

1 **HuConTest: Testing human contamination in great ape samples**

2 Martin Kuhlwilm^{1*}, Claudia Fontseré¹, Sojung Han¹, Marina Alvarez-Esteve¹, Tomas Marques-
3 Bonet^{1,2,3,4}

4

5 ¹ Institut de Biología Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88,
6 Barcelona, Catalonia 08003, Spain.

7 ² CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and
8 Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.

9 ³ Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain.

10 ⁴ Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici
11 ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain

12

13 * Author for Correspondence: Martin Kuhlwilm, Universitat Pompeu Fabra, Barcelona, Spain,
14 martin.kuhlwilm@upf.edu

15

16 **Abstract**

17 Modern human contamination is a common problem in ancient DNA studies. We provide evidence
18 that this issue is also present in studies in great apes, which are our closest living relatives, for
19 example in non-invasive samples. Here, we present a simple method to detect human contamination
20 in short read sequencing data from different species. We demonstrate its feasibility using blood and
21 tissue samples from these species. This test is particularly useful for more complex samples (such as
22 museum and non-invasive samples) which have smaller amounts of endogenous DNA, as we show
23 here.

24

25 **Key words**

26 Contamination; non-human primates; next generation sequencing; fecal DNA; ancient DNA

27

28 **Significance statement**

29 Human contamination can be a confounding factor in genomic studies, especially in the case of fecal,
30 museum or ancient DNA from great apes. It is important for quality assessment, screening purposes
31 and prioritization to identify and quantify such contamination. The tool presented here is a simple and
32 versatile method for this purpose, and can be applied to a wide range of sample types.

33

34 **Main text**

35 Contamination from exogenous sources is a problem common in ancient DNA, where multiple tools
36 exist (Peyrégne & Prüfer 2020), as well as in studies of non-human primates (Prado-Martinez et al.
37 2013). Specifically, human contamination may occur in great ape samples of various origin and

38 quality. Previously, differences in the mitochondrial genome between species were used to assess
39 contamination (Prado-Martinez et al. 2013), which is a sensible strategy for high-coverage data.
40 However, this approach is of limited use for shallow shotgun sequencing, especially of samples with
41 low endogenous DNA content, such as fecal, historical, or ancient samples, as well as sequencing data
42 obtained after enrichment through capture (Fontserè et al. 2020). Here, we devise a strategy based on
43 diagnostic sites dispersed across the autosomes which can help detecting human contamination in an
44 unbiased manner and with sparse data available.

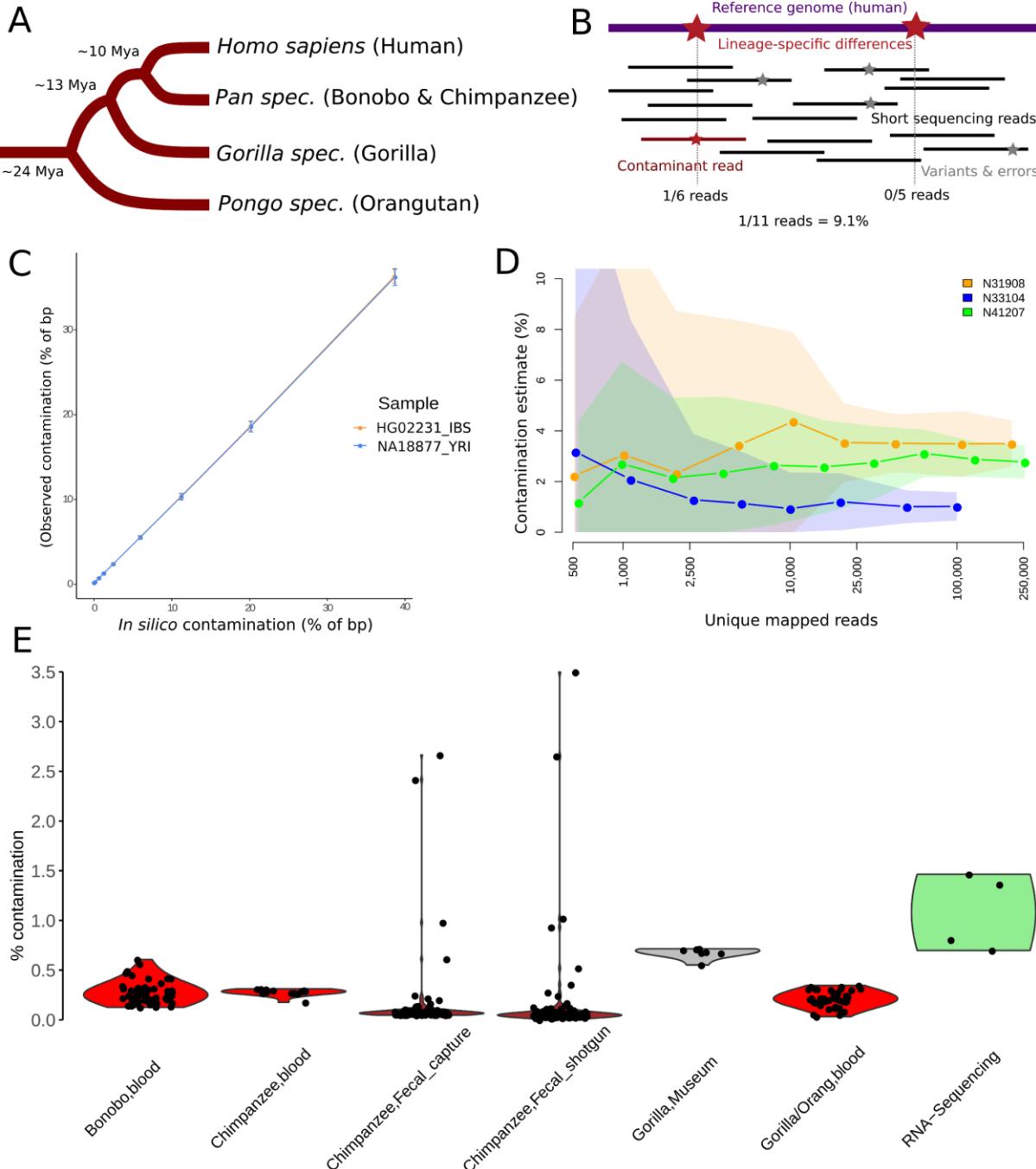
45

46 **Determination of diagnostic sites**

47 We used previously published diversity data on high-coverage genomes from all great apes and
48 modern humans (Table S1, Figure 1A), specifically, genomes from 58 chimpanzees and 10 bonobos
49 (*Pan* clade) (Prado-Martinez et al. 2013; De Manuel et al. 2016), 43 gorillas (*Gorilla* clade) (Prado-
50 Martinez et al. 2013; Xue et al. 2015), 27 orangutans (*Pongo* clade) (Prado-Martinez et al. 2013;
51 Nater et al. 2017) and 19 modern humans (Mallick et al. 2016). All genomes were processed as
52 described previously (De Manuel et al. 2016): Sequencing data was mapped to the human genome
53 (hg19) using BWA-MEM 0.7.7 (Li & Durbin 2009), PCR duplicates were removed using samtools
54 (Li et al. 2009), and reads were locally realigned around indels using the GATK IndelRealigner 3.4-
55 46 (McKenna et al. 2010). Genotypes were obtained individually using GATK UnifiedGenotyper
56 with the EMIT_ALL_SITES parameter, and GVCFs from individuals were merged with GATK
57 CombineVariants. The three species complexes *Pan*, *Gorilla* and *Pongo* were then filtered separately:
58 Biallelic SNPs within each species complex together with humans were retrieved, and filtered to
59 exclude repetitive regions of the genome and regions with low mappability (35mer mappability).
60 Finally, for each individual, genotypes were set to missing at sequencing coverage lower than 6 and
61 higher than 100, and with a mapping quality lower than 20.

62 We retrieved SNPs where at least 98% of the chromosomes in the species complex showed the
63 alternative allele (different from the human reference), with less than 5% of missing genotypes, and
64 where all modern human chromosomes included in this study carried the human reference allele,
65 without allowing for missing genotypes. We allowed for residual amounts of human-reference-like
66 genotypes in the great ape species, to account for residual sources of error in the reference set that
67 might result in erroneous rare variation, and we deemed tolerating these a conservative strategy for
68 determining diagnostic sites. Across the whole genome, we find 4,460,987 diagnostic sites for *Pan*
69 species, 6,981,108 diagnostic sites for *Gorilla* species, and 7,518,570 diagnostic sites for *Pongo*
70 species. The differences between species are partially explained by their evolutionary divergence to
71 humans (Kaessmann & Pääbo 2002; Kuhlwilm et al. 2016; Prado-Martinez et al. 2013), but also the
72 number of individuals used, as well as sequencing quality and coverage. We used the R package
73 rtracklayer (Lawrence et al. 2009) to perform a liftover of these positions to the human genome
74 version 38 (GRCh38).

75



76

77 **Fig. 1.** Summary of this study. A) Schematic tree of the great ape species, with approximate
78 divergence times (Besenbacher et al. 2019). B) Schematic representation of the method.
79 C) Performance of detection of *in silico*-contamination in a gradient from ~0.1-39%, point estimate \pm one
80 standard deviation. D) Performance when downsampling sequencing data from fecal samples with 1-
81 3.5% of human contamination. Point estimates \pm one standard deviation. E) Contamination estimates
82 of blood samples for sequencing libraries from all species (red; bonobo N=52, chimpanzee N=15;
83 gorilla/orangutan N=47), fecal samples before and after capture (brown; N=109, without sample
84 N42003 which has high levels of non-great ape contamination), museum samples (grey; N=8) and
85 RNA sequencing data (green; N=4).

86

87 **Contamination assessment and performance**

88 Contamination is defined here as the proportion of observed human reference alleles at diagnostic
89 positions in short sequencing reads (Figure 1B). The test itself is wrapped in an R script (confirmed to
90 work with R versions 3.2.0, 3.4.4, 3.5.0, 3.6.0, and 4.0.1 (R Core Team 2015)), to directly process the
91 number of reads carrying the reference or the alternative allele. We use samtools mpileup (tested for
92 version 1.0 and 1.9) to obtain read depth and alternative read depth at diagnostic sites, and join these
93 data with information on the alternative allele in the test species. We then calculate the number of
94 reads matching the target species complex allele, and subtract this value from the total read depth,
95 thus retrieving the number of reads matching the human reference allele (more strictly, not matching
96 the target species allele). We perform this calculation for each chromosome separately in order to
97 obtain the standard variation, and report the genome-wide point estimate, one standard deviation, and
98 the number of positions observed by the test. The latter value is useful to assess the reliability of the
99 test at extremely shallow sequencing. The test can be applied to files with a bam or cram extension,
100 containing short sequencing reads mapped to the human genome (hg19 or GRCh38). The basic
101 filtering at this step can be simple, but it is advisable to remove adapter sequences (Schubert et al.
102 2016) and PCR duplicates to assess the unique contaminant fraction, as well as unmapped reads, non-
103 primary alignments and sequences with a low mapping quality (<30). We specifically recommend
104 filtering the sequences on fragment/insert length to avoid spurious alignments, which may happen at a
105 high rate in the case of samples with large amounts of bacterial DNA (Meyer et al. 2016).

106 We tested the contamination test by artificially introducing modern human sequencing reads into bam
107 files from the other species (*in silico* contamination), using eight human individuals that were not part
108 of the reference panel (Table S2) (Auton et al. 2015), and great ape samples from other studies (Locke
109 et al. 2011; Prüfer et al. 2012; Besenbacher et al. 2019). First, each human bam file was downsampled
110 to ~1.14M reads and merged with a chimpanzee bam file (ERR032960), to simulate ~5% of human
111 contamination. Since the read length differs between sequencing libraries from different studies, we
112 account for the expected amount of human contamination by using the percentage of human base
113 pairs added to the final bam file. After running the human contamination test in each file, we detect an
114 average of 5.5% human contamination (Table S2), with minimal differences between humans from
115 different world regions. When testing a gradient of increasing amounts of introduced human
116 sequences from ~0.1% to ~39% to a chimpanzee bam file (Table S3, Figure 1C), the contamination is
117 estimated correctly. The test is performing well for *in silico* contamination from modern humans in
118 each of the great ape species (Table S4).

119 We also determined the inferred amount in the case of cross-testing, i.e. performing the test of
120 species-specific sites from other species (Table S5). Here, we find estimates of 44-82% attributed to
121 contamination, depending on the species combination, which is a consequence of the shared ancestry
122 between humans and the other species. This demonstrates that the test is species-specific, and large
123 amounts of reads that do not carry species-specific alleles will be detected when a different primate
124 species is present.

125

126 **Application to other sample types**

127 We first applied the test to blood samples from all great ape species, which are generally expected to
128 contain at most small amounts of human contamination. For 67 randomly chosen sequencing libraries
129 from seven chimpanzee and four bonobo individuals (Prüfer et al. 2012), we found an average of

130 0.28% (0.13-0.61%) of reads that are putatively due to human contamination (Figure 1E). Four tissue
131 samples from chimpanzees (White et al. 2019) show low estimates of contamination (0.03-0.067%),
132 as expected for samples likely not containing true contamination. Similar results are obtained for four
133 libraries from gorilla (0.033-0.159%, on average 0.075%) and 43 libraries from orangutan (0.08-
134 0.35%, on average 0.22%) blood samples (Besenbacher et al. 2019; Locke et al. 2011). We conclude
135 that traces of putative human contamination are observed, if at all, only at very small amounts in
136 sequencing data from great ape blood samples. These estimates are conservative, since sequencing
137 errors, mapping reference bias and variation in these individuals may contribute to these numbers,
138 especially considering that error rates of these sequencing technologies were decreasing after the
139 publication of some of these studies (Prüfer et al. 2012; Locke et al. 2011). We also note that results
140 for data mapped to hg19 and hg38 are almost identical (Table S6).

141 We then applied the contamination test to non-invasive samples which usually contain small amounts
142 of host DNA, and may require target hybridization methods to obtain sufficient data (Hernandez-
143 Rodriguez et al. 2017; Fontseré et al. 2020). We applied our method to shotgun and exome capture
144 sequencing data that were obtained from the same 109 sequencing libraries from chimpanzee fecal
145 samples (White et al. 2019). We found an average of 0.35% (0-24.6%) human contamination for the
146 pre-capture (shotgun) and 0.32% (0.05-21%) human contamination in the post-capture (enriched)
147 sequencing data (Table S6, Figure 1E), with strong correlation for the same samples ($r=0.99$, p -value
148 $< 2.2 \times 10^{-16}$). We find one sample with an estimate of 24.6% and three more samples with more than
149 1% of human contamination (Table S6). In case of fecal samples collected from the field that may
150 contain other mammalian DNA than the target species through diet or mis-identification, it is
151 advisable to perform a competitive mapping of sequences when large amounts of contamination are
152 detected. This will help to determine the species of origin, for example using BBSSplit
153 (<https://sourceforge.net/projects/bbmap/>) with a reference panel of great apes, and possibly other
154 primate species living in the same habitat. We applied this method to these four samples
155 (N42003_Shotgun1, N31908_Shotgun1, N33104_Shotgun1 and N41207_Shotgun1), and find that the
156 main contaminant in one sample is most likely another primate rather than human (Table S7). It is
157 known that chimpanzees hunt other primates (Boesch & Boesch 1989), and DNA from primate prey
158 can persist in the feces. We conclude that the design of the contamination test presented here is able to
159 identify reads carrying mutations that differ from the target species, even if these are not human-
160 specific. When applying BBSSplit method to *in silico*-contaminated samples, we confirm humans as the
161 source of the contamination – although with less precision regarding the amount of contamination
162 when compared to our method – while the majority of unambiguously mapped sequences align to the
163 target species (Table S7).

164 Our analysis shows that DNA extracts/libraries from fecal samples are occasionally contaminated, and
165 may need to be removed from certain downstream analyses. Hence, it is advisable to perform a
166 contamination test for sequencing data from this type of sample, comparable to ancient and historical
167 samples. We assessed the power to detect human contamination with very shallow sequencing, by
168 downsampling the sequencing reads of the three fecal samples from White et al. (N31908_Shotgun1,
169 N33104_Shotgun1 and N41207_Shotgun1) with 1-3.5% human contamination. We downsampled
170 these in several steps down to \sim 1,000 production reads (Table S8), and calculated the estimated
171 amount of human contamination. These results (Figure 1D) confirm that our method is robust in
172 confidently detecting human contamination even in the case of very shallow sequencing, as low as
173 \sim 1,000 reads aligned to the human reference genome, although with high standard deviation. In the
174 case of fecal samples with around 5% of estimated hDNA, this could be as little as \sim 20,000

175 production reads, making the test applicable to shallow data from an initial screening procedure
176 (Fontseré et al. 2020).

177 We also applied the test to published sequencing data from eight museum samples from gorillas (van
178 der Valk et al. 2019). Here, we find an estimated contamination of on average 0.68% (0.55-0.72%),
179 which is slightly lower than the reported estimates which were based on mitochondrial diagnostic loci
180 (0.28-1.67%, on average 1%), and slightly higher than estimates for blood samples, as expected for
181 museum specimens that have been handled by humans. Contamination estimates from mitochondrial
182 and nuclear loci from the same sample have been found to not be identical in hominin samples (Prüfer
183 et al. 2014), and at shallow sequencing coverage a small number of reads would overlap with
184 mitochondrial diagnostic loci. Still, the differences between these methods are minor, and results on
185 data mapped to hg19 and hg38 are almost identical (Table S6), as is the case for blood samples.
186 Finally, we performed the contamination test on RNA-sequencing data from great ape tissue samples
187 (Brawand et al. 2011), mapped using tophat2 (Kim et al. 2013). We find slightly higher amounts of
188 contamination (Table S6), either due to real contamination in the samples, or to higher error rates and
189 mapping bias in transcriptome data compared to genome sequencing data.

190

191 **Method availability**

192 The contamination test script including documentation is publicly available on GitHub:
193 <https://github.com/kuhlwilm/HuConTest>. Files with the diagnostic positions are publicly available on
194 FigShare (doi:10.6084/m9.figshare.14237834).

195

196 **Data availability**

197 There are no new data associated with this article.

198

199 **Acknowledgments**

200 We thank Marc de Manuel for help with data preparation. M.K. is supported by “la Caixa”
201 Foundation (ID 100010434), fellowship code LCF/BQ/PR19/11700002. M.A.E. is supported by an
202 FPI (Formación de Personal Investigador) PRE2018-083966 from Ministerio de Ciencia,
203 Universidades e Investigación. T.M.-B is supported by funding from the European Research Council
204 (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
205 agreement No. 864203), BFU2017-86471-P (MINECO/FEDER, UE), “Unidad de Excelencia María
206 de Maeztu”, funded by the AEI (CEX2018-000792-M), Howard Hughes International Early Career,
207 Obra Social “La Caixa” and Secretaria d’Universitats i Recerca and CERCA Programme del
208 Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880).

209

210 **References**

211 Auton A et al. 2015. A global reference for human genetic variation. *Nature*. 526:68–74. doi:
212 10.1038/nature15393.

213 Besenbacher S, Hvilsom C, Marques-Bonet T, Mailund T, Schierup MH. 2019. Direct estimation of
214 mutations in great apes reconciles phylogenetic dating. *Nat. Ecol. Evol.* 3:286–292. doi:
215 10.1038/s41559-018-0778-x.

216 Boesch C, Boesch H. 1989. Hunting behavior of wild chimpanzees in the Taï National Park. *Am. J.*
217 *Phys. Anthropol.* 78:547–573. doi: <https://doi.org/10.1002/ajpa.1330780410>.

218 Brawand D et al. 2011. The evolution of gene expression levels in mammalian organs. *Nature.* 478.
219 doi: 10.1038/nature10532.

220 Fontserè C et al. 2020. Maximizing the acquisition of unique reads in non- invasive capture
221 sequencing experiments. *Mol. Ecol. Resour.* 1755–0998.13300. doi: 10.1111/1755-0998.13300.

222 Hernandez-Rodriguez J et al. 2017. The impact of endogenous content, replicates and pooling on
223 genome capture from faecal samples. *Mol. Ecol. Resour.* doi: 10.1111/1755-0998.12728.

224 Kaessmann H, Pääbo S. 2002. The genetical history of humans and the great apes. *J. Intern. Med.*
225 251:1–18. doi: 10.1046/j.1365-2796.2002.00907.x.

226 Kim D et al. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions,
227 deletions and gene fusions. *Genome Biol.* 14:R36. doi: 10.1186/gb-2013-14-4-r36.

228 Kuhlwilm M et al. 2016. Evolution and demography of the great apes. *Curr. Opin. Genet. Dev.* doi:
229 10.1016/j.gde.2016.09.005.

230 Lawrence M, Gentleman R, Carey V. 2009. rtracklayer: an R package for interfacing with genome
231 browsers. *Bioinformatics.* 25:1841–1842. doi: 10.1093/bioinformatics/btp328.

232 Li H et al. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics.* 25:2078–
233 2079. doi: 10.1093/bioinformatics/btp352.

234 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
235 *Bioinformatics.* 25:1754–1760. doi: 10.1093/bioinformatics/btp324.

236 Locke DP et al. 2011. Comparative and demographic analysis of orang-utan genomes. *Nature.*
237 469:529–33. doi: 10.1038/nature09687.

238 Mallick S et al. 2016. The Simons genome diversity project: 300 genomes from 142 diverse
239 populations. *Nature.* 538. doi: 10.1038/nature18964.

240 De Manuel M et al. 2016. Chimpanzee genomic diversity reveals ancient admixture with bonobos.
241 *Science* (80-.). 354. doi: 10.1126/science.aag2602.

242 McKenna A et al. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-
243 generation DNA sequencing data. *Genome Res.* 20:1297–1303. doi: 10.1101/gr.107524.110.

244 Meyer M et al. 2016. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos
245 hominins. *Nature.* 1–15. doi: 10.1038/nature17405.

246 Nater A et al. 2017. Morphometric, Behavioral, and Genomic Evidence for a New Orangutan Species.
247 *Curr. Biol.* 27:3487-3498.e10. doi: 10.1016/j.cub.2017.09.047.

248 Peyrégne S, Prüfer K. 2020. Present-Day DNA Contamination in Ancient DNA Datasets. *BioEssays.*
249 42:2000081. doi: <https://doi.org/10.1002/bies.202000081>.

250 Prado-Martinez J et al. 2013. Great ape genetic diversity and population history. *Nature.* 499:471–5.
251 doi: 10.1038/nature12228.

252 Prüfer K et al. 2012. The bonobo genome compared with the chimpanzee and human genomes.

253 Nature. 486:527. doi: 10.1038/nature11128.

254 Prüfer K et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains.

255 Nature. 505:43–9. doi: 10.1038/nature12886.

256 R Core Team. 2015. R: A Language and Environment for Statistical Computing. <http://www.r-project.org/>.

257

258 Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming,

259 identification, and read merging. BMC Res. Notes. 9:88. doi: 10.1186/s13104-016-1900-2.

260 van der Valk T, Díez-del-Molino D, Marques-Bonet T, Gusshanski K, Dalén L. 2019. Historical

261 Genomes Reveal the Genomic Consequences of Recent Population Decline in Eastern Gorillas. Curr.

262 Biol. 29:165-170.e6. doi: 10.1016/j.cub.2018.11.055.

263 White LC et al. 2019. A roadmap for high-throughput sequencing studies of wild animal populations

264 using noninvasive samples and hybridization capture. Mol. Ecol. Resour. 19:609–622. doi:

265 <https://doi.org/10.1111/1755-0998.12993>.

266 Xue Y et al. 2015. Mountain gorilla genomes reveal the impact of long-term population decline and

267 inbreeding. Science (80-.). 348:242–245. doi: 10.1126/science.aaa3952.

268

269

270