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Abstract: A central goal in evolutionary genomics is to understand the processes that shape
genetic variation in natural populations. In anisogamous species, these processes may
generate asymmetries between genes transmitted through sperm or eggs. The unique
inheritance of sex chromosomes facilitates studying such asymmetries, but in many systems
sex-biased mutation, demography, and selection are confounded with suppressed
recombination in only one sex (the W in females, or the Y in males). However, in a UV sex-
determination system, both sex chromosomes are sex-specific and experience suppressed
recombination. Here we built a spatially-structured simulation to examine the effects of
population density and sex-ratio on female and male effective population size in haploids and
compare the results to polymorphism data from whole-genome resequencing of the moss
Ceratodon purpureus. In the parameter space we simulated, males nearly always had a lower
effective population size than females. Using the C. purpureus resequencing data, we found the
U and V have lower nucleotide diversity than the autosomal mean, and the V is much lower than
the U, however, we found no parameter set in the model that explained both the U/V and
U/autosome ratios we observed. We next used standard molecular evolutionary analyses to test
for sex-biased mutation and selection. We found that males had a higher mutation rate but that
natural selection shapes variation on the UV sex chromosomes. All together the moss system
highlights how anisogamy alone can exert a profound influence on genome-wide patterns of

molecular evolution.

Keywords: Ceratodon purpureus, effective population size, linked selection, male-mutation

bias, demography


https://doi.org/10.1101/2021.03.30.437085
http://creativecommons.org/licenses/by/4.0/

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437085; this version posted March 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Introduction

Anisogamy, the condition in which genetic information is transmitted from one generation
to the next through two different sized gametes, is widely shared among eukaryotes. The
smaller gametes, typically called sperm, are abundant and motile, while the larger gametes,
typically called eggs, are less abundant, better provisioned, and often sessile or retained on the
parent. In species with two separate sexes, males produce sperm and females produce eggs,
but of course many hermaphroditic species are also anisogamous. The asymmetry in gamete
transmission means that the demography of genes transmitted through the smaller gamete can
differ dramatically from the demography of genes transmitted through the larger gamete, even
under neutral-equilibrium conditions (Charlesworth, 2009). For an extreme example, consider a
population in which each egg-donor makes a single egg, but a single sperm-donor fertilizes all
the eggs, a pattern which maximizes the variance in reproductive success for the sperm donor
and dramatically reduces effective population size (N.) (Crow & Kimura, 1970; Sewell Wright,
1938). Anisogamy may therefore modulate the strength of selection on genes influencing
transmission through sperm or eggs, potentially with major evolutionary consequences.

Most alleles are expressed in both females and males and therefore are transmitted
through both egg and sperm. Thus, the effects of anisogamy on patterns of polymorphism will
be averaged out across much of the genome. The sex chromosomes, however, are a major
exception, because their patterns of inheritance are correlated with gametic sex and therefore
record the history of sex-specific evolutionary processes (Caballero, 1995; Charlesworth, 2009;
Kirkpatrick & Hall, 2004; Lenormand & Dutheil, 2005; Pool & Nielsen, 2007). In species with an
XY sex-determination system, the Y chromosome is transmitted through males, meaning Y-
chromosome polymorphism is shaped by transmission through sperm. However, no X homolog
is transmitted exclusively through eggs because the X chromosome passes through both sexes.
Similarly, ZW systems share these asymmetries in transmission, although in this case the W is

female specific. In contrast, the UV sex chromosomes found in haploid systems with genetically-
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determined separate sexes have symmetrical transmission; the U is transmitted through eggs
while the V is transmitted through sperm (Bachtrog et al., 2011; S. Carey, Kollar, & McDaniel,
2020). This inheritance pattern facilitates direct comparisons between female and male N. using
homologous loci on the U and V.

Under the infinite-sites model, the equilibrium level of neutral variation depends only on
the mutation rate and N, (Kimura, 1971). Male mutation rates may be higher than female rates,
a finding that is often attributed to an increased number of cell divisions in the male germline
(Hurst & Ellegren, 1998). It is unclear that this bias should apply to UV systems, which generally
lack a distinction between the germline and soma. Even if the sexes have identical mutation
rates, the levels of sex chromosome polymorphism are expected to be different than that for an
autosome simply due to their mode of inheritance. For example, in diploid systems, each mated
pair has three copies of an X or Z chromosome compared to four copies of each autosome and
only one Y or W. Thus, the expected N, for an X or Z-linked locus is 3/4 of an autosome, while
the expected N, for a Y or W-linked locus is 1/4 (when using discrete-generation approaches
and assuming a Poisson offspring number distribution) (Charlesworth, 2001). In contrast, in
haploid-dioecious systems, each mated pair has one U and one V for every two autosomes.
Thus, both the U and the V chromosomes are expected to have 1/2 N, of an autosome, under
similarly-restricted conditions (Avia et al., 2018; McDaniel, Neubig, Payton, Quatrano, & Cove,
2013). In UV systems, mitochondria and chloroplasts are maternally inherited (i.e., also sex
specific) and expressed in the haploid stage, so they are also expected to have 1/2 N, of an
autosome, while they are 1/4 N, in diploids (Sayres, 2018).

Numerous other non-random processes can also cause the N, of the sex chromosomes
to deviate from the infinite-sites expectations. These processes may act in concert with, or
independent of, the effects of anisogamy on N.. Sexual selection, for example, often generates
greater variance in reproductive success in males, profoundly decreasing the N, of Y-linked loci,

compared to X-linked loci or autosomes (Crow & Morton, 1955; Nunney, 1993). In discrete-
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95  generation models, a large excess in variance of male reproductive success over Poisson
96  expectation causes ratios of sex chromosome and autosome polymorphism to approach
97  extreme values (e.g., X/A=9/8, Y/A=1/8, and Y/X=1/9; (Caballero, 1995)). Sex-ratio biases can
98 also drastically affect patterns of Ne. For example, in an XY system, the ratio of X to autosomal
99 diversity increases as the population becomes more female-biased, while the Y to autosome
100  ratio decreases (Ellegren, 2009; Sayres, 2018). Additional demographic or life history factors
101  may also drive species-specific variation in sex chromosome polymorphism. Age structure
102  (Charlesworth, 2001) or geographic structure, in which males and females experience different
103 migration patterns, can either moderate or exacerbate these biases (Goldberg & Rosenberg,
104  2015). Such processes and their effects on N, have attracted relatively little attention in
105  bryophytes or other UV systems (but see (Bengtsson & Cronberg, 2009)).
106
107 Other forms of selection can also affect variation on sex chromosome and autosomes in
108  different ways, potentially enhancing any asymmetries in Ne among sex chromosomes. For
109  example, the X chromosome is hemizygous in males, which can increase directional selection
110  on male-beneficial recessive alleles and increase purifying selection on deleterious alleles
111  (Charlesworth, Coyne, & Barton, 1987). Similarly, the male-specific region of the Y chromosome
112 experiences suppressed recombination, meaning that linked selection drives patterns of
113 polymorphism (Charlesworth & Charlesworth, 2000; J. M. Smith & Haigh, 1974). Polymorphism
114  in mitochondrial and chloroplast DNA reflect female transmission and also exhibit suppressed
115 recombination, but because they replicate independently in the cytoplasm they may experience
116  unusual patterns of mutation or population size (D. R. Smith, 2015; Wolfe, Li, & Sharp, 1987).
117  Thus, tests for sex-biased evolutionary processes in XY or ZW systems typically must rely upon
118  comparisons among non-homologous loci that experience very different population genetic
119  environments. In contrast, both the U and V experience suppressed recombination, meaning

120  both the female and male-specific chromosomes are expected to experience an equivalent
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121 decrease in nucleotide diversity due to suppressed recombination (Avia et al., 2018; McDaniel,
122 Neubig, et al., 2013).

123 Several sequenced UV sex chromosomes also maintain numerous homologs between
124  the sexes, despite the suppressed recombination, providing abundant genetic data to study sex-
125 specific variation (Ahmed et al., 2014; Bowman et al., 2017; S. B. Carey et al., 2020; Ferris et
126  al.,, 2010). Sex chromosome degeneration in UV systems appears to be largely halted by strong
127  purifying selection generated by haploid gene expression (S. B. Carey et al., 2020; Immler &
128  Otto, 2015). One of the most remarkable examples is the moss Ceratodon purpureus in which
129  the U and V sex chromosomes comprise ~30% of the ~360 megabase (Mb) genome for

130  females and males, respectively (S. B. Carey et al., 2020). The U and V also contain ~12% of
131  the organism’s gene content, providing numerous U-V orthologs to study differences in their
132 molecular evolution (S. B. Carey et al., 2020). Nucleotide diversity data from a small number of
133 U and V-linked introns in C. purpureus suggested that female and male-transmitted loci

134 harbored similar amounts of genetic diversity, and both sexes showed indistinguishable patterns
135  of population differentiation, suggesting that female and male spores may have equal

136  probabilities of dispersing among populations (McDaniel, Neubig, et al., 2013). However, these
137  data were insufficient to test for modest differences between female and male N. or mutation
138  rate.

139 The life cycle of C. purpureus is like that of many dioecious species with UV sex-

140  determination. Sexual reproduction typically occurs annually (Crum & Anderson, 1981; A. J.

141  Shaw & Gaughan, 1993). Haploid males release V-carrying motile sperm, which either swim or
142 are transported by microarthropods to egg-bearing females (Cronberg, Natcheva, & Hedlund,
143 2006; Rosenstiel, Shortlidge, Melnychenko, Pankow, & Eppley, 2012; Shortlidge et al., 2020),
144  potentially meters away (Glime & Bisang, 2017). Haploid females make several identical U-

145  carrying eggs, each enclosed in an archegonium. Although multiple eggs may be fertilized,

146  typically only one embryo (i.e., sporophyte) develops. At maturity a sporophyte makes
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147  thousands of viable spores (Norrell, Jones, Payton, & McDaniel, 2014; A. J. Shaw & Gaughan,
148  1993; Shortlidge et al., 2020), most of which fall near the parent sporophyte, but some are

149  captured by air currents and travel great distances (Biersma et al., 2020; McDaniel & Shaw,

150  2005).

151 Demographically-informed expectations that specifically incorporate anisogamy are

152 necessary to fully understand the role of sex-specific evolutionary forces shaping patterns of
153  polymorphism in dioecious species. In principle, a single male could fertilize many nearby

154  females, an inference supported by field observations and experiments (Johnson & Shaw, 2016;
155  Shortlidge et al., 2020), which increases variance in male reproductive success. Many

156  bryophyte populations, including mosses, have an apparent female-biased sex ratio, due to sex-
157  biased differences in clonal growth rates, differences in mortality, or differences in the number of
158 fertile individuals during any given episode of reproduction, exacerbating this effect

159  (Baughman, Payton, Paasch, Fisher, & McDaniel, 2017; Bisang, Ehrlén, & Hedenas, 2019;

160  Bisang & Hedenas, 2005; Eppley et al., 2018; Norrell et al., 2014). The likelihood that a male
161  sires offspring with multiple genetically-distinct females depends upon the spatial distribution of
162  female and male genotypes, which in turn depends upon the recruitment of migrants and the
163  clonal spread of the constituents of the population. Populations of C. purpureus, which are

164  common in disturbed sites in temperate regions of all continents (Crum & Anderson, 1981),

165 grow in dense patches with many distinct genotypes in close proximity (McDaniel & Shaw,

166  2005) and have a highly-variable sex ratio (Eppley et al., 2018). Here we built a simulation

167  parameterized using life-history data from C. purpureus to evaluate the effect of demographic
168  variables (population density and sex ratio) on female and male N.. We then compared the

169  simulated data to patterns of polymorphism in genome-wide resequence data from C. purpureus
170  to evaluate if the empirical observations could be explained by demographic processes alone.
171  Our results highlight the importance of considering the joint effects of demography, selection,

172 and mutation-rate variation in interpreting patterns of nucleotide polymorphism.
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173

174 Materials and Methods

175  In this manuscript, we use the term ‘female’ to describe individuals that inherit XX, ZW, or U
176  chromosome(s) and produce eggs and we use the term ‘male’ to describe individuals that inherit
177 XY, ZZ, or V chromosome(s) and produce sperm. We use this designation because it captures
178  key aspects of transmission genetics, but we acknowledge that karyotypic sex does not always
179  align with gametic sex, so this definition misses important components of diversity within a

180  population or generation.

181

182  Life history simulations. To generate demographically-informed estimates for Ne of the U and
183  V sex chromosomes (Neu and Nev, respectively), we constructed a spatially-explicit simulation.
184  We made several assumptions based on the life cycle of C. purpureus, namely that every

185 individual was either male or female (i.e., there were no hermaphroditic individuals), and its sex
186  was genetically determined; that all reproduction occurs sexually; that mating occurs once per
187  generation and only occurred between adjacent males and females; and that each female

188  mated once per generation, but that a male could mate with any adjacent female (i.e., up to

189  eight females in the grid used in the simulations) during a bout of mating. We made a few

190  simplifying assumptions, namely that all individuals were capable of sexual reproduction; that
191 there was no mate preference; and that each mating event within a generation resulted in the
192  same number of offspring. To keep population size constant, we adjusted the fecundity so that
193  the mean number of offspring per individual was two. Therefore, the fecundity F was given by F
194 = 2/r, where r is the mean number of females that each male mated with that generation.

195  Relaxing these assumptions, which are clearly violated in nature (e.g., clonal growth is frequent)
196 can increase the variance in reproductive success in either sex, but in general should not

197  qualitatively affect the results.
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198 For each run of the simulation (equivalent to one generation of mating), individuals were
199  randomly placed onto a 100 X 100 cell grid. Females mated in a random order. Each female
200 searched the eight adjacent cells to it for males to mate with. If there was more than one

201  adjacent male, the female randomly selected one of them to mate with. If no males were in the
202  cells adjacent to the female, that female did not mate. An example of the population following
203 one run of the simulation can be seen in Figure S1. All simulations were run in R (3.5.1; (R Core
204  Team, 2013) and plotted using the packages reshape2 (v1.4.3; (Wickham, 2007, 2012) and
205 ggplot2 (v3.2.1; (Wickham, 2016)).

206 For each run of the simulation, we recorded the total number of offspring per each male
207  and female (females could only have 0 or F offspring) and calculated the variance in

208  reproductive success for each sex. The variances in reproductive success were then used to
209  calculate the N, of the U (females) and V (males) chromosomes, using the following equations

210 (1), respectively

Il
—~
Z

I

—
S—

~

=<
—

—

~

NeU
N(’V

211  where Nrand Np, are the census population sizes and Vrand V,, are the variances in
212 reproductive success of females and males, respectively. The N, of an autosome is calculated
213 using the equation 2 (Crow & Kimura, 1970)

_ 4NeUNeV (2)
eA ™
NeU+ N(’V s

214  (derivations of equations 1 and 2 can be found in the Supplementary Appendix, Part 1).

215 To evaluate a variety of demographic scenarios, we ran simulations for a range of

216  population densities and sex ratios. To vary density, we varied the population size while always
217  keeping the arena of a fixed size of 100 X 100 cells. For each parameter set, we generated 100

218 runs of the simulation.
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219

220  Generating resequence data to test the model. We generated U-linked, V-linked, and

221  autosomal polymorphism data from 23 C. purpureus isolates collected from nine locations

222 (Figure 1; Table S1). To start these lines, sporophytes were surface sterilized, and a single

223  germinated spore was isolated following (Norrell et al., 2014). DNA was extracted using a

224 modified CTAB protocol following (Norrell et al., 2014). Plate-based DNA library preparation for
225  lllumina sequencing was performed on the PerkinElmer Sciclone NGS robotic liquid handling
226  system using Kapa Biosystems library preparation kit. Two hundred nanograms of sample DNA
227  was sheared to 500 base pairs (bp) using a Covaris LE220 focused-ultrasonicator. The sheared
228 DNA fragments were size selected by double-SPRI and then the selected fragments were end-
229  repaired, A-tailed, and ligated with lllumina compatible sequencing adaptors from IDT containing
230  auniqgue molecular index barcode for each sample library. The prepared sample libraries were
231  quantified using KAPA Biosystem’s next-generation sequencing library gPCR kit and run on a
232 Roche LightCycler 480 real-time PCR instrument. The quantified sample libraries were then
233 multiplexed into pools and the pools were then prepared for sequencing on the lllumina HiSeq
234 sequencing platform utilizing a TruSeq paired-end cluster kit v3 and lllumina’s cBot instrument
235  to generate clustered flow cells for sequencing. Sequencing of the flow cells was performed on
236  the lllumina HiSeq2000 sequencer using lllumina TruSeq SBS v3 sequencing kits, following a
237  2x150 indexed high-output run recipe. A subset of the libraries was also prepared using v4

238  chemistry and sequenced on a HiSeq2500 (see Table S1).

239 From the raw reads, we removed artifact sequences, reads containing N bases, low-
240  quality reads, DNA spike-in sequences, and PhiX control sequences. We split paired-end reads
241  into forward and reverse using an in-house script from (S. B. Carey et al., 2020). We removed
242 lllumina adapters and further filtered for quality using Trimmomatic (v0.36; (Bolger, Lohse, &

243  Usadel, 2014)) using leading and trailing values of three, window size of 10, quality score of 30,

10
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244 and minimum length of 40. We visually assessed the quality of the remaining reads using fastqc
245 (v0.11.4; (Andrews, 2010)).

246 We determined the karyotypic sex of these isolates by mapping reads using HISAT2

247  (v2.1.0; (Kim, Langmead, & Salzberg, 2015)) to the Ceratodon purpureus v1.0 genome using
248  the R40 isolate (autosomes and V sex chromosome) concatenated with the GG1 U sex

249  chromosome (S. B. Carey et al., 2020). We converted the resulting SAM files to sorted BAMs
250  and indexed using SAMtools (v1.9; (H. Li et al., 2009)). Using IGV (v2.15.0; (Robinson et al.,
251  2011)), we visually assessed sex by determining to which sex chromosome the reads mapped
252  atthe oldest locus known to be sex-linked in mosses (CepurR40.VG235300 and

253  CepurGG1.UG071900 from (S. B. Carey et al., 2020)) and haphazardly scanning along the sex
254  chromosomes.

255 To map the reads for downstream molecular evolutionary analyses, we used the

256  genome reference described above, but also included R40’s chloroplast assembly. The R40
257  chloroplast was assembled using NOVOPIasty v2.6.7 (Dierckxsens, Mardulyn, & Smits, 2017)
258  from existing lllumina data deposited in the NCBI BioProject PRINA258984 from (S. B. Carey et
259  al., 2020). Due to the low divergence between much of the U and V sex chromosomes (S. B.
260  Carey et al., 2020; McDaniel, Neubig, et al., 2013), to ensure isolates mapped to the correct sex
261  chromosome we hard masked the U for males and V and for females using BEDTools

262  maskfasta (v2.27.1; (Quinlan & Hall, 2010), following (Olney, Brotman, Andrews, Valverde-

263  Vesling, & Wilson, 2020)). Previous analyses found C. purpureus was highly polymorphic

264  (McDaniel, van Baren, Jones, Payton, & Quatrano, 2013), so we used two mappers, BWA-MEM
265  (v0.7.17; (H. Li, 2013)) and NGM (v0.5.5; (Sedlazeck, Rescheneder, & von Haeseler, 2013)), as
266  they handle divergence differently, and ran analyses on these separately. We added read

267  groups to the SAM files using Picard Tools (v2.19.1; http://broadinstitute.github.io/picard)

268  AddOrReplaceReadGroups and converted them to sorted BAMs using SAMtools (v1.9; (H. Li et

269  al., 2009)).
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270 We called variants on all BAMs together using BCFtools (v1.9; (H. Li, 2011)) mpileup
271  and call using a ploidy of one. The resulting VCF file was filtered using BCFtools filter by

272  excluding variants with a Phred-based quality score of the alternate base (QUAL) <30,

273  combined depth across samples (DP) <10, and mapping quality (MQ) <30, where these filters
274  had to be metin at least one sample (&&). We subset the VCFs using view to have females for
275  the U, males for the V, and both sexes for the chloroplast and autosomal analyses, excluding
276  isolates from localities where both sexes were not present (Figure 1; Table S1). The VCFs were
277  finally filtered to remove variants with >20% missing data.

278

279  Population genetic analyses. To examine patterns of nucleotide diversity, we calculated Wu
280  and Watterson'’s theta (6; (Watterson, 1975)), which is based on the number of segregating
281  sites in the population (S), and Nei and Li’s Pi (), which is based on the average number of
282  pairwise differences (Nei & Li, 1979), with both calculated per site (Niocaiiies=5, Nmales=8,

283  Nremales=8). We calculated Tajima’s D (Tajima, 1989) for the autosomes and sex chromosomes
284  to test whether the mutation-frequency spectrum differed between these genomic regions,

285  where a negative D suggests an excess of rare alleles indicating a recent selective sweep or
286  expansion after a bottleneck, and a positive D suggests a lack of rare alleles indicating

287  balancing selection or population contraction (Niocaities=5, Nmales=8, NFemales=8). TO examine

288  differences in gene flow between autosomes and sex chromosomes we calculated Fst (Sewall
289  Wright, 1949), comparing the isolates from Alaska and Portland (Nwuaies=4, Nremaes=4) t0 those
290  from Durham and Storrs (Nwaies=3, Nremales=3) (Figure 1; Table S1). For each of these metrics we
291  did sliding-window analyses using a window size of 100,000 and jump of 10,000 and plotted
292  these with a loess correction span of 0.03 using karyoploteR (v1.8.8; (Gel & Serra, 2017)). We
293  excluded the chloroplast, however, because the contig we analyzed was barely larger than the
294 windows (105,555 bp). We generated 95% confidence intervals (Cl) by bootstrapping 1,000 of

295  the sliding windows with replacement and tested for differences between the autosomes and
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296  sex chromosomes using the Mann-Whitney U test with a Benjamini and Hochberg correction for
297  multiple tests (Benjamini & Hochberg, 1995; McKnight & Najab, 2010).

298 To test for adaptive evolution in autosomal and sex-linked genes we first calculated the
299  McDonald Krietman (MK) test (McDonald & Kreitman, 1991). The MK test compares the ratio of
300 non-synonymous polymorphisms (Pn) to synonymous polymorphisms (Ps) to the ratio of non-
301  synonymous divergence (Dn) to synonymous divergence (Ds), where under neutrality these two
302 ratios are expected to be equal (i.e., (Dn/Ds) = (Pn/Ps)). Several phylogenetic analyses showed
303 the Chilean populations were isolated from northern hemisphere populations, potentially

304 representing a new species (Biersma et al., 2020; McDaniel & Shaw, 2005), so we used the
305 female and male Chile isolates as the outgroup for the MK test (Niocaiities=6, Nmaies=9, Nremales=9).
306 We evaluated the significance of deviations from neutrality using Fisher’s exact test (Fisher,
307  1922). Finally, we calculated the Direction of Selection (DoS) test (Stoletzki & Eyre-Walker,

308  2011), using the equation

309

DoS = Dn Pn
310 o = Dn+Ds Pn+Ps,
311

312  where a DoS < 0 indicates relaxed purifying selection and DoS > 0 indicates positive selection.
313 To determine if the mutation rate differed between the U and V chromosomes, using
314 PAML (Yang, 2007) we calculated synonymous (dS) and nonsynonymous (dN) changes on

315 branches of 330 one-to-one orthologs of the R40 and GG1 genome isolates. The gene trees
316  used and in-depth details of running PAML were previously reported in (S. B. Carey et al.,

317  2020). We tested the difference in dN and dS between the U and V-linked orthologs, using the
318 Mann-Whitney U test (Benjamini & Hochberg, 1995; McKnight & Najab, 2010), removing one V-
319 linked gene with dS>10. All population genetic analyses were done in R version 3.5.3 (R Core
320  Team, 2013) using PopGenome (v2.7.1; (Pfeifer, Wittelsbliirger, Ramos-Onsins, & Lercher,

321  2014)) and plotted using ggplot2 (v3.3.1; (Wickham, 2016)), unless otherwise stated.
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322

323 Comparing empirical data to simulations. The results of the simulations provide

324  demographically-informed expectations for levels of polymorphism for various population

325 densities and sex ratios. To compare our resequence data to the life history simulations, we
326  calculated the variation in reproductive success of both males and females that would be

327  necessary to explain our data in the absence of other processes (e.g., selection or migration).
328  We then compared the ratios of variation in reproductive success to the results of our

329  simulations to see if population density or sex ratio could explain the nucleotide diversity

330 patterns we observed. To calculate the variation in reproductive success needed to explain our
331 results, we used the result that, in haploid populations, 6 = 2Ny, where u is the mutation rate,
332  (derivation provided in the Supplementary Appendix, Part 2). From this it follows that, given

333  equation 1, 6 for the U and V chromosomes are respectively given by

Nf—l
0, =2u : R
U U
Vf
Nm—l
0. .=2u
1% v
334 Vm ,

335
336  where uy and v are the mutation rates on the U and V chromosomes, respectively. These

337  equations can be rewritten in the form

2u U( N, ~ 1)
Vf = ,
0y
2uy(N,,~1)
Vm=
338 0y
339  Similarly, it can be shown that
4yt ,(N=2)
Vf +V =—F—
340 Or
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341 where 6,4 is the Wu and Watterson estimator for an autosome, ua is the autosomal mutation
342 rate, and N is the census population size assuming that the sex ratio is equal (a different
343  equation is needed for unequal sex ratios).

344
345 From our resequence data, we estimated the ratio between 6 for the V and U

346 chromosomes, 6,/6y, which we used to solve for the ratio a = V/ Vs to determine how different

347  the variances in reproductive success would need to be to explain the results, such that (7)

C#0y(N, 1) (7)

o uf [N 1)

348  Similarly, given the ratio 6y/64, we can solve for the following ratio

Vo 10, (8)

Vf+ v, 4#A9V_

p=

349  This solution for f does not hold for unequal sex ratios, however. Therefore, for unequal sex

350 ratios we evaluated the ratio

y= Vm _ ‘ung
351 Vi(Np= 1)+ VA (N, = 1) 4,0 (N =1) (9)
352 For calculations from our empirical data, we assume that N = 400,000, which is

353  consistent with the N, calculated in C. purpureus (M. Nieto-Lugilde, personal communication).
354

355 Results

356 Life history simulations. To develop a demographically-informed model for sex-specific

357  patterns of polymorphism, we used simulations to calculate N, for males and females at a range
358  of population densities and sex-ratios. As the population density increased from 10-50%

359  occupancy, with an equal number of males and females, Nea, Neu, and Nev increased, although

360 not equivalently (Figure 2A). At the lowest densities, the N¢a exceeded that of the U, and the V
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361 was lower still. All three N, values were well below the census population size, because

362 relatively few females were adjacent to males, and therefore few individuals reproduced

363 creating high variance in reproductive success. At ~25% occupancy, Nea was roughly equivalent
364 to that of the U chromosome, while Neywas approximately half of the autosomal value. That is,
365 variance in male reproductive success increases with increasing population density. At higher
366  densities, the autosomal and V-chromosome N, increased approximately linearly, while Ney
367 increased approximately exponentially, and at high densities the effective population of the U
368 chromosome can exceed that of autosomes and even the census population size (Figure 2A).
369  This seemingly counterintuitive finding arises from the fact that, at high population densities, the
370  autosomal diversity is passed through relatively few males, while the U-linked variation is

371  passed exclusively through the females which have very low variation in reproductive success.
372 We also simulated the effect of variation in sex ratio on N, of the U, V, and autosomes.
373  We explored the effects of sex-ratio variation at multiple population densities, but because the
374  trends were homogeneous we present only the results at a density of 20%. At this population
375  density, with an even sex ratio, the results most closely match the infinite-sites expectations. At
376  even modest male-biased sex ratios, the N, of the U, V, and autosomes were very low (Figure
377  2B). Even when males outnumbered females, relatively few males contributed to reproduction.
378  As the sex ratio became more female biased, in contrast, Ney increased dramatically (Figure
379  2B). The Nea increased slightly with a modest female bias, but at more dramatic female biases
380 the Nea decreased slightly.

381 These models demonstrate that under reasonable demographic conditions, the infinite-
382  sites expectations that the U and V each should have half the N, of an autosome are met only
383 atlow population densities. Moreover, the V can have lower N, than the U and autosomes due
384  to a greater variance in reproductive success due to sex differences in life history alone (i.e.,
385  without selection or female mate choice), a pattern exacerbated by a sex-ratio bias toward

386  either males or females.
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387

388  Patterns of polymorphism in C. purpureus. To empirically test our model of N, in a species
389  with UV sex chromosomes, we generated whole-genome resequence data for 23 isolates of C.
390  purmpureus (Figure 1; Table S1). We found across isolates on average 80.87% of reads mapped
391  with BWA and 81.64% with NGM and our average coverage is ~28.5x (Table S1). We found
392 21,907,382 SNPs using BWA and after filtering, for downstream analyses, we had 17,510,525
393  total SNPs, with 3,117,274 on the U, 2,372,026 on the V, and 12,021,225 on the autosomes and
394  chloroplast. Using NGM we found 19,395,846 SNPs, and after filtering we had 11,580,361

395 SNPs on the autosomes and chloroplast, 2,397,292 on the U, and 1,660,989 on the V. Below
396 for simplicity we discuss the remaining results from using the BWA mapper, although the

397  summary statistics were similar with NGM and we report these in Table S2.

398 We found Wu and Watterson’s theta (6) across the 12 autosomes (6,) was on average
399  0.00983 (Cl=0.00960-0.01025; Table 1). Given the relationship between N.and 6 (i.e., 6=2N.y),
400  the U (Bu) and V (Bv) sex chromosomes and the chloroplast (6¢) should be 1/2 64, under neutral
401  processes. However, we find 6,=0.00339 (CI=0.00329-0.00346), 6,=0.00241 (C1=0.00235-
402  0.00248), and 6c=0.00015 (Table 1). Thus, the ratios for U/A =~1/3, U/A=1/4, and C/A =~1/40,
403  rather than 1/2 for any of these chromosomes and V/U=~2/3 rather than 1. We found the same
404  pattern using Nei and Li’s Pi () with 72=0.00946 (C1=0.00916-0.00983), 7,=0.00331

405  (CI=0.00323-0.0034), 7v=0.00219 (CI=0.00213-0.00225), and 7zc=0.00018 (Table 1). For

406 Tajima’s D we found the autosomes on average were negative (-0.219; Cl=(-0.325)-(-0.253)),
407  as were both sex chromosomes (U -0.43, Cl=(-0.415)-(-0.378); V -0.82, CI=(-0.826)-(-0.794))
408 and the chloroplast was positive (0.87) (Table 1). For Fstbetween populations, the autosomes
409  were on average 0.202 (CI=0.19-0.205), chloroplast 0.47, U 0.372 (CI=0.370-0.379), and V
410  0.375 (CI=0.376-0.385) (Table 1). We calculated sliding windows for these metrics, which show

411  ample variation on the autosomes, but the sex chromosomes are homogenous (Figure 3). For
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412  all metrics, we found the autosomes, U, and V to be significantly different from each other

413  (Mann Whitney U, p<0.00001).

414 We calculated the MK test on all 34,458 genes and found 280 had significant fixed

415 amino acid changes relative to polymorphic changes based on Fisher’s exact test at p<0.05 and
416 606 at p<0.1 (Table 2, S3). Using the DoS test, we found for autosomes that 151 genes were
417  less than one (at p<0.05; 338 at p<0.1) and 120 greater than one (p<0.05; 250 at p<0.1). For
418 the U-linked genes, we found four genes were less than one and three greater than (at p<0.05;
419  six at p<0.1). For V-linked genes we found two significant genes at p<0.05, with both less than
420  one (5 at p<0.1) and two greater than one at p<0.1 (Figure 4A).

421 To test for differences in mutation rate, we calculated dS and dN on one-to-one U-V
422  orthologs. We found both dS and dN were higher for V-linked genes (Mann Whitney U, dN
423  p=0.044; dS p=0.005; Figure 4B-C; Table S4).

424

425 Comparing empirical data to simulations. To determine if population density and sex-ratio
426  bias could explain the observed patterns of 6 we found in C. purpureus, we first calculated the
427  variance in reproductive success in males (V) and females (V%) that would be necessary to
428  explain our empirical results and compared these values to those seen in our simulations.

429  Specifically, for equal sex ratios we compared the ratios of V/V; (a) and Vi, /Vi+ Vi, (B)

430  described above. From our empirical data, we found that « and  were very similar values, with
431  a=1.36 (a= 1.62 if yy was 1.2 times greater than py based on dS) and = 1.0. In contrast, for
432  all simulated densities, @ was much larger than S (Figure 5A). Furthermore, our empirically
433  observed a values were only seen in our simulations with low densities (~0.09-0.125), but the

434  highest-density simulations were the ones that best approximated the empirically calculated

435 values.
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436 For unequal sex ratios, the assumptions necessary to derive the equation for § do not
437  hold, so we instead compared the ratios of a and y described above. The combinations of sex
438 ratio and density that best explained the observed values of a poorly predicted the observed y

439  values. For instance, at density of 0.2, our simulations best explained the observed «a value
440  when there was a slightly male-biased sex ratio (Figure 5B). However, in such scenarios, the
441  simulated y value was much larger than the y values calculated from our data (e.g., for a

442  simulated sex ratio of three males to each female, ¥ =5.6X 10~% while the value calculated for
443 ourdatais ¥ =8-33% 10~?) None of our simulations observed a y value low enough to explain
444  our data, but the closest values occurred at highly male-biased sex ratios.

445

446 Discussion

447  Fertilization in many eukaryotes is achieved through the union of a small, motile sperm, and a
448  large, retained egg. While the individuals that bear these gametes may experience different
449  patterns of selection or embark on different patterns of migration, the consequences of life

450 history differences between sexes alone may be sufficient to generate nucleotide diversity

451  differences between sperm-producing males and egg-producing females. Here we used

452  simulations to generate demographically-informed expectations for patterns of polymorphism in
453  anidealized sperm-casting species and compared those expectations to estimates from whole-
454  genome resequence data in the moss C. purpureus. We found the demographically-naive

455  expectations for U and V chromosome-to-autosome ratios of nucleotide diversity based on the
456 infinite-sites model were only accurate at the very lowest simulated population densities, and
457  they failed to account for levels of sex-ratio bias observed in natural populations. We also found
458  that our empirical estimates of sex chromosome and autosome nucleotide diversity could be

459  explained by neither mutation rate variation nor other demographic processes, suggesting that
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460  selection must contribute to shaping variation on the C. purpureus sex chromosomes (Ellegren,
461  2009; Sayres, 2018).

462

463  Sex-biased N. in anisogamous sperm-casting species. Estimates of N, can differ between
464  females and males for numerous reasons, most dramatically as a consequence of processes
465  thatincrease the variance in male reproductive success (i.e., female mate choice, male-male
466  competition), but also because life-history differences may influence sex-specific patterns of
467  migration or age structure within populations. Here we use simulations to show that in sperm-
468  casting species, like some sessile marine animals and many plants, heterogeneity in the spatial
469  distribution of females and males can generate a dramatic increase in the variance in male

470  reproductive success. We show that this effect is strongly dependent upon the density of

471 individuals. At low densities, the estimates of N, were relatively close to the estimates based on
472  the infinite-sites model. The number of females and males that were near enough to mate was
473  relatively low, and similar proportions of females and males contributed to the next generation.
474  As density increased, more males mated multiple times, increasing the variance in male

475  reproductive success and decreasing the male Ngy. At high densities, the female Ny

476  approached the census size, far exceeding both Neyv and even Nga. This seemingly

477  counterintuitive result stems from the fact that nearly all females reproduced, but many males
478  contributed to multiple matings. The Nea is constrained to be between the male and female

479  values, because half of the autosomes are inherited from each sex.

480 It is important to note that our simulation results relied on specific assumptions about the
481  direct links among sex chromosomes, anisogamy, and life history. For example, we assumed
482  that all individuals with a U-chromosome produced eggs and all individuals with a V-

483  chromosome produced sperm, although it is well-known that these assumptions are violated in
484  many systems (Ming, Bendahmane, & Renner, 2011). In C. purpureus many individuals do not

485  produce gametangia under permissive laboratory conditions (J. Shaw & Beer, 1999). We also
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486  assumed that the egg-producing sex (females) and sperm-producing sex (males) each have
487  specific, invariant life histories: females can only mate once and males can mate many times
488  (eight is the maximum number of mating events possible in our simulations). While these

489  provide a reasonable approximation of the life history of C. purpureus and other sperm-casting
490  species, we caution that these results cannot be applied uncritically to other anisogamous

491  species (see (Sarah Blaffer Hrdy, 1986; S. B. Hrdy, 1981; Tang-Martinez, 2016)).

492 How important the density-dependent effects on male variance in reproductive success
493  are in sperm-casting species in nature depends upon how many distinct genotypes lie within the
494  radius of sperm dispersal. Many bryophytes exhibit largely clonal growth, meaning the effective
495  density of genotypes could be quite low, and the infinite-sites estimate may be a reasonable
496  approximation (Bisang & Hedenas, 2005; Clarke, Ayre, & Robinson, 2009). However, despite
497  their capacity for clonal growth, small samples (<1cm) of C. purpureus can contain numerous
498  distinct genotypes (McDaniel & Shaw, 2005). Given that fertilization distances in mosses

499  exceed this measure (Jonathan Shaw & Goffinet, 2000; Longton & Re, 1976) particularly if

500 transported by microarthopods (Cronberg et al., 2006; Rosenstiel et al., 2012; Shortlidge et al.,
501  2020), the effective density may be quite high (i.e., the number of females that a given male can
502  mate with exceeds the limit of eight imposed in our simulation). Thus, the infinite-sites

503  expectations for N. may be quite far off. The mismatch between infinite-sites model and reality
504  may be worse with female-biased sex ratios, which is common in bryophytes (Bisang &

505 Hedenas, 2005).

506 The decrease in N, for sperm-transmitted genes, relative to the N, for egg-transmitted
507  genes, may profoundly decrease the strength of natural selection relative to genetic drift for
508  male traits (Charlesworth, 2009). The decrease in efficacy of natural selection will likely be the
509  most acute on a male V chromosome, where transmission is exclusively through sperm.

510  However, the effects of anisogamy may influence the strength of selection on autosomal

511  variants that have different fitness effects on females and males (i.e., sexually antagonistic

21


https://paperpile.com/c/5okdHj/jOlH+Jr4s+UHkD
https://paperpile.com/c/5okdHj/yPaC+35ic
https://paperpile.com/c/5okdHj/EbGH
https://paperpile.com/c/5okdHj/i5B5+8GOe
https://paperpile.com/c/5okdHj/AWHZ+J2dM+mnZp
https://paperpile.com/c/5okdHj/AWHZ+J2dM+mnZp
https://paperpile.com/c/5okdHj/yPaC
https://paperpile.com/c/5okdHj/yPaC
https://paperpile.com/c/5okdHj/MIYC
https://doi.org/10.1101/2021.03.30.437085
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437085; this version posted March 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

512  alleles), effectively tipping the scales in favor of female-beneficial autosomal alleles. This

513  process could even act on hermaphroditic sperm-casting species (Abbott, 2011), like many

514  mosses, by weakening selection on allelic variants that promote male functions, such as sperm
515  production, relative to selection on female functions related to egg production. Our haploid

516  model does not allow us to make quantitative predictions about diploid systems, but male traits
517 in seed plants may experience lower N, if some pollen donors fertilize multiple seeds in a

518  population.

519

520 Linking demographic models and mutation rate to patterns of nucleotide diversity. It is
521  widely known that various demographic processes can generate variation in nucleotide diversity
522  between autosomes and sex chromosomes, in particular processes that increase male variance
523  in reproductive success (Charlesworth, 2009). Here we introduce three ratios of the sex-specific

524  variance Ne, a (variance in male reproductive success:female reproductive
525  success), B (variance in male reproductive success:variance female reproductive success plus

526  variance in male reproductive success), and y (same as f3, but the variances in the denominator
527  are scaled by sex-specific population size), calculated from our simulations. These ratios can be
528  expressed in terms of the quantity 6, which we estimated from the DNA sequence data from
529 isolates of C. purpureus. The values of @ and [ generated from the simulations are clearly

530 inconsistent with the nucleotide diversity patterns in C. purpureus. First, the f= 1 value that we
531 calculated from the resequence data requires no variance in female reproductive success,

532 which is inconsistent with mesocosm experiments in C. purpureus (Shortlidge et al., 2020) and
533 field-collected data in Sphagnum (Johnson & Shaw, 2016). Similar 5 values were only observed
534  atthe highest population densities in our simulations. In contrast, the a values we estimated

535  from the polymorphism data were only observed in simulations with low population densities. No
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536  simulated densities with an equal sex ratio produced values of both a and 8 near to those

537 calculated from the nucleotide diversity patterns in C. purpureus.

538 Similarly, incorporating sex-ratio variation into our simulations failed to produce a better
539 fit to the nucleotide diversity data. The closest y values occurred at highly male-biased sex

540 ratios, which are almost never observed in mosses (Baughman et al., 2017; Bisang et al., 2019;
541  Bisang & Hedenas, 2005) and in C. purpureus in particular (Eppley et al., 2018; Norrell et al.,
542 2014; A. J. Shaw & Gaughan, 1993). In essence, the values for 6y and 6y are too low, relative to
543  the autosomal 6, to conform to the demography alone model. In particular, the values for 6y

544  were expected to equal or exceed the autosomal values under reasonable population density
545  parameters, but instead the empirical 6, values were nearly as low as the 6y values. We return
546  to this observation below.

547 We also found no evidence that the differences in 6 between sex chromosomes was the
548 result of an elevated mutation rate in females. In fact, both dS and dN were higher on V-linked
549  genes (Mann Whitney U, dN p=0.044; dS p=0.005; Figure 4B-C), the opposite of the pattern
550  that would explain the higher 6 on the U chromosome compared to the V. We did recover the
551  expected lower nucleotide diversity on the chloroplast (Table 1), consistent with other plants (D.
552  R. Smith, 2015; Wolfe et al., 1987) suggesting that the elevated male mutation rate is unlikely to
553  be an artifact of our sampling scheme.

554 Male-biased mutation rates are widely observed in animals and some seed plants

555 (Ellegren & Fridolfsson, 1997; Whittle & Johnston, 2002; Wilson Sayres & Makova, 2011).

556  Mutations presumably arise as DNA replication errors, and sperm production requires many
557  more cell divisions than egg production (W. H. Li, Yi, & Makova, 2002). Because the germ line is
558  sequestered in animals, somatic mutations do not contribute to differences between the sexes.
559 Instead, only differences in cell divisions to produce gametes differ between the sexes. In

560  contrast, plants have an open developmental program, in which many rounds of cell division
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561  precede the formation of gametes, potentially moderating the contribution of anisogamy to

562  mutation-rate variation. However, males in mosses certainly make thousands of sperm in each
563  antheridium (Garbary, Renzaglia, & Duckett, 1993). In the hermaphroditic moss, Physcomitrium
564  patens, one antheridium (of ~10) made between 150 and 200 sperm cells (Horst & Reski,

565  2017), but this species is likely on the lower end of the distribution (Garbary et al., 1993). Thus,
566  we conservatively estimate a C. purpureus male undergoes seven to 15 more rounds of cell
567 division during sperm production than a female experiences in egg production, potentially

568  enough to increase the male-mutation rate. Resequence data from known pedigrees is one way
569 to independently evaluate the difference between male and female mutation rates, but such
570  data are currently unavailable.

571

572  Selection lowers nucleotide diversity on U and V sex chromosomes. The relationship we
573  observed between autosomal and V-linked nucleotide diversity plausibly could reflect elevated
574  variance in male reproductive success, consistent with field studies and experimental

575 mesocosms (Johnson & Shaw, 2016; Shortlidge et al., 2020). However, none of the simulations
576  using biologically reasonable conditions explained the low U-linked nucleotide diversity

577  (U/A=~1/3). ltis therefore likely that the low nucleotide diversity on at least the U is caused by
578  recent linked selection, which is widely expected to be common in non-recombining regions, like
579  sex chromosomes (J. M. Smith & Haigh, 1974). Indeed, Tajima’s D values on both the U and
580  the V were uniformly negative and lower than autosomal values (Figure 3; Table 1), suggesting
581 the patterns of nucleotide variation do not reflect neutral-equilibrium processes. The C.

582  purpureus UV sex chromosomes are large (>100 Mb each), completely non-recombining, and
583  gene rich (>3,400 genes annotated to both (S. B. Carey et al., 2020)) meaning these regions
584  provide large targets for the evolution of beneficial or deleterious mutations, increasing the

585  probability of selective sweeps and background selection (Bachtrog, 2008).
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586 Identifying the relative importance of selective sweeps and background selection in

587  reducing nucleotide diversity remains an important challenge. The C. purpureus sex

588  chromosomes demonstrably experience weaker purifying selection than autosomes, based on
589  measures of codon bias (effective number of codons, frequency of optimal codon, and GC

590  content of the third synonymous position) and in protein evolution (dN/dS) (S. B. Carey et al.,
591  2020). Carey et al. (2020) found that, of the 330 U and V-linked genes examined, ~25% had
592  lower dN/JS than the autosomal average (~0.14), suggesting these genes still experience

593  strong selective pressure against deleterious mutations (Chibalina & Filatov, 2011). However,
594  codon bias and dN/dS were indistinguishable between the sexes, suggesting that different

595 levels of purifying selection are unlikely to explain the decreased V/U ratio we found. Moreover,
596  while the U and V-linked genes with higher dN/dS values suggest faster rates of protein

597  evolution than the autosomes, using this approach itis unclear whether the genes are evolving
598  faster due to the relaxation of purifying selection or by positive selection.

599 Because our sampling spanned the globe, we used the distantly-related Chilean isolates
600 as an outgroup for the Northern Hemisphere populations in divergence-polymorphism tests of
601 selection. Using the MK test, we also found evidence of non-neutral evolution in several sex-
602 linked genes (Figure 4A; Table 2). From the DoS test we found the U has genes that are

603  experiencing positive selection, while others have relaxed purifying selection (at p<0.05; Figure
604  4A). On the V we found genes with evidence of relaxed purifying selection (at p<0.05), though

605 two genes were marginally significant that suggest positive selection (p=~0.06 and 0.08). Some

606  of the genes that showed evidence of selection are involved in cellular transport (Table 2). In
607  mosses, the sporophyte (i.e., the diploid embryo) is nutritionally dependent on the maternal
608  plant throughout its entire lifespan (Ligrone, Duckett, & Renzaglia, 1993), which is costly to the
609  maternal gametophyte (Ehrlén, Bisang, & Hedenas, 2000; Stark, Brinda, & McLetchie, 2009).

610  The male with which a female mates has a significant effect on sporophyte development
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611 including sporophyte height, spore number, and quality of spores (Shortlidge et al., 2020),

612  suggesting paternal genotype can drive these differences. However, a sporophyte from a male
613  with a more extractive genotype may instead be selectively aborted by the female in preference
614  for another, less extractive offspring. In fact, female mosses have been shown to abort their
615 offspring if conditions are unfavorable (Stark, 2002; Stark, Mishler, & McLetchie, 2000; Stark &
616  Stephenson, 1983). These forms of sexual conflict can generate the signatures of selection
617 detectable by the MK test, and could reduce nucleotide diversity on both the U and V

618 chromosomes, consistent with what we find in C. purpureus. Though we should point out that
619  the polymorphism-based tests are underpowered to detect deviations from neutrality in regions
620  of low N, (like non-recombining sex chromosomes) and limited divergence between our

621  outgroup (Parsch, Zhang, & Baines, 2009).

622 The discrepancy between the infinite-sites expectations and the measured nucleotide
623  diversity that we found in C. purpureus sex chromosomes, in particular the U, are qualitatively
624  different from those in other plant systems, in spite of the fact that all possess multicellular,

625 gametophytes with haploid gene expression. In Rumex hastatulus, nucleotide diversity of X-
626 linked genes was ~% of autosomal diversity, higher than neutral equilibrium expectations,

627  potentially because of the female-biased sex ratios in the species (Hough, Wang, Barrett, &
628  Wright, 2017). In contrast, the Y-linked genes were ~1/50 that of autosomal diversity, a result
629  attributed to purifying selection (Hough et al., 2017). In Silene latifolia, Y-linked genes had ~1/20
630 the nucleotide diversity of autosomes, whereas X-linked genes were close to equilibrium

631  expectations (~3/4), also suggesting the role of selection on the Y (Qiu, Bergero, Forrest,

632  Kaiser, & Charlesworth, 2010). The X chromosome in papaya was found to have lower than
633  expected nucleotide diversity, likely driven by a selective sweep, like what we found on the U in
634  C. purpureus (VanBuren et al., 2016). In the brown algae Ectocarpus, the only other UV system
635 tolook at nucleotide diversity to date, the sex chromosomes have ~1/2 N, of autosomes,

636  consistent with infinite-sites expectations for neutral-equilibrium conditions (Avia et al., 2018).
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637  Together these results support the long-standing notion that positive selection can dramatically
638  decrease nucleotide diversity in non-recombining regions (Begun & Aquadro, 1992;

639  Charlesworth & Charlesworth, 2000; Lercher & Hurst, 2002). The dramatic difference between
640 the simulated and empirical estimates for N, for the C. purpureus U provide a very clear

641 illustration of this effect. Our simulations also suggest that density, mating system, and factors
642  thatinfluence the variance in male reproductive success may also be confounded with selection
643  in analyses of Y chromosome polymorphism.

644 The geographic distribution of U and V-linked variants may provide insight into other
645  forms of selection shaping sex chromosome variation. Of course, differential migration between
646  the sexes can affect Ne (Ellegren, 2009; Goudet, Perrin, & Waser, 2002; Webster & Wilson

647  Sayres, 2016). However, at a regional scale among several eastern North American

648  populations, and with a smaller data set, population structure measured by Fsr (Sewall Wright,
649  1949) was equivalent between the sexes in C. purpureus (McDaniel, Neubig, et al., 2013).

650 Importantly, the U and V Fst among these populations was lower than the autosomal Fsr. This
651  pattern suggests that sex chromosome variants are fit across the region, while autosomal

652 alleles may be more likely to experience local adaptation, and therefore show elevated Fsr

653 values. Here, we found that Fst on the sex chromosomes on the continental scale between

654  eastern and western North American populations were also equivalent between the sexes, but
655  exceeded the autosomal values (Fst Autosomes=0.202, U=0.372, V=0.375; Table 1). At the
656  continental scale, autosomal alleles are exchanged among these populations while migrant sex
657  chromosomes are not. Patterns of interfertility (McDaniel, Willis, & Shaw, 2008) and preliminary
658  gene tree analyses suggest that the eastern and western North American populations may

659 represent partially reproductively isolated species. The low Fsr at the regional scale coupled
660  with higher Fst at the continental scale suggests that sex chromosome differentiation may occur

661  atthe scale of species boundaries, rather than the scale of local adaptation. This inference is
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662  consistent with data from Drosophila and primates showing that more accurate phylogenies are
663 inferred from non-recombining regions, like sex chromosomes (Pease & Hahn, 2013).

664 Together, these results highlight the utility of UV sex chromosomes as models for

665 understanding the roles of sex-specific evolutionary processes in genome evolution. The

666  demographic model that we present shows that small male N, may be a critical challenge facing
667  dioecious species, a potentially important factor to explain features of mating-system variation in
668  bryophytes, including frequent transitions from dioecy to hermaphroditism and the evolution of
669  dwarf males (Hedenas & Bisang, 2011; McDaniel, Atwood, & Burleigh, 2013). Similar to other
670  eukaryotic lineages, the increase in variance in reproductive success is also correlated with a
671  modestly increased mutation rate. Perhaps the most striking result is the decrease in U/A ratio
672  of N, relative to the expectations based on simulations. The difference between the simulated
673  and empirical values strongly suggests that the U sex chromosome experiences frequent

674  selective sweeps, an inference with some independent support from frequency spectrum and
675  codon-based molecular evolutionary analyses. In sum, these data highlight the challenges of
676  conducting analyses of single evolutionary forces, in isolation, without considering their joint
677  effects.
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1017 Tables and Figures

1018  Table 1. Population genetic analyses by chromosome. Segregating sites (S); Wu and
1019  Watterson'’s theta (6); Pi (x).

1020
Chromosome Total sites S [ V4 Tajima's D Fsr
1 29001003 829016 0.00868 0.00843 -0.184 0.184
2 26629683 998325 0.01141 0.01015 -0.534 0.247
3 25160467 770120 0.00929 0.00906 -0.167 0.222
4 22785024 748029 0.00997 0.00965 -0.197 0.268
5 19969424 641039 0.00975 0.00998 0.047 0.211
6 18980603 610384 0.00976 0.0092 -0.312 0.168
7 17972677 533845 0.00902 0.00835 -0.385 0.175
8 17567963 553075 0.00956 0.0092 -0.221 0.202
9 17527894 624924 0.01087 0.0107 -0.108 0.18
10 17229405 521827 0.00919 0.00891 -0.192 0.195
11 16661191 593265 0.01082 0.01053 -0.173 0.139
12 16459275 522515 0.00965 0.00931 -0.207 0.236
Chloroplast 105555 51 0.00015 0.00018 0.868 0.471
U 112179120 982232 0.00339 0.00331 -0.431 0.372
)Y 110524308 689145 0.00241 0.00219 -0.818 0.375
1021
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1022  Table 2. McDonald Krietman test results for sex-linked genes. Results shown here are
1023  significant in the MK test at p<0.1 (autosomal genes shown in Table S2). Non-synonymous
1024  polymorphism (Pn); Synonymous polymorphism (Ps); Non-synonymous divergence (Dn);
1025  Synonymous divergence (Ds); Direction of Selection (DoS); Gene Ontology (GO).

Gene Pn Ps Dn Ds P-value DoS GO categories
photosystem I; photosynthesis;
CepurGG1.UG008000 1 0 4 0 0.005 0.9 membrane; chlorophyll binding

posttranslational protein
targeting to membrane,
translocation; nucleic acid
binding; ATP binding; protein
binding; protein transporter

CepurGG1.UG000900 9 0 4 10 0.015 -0.5632 activity
CepurGG1.UG037500 1 0 18 2 0.018 0.65 protein binding; zinc ion binding
CepurGG1.UG085200 O 0 19 7 0.033 0.731 Unknown function
CepurGG1.UG067100 9 0 1 3 0.041 -0.65 Unknown function
protein dimerization activity;
CepurGG1.UG020900 12 0 31 13 0.049 -0.295 nucleic acid binding
CepurGG1.UG035900 8 0 3 6 0.05 -0.556 Unknown function
CepurGG1.UG024700 11 0 0 2 0.057 -0.846 Unknown function
ATP binding; protein

phosphorylation; protein kinase
CepurGG1.UG034000 11 0 7 9 0.072 -0.348 activity
CepurGG1.UG008500 4 0 3 5 0.081 -0.625 Unknown function
CepurR40.VG078600 10 0 8 11 0.003 -0.579 Unknown function

protein binding; protein

phosphorylation; ATP binding;

protein tyrosine kinase activity;
CepurR40.VG083300 3 0 0 5 0.048 -0.75 protein kinase activity
CepurR40.VG013400 38 0 38 22 0.056 -0.175 Unknown function
CepurR40.VG055100 7 0 17 18 0.059 -0.389 Unknown function
CepurR40.VG062200 0 0 32 19 0.062 0.627 Unknown function
CepurR40.VG030400 2 0 2 9 0.077 -0.818 Unknown function
CepurR40.VG023000 0 0 6 1 0.083 0.857 Unknown function

1026
1027
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1035  Figure 1. Sampling localities for the 23 Ceratodon purpureus isolates. All isolates from the
1036  nine localities were used for SNP calling. Some isolates were not used for downstream

1037  analyses because all isolates from the locality were female (indicated with squares). Isolates
1038 indicated with circles were used for the population genetics analyses and the isolates indicated
1039  with a triangle were used as the outgroup for the McDonald Kreitman Test.
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Figure 2. Effective population size of U and V sex chromosomes and autosomes
calculated from spatially-explicit simulations. A) The effect of population density on effective
population size (Ne). In all simulations, there were 1000 available sites so density is census size
divided by 1000. The dashed gray line denotes the one to one line at which the N, equals the
census population size. B) The effect of sex ratio on N.. Dashed gray line shows the census
population size of 2000. Each point is the mean value given by 100 runs of the simulation.
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Figure 3. Sliding-window plots of nucleotide polymorphism summary statistics. Sliding
windows for A) Wu and Watterson’s theta (6), B) Pi (), C) Tajima’s D, and D) Fst were
calculated using 100,000 bp windows with a 10,000 bp jump per chromosome. Lines were
plotted using a loess correction with a span of 0.03. Note the different metrics have different y-
axes, where 6 and r range between 0 and 0.02, Tajima’s D ranges between -2 and 2, and Fst
ranges from 0 to 0.75.
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Figure 4. Measures of protein evolution. A) Direction of Selection (DoS) test for autosomal
and sex-linked genes that were significant in the MK test at p<0.1. B) nonsynonymous mutation
rate (dN) and C) synonymous mutation rate (dS) of one-to-one orthologous U and V-linked
genes. Numbers on top show the mean values.
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Figure 5. A) Simulation results for the effect of density on the two ratios discussed in the main
text. The ratio between variances in reproductive success of males and females («) and the
variance in reproductive success of males divided by the variance in reproductive success of
males plus the variance in reproductive success of females (f). The patterns plotted here hold
for different populations and arena sizes. Each point is the mean value given by 100 runs of the
simulation. Empirically calculated values were a= 1.36 and § = 1.0. B) The effect of sex ratio
(females:males) on the ratio between variances in reproductive success of males and females
(a). Filled black points show results of simulations (with a density of 0.2) while white points
show the empirically calculated values. Each black point is the mean value given by 100 runs of
the simulation.
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