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Abstract 16 

Modern human contamination is a common problem in ancient DNA studies. We provide evidence 17 

that this issue is also present in studies in great apes, which are our closest living relatives, for 18 

example in non-invasive samples. Here, we present a simple method to detect human contamination 19 

in short read sequencing data from different species. We demonstrate its feasibility using blood and 20 

tissue samples from these species. This test is particularly useful for more complex samples (such as 21 

museum and non-invasive samples) which have smaller amounts of endogenous DNA, as we show 22 

here. 23 
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Significance statement 28 

Human contamination can be a confounding factor in genomic studies, especially in the case of fecal, 29 

museum or ancient DNA from great apes. It is important for quality assessment, screening purposes 30 

and prioritization to identify and quantify such contamination. The tool presented here is a simple and 31 

versatile method for this purpose, and can be applied to a wide range of sample types. 32 

 33 

Main text 34 

Contamination from exogenous sources is a problem common in ancient DNA, where multiple tools 35 

exist (Peyrégne & Prüfer 2020), as well as in studies of non-human primates (Prado-Martinez et al. 36 

2013). Specifically, human contamination may occur in great ape samples of various origin and 37 
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quality. Previously, differences in the mitochondrial genome between species were used to assess 38 

contamination (Prado-Martinez et al. 2013), which is a sensible strategy for high-coverage data. 39 

However, this approach is of limited use for shallow shotgun sequencing, especially of samples with 40 

low endogenous DNA content, such as fecal, historical, or ancient samples, as well as sequencing data 41 

obtained after enrichment through capture (Fontsere et al. 2020). Here, we devise a strategy based on 42 

diagnostic sites dispersed across the autosomes which can help detecting human contamination in an 43 

unbiased manner and with sparse data available. 44 

 45 

Determination of diagnostic sites 46 

We used previously published diversity data on high-coverage genomes from all great apes and 47 

modern humans (Table S1, Figure 1A), specifically, genomes from 58 chimpanzees and 10 bonobos 48 

(Pan clade) (Prado-Martinez et al. 2013; De Manuel et al. 2016), 43 gorillas (Gorilla clade) (Prado-49 

Martinez et al. 2013; Xue et al. 2015), 27 orangutans (Pongo clade) (Prado-Martinez et al. 2013; 50 

Nater et al. 2017) and 19 modern humans (Mallick et al. 2016). All genomes were processed as 51 

described previously (De Manuel et al. 2016): Sequencing data was mapped to the human genome 52 

(hg19) using BWA-MEM 0.7.7 (Li & Durbin 2009), PCR duplicates were removed using samtools 53 

(Li et al. 2009), and reads were locally realigned around indels using the GATK IndelRealigner 3.4-54 

46 (McKenna et al. 2010). Genotypes were obtained individually using GATK UnifiedGenotyper 55 

with the EMIT_ALL_SITES parameter, and GVCFs from individuals were merged with GATK 56 

CombineVariants. The three species complexes Pan, Gorilla and Pongo were then filtered separately: 57 

Biallelic SNPs within each species complex together with humans were retrieved, and filtered to 58 

exclude repetitive regions of the genome and regions with low mappability (35mer mappability). 59 

Finally, for each individual, genotypes were set to missing at sequencing coverage lower than 6 and 60 

higher than 100, and with a mapping quality lower than 20. 61 

We retrieved SNPs where at least 98% of the chromosomes in the species complex showed the 62 

alternative allele (different from the human reference), with less than 5% of missing genotypes, and 63 

where all modern human chromosomes included in this study carried the human reference allele, 64 

without allowing for missing genotypes. We allowed for residual amounts of human-reference-like 65 

genotypes in the great ape species, to account for residual sources of error in the reference set that 66 

might result in erroneous rare variation, and we deemed tolerating these a conservative strategy for 67 

determining diagnostic sites. Across the whole genome, we find 4,460,987 diagnostic sites for Pan 68 

species, 6,981,108 diagnostic sites for Gorilla species, and 7,518,570 diagnostic sites for Pongo 69 

species. The differences between species are partially explained by their evolutionary divergence to 70 

humans (Kaessmann & Pääbo 2002; Kuhlwilm et al. 2016; Prado-Martinez et al. 2013), but also the 71 

number of individuals used, as well as sequencing quality and coverage. We used the R package 72 

rtracklayer (Lawrence et al. 2009) to perform a liftover of these positions to the human genome 73 

version 38 (GRCh38). 74 

 75 
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 76 

Fig. 1. Summary of this study. A) Schematic tree of the great ape species, with approximate 77 

divergence times (Besenbacher et al. 2019). B) Schematic representation of the method. C) 78 

Performance of detection of in silico-contamination in a gradient from ~0.1-39%, point estimate ± one 79 

standard deviation. D) Performance when downsampling sequencing data from fecal samples with 1-80 

3.5% of human contamination. Point estimates ± one standard deviation. E) Contamination estimates 81 

of blood samples for sequencing libraries from all species (red; bonobo N=52, chimpanzee N=15; 82 

gorilla/orangutan N=47), fecal samples before and after capture (brown; N=109, without sample 83 

N42003 which has high levels of non-great ape contamination), museum samples (grey; N=8) and 84 

RNA sequencing data (green; N=4). 85 

 86 
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Contamination assessment and performance 87 

Contamination is defined here as the proportion of observed human reference alleles at diagnostic 88 

positions in short sequencing reads (Figure 1B). The test itself is wrapped in an R script (confirmed to 89 

work with R versions 3.2.0, 3.4.4, 3.5.0, 3.6.0, and 4.0.1 (R Core Team 2015)), to directly process the 90 

number of reads carrying the reference or the alternative allele. We use samtools mpileup (tested for 91 

version 1.0 and 1.9) to obtain read depth and alternative read depth at diagnostic sites, and join these 92 

data with information on the alternative allele in the test species. We then calculate the number of 93 

reads matching the target species complex allele, and subtract this value from the total read depth, 94 

thus retrieving the number of reads matching the human reference allele (more strictly, not matching 95 

the target species allele). We perform this calculation for each chromosome separately in order to 96 

obtain the standard variation, and report the genome-wide point estimate, one standard deviation, and 97 

the number of positions observed by the test. The latter value is useful to assess the reliability of the 98 

test at extremely shallow sequencing. The test can be applied to files with a bam or cram extension, 99 

containing short sequencing reads mapped to the human genome (hg19 or GRCh38). The basic 100 

filtering at this step can be simple, but it is advisable to remove adapter sequences (Schubert et al. 101 

2016) and PCR duplicates to assess the unique contaminant fraction, as well as unmapped reads, non-102 

primary alignments and sequences with a low mapping quality (<30). We specifically recommend 103 

filtering the sequences on fragment/insert length to avoid spurious alignments, which may happen at a 104 

high rate in the case of samples with large amounts of bacterial DNA (Meyer et al. 2016). 105 

We tested the contamination test by artificially introducing modern human sequencing reads into bam 106 

files from the other species (in silico contamination), using eight human individuals that were not part 107 

of the reference panel (Table S2) (Auton et al. 2015), and great ape samples from other studies (Locke 108 

et al. 2011; Prüfer et al. 2012; Besenbacher et al. 2019). First, each human bam file was downsampled 109 

to ~1.14M reads and merged with a chimpanzee bam file (ERR032960), to simulate ~5% of human 110 

contamination. Since the read length differs between sequencing libraries from different studies, we 111 

account for the expected amount of human contamination by using the percentage of human base 112 

pairs added to the final bam file. After running the human contamination test in each file, we detect an 113 

average of 5.5% human contamination (Table S2), with minimal differences between humans from 114 

different world regions. When testing a gradient of increasing amounts of introduced human 115 

sequences from ~0.1% to ~39% to a chimpanzee bam file (Table S3, Figure 1C), the contamination is 116 

estimated correctly. The test is performing well for in silico contamination from modern humans in 117 

each of the great ape species (Table S4).  118 

We also determined the inferred amount in the case of cross-testing, i.e. performing the test of 119 

species-specific sites from other species (Table S5). Here, we find estimates of 44-82% attributed to 120 

contamination, depending on the species combination, which is a consequence of the shared ancestry 121 

between humans and the other species. This demonstrates that the test is species-specific, and large 122 

amounts of reads that do not carry species-specific alleles will be detected when a different primate 123 

species is present. 124 

 125 

Application to other sample types 126 

We first applied the test to blood samples from all great ape species, which are generally expected to 127 

contain at most small amounts of human contamination. For 67 randomly chosen sequencing libraries 128 

from seven chimpanzee and four bonobo individuals (Prüfer et al. 2012), we found an average of 129 
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0.28% (0.13-0.61%) of reads that are putatively due to human contamination (Figure 1E). Four tissue 130 

samples from chimpanzees (White et al. 2019) show low estimates of contamination (0.03-0.067%), 131 

as expected for samples likely not containing true contamination. Similar results are obtained for four 132 

libraries from gorilla (0.033-0.159%, on average 0.075%) and 43 libraries from orangutan (0.08-133 

0.35%, on average 0.22%) blood samples (Besenbacher et al. 2019; Locke et al. 2011). We conclude 134 

that traces of putative human contamination are observed, if at all, only at very small amounts in 135 

sequencing data from great ape blood samples. These estimates are conservative, since sequencing 136 

errors, mapping reference bias and variation in these individuals may contribute to these numbers, 137 

especially considering that error rates of these sequencing technologies were decreasing after the 138 

publication of some of these studies (Prüfer et al. 2012; Locke et al. 2011). We also note that results 139 

for data mapped to hg19 and hg38 are almost identical (Table S6). 140 

We then applied the contamination test to non-invasive samples which usually contain small amounts 141 

of host DNA, and may require target hybridization methods to obtain sufficient data (Hernandez-142 

Rodriguez et al. 2017; Fontsere et al. 2020). We applied our method to shotgun and exome capture 143 

sequencing data that were obtained from the same 109 sequencing libraries from chimpanzee fecal 144 

samples (White et al. 2019). We found an average of 0.35% (0-24.6%) human contamination for the 145 

pre-capture (shotgun) and 0.32% (0.05-21%) human contamination in the post-capture (enriched) 146 

sequencing data (Table S6, Figure 1E), with strong correlation for the same samples (r=0.99, p-value 147 

< 2.2x10-16). We find one sample with an estimate of 24.6% and three more samples with more than 148 

1% of human contamination (Table S6). In case of fecal samples collected from the field that may 149 

contain other mammalian DNA than the target species through diet or mis-identification, it is 150 

advisable to perform a competitive mapping of sequences when large amounts of contamination are 151 

detected. This will help to determine the species of origin, for example using BBSplit 152 

(https://sourceforge.net/projects/bbmap/) with a reference panel of great apes, and possibly other 153 

primate species living in the same habitat. We applied this method to these four samples 154 

(N42003_Shotgun1, N31908_Shotgun1, N33104_Shotgun1 and N41207_Shotgun1), and find that the 155 

main contaminant in one sample is most likely another primate rather than human (Table S7). It is 156 

known that chimpanzees hunt other primates (Boesch & Boesch 1989), and DNA from primate prey 157 

can persist in the feces. We conclude that the design of the contamination test presented here is able to 158 

identify reads carrying mutations that differ from the target species, even if these are not human-159 

specific. When applying BBsplit method to in silico-contaminated samples, we confirm humans as the 160 

source of the contamination – although with less precision regarding the amount of contamination 161 

when compared to our method – while the majority of unambiguously mapped sequences align to the 162 

target species (Table S7). 163 

Our analysis shows that DNA extracts/libraries from fecal samples are occasionally contaminated, and 164 

may need to be removed from certain downstream analyses. Hence, it is advisable to perform a 165 

contamination test for sequencing data from this type of sample, comparable to ancient and historical 166 

samples. We assessed the power to detect human contamination with very shallow sequencing, by 167 

downsampling the sequencing reads of the three fecal samples from White et al. (N31908_Shotgun1, 168 

N33104_Shotgun1 and N41207_Shotgun1) with 1-3.5% human contamination. We downsampled 169 

these in several steps down to ~1,000 production reads (Table S8), and calculated the estimated 170 

amount of human contamination. These results (Figure 1D) confirm that our method is robust in 171 

confidently detecting human contamination even in the case of very shallow sequencing, as low as 172 

~1,000 reads aligned to the human reference genome, although with high standard deviation. In the 173 

case of fecal samples with around 5% of estimated hDNA, this could be as little as ~20,000 174 
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production reads, making the test applicable to shallow data from an initial screening procedure 175 

(Fontsere et al. 2020). 176 

We also applied the test to published sequencing data from eight museum samples from gorillas (van 177 

der Valk et al. 2019). Here, we find an estimated contamination of on average 0.68% (0.55-0.72%), 178 

which is slightly lower than the reported estimates which were based on mitochondrial diagnostic loci 179 

(0.28-1.67%, on average 1%), and slightly higher than estimates for blood samples, as expected for 180 

museum specimens that have been handled by humans. Contamination estimates from mitochondrial 181 

and nuclear loci from the same sample have been found to not be identical in hominin samples (Prüfer 182 

et al. 2014), and at shallow sequencing coverage a small number of reads would overlap with 183 

mitochondrial diagnostic loci. Still, the differences between these methods are minor, and results on 184 

data mapped to hg19 and hg38 are almost identical (Table S6), as is the case for blood samples. 185 

Finally, we performed the contamination test on RNA-sequencing data from great ape tissue samples 186 

(Brawand et al. 2011), mapped using tophat2 (Kim et al. 2013). We find slightly higher amounts of 187 

contamination (Table S6), either due to real contamination in the samples, or to higher error rates and 188 

mapping bias in transcriptome data compared to genome sequencing data. 189 

 190 

Method availability 191 

The contamination test script including documentation is publicly available on GitHub: 192 

https://github.com/kuhlwilm/HuConTest. Files with the diagnostic positions are publicly available on 193 

FigShare (doi:10.6084/m9.figshare.14237834). 194 

 195 

Data availability 196 

There are no new data associated with this article. 197 
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