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SUMMARY 32 

 The El Tor biotype of Vibrio cholerae is responsible for perpetuating the longest cholera 33 

pandemic in recorded history (1961-current). The genomic islands VSP-1 and -2 are two 34 

understudied genetic features that distinguish El Tor from previous pandemics. To understand 35 

their utility, we calculated the co-occurrence of VSP genes across bacterial genomes. This 36 

analysis predicted the previously uncharacterized vc0175, herein renamed deoxycytidylate 37 

deaminase Vibrio (dcdV), is in a gene network with dncV, a cyclic GMP-AMP synthase involved 38 

in phage defense. DcdV consists of two domains, a P-loop kinase and a deoxycytidylate 39 

deaminase, that are required for the deamination of dCTP and dCMP, inhibiting phage 40 

predation by corrupting cellular nucleotide concentrations. Additionally, DcdV is post-41 

translationally inhibited by a unique noncoding RNA encoded 5’ of the dcdV locus. DcdV 42 

homologs are conserved in bacteria and eukaryotes and our results identify V. cholerae DcdV 43 

as the founding member of a previously undescribed bacterial phage defense system. 44 

 45 

INTRODUCTION 46 

Vibrio cholerae, the etiological agent responsible for the diarrheal disease cholera, is a 47 

monotrichous, Gram-negative bacterium found ubiquitously in marine environments [1]. There 48 

have been seven recorded pandemics of cholera, beginning in 1817, and the fifth and sixth 49 

pandemics were caused by strains of the classical biotype. The seventh pandemic, which began 50 

in 1961 and continues today, was initiated and perpetuated by circulating strains of the El Tor 51 

biotype. Numerous phenotypic and genetic characteristics are used to distinguish the classical 52 
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and El Tor biotypes [2]. It is hypothesized that El Tor’s acquisition of two unique genomic 53 

islands of unknown origins, named the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-1 and 2) 54 

[3], played a pivotal role in El Tor’s evolution to pandemicity and the displacement of the classic 55 

biotype in modern cholera disease [4]. 56 

Combined, VSP-1 and VSP-2 encode ~36 putative open reading frames (ORFs) within 57 

~39 kb (Figs. 1A and S1B) [3, 5–7]. While the majority of the genes in these two islands remain 58 

to be studied, it is hypothesized that the biological functions they encode may contribute to 59 

environmental persistence [8] and/or the pathogenicity [9] of the El Tor biotype. In support of 60 

this idea, VSP-1 encodes a phage defense system encompassing the genes dncV, capV, 61 

vc0180 and vc0181 called the cyclic-oligonucleotide-based antiphage signaling system 62 

(CBASS) [10] (Fig. 1A). CBASS limits phage invasion of bacterial populations via a process 63 

termed abortive replication whereby upon phage infection cyclic GMP-AMP (cGAMP) synthesis 64 

by DncV activates cell lysis by stimulating the phospholipase activity of CapV [10, 11]. During 65 

our search for VSP-1 and 2 gene networks, we determined that the gene vc0175, renamed 66 

herein as deoxycytidylate deaminase in Vibrio (dcdV), cooccurs in bacterial genomes with 67 

dncV, suggesting a common function. 68 

We show that dcdV, exhibits deoxycytidylate deaminase (DCD) activity, catalyzing the 69 

deamination of free deoxycytidine monophosphate (dCMP) substrates to form deoxyuridine 70 

monophosphate (dUMP) and is part of the broader Zn-dependent cytosine deaminase (CDA) 71 

family of enzymes [12–14]. The activity of DCD enzymes play a vital role in the de novo 72 

synthesis of deoxythymidine triphosphate (dTTP) by supplying the dUMP required by 73 

thymidylate synthase (TS) to form deoxythymidine monophosphate (dTMP) [12]. CDA enzymes 74 

belonging to the APOBEC (Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like) 75 

family also play an important role in viral immunity in higher organisms where their catalytic 76 

activity is utilized for the deamination of nucleic acids rather than free nucleotide substrates to 77 

restrict several types of viruses, such as retroviruses, and retroelements [15–19]. 78 
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A primary challenge faced by lytic phage is to rapidly replicate many copies of its 79 

genome, which requires sufficient nucleotide substrates [20]. During DNA phage infection, total 80 

DNA within a bacterium can increase 5-10 fold, illustrating the vast amount of DNA replication 81 

that must occur in a short window of time [21, 22]. To accomplish this feat, invading DNA phage 82 

often corrupt the delicate balance of enzymatic activity across a host’s deoxynucleotide 83 

biosynthetic pathways by deploying their own DCD, dUTPase, TS, and ribonucleotide reductase 84 

to ensure the appropriate ratio and abundance of deoxyribonucleotides [23–27].  85 

Here we show that DcdV is a dual domain protein consisting of a putative N-terminal P-86 

loop kinase (PLK) and C-terminal DCD domain, and this novel domain architecture is present 87 

across the tree of life. Overexpression of DcdV promotes cell filamentation, which has hallmarks 88 

of nucleotide starvation resembling thymine-less death (TLD) toxicity [28–31]. Our results 89 

demonstrate that ectopic expression of DcdV indeed corrupts the intracellular concentrations of 90 

deoxynucleotides and this activity protects bacteria from phage infection. Moreover, we 91 

demonstrate that DcdV activity is negatively regulated by a non-coding RNA encoded 5’ of the 92 

dcdV locus [renamed herein as DcdV insensitivity factor in Vibrio (difV)]. Furthermore, dcdV-93 

difV systems are widely encoded in bacteria and we show that a subset of them function 94 

similarly, establishing cytidine deaminase enzymes as antiphage defense systems in bacteria. 95 

 96 

RESULTS 97 

dncV and dcdV co-occur in bacterial genomes 98 

To help identify functional interactions within the largely unclassified VSP-1 & 2 genes, 99 

VSP island genes were classified into putative “gene networks” or sets of genes that form a 100 

functional pathway to accomplish a biological task. Since gene networks often share deep 101 

evolutionary history among diverse taxa, we hypothesized that the set of genes in a gene 102 

network would co-occur together in the genomes of diverse taxa at a higher frequency than 103 
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chance alone would predict. Our software package was named ‘Correlogy’ inspired by [32] and 104 

is described in detail in the materials and methods.  105 

We calculated a Pearson correlation followed by a partial correlation correction between 106 

each of the VSP island genes from the same island across the sequenced bacterial domain. 107 

This resulting partial correlation correction ”𝑤𝑖𝑗” has an output normalized to a range of -1 to 1, 108 

with a 𝑤𝑖𝑗 of -1 revealing homologs of genes i and j never occur in the same species as 109 

opposed to a value of 1 in which homologues of genes i and j always co-occur in the same 110 

species. Previous research using well-classified Escherichia coli gene networks showed that 111 

partial correlation values 𝑤𝑖𝑗 > 0.045 were highly correlated with shared biological functions [32]. 112 

Using the above-mentioned approach, we calculated a partial correlation value 𝑤𝑖𝑗 for all genes 113 

i to j in VSP-1 (Supplemental File 1) and VSP-2 (Supplemental File 2). We generated a 114 

visualization of the Maximum Relatedness Subnetworks (MRS) showing the single highest 𝑤𝑖𝑗 115 

value for each VSP gene (Figs. 1B, S1A, 1B). 116 

One of our VSP-1 gene networks centered on dncV and identifies the experimentally 117 

validated CBASS anti-phage system (Fig. 1B) [10]. Curiously, the putative deoxycytidylate 118 

deaminase encoded by vc0175 ,which we renamed dcdV, was also found to co-occur with dncV 119 

(𝑤𝑖𝑗 = 0.147) but not with any of the other CBASS members (𝑤𝑖𝑗 < 0.045) (Fig. 1B). Recognizing 120 

that co-occurrence of dncV with dcdV may indicate a shared or common biological function, we 121 

sought to understand the biological activity of dcdV. 122 

 123 

Ectopic expression of dcdV induces cell filamentation in the absence of VSP-1 124 

 To assess the function of DcdV, we generated growth curves in both wild type (WT) V. 125 

cholerae and a double VSP island deletion strain (ΔVSP-1/2) over-expressing dcdV (pDcdV) or 126 

vector control (pVector). DcdV overexpression did not impact WT growth but did reduce growth 127 
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yield in the ΔVSP-1/2 background (Fig. 1C). We evaluated the cellular morphology of WT and 128 

ΔVSP-1/2 strains after overexpression of DcdV and observed expression from pDcdV in the 129 

ΔVSP-1/2 background yielded filamentous cell morphologies, suggesting these cells have a 130 

defect in cell division that manifests in a reduced growth yield (Fig. 1D). We performed the same 131 

image analysis in single island mutants (ΔVSP-1 and ΔVSP-2) and found that the mean cell 132 

length increased significantly upon DcdV overexpression only in cells lacking VSP-1 (Fig. 1E). 133 

Likewise, overexpression of pDcdV in a laboratory strain of E. coli also induced cell 134 

filamentation that was inhibited by provision of a single copy cosmid containing VSP-1 (pCCD7) 135 

but not the vector cosmid control (pLAFR) (Figs. S2A and S2B). The spiral nature of V. cholerae 136 

filaments (Fig. 1D) is due to the natural curvature of V. cholerae mediated by crvA [33, 34]. 137 

Taken together, these results indicated that DcdV overexpression severely impacts cell 138 

physiology in the absence of VSP-1.  139 

 140 

DifV is encoded immediately 5’ of the dcdV locus in VSP-1 141 

To identify the negative regulator of DcdV activity encoded in VSP-1, we generated 142 

partial VSP-1 island deletions and quantified cell filamentation following DcdV expression. Three 143 

sections of VSP-1; dcdV-vc0176, vspR-vc0181, and vc0182-vc0185, were individually deleted. 144 

Of the three partial VSP-1 deletion strains, expression of pDcdV only induced filamentation in 145 

the ΔdcdV-vc0176 mutant (Fig. 2A). Individual gene deletion mutants of dcdV and vc0176 146 

maintained WT cell morphology following expression of DcdV (Fig. 2B), suggesting the 504 nt 147 

intergenic region between dcdV and vc0176 is the source of DcdV inhibition. We identified a 148 

222 nucleotide (nt) open reading frame we named ig222 encoded in the same orientation 149 

immediately 5’ of dcdV as a possible candidate for the DcdV regulation (Fig. 1A). 150 

Overexpression of DcdV in the Δig222 mutant led to cell filamentation (Fig. 2B). Furthermore, 151 

complementation of ig222 co-expressed from a second plasmid in the Δig222 strain prevented 152 

DcdV induced filamentation (Fig. 2B). We conclude that ig222 contains the necessary genetic 153 
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components for inhibiting DcdV activity and refer to this negative regulator as DifV for DcdV 154 

insensitivity factor in Vibrios. 155 

As dcdV and dncV cooccur in a gene network (Fig. 1B), we hypothesized that the role of 156 

DncV was to inactivate DifV, leading to the liberation of DcdV activity. However, co-expression 157 

of both DncV and DcdV did not liberate DcdV activity as these cells were not filamentous (Fig. 158 

S3). The Δig222 mutant is not filamentous in the absence of pDcdV expression which is likely 159 

due to a polar effect originating from the deletion of ig222. Indeed, dcdV expression was reduced 160 

at all growth phases in the ∆ig222 mutant (Fig. S4). 161 

 162 

DifV is an sRNA that post-translationally regulates the activity of DcdV 163 

The fact that DifV inhibits DcdV expressed from a plasmid with exogenous transcription 164 

and translation start sites suggests DifV regulates DcdV at a post-translational level. To test this 165 

hypothesis, we expressed a dcdV C-terminal 6x histidine tagged construct (DcdV6xHIS) in WT 166 

and ∆ig222 V. cholerae and probed for the cellular abundance of DcdV6xHIS using Western blot 167 

(Fig. 2C). When this tagged DcdV is expressed, ∆ig222 manifest a filamentation phenotype while 168 

the WT strain does not, indicating the 6x histidine tag does not change the activity of DcdV nor 169 

does it inhibit the ability of DifV to regulate DcdV (Fig. S5). Despite the lack of filamentation in 170 

the WT strain, the cellular abundance of DcdV6xHIS was slightly greater than ∆ig222 with an 171 

average signal intensity ratio WT:∆ig222) of 1.5 ± 0.3 across three biological replicates, although 172 

this difference was not statistically significant. This result connotes that DifV limits DcdV activity 173 

after it has been translated and not by reducing the abundance of DcdV. 174 

Given that DifV regulates the activity of DcdV at the post-translational level, we 175 

wondered if DifV was a small peptide or an untranslated small regulatory RNA (sRNA). Mutation 176 

of the ig222 rare CTG start codon to a TAG stop codon (222 ntSTOP) did not abrogate the ability of 177 

this construct to inhibit DcdV activity in trans when co-expressed in the Δig222 strain (Fig. 2D). 178 

We then examined a 174 nt ORF completely encoded within ig222 (174 nt) and found it was also 179 
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sufficient to prevent DcdV induced filamentation (Fig. 2D). Additionally, expression of this 174 nt 180 

ORF from constructs either lacking a ribosome binding site (174 nt-RBS) or where the native ATG 181 

start codon was mutated to a TAA stop codon (174 ntSTOP) each retained the ability to inhibit 182 

DcdV activity (Fig. 2D). We also identified an ATG start codon on the interior of the 174 nt ORF 183 

corresponding to an alternative reading frame and mutation of this interior start codon to a TAA 184 

stop codon (174 ntInteriorSTOP) also failed to abrogate DifV inhibition of DcdV activity (Fig. 2D). 185 

Together, these results suggest that translation of a gene product originating from within ig222 is 186 

not necessary for DifV activity. 187 

To identify the minimum functional size of difV we further truncated this 174 nt segment 188 

from both the 5’ and 3’ ends and found that removal of either 18 bp from the 5’ end or 4 bp from 189 

the 3’ end was sufficient to abolish DifV activity (Fig. 2D). Additionally, expression in trans of 190 

npcR_3991 [35], a 104 nt non-coding RNA of unknown function contained within ig222, was also 191 

unable to inhibit DcdV filamentation (Fig. 2D). Collectively, these results suggest that DifV is a 192 

regulatory RNA that is between 152 to 174 nt long encoded 5’ of the dcdV locus, and we will 193 

therefore refer to the 174 nt locus as difV for the remainder of these experiments. 194 

 195 

DifV and DcdV constitute a two gene operon that resembles a Toxin-Antitoxin System  196 

  The genomic orientation and proximity of difV to dcdV suggest they may constitute an 197 

operon and two previous genome-wide transcriptional start site (TSS) analyses previously 198 

identified a common putative TSS 5’ of difV [36, 37]. To test if difV and dcdV are indeed 199 

expressed as an operon, we performed diagnostic PCR with primers located within difV and 200 

dcdV on cDNA generated from both WT and Δig222 RNA (Fig. 3A). As expected, dcdV was 201 

detected in the cDNA generated from each strain while difV was only amplified using the WT 202 

cDNA template (Fig. 3B). The presence of an 839 nt PCR product amplified using primers 203 

spanning difV to dcdV from the WT cDNA template, that was not present with Δig222 cDNA, 204 

confirmed that both genes are present on a shared transcript (Fig. 3B). Additionally, we 205 
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quantified the relative abundance of difV and dcdV RNA using qRT-PCR and found the difV 206 

locus was approximately 40-, 20-, and 60-fold more abundant than dcdV at early exponential, 207 

late exponential, and stationary phases, respectively (Fig. 3C). While having several unique 208 

features, the co-transcription of difV and dcdV and the post-translational regulation of DcdV 209 

activity by the abundant sRNA DifV resembles Type III Toxin-Antitoxin systems [38]. 210 

 211 

DcdV induced filamentation requires conserved features of both the PLK and the CDA 212 

domains 213 

 DcdV is a 532 amino acid polypeptide composed of two putative domains: an 214 

unannotated N-terminal domain and a DCD-like C-terminus (Figs. 4A, 4B). Analysis of the N-215 

terminal domain using Pfam did not reveal any conserved domains. However, Phyre2 [39] and 216 

PSI-BLAST searches combined with InterProScan [40, 41] analyses revealed that the N-217 

terminus contained features of the P-loop containing nucleoside triphosphate hydrolase (IPR ID: 218 

IPR027417) aka P-loop kinase (PLK) enzyme family (Figs. 4A,B and S6). PLKs catalyze the 219 

reversible phosphotransfer of the γ-phosphate from a nucleotide triphosphate donor to a diverse 220 

group of substrates, depending on the enzyme class, including deoxynucleotide 221 

monophosphates. Three structural features commonly found in these enzymes include a P-222 

loop/Walker A motif {GxxxxGK[ST]}, a two helical LID module that stabilizes the donor 223 

nucleotide triphosphates, and a Walker B motif {hhhh[D/E], where “h” represents a hydrophobic 224 

residue} that is partly involved in coordinating Mg2+ [42, 43]. Interrogation of the Phyre2 DcdV 225 

model (Fig. 4A), InterProScan predictions, and PSI-BLAST primary sequence alignments (Fig. 226 

S6) revealed these three features are likely present in the N-terminal domain, suggesting the N-227 

terminus of DcdV is a PLK domain involved in binding nucleotide substrates and performing a 228 

phosphotransfer reaction. The C-terminal DCD domain contains a highly conserved zinc-229 

dependent CDA active site motif ([HAE]X28[PCXXC]) (Figs. 4A,B and S6). The constellation of 230 

residues that make up the Zn2+ binding pocket is composed of three critical amino acids in 231 
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DcdV; H382, C411, and C414. Zn2+ is required for the catalytic deprotonation of water by a 232 

conserved glutamate residue (E384 in DcdV) for the hydrolytic deamination of a cytosine base 233 

to uridine. 234 

Hypothesizing that one of the two domains present in DcdV is responsible for cell 235 

filamentation in the absence of difV, we made site-specific mutations in the conserved residues 236 

predicted to be essential for activity in both the PLK and DCD domains. Two variant constructs 237 

were generated in the PLK domain targeting the Walker A motif (DcdVS52K) and the Walker B 238 

motif (DcdVD162A + Q163A) (Fig. 4B). Two variants were constructed in the DCD active site; a 239 

double substitution of both C411A and C414A (DcdVC411A + C414A) to abrogate Zn2+ binding and 240 

an E384A substitution (DcdVE384A) to inhibit the deprotonation of water required for the hydrolytic 241 

deamination of cytosine (Fig. 4B). Unlike WT DcdV (DcdVWT), all four of the variants failed to 242 

induce filamentation when ectopically expressed in E. coli (Fig. 4C). The cellular abundance of 243 

these variants is comparable to WT DcdV (Fig. S7). This result shows both DcdV domains are 244 

necessary for induction of filamentation. 245 

We performed a genetic screen to identify DcdV variants whose activity was no longer 246 

inhibited by DifV by expressing a random library of dcdV mutants in a ∆dcdV mutant strain 247 

where difV remains intact. Ectopic expression of WT dcdV in a ∆dcdV mutant does not induce 248 

filamentation (Fig. 4D) or produce small, wrinkled colonies on solid agar due to the genomic 249 

copy of difV. However, dcdV mutants that are insensitive to difV exhibit a small colony 250 

phenotype. Screening ~ 15,000 potential mutants, we identified five unique dcdV mutations that 251 

encoded single amino acid substitutions (E123K, A126T, K201R, K511E, and Q514R) located in 252 

both the PLD and DCD domains that rendered DcdV insensitive to DifV inhibition (Figs. 4B, 4D). 253 

Based on the Phyre2 DcdV structural model, all five residues are located on the exterior of the 254 

protein (Fig. 4A) suggesting they may be involved in mediating molecular interactions between 255 

DifV and DcdV. The only mutation found within a conserved domain feature was the seemingly 256 
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innocuous K201R substitution, which is modeled to lie between the two helices of the PLK LID 257 

module (Fig. 4A). 258 

 259 

DcdV induced filamentation is due to impaired genome replication 260 

Filamentation is a phenotype often associated with thymineless death (TLD) [28] due to 261 

nucleotide starvation. A hallmark of TLD is an increased genomic origin to terminus (ori/ter) ratio 262 

resulting from repeated attempts to initiate replication from the origin that ultimately fail to reach 263 

the terminus due to a lack of dTTP substrate [44]. Hypothesizing that DcdV induced 264 

filamentation may be a consequence of replication inefficiency, analogous to TLD, we measured 265 

the ori/ter ratio of V. cholerae chromosome 1 from WT and Δig222 V. cholerae grown to 266 

stationary phase overexpressing WT DcdV or a vector control. There was no significant 267 

difference in the ori/ter ratios following ectopic expression of WT DcdV in WT V. cholerae (Fig. 268 

4E), consistent with the observation that these strains do not filament (Figs. 1D and 1E). 269 

However, ectopic expression of WT DcdV in the Δig222 mutant, which lacks difV, resulted in an 270 

ori/ter ratio ~ 3 times greater than the vector control (Fig. 4F), consistent with cell filamentation 271 

(Fig. 2B). We also measured the ori/ter ratio of the Δig222 mutant expressing dcdV with 272 

mutations in the PLK or DCD domain. In agreement with an inability to induce filamentation (Fig. 273 

4C), the ori/ter ratio of these variants was not significantly different from the empty vector control 274 

(Fig. 4F). Therefore, DcdV corruption of DNA replication is dependent upon both the PLK and 275 

DCD domains. 276 

 277 

DcdV catalyzes the deamination of both dCMP and dCTP  278 

Based on the TLD-like genome instability driven by DcdV, we hypothesized this enzyme 279 

deaminates free nucleic acid substrates. Though we determined DcdV and DcdV variants were 280 

readily retained in E. coli lysates (Fig. S7), numerous attempts to purify active DcdV  were 281 

unsuccessful. This suggested that an unknown cofactor or cellular condition may contribute to 282 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437871doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437871
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

the activity of DcdV that was missing in our purification conditions. Soluble lysates from E. coli 283 

ectopically expressing DcdV or the DCD active site variant DcdVE384A were supplemented with 284 

amine containing nucleotides and monitored for the evolution of NH4
+, a product of nucleotide 285 

deamination. Lysates containing DcdV evolved significantly more ammonium when incubated 286 

with dCMP and dCTP, which was not detected in lysates containing the DCD active site variant 287 

DcdVE384A (Fig. 5A).  288 

DCD enzymes are unique among the CDAs for their allosteric regulation by both dCTP 289 

and dTTP which activate and repress the catalytic deamination of dCMP, respectively, through 290 

a G[Y/W]NG allosteric site motif [45, 46]. Such allosteric regulation ensures that nucleotide 291 

homeostasis is maintained even if DCD enzymes are present. The allosteric site found in DcdV 292 

is composed of a divergent GCND motif suggesting allosteric regulation by dNTPs may not be 293 

preserved. In support of this, the deamination of both dCMP and dCTP by soluble lysates 294 

containing DcdV were not inhibited by the addition of equimolar dTTP (Fig. S8). 295 

To further understand the catalytic activity of DcdV we spiked 1 µM dCTP into soluble 296 

lysates collected from E. coli ectopically expressing either WT DcdV or a vector control and 297 

quantified the concentrations of dUTP and dUMP over 30 minutes using UPLC-MS/MS. 298 

Following addition of 1 µM dCTP the concentrations of both dUTP (Fig. 5B) and dUMP (Fig. 5C) 299 

increased in lysates containing DcdV within the first minute while those found in vector control 300 

lysates did not dramatically change over the course of the entire experiment. The concentration 301 

of dUTP in DcdV containing lysates peaked after five minutes and slowly receded over time 302 

(Fig. 5B) while the concentration of dUMP in these lysates continued to increase to a final 303 

concentration of ~ 1 µM after 30 minutes (Fig. 5C). Importantly, the equimolar stoichiometry of 304 

the1 µM dCTP substrate spike and the 1 µM dUMP detected at the conclusion of the 305 

experiment demonstrates that DcdV does not modify nucleotides in a unique manner which 306 

would alter their mass. Together these experiments indicate that DcdV deaminates both dCTP 307 
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and dCMP substrates and DcdV containing lysates ultimately funnel dCTP to dUMP, indicating 308 

DcdV is likely to have profound effects on intracellular nucleotide metabolism. 309 

 310 

DcdV decreases intracellular dCTP, dCMP, and dUTP in E. coli 311 

 Our genetic and in vitro evidence suggested that DcdV catalyzes the deamination of 312 

both dCMP and dCTP to the detriment of DNA replication. To quantify the impact of DcdV 313 

activity on the intracellular concentrations of deoxyribonucleotide species, we overproduced 314 

DcdV, DcdVS52K, DcdVE384A, and an empty vector control in E. coli and measured the abundance 315 

of these molecules by UPLC-MS/MS. While all strains contained similar levels of dATP, dGTP, 316 

dTTP, and dUMP, the intracellular abundance of dCTP and dCMP were significantly reduced in 317 

E. coli expressing WT DcdV (Figs. 5D, S9). No dUTP was found following expression of WT 318 

DcdV while trace amounts of dUTP were detected in the vector and the two DcdV variant strains 319 

(Figs. 5D, S9). Unlike the results observed with the in vitro DcdV lysates (Fig. 5C), no increase 320 

in intracellular dUMP concentrations were observed when DcdV was expressed. We speculate 321 

the difference between dUMP detected in lysate versus in vivo extractions are due to 322 

compensatory metabolic pathways active in live cells which are lost in the lysates. Similar 323 

results were obtained when a DcdV homolog derived from enterotoxigenic E. coli (DcdVETEC), 324 

discussed later in this study, was overexpressed in the same heterologous E. coli host (Figs. 325 

5D, S9). Importantly, inactivating amino acid substitutions in conserved features of the PLK 326 

(DcdVS52K) or DCD (DcdVE384A) domains blocked DcdV activity, indicating both domains are 327 

necessary for the DcdV dependent depletion of intracellular dC pools (Figs. 5D, S9).  328 

 329 

Conservation and evolution of DcdV 330 

To identify if DcdV is widely conserved, we used six DcdV homologs as starting points 331 

from V. cholerae, Vibrio parahaemolyticus, E. coli, Proteus mirabilis, Aeromonas veronii, and 332 

Enterobacter cloacae to perform homology searches across the tree of life (see Methods). We 333 
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used a combination of protein domain and orthology databases, homology searches, and 334 

multiple sequence alignment for detecting domains, signal peptides, and transmembrane 335 

regions to reconstruct the domain architectures of the query DcdV proteins (Fig. S6). In 336 

agreement with the Phyre2 model of V. cholerae DcdV (Fig. 4A), we identified two distinct 337 

domains in all six DcdV homologs, the N-terminal PLK domain and the C-terminal DCD domain 338 

(Fig. S6).  339 

We identified numerous homologs containing the core PLK+DCD architecture as well as 340 

other variations, which included multiple PLK domain fusions in proteobacteria (e.g., Klebsiella, 341 

Vibrio) and a nucleic acid binding domain (e.g., Mannheimia, Bibersteinia) (Table S4). 342 

Homologs of DcdV were identified in multiple bacterial phyla including Proteobacteria, 343 

Actinobacteria, Bacteroidetes, and Firmicutes (Figs. 6A, a few dominant clusters of homologs 344 

are labeled). Interestingly, we found DcdV-like proteins in Archaea (e.g., Thaumarchaeota) and 345 

Eukaryota (e.g., Ascomycota) (Figs. 6A, Table S4). While the percentage similarity is ~50% and 346 

<30% for archaeal and eukaryotic homologs, respectively, we note these contain comparable 347 

domain architectures to the query proteins (Table S4). 348 

 349 

Identification and evaluation of Gram-negative DcdV-DifV system homologs  350 

 To evaluate the conservation of enzymatic activity we selected three of the core DcdV 351 

homologs used in the initial homolog search; V. parahaemolyticus O1:Kuk FDA_R31, P. 352 

mirabilis AR379, and E. coli H10407 ETEC (Figs. 6A and S10). Expression of all three DcdV 353 

homologs in E. coli resulted in filamentous cells analogous to V. cholerae DcdV (Fig. 6B). These 354 

dcdV homologs are encoded 3’ of a small ORF, annotated as a hypothetical protein, in an 355 

orientation, size, and proximity consistent with V. cholerae difV. While there was no strong 356 

amino acid or nucleotide sequence similarity among the small ORFs 5’ of the dcdV homologs 357 

(Figs. S11 and S12) we hypothesized these could encode cognate difV negative regulators. 358 

Consistent with the inhibition of DcdV activity by DifV from V. cholerae, co-expression of the 359 
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corresponding DifV with its DcdV partner suppressed the cell filamentation phenotype (Fig. 6B). 360 

Additionally, overexpression of DcdVETEC in a heterologous E. coli host also decreased the 361 

intracellular concentrations of dCMP, dCTP, and dUTP (Fig. 5D), indicating the catalytic activity 362 

of these DcdV homologs are analogous to V. cholerae DcdV. 363 

 To determine if DifV and the three ORFs encoded upstream of dcdV homologs could 364 

provide cross-species inhibition of DcdV, we challenged each of the four dcdVs with each of the 365 

four difVs in E. coli and looked for DcdV dependent filamentation. Cross-species inhibition of 366 

DcdV induced filamentation was observed between V. parahaemolyticus and V. cholerae when 367 

each species’ difV was expressed in trans (Fig. 6C). However, difV from P. mirabilis and E. coli 368 

ETEC were only able to inhibit the activity of their own cognate DcdV (Fig. 6C). These data 369 

suggest that while the general mechanism of DifV inhibition of DcdV activity is conserved the 370 

specific molecular interactions that mediate this process are not. 371 

 372 

Ectopic expression of DcdV reduces phage titers and slows predation 373 

We initiated studies of dcdV based on our discovery that this gene co-occurs in bacterial 374 

genomes with dncV, a critical member of the CBASS antiphage abortive infection system [10, 375 

47]. Additionally, cytidine deaminases are conserved anti-viral defense mechanisms in 376 

eukaryotes [15, 17, 48]. These connections led us to hypothesize that DcdV can also provide 377 

phage defense by manipulating cellular nucleotide concentrations. To test this hypothesis, we 378 

challenged V. cholerae WT and ΔdcdV with two V. cholerae lytic phage with dsDNA genomes, 379 

ICP1 and ICP3 [49, 50]. However, we observed no differences in the ability of these phages to 380 

kill V. cholerae in these conditions (Figs S13A and S13B).  381 

Because ICP1 and ICP3 have coevolved with El Tor V. cholerae, it is likely that these 382 

phages have evolved mechanisms to counteract dcdV. Such resistance to other V. cholerae 383 

phage defense mechanisms by ICP-1 has been previously demonstrated [51–53]. Therefore, 384 

we selected the heterologous host Shigella flexneri, a Gram-negative human pathogen, and its 385 
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bacteriophage Sf6 , a dsDNA phage from the Podoviridae family [54, 55], as a naïve host-phage 386 

pair to test the antiphage activity of DcdV and its homologs. Ectopic expression of dcdV or its 387 

homologs did not impact the growth of S. flexneri before the onset of phage killing at ~110 388 

minutes (Figs. 7A-D). S. flexneri strains ectopically expressing dcdV or its homologs delayed the 389 

onset of population collapse caused by Sf6 predation, although the impact of the V. cholerae 390 

DcdV was more modest than the other three homologs (Figs. 7A-D). Additionally, induction of all 391 

four DcdV homologs significantly reduced Sf6 progeny following infection compared to the 392 

control strains lacking induction of DcdV (Fig. 7E). Together, these data indicate that DcdV 393 

enzymes confer defense against phage infection by delaying population collapse and reducing 394 

the proliferation of viable phage progeny. 395 

 396 

DISCUSSION 397 

Uncovering the contributions to bacterial fitness of the ~36 genes encoded within the El 398 

Tor V. cholerae VSP-1 and 2 genomic islands may help elucidate the longevity and persistence 399 

of the seventh cholera pandemic. Our bioinformatic approach using Correlogy accurately 400 

identified a gene network composed of the VSP-1 antiphage CBASS system (capV-dncV-401 

vc0180-vc0181). Interestingly, this also revealed dncV is frequently found in genomes with the 402 

previously uncharacterized gene dcdV. The only function previously ascribed to dcdV was an 403 

undefined involvement in quorum sensing controlled V. cholerae aggregate formation [56]. 404 

We showed that DcdV contains a functional DCD domain that catalyzes the deamination 405 

of deoxycytidine nucleotides and a putative PLK-like domain of unknown function. We further 406 

demonstrate that homologs of this protein are present across the tree of life. Collectively, both 407 

domains are required for DcdV to disrupt deoxynucleotide pool homeostasis, which impairs 408 

DNA replication and manifests in a filamentous cell morphology. DcdV activity is post-409 

translationally regulated by DifV, a sRNA encoded immediately 5’ of the dcdV locus in VSP-1, 410 

though the details of this inhibition remain to be fully elucidated. Finally, we demonstrate that 411 
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DcdV and a set of homologs from other Gram-negative bacteria confer phage resistant 412 

properties when expressed in a heterologous host. 413 

 Cell filamentation is a hallmark of TLD, observed in bacteria and eukaryotes, which 414 

arises from a sudden loss of thymine during robust cellular growth [31]. Interestingly, this 415 

phenomenon is not limited to dTTP as dGTP starvation elicits a similar response in E. coli and is 416 

also hypothesized to occur when other deoxynucleotide substrates become disproportionately 417 

scarce [29]. In the case of DcdV, it is conceivable the observed filamentation phenotype is a 418 

consequence of a TLD-like reduction in dCTP pools that can be termed ‘cytosineless death’. 419 

However, while DcdV activity also reduces the intracellular dC pool, it did not significantly 420 

increase the intracellular concentrations of dTTP or dUMP in vivo, suggesting a cellular 421 

compensatory pathway to combat DcdV activity is at work in intact cells. We speculate that the 422 

DCD and PLK domains of DcdV are responsible for this conversion of dC nucleotides to dUMP 423 

observed in the bacterial lysates, but we cannot rule out the contribution of other unknown 424 

cellular factors. The deamination of dCTP is canonically performed by non-zinc dependent 425 

enzymes [57] making the dual substrate repertoire of dCMP and dCTP in DcdV a rare trait.  426 

 The delicate balance of enzymatic activity across the pyrimidine biosynthesis pathway 427 

can be corrupted by viruses that deploy their own DCD, dUTPase, and TS enzymes to hijack 428 

host nucleotide biosynthesis to ensure the appropriate ratio and quantities of 429 

deoxyribonucleotide precursors for replicating their own genomes [23, 24, 26, 27]. For example, 430 

biDCD from chlorovirus PBCV-1, the only DCD previously reported to deaminate both dCMP 431 

and dCTP substrates, rapidly catalyzes the conversion of host dC nucleic acids into dTTP thus 432 

aiding replication of the A+T rich viral genome [23]. biDCD is allosterically regulated by dCTP 433 

and dTTP to activate and inactivate the deaminase, respectively. This regulation provides a 434 

means to fine-tune the pool of available dNTPs by preventing the enzyme from deaminating all 435 

available dC substrates. Interestingly, DcdV does not appear to have maintained the allosteric 436 

nucleotide binding site nor does excess dTTP added to cell lysates alter the catalytic activity of 437 
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DcdV towards dCMP or dCTP (Fig. S8), and we propose these differences in enzyme activity 438 

are consistent with the function of DcdV as a phage defense mechanism that inhibits phage 439 

replication by corrupting cellular nucleotide pools (graphical abstract). Altering pools of available 440 

nucleotides has been shown to fend off biological attacks. For example, prokaryotic viperins 441 

protect against T7 phage infection by producing modified ribonucleotides that ultimately inhibit 442 

phage polymerase-dependent transcription [58]. The SAMHD1 phosphohydrolase enzyme in 443 

eukaryotes also inhibits viral infections by depleting cellular nucleotide pools, although its 444 

structure and activity are different than DcdV [59–61]. 445 

 In lieu of a conserved deoxynucleotide allosteric site, DcdV is regulated post-446 

translationally by the DifV untranslated RNA, which is unique among the CDA-family. The 447 

spacing, orientation, and relationship of difV and dcdV may have adapted to perform functions 448 

in a manner analogous to Type 2 and Type 3 Toxin-Antitoxin (TA) systems found across the 449 

bacterial phyla of which some are involved in antiphage defense and bacterial stress response 450 

[62]. While the RNA antitoxin of Type 3 TA systems encode nucleotide repeats [62] no repeat 451 

sequences are obvious in DifV indicating that DcdV/DifV may constitute a new TA class. We 452 

hypothesize that DcdV is activated upon phage infection by disruption of DifV inhibition, and we 453 

are currently preforming experiments to test this hypothesis (graphical abstract). Our systemic 454 

search for DcdV homologs containing at least a single PLK and DCD domain revealed hundreds 455 

of examples in a variety of bacteria beyond the Proteobacteria phylum including Bacteroidetes 456 

and Actinobacteria and a few homologs in archaea and eukaryota.  457 

Phage defense mechanisms are often found clustered together in mobile genetic 458 

elements called defense islands [63, 64] and we speculate that the co-occurrence of DcdV and 459 

DncV (along with the rest of the CBASS system) in bacterial genomes is a result of their shared 460 

anti-phage activity. Our results indicate that DcdV reduces the available dC pool, and we 461 

hypothesize that this activity delays phage genome replication potentially decreasing phage 462 

burst size. Although the S. flexneri host population expressing DcdV eventually collapses, we 463 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437871doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437871
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

speculate that the delay in phage replication could provide an opportunity to prompt other phage 464 

defense systems, such as CBASS or a restriction modifications system to further target invading 465 

phages [65, 66].  466 

Our study reveals that bacteria, like eukaryotes, also use CDA enzymes to protect 467 

against biological invasion although through different mechanisms. The eukaryotic APOBEC 468 

proteins deaminate ssRNA, leading to increased mutation and decreased genome stability of 469 

RNA viruses, whereas the substrates of DcdV are free deoxynucleotides. Further studies are 470 

required to determine if these two biological defense systems evolved from a common CDA 471 

ancestor. 472 
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MATERIALS AND METHODS 490 

The strains, plasmids, and primers used in this study are listed in Supplementary Table 491 

S1, S2, and S3, respectively. Unless otherwise stated, cultures were grown in Luria-Bertani (LB) 492 

at 35°C and supplemented with the following as needed: ampicillin (100 µg/mL), kanamycin 493 

(100 µg/mL), tetracycline (10 µg/mL), and isopropyl--D-thiogalactoside (IPTG) (100 µg/mL). E. 494 

coli BW29427, a diaminopimelic acid (DAP) auxotroph, was additionally supplemented with 300 495 

μg/mL DAP. The V. cholerae El Tor biotype strain C6706str2 was utilized in this study and 496 

mutant strains were generated using the pKAS32 suicide vector [67] using three fragments: 500 497 

bp of sequence upstream of the gene of interest, 500 bp of sequence downstream of the gene 498 

of interest and cloned into the KpnI and SacI restriction sites of pKAS32 using by Gibson 499 

Assembly (NEB). Ptac inducible expression vectors were constructed by Gibson Assembly with 500 

inserts amplified by PCR and pEVS143 [68] or pMMB67EH [69] each linearized by EcoRI and 501 

BamHI, as well as pET28b digested with NcoI and XhoI. pEVS141 [70] is used as an empty 502 

vector control for experiments using pEVS143 derived constructs. Site-directed mutagenesis 503 

was performed using the SPRINP method [71]. Plasmids were introduced into V. cholerae 504 

through biparental conjugation using an E. coli BW29427 donor. Transformation of E. coli for 505 

ectopic expression experiments was performed using electroporation with DH10b for expression 506 

of pEVS143 and pMMB67EH derived plasmids and BL21(DE3) for pET28b based constructs. 507 

 508 

Correlogy Bioinformatics Analysis 509 

Our Correlogy software package is built on Kim and Price’s approach [32] to calculate 510 

genetic co-occurrence. The source code, documentation, and a Docker container for this 511 

Python3 package are available at https://github.com/clinte14/correlogy. While VSP-1 is used to 512 

simplify the description of the method detailed below, both VSP-1 and 2 were independently 513 

analyzed in the same fashion. To establish maximum related subnetworks (MRS) for the 514 

genomic region of the VSP-1 island, a BLASTP amino acid sequence was performed to search 515 
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for each VSP-1 gene against the NCBI non-redundant protein database with an E-value cutoff 516 

of 10-4. The BLAST results were limited to bacterial genomes, and all taxa belonging to the 517 

genus Vibrio were removed to avoid bias from closely related vertical inheritance. The BLAST 518 

results were used to generate a presence or absence matrix of VSP-1 homologues with all 519 

species along one axis and VSP-1 genes along the other axis. Next, a pairwise Pearson 520 

correlation value was calculated between all VSP-1 genes i and j using binary data from the 521 

above-mentioned presence/absence matrix: 522 

𝑟𝑖𝑗 =  
𝐶𝑖𝑗𝑁 − 𝐸𝑖𝐸𝑗

√𝐸𝑖𝐸𝑗(𝑁 − 𝐸𝑖)(𝑁 − 𝐸𝑗)

, 523 

where N is the total number of unique species returned from the BLAST search and 𝐶𝑖𝑗 the 524 

number of species with co-occurrence of genes i and j. While a Pearson correlation is warranted 525 

for a normally distributed binary data set, it does not account for indirect correlation. For 526 

example, if genes i and j individually associate with a third gene, a Pearson correlation will 527 

incorrectly calculate a correlation between i and j. To help correct for indirect correlation we 528 

calculate a partial correlation wij from the Pearson 𝑟𝑖𝑗: 529 

𝑤𝑖𝑗 =  
𝑃𝑖𝑗

√𝑃𝑖𝑖𝑃𝑖𝑗

, 530 

where the (i, j) element of the inverse matrix of Pearson 𝑟𝑖𝑗 is 𝑃𝑖𝑗 [32].  531 

The partial correlation correction 𝑤𝑖𝑗 has the advantage of generating a normalized output 532 

that ranges between -1 to 1. For example, a 𝑤𝑖𝑗 of -1 reveals genes i and j never occur in the 533 

same species, while a value of 1 demonstrates genes i and j always co-occur in the same 534 

species. A 𝑤𝑖𝑗 of 0 is the amount of co-occurrence expected between unrelated genes i and j 535 

drawn from a normal distribution. Using the above-mentioned approach, a partial correlation 536 

value 𝑤𝑖𝑗 was calculated for all genes i to j in VSP-1 and VSP-2 (Supplemental Files 1 and 2). 537 

The single highest 𝑤𝑖𝑗 value for each VSP-1 gene was represented as an edge (i.e., line) in our 538 
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visualization (Fig. 1B, S1A, and S1B). Any set of genes that contains no further edges were 539 

assigned to a unique MRS that suggests functional association of the gene products within a 540 

unique gene network. 541 

 542 

Genomic Identification, Structural, and Sequence Analyses of DcdV & DifV Homologs  543 

 DcdV from V. cholerae El Tor N16961 (WP_001901328.1) was identified as locus tag 544 

vc0175. DcdV and homologs profiles are performed using translated BLAST tblastn and run 545 

against the Nucleotide collection (nr/nt) database of National Center for Biotechnology 546 

Information (NCBI), using >40% similarities cutoff. For previously annotated domains, the Pfam 547 

feature in KEGG [72, 73] were utilized as a guide to determine DcdV homologs. Out of all the 548 

DcdV homologs, DcdV homologs from Vibrio parahaemolyticus O1: Kuk str. FDA_R31 549 

(WP_020839904.1), Proteus mirabilis AR_379 (WP_108717204.1), and E. coli O78:H11 550 

H10407 (ETEC) (WP_096882215.1) were analyzed in this study. Genomic contextual 551 

information from prokaryotic gene neighborhoods was retrieved from NCBI genome graphics 552 

feature to uncover difV-like gene, encoded as a hypothetical ORF 5’ of the dcdV locus. If 553 

unannotated, the ORFinder feature from NCBI was used to determine the location and size of 554 

the putative difV locus. To predict the structure of DcdV from V. cholerae, the amino acid 555 

sequence was submitted to Phyre2 [39] and structural visualization was performed using PyMol 556 

(https://pymol.org). The amino acid and nucleotide alignments were analyzed using ClustalW 557 

Omega from EMBL-EBI web services [74] and LocARNA [75], respectively. 558 

 559 

Identification and Characterization of Protein Homologs 560 

Homology searches: To ensure the identification of a comprehensive set of homologs 561 

(close and remote), we started with six representative DcdV proteins across proteobacteria from 562 

V. cholerae, V. parahaemolyticus, P. mirabilis, and E. coli described above along with E. 563 

cloacae (WP_129996984.1), and A. veronii (WP_043825948.1) and performed homolog 564 
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searches using DELTABLAST [76] against all sequenced genomes across the tree of life in the 565 

NCBI RefSeq database [77–79]. Homology searches were conducted for each protein and the 566 

search results were aggregated; the numbers of homologs per species and of genomes carrying 567 

each of the query proteins were recorded. These proteins were clustered into orthologous 568 

families using the similarity-based clustering program BLASTCLUST [76].  569 

Characterizing homologous proteins: Phyre2, InterProScan, HHPred, SignalP, 570 

TMHMM, Phobius, Pfam, and custom profile databases [39–41, 80–85] were used to identify 571 

signal peptides, transmembrane (TM) regions, known domains, and secondary structures of 572 

proteins in every genome. Custom scripts were written to consolidate the results [86–91], and 573 

the domain architectures and protein function predictions were visualized using the MolEvolvR 574 

web-app (http://jravilab.org/molevolvr/). 575 

Phylogenetic analysis (MSA and Tree): Thousands of homologs from all six starting 576 

points for DcdV proteins were consolidated and representatives were chosen from distinct 577 

Lineages and Genera, containing both the N- and C-terminal DcdV domains (PLK and DCD 578 

domains). Multiple sequence alignment (MSA) of the identified homologs was performed using 579 

Kalign [89] and MUSCLE [92, 93] (msa R package [94]). The phylogenetic trees were 580 

constructed using FastTree [95] FigTree [96] and the R package, ape [97]. 581 

 582 

Growth Curve Assays  583 

Overnight cultures were diluted 1:1000 into LB supplemented with antibiotics and IPTG 584 

in a 96-well microplate (Costar®). Growth was monitored by measuring OD600 every 15 minutes 585 

for 15 hour (h) using a BioTek plate reader with continuous, linear shaking.  586 

 587 

Fluorescence Microscopy and Analysis  588 

Cells were imaged as previously described [34]. Briefly, overnight cultures were diluted 589 

1:1000 into LB supplemented with antibiotics and IPTG. Cultures were grown and induced for 7-590 
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8 h, at which point cells were diluted to an OD600 of 0.5 in 1X PBS, then membrane stain FM4-591 

64 dye (ThermoFisher Scientific) was added to a final concentration of 20 µg/mL. 1% agarose 592 

pads in deionized water were cut into squares of approximately 20 x 20 mm and placed on 593 

microscope slides. 2 µl of diluted cultures were spotted onto a glass coverslip and then gently 594 

placed onto the agarose pad. FM4-64 signal was visualized using a Leica DM5000b 595 

epifluorescence microscope with a 100X-brightfield objective under RFP fluorescence channel. 596 

Images were captured using a Spot Pursuit CCD camera and an X-cite 120 Illumination system. 597 

Each slide was imaged with at least 20 fields of view for each biological replicate. Cell lengths 598 

were processed using the Fiji plugin MicrobeJ [98, 99], and data were visualized and analyzed 599 

using R [90] by quantifying the length of the curvilinear (medial) axis of detected cells.  600 

 601 

Construction and screening of mutant gene libraries 602 

 DifV-insensitive DcdV constructs were generated by error-prone PCR (epPCR) using 603 

pDcdV (pCMW204) as the template. Three different concentrations of MnCl2 (12.5 mM, 1.25 604 

mM, and 125 μM) were used in triplicate using Taq polymerase (Invitrogen) and reactions 605 

containing the same MnCl2 concentration were pooled. The PCR products were purified, using 606 

The Wizard® SV Gel and PCR Clean-Up Kit (Promega), and ligated to pEVS143 via Gibson 607 

Assembly. The assembled reactions were electroporated to E. coli DH10b and plasmid libraries 608 

were collected from ~ 30,000 representative colonies for each MnCl2 concentration. Plasmid 609 

libraries were harvested using the Wizard® Plus SV Minipreps DNA purification Kit (Promega). 610 

Plasmid libraries were subsequently electroporated to E. coli BW29427 which were again plated 611 

and pooled to contain ~ 30,000 representative colonies. The E. coli BW29427 random mutant 612 

pDcdV libraries were conjugated with ΔdcdV V. cholerae on LB agar plates for 8 h, harvested, 613 

diluted, and spread on LB agar plates containing 1 mM IPTG and antibiotics, and grown 614 

overnight. ~ 5,000 colonies were screened in each library and all colonies exhibiting a wrinkled 615 

and small colony morphology, indicative of cell filamentation, were isolated and filamentation 616 
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was confirmed by fluorescence microscopy. Mutant pDcdV plasmids recovered from cells 617 

exhibiting cell filamentation were sequenced by Sanger sequencing. Mutations were 618 

reintroduced individually into the WT pDcdV construct using SPRINP mutagenesis [71] and 619 

reevaluated using fluorescence microscopy to confirm the DcdV variant’s ability to remain 620 

constitutively active in ΔdcdV V. cholerae. 621 

 622 

RNA Isolation, qRT-PCR, and Co-transcription Analysis  623 

 RNA isolation and qRT-PCR analysis were carried out as previously described [100, 624 

101]. Briefly, triplicate overnight cultures were subcultured 1:1000 in 10 mL LB and grown to 625 

three different OD600: 0.2 (Early Exponential), 1.0 (Late Exponential), and 2.5 (Stationary). 1 mL 626 

of each replicate was pelleted, and RNA was extracted using TRIzol® reagent following the 627 

manufacturer’s directions (Thermo Fischer Scientific). RNA quality and quantity were 628 

determined using a NanoDrop spectrophotometer (Thermo Fischer Scientific). 5 µg of purified 629 

RNA was treated with DNase (TurboTM DNase, Thermo Fischer Scientific). cDNA synthesis was 630 

carried out using SuperScriptTM III Reverse Transcriptase (Thermo Fischer Scientific). cDNA 631 

was diluted 1:64 into molecular biology grade water and amplification was quantified using 2x 632 

SYBR Green (Applied BiosystemsTM). For measuring gene expressions or determining ori/ter 633 

ratios, 25 µL reactions consisted of 5 µL each of 0.625 µM primers 1 and 2, 12.5 µL of 2X SYBR 634 

master mix, and 2.5 µL of template (0.78 ng/μL cDNA for gene expression and 0.25 ng/μL 635 

genomic DNA for ori/ter). qRT-PCR reactions were performed in technical duplicates for 636 

biological triplicate samples and included no reverse transcriptase reaction controls (“no RT”) to 637 

monitor for contaminating genomic DNA in purified RNA samples. qRT-PCR reaction thermo 638 

profile was 95C for 20 seconds (s) then 40 cycles of 95C for 2 s and 60C for 30 s in the 639 

QuantStudio 3 Real-Time PCR system (Applied BiosystemsTM). The gyrA gene was used as an 640 

endogenous control to calculate relative quantification (ΔCt).  641 
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 To determine the co-transcription of difV and dcdV, PCR amplification was performed in 642 

25 µL volumes using Q5 polymerase (NEB), 0.5 µM each of the forward and reverse primers as 643 

indicated, 0.2 mM dNTPs, and 3.5 µL of cDNA or no RT control templates (0.78 ng/µL) from 644 

RNA purified from WT and Δig222 V. cholerae grown to late exponential-phase in biological 645 

triplicate. The thermal profile was 98°C for 30 s, 30 cycles of 98°C for 10 s, 55 °C for 30 s, 72 °C 646 

for 10 sec and one cycle of 72 °C for 2 min. PCR products were loaded on a 1% agarose gel 647 

and stained with EZ-Vision® (VWR). Images were taken using the GelDoc system (Bio-Rad).  648 

 649 

In-vitro Nucleic Acid Deamination Assay 650 

Cell Lysate Preparation: Overnight cultures were subcultured 1:333 and grown to an 651 

OD600 of ~0.5 - 1.0. Cultures were induced with 1 mM IPTG, supplemented with 100 µM ZnSO4, 652 

and grown for an additional 3 hr. Cell pellets from 100 mL of induced cultures were harvested in 653 

two successive 15 min centrifugation steps at 4,000 x g and 4°C. Supernatants were decanted 654 

and pellets were snap frozen in an ethanol and dry ice bath and stored at -80° C. Pellets were 655 

thawed on ice and suspended in 2 mL of lysis buffer A (50 mM NaPO4, pH 7.3, 300 mM NaCl, 2 656 

mM β-mercaptoethanol, 20% glycerol and Roche cOmplete protease inhibitor (1 tablet per 10 657 

mL)). 1 mL of cell suspension was transferred to a microcentrifuge tube and sonicated on ice 658 

using a Branson 450 Digital Sonifier (20% amplitude, 20 sec total, 2.5 sec on, 2.5 sec off). 659 

Crude lysates were centrifuged at 15,000 x g for 10 min at 4°C and clarified lysates were 660 

transferred to fresh microcentrifuge tubes on ice. Clarified lysates were normalized for total 661 

protein to 1.9 mg/mL using Bradford reagents and a BSA standard. 26.5 µL reactions composed 662 

of lysis buffer A, nucleic acid substrates, and 3.5 µL of normalized clarified lysates were 663 

assembled in PCR strip tubes, mixed by gentle pipetting, and incubated at room temperature 664 

(~23°C) for 60 minutes. NH4Cl solutions at the indicated concentration were dissolved in lysis 665 

buffer A and substituted for nucleic acid substrates as positive ammonium controls. 666 
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Ammonium Detection: The evolution of NH4
+ by deamination of the nucleic acid 667 

substrates was observed using a phenol-hypochlorite reaction to produce indophenol in a clear 668 

96-well microtiter plate and modified from Dong et al. 2015 [102]. The work of Ngo et al. [103] 669 

was considered when designing the lysis buffer so as not to interfere with the phenol-670 

hypochlorite reaction. 50 µL of Reagent A (composition below) was added to each well followed 671 

by 20 µL of the completed in vitro deamination reaction described above. The phenol-672 

hypochlorite reaction was initiated by the addition and gentle mixing of 50 µL Reagent B 673 

(composition below) to the wells. The reaction was incubated at 35°C for 30 min and the ABS630 674 

was measured using a plate reader.  675 

Reagent A = 1:1 (v/v), 6% (w/v) sodium hydroxide (Sigma) in water: 1.5% (v/v) sodium 676 

hypochlorite solution (Sigma, reagent grade) in water. 677 

Reagent B = 1:1:0.04 (v/v/v), water: 0.5% (w/v) sodium nitroprusside (Sigma) in water: 678 

phenol solution (Sigma, P4557) 679 

 680 

Western Blot  681 

 Strains containing DcdV- and variant- C-terminal 6x-histidine fusions were grown, 682 

induced, and harvested as described previously above (See In-vitro Nucleic Acid Deamination 683 

Assay: Cell Lysate Prep), except for the His-tag fusion (pGBS98) which are induced for only 2 h 684 

with 100 μM IPTG and not subjected to sonication. The cell pellets were resuspended in 2 mL of 685 

chilled 1X PBS and subsequently normalized to OD of 1.0. 1 mL aliquots were collected by 686 

centrifugation at 15k x g for 1 min. Cell pellets were subsequently resuspended in 90 µL of lysis 687 

buffer A and 30 µL of 4x Laemmli buffer, denatured for 10 minutes at 65°C, and centrifuged at 688 

15k x g for 10 minutes. 5 µL of samples were loaded into a precast 4-20% sodium dodecyl 689 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels (Mini-PROTEAN TGX Precast 690 

Protein Gels, Bio-Rad) alongside size standards (Precision Protein Plus, Bio-Rad). Gels were 691 

run at room temperature for 90 min at 100 V in 1x Tris/glycine/SDS running buffer. Proteins 692 
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were transferred to nitrocellulose membranes (Optitran). The membranes were blocked using 693 

5% skim milk and incubated with 1:5000 THETM His Tag Antibody, mAb, Mouse (GenScript) 694 

followed by 1:4000 Goat Anti-Mouse IgG Antibody (H&L) [HRP], pAb (GenScript), treated with 695 

Pierce™ ECL Western Blotting Substrate, and imaged using an AmershamTM Imager 600.  696 

 697 

UPLC-MS/MS Quantification of In Vitro and In Vivo Deoxynucleotides  698 

 Deoxynucleotide concentrations were determined as previously described [104] with 699 

minor modifications. For measuring in vivo intracellular deoxynucleotide concentrations, 700 

overnight cultures were subcultured 1:1000 and grown to OD600 of ~1.0. Plasmid expression 701 

was induced by the addition of 1 mM IPTG for 1 h, and 1 mL of cultures were collected by 702 

centrifugation at 15,000 x g for 1 min. Cell pellets were resuspended in 200 µL of chilled 703 

extraction buffer [acetonitrile, methanol, ultra-pure water, formic acid (2:2:1:0.02, v/v/v/v)]. To 704 

normalize in vivo nucleotide samples, an additional cell pellet was collected from 1 mL of culture 705 

by centrifugation at 15,000 x g for 1 min, resuspended in 200 μL lysis buffer B (20 mM Tris·HCl, 706 

1% SDS, pH 6.8), and denatured for 10 minutes at 60°C. Denatured lysates were centrifuged at 707 

15,000 x g for 1 min to pellet cellular debris, and the supernatant was used to quantify the total 708 

protein concentration in the sample using the DC protein assay (Bio-Rad) a BSA standard curve 709 

[34]. The concentrations of deoxynucleotides detected by UPLC-MS/MS were then normalized 710 

to total protein in each sample. 711 

For the quantification of deoxynucleotides in vitro E. coli BL21(DE3) clarified lysates 712 

were prepared as described for the deamination experiment above and normalized to 20 mg/mL 713 

of total protein and 200 µL of normalized clarified lysates were assembled in PCR strip tubes. 714 

To measure abundance of dUMP and dUTP prior to the addition of 1 µM dCTP, 20 µL of 715 

normalized clarified lysates were added to 200 µL of chilled extraction buffer. 20 µL of 10 µM 716 

dCTP was then added to the remaining clarified lysates and 20 µL lysates aliquots were 717 
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removed 1, 5, 10, and 30 minutes after the addition of dCTP and mixed in 200 µL chilled 718 

extraction buffer. 719 

All samples resuspended in extraction buffer, in vivo and in vitro, were immediately 720 

incubated at -20oC for 30 minutes after collection and centrifuged at 15,000 x g for 1 min. The 721 

supernatant was transferred to a new tube, dried overnight in a speed vacuum, and finally 722 

resuspended in 100 μL ultra-pure water. Experimental samples and deoxynucleotides standards 723 

[1.9, 3.9, 7.8, 15.6, 31.3, 62.5, and 125 nM of dATP (Invitrogen), dGTP (Invitrogen), dTTP, 724 

(Invitrogen), dCTP (Invitrogen), dCMP (Sigma), dUTP (Sigma), and dUMP (Sigma)] were 725 

analyzed by UPLC-MS/MS using an Acquity Ultra Performance LC system (Waters) coupled 726 

with a Xevo TQ-S mass spectrometer (Waters) with an ESI source in negative ion mode. The 727 

MS parameters were as follows: capillary voltage, 1.0 kV; source temperature, 150oC; 728 

desolvation temperature, 400oC; cone gas, 120 L/hr. Five microliter of each sample was 729 

separated in reverse phase using Acquity UPLC Premier BEH C18, 2.1 x 100 mm, 1.7 µm 730 

particle size, VanGuard FIT at a flow rate of 0.3 mL/min with the following gradient of solvent A 731 

(8mM DMHA (N,N-dimethylhexylamine) + 2.8 mM acetic acid in water, pH~9) to solvent B 732 

(methanol): t = 0 min; A-100%:B-0%, t = 10 min; A-60%:B-40%, t =10.5; A-100%:B-0%, t = 15 733 

min; A-100%:B-0% (end of gradient). The conditions of the MRM transitions were as follows 734 

[cone voltage (V), collision energy (eV)]: dATP, 490 > 159 (34, 34); dCTP, 466 > 159 (34, 34); 735 

dGTP, 506 > 159 (15, 46); dTTP, 481 > 159 (25, 34); dUTP, 467 > 159 (25, 34); dCMP, 306 > 736 

97 (43, 22); dUMP, 306 > 111 (22, 22).  737 

 738 

Phage Infection and Plaque Assays 739 

V. cholerae phages ICP1 and ICP3 were provided by Wai-Leung Ng at Tuft University 740 

School of Medicine. ICP1 was propagated on V. cholerae E7946, while ICP3 were propagated 741 

on V. cholerae C6706str2 in LB, and their titer was determined using the small drop plaque 742 

assay method, as previously described [10]. Briefly, 1 ml of overnight cultures were mixed with 9 743 
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ml of MMB agar (LB + 0.1 mM MnCl2 + 5 mM MgCl2 + 5 mM CaCl2 + 0.5% agar), tenfold serial 744 

dilutions of phages in MMB were dropped on top of them, and incubated overnight at 35°C. The 745 

viral titer is expressed as plaque forming units per mL (pfu/mL). 4 mL of V. cholerae overnight 746 

cultures were diluted 1:1000 in MMB medium. 145 µL of the diluted cultures, in three sets of 747 

biological replicates, were transferred and incubated at 35°C in a 96-well microplate (Costar®). 748 

Once the OD600 reached ~0.1, 5 µL of phages with a final MOI of 0.1 were added to each 749 

biological replicate. Cultures were infected at room temperature (~23°C) for 12 h in a 750 

SpectraMax M5 Plate Reader with continuous shaking and OD600 measurements taken every 751 

2.5 min. 752 

Shigella flexneri strain PE577 [54] cells transformed with the pVector (pMMB67eh) and 753 

each of the associated pDcdV plasmids were grown in LB medium and incubated with aeration 754 

at 37° C overnight. The following day, 20 µL of each of the overnight cultures were used to 755 

inoculate fresh medium in a 96-well microtiter plate with a final volume of 200 µL/well. 756 

Depending on the experimental condition, wells were supplemented with and without IPTG (100 757 

µM final concentration) and/or phage Sf6 [55] at an MOI of 0.1 phage per cell. Initial cell 758 

densities of the overnight cultures were experimentally determined by plating and found to be 759 

within a factor of two of one another. For all experiments, three biological replicates were tested. 760 

Additionally, the plates were set up with each unique condition having three technical replicates. 761 

Plate reader assays were conducted using a Molecular Devices FilterMax F5 plate reader, as 762 

previously described [105]. Briefly, the plates were incubated at 37°C for 6 h. Every five 763 

minutes, the plate was mixed and aerated by orbital shaking before an absorbance (595 nm) 764 

reading was taken. After the kinetic assay was complete an aliquot from each of the replicates 765 

was removed and used to determine the endpoint titer via plaque assay. 766 

 767 

 768 

 769 
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Statistical Analysis 770 

As specified in the figure legends, all of the statistical analyses for the violin plots were 771 

performed with R statistical computing software [90], while other data were analyzed in 772 

GraphPad Prism Software. Statistically significances denote as the following: a single asterisk 773 

(*) indicates p < 0.05; double asterisks (**) indicate p < 0.01; triple asterisks (***) indicate p < 774 

0.001; and quadruple asterisks (****) indicate p < 0.0001. Means ± SEM and specific n values 775 

are reported in each figure legend. 776 

 777 
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Fig. 1: DcdV promotes filamentation in V. cholerae in the absence of VSP-1

(A) Cartoon schematic of VSP-1 and (B) the Correlogy gene network prediction for dncV where arrows show the highest partial correlation 𝑊𝑖𝑗 each individual VSP-1 gene 

has to another. (C) Growth of WT V. cholerae and ΔVSP-1/2 strains with the vector or pDcdV. Data represent the mean ± SEM, n=3. (D) Representative images of WT and 

ΔVSP-1/2 strains with the vector or pDcdV. (E) Violin plots of cell length distributions of WT, ∆VSP-1/2, ∆VSP-1, and ∆VSP-2 strains with the vector or pDcdV: summary 

statistic for this and all following violin plots are mean (diamonds), median (horizontal black line), interquartile range (box), and data below and above the interquartile range 

(vertical lines). Different letters indicate significant differences (n=3) at p < 0.05, according to Tukey’s post-hoc test.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437871doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437871
http://creativecommons.org/licenses/by-nc-nd/4.0/


B

C

Fig. 2

A

D

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437871doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437871
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2: DifV is a sRNA that post-translationally regulates DcdV

(A) Distribution of cell lengths measured from three biological replicates of gene deletions within VSP-1 or (B) individual gene deletions as indicated containing vector or 

pDcdV grown in the presence of 100 µM IPTG for 8 h. Different letters indicate significant differences (n=3) at p < 0.05, according to Tukey’s post-hoc test. (C) 

Representative anti-6x His antibody Western blot of whole cell lysates from V. cholerae WT and Δig222 cultures maintaining vector or pDcdV6xHis. Analysis was performed in 

triplicate biological samples. Black triangle corresponds to DcdV6xHis (60.6 kDa). (D) Table of various difV constructs expressed in ∆ig222 under a Ptac-inducible promoter with 

a non-native ribosomal binding site (RBS, denoted by dotted line). DcdV induced filamentation in the presence of these difV constructs was assessed using fluorescence 

microscopy in biological triplicate cultures. “*” indicates a stop codon introduced in place of a putative start codon. 
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Fig. 3: difV and dcdV are in an operon and difV expression exceeds dcdV

(A) Genomic diagram of difV and dcdV and the primers (a, b, c, and d) used for generating diagnostic PCR products. (B) PCR products amplified from nucleic acid 

templates (above) using the indicated primer pairs (below) resolved in a 1% agarose gel. All reactions were performed in duplicate using biologically independent samples 

with similar results. No RT = non-reverse transcribed RNA control. gDNA = genomic DNA control (C) qRT-PCR analysis of relative difference between difV transcript and 

dcdV transcript levels at different growth phases in WT V. cholerae normalized to an endogenous gyrA control. Data are graphed as mean ± SEM, n= 3.
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Fig. 4: Both the PLK and DCD domains are required for DcdV induced filamentation

(A) Phyre2 predicted structure of DcdV from V. cholerae El Tor. The inset shows the conserved residues of PLK (top) and DCD (bottom) domains. (B) Domain organization 

and conserved residues at each domain of DcdV. Top labeled residues indicate conserved features of both domains, and the bottom labeled residues indicate variants that 

render DcdV constitutively active. (C) Distribution of cell lengths measured from three biological replicates of WT E. coli as indicated. (D) Distribution of cell lengths 

measured from three biological replicates of the ΔdcdV V. cholerae mutant expressing the indicated DcdV variants. ori/ter ratios of Chromosome 1 in (E) WT and (F) ∆ig222

V. cholerae strains expressing the indicated DcdV construct for 8 h and quantified using qRT-PCR. Each bar represents the mean ± SEM, n=3. Different letters indicate 

significant differences (n=3) at p < 0.05, according to Tukey’s post-hoc test.
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Fig. 5: DcdV alters cellular nucleotide metabolism.

(A) Lysates collected from E. coli expressing DcdV or DcdVE384A and a “no lysate” buffer control incubated with 12 nucleotide substrates (1.9 mM NH4Cl as a positive 

control, 37.7 mM cytidine, and 7.5 mM for all other substrates). Data represent the mean ± SEM, n=3. Quantification of dUTP (B) and dUMP (C) using UPLC-MS/MS, in the 

indicated cell lysates before (Pre) and after addition of 1 mM dCTP. Each lysate was normalized to 20 mg/mL total protein. Each bar represents mean ± SEM, n=3. (D) 

Quantification of the indicated dNTPs in vivo using UPLC-MS/MS in strains expressing the four DcdV variants, as indicated, normalized to dNTP concentrations measured 

in a vector control. Data are graphed as mean ± SEM, n= 3, Two-way ANOVA with Tukey’s multiple-comparison test, normalized to pVector, n.d. indicates “none detected”, 

and ns indicates “not significant”. 
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Fig. 6: dcdV and difV are widely conserved

(A) Phylogenetic tree of DcdV homologs containing PLK and DCD domains from representative phyla across the tree of life. Stars indicate query proteins of interest in this 

study. (B) Distribution of cell lengths expressing the indicated DcdV homologs and their cognate DifV or vector control in E. coli (n=3). Different letters indicate significant 

differences (n=3) at p< 0.05, according to Dunnett’s post-hoc test against the control (pVectorDcdV + pVectorDifV) strain. (C) Representative images of E. coli expressing 

pDcdV/homologs and pDifV/homologs combinations. Scale represents 2 µm. 
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Fig. 7: DcdV mediates phage defense

(A-D) Growth curves for S. flexneri containing vector or pDcdV/homologs infected Sf6 at time 0 at an MOI of 0.1 in the presence or absence of 100 µM IPTG. Each graph 

represents three biological replicates each with three technical replicates. (B) Plaque-forming units (PFU) per mL of phage Sf6 measured at the conclusion of the S. flexneri

growth curve experiment above. Results are represented as mean ± SEM, n= 3, Two-way ANOVA with Tukey’s multiple-comparison test.
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SUPPLEMENTAL MATERIAL 1 

 2 
 3 
Supplemental Figure 1. VSP-1 and VSP-2 schematic and predicted maximum 4 

related subnetworks (MRS).  5 
(A) Cartoon schematic and gene network predictions, other than DcdV and CBASS (see Figs. 1B 6 
and 1), of VSP-1 from El Tor V. cholerae N16961 (not to scale). (B) Cartoon schematic and gene 7 
network predictions of VSP-2 from El Tor V. cholerae N16961 (not to scale). Arrows indicate the 8 
highest partial correlation 𝑾𝒊𝒋 of each individual VSP gene to another (represented by ovals). Two 9 

arrows pointing in opposing directions indicates the two genes each have their highest correlation 10 
to each other.  11 
 12 
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 13 
Supplemental Figure 2. Ectopic expression of dcdV leads to cell filamentation in E. coli 14 
that is alleviated by provision of a single copy cosmid containing VSP-1. 15 
(A) Representative images of E. coli cultures maintaining an empty vector plasmid (pVector) or 16 
Ptac-inducible dcdV plasmid (pDcdV) grown in the presence of 100 µM IPTG for 8 h. Cells were 17 
stained with FM4-64 prior to imaging. Scale represents 2 µm. (B) Distribution of cell lengths 18 
measured from three biological replicates of E. coli cultures carrying an empty vector (Vector) or 19 
Ptac-inducible dcdV plasmid (pDcdV) in addition to either an empty vector single copy cosmid 20 
control (pLAFR) or pLAFR containing VSP-1 (pCCD7) grown in the presence of 100 µM IPTG for 21 
8 h. Distributions represent ~1000 to 2000 cells measured per strain. Different letters indicate 22 
significant differences at p < 0.05, according to Tukey’s post-hoc test.  23 
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 24 
Supplemental Figure 3. Ectopic expression of DncV and DcdV does not lead to 25 
filamentation in the ΔcapV mutant of V. cholerae.  26 
Distribution of cell lengths measured from three biological replicates of ΔcapV mutant cultures 27 
maintaining the indicated plasmids grown in the presence of 100 µM IPTG for 8 h. Distributions 28 
represent ~1200-1700 cells measured per strain. Different letters indicate significant differences 29 
at p < 0.05, according to Tukey’s post-hoc test.  30 
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 31 
Supplemental Figure 4. Δig222 has decreased dcdV expression relative to WT V. cholerae.  32 
Relative difference in dcdV expression between Δig222 and WT V. cholerae at three different 33 
growth phases using qRT-PCR and an endogenous gyrA control. Data represent the mean ± 34 
SEM of three biological replicates. 35 
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 36 
 37 
Supplemental Figure 5. DcdV C-terminal 6x Histidine fusion maintains the same activity as 38 
the WT DcdV enzyme.  39 
Representative images of V. cholerae WT and Δig222 cultures maintaining an empty vector 40 
plasmid (pVector) or Ptac-inducible dcdV-6xHIS plasmid (pDcdV6xHis) grown in the presence of 100 41 
µM IPTG for 2 h. Cells were stained with FM4-64 prior to imaging and performed in biological 42 
triplicate. 43 
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 44 
 45 
Supplemental Figure 6. Domain architectures of the six DcdV query proteins. 46 
Domain architecture and secondary structure predictions for the six proteobacterial starting points 47 
of interest (query proteins) using InterProScan [[40]; see Methods]. Results from six main 48 
analyses are shown here for the query proteins: Gene3D (including CATH structure database), 49 
Pfam, ProSiteProfiles, PANTHER, and SUPERFAMILY protein domain profile databases, and 50 
MobiDBLite for disorder prediction. No transmembrane regions (using TMHMM) or 51 
membrane/extracellular localization were predicted for any of the proteins (using Phobius); hence 52 
not shown. 53 
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 54 
 55 
Supplemental Figure 7. Cellular abundance of C-terminal 6x histidine tagged DcdV 56 
variant fusions analyzed by Coomassie stain and Western blot.  57 
Representative Coomassie stained gel (top) and anti-6x His antibody Western blot (bottom) of 58 
whole cell lysates from E. coli BL21(DE3) cells maintaining an empty vector (pVector6xHis), 59 
inducible C-terminal 6x histidine tagged dcdV (WT) or dcdV variants (S52K, D162A + Q163A, 60 
E384A, and C411A + C414A) grown in the presence of 1 mM IPTG for 3 h. Sample inputs were 61 
normalized by culture OD600 and resolved by SDS-PAGE. Three biological replicates of each 62 
strain were analyzed with similar results. Black triangles correspond to the predicted molecular 63 
weight of the DcdV tagged fusions (60.6 kDa). M = molecular weight marker. 64 
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 65 
 66 
Supplemental Figure 8. Addition of exogenous dTTP does not inhibit DcdV deaminase 67 
activity in E. coli lysates.  68 
Lysates collected from E. coli expressing WT DcdV incubated with or without exogenous 7.5 mM 69 
dTTP and either 75 mM cytidine, 7.5 mM dCMP, or 7.5 mM dCTP. The evolution of NH4

+ resulting 70 
from substrate deamination was detected by measuring the solution ABS630 after a Berthelot’s 71 
reaction in microtiter plates. The relative deaminase activity was calculated by dividing the ABS630 72 
of the +dTTP reaction by the no dTTP control reaction for each lysate. Data represent the mean 73 
± SEM of three biological replicate lysates. 74 
  75 
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 76 

 77 
 78 
 79 
 80 
 81 
 82 
Supplemental Figure 9. Absolute intracellular concentration of deoxynucleotides.  83 
Quantification of the indicated dNTPs in vivo, using UPLC-MS/MS, in strains expressing the 84 
empty vector and four DcdV variants, as indicated. Data represents mean ± SEM, n=3.  85 
  86 
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 87 

 88 
 89 
Supplemental Figure 10. ClustalW multiple sequence alignment of DcdV homologs 90 
explored in this study.  91 
Amino acid alignment of DcdV and three homologs using webservice EMBL-EBI [74]. “*” indicates 92 
100% identity, “:” indicates >75%, and “.” Indicates >50% similarity. Open triangles above the 93 
alignments indicate conserved residues of PLK and DCD domains. Closed triangles indicate 94 
amino acids where single amino acid substitutions were found to render V. cholerae DcdV 95 
insensitive to DifV inhibition (Figs. 6A, B, and D).  96 
  97 
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 98 

 99 
 100 
Supplemental Figure 11. DifV (174 nt) and the three ORFs encoded upstream of dcdV 101 
homologs do not exhibit amino acid similarity.  102 
Amino acid alignment of the V. cholerae Ig222 translated ORF and three ORFs 5’ of the dcdV 103 
homologs using EMBL-EBI ClustalW [74]. “*” indicates 100% identity, “:” indicates >75%, and “.” 104 
Indicates >50% similarity. 105 
  106 
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 107 

 108 

Supplemental Figure 12. DifV (174 nt) and the three ORFs encoded upstream of dcdV 109 
homologs do not have exhibit similarity.  110 
Nucleotide alignment of the V. cholerae DifV and the ORFs 5’ of dcdV homologs using LocARNA 111 
[75]. Consensus identities are correlated with the height of the bars below the corresponding 112 
nucleotide (bottom). The average secondary structure is indicated in dot-bracket notation (top). 113 
Compatible base pairs are colored according to the number of different types C-G (1), G-C (2), 114 
A-U (3), U-A (4), G-U (5) or U-G (6) of compatible base pairs in the corresponding columns. The 115 
saturation decreases with the number of incompatible base pairs. 116 
  117 
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 118 

 119 
Supplemental Figure 13. V. cholerae lacking dcdV do not exhibit enhanced susceptibility 120 
to predation by V. cholerae lytic phage ICP1 and ICP3. 121 
Growth curves for V. cholerae WT and ΔdcdV infected by lytic phage ICP1 (A) and ICP3 (B). 122 
Bacteria were infected at time 0 at an MOI of 0.1 in microtiter plates. Data represent the mean ± 123 
SEM, n=3. 124 
  125 
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 126 
Supplementary Table 1. Strains and phages used in this study.  127 

Strains Name in this 
Study 

Relevant Characteristics Source or 
reference 

E. coli    

DH10b  F-mcrA Δ(mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15 ΔlacX74 recA1 
endA1 araD139Δ(ara, leu)7697 
galU galK λrpsL nupG 

ThermoFisher 
Scientific 

BW29427  RP4-
2(TetSkan1360::FRT), thrB1004, 
lacZ58(M15), ΔdapA1341::[erm 
pir+], rpsL(strR), thi-, hsdS-, pro- 

Lab Stock 

BL21(DE3)  F- ompT hsdSB(rB -mB +) gal dcm 
(DE3) 

Lab Stock 

078:H11 H10407 
(ETEC) 

ETEC Wild type [106] 

V. cholerae    

C6706str2 WT Wild type O1 El Tor; SmR [107] 

E7946  Clinical isolate obtained in Bahrain 
in 1978; SmR 

[108] 

CR01 ΔVSP-1 O1 El Tor ΔVSP-1 This study 

CR02 ΔVSP-2 O1 El Tor ΔVSP-2 This study 

CR03 ΔVSP-1/2 O1 El Tor ΔVSP-1/2 This study 

BYH206 Δig222 O1 El Tor Δig222 between vc0175-
vc0176 position in N16961 
chromosome I [177,230-177,008] 

This study 

BYH207 Δvc0176 O1 El Tor Δvc0176 This study 

BYH255 Δvc0175-176 O1 El Tor Δvc0175-176 This study 

BYH256 Δvc0177-181 O1 El Tor Δvc0177-181 This study 

BYH257 Δvc0182-185 O1 El Tor Δvc0182-185 This study 

GS05 Δvc0175 O1 El Tor Δvc0175 (dcdV) This study 

WLN5105 ΔcapV O1 El Tor ΔcapV [11] 

V. parahaemolyticus    

O1:Kuk 
str. FDA_R31 

VP Wild type  [109] 

P. mirabilis    

    AR379 PM Wild type [110] 

Shigella flexneri    

    PE577 Sf Wild type [54] 

    

Phages    

    ICP1 ICP1 Wild type  [49] 

    ICP3 ICP3 Wild type [49] 

    Sf6 Sf6 Wild type [111] 

 128 
 129 
 130 
 131 
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 132 
Supplementary Table 2. Plasmids Descriptions 133 

Plasmids Name in this 
Manuscript 

Relevant characteristics Source or 
Reference 

pEVS141 pVector/pVectorDifV pEVS143 without pTac; Kmr [70] 

pEVS143  Broad-host range pTac 
overexpression vector; Kmr 

[68] 

pMMB67EH pVectorDcdV Broad-host range pTac 
overexpression vector; Ampr 

[69] 

pKAS32  Suicide vector for mutant 
construction, Ampr 

[67] 

pET28b pVector6xHis T7 promoter; Kmr Novagen 

pLAFR pLAFR pLAFR; Tetr [112] 

pCCD7 pCCD7 pLAFR::VSP-1; Tetr [11] 

pBRP353 pDncV pMMB67EH::dncV; Ampr [11] 

pCMW204 pDcdV pEVS143::dcdV; Kmr  This study 

pGBS87 pDcdV/pDcdVVC pMMB67EH::dcdV; Ampr This study 

pGBS65 pDcdV6xHis  pET28b::dcdV-6xHis C-term; Kmr 

(*only* in E. coli BL21(DE3)) 
This study 

pGBS98 pDcdV6xHis pEVS143::dcdV-6xHis C-term; 
Kmr (*only* in V. cholerae) 

This study 

pGBS71 pDcdVE384A pEVS143::dcdV-E384A; Kmr This study 

pGBS82 pDcdVE384A pET28b::dcdV-E384A-6xHis C-
term; Kmr (*only* for in vitro and 
western blot) 

This study 

pGBS81 pDcdVC411A+C414A pEVS143::dcdV-C411A+C414A; 
Kmr 

This study 

pGBS75 pDcdVC411A+C414A
 pET28b::dcdV-C411A+C414A-

6xHis C-term; Kmr 
This study 

pGBS103 pDcdVS52K pEVS143::dcdV-S52K; Kmr This study 

pGBS114 pDcdVS52K pET28b::dcdV-S52K-6xHis C-
term; Kmr 

This study 

pGBS106 pDcdVD162A+Q163A pEVS143::dcdV-D162A+Q163A; 
Kmr 

This study 

pGBS116 pDcdVD162A+Q163A pET28b::dcdV-D162A+Q163A-
6xHis C-term; Kmr 

This study 

pGBS80 pIg222 pEVS143::Ig222, (position in 
N16961 chromosome I [177,230-
177,008]); Kmr 

This study 

pGBS108 pIg222-STOP pEVS143::ig222-1C>T, 2T>A; Kmr This study 

pGBS110 pDifV pEVS143::difV (position in 
N16961 chromosome I [177,181-
177,008]); Kmr 

This study 

pAW01 pDifVRBS-less pEVS143::difV without RBS; Kmr This study 

pGBS111 pDifVSTOP pEVS143::difV-1A>T, 2T>A, 
3G>A; Kmr 

This study 

pGBS118 pDifVInteriorSTOP pEVS143::difV-17A>T, 18T>A, 
19G>A; Kmr 

This study 
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 134 

pBYH49 pDifV49-186 pEVS143::difV (49-186 NT); Kmr This study 

pBYH52 pDifV49-204 pEVS143::difV (49-204 NT); Kmr This study 

pBYH53 pDifV49-214 pEVS143::difV (49-214 NT); Kmr This study 

pBYH54 pDifV49-218 pEVS143::difV (49-218 NT); Kmr This study 

pBYH55 pDifV66-222 pEVS143::difV (66-222 NT); Kmr This study 

pBYH56 pDifV86-222 pEVS143::difV (86-222 NT); Kmr This study 

pBYH57 pDifV123-222 pEVS143::difV (123-222 NT); Kmr This study 

pBYH50 pNpcR_3991 pEVS143::npcR_3991; Kmr This study 

pGBS120 pDcdVE123K pEVS143::dcdV-E123K; Kmr This study 

pGBS131 pDcdVA126T pEVS143::dcdV-A126T; Kmr This study 

pGBS128 pDcdVK201R pEVS143::dcdV-K201R; Kmr This study 

pGBS129 pDcdVK511R pEVS143::dcdV-K511R; Kmr This study 

pGBS130 pDcdVQ514R pEVS143::dcdV-Q514R; Kmr This study 

pGBS124 pDcdVETEC pEVS143::dcdV from Escherichia 
coli O78:H11 H10407 (ETEC); 
Kmr (*only* for mass spec 
experiment) 

This study 

pGBS125 pDifVETEC pEVS143::difV from Escherichia 
coli O78:H11 H10407 (ETEC); 
Kmr 

This study 

pGBS126 pDcdVETEC pMMB67EH::dcdV from 
Escherichia coli O78:H11 H10407 
(ETEC); Ampr  

This study 

pAW07 pDifVVP pEVS143::difV from V. 
parahaemolyticus O1:Kuk str. 
FDA_R31; Kmr 

This study 

pAW06 pDcdVVP pMMB67EH::dcdV from V. 
parahaemolyticus O1:Kuk str. 
FDA_R31; Ampr  

This study 

pAW02 pDifVPM pEVS143::difV from P. mirabilis 
AR379; Kmr 

This study 

pAW04 pDcdVPM pMMB67EH::dcdV from P. 
mirabilis AR379  

This study 

pCRR01  Deletion construct for ΔVSP-1, 
Ampr 

This study 

pCRR02  Deletion construct for ΔVSP-2, 
Ampr 

This study 

pBYH36  Deletion construct for Δig222, Ampr This study 

pBYH37  Deletion construct for Δvc0176, 
Ampr 

This study 

pBYH40  Deletion construct for ΔdcdV-
vc0176, Ampr 

This study 

pBYH41  Deletion construct for Δvc0177-
vc0181, Ampr 

This study 

pBYH42  Deletion construct for Δvc0182-
VC0185, Ampr 

This study 

pGBS88  Deletion construct for ΔdcdV, 
Ampr 

This study 
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Supplementary Table 3. Oligonucleotides used in this study.  135 

Name Primer use Sequence Reference 

Vector Construction 

CMW3009 dcdV F1 EcoRI + RBS3 
(pEVS143-DcdV) 

GGAAACAGCCTCGACAGGCCTAGGAG
GAAGCTAAATTGTTTACAATGAATAAGT
CCTCCG  

This study 

CMW3010 dcdV R2 BamHI 
(pEVS143-DcdV) 

CATAAAGCTTGCTCAATCAATCACCGG
ATCCTAGTCTTGGATGCTCTCTTC  

This study 

CMW3025 dcdV F EcoRI + RBS 
(pMMB67EH-DcdV) 

ATTTCACACAGGAAACAGAGGAGCTAA
GGAAGCTAAATTGTTTACAATGAATAAG
TCCTC  

This study 

CMW3026 dcdV R BamHI 
(pMMB67EH-DcdV)  

CCTGCAGGTCGACTCTAGAGCTAGTCT
TGGATGCTCTC  

This study 

CMW3066 
 

dcdV+6His R BamHI 
(pEVS143-DcdV-His6) 

GCTTGCTCAATCAATCACCGTTAGTGG
TGGTGGTGGTGGTGCTCGATGTCTTGG  

This study 

CMW3079 Ig222 F EcoRI + RBS 
(pEVS143-Ig222) 

CAGCCTCGACAGGCCTAGGAGGAGCT
AAGGAAGCTAAACTGTTCGCAAATCAT
ACTTTAG  

This study 

CMW3080 Ig222 R BamHI  
(pEVS143-Ig222, 
pEVS143-DifV & 
pEVS143-DifV 3’ end 
truncations and 
interior stop codon) 

GCTTGCTCAATCAATCACCGTTACCAAT
GGATTTTTTGTG  

This study 

CMW3081 Ig222-STOP F EcoRI + 
RBS (pEVS143- Ig222-

STOP)  

CAGCCTCGACAGGCCTAGGAGGAGCT
AAGGAAGCTAAATAGTTCGCAAATCAT
AGTTTAG 

This study 

CMW3093 dcdV F NcoI  
(pET28b-DcdV-His6) 

AACTTTAAGAAGGAGATATACATGTTTA
CAATGAATAAGTCCTCCGC 
 

This study 

CMW3094 dcdV R XhoI  
(pET28b-Dcdv-His6) 

CTCAGTGGTGGTGGTGGTGGTGCTCG
ATGTCTTGGATGCTCTCTTCTTCACTCG
ATGG 

This study 

CMW3102 difV F EcoRI + RBS 
(pEVS143-DifV & 
pEVS143-DifV 5’ end 
truncations) 

CTCGACAGGCCTAGGAGGAGCTAAGG
AAGCTAAAATGATTACAAGCATTCATGA
ATATAG  

This study 

CMW3103 difV F EcoRI + RBS  
(pEVS143-DifVSTOP) 

CTCGACAGGCCTAGGAGGAGCTAAGG
AAGCTAAATAAATTACAAGCATTCATGA
ATATAG  
 

This study 

CMW3128 difV49-186 F EcoRI + 
RBS (pEVS143-DifV49-

186) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAATGATTACAAG 

This study 

CMW2129 difV49-186 R BamHI 
(pEVS143-DifV49-186) 

GCTTGCTCAATCAATCACCGGGCTCTA
GCTTTCTCTTTTTTTGCGTCTTTC 

This study 

CMW3130 npcR_3991 F EcoRI + 
RBS (pEVS143-
npcR_3991) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAACTCTCCCATAACTC 

This study 
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CMW3131 npcR_3991 R BamHI 
(pEVS143-
npcR_3991) 

GCTTGCTCAATCAATCACCGTGTGCAG
CACGCAAAAGATTGGCTCTAGCT 

This study 

CMW3162 dcdVETEC F EcoRI + 
RBS (pEVS143-
DcdVETEC) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAATGGCTATAGCTTT
GAAAAAG 

This study 

CMW3163 dcdVETEC R BamHI 
(pEVS143-DcdVETEC) 

GCTTGCTCAATCAATCACCGTTAAATCA
AGTCATCTTGTTTTG  

This study 

CMW3164 dcdVETEC F EcoRI + 
RBS (pMMB67EH-
DcdVETEC) 

AATTTCACACAGGAAACAGAGGAGCTA
AGGAAGCTAAAATGGCTATAGCTTTGA
AAAAGG  

This study 

CMW3165 dcdVETEC F BamHI 
(pMMB67EH-
DcdVETEC) 

CCTGCAGGTCGACTCTAGAGTTAAATC
AAGTCATCTTGTTTTGG  

This study 

CMW3166 difVETEC F EcoRI + 
RBS (pEVS143-
DifVETEC) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAATGTCAAACCAATTA
ACCG  

This study 

CMW3167 dcdVETEC F BamHI 
(pEVS143-DifVETEC) 

GCTTGCTCAATCAATCACCGCTAATCA
AGTATTATTTCTTTCTTTAGTATTTTATC  

This study 

CMW3180 difVVP F EcoRI + RBS 
(pEVS143-DifVVP) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAATGGTTACAAATTTA
AATG  

This study 

CMW3181 difVVP R BamHI 
(pEVS143-DifVVP) 

GCTTGCTCAATCAATCACCGTTACCAA
CGAATTTTCTGTGCGGCTCTTAAAAG 

This study 

CMW3184 dcdVVP F EcoRI + 
RBS 
(pMMB67EH-DcdVVP) 

CAATTTCACACAGGAAACAGAGGAGCT
AAGGAAGCTAAAATGGGAAAATCCTCT
A  

This study 

CMW3185 dcdVVP R BamHI 
(pMMB67EH-DcdVVP) 

CCTGCAGGTCGACTCTAGAGTTATTCA
ATAGTGGCTTCTACTTGTTGCTTTGTGA
ATG 

This study 

CMW3189 difV F EcoRI  
(pEVS143-DifV) 

ACAGCCTCGACAGGCCTAGGATGATTA
CAAGCATTCATGAATATAGAAACGCTTC 

This study 

CMW3192 difVPM F EcoRI + RBS 
(pEVS143-DifVPM) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAATGAACGTTCAAC 

This study 

CMW3193 difVPM R BamHI 
(pEVS143-DifVPM) 

GCTTGCTCAATCAATCACCGTTACCAAT
CTAACGTGTCTGCTACAGCTGC 

This study 

CMW3196 dcdVVP F EcoRI + 
RBS 
(pMMB67EH-DcdVPM) 

CAATTTCACACAGGAAACAGAGGAGCT
AAGGAAGCTAAAATGGGTAATCC 

This study 

CMW3197 dcdVVP R BamHI 
(pMMB67EH-DcdVPM) 

CCTGCAGGTCGACTCTAGAGTTAACTT
CTCTCTTCACCTAAACGAAGATTTAC 

This study 

CMW3200 difV49-204 R BamHI 
(pEVS143-DifV49-204) 

GCTTGCTCAATCAATCACCGTGCAGCA
CGCAAAAGATTG 

This study 

CMW3201 difV49-214 R BamHI 
(pEVS143-DifV49-214) 

GCTTGCTCAATCAATCACCGGGATTTTT
TGTGCAGCAC 

This study 

CMW3202 difV49-218 R BamHI 
(pEVS143-DifV49-218) 

GCTTGCTCAATCAATCACCGCAATGGA
TTTTTTGTGCAGCACGCAAAAGA 

This study 

CMW3203 difV66-222 F EcoRI + 
RBS (pEVS143-DifV66-

222) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAGAATATAGAAACG 

This study 
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CMW3204 difV86-222F EcoRI + 
RBS (pEVS143-DifV86-

222) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAATAGCGACAAAAAC 

This study 

CMW3205 difV123-222 F EcoRI + 
RBS (pEVS143-
DifV123-222) 

ACAGCCTCGACAGGCCTAGGAGGAGC
TAAGGAAGCTAAAAGACACTAGCG 

This study 

Site-directed Mutagenesis 

CMW3011 dcdV (E384A) F  
(pEVS143-DcdVE384A & 
pET28b-DcdVE384A) 

CAAGAGCGGTTCATGCTGCAATGGATT
CTCTTATAGC  

This study 

CMW3012 dcdV (E384A) R 
(pEVS143-DcdVE384A & 
pET28b-DcdVE384A) 

GCTATAAGAGAATCCATTGCAGCATGA
ACCGCTCTTG  
 

This study 

CMW3013 dcdV (C411A + 
C414A) F (pEVS143-
DcdVC411A+C414A) 

TATATGTTACGACATATCCGGCTCACAA
CGCTGCGCGACACATCGTTGCTG  

This study 

CMW3014 dcdV (C411A + 
C414A) R (pEVS143-
DcdVC411A+C414A) 

CAGCAACGATGTGTCGCGCAGCGTTGT
GAGCCGGATATGTCGTAACATATA  

This study 

CMW3021 dcdV (K55A) F  
(pEVS143-DcdVK55A) 

GCTATTGGCTCTGGTGTAGCGGCATTA
AAAGAGAGTTTAGTTAGTTCTCTTGAGA
CATAT  

This study 

CMW3022 dcdV (K55A) R 
(pEVS143-DcdVK55A) 

ATATGTCTCAAGAGAACTAACTAAACTC
TCTTTTAATGCCGCTACACCAGAGCCA
ATAGC  

This study 

CMW3104 dcdV (D162A + 
Q163A) F (pEVS143-
DcdVD162A+Q163A) 

CGCATACATCATCGCGGCGTTAAAGCA
CCCTGATGAAATCAAATTCC 

This study 

CMW3105 dcdV (D162A + 
Q163A) R (pEVS143-
DcdVQ162A+Q163A) 

GGAATTTGATTTCATCAGGGTGCTTTAA
CGCCGCGATGATGTATGCG 

This study 

CMW3110 dcdV (S52K) F  
(pEVS143-DcdVS52K) 

CCTCTGTGGGGCTATTGGCAAAGGTGT
AAAGGCATTAAAAGAGAG  

This study 

CMW3111 dcdV (S52K) R 
(pEVS143-DcdVS52K) 

CTCTCTTTTAATGCCTTTACACCTTTGC
CAATAGCCCCACAGAGG  

This study 

CMW3112 dcdV (S52P) F  
(pEVS143-DcdVS52P) 

CCTCTGTGGGGCTATTGGCCCGGGTG
TAAAGGCATTAAAAGAGAG  

This study 

CMW3113 dcdV (S52P) R  
(pEVS143-DcdVS52P) 

CTCTCTTTTAATGCCTTTACACCCGGG
CCAATAGCCCCACAGAGG  

This study 

CMW3114 dcdV (S52W) F  
(pEVS143-DcdVS52W) 

CCTCTGTGGGGCTATTGGCTGGGGTG
TAAAGGCATTAAAAGAGAG  

This study 

CMW3115 dcdV (S52K) R  
(pEVS143-DcdVS52W) 

CTCTCTTTTAATGCCTTTACACCCCAGC
CAATAGCCCCACAGAGG  

This study 

CMW3118 difV (interior 
alternative frame stop) 
F (pEVS143-
DifV17A>T, 18T>A, 
19G>A) 

AAGGAAGCTAAAATGATTACAAGCATT
CTAAAATATAGAAACGCTTCTAATAGCG 

This study 

CMW3119  difV (interior 
alternative frame stop) 

CGCTATTAGAAGCGTTTCTATATTTTAG
AATGCTTGTAATCATTTTAGCTTCCTT 

This study 
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R (pEVS143-
DifV17A>T, 18T>A, 
19G>A) 

CMW3124 dcdV (E123K) F 
(pEVS143-DcdVE123K) 

GCAGCCTGTGCTATCAAAGAAATTGCG
CTGG  

This study 

CMW3125 dcdV (E123K) R 
(pEVS143-DcdVE123K) 

CCAGCGCAATTTCTTTGATAGCACAGG
CTGC  

This study 

CMW3172 dcdV (A126T) F 
(pEVS143-DcdVA126T) 

GCTATCGAAGAAATTACGCTGGAAAGA
ACATTAATCTGTC 

This study 

CMW3173 dcdV (A126T) R 
(pEVS143-DcdVA126T) 

GACAGATTAATGTTCTTTCCAGCGTAAT
TTCTTCGATAGC  

This study 

Gene Deletion 

CMW2794 ΔVSP-2 up4 F;  
CR02 & CR03 

GTGGAATTCCCGGGAGAGCTCGGCTT
GTTCACTATCGTAATAATGC 

This study 

CMW2795 ΔVSP-2 up R; 
CR02 & CR03 

GGAGGGGCCACCACTGGGAGGGCACC
AGATTC 

This study 

CMW2796 ΔVSP-2 down5 F; 
CR02 & CR03 

GCCCTCCCAGTGGTGGCCCCTCCCAG
GT 

This study 

CMW2797 ΔVSP-2 down R; 
CR02 & CR03 

AGCTATAGTTCTAGAGGTACGGGCATT
AAGGTGGTGGAAACCG 

This study 

CMW2814 ΔVSP-1 up F; 
CR01 & CR03 

GTGGAATTCCCGGGAGAGCTGGCTTTA
CTGTTATTCGC 

This study 

CMW2815 ΔVSP-1 up R; 
CR01 & CR03 

TACCATGTAGTAGCGGTATCGAGATTC
C 

This study 

CMW2816 ΔVSP-1 down F; 
CR01 & CR03 

GATACCGCTACTACATGGTAACGAACT
CTTC 

This study 

CMW2817 ΔVSP-1 down R; 
CR01 & CR03 

AGCTATAGTTCTAGAGGTACCGCTAAG
TTTGTGGATGC 

This study 

CMW2970 Δvc0176 up F; 
BYH207 

ATAACAATTTGTGGAATTCCCGGGAGA
GCTGGGAATCGAATATTGAGAG 

This study 

CMW2971 Δvc0176 up R; 
BYH207 

ATATAGTGTCTCTATTTATGGCTCATAA
TCTTGAAG 

This study 

CMW2972 Δvc0176 down F; 
BYH207 

GATTATGAGCCATAAATAGAGACACTAT
ATTTAGTGTTTAATTAAC 

This study 

CMW2973 Δvc0176 down R; 
BYH207 

TGCGCATGCTAGCTATAGTTCTAGAGG
TACTATGAAACTTATTTCTATACTCTCA
G 

This study 

CMW3035 Δvc0176-vc0175 up F; 
BYH255 

ATAACAATTTGTGGAATTCCCGGGAGA
GCTGGGAATCGAATATTGAGAG 

This study 

CMW3036 Δvc0176-vc0175 up R; 
BYH255 

TTTTCCAGACTAAAGTTATGGCTCATAA
TCTTGAAG 

This study 

CMW3037 Δvc0176-vc0175 down 
F; BYH255 

GATTATGAGCCATAACTTTAGTCTGGAA
AATTCACTTTTC 

This study 

CMW3038 Δvc0176-vc0175 down 
R; BYH255 

TGCGCATGCTAGCTATAGTTCTAGAGG
TACACATGGAGCATGATCAGG 

This study 

CMW3039 Δvc0177-vc0181 up F; 
BYH256 

ATAACAATTTGTGGAATTCCCGGGAGA
GCTGTTTGTATGTTTGGGGTG 

This study 

CMW3040 Δvc0177-vc0181 up R; 
BYH256 

AATGAATTAGTATACGTATTTCTAATAC
CACTAAAAACTAAG 

This study 
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CMW3041 Δvc0177-vc0181 down 
F; BYH256 

TGGTATTAGAAATACGTATACTAATTCA
TTCACTGTACTTC 

This study 

CMW3042 Δvc0177-vc0181 down 
R; BYH256 

TGCGCATGCTAGCTATAGTTCTAGAGG
TACAAAGTTCTCCACAAATTTCAG 

This study 

CMW3043 Δvc0182-vc0185 up F; 
BYH257 

ATAACAATTTGTGGAATTCCCGGGAGA
GCTGCTGACTCCGGTGGCCGT 

This study 

CMW3044 Δvc0182-vc0185 up R; 
BYH257 

CTTAGGTATACTAATTGTATTTGATATA
CATAGAGGCTAGTATGGTTTCCAGAGT
TTAC 

This study 

CMW3045 Δvc0182-vc0185 down 
F; BYH257 

TGTATATCAAATACAATTAGTATACCTA
AGATTCGATTTTC 

This study 

CMW3046 Δvc0182-vc0185 down 
R; BYH257 

TGCGCATGCTAGCTATAGTTCTAGAGG
TACTTCTCAGGATGTAATATTTGTG 

This study 

CMW3067 Δvc0175 up F; GS05 GTGGAATTCCCGGGAGAGCTACTATAT
TTAGTGTTTAATTAACAAAAAAC  

This study 

CMW3068 Δvc0175 up R; GS05 CAGACTAAAGCCTGAAATTATGAAACTT
ATTTCTATAC 

This study 

CMW3069 Δvc0175 down F; 
GS05 

TAATTTCAGGCTTTAGTCTGGAAAATTC
ACTTTTC  

This study 

CMW3070 Δvc0175 down R; 
GS05 

AGCTATAGTTCTAGAGGTACACATGGA
GCATGATCAGG  

This study 

CMW3071 ΔIg222 up F; BYH206 ATAACAATTTGTGGAATTCCCGGGAGA
GCTTCTCAAAGAAGCACGTAAAAAAG 

This study 

CMW3072 ΔIg222 up R; BYH206 CAAGAATTAACGTGGTAAAGTGCGCAC
ATTCTAC 

This study 

CMW3073 ΔIg222 down F; 
BYH206 

AATGTGCGCACTTTACCACGTTAATTCT
TGATTAGC 

This study 

CMW3074 ΔIg222 down R; 
BYH206 

TGCGCATGCTAGCTATAGTTCTAGAGG
TACTCATTTTCTTCTGAGGTTTC 

This study 

qRT-PCR 

CMW2926 gyrA F TGGCCAGCCAGAGATCAAG This study 

CMW2927 gyrA R ACCCGCAGCGGTACGA  This study 

CMW3206 dcdV F TCGACCAGTTAAAGCACCCT This study 

CMW3207 dcdV R CCTTCTGTACGGATCAAGCCA This study 

CMW3208 difV F GTGAATGGATATTTCGGTGGA This study 

CMW3209 difV R TTGTCGCTATTAGAAGCGTT This study 

CMW3288 ori F CAGGTGAACCAGCAAAATCGA [101] 

CMW3289 ori R TGGTATTGAAGCTCAATGCGG [101] 

CMW3290 ter F TTCAAGCTGAGGCGGATTTG [101] 

CMW3291 ter R GCTCATTGGCTTCTTGTGCTT [101] 
1F = Forward 136 
2R= Reverse 137 
3RBS= Ribosomal Binding Site 138 
4Up= Amplifies Upstream Fragment 139 
5Down= Amplifies Downstream Fragment 140 
  141 
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Supplementary Table 4. This table sorts the indicated lineages by the DcdV homolog in that 142 
group with the maximum amino acid similarity to V. cholerae DcdV. 143 

 144 
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Partial Correlation Value wij  of VSP-1 Genes i to j  (Supplemental File 1)

VC0175 VC0176 VC0177 VC0178 VC0179 VC0180 VC0181 VC0182 VC0183 VC0184 VC0185

VC0175 1 -0.301 -0.034 -0.459 0.147 -0.085 -0.072 0.089 -0.068 0.02 -0.099

VC0176 -0.301 1 0.145 -0.394 0.116 -0.048 -0.036 0.077 -0.055 0.028 -0.031

VC0177 -0.034 0.145 1 -0.043 0.026 -0.038 0.03 0.095 0.069 0.151 0.021

VC0178 -0.459 -0.394 -0.043 1 0.225 -0.098 -0.057 0.086 -0.11 0.027 -0.146

VC0179 0.147 0.116 0.026 0.225 1 0.501 0.303 -0.035 0.059 -0.002 0.062

VC0180 -0.085 -0.048 -0.038 -0.098 0.501 1 0.293 0.025 -0.024 0.001 -0.008

VC0181 -0.072 -0.036 0.03 -0.057 0.303 0.293 1 0.042 -0.005 0.007 -0.035

VC0182 0.089 0.077 0.095 0.086 -0.035 0.025 0.042 1 0.088 0.568 0.088

VC0183 -0.068 -0.055 0.069 -0.11 0.059 -0.024 -0.005 0.088 1 0.166 0.459

VC0184 0.02 0.028 0.151 0.027 -0.002 0.001 0.007 0.568 0.166 1 0.141

VC0185 -0.099 -0.031 0.021 -0.146 0.062 -0.008 -0.035 0.088 0.459 0.141 1

wij = -1 genes i and j never occur in the same species

wij = 0 expected co-occurrence between unrelated genes i and j drawn from a normal distribution

wij > 0.045 suggests shared biological function (Kim and Peterson 2011)

wij = 1 genes i and j always occur in the same species
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Partial Correlation Value wij  of VSP-2 Genes i to j  (Supplemental File 2)

VC0490 VC0491 VC0492 VC0493 VC0494 VC0495 VC0496 VC0497 VC0498 VC0502 VC0503 VC0504

VC0490 1 0.035 0.381 0.021 -0.067 0.071 0.032 -0.016 -0.124 -0.05 -0.033 0.011

VC0491 0.035 1 0.426 -0.021 -0.001 -0.008 0.014 0.008 0.014 -0.019 0.004 0

VC0492 0.381 0.426 1 0.027 0.006 0.003 0.013 0.004 0.004 0.01 -0.013 -0.021

VC0493 0.021 -0.021 0.027 1 0.008 -0.007 0.062 0.006 0.02 0.003 0.018 0.195

VC0494 -0.067 -0.001 0.006 0.008 1 0.656 0.084 0.008 -0.11 -0.022 0.03 -0.028

VC0495 0.071 -0.008 0.003 -0.007 0.656 1 0.104 0.118 0.085 -0.007 -0.009 0.02

VC0496 0.032 0.014 0.013 0.062 0.084 0.104 1 0.009 0.031 -0.039 -0.008 0.102

VC0497 -0.016 0.008 0.004 0.006 0.008 0.118 0.009 1 -0.058 -0.043 0.028 -0.004

VC0498 -0.124 0.014 0.004 0.02 -0.11 0.085 0.031 -0.058 1 -0.014 -0.028 0.028

VC0502 -0.05 -0.019 0.01 0.003 -0.022 -0.007 -0.039 -0.043 -0.014 1 0.088 0.013

VC0503 -0.033 0.004 -0.013 0.018 0.03 -0.009 -0.008 0.028 -0.028 0.088 1 -0.018

VC0504 0.011 0 -0.021 0.195 -0.028 0.02 0.102 -0.004 0.028 0.013 -0.018 1

VC0505 -0.011 0.003 0.013 0.097 -0.02 0.017 0.108 0.018 -0.022 -0.004 -0.007 0.389

VC0506 -0.006 0.001 0.002 -0.004 -0.026 0.024 0.045 0.018 -0.005 0.01 0.064 0.09

VC0507 -0.018 0.009 0.035 0.179 -0.003 0.009 0.03 -0.011 0.005 -0.01 -0.003 0.369

VC0508 0.053 0.007 -0.002 -0.029 0.028 0.111 0.073 0.06 0.017 0.123 0.098 0.003

VC0509 0.012 -0.001 -0.023 0.037 0.057 -0.02 0.216 0.023 0.058 0.095 -0.022 0.161

VC0510 0.015 0.011 0.001 -0.012 0.049 0.067 -0.005 0.085 0.064 0.128 0.174 -0.004

VC0512 -0.015 -0.006 0 0.004 -0.006 0.028 0.041 0.037 0.012 0.154 0.1 -0.002

VC0513 0.001 0.01 0.004 0.03 -0.013 -0.007 0.049 -0.008 -0.01 0.09 0.045 -0.01

VC0514 0.015 -0.007 -0.009 0.001 -0.03 0.026 -0.034 0.005 -0.052 0.012 0.1 0.028

VC0515 -0.106 0.006 0.008 0.007 -0.079 0.029 0.035 -0.065 -0.145 0.14 -0.011 0.03

VC0516 -0.018 0 0.006 0.005 0.061 0.066 0.02 0.14 -0.06 -0.046 0.204 0.021

wij = -1 genes i and j never occur in the same species

wij = 0 expected co-occurrence between unrelated genes i and j drawn from a normal distribution

wij > 0.045 suggests shared biological function (Kim and Peterson 2011)

wij = 1 genes i and j always occur in the same species

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437871doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437871
http://creativecommons.org/licenses/by-nc-nd/4.0/


Partial Correlation Value wij  of VSP-2 Genes i to j  (Supplemental File 2) (con't)

VC0505 VC0506 VC0507 VC0508 VC0509 VC0510 VC0512 VC0513 VC0514 VC0515 VC0516

VC0490 -0.011 -0.006 -0.018 0.053 0.012 0.015 -0.015 0.001 0.015 -0.106 -0.018

VC0491 0.003 0.001 0.009 0.007 -0.001 0.011 -0.006 0.01 -0.007 0.006 0

VC0492 0.013 0.002 0.035 -0.002 -0.023 0.001 0 0.004 -0.009 0.008 0.006

VC0493 0.097 -0.004 0.179 -0.029 0.037 -0.012 0.004 0.03 0.001 0.007 0.005

VC0494 -0.02 -0.026 -0.003 0.028 0.057 0.049 -0.006 -0.013 -0.03 -0.079 0.061

VC0495 0.017 0.024 0.009 0.111 -0.02 0.067 0.028 -0.007 0.026 0.029 0.066

VC0496 0.108 0.045 0.03 0.073 0.216 -0.005 0.041 0.049 -0.034 0.035 0.02

VC0497 0.018 0.018 -0.011 0.06 0.023 0.085 0.037 -0.008 0.005 -0.065 0.14

VC0498 -0.022 -0.005 0.005 0.017 0.058 0.064 0.012 -0.01 -0.052 -0.145 -0.06

VC0502 -0.004 0.01 -0.01 0.123 0.095 0.128 0.154 0.09 0.012 0.14 -0.046

VC0503 -0.007 0.064 -0.003 0.098 -0.022 0.174 0.1 0.045 0.1 -0.011 0.204

VC0504 0.389 0.09 0.369 0.003 0.161 -0.004 -0.002 -0.01 0.028 0.03 0.021

VC0505 1 0.026 0.162 0.005 0.081 -0.003 0.025 0.031 -0.022 -0.025 -0.036

VC0506 0.026 1 0.024 0.008 0.213 0.008 -0.048 0.035 -0.008 -0.009 0.044

VC0507 0.162 0.024 1 0.016 -0.023 0.003 -0.025 0.018 0.032 0.004 -0.008

VC0508 0.005 0.008 0.016 1 0.237 0.047 0.048 0.044 -0.069 0.061 0.111

VC0509 0.081 0.213 -0.023 0.237 1 0.002 -0.086 0.095 0.113 0.042 0.018

VC0510 -0.003 0.008 0.003 0.047 0.002 1 0.153 0.005 0.026 0.081 0.014

VC0512 0.025 -0.048 -0.025 0.048 -0.086 0.153 1 -0.006 0.509 0.112 0.032

VC0513 0.031 0.035 0.018 0.044 0.095 0.005 -0.006 1 0.044 0.034 -0.004

VC0514 -0.022 -0.008 0.032 -0.069 0.113 0.026 0.509 0.044 1 -0.105 0.056

VC0515 -0.025 -0.009 0.004 0.061 0.042 0.081 0.112 0.034 -0.105 1 -0.059

VC0516 -0.036 0.044 -0.008 0.111 0.018 0.081 0.014 0.032 -0.004 -0.004 1

wij = -1 genes i and j never occur in the same species

wij = 0 expected co-occurrence between unrelated genes i and j drawn from a normal distribution

wij > 0.045 suggests shared biological function (Kim and Peterson 2011)

wij = 1 genes i and j always occur in the same species
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