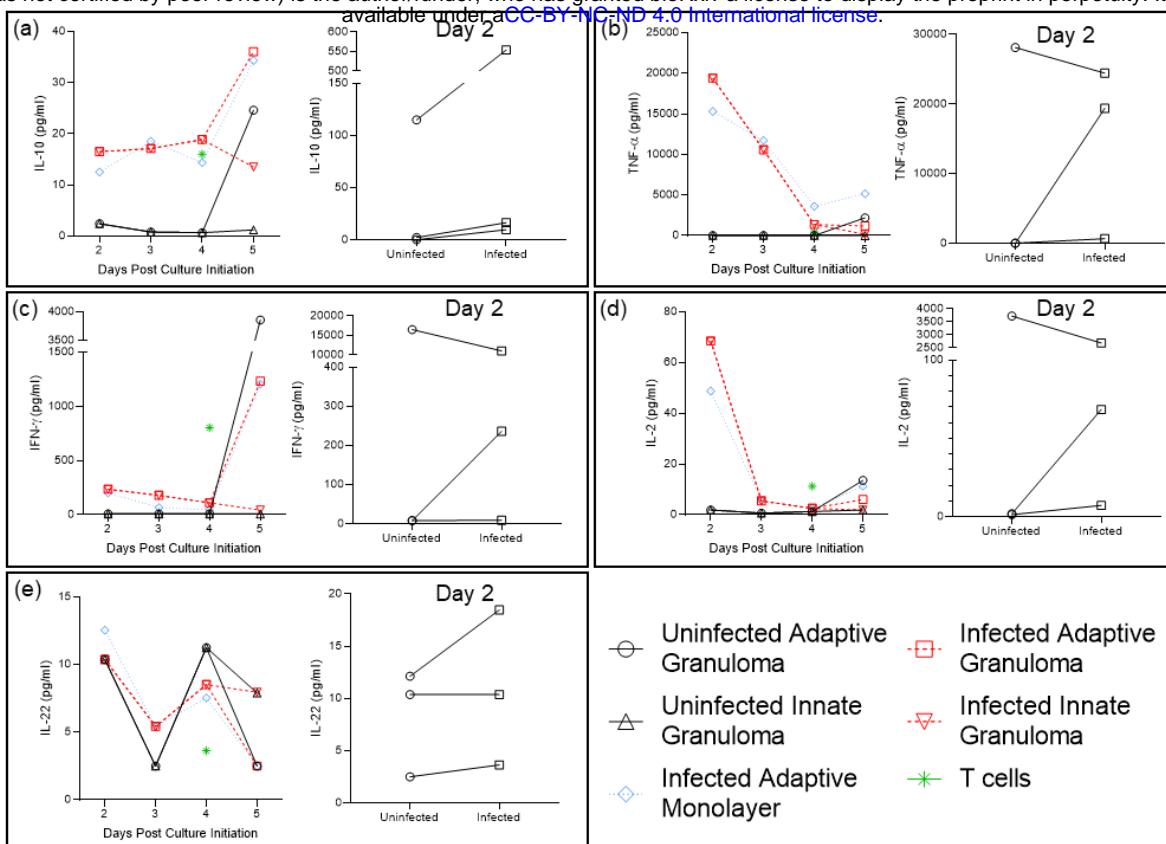


Figure 11: Concentration (pg/ml) of the investigated cytokines released into the supernatant of the 3D granuloma structure and traditional cell culture control (monolayer) extracellular environments, as measured by Luminex analysis. The cytokines measured included (a) IL-10, (b) TNF- α , (c) IFN- γ , (d) IL-2, and (e) IL-22. Cytokine production was compared between initial production by uninfected and BCG infected AM 2-days post culture initiation, and subsequent release until the end of culture (5 days post culture initiation), as well as compared to the corresponding cytokine release by the BCG infected chronic traditional cell culture control (monolayer) and autologous CD3⁺ T cells prior to addition to the AM culture. Each datapoint represents the median of three individual experiments, with BCG infection occurring on day 1 after culture initiation (the day of culture initiation is considered as day 0). The Day 2 inserts for each cytokine depict the differences between cytokines released by uninfected and BCG infected AM 2-days post culture initiation, i.e. 1-day post infection (Each datapoint represents a single individual from the three individual experiments assessed).

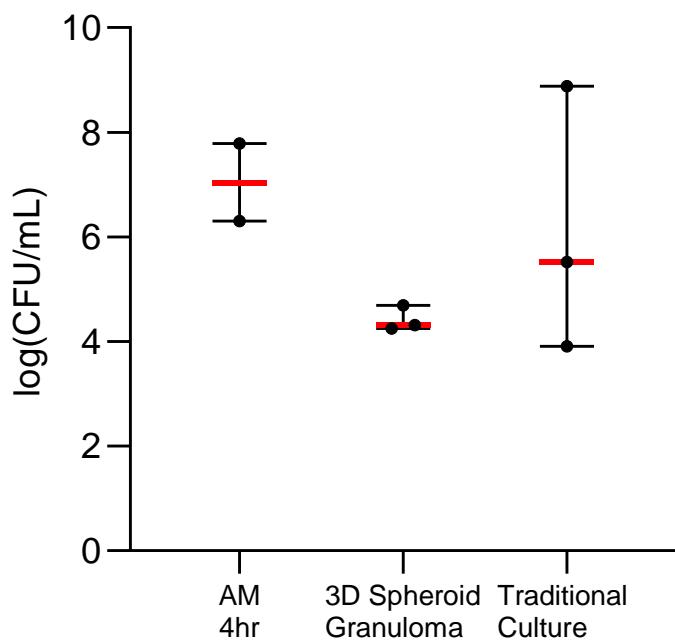


Figure 12: BCG CFU were measured using the cell lysate of 3D spheroid granuloma structures and traditional cell culture control cultures (traditional cultures) and compared to the initial bacterial uptake of BCG into AM. Data were log-transformed prior to plotting.

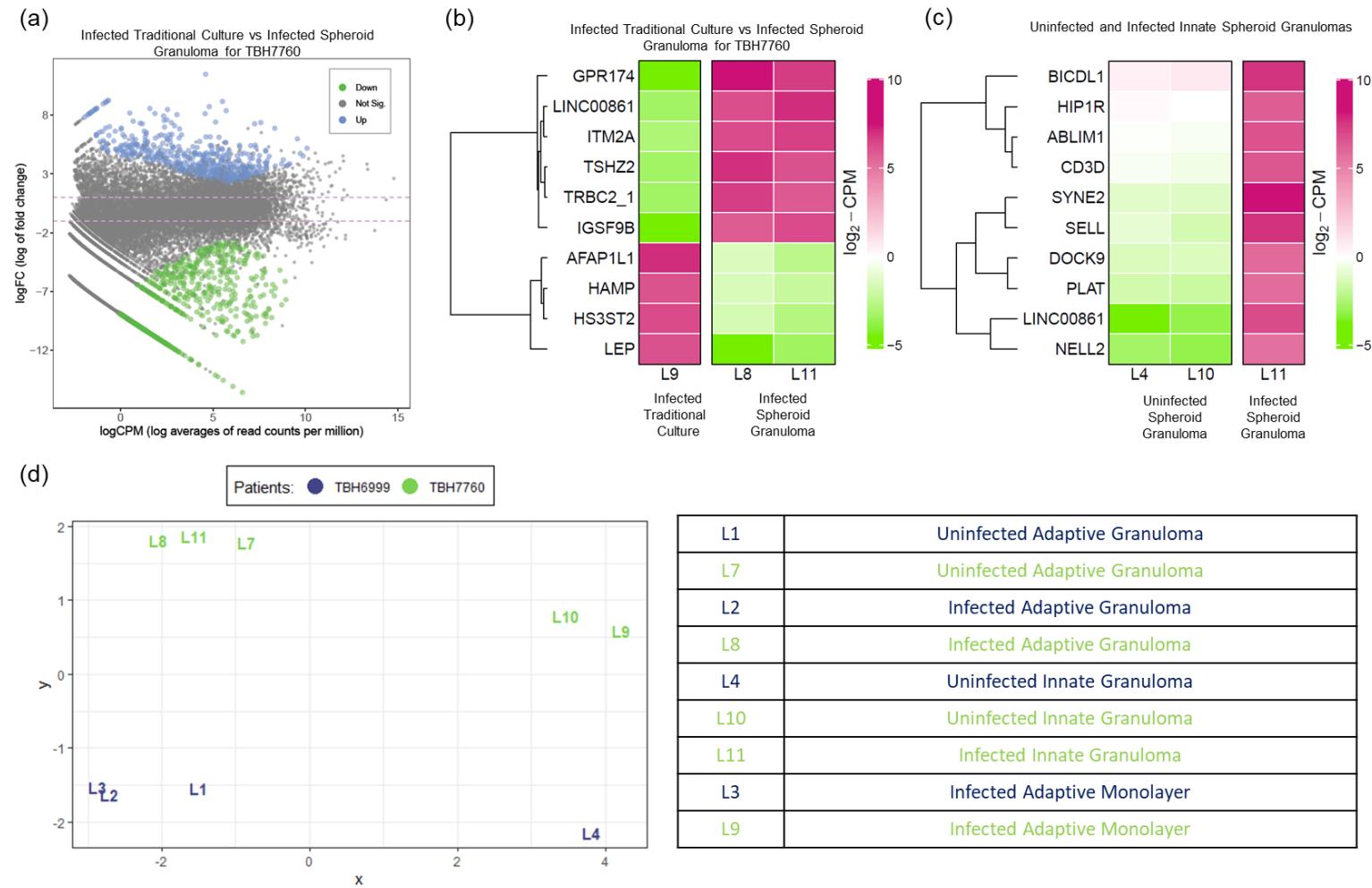


Figure 13: RNA Sequencing relative gene expression results displaying (a) a Mean-Difference (MD) plot of the differential gene expression between BCG Infected traditional control cultures and 3D spheroid granulomas (The distance between any two points is the leading log-fold change between those samples. The leading log-fold change is the root mean square average of the largest log-2 fold-change between those samples.), (b) a heatmap of the differential gene expression of BCG infected cells in traditional culture (labelled “Control”) vs corresponding infected cells in 3D spheroid granulomas, (c) a heatmap of the differential gene expression in BCG infected innate 3D spheroid granulomas vs uninfected innate 3D spheroid granulomas, and (d) a multi-dimensional scaling plot of all datapoints from a smoker (green) vs non-smoker (blue). Descriptions of each datapoint are given in the bottom right-hand table.

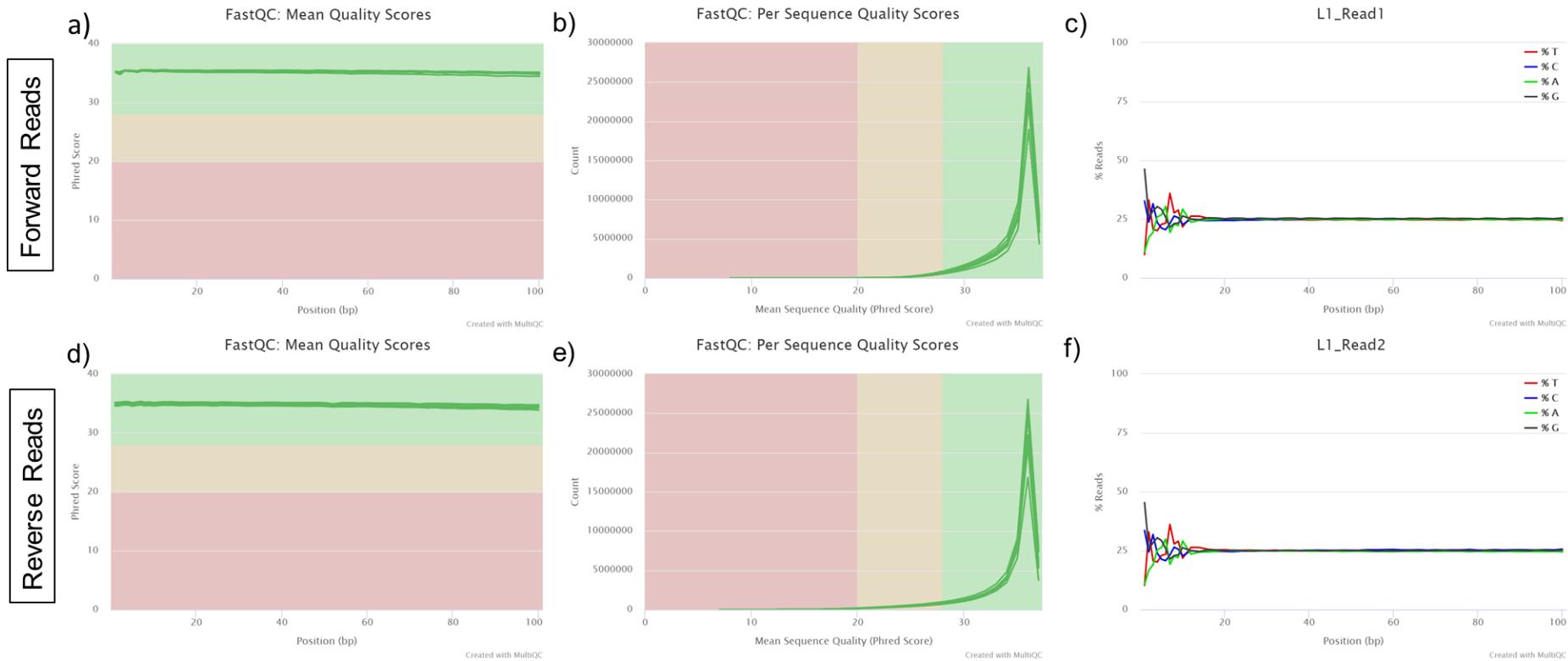


Figure 14: Representative FASTQC quality control results of the nine forward (a-c) and nine reverse (d-f) reads for the nine patient samples run on the MGISEQ-2000. Representative results include (a) the average quality score per base for all nine forward reads, (b) forward read quality score per sequence, (c) an example of the proportion of bases seen at each position for the forward reads where the first 10-13 bases show erratic behaviour, (d) the average quality score per base for all nine reverse reads, (e) reverse read quality score per sequence, and (f) an example of the proportion of bases seen at each position for the reverse reads where the first 10-13 bases show erratic behaviour.

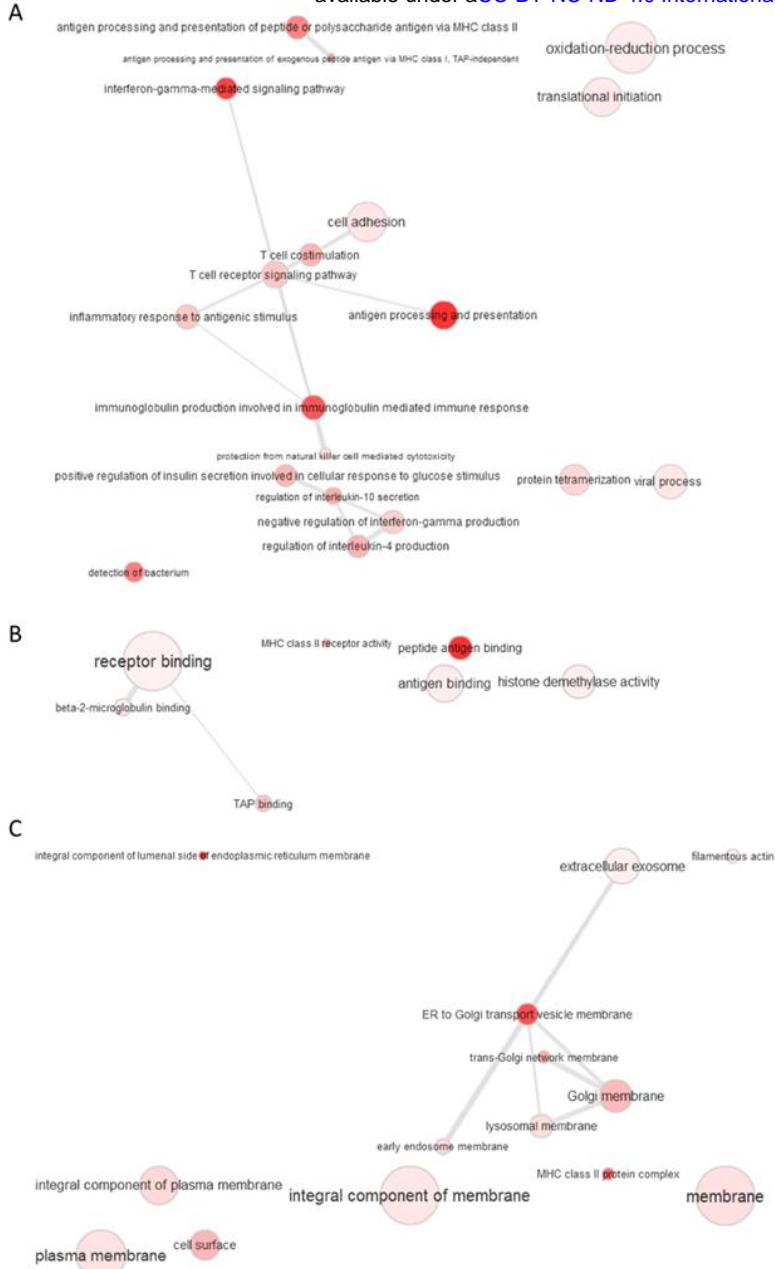
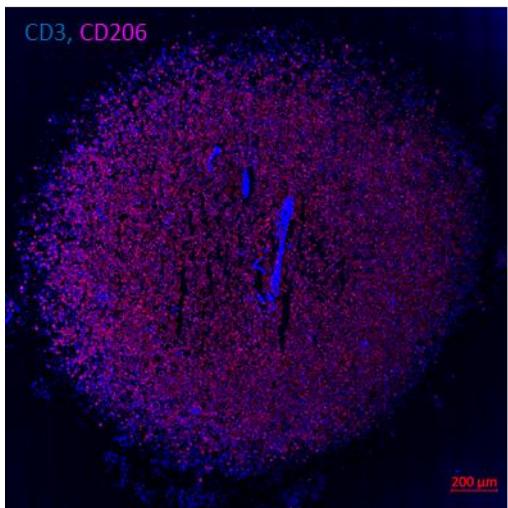



Figure 15: Functional network map of the GO term enrichment analysis for the 138 differentially regulated proteins identified during RNA seq analysis from comparing BCG-infected spheroid granulomas between participants (one a smoker, and one not). GO terms retrieved by the Database for Annotation, Visualization and Integrated Discovery (DAVID) and visualized in ReviGO clustered enriched terms according to (A) biological processes, (B) molecular function and (C) cellular component. Each node corresponds to a single representative GO term for all related sibling and child terms. Highly similar GO terms are linked by edges in the graph where line width indicates the degree of similarity. Bubble colour intensity indicates the p-value and bubble size indicates the frequency of the GO term in the GOA database. Force-directed layout algorithm was used to keep similar nodes together.

a) 3D Spheroid granuloma

b) NHP Granuloma

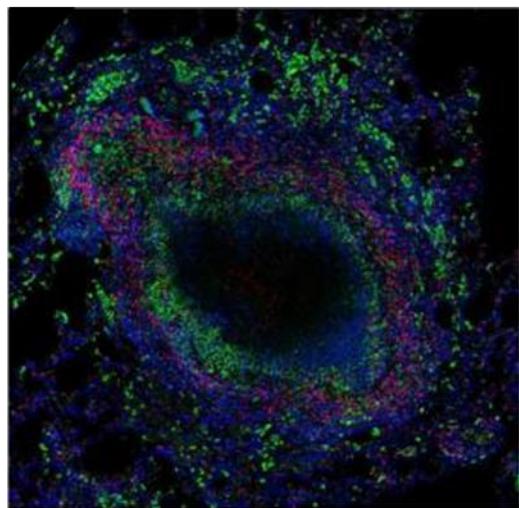


Figure 16: Our 3D in vitro TB granuloma structures show similar structural and cellular composition based on (a) immunofluorescence staining with antibodies for CD3⁺ T-cells (blue, V450) and alveolar macrophages (red, PE- CF594) to (b) published in vivo TB lung granulomas of non-human primates, stained with antibodies for CD3⁺ T-cells (red) and CD68⁺ macrophages (green), surrounding the necrotic center (unstained). Adapted from Flynn et al. 2015 with permission (license number: 4967651365284) (Flynn et al., 2015).

Table 1: Demographic details of the participants used for the generation of *in vitro* 3D granulomas.

	Participant ID		
	TBH7760	TBH6999	TBH1252
Age¹	43	34	51
HIV Status	Negative	Negative	Negative
Sex	Female	Male	Male
Smoking Habits	Smoker	Non-Smoker [*]	Smoker
Pellet Colour²	Black	Black	Black
Diagnosis	Interstitial Fibrosis (Smoking-related)	Sarcoidosis	Interstitial Lung Disease
TB History	Previous TB	Previous TB	No Previous TB
BALC Count	6,67E+07	2,07E+06	4,18E+06
Existing Treatment	Nifedipine	Amoxicillin, Co- amoxiclav	None
Existing Conditions	Raynaud's phenomenon	Unknown	Hypogonadism

¹Age at time of enrolment

²Pellet colour has been shown to be representative of participant smoking habits, and exposure to biomass fuels.

*Stopped smoking within the last 3 months.

Abbreviations: ID – identification; BALC – bronchoalveolar lavage cell

Table 2: Mann-Whitney t-test results for comparisons between infection groups for each cellular phenotype, as depicted above in Figure 3.

Comparison*	T Cells (p-value)	Myeloid Cells (p-value)	NK Cells (p-value)	NKT Cells (p-value)	NK Regulatory Cells (p-value)
Uninfected					
Adaptive					
Granuloma vs Infected Adaptive	>0,9999	0,3	0,2	0,7	0,7
Granuloma					
Infected Adaptive					
Granuloma vs Infected Adaptive	>0,9999	0,7	>0,9999	0,7	0,4
Traditional cell culture					

*Comparisons could not be made between the Uninfected Adaptive Granuloma and Uninfected Adaptive Monolayer, and Uninfected Adaptive Monolayer and Infected Adaptive Monolayer groups due to too few datapoints being available for the Uninfected Adaptive Monolayer group.