

1 **Title:** Novel insights into joint estimations of demography, mutation rate, and selection using UV
2 sex chromosomes

3 **Short running Title:** Effect of anisogamy on molecular evolution

4

5 **Authors:** Sarah B. Carey^{1,§,‡}, James H. Peniston¹, Adam C. Payton^{1,2}, Min Kim³, Anna Lipzen⁴,
6 Diane Bauer⁴, Kathleen Lail⁴, Chris Daum⁴, Kerrie Barry⁴, Jerry Jenkins³, Jane Grimwood^{3,4},
7 Jeremy Schmutz^{3,4}, and Stuart F. McDaniel^{1,*}

8

9 **Affiliations:**

10 ¹Department of Biology, University of Florida, Gainesville, FL, USA

11 ²RAPiD Genomics, Gainesville, FL, USA

12 ³HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA

13 ⁴US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory,
14 Berkeley, CA, USA

15 [§]Current address: Department of Crop, Soil, and Environmental Sciences, Auburn University,
16 Auburn, AL, USA

17 [‡]Current address: HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA

18 *Corresponding author: stuartmcdaniel@ufl.edu

19

20 **Abstract:** A central goal in evolutionary genomics is to understand the processes that shape
21 genetic variation in natural populations. In anisogamous species, these processes may
22 generate asymmetries between genes transmitted through sperm or eggs. The unique
23 inheritance of sex chromosomes facilitates studying such asymmetries, but in many systems
24 sex-biased mutation, demography, and selection are confounded with suppressed
25 recombination in only one sex (the W in females, or the Y in males). However, in a UV sex-
26 determination system, both sex chromosomes are sex-specific and experience suppressed
27 recombination. Here we built a spatially-structured simulation to examine the effects of
28 population density and sex-ratio on female and male effective population size in haploids and
29 compare the results to polymorphism data from whole-genome resequencing of the moss
30 *Ceratodon purpureus*. In the parameter space we simulated, males nearly always had a lower
31 effective population size than females. Using the *C. purpureus* resequencing data, we found the
32 U and V have lower nucleotide diversity than the autosomal mean, and the V is much lower than
33 the U, however, we found no parameter set in the model that explained both the U/V and
34 U/autosome ratios we observed. We next used standard molecular evolutionary analyses to test
35 for sex-biased mutation and selection. We found that males had a higher mutation rate but that
36 natural selection shapes variation on the UV sex chromosomes. All together the moss system
37 highlights how anisogamy alone can exert a profound influence on genome-wide patterns of
38 molecular evolution.

39

40 **Keywords:** *Ceratodon purpureus*, effective population size, linked selection, male-mutation
41 bias, demography

42

43

Introduction

44 Anisogamy, the condition in which genetic information is transmitted from one generation
45 to the next through two different sized gametes, is widely shared among eukaryotes. The
46 smaller gametes, typically called sperm, are abundant and motile, while the larger gametes,
47 typically called eggs, are less abundant, better provisioned, and often sessile or retained on the
48 parent. In species with two separate sexes, males produce sperm and females produce eggs,
49 but of course many hermaphroditic species are also anisogamous. The asymmetry in gamete
50 transmission means that the demography of genes transmitted through the smaller gamete can
51 differ dramatically from the demography of genes transmitted through the larger gamete, even
52 under neutral-equilibrium conditions (Charlesworth, 2009). For an extreme example, consider a
53 population in which each egg-donor makes a single egg, but a single sperm-donor fertilizes all
54 the eggs, a pattern which maximizes the variance in reproductive success for the sperm donor
55 and dramatically reduces effective population size (N_e) (Crow & Kimura, 1970; Sewell Wright,
56 1938). Anisogamy may therefore modulate the strength of selection on genes influencing
57 transmission through sperm or eggs, potentially with major evolutionary consequences.

58 Most alleles are expressed in both females and males and therefore are transmitted
59 through both egg and sperm. Thus, the effects of anisogamy on patterns of polymorphism will
60 be averaged out across much of the genome. The sex chromosomes, however, are a major
61 exception, because their patterns of inheritance are correlated with gametic sex and therefore
62 record the history of sex-specific evolutionary processes (Caballero, 1995; Charlesworth, 2009;
63 Kirkpatrick & Hall, 2004; Lenormand & Dutheil, 2005; Pool & Nielsen, 2007). In species with an
64 XY sex-determination system, the Y chromosome is transmitted through males, meaning Y-
65 chromosome polymorphism is shaped by transmission through sperm. However, no X homolog
66 is transmitted exclusively through eggs because the X chromosome passes through both sexes.
67 Similarly, ZW systems share these asymmetries in transmission, although in this case the W is
68 female specific. In contrast, the UV sex chromosomes found in haploid systems with genetically-

69 determined separate sexes have symmetrical transmission; the U is transmitted through eggs
70 while the V is transmitted through sperm (Bachtrog et al., 2011; S. Carey, Kollar, & McDaniel,
71 2020). This inheritance pattern facilitates direct comparisons between female and male N_e using
72 homologous loci on the U and V.

73 Under the infinite-sites model, the equilibrium level of neutral variation depends only on
74 the mutation rate and N_e (Kimura, 1971). Male mutation rates may be higher than female rates,
75 a finding that is often attributed to an increased number of cell divisions in the male germline
76 (Hurst & Ellegren, 1998). It is unclear that this bias should apply to UV systems, which generally
77 lack a distinction between the germline and soma. Even if the sexes have identical mutation
78 rates, the levels of sex chromosome polymorphism are expected to be different than that for an
79 autosome simply due to their mode of inheritance. For example, in diploid systems, each mated
80 pair has three copies of an X or Z chromosome compared to four copies of each autosome and
81 only one Y or W. Thus, the expected N_e for an X or Z-linked locus is 3/4 of an autosome, while
82 the expected N_e for a Y or W-linked locus is 1/4 (when using discrete-generation approaches
83 and assuming a Poisson offspring number distribution) (Charlesworth, 2001). In contrast, in
84 haploid-dioecious systems, each mated pair has one U and one V for every two autosomes.
85 Thus, both the U and the V chromosomes are expected to have 1/2 N_e of an autosome, under
86 similarly-restricted conditions (Avia et al., 2018; McDaniel, Neubig, Payton, Quatrano, & Cove,
87 2013). In UV systems, mitochondria and chloroplasts are maternally inherited (i.e., also sex
88 specific) and expressed in the haploid stage, so they are also expected to have 1/2 N_e of an
89 autosome, while they are 1/4 N_e in diploids (Sayres, 2018).

90 Numerous other non-random processes can also cause the N_e of the sex chromosomes
91 to deviate from the infinite-sites expectations. These processes may act in concert with, or
92 independent of, the effects of anisogamy on N_e . Sexual selection, for example, often generates
93 greater variance in reproductive success in males, profoundly decreasing the N_e of Y-linked loci,
94 compared to X-linked loci or autosomes (Crow & Morton, 1955; Nunney, 1993). In discrete-

95 generation models, a large excess in variance of male reproductive success over Poisson
96 expectation causes ratios of sex chromosome and autosome polymorphism to approach
97 extreme values (e.g., $X/A=9/8$, $Y/A=1/8$, and $Y/X=1/9$; (Caballero, 1995)). Sex-ratio biases can
98 also drastically affect patterns of N_e . For example, in an XY system, the ratio of X to autosomal
99 diversity increases as the population becomes more female-biased, while the Y to autosome
100 ratio decreases (Ellegren, 2009; Sayres, 2018). Additional demographic or life history factors
101 may also drive species-specific variation in sex chromosome polymorphism. Age structure
102 (Charlesworth, 2001) or geographic structure, in which males and females experience different
103 migration patterns, can either moderate or exacerbate these biases (Goldberg & Rosenberg,
104 2015). Such processes and their effects on N_e have attracted relatively little attention in
105 bryophytes or other UV systems (but see (Bengtsson & Cronberg, 2009)).

106

107 Other forms of selection can also affect variation on sex chromosome and autosomes in
108 different ways, potentially enhancing any asymmetries in N_e among sex chromosomes. For
109 example, the X chromosome is hemizygous in males, which can increase directional selection
110 on male-beneficial recessive alleles and increase purifying selection on deleterious alleles
111 (Charlesworth, Coyne, & Barton, 1987). Similarly, the male-specific region of the Y chromosome
112 experiences suppressed recombination, meaning that linked selection drives patterns of
113 polymorphism (Charlesworth & Charlesworth, 2000; J. M. Smith & Haigh, 1974). Polymorphism
114 in mitochondrial and chloroplast DNA reflect female transmission and also exhibit suppressed
115 recombination, but because they replicate independently in the cytoplasm they may experience
116 unusual patterns of mutation or population size (D. R. Smith, 2015; Wolfe, Li, & Sharp, 1987).
117 Thus, tests for sex-biased evolutionary processes in XY or ZW systems typically must rely upon
118 comparisons among non-homologous loci that experience very different population genetic
119 environments. In contrast, both the U and V experience suppressed recombination, meaning
120 both the female and male-specific chromosomes are expected to experience an equivalent

121 decrease in nucleotide diversity due to suppressed recombination (Avia et al., 2018; McDaniel,
122 Neubig, et al., 2013).

123 Several sequenced UV sex chromosomes also maintain numerous homologs between
124 the sexes, despite the suppressed recombination, providing abundant genetic data to study sex-
125 specific variation (Ahmed et al., 2014; Bowman et al., 2017; S. B. Carey et al., 2020; Ferris et
126 al., 2010). Sex chromosome degeneration in UV systems appears to be largely halted by strong
127 purifying selection generated by haploid gene expression (S. B. Carey et al., 2020; Immler &
128 Otto, 2015). One of the most remarkable examples is the moss *Ceratodon purpureus* in which
129 the U and V sex chromosomes comprise ~30% of the ~360 megabase (Mb) genome for
130 females and males, respectively (S. B. Carey et al., 2020). The U and V also contain ~12% of
131 the organism's gene content, providing numerous U-V orthologs to study differences in their
132 molecular evolution (S. B. Carey et al., 2020). Nucleotide diversity data from a small number of
133 U and V-linked introns in *C. purpureus* suggested that female and male-transmitted loci
134 harbored similar amounts of genetic diversity, and both sexes showed indistinguishable patterns
135 of population differentiation, suggesting that female and male spores may have equal
136 probabilities of dispersing among populations (McDaniel, Neubig, et al., 2013). However, these
137 data were insufficient to test for modest differences between female and male N_e or mutation
138 rate.

139 The life cycle of *C. purpureus* is like that of many dioecious species with UV sex-
140 determination. Sexual reproduction typically occurs annually (Crum & Anderson, 1981; A. J.
141 Shaw & Gaughan, 1993). Haploid males release V-carrying motile sperm, which either swim or
142 are transported by microarthropods to egg-bearing females (Cronberg, Natcheva, & Hedlund,
143 2006; Rosenstiel, Shortlidge, Melnychenko, Pankow, & Eppley, 2012; Shortlidge et al., 2020),
144 potentially meters away (Glime & Bisang, 2017). Haploid females make several identical U-
145 carrying eggs, each enclosed in an archegonium. Although multiple eggs may be fertilized,
146 typically only one embryo (i.e., sporophyte) develops. At maturity a sporophyte makes

147 thousands of viable spores (Norrell, Jones, Payton, & McDaniel, 2014; A. J. Shaw & Gaughan,
148 1993; Shortlidge et al., 2020), most of which fall near the parent sporophyte, but some are
149 captured by air currents and travel great distances (Biersma et al., 2020; McDaniel & Shaw,
150 2005).

151 Demographically-informed expectations that specifically incorporate anisogamy are
152 necessary to fully understand the role of sex-specific evolutionary forces shaping patterns of
153 polymorphism in dioecious species. In principle, a single male could fertilize many nearby
154 females, an inference supported by field observations and experiments (Johnson & Shaw, 2016;
155 Shortlidge et al., 2020), which increases variance in male reproductive success. Many
156 bryophyte populations, including mosses, have an apparent female-biased sex ratio, due to sex-
157 biased differences in clonal growth rates, differences in mortality, or differences in the number of
158 fertile individuals during any given episode of reproduction, exacerbating this effect
159 (Baughman, Payton, Paasch, Fisher, & McDaniel, 2017; Bisang, Ehrlén, & Hedenäs, 2019;
160 Bisang & Hedenäs, 2005; Eppley et al., 2018; Norrell et al., 2014). The likelihood that a male
161 sires offspring with multiple genetically-distinct females depends upon the spatial distribution of
162 female and male genotypes, which in turn depends upon the recruitment of migrants and the
163 clonal spread of the constituents of the population. Populations of *C. purpureus*, which are
164 common in disturbed sites in temperate regions of all continents (Crum & Anderson, 1981),
165 grow in dense patches with many distinct genotypes in close proximity (McDaniel & Shaw,
166 2005) and have a highly-variable sex ratio (Eppley et al., 2018). Here we built a simulation
167 parameterized using life-history data from *C. purpureus* to evaluate the effect of demographic
168 variables (population density and sex ratio) on female and male N_e . We then compared the
169 simulated data to patterns of polymorphism in genome-wide resequence data from *C. purpureus*
170 to evaluate if the empirical observations could be explained by demographic processes alone.
171 Our results highlight the importance of considering the joint effects of demography, selection,
172 and mutation-rate variation in interpreting patterns of nucleotide polymorphism.

173

174

Materials and Methods

175 In this manuscript, we use the term ‘female’ to describe individuals that inherit XX, ZW, or U
176 chromosome(s) and produce eggs and we use the term ‘male’ to describe individuals that inherit
177 XY, ZZ, or V chromosome(s) and produce sperm. We use this designation because it captures
178 key aspects of transmission genetics, but we acknowledge that karyotypic sex does not always
179 align with gametic sex, so this definition misses important components of diversity within a
180 population or generation.

181

182 **Life history simulations.** To generate demographically-informed estimates for N_e of the U and
183 V sex chromosomes (N_{eU} and N_{eV} , respectively), we constructed a spatially-explicit simulation.
184 We made several assumptions based on the life cycle of *C. purpureus*, namely that every
185 individual was either male or female (i.e., there were no hermaphroditic individuals), and its sex
186 was genetically determined; that all reproduction occurs sexually; that mating occurs once per
187 generation and only occurred between adjacent males and females; and that each female
188 mated once per generation, but that a male could mate with any adjacent female (i.e., up to
189 eight females in the grid used in the simulations) during a bout of mating. We made a few
190 simplifying assumptions, namely that all individuals were capable of sexual reproduction; that
191 there was no mate preference; and that each mating event within a generation resulted in the
192 same number of offspring. To keep population size constant, we adjusted the fecundity so that
193 the mean number of offspring per individual was two. Therefore, the fecundity F was given by F
194 = $2/r$, where r is the mean number of females that each male mated with that generation.
195 Relaxing these assumptions, which are clearly violated in nature (e.g., clonal growth is frequent)
196 can increase the variance in reproductive success in either sex, but in general should not
197 qualitatively affect the results.

198 For each run of the simulation (equivalent to one generation of mating), individuals were
199 randomly placed onto a 100 X 100 cell grid. Females mated in a random order. Each female
200 searched the eight adjacent cells to it for males to mate with. If there was more than one
201 adjacent male, the female randomly selected one of them to mate with. If no males were in the
202 cells adjacent to the female, that female did not mate. An example of the population following
203 one run of the simulation can be seen in Figure S1. All simulations were run in R (3.5.1; (R Core
204 Team, 2013) and plotted using the packages reshape2 (v1.4.3; (Wickham, 2007, 2012) and
205 ggplot2 (v3.2.1; (Wickham, 2016)).

206 For each run of the simulation, we recorded the total number of offspring per each male
207 and female (females could only have 0 or F offspring) and calculated the variance in
208 reproductive success for each sex. The variances in reproductive success were then used to
209 calculate the N_e of the U (females) and V (males) chromosomes, using the following equations
210 (1), respectively

$$\begin{aligned} N_{eU} &= (N_f - 1) / V_f & (1) \\ N_{eV} &= (N_m - 1) / V_m, \end{aligned}$$

211 where N_f and N_m are the census population sizes and V_f and V_m are the variances in
212 reproductive success of females and males, respectively. The N_e of an autosome is calculated
213 using the equation 2 (Crow & Kimura, 1970)

$$N_{eA} = \frac{4N_{eU}N_{eV}}{N_{eU} + N_{eV}}, \quad (2)$$

214 (derivations of equations 1 and 2 can be found in the Supplementary Appendix, Part 1).

215 To evaluate a variety of demographic scenarios, we ran simulations for a range of
216 population densities and sex ratios. To vary density, we varied the population size while always
217 keeping the arena of a fixed size of 100 X 100 cells. For each parameter set, we generated 100
218 runs of the simulation.

219

220 **Generating resequence data to test the model.** We generated U-linked, V-linked, and
221 autosomal polymorphism data from 23 *C. purpureus* isolates collected from nine locations
222 (Figure 1; Table S1). To start these lines, sporophytes were surface sterilized, and a single
223 germinated spore was isolated following (Norrell et al., 2014). DNA was extracted using a
224 modified CTAB protocol following (Norrell et al., 2014). Plate-based DNA library preparation for
225 Illumina sequencing was performed on the PerkinElmer Sciclone NGS robotic liquid handling
226 system using Kapa Biosystems library preparation kit. Two hundred nanograms of sample DNA
227 was sheared to 500 base pairs (bp) using a Covaris LE220 focused-ultrasonicator. The sheared
228 DNA fragments were size selected by double-SPRI and then the selected fragments were end-
229 repaired, A-tailed, and ligated with Illumina compatible sequencing adaptors from IDT containing
230 a unique molecular index barcode for each sample library. The prepared sample libraries were
231 quantified using KAPA Biosystem's next-generation sequencing library qPCR kit and run on a
232 Roche LightCycler 480 real-time PCR instrument. The quantified sample libraries were then
233 multiplexed into pools and the pools were then prepared for sequencing on the Illumina HiSeq
234 sequencing platform utilizing a TruSeq paired-end cluster kit v3 and Illumina's cBot instrument
235 to generate clustered flow cells for sequencing. Sequencing of the flow cells was performed on
236 the Illumina HiSeq2000 sequencer using Illumina TruSeq SBS v3 sequencing kits, following a
237 2x150 indexed high-output run recipe. A subset of the libraries was also prepared using v4
238 chemistry and sequenced on a HiSeq2500 (see Table S1).

239 From the raw reads, we removed artifact sequences, reads containing N bases, low-
240 quality reads, DNA spike-in sequences, and PhiX control sequences. We split paired-end reads
241 into forward and reverse using an in-house script from (S. B. Carey et al., 2020). We removed
242 Illumina adapters and further filtered for quality using Trimmomatic (v0.36; (Bolger, Lohse, &
243 Usadel, 2014)) using leading and trailing values of three, window size of 10, quality score of 30,

244 and minimum length of 40. We visually assessed the quality of the remaining reads using fastqc
245 (v0.11.4; (Andrews, 2010)).

246 We determined the karyotypic sex of these isolates by mapping reads using HISAT2
247 (v2.1.0; (Kim, Langmead, & Salzberg, 2015)) to the *Ceratodon purpureus* v1.0 genome using
248 the R40 isolate (autosomes and V sex chromosome) concatenated with the GG1 U sex
249 chromosome (S. B. Carey et al., 2020). We converted the resulting SAM files to sorted BAMs
250 and indexed using SAMtools (v1.9; (H. Li et al., 2009)). Using IGV (v2.15.0; (Robinson et al.,
251 2011)), we visually assessed sex by determining to which sex chromosome the reads mapped
252 at the oldest locus known to be sex-linked in mosses (CepurR40.VG235300 and
253 CepurGG1.UG071900 from (S. B. Carey et al., 2020)) and haphazardly scanning along the sex
254 chromosomes.

255 To map the reads for downstream molecular evolutionary analyses, we used the
256 genome reference described above, but also included R40's chloroplast assembly. The R40
257 chloroplast was assembled using NOVOPlasty v2.6.7 (Dierckxsens, Mardulyn, & Smits, 2017)
258 from existing Illumina data deposited in the NCBI BioProject PRJNA258984 from (S. B. Carey et
259 al., 2020). Due to the low divergence between much of the U and V sex chromosomes (S. B.
260 Carey et al., 2020; McDaniel, Neubig, et al., 2013), to ensure isolates mapped to the correct sex
261 chromosome we hard masked the U for males and V and for females using BEDTools
262 *maskfasta* (v2.27.1; (Quinlan & Hall, 2010), following (Olney, Brotman, Andrews, Valverde-
263 Vesling, & Wilson, 2020)). Previous analyses found *C. purpureus* was highly polymorphic
264 (McDaniel, van Baren, Jones, Payton, & Quatrano, 2013), so we used two mappers, BWA-MEM
265 (v0.7.17; (H. Li, 2013)) and NGM (v0.5.5; (Sedlazeck, Rescheneder, & von Haeseler, 2013)), as
266 they handle divergence differently, and ran analyses on these separately. We added read
267 groups to the SAM files using Picard Tools (v2.19.1; <http://broadinstitute.github.io/picard>)
268 *AddOrReplaceReadGroups* and converted them to sorted BAMs using SAMtools (v1.9; (H. Li et
269 al., 2009)).

270 We called variants on all BAMs together using BCFtools (v1.9; (H. Li, 2011)) *mpileup*
271 and *call* using a ploidy of one. The resulting VCF file was filtered using BCFtools *filter* by
272 excluding variants with a Phred-based quality score of the alternate base (QUAL) <30,
273 combined depth across samples (DP) <10, and mapping quality (MQ) <30, where these filters
274 had to be met in at least one sample (&&). We subset the VCFs using *view* to have females for
275 the U, males for the V, and both sexes for the chloroplast and autosomal analyses, excluding
276 isolates from localities where both sexes were not present (Figure 1; Table S1). The VCFs were
277 finally filtered to remove variants with >20% missing data.

278

279 **Population genetic analyses.** To examine patterns of nucleotide diversity, we calculated Wu
280 and Watterson's theta (θ ; (Watterson, 1975)), which is based on the number of segregating
281 sites in the population (S), and Nei and Li's Pi (π), which is based on the average number of
282 pairwise differences (Nei & Li, 1979), with both calculated per site ($N_{\text{Localities}}=5$, $N_{\text{Males}}=8$,
283 $N_{\text{Females}}=8$). We calculated Tajima's D (Tajima, 1989) for the autosomes and sex chromosomes
284 to test whether the mutation-frequency spectrum differed between these genomic regions,
285 where a negative D suggests an excess of rare alleles indicating a recent selective sweep or
286 expansion after a bottleneck, and a positive D suggests a lack of rare alleles indicating
287 balancing selection or population contraction ($N_{\text{Localities}}=5$, $N_{\text{Males}}=8$, $N_{\text{Females}}=8$). To examine
288 differences in gene flow between autosomes and sex chromosomes we calculated F_{ST} (Sewall
289 Wright, 1949), comparing the isolates from Alaska and Portland ($N_{\text{Males}}=4$, $N_{\text{Females}}=4$) to those
290 from Durham and Storrs ($N_{\text{Males}}=3$, $N_{\text{Females}}=3$) (Figure 1; Table S1). For each of these metrics we
291 did sliding-window analyses using a window size of 100,000 and jump of 10,000 and plotted
292 these with a loess correction span of 0.03 using karyoplotR (v1.8.8; (Gel & Serra, 2017)). We
293 excluded the chloroplast, however, because the contig we analyzed was barely larger than the
294 windows (105,555 bp). We generated 95% confidence intervals (CI) by bootstrapping 1,000 of
295 the sliding windows with replacement and tested for differences between the autosomes and

296 sex chromosomes using the Mann-Whitney U test with a Benjamini and Hochberg correction for
297 multiple tests (Benjamini & Hochberg, 1995; McKnight & Najab, 2010).

298 To test for adaptive evolution in autosomal and sex-linked genes we first calculated the
299 McDonald Krietman (MK) test (McDonald & Kreitman, 1991). The MK test compares the ratio of
300 non-synonymous polymorphisms (Pn) to synonymous polymorphisms (Ps) to the ratio of non-
301 synonymous divergence (Dn) to synonymous divergence (Ds), where under neutrality these two
302 ratios are expected to be equal (i.e., $(Dn/Ds) = (Pn/Ps)$). Several phylogenetic analyses showed
303 the Chilean populations were isolated from northern hemisphere populations, potentially
304 representing a new species (Biersma et al., 2020; McDaniel & Shaw, 2005), so we used the
305 female and male Chile isolates as the outgroup for the MK test ($N_{\text{Localities}}=6$, $N_{\text{Males}}=9$, $N_{\text{Females}}=9$).
306 We evaluated the significance of deviations from neutrality using Fisher's exact test (Fisher,
307 1922). Finally, we calculated the Direction of Selection (DoS) test (Stoletzki & Eyre-Walker,
308 2011), using the equation

309

$$310 \quad DoS = \frac{Dn}{Dn + Ds} - \frac{Pn}{Pn + Ps},$$

311

312 where a $DoS < 0$ indicates relaxed purifying selection and $DoS > 0$ indicates positive selection.

313 To determine if the mutation rate differed between the U and V chromosomes, using
314 PAML (Yang, 2007) we calculated synonymous (dS) and nonsynonymous (dN) changes on
315 branches of 330 one-to-one orthologs of the R40 and GG1 genome isolates. The gene trees
316 used and in-depth details of running PAML were previously reported in (S. B. Carey et al.,
317 2020). We tested the difference in dN and dS between the U and V-linked orthologs, using the
318 Mann-Whitney U test (Benjamini & Hochberg, 1995; McKnight & Najab, 2010), removing one V-
319 linked gene with $dS > 10$. All population genetic analyses were done in R version 3.5.3 (R Core
320 Team, 2013) using PopGenome (v2.7.1; (Pfeifer, Wittelsbürger, Ramos-Onsins, & Lercher,
321 2014)) and plotted using ggplot2 (v3.3.1; (Wickham, 2016)), unless otherwise stated.

322

323 **Comparing empirical data to simulations.** The results of the simulations provide
324 demographically-informed expectations for levels of polymorphism for various population
325 densities and sex ratios. To compare our resequence data to the life history simulations, we
326 calculated the variation in reproductive success of both males and females that would be
327 necessary to explain our data in the absence of other processes (e.g., selection or migration).
328 We then compared the ratios of variation in reproductive success to the results of our
329 simulations to see if population density or sex ratio could explain the nucleotide diversity
330 patterns we observed. To calculate the variation in reproductive success needed to explain our
331 results, we used the result that, in haploid populations, $\theta = 2N_e\mu$, where μ is the mutation rate,
332 (derivation provided in the Supplementary Appendix, Part 2). From this it follows that, given
333 equation 1, θ for the U and V chromosomes are respectively given by

$$\theta_U = 2\mu_U \left(\frac{N_f - 1}{V_f} \right),$$
$$\theta_V = 2\mu_V \left(\frac{N_m - 1}{V_m} \right),$$

334

335

336 where μ_U and μ_V are the mutation rates on the U and V chromosomes, respectively. These
337 equations can be rewritten in the form

$$V_f = \frac{2\mu_U (N_f - 1)}{\theta_U},$$
$$V_m = \frac{2\mu_V (N_m - 1)}{\theta_V}.$$

338

339 Similarly, it can be shown that

$$V_f + V_m = \frac{4\mu_A (N - 2)}{\theta_A},$$

340

341 where θ_A is the Wu and Watterson estimator for an autosome, μ_A is the autosomal mutation
342 rate, and N is the census population size assuming that the sex ratio is equal (a different
343 equation is needed for unequal sex ratios).

344
345 From our resequence data, we estimated the ratio between θ for the V and U
346 chromosomes, θ_V/θ_U , which we used to solve for the ratio $\alpha = V_m/V_f$ to determine how different
347 the variances in reproductive success would need to be to explain the results, such that (7)

$$\alpha = \frac{\mu_V \theta_U (N_m - 1)}{\mu_U \theta_V (N_f - 1)} \quad (7)$$

348 Similarly, given the ratio θ_V/θ_A , we can solve for the following ratio

$$\beta = \frac{V_m}{V_f + V_m} = \frac{\mu_V \theta_A}{4\mu_A \theta_V} \quad (8)$$

349 This solution for β does not hold for unequal sex ratios, however. Therefore, for unequal sex
350 ratios we evaluated the ratio

$$\gamma = \frac{V_m}{V_m(N_f - 1) + V_f(N_m - 1)} = \frac{\mu_V \theta_A}{4\mu_A \theta_V (N_f - 1)} \quad (9)$$

352 For calculations from our empirical data, we assume that $N = 400,000$, which is
353 consistent with the N_e calculated in *C. purpureus* (M. Nieto-Lugilde, *personal communication*).
354

355 Results

356 **Life history simulations.** To develop a demographically-informed model for sex-specific
357 patterns of polymorphism, we used simulations to calculate N_e for males and females at a range
358 of population densities and sex-ratios. As the population density increased from 10–50%
359 occupancy, with an equal number of males and females, N_{eA} , N_{eU} , and N_{eV} increased, although
360 not equivalently (Figure 2A). At the lowest densities, the N_{eA} exceeded that of the U, and the V

361 was lower still. All three N_e values were well below the census population size, because
362 relatively few females were adjacent to males, and therefore few individuals reproduced
363 creating high variance in reproductive success. At ~25% occupancy, N_{eA} was roughly equivalent
364 to that of the U chromosome, while N_{eV} was approximately half of the autosomal value. That is,
365 variance in male reproductive success increases with increasing population density. At higher
366 densities, the autosomal and V-chromosome N_e increased approximately linearly, while N_{eU}
367 increased approximately exponentially, and at high densities the effective population of the U
368 chromosome can exceed that of autosomes and even the census population size (Figure 2A).
369 This seemingly counterintuitive finding arises from the fact that, at high population densities, the
370 autosomal diversity is passed through relatively few males, while the U-linked variation is
371 passed exclusively through the females which have very low variation in reproductive success.

372 We also simulated the effect of variation in sex ratio on N_e of the U, V, and autosomes.
373 We explored the effects of sex-ratio variation at multiple population densities, but because the
374 trends were homogeneous we present only the results at a density of 20%. At this population
375 density, with an even sex ratio, the results most closely match the infinite-sites expectations. At
376 even modest male-biased sex ratios, the N_e of the U, V, and autosomes were very low (Figure
377 2B). Even when males outnumbered females, relatively few males contributed to reproduction.
378 As the sex ratio became more female biased, in contrast, N_{eU} increased dramatically (Figure
379 2B). The N_{eA} increased slightly with a modest female bias, but at more dramatic female biases
380 the N_{eA} decreased slightly.

381 These models demonstrate that under reasonable demographic conditions, the infinite-
382 sites expectations that the U and V each should have half the N_e of an autosome are met only
383 at low population densities. Moreover, the V can have lower N_e than the U and autosomes due
384 to a greater variance in reproductive success due to sex differences in life history alone (i.e.,
385 without selection or female mate choice), a pattern exacerbated by a sex-ratio bias toward
386 either males or females.

387

388 **Patterns of polymorphism in *C. purpureus*.** To empirically test our model of N_e in a species
389 with UV sex chromosomes, we generated whole-genome resequence data for 23 isolates of *C.*
390 *purpureus* (Figure 1; Table S1). We found across isolates on average 80.87% of reads mapped
391 with BWA and 81.64% with NGM and our average coverage is ~28.5x (Table S1). We found
392 21,907,382 SNPs using BWA and after filtering, for downstream analyses, we had 17,510,525
393 total SNPs, with 3,117,274 on the U, 2,372,026 on the V, and 12,021,225 on the autosomes and
394 chloroplast. Using NGM we found 19,395,846 SNPs, and after filtering we had 11,580,361
395 SNPs on the autosomes and chloroplast, 2,397,292 on the U, and 1,660,989 on the V. Below
396 for simplicity we discuss the remaining results from using the BWA mapper, although the
397 summary statistics were similar with NGM and we report these in Table S2.

398 We found Wu and Watterson's theta (θ) across the 12 autosomes (θ_A) was on average
399 0.00983 (CI=0.00960-0.01025; Table 1). Given the relationship between N_e and θ (i.e., $\theta=2N_e\mu$),
400 the U (θ_U) and V (θ_V) sex chromosomes and the chloroplast (θ_C) should be 1/2 θ_A , under neutral
401 processes. However, we find $\theta_U=0.00339$ (CI=0.00329-0.00346), $\theta_V=0.00241$ (CI=0.00235-
402 0.00248), and $\theta_C=0.00015$ (Table 1). Thus, the ratios for U/A =~1/3, U/A=1/4, and C/A =~1/40,
403 rather than 1/2 for any of these chromosomes and V/U=~2/3 rather than 1. We found the same
404 pattern using Nei and Li's Pi (π) with $\pi_A=0.00946$ (CI=0.00916-0.00983), $\pi_U=0.00331$
405 (CI=0.00323-0.0034), $\pi_V=0.00219$ (CI=0.00213-0.00225), and $\pi_C=0.00018$ (Table 1). For
406 Tajima's D we found the autosomes on average were negative (-0.219; CI=(-0.325)-(-0.253)),
407 as were both sex chromosomes (U -0.43, CI=(-0.415)-(-0.378); V -0.82, CI=(-0.826)-(-0.794))
408 and the chloroplast was positive (0.87) (Table 1). For F_{ST} between populations, the autosomes
409 were on average 0.202 (CI=0.19-0.205), chloroplast 0.47, U 0.372 (CI=0.370-0.379), and V
410 0.375 (CI=0.376-0.385) (Table 1). We calculated sliding windows for these metrics, which show
411 ample variation on the autosomes, but the sex chromosomes are homogenous (Figure 3). For

412 all metrics, we found the autosomes, U, and V to be significantly different from each other
413 (Mann Whitney U, $p < 0.00001$).

414 We calculated the MK test on all 34,458 genes and found 280 had significant fixed
415 amino acid changes relative to polymorphic changes based on Fisher's exact test at $p < 0.05$ and
416 606 at $p < 0.1$ (Table 2, S3). Using the DoS test, we found for autosomes that 151 genes were
417 less than one (at $p < 0.05$; 338 at $p < 0.1$) and 120 greater than one ($p < 0.05$; 250 at $p < 0.1$). For
418 the U-linked genes, we found four genes were less than one and three greater than (at $p < 0.05$;
419 six at $p < 0.1$). For V-linked genes we found two significant genes at $p < 0.05$, with both less than
420 one (5 at $p < 0.1$) and two greater than one at $p < 0.1$ (Figure 4A).

421 To test for differences in mutation rate, we calculated dS and dN on one-to-one U-V
422 orthologs. We found both dS and dN were higher for V-linked genes (Mann Whitney U, dN
423 $p = 0.044$; $dS p = 0.005$; Figure 4B-C; Table S4).

424

425 **Comparing empirical data to simulations.** To determine if population density and sex-ratio
426 bias could explain the observed patterns of θ we found in *C. purpureus*, we first calculated the
427 variance in reproductive success in males (V_m) and females (V_f) that would be necessary to
428 explain our empirical results and compared these values to those seen in our simulations.

429 Specifically, for equal sex ratios we compared the ratios of V_m/V_f (α) and $V_m/V_f + V_m$ (β)
430 described above. From our empirical data, we found that α and β were very similar values, with
431 $\alpha = 1.36$ ($\alpha = 1.62$ if μ_V was 1.2 times greater than μ_U based on dS) and $\beta = 1.0$. In contrast, for
432 all simulated densities, α was much larger than β (Figure 5A). Furthermore, our empirically
433 observed α values were only seen in our simulations with low densities (~ 0.09 – 0.125), but the
434 highest-density simulations were the ones that best approximated the empirically calculated β
435 values.

436 For unequal sex ratios, the assumptions necessary to derive the equation for β do not
437 hold, so we instead compared the ratios of α and γ described above. The combinations of sex
438 ratio and density that best explained the observed values of α poorly predicted the observed γ
439 values. For instance, at density of 0.2, our simulations best explained the observed α value
440 when there was a slightly male-biased sex ratio (Figure 5B). However, in such scenarios, the
441 simulated γ value was much larger than the γ values calculated from our data (e.g., for a
442 simulated sex ratio of three males to each female, $\gamma = 5.6 \times 10^{-4}$ while the value calculated for
443 our data is $\gamma = 8.33 \times 10^{-9}$). None of our simulations observed a γ value low enough to explain
444 our data, but the closest values occurred at highly male-biased sex ratios.

445

446 Discussion

447 Fertilization in many eukaryotes is achieved through the union of a small, motile sperm, and a
448 large, retained egg. While the individuals that bear these gametes may experience different
449 patterns of selection or embark on different patterns of migration, the consequences of life
450 history differences between sexes alone may be sufficient to generate nucleotide diversity
451 differences between sperm-producing males and egg-producing females. Here we used
452 simulations to generate demographically-informed expectations for patterns of polymorphism in
453 an idealized sperm-casting species and compared those expectations to estimates from whole-
454 genome resequence data in the moss *C. purpureus*. We found the demographically-naive
455 expectations for U and V chromosome-to-autosome ratios of nucleotide diversity based on the
456 infinite-sites model were only accurate at the very lowest simulated population densities, and
457 they failed to account for levels of sex-ratio bias observed in natural populations. We also found
458 that our empirical estimates of sex chromosome and autosome nucleotide diversity could be
459 explained by neither mutation rate variation nor other demographic processes, suggesting that

460 selection must contribute to shaping variation on the *C. purpureus* sex chromosomes (Ellegren,
461 2009; Sayres, 2018).

462

463 **Sex-biased N_e in anisogamous sperm-casting species.** Estimates of N_e can differ between
464 females and males for numerous reasons, most dramatically as a consequence of processes
465 that increase the variance in male reproductive success (i.e., female mate choice, male-male
466 competition), but also because life-history differences may influence sex-specific patterns of
467 migration or age structure within populations. Here we use simulations to show that in sperm-
468 casting species, like some sessile marine animals and many plants, heterogeneity in the spatial
469 distribution of females and males can generate a dramatic increase in the variance in male
470 reproductive success. We show that this effect is strongly dependent upon the density of
471 individuals. At low densities, the estimates of N_e were relatively close to the estimates based on
472 the infinite-sites model. The number of females and males that were near enough to mate was
473 relatively low, and similar proportions of females and males contributed to the next generation.
474 As density increased, more males mated multiple times, increasing the variance in male
475 reproductive success and decreasing the male N_{eV} . At high densities, the female N_{eU}
476 approached the census size, far exceeding both N_{eV} and even N_{eA} . This seemingly
477 counterintuitive result stems from the fact that nearly all females reproduced, but many males
478 contributed to multiple matings. The N_{eA} is constrained to be between the male and female
479 values, because half of the autosomes are inherited from each sex.

480 It is important to note that our simulation results relied on specific assumptions about the
481 direct links among sex chromosomes, anisogamy, and life history. For example, we assumed
482 that all individuals with a U-chromosome produced eggs and all individuals with a V-
483 chromosome produced sperm, although it is well-known that these assumptions are violated in
484 many systems (Ming, Bendahmane, & Renner, 2011). In *C. purpureus* many individuals do not
485 produce gametangia under permissive laboratory conditions (J. Shaw & Beer, 1999). We also

486 assumed that the egg-producing sex (females) and sperm-producing sex (males) each have
487 specific, invariant life histories: females can only mate once and males can mate many times
488 (eight is the maximum number of mating events possible in our simulations). While these
489 provide a reasonable approximation of the life history of *C. purpureus* and other sperm-casting
490 species, we caution that these results cannot be applied uncritically to other anisogamous
491 species (see (Sarah Blaffer Hrdy, 1986; S. B. Hrdy, 1981; Tang-Martínez, 2016)).

492 How important the density-dependent effects on male variance in reproductive success
493 are in sperm-casting species in nature depends upon how many distinct genotypes lie within the
494 radius of sperm dispersal. Many bryophytes exhibit largely clonal growth, meaning the effective
495 density of genotypes could be quite low, and the infinite-sites estimate may be a reasonable
496 approximation (Bisang & Hedenäs, 2005; Clarke, Ayre, & Robinson, 2009). However, despite
497 their capacity for clonal growth, small samples (<1cm) of *C. purpureus* can contain numerous
498 distinct genotypes (McDaniel & Shaw, 2005). Given that fertilization distances in mosses
499 exceed this measure (Jonathan Shaw & Goffinet, 2000; Longton & Re, 1976) particularly if
500 transported by microarthropods (Cronberg et al., 2006; Rosenstiel et al., 2012; Shortlidge et al.,
501 2020), the effective density may be quite high (i.e., the number of females that a given male can
502 mate with exceeds the limit of eight imposed in our simulation). Thus, the infinite-sites
503 expectations for N_e may be quite far off. The mismatch between infinite-sites model and reality
504 may be worse with female-biased sex ratios, which is common in bryophytes (Bisang &
505 Hedenäs, 2005).

506 The decrease in N_e for sperm-transmitted genes, relative to the N_e for egg-transmitted
507 genes, may profoundly decrease the strength of natural selection relative to genetic drift for
508 male traits (Charlesworth, 2009). The decrease in efficacy of natural selection will likely be the
509 most acute on a male V chromosome, where transmission is exclusively through sperm.
510 However, the effects of anisogamy may influence the strength of selection on autosomal
511 variants that have different fitness effects on females and males (i.e., sexually antagonistic

512 alleles), effectively tipping the scales in favor of female-beneficial autosomal alleles. This
513 process could even act on hermaphroditic sperm-casting species (Abbott, 2011), like many
514 mosses, by weakening selection on allelic variants that promote male functions, such as sperm
515 production, relative to selection on female functions related to egg production. Our haploid
516 model does not allow us to make quantitative predictions about diploid systems, but male traits
517 in seed plants may experience lower N_e if some pollen donors fertilize multiple seeds in a
518 population.

519

520 **Linking demographic models and mutation rate to patterns of nucleotide diversity.** It is
521 widely known that various demographic processes can generate variation in nucleotide diversity
522 between autosomes and sex chromosomes, in particular processes that increase male variance
523 in reproductive success (Charlesworth, 2009). Here we introduce three ratios of the sex-specific
524 variance N_e , α (variance in male reproductive success:female reproductive
525 success), β (variance in male reproductive success:variance female reproductive success plus
526 variance in male reproductive success), and γ (same as β , but the variances in the denominator
527 are scaled by sex-specific population size), calculated from our simulations. These ratios can be
528 expressed in terms of the quantity θ , which we estimated from the DNA sequence data from
529 isolates of *C. purpureus*. The values of α and β generated from the simulations are clearly
530 inconsistent with the nucleotide diversity patterns in *C. purpureus*. First, the $\beta=1$ value that we
531 calculated from the resequence data requires no variance in female reproductive success,
532 which is inconsistent with mesocosm experiments in *C. purpureus* (Shortlidge et al., 2020) and
533 field-collected data in *Sphagnum* (Johnson & Shaw, 2016). Similar β values were only observed
534 at the highest population densities in our simulations. In contrast, the α values we estimated
535 from the polymorphism data were only observed in simulations with low population densities. No

536 simulated densities with an equal sex ratio produced values of both α and β near to those
537 calculated from the nucleotide diversity patterns in *C. purpureus*.

538 Similarly, incorporating sex-ratio variation into our simulations failed to produce a better
539 fit to the nucleotide diversity data. The closest γ values occurred at highly male-biased sex
540 ratios, which are almost never observed in mosses (Baughman et al., 2017; Bisang et al., 2019;
541 Bisang & Hedenäs, 2005) and in *C. purpureus* in particular (Eppley et al., 2018; Norrell et al.,
542 2014; A. J. Shaw & Gaughan, 1993). In essence, the values for θ_U and θ_V are too low, relative to
543 the autosomal θ , to conform to the demography alone model. In particular, the values for θ_U
544 were expected to equal or exceed the autosomal values under reasonable population density
545 parameters, but instead the empirical θ_U values were nearly as low as the θ_V values. We return
546 to this observation below.

547 We also found no evidence that the differences in θ between sex chromosomes was the
548 result of an elevated mutation rate in females. In fact, both dS and dN were higher on V-linked
549 genes (Mann Whitney U, dN $p=0.044$; dS $p=0.005$; Figure 4B-C), the opposite of the pattern
550 that would explain the higher θ on the U chromosome compared to the V. We did recover the
551 expected lower nucleotide diversity on the chloroplast (Table 1), consistent with other plants (D.
552 R. Smith, 2015; Wolfe et al., 1987) suggesting that the elevated male mutation rate is unlikely to
553 be an artifact of our sampling scheme.

554 Male-biased mutation rates are widely observed in animals and some seed plants
555 (Ellegren & Fridolfsson, 1997; Whittle & Johnston, 2002; Wilson Sayres & Makova, 2011).
556 Mutations presumably arise as DNA replication errors, and sperm production requires many
557 more cell divisions than egg production (W. H. Li, Yi, & Makova, 2002). Because the germ line is
558 sequestered in animals, somatic mutations do not contribute to differences between the sexes.
559 Instead, only differences in cell divisions to produce gametes differ between the sexes. In
560 contrast, plants have an open developmental program, in which many rounds of cell division

561 precede the formation of gametes, potentially moderating the contribution of anisogamy to
562 mutation-rate variation. However, males in mosses certainly make thousands of sperm in each
563 antheridium (Garbary, Renzaglia, & Duckett, 1993). In the hermaphroditic moss, *Physcomitrium*
564 *patens*, one antheridium (of ~10) made between 150 and 200 sperm cells (Horst & Reski,
565 2017), but this species is likely on the lower end of the distribution (Garbary et al., 1993). Thus,
566 we conservatively estimate a *C. purpureus* male undergoes seven to 15 more rounds of cell
567 division during sperm production than a female experiences in egg production, potentially
568 enough to increase the male-mutation rate. Resequence data from known pedigrees is one way
569 to independently evaluate the difference between male and female mutation rates, but such
570 data are currently unavailable.

571

572 **Selection lowers nucleotide diversity on U and V sex chromosomes.** The relationship we
573 observed between autosomal and V-linked nucleotide diversity plausibly could reflect elevated
574 variance in male reproductive success, consistent with field studies and experimental
575 mesocosms (Johnson & Shaw, 2016; Shortlidge et al., 2020). However, none of the simulations
576 using biologically reasonable conditions explained the low U-linked nucleotide diversity
577 (U/A=~1/3). It is therefore likely that the low nucleotide diversity on at least the U is caused by
578 recent linked selection, which is widely expected to be common in non-recombining regions, like
579 sex chromosomes (J. M. Smith & Haigh, 1974). Indeed, Tajima's D values on both the U and
580 the V were uniformly negative and lower than autosomal values (Figure 3; Table 1), suggesting
581 the patterns of nucleotide variation do not reflect neutral-equilibrium processes. The *C.*
582 *purpureus* UV sex chromosomes are large (>100 Mb each), completely non-recombining, and
583 gene rich (>3,400 genes annotated to both (S. B. Carey et al., 2020)) meaning these regions
584 provide large targets for the evolution of beneficial or deleterious mutations, increasing the
585 probability of selective sweeps and background selection (Bachtrog, 2008).

586 Identifying the relative importance of selective sweeps and background selection in
587 reducing nucleotide diversity remains an important challenge. The *C. purpureus* sex
588 chromosomes demonstrably experience weaker purifying selection than autosomes, based on
589 measures of codon bias (effective number of codons, frequency of optimal codon, and GC
590 content of the third synonymous position) and in protein evolution (dN/dS) (S. B. Carey et al.,
591 2020). Carey et al. (2020) found that, of the 330 U and V-linked genes examined, ~25% had
592 lower dN/dS than the autosomal average (~0.14), suggesting these genes still experience
593 strong selective pressure against deleterious mutations (Chibalina & Filatov, 2011). However,
594 codon bias and dN/dS were indistinguishable between the sexes, suggesting that different
595 levels of purifying selection are unlikely to explain the decreased V/U ratio we found. Moreover,
596 while the U and V-linked genes with higher dN/dS values suggest faster rates of protein
597 evolution than the autosomes, using this approach it is unclear whether the genes are evolving
598 faster due to the relaxation of purifying selection or by positive selection.

599 Because our sampling spanned the globe, we used the distantly-related Chilean isolates
600 as an outgroup for the Northern Hemisphere populations in divergence-polymorphism tests of
601 selection. Using the MK test, we also found evidence of non-neutral evolution in several sex-
602 linked genes (Figure 4A; Table 2). From the DoS test we found the U has genes that are
603 experiencing positive selection, while others have relaxed purifying selection (at $p < 0.05$; Figure
604 4A). On the V we found genes with evidence of relaxed purifying selection (at $p < 0.05$), though
605 two genes were marginally significant that suggest positive selection ($p \approx 0.06$ and 0.08). Some
606 of the genes that showed evidence of selection are involved in cellular transport (Table 2). In
607 mosses, the sporophyte (i.e., the diploid embryo) is nutritionally dependent on the maternal
608 plant throughout its entire lifespan (Ligrone, Duckett, & Renzaglia, 1993), which is costly to the
609 maternal gametophyte (Ehrlén, Bisang, & Hedenäs, 2000; Stark, Brinda, & McLatchie, 2009).
610 The male with which a female mates has a significant effect on sporophyte development

611 including sporophyte height, spore number, and quality of spores (Shortlidge et al., 2020),
612 suggesting paternal genotype can drive these differences. However, a sporophyte from a male
613 with a more extractive genotype may instead be selectively aborted by the female in preference
614 for another, less extractive offspring. In fact, female mosses have been shown to abort their
615 offspring if conditions are unfavorable (Stark, 2002; Stark, Mishler, & McLetchie, 2000; Stark &
616 Stephenson, 1983). These forms of sexual conflict can generate the signatures of selection
617 detectable by the MK test, and could reduce nucleotide diversity on both the U and V
618 chromosomes, consistent with what we find in *C. purpureus*. Though we should point out that
619 the polymorphism-based tests are underpowered to detect deviations from neutrality in regions
620 of low N_e (like non-recombining sex chromosomes) and limited divergence between our
621 outgroup (Parsch, Zhang, & Baines, 2009).

622 The discrepancy between the infinite-sites expectations and the measured nucleotide
623 diversity that we found in *C. purpureus* sex chromosomes, in particular the U, are qualitatively
624 different from those in other plant systems, in spite of the fact that all possess multicellular,
625 gametophytes with haploid gene expression. In *Rumex hastatus*, nucleotide diversity of X-
626 linked genes was ~% of autosomal diversity, higher than neutral equilibrium expectations,
627 potentially because of the female-biased sex ratios in the species (Hough, Wang, Barrett, &
628 Wright, 2017). In contrast, the Y-linked genes were ~1/50 that of autosomal diversity, a result
629 attributed to purifying selection (Hough et al., 2017). In *Silene latifolia*, Y-linked genes had ~1/20
630 the nucleotide diversity of autosomes, whereas X-linked genes were close to equilibrium
631 expectations (~3/4), also suggesting the role of selection on the Y (Qiu, Bergero, Forrest,
632 Kaiser, & Charlesworth, 2010). The X chromosome in papaya was found to have lower than
633 expected nucleotide diversity, likely driven by a selective sweep, like what we found on the U in
634 *C. purpureus* (VanBuren et al., 2016). In the brown algae *Ectocarpus*, the only other UV system
635 to look at nucleotide diversity to date, the sex chromosomes have ~1/2 N_e of autosomes,
636 consistent with infinite-sites expectations for neutral-equilibrium conditions (Avia et al., 2018).

637 Together these results support the long-standing notion that positive selection can dramatically
638 decrease nucleotide diversity in non-recombining regions (Begun & Aquadro, 1992;
639 Charlesworth & Charlesworth, 2000; Lercher & Hurst, 2002). The dramatic difference between
640 the simulated and empirical estimates for N_e for the *C. purpureus* U provide a very clear
641 illustration of this effect. Our simulations also suggest that density, mating system, and factors
642 that influence the variance in male reproductive success may also be confounded with selection
643 in analyses of Y chromosome polymorphism.

644 The geographic distribution of U and V-linked variants may provide insight into other
645 forms of selection shaping sex chromosome variation. Of course, differential migration between
646 the sexes can affect N_e (Ellegren, 2009; Goudet, Perrin, & Waser, 2002; Webster & Wilson
647 Sayres, 2016). However, at a regional scale among several eastern North American
648 populations, and with a smaller data set, population structure measured by F_{ST} (Sewall Wright,
649 1949) was equivalent between the sexes in *C. purpureus* (McDaniel, Neubig, et al., 2013).
650 Importantly, the U and V F_{ST} among these populations was lower than the autosomal F_{ST} . This
651 pattern suggests that sex chromosome variants are fit across the region, while autosomal
652 alleles may be more likely to experience local adaptation, and therefore show elevated F_{ST}
653 values. Here, we found that F_{ST} on the sex chromosomes on the continental scale between
654 eastern and western North American populations were also equivalent between the sexes, but
655 exceeded the autosomal values (F_{ST} Autosomes=0.202, U=0.372, V=0.375; Table 1). At the
656 continental scale, autosomal alleles are exchanged among these populations while migrant sex
657 chromosomes are not. Patterns of interfertility (McDaniel, Willis, & Shaw, 2008) and preliminary
658 gene tree analyses suggest that the eastern and western North American populations may
659 represent partially reproductively isolated species. The low F_{ST} at the regional scale coupled
660 with higher F_{ST} at the continental scale suggests that sex chromosome differentiation may occur
661 at the scale of species boundaries, rather than the scale of local adaptation. This inference is

662 consistent with data from *Drosophila* and primates showing that more accurate phylogenies are
663 inferred from non-recombining regions, like sex chromosomes (Pease & Hahn, 2013).

664 Together, these results highlight the utility of UV sex chromosomes as models for
665 understanding the roles of sex-specific evolutionary processes in genome evolution. The
666 demographic model that we present shows that small male N_e may be a critical challenge facing
667 dioecious species, a potentially important factor to explain features of mating-system variation in
668 bryophytes, including frequent transitions from dioecy to hermaphroditism and the evolution of
669 dwarf males (Hedenäs & Bisang, 2011; McDaniel, Atwood, & Burleigh, 2013). Similar to other
670 eukaryotic lineages, the increase in variance in reproductive success is also correlated with a
671 modestly increased mutation rate. Perhaps the most striking result is the decrease in U/A ratio
672 of N_e , relative to the expectations based on simulations. The difference between the simulated
673 and empirical values strongly suggests that the U sex chromosome experiences frequent
674 selective sweeps, an inference with some independent support from frequency spectrum and
675 codon-based molecular evolutionary analyses. In sum, these data highlight the challenges of
676 conducting analyses of single evolutionary forces, in isolation, without considering their joint
677 effects.

678

679 **Acknowledgements:** We thank the U.S. Department of Energy Joint Genome Institute for pre-
680 publication access to the *Ceratodon purpureus* genome used in this study and Leslie Kollar for
681 helpful feedback on this manuscript. The University of Florida (UF) HiPerGator provided vital
682 technical support throughout the project. This work was supported by NSF DEB-1541005 and
683 start-up funds from UF to SFM. The work conducted by the U.S. Department of Energy Joint
684 Genome Institute was supported by the Office of Science of the U.S. Department of Energy
685 under Contract No. DE-AC02-05CH11231.

686

687 **References:**

688 Abbott, J. K. (2011). Intra-locus sexual conflict and sexually antagonistic genetic variation in
689 hermaphroditic animals. *Proceedings. Biological Sciences / The Royal Society*, 278(1703),
690 161–169. doi: 10.1098/rspb.2010.1401

691 Ahmed, S., Cock, J. M., Pessia, E., Lutringer, R., Cormier, A., Robuchon, M., ... Coelho, S. M.
692 (2014). A haploid system of sex determination in the brown alga *Ectocarpus* sp. *Current*
693 *Biology: CB*, 24(17), 1945–1957. doi: 10.1016/j.cub.2014.07.042

694 Andrews, S. (2010). *FastQC: a quality control tool for high throughput sequence data*.
695 Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.

696 Avia, K., Lipinska, A. P., Mignerot, L., Montecinos, A. E., Jamy, M., Ahmed, S., ... Coelho, S. M.
697 (2018). Genetic Diversity in the UV Sex Chromosomes of the Brown Alga *Ectocarpus*.
698 *Genes*, 9(6). doi: 10.3390/genes9060286

699 Bachtrog, D. (2008). The temporal dynamics of processes underlying Y chromosome
700 degeneration. *Genetics*, 179(3), 1513–1525. doi: 10.1534/genetics.107.084012

701 Bachtrog, D., Kirkpatrick, M., Mank, J. E., McDaniel, S. F., Pires, J. C., Rice, W., & Valenzuela,
702 N. (2011). Are all sex chromosomes created equal? *Trends in Genetics: TIG*, 27(9), 350–
703 357. doi: 10.1016/j.tig.2011.05.005

704 Baughman, J. T., Payton, A. C., Paasch, A. E., Fisher, K. M., & McDaniel, S. F. (2017). Multiple
705 factors influence population sex ratios in the Mojave Desert moss *Syntrichia caninervis*.
706 *American Journal of Botany*, 104(5), 733–742. doi: 10.3732/ajb.1700045

707 Begun, D. J., & Aquadro, C. F. (1992). Levels of naturally occurring DNA polymorphism
708 correlate with recombination rates in *D. melanogaster*. *Nature*, 356(6369), 519–520. doi:
709 10.1038/356519a0

710 Bengtsson, B. O., & Cronberg, N. (2009). The effective size of bryophyte populations. *Journal of*
711 *Theoretical Biology*, 258(1), 121–126. doi: 10.1016/j.jtbi.2009.01.002

712 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and
713 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B,*
714 *Statistical Methodology*, 57(1), 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

715 Biersma, E. M., Convey, P., Wyber, R., Robinson, S. A., Dowton, M., van de Vijver, B., ...
716 Jackson, J. A. (2020). Latitudinal Biogeographic Structuring in the Globally Distributed
717 Moss *Ceratodon purpureus*. *Frontiers in Plant Science*, 11, 502359. doi:
718 10.3389/fpls.2020.502359

719 Bisang, I., Ehrlén, J., & Hedenäs, L. (2019). Sex expression and genotypic sex ratio vary with
720 region and environment in the wetland moss *Drepanocladus lycopodioides*. *Botanical*
721 *Journal of the Linnean Society. Linnean Society of London*, 192(2), 421–434. doi:
722 10.1093/botlinnean/boz063

723 Bisang, I., & Hedenäs, L. (2005). Sex ratio patterns in dioicous bryophytes re-visited. *Journal of*
724 *Bryology*, 27(3), 207–219. doi: 10.1179/174328205X69959

725 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
726 sequence data. *Bioinformatics*, 30(15), 2114–2120. doi: 10.1093/bioinformatics/btu170

727 Bowman, J. L., Kohchi, T., Yamato, K. T., Jenkins, J., Shu, S., Ishizaki, K., ... Schmutz, J.
728 (2017). Insights into Land Plant Evolution Garnered from the *Marchantia polymorpha*
729 Genome. *Cell*, 171(2), 287–304.e15. doi: 10.1016/j.cell.2017.09.030

730 Caballero, A. (1995). On the effective size of populations with separate sexes, with particular
731 reference to sex-linked genes. *Genetics*, 139(2), 1007–1011. Retrieved from
732 <https://www.ncbi.nlm.nih.gov/pubmed/7713404>

733 Carey, S. B., Jenkins, J., Lovell, J. T., Maumus, F., Sreedasyam, A., Payton, A. C., ...
734 McDaniel, S. F. (2020). The *Ceratodon purpureus* genome uncovers structurally complex,
735 gene rich sex chromosomes. doi: 10.1101/2020.07.03.163634

736 Carey, S., Kollar, L., & McDaniel, S. (2020). Does degeneration or genetic conflict shape gene
737 content on UV sex chromosomes? doi: 10.32942/osf.io/hs6w3

738 Charlesworth, B. (2001). Patterns of age-specific means and genetic variances of mortality rates

739 predicted by the mutation-accumulation theory of ageing. *Journal of Theoretical Biology*,
740 210(1), 47–65. doi: 10.1006/jtbi.2001.2296

741 Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and
742 variation. *Nature Reviews. Genetics*, 10(3), 195–205. doi: 10.1038/nrg2526

743 Charlesworth, B., & Charlesworth, D. (2000). The degeneration of Y chromosomes.
744 *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*,
745 355(1403), 1563–1572. doi: 10.1098/rstb.2000.0717

746 Charlesworth, B., Coyne, J. A., & Barton, N. H. (1987). The Relative Rates of Evolution of Sex
747 Chromosomes and Autosomes. *The American Naturalist*, 130(1), 113–146. doi:
748 10.1086/284701

749 Chibalina, M. V., & Filatov, D. A. (2011). Plant Y chromosome degeneration is retarded by
750 haploid purifying selection. *Current Biology: CB*, 21(17), 1475–1479. doi:
751 10.1016/j.cub.2011.07.045

752 Clarke, L. J., Ayre, D. J., & Robinson, S. A. (2009). *Genetic structure of East Antarctic*
753 *populations of the moss Ceratodon purpureus*. doi: 10.1017/S0954102008001466

754 Cronberg, N., Natcheva, R., & Hedlund, K. (2006). Microarthropods mediate sperm transfer in
755 mosses. *Science*, 313(5791), 1255. doi: 10.1126/science.1128707

756 Crow, J. F., & Kimura, M. (1970). An introduction to population genetics theory. *An Introduction*
757 *to Population Genetics Theory*. Retrieved from
758 <https://www.cabdirect.org/cabdirect/abstract/19710105376>

759 Crow, J. F., & Morton, N. E. (1955). Measurement of Gene Frequency Drift in Small
760 Populations. *Evolution; International Journal of Organic Evolution*, 9(2), 202–214. doi:
761 10.2307/2405589

762 Crum, H., & Anderson, L. (1981). *Mosses of Eastern North America*. Columbia University Press.
763 Retrieved from <https://play.google.com/store/books/details?id=Rdf737n15qEC>

764 Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: de novo assembly of organelle
765 genomes from whole genome data. *Nucleic Acids Research*, 45(4), e18. doi:
766 10.1093/nar/gkw955

767 Ehrlén, J., Bisang, I., & Hedenäs, L. (2000). Costs of Sporophyte Production in the Moss,
768 *Dicranum polysetum*. *Plant Ecology*, 149(2), 207–217. Retrieved from
769 <http://www.jstor.org/stable/20050968>

770 Ellegren, H. (2009). The different levels of genetic diversity in sex chromosomes and
771 autosomes. *Trends in Genetics: TIG*, 25(6), 278–284. doi: 10.1016/j.tig.2009.04.005

772 Ellegren, H., & Fridolfsson, A.-K. (1997). Male–driven evolution of DNA sequences in birds.
773 *Nature Genetics*, 17(2), 182–184. Retrieved from
774 <https://link.springer.com/content/pdf/10.1038/ng1097-182.pdf>

775 Eppley, S. M., Rosenstiel, T. N., Chmielewski, M. W., Woll, S. C., Shaw, Z. M., & Shortridge, E.
776 E. (2018). Rapid population sex-ratio changes in the moss Ceratodon purpureus. *American*
777 *Journal of Botany*, 105(7), 1232–1238. doi: 10.1002/ajb2.1128

778 Ewens, W. J. (2016). Motoo Kimura and James Crow on the Infinitely Many Alleles Model.
779 *Genetics*, 202(4), 1243–1245. doi: 10.1534/genetics.116.188433

780 Ferris, P., Olson, B. J. S. C., De Hoff, P. L., Douglass, S., Casero, D., Prochnik, S., ... Umen, J.
781 G. (2010). Evolution of an expanded sex-determining locus in Volvox. *Science*, 328(5976),
782 351–354. doi: 10.1126/science.1186222

783 Fisher, R. A. (1922). On the interpretation of χ^2 from contingency tables, and the calculation of
784 P. *Journal of the Royal Statistical Society*, 85(1), 87–94. Retrieved from
785 https://www.jstor.org/stable/2340521?casa_token=we2c2HW52oIAAAAA:nYAj7wJw474o3ykvN16nDgUHt69YNkPn_ZK98cqXFrhzGRN9Bbo0kqd_rvi7XfJop97_1WoaWYe1vJeFDCKj8VAtf5VHIP3smWQWvp62iP3P3P5Hz7K

786 Garbary, D. J., Renzaglia, K. S., & Duckett, J. G. (1993). The phylogeny of land plants: A
787 cladistic analysis based on male gametogenesis. *Plant Systematics and Evolution* =
788

790 *Entwicklungsgeschichte Und Systematik Der Pflanzen*, 188(3), 237–269. doi:
791 10.1007/BF00937730

792 Gel, B., & Serra, E. (2017). karyoplotR: an R/Bioconductor package to plot customizable
793 genomes displaying arbitrary data. *Bioinformatics*, 33(19), 3088–3090. doi:
794 10.1093/bioinformatics/btx346

795 Glime, J. M., & Bisang, I. (2017). Sexuality: sexual strategies. *Association of Bryologists.*
796 *Michigan, USA. Pp.* Retrieved from <https://core.ac.uk/download/pdf/151510242.pdf>

797 Goldberg, A., & Rosenberg, N. A. (2015). Beyond 2/3 and 1/3: The Complex Signatures of Sex-
798 Biased Admixture on the X Chromosome. *Genetics*, 201(1), 263–279. doi:
799 10.1534/genetics.115.178509

800 Goudet, J., Perrin, N., & Waser, P. (2002). Tests for sex-biased dispersal using bi-parentally
801 inherited genetic markers: TESTS FOR SEX-BIASED DISPERSAL. *Molecular Ecology*,
802 11(6), 1103–1114. doi: 10.1046/j.1365-294x.2002.01496.x

803 Hedenäs, L., & Bisang, I. (2011). The overlooked dwarf males in mosses—Unique among green
804 land plants. *Perspectives in Plant Ecology, Evolution and Systematics*, 13(2), 121–135. doi:
805 10.1016/j.ppees.2011.03.001

806 Horst, N. A., & Reski, R. (2017). Microscopy of *Physcomitrella patens* sperm cells. *Plant*
807 *Methods*, 13, 33. doi: 10.1186/s13007-017-0186-2

808 Hough, J., Wang, W., Barrett, S. C. H., & Wright, S. I. (2017). Hill-Robertson Interference
809 Reduces Genetic Diversity on a Young Plant Y-Chromosome. *Genetics*, 207(2), 685–695.
810 doi: 10.1534/genetics.117.300142

811 Hrdy, S. B. (1981). *The woman that never evolved*. Cambridge, MA (Harvard university press)
812 1981. Retrieved from <https://opus4.kobv.de/opus4-Fromm/frontdoor/index/index/docId/27999>

813 Hrdy, S. B. (1986). *Empathy, polyandry, and the myth of the coy female*. na. Retrieved from
814 <https://joelvelasco.net/teaching/3330/hrdy-mythofcoy.pdf>

815 Hurst, L. D., & Ellegren, H. (1998). Sex biases in the mutation rate. *Trends in Genetics: TIG*,
816 14(11), 446–452. doi: 10.1016/s0168-9525(98)01577-7

817 Immler, S., & Otto, S. P. (2015). The evolution of sex chromosomes in organisms with separate
818 haploid sexes. *Evolution; International Journal of Organic Evolution*, 69(3), 694–708. doi:
819 10.1111/evo.12602

820 Johnson, M. G., & Shaw, A. J. (2016). The effects of quantitative fecundity in the haploid stage
821 on reproductive success and diploid fitness in the aquatic peat moss *Sphagnum*
822 *macrophyllum*. *Heredity*, 116(6), 523–530. doi: 10.1038/hdy.2016.13

823 Jonathan Shaw, A., & Goffinet, B. (2000). *Bryophyte Biology*. Cambridge University Press.
824 Retrieved from <https://play.google.com/store/books/details?id=fuOKCOIRngkC>

825 Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory
826 requirements. *Nature Methods*, 12(4), 357–360. doi: 10.1038/nmeth.3317

827 Kimura, M., & Crow, J. F. (1964). THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN
828 A FINITE POPULATION. *Genetics*, 49, 725–738. Retrieved from
829 <https://www.ncbi.nlm.nih.gov/pubmed/14156929>

830 Kimura, M. (1971). Theoretical foundation of population genetics at the molecular level.
831 *Theoretical Population Biology*, 2(2), 174–208. doi: 10.1016/0040-5809(71)90014-1

832 Kirkpatrick, M., & Hall, D. W. (2004). Male-biased mutation, sex linkage, and the rate of adaptive
833 evolution. *Evolution; International Journal of Organic Evolution*, 58(2), 437–440. Retrieved
834 from <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0014-3820.2004.tb01659.x>

835 Lande, R., & Barrowclough, G. (1987). Effective population size, genetic variation, and their use
836 in population. *Viable Populations for Conservation*, 87. Retrieved from
837 <https://books.google.com/books?hl=en&lr=&id=pj05FP5gpFIC&oi=fnd&pg=PA87&dq=Effect+population+size,+genetic+variation,+and+their+use+in+population+management&ots=J0t7YitkVU&sig=IHRVMQ42oWdJJNf6OLsYylC0YU>

841 Lenormand, T., & Dutheil, J. (2005). Recombination difference between sexes: a role for haploid
842 selection. *PLoS Biology*, 3(3), e63. doi: 10.1371/journal.pbio.0030063

843 Lercher, M. J., & Hurst, L. D. (2002). Human SNP variability and mutation rate are higher in
844 regions of high recombination. *Trends in Genetics: TIG*, 18(7), 337–340. doi:
845 10.1016/s0168-9525(02)02669-0

846 Ligrone, R., Duckett, J. G., & Renzaglia, K. S. (1993). The Gametophyte-Sporophyte Junction in
847 Land Plants. In J. A. Callow (Ed.), *Advances in Botanical Research* (Vol. 19, pp. 231–318).
848 Academic Press. doi: 10.1016/S0065-2296(08)60206-2

849 Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping
850 and population genetical parameter estimation from sequencing data. *Bioinformatics*,
851 27(21), 2987–2993. doi: 10.1093/bioinformatics/btr509

852 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
853 arXiv. Retrieved from <http://arxiv.org/abs/1303.3997>

854 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... 1000 Genome Project
855 Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools.
856 *Bioinformatics*, 25(16), 2078–2079. doi: 10.1093/bioinformatics/btp352

857 Li, W. H., Yi, S., & Makova, K. (2002). Male-driven evolution. *Current Opinion in Genetics &*
858 *Development*, 12(6), 650–656. doi: 10.1016/s0959-437x(02)00354-4

859 Longton, R. E., & Re, L. (1976). *Reproductive biology and evolutionary potential in bryophytes*.
860 Retrieved from [https://pascal-](https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7710336448)
861 [francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7710336448](https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7710336448)

862 Lande, R., & Barrowclough, G. (1987). Effective population size, genetic variation, and their use
863 in population. *Viable Populations for Conservation*, 87. Retrieved from
864 [https://books.google.com/books?hl=en&lr=&id=pj05FP5gpFIC&oi=fnd&pg=PA87&dq=Effect](https://books.google.com/books?hl=en&lr=&id=pj05FP5gpFIC&oi=fnd&pg=PA87&dq=Effective+population+size,+genetic+variation,+and+their+use+in+population+management&ots=J0t7YitkVU&sig=IHRVMQ42oWdJJNf6OLsYlaC0YU)
865 [ive+population+size,+genetic+variation,+and+their+use+in+population+management&ots=](https://books.google.com/books?hl=en&lr=&id=pj05FP5gpFIC&oi=fnd&pg=PA87&dq=Effective+population+size,+genetic+variation,+and+their+use+in+population+management&ots=J0t7YitkVU&sig=IHRVMQ42oWdJJNf6OLsYlaC0YU)
866 [J0t7YitkVU&sig=IHRVMQ42oWdJJNf6OLsYlaC0YU](https://books.google.com/books?hl=en&lr=&id=pj05FP5gpFIC&oi=fnd&pg=PA87&dq=Effective+population+size,+genetic+variation,+and+their+use+in+population+management&ots=J0t7YitkVU&sig=IHRVMQ42oWdJJNf6OLsYlaC0YU)

867 McDaniel, S. F., Atwood, J., & Burleigh, J. G. (2013). Recurrent evolution of dioecy in
868 bryophytes. *Evolution; International Journal of Organic Evolution*, 67(2), 567–572. doi:
869 10.1111/j.1558-5646.2012.01808.x

870 McDaniel, S. F., Neubig, K. M., Payton, A. C., Quatrano, R. S., & Cove, D. J. (2013). RECENT
871 GENE-CAPTURE ON THE UV SEX CHROMOSOMES OF THE MOSS CERATODON
872 PURPUREUS : SEX CHROMOSOME EVOLUTION IN C. PURPUREUS. *Evolution;*
873 *International Journal of Organic Evolution*, 110. doi: 10.1111/evo.12165

874 McDaniel, S. F., & Shaw, A. J. (2005). Selective sweeps and intercontinental migration in the
875 cosmopolitan moss Ceratodon purpureus (Hedw.) Brid. *Molecular Ecology*, 14(4), 1121–
876 1132. doi: 10.1111/j.1365-294X.2005.02484.x

877 McDaniel, S. F., van Baren, M. J., Jones, K. S., Payton, A. C., & Quatrano, R. S. (2013).
878 Estimating the nucleotide diversity in Ceratodon purpureus (Ditrichaceae) from 218
879 conserved exon-primed, intron-spanning nuclear loci. *Applications in Plant Sciences*, 1(4),
880 1200387. Retrieved from
881 <https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.3732/apps.1200387>

882 McDaniel, S. F., Willis, J. H., & Shaw, A. J. (2008). The genetic basis of developmental
883 abnormalities in interpopulation hybrids of the moss Ceratodon purpureus. *Genetics*,
884 179(3), 1425–1435. doi: 10.1534/genetics.107.086314

885 McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in
886 *Drosophila*. *Nature*, 351(6328), 652–654. doi: 10.1038/351652a0

887 McKnight, P. E., & Najab, J. (2010). Mann-Whitney U Test. *The Corsini Encyclopedia of*
888 *Psychology*, 1–1. Retrieved from
889 <https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524>

890 Ming, R., Bendahmane, A., & Renner, S. S. (2011). Sex chromosomes in land plants. *Annual*
891 *Review of Plant Biology*, 62, 485–514. doi: 10.1146/annurev-arplant-042110-103914

892 Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of
893 restriction endonucleases. *Proceedings of the National Academy of Sciences of the United
894 States of America*, 76(10), 5269–5273. doi: 10.1073/pnas.76.10.5269

895 Norrell, T. E., Jones, K. S., Payton, A. C., & McDaniel, S. F. (2014). Meiotic sex ratio variation in
896 natural populations of *Ceratodon purpureus* (Ditrichaceae). *American Journal of Botany*,
897 101(9), 1572–1576. doi: 10.3732/ajb.1400156

898 Nunney, L. (1993). THE INFLUENCE OF MATING SYSTEM AND OVERLAPPING
899 GENERATIONS ON EFFECTIVE POPULATION SIZE. *Evolution; International Journal of
900 Organic Evolution*, 47(5), 1329–1341. doi: 10.1111/j.1558-5646.1993.tb02158.x

901 Olney, K. C., Brotman, S. M., Andrews, J. P., Valverde-Vesling, V. A., & Wilson, M. A. (2020).
902 Reference genome and transcriptome informed by the sex chromosome complement of the
903 sample increase ability to detect sex differences in gene expression from RNA-Seq data.
904 *Biology of Sex Differences*, 11(1), 42. doi: 10.1186/s13293-020-00312-9

905 Parsch, J., Zhang, Z., & Baines, J. F. (2009). The Influence of Demography and Weak Selection
906 on the McDonald–Kreitman Test: An Empirical Study in *Drosophila*. *Molecular Biology and
907 Evolution*, 26(3), 691–698. doi: 10.1093/molbev/msn297

908 Pease, J. B., & Hahn, M. W. (2013). More accurate phylogenies inferred from low-recombination
909 regions in the presence of incomplete lineage sorting: Accurate phylogenies in low-
910 recombination regions. *Evolution; International Journal of Organic Evolution*, 67(8), 2376–
911 2384. doi: 10.1111/evo.12118

912 Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E., & Lercher, M. J. (2014). PopGenome: an
913 efficient Swiss army knife for population genomic analyses in R. *Molecular Biology and
914 Evolution*, 31(7), 1929–1936. doi: 10.1093/molbev/msu136

915 Pool, J. E., & Nielsen, R. (2007). Population size changes reshape genomic patterns of
916 diversity. *Evolution; International Journal of Organic Evolution*, 61(12), 3001–3006. doi:
917 10.1111/j.1558-5646.2007.00238.x

918 Qiu, S., Bergero, R., Forrest, A., Kaiser, V. B., & Charlesworth, D. (2010). Nucleotide diversity in
919 *Silene latifolia* autosomal and sex-linked genes. *Proceedings. Biological Sciences / The
920 Royal Society*, 277(1698), 3283–3290. doi: 10.1098/rspb.2010.0606

921 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
922 features. *Bioinformatics*, 26(6), 841–842. doi: 10.1093/bioinformatics/btq033

923 R Core Team. (2013). *R: A language and environment for statistical computing*. R Foundation
924 for Statistical Computing, Vienna, Austria. Retrieved from <https://www.R-project.org/>

925 Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., &
926 Mesirov, J. P. (2011). Integrative genomics viewer. *Nature Biotechnology*, 29(1), 24–26.
927 doi: 10.1038/nbt.1754

928 Rosenstiel, T. N., Shortlidge, E. E., Melnychenko, A. N., Pankow, J. F., & Eppley, S. M. (2012).
929 Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss.
930 *Nature*, 489(7416), 431–433. doi: 10.1038/nature11330

931 Sayres, M. A. W. (2018). Genetic diversity on the sex chromosomes. *Genome Biology and
932 Evolution*, 10(4), 1064. Retrieved from
933 <https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5892150/>

934 Sedlazeck, F. J., Rescheneder, P., & von Haeseler, A. (2013). NextGenMap: fast and accurate
935 read mapping in highly polymorphic genomes. *Bioinformatics*, 29(21), 2790–2791. doi:
936 10.1093/bioinformatics/btt468

937 Shaw, A. J., & Gaughan, J. F. (1993). CONTROL OF SEX RATIOS IN HAPLOID
938 POPULATIONS OF THE MOSS, *CERATODON PURPUREUS*. *American Journal of
939 Botany*, 80(5), 584–591. doi: 10.1002/j.1537-2197.1993.tb13844.x

940 Shaw, J., & Beer, S. C. (1999). Life history variation in gametophyte populations of the moss
941 *Ceratodon purpureus* (Ditrichaceae). *American Journal of Botany*, 86(4), 512–521.
942 Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/10205071>

943 Shortlidge, E. E., Payton, A. C., Carey, S. B., McDaniel, S. F., Rosenstiel, T. N., & Eppley, S. M.
944 (2020). Microarthropod contributions to fitness variation in the common moss *Ceratodon*
945 *purpureus* (p. 2020.12.02.408872). doi: 10.1101/2020.12.02.408872

946 Smith, D. R. (2015). Mutation rates in plastid genomes: they are lower than you might think.
947 *Genome Biology and Evolution*, 7(5), 1227–1234. doi: 10.1093/gbe/evv069

948 Smith, J. M., & Haigh, J. (1974). The hitch-hiking effect of a favourable gene. *Genetical*
949 *Research*, 23(1), 23–35. Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/4407212>

950 Stark, L. R. (2002). Skipped reproductive cycles and extensive sporophyte abortion in the desert
951 moss *Tortula inermis* correspond to unusual rainfall patterns. *Canadian Journal of Botany.*
952 *Journal Canadien de Botanique*, 80(5), 533–542. doi: 10.1139/b02-053

953 Stark, L. R., Brinda, J. C., & McLetchie, D. N. (2009). An experimental demonstration of the cost
954 of sex and a potential resource limitation on reproduction in the moss *Pterygoneurum*
955 (Pottiaceae). *American Journal of Botany*, 96(9), 1712–1721. doi: 10.3732/ajb.0900084

956 Stark, L. R., Mishler, B. D., & McLetchie, D. N. (2000). The cost of realized sexual reproduction:
957 assessing patterns of reproductive allocation and sporophyte abortion in a desert moss.
958 *American Journal of Botany*, 87(11), 1599–1608. Retrieved from
959 <https://www.ncbi.nlm.nih.gov/pubmed/11080110>

960 Stark, L. R., & Stephenson, A. G. (1983). Reproductive Biology of *Entodon cladorrhizans*
961 (Bryopsida, Entodontaceae). II. Resource-Limited Reproduction and Sporophyte Abortion.
962 *Systematic Botany*, 8(4), 389–394. doi: 10.2307/2418358

963 Stoletzki, N., & Eyre-Walker, A. (2011). Estimation of the neutrality index. *Molecular Biology and*
964 *Evolution*, 28(1), 63–70. doi: 10.1093/molbev/msq249

965 Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA
966 polymorphism. *Genetics*, 123(3), 585–595. Retrieved from
967 <https://www.ncbi.nlm.nih.gov/pubmed/2513255>

968 Tang-Martínez, Z. (2016). Rethinking Bateman's Principles: Challenging Persistent Myths of
969 Sexually Reluctant Females and Promiscuous Males. *Journal of Sex Research*, 53(4-5),
970 532–559. doi: 10.1080/00224499.2016.1150938

971 VanBuren, R., Wai, C. M., Zhang, J., Han, J., Arro, J., Lin, Z., ... Ming, R. (2016). Extremely low
972 nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep.
973 *Genome Biology*, 17(1), 230. doi: 10.1186/s13059-016-1095-9

974 Watterson, G. A. (1975). On the number of segregating sites in genetical models without
975 recombination. *Theoretical Population Biology*, 7(2), 256–276. doi: 10.1016/0040-
976 5809(75)90020-9

977 Webster, T. H., & Wilson Sayres, M. A. (2016). Genomic signatures of sex-biased demography:
978 progress and prospects. *Current Opinion in Genetics & Development*, 41, 62–71. doi:
979 10.1016/j.gde.2016.08.002

980 Whittle, C.-A., & Johnston, M. O. (2002). Male-driven evolution of mitochondrial and
981 chloroplastidial DNA sequences in plants. *Molecular Biology and Evolution*, 19(6), 938–949.
982 doi: 10.1093/oxfordjournals.molbev.a004151

983 Wickham, H. (2007). Reshaping data with the reshape package. *Journal of Statistical Software*,
984 21(12), 1–20. Retrieved from <http://had.co.nz/reshape/introduction.pdf>

985 Wickham, H. (2012). reshape2: Flexibly reshape data: a reboot of the reshape package. *R*
986 *Package Version*, 1(2). Retrieved from
987 <http://cran.ms.unimelb.edu.au/web/packages/reshape2/>

988 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer. Retrieved from
989 <https://play.google.com/store/books/details?id=XgFkDAAAQBAJ>

990 Wilson Sayres, M. A., & Makova, K. D. (2011). Genome analyses substantiate male mutation
991 bias in many species. *BioEssays: News and Reviews in Molecular, Cellular and*
992 *Developmental Biology*, 33(12), 938–945. doi: 10.1002/bies.201100091

993 Wolfe, K. H., Li, W. H., & Sharp, P. M. (1987). Rates of nucleotide substitution vary greatly

994 among plant mitochondrial, chloroplast, and nuclear DNAs. *Proceedings of the National*
995 *Academy of Sciences of the United States of America*, 84(24), 9054–9058. doi:
996 10.1073/pnas.84.24.9054
997 Wright, S. (1938). Size of population and breeding structure in relation to evolution. *Science*, 87,
998 430–431. Retrieved from <https://ci.nii.ac.jp/naid/10024481567/>
999 Wright, S. (1949). THE GENETICAL STRUCTURE OF POPULATIONS. *Annals of Eugenics*,
1000 15(1), 323–354. doi: 10.1111/j.1469-1809.1949.tb02451.x
1001 Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology and*
1002 *Evolution*, 24(8), 1586–1591. doi: 10.1093/molbev/msm088

1003

1004 **Data Accessibility:** Requests for the *C. purpureus* lines in this manuscript should be addressed
1005 to stuartmcdaniel@ufl.edu. The *C. purpureus* Illumina resequencing data can be found under
1006 NCBI BioProjects listed in Table S1. The *C. purpureus* chloroplast assembly can be found on
1007 NCBI under (in progress). Code for the life history simulations can be found at
1008 https://github.com/JimmyPeniston/Moss_NE_simulations and the population genetic analyses
1009 can be found at https://github.com/sarahcarey/Ceratodon_popgen.

1010

1011 **Author Contributions:** SBC, JHP, and SFM designed the research; ACP, AL, DB, KL, CD, KB,
1012 JG, JS, and SFM performed the molecular biology and sequencing; SBC, MK, JJ, and JS
1013 performed the bioinformatics; JHP developed the model; SBC performed the population genetic
1014 analyses; SBC and JHP created the visualizations; SBC, JHP, and SFM wrote the original draft
1015 and edited the manuscript.

1016

1017

Tables and Figures

1018 **Table 1. Population genetic analyses by chromosome.** Segregating sites (S); Wu and
1019 Watterson's theta (θ); Pi (π).
1020

Chromosome	Total sites	S	θ	π	Tajima's D	F_{ST}
1	29001003	829016	0.00868	0.00843	-0.184	0.184
2	26629683	998325	0.01141	0.01015	-0.534	0.247
3	25160467	770120	0.00929	0.00906	-0.167	0.222
4	22785024	748029	0.00997	0.00965	-0.197	0.268
5	19969424	641039	0.00975	0.00998	0.047	0.211
6	18980603	610384	0.00976	0.0092	-0.312	0.168
7	17972677	533845	0.00902	0.00835	-0.385	0.175
8	17567963	553075	0.00956	0.0092	-0.221	0.202
9	17527894	624924	0.01087	0.0107	-0.108	0.18
10	17229405	521827	0.00919	0.00891	-0.192	0.195
11	16661191	593265	0.01082	0.01053	-0.173	0.139
12	16459275	522515	0.00965	0.00931	-0.207	0.236
Chloroplast	105555	51	0.00015	0.00018	0.868	0.471
U	112179120	982232	0.00339	0.00331	-0.431	0.372
V	110524308	689145	0.00241	0.00219	-0.818	0.375

1021

1022 **Table 2. McDonald Krietman test results for sex-linked genes.** Results shown here are
 1023 significant in the MK test at $p < 0.1$ (autosomal genes shown in Table S2). Non-synonymous
 1024 polymorphism (Pn); Synonymous polymorphism (Ps); Non-synonymous divergence (Dn);
 1025 Synonymous divergence (Ds); Direction of Selection (DoS); Gene Ontology (GO).

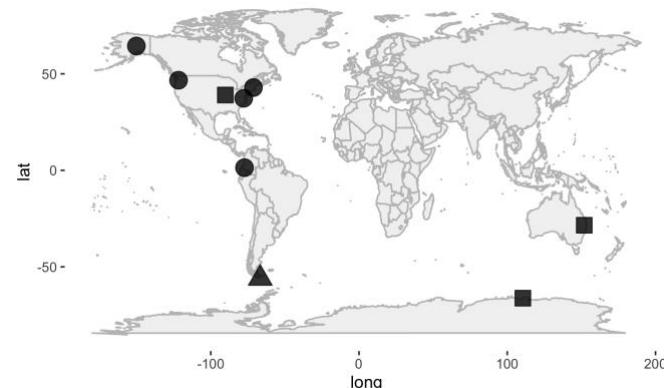
Gene	Pn	Ps	Dn	Ds	P-value	DoS	GO categories
CepurGG1.UG008000	1	0	4	0	0.005	0.9	photosystem I; photosynthesis; membrane; chlorophyll binding posttranslational protein targeting to membrane, translocation; nucleic acid binding; ATP binding; protein binding; protein transporter activity
CepurGG1.UG000900	9	0	4	10	0.015	-0.532	protein binding; zinc ion binding
CepurGG1.UG037500	1	0	18	2	0.018	0.65	Unknown function
CepurGG1.UG085200	0	0	19	7	0.033	0.731	Unknown function
CepurGG1.UG067100	9	0	1	3	0.041	-0.65	Unknown function
CepurGG1.UG020900	12	0	31	13	0.049	-0.295	protein dimerization activity; nucleic acid binding
CepurGG1.UG035900	8	0	3	6	0.05	-0.556	Unknown function
CepurGG1.UG024700	11	0	0	2	0.057	-0.846	Unknown function
CepurGG1.UG034000	11	0	7	9	0.072	-0.348	ATP binding; protein phosphorylation; protein kinase activity
CepurGG1.UG008500	4	0	3	5	0.081	-0.625	Unknown function
CepurR40.VG078600	10	0	8	11	0.003	-0.579	Unknown function
CepurR40.VG083300	3	0	0	5	0.048	-0.75	protein binding; protein phosphorylation; ATP binding; protein tyrosine kinase activity; protein kinase activity
CepurR40.VG013400	38	0	38	22	0.056	-0.175	Unknown function
CepurR40.VG055100	7	0	17	18	0.059	-0.389	Unknown function
CepurR40.VG062200	0	0	32	19	0.062	0.627	Unknown function
CepurR40.VG030400	2	0	2	9	0.077	-0.818	Unknown function
CepurR40.VG023000	0	0	6	1	0.083	0.857	Unknown function

1026

1027

1028

1029


1030

1031

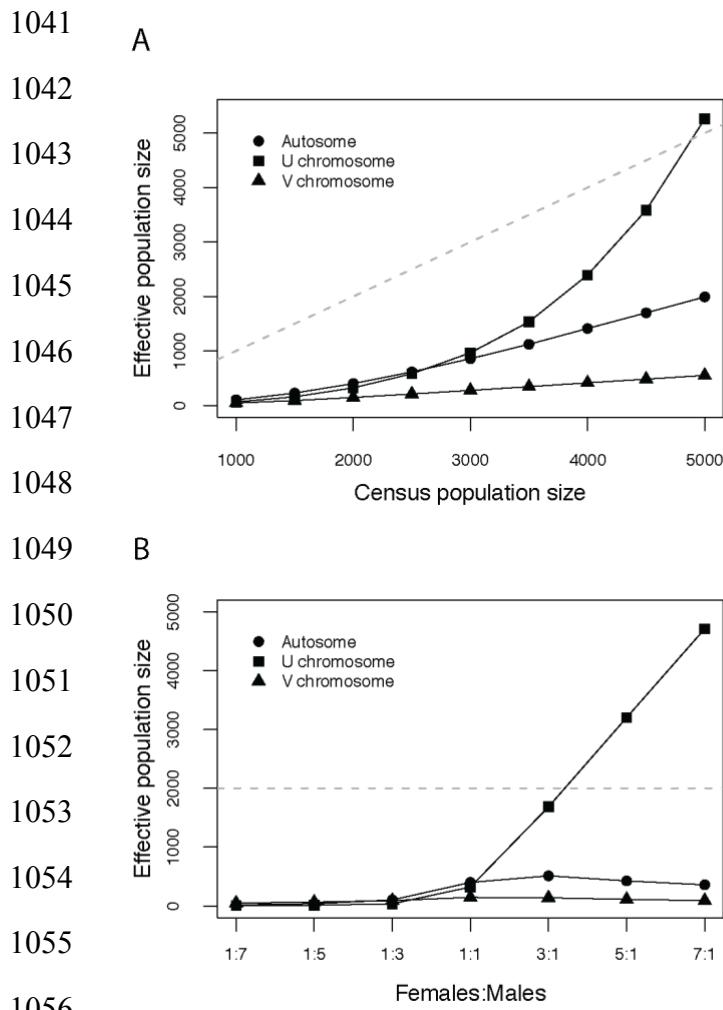
1032

1033

1034

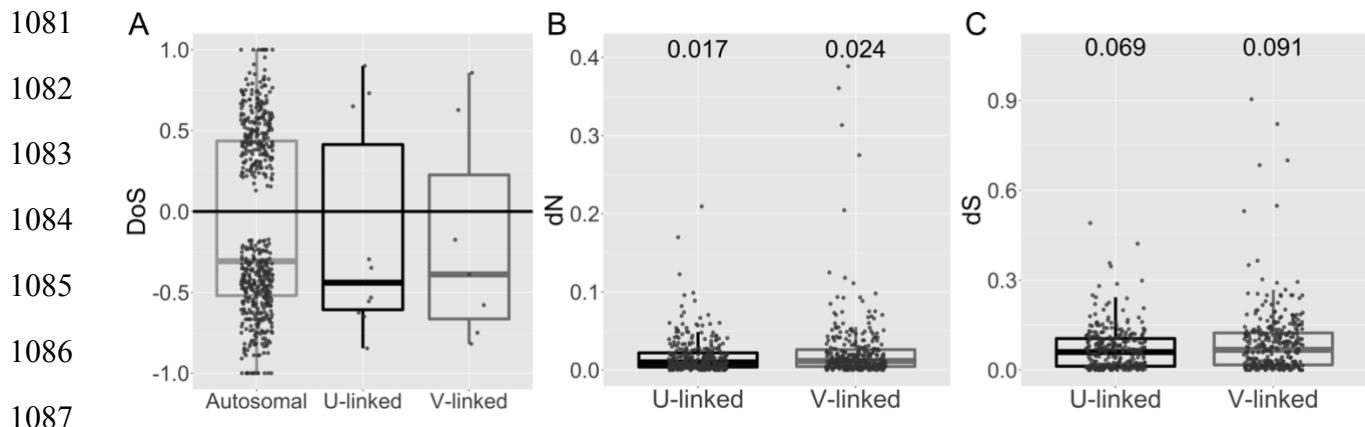
1035

1036

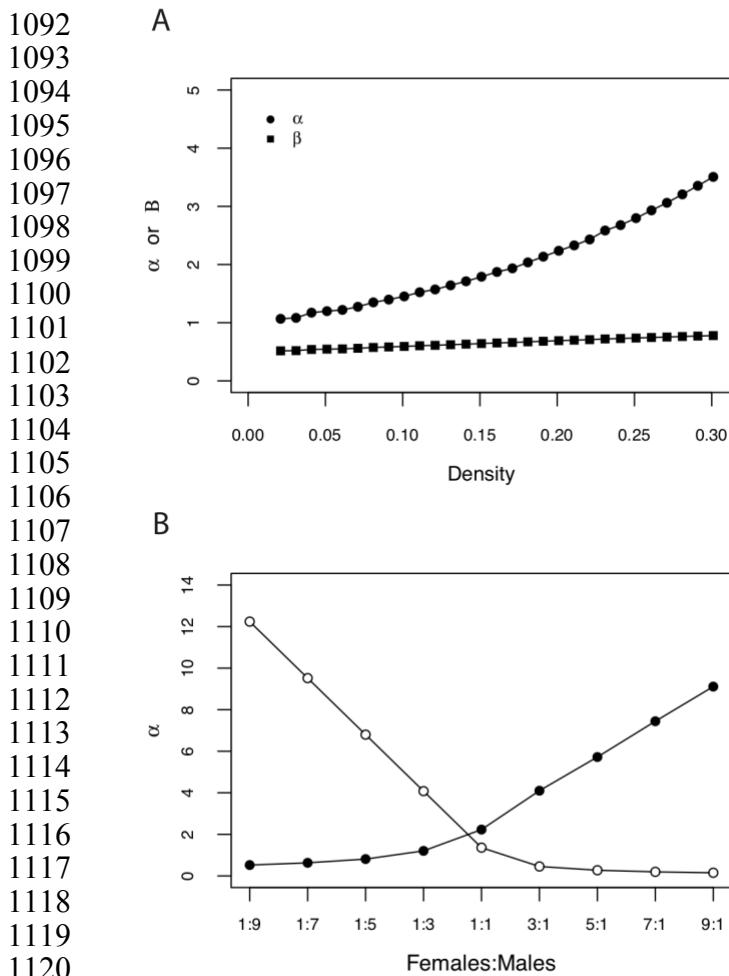

1037

1038

1039


Figure 1. Sampling localities for the 23 *Ceratodon purpureus* isolates. All isolates from the nine localities were used for SNP calling. Some isolates were not used for downstream analyses because all isolates from the locality were female (indicated with squares). Isolates indicated with circles were used for the population genetics analyses and the isolates indicated with a triangle were used as the outgroup for the McDonald Kreitman Test.

1040



1057 **Figure 2. Effective population size of U and V sex chromosomes and autosomes**
1058 **calculated from spatially-explicit simulations.** A) The effect of population density on effective
1059 population size (N_e). In all simulations, there were 1000 available sites so density is census size
1060 divided by 1000. The dashed gray line denotes the one to one line at which the N_e equals the
1061 census population size. B) The effect of sex ratio on N_e . Dashed gray line shows the census
1062 population size of 2000. Each point is the mean value given by 100 runs of the simulation.

1088 **Figure 4. Measures of protein evolution.** A) Direction of Selection (DoS) test for autosomal
1089 and sex-linked genes that were significant in the MK test at $p<0.1$. B) nonsynonymous mutation
1090 rate (dN) and C) synonymous mutation rate (dS) of one-to-one orthologous U and V-linked
1091 genes. Numbers on top show the mean values.

Figure 5. A) Simulation results for the effect of density on the two ratios discussed in the main text. The ratio between variances in reproductive success of males and females (α) and the variance in reproductive success of males divided by the variance in reproductive success of males plus the variance in reproductive success of females (β). The patterns plotted here hold for different populations and arena sizes. Each point is the mean value given by 100 runs of the simulation. Empirically calculated values were $\alpha = 1.36$ and $\beta = 1.0$. B) The effect of sex ratio (females:males) on the ratio between variances in reproductive success of males and females (α). Filled black points show results of simulations (with a density of 0.2) while white points show the empirically calculated values. Each black point is the mean value given by 100 runs of the simulation.