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Abstract

In Drosophila, definitive hematopoiesis occurs in a specialized organ termed “lymph gland", where
multi-potent stem-like blood progenitor cells reside and their homeostasis is central to growth of
this organ. Recent findings have implicated a reliance on neurotransmitters in progenitor
development and function however, our understanding of these molecules is still limited. Here, we
extend our analysis and show that blood-progenitors are self-sufficient in synthesizing dopamine, a
well-established neurotransmitter and have modules for its sensing through receptor and uptake via,
transporter. Modulating their expression in progenitor cells affects lymph gland growth. Progenitor
cell cycle analysis revealed an unexpected requirement for intracellular dopamine in the progression
of early progenitors from S to G2 phase of the cell cycle, while activation of dopamine-receptor
later in development regulated progression from G2 to entry into mitosis. The dual capacity in
which dopamine operates, both intra-cellular and extra-cellular, controls lymph gland growth. These
data highlight a novel and non-canonical use of dopamine as a proliferative cue by the myeloid-
progenitor system and reveals a functional requirement for intracellular dopamine in cell-cycle

progression.
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Introduction

Neurotransmitters are well appreciated for their roles in the central and peripheral nervous system to
enable motor coordination, cognition and behavior control. However, an understanding of their
roles outside this niche is gaining attention only recently. The immune system is one example that
exhibits reliance on neurotransmitters for its development and function (Franco et al., 2007, Kenny
and Ganta 2014, Hodo et al., 2020, Chen C et al., 2021). Neurotransmitter based regulation of
hematopoiesis has been demonstrated in both invertebrates and vertebrates thereby suggesting a
common axis employed by brain and blood system (Spiegel et al., 2008). Identification of
neurotransmitters that are relevant for the development of blood cells and the mechanisms
employed by these specialized molecules to coordinate hematopoiesis forms the central focus of our

investigation.

In vertebrates, our understanding of neurotransmitters is from the stand-point of the bone marrow,
where the hematopoietic stem and progenitor cells (HSPC), that generate differentiated blood cell
types, are cradled by the bone marrow niche microenvironment. This niche is extensively
innervated by the nervous system which upon release of neurotransmitters, like the catecholamine
members, regulate HSPC mobilization through norepinephrine signalling (Katayama et al., 2006) or
the migration and repopulation capacity of CD34" progenitor cells via dopamine and epinephrine
signalling (Spiegel et al., 2007). In invertebrates, such as Drosophila, similar implications of
neurotransmitters governing hematopoiesis has also been established (Shim et.al., 2013, Madhwal
et.al., 2020). The blood cell niche located within the larval hematopoietic organ termed “lymph
gland” although lacks innervation, senses neurotransmitters that are derived systemically from the
brain. Through neurosecretory routes, neurotransmitters are released from the brain into the
hemolymph and then sensed directly by the hematopoietic niche. Our past and recent work (Shim
et.al., 2013, Madhwal et.al., 2020) have implicated neurotransmitter function both as a signalling
ligand and as a metabolite with non-overlapping roles in lymph gland growth, blood progenitor

maintenance and differentiation. These studies not only validate conservation of processes
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underlying blood development, they also reveal intriguing insights that were previously
uncharacterized. The use of neurotransmitters as metabolites by the blood system (Madhwal et.al.,
2020) and the physiology driving their function (Katayama et al., 2006, Madhwal et.al., 2020) are
some examples that warrants further understanding of other neurotransmitters in hematopoiesis. In
this regard, the simplicity of Drosophila model system, along with the conservation of the nature of
hematopoietic process and transcription factors guiding this process makes Drosophila a preferable
system (Lebestky et al., 2000). In this study we address the importance of dopamine during blood
development and identify its production within blood cells and its utilization as a growth promoting
cue. Its role both as an intracellular metabolite and as a signalling ligand emerge as necessary

modulators of cell cycle control in blood-progenitor cells.

Hematopoiesis in Drosophila is a biphasic event with an early primitive wave that takes place in the
embryo and a later definitive wave which takes place in the larvae and originates in the lymph gland
(Evans et al., 2003). The lymph gland is a specialized hematopoietic organ which is
compartmentalised into an inner medullary zone (MZ) that is progenitor enriched and outer cortical
zone (CZ) which harbours the differentiating hemocytes. A group of 30 cells cluster together to
form a signalling niche and reside at the posterior end of the primary lobe, called the posterior
signalling center (PSC) (Jung et al., 2005). Development and maintenance of MZ blood-progenitor
cells rely on signalling derived from these zones (Sinenko et al., 2009, Mandal et al., 2007,
Krzemien et al., 2007, Mondal et al., 2011) and also integrates systemic cues that are of nutritional
and neuronal in origin. Of the systemic cues, the importance of neurotransmitter family of
molecules have recently gained attention in progenitor development. GABA (gamma-aminobutyric
acid) is one molecule, which is a well characterized neurotransmitter, but in the blood progenitor
cells it has been shown to perform dual roles. GABA as a signalling entity activates GABAgR
signalling and regulates maintenance of blood progenitor cells in an undifferentiated state (Shim et
al., 2013). Our recent work highlights the use of GABA also as an intracellular metabolite whose
catabolism stabilizes hypoxia inducible factor o (Hifa), protein, known an Sima in flies. Sima

functions to maintain immune-competent progenitor cells necessary to respond to immune-
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challenges (Madhwal et al., 2020). While these findings have implied non-neuronal roles of
neurotransmitters, they have highlighted the dependency of lymph gland progenitor cells on
neurotransmitters. Specifically, the dual control exerted both as a signalling entity and as a

metabolite, these small molecules emerge as integral regulators of lymph gland development.

Lymph gland development begins with the cessation of embryonic stage and with the onset of larval
development, when at a first instar stage, the lymph gland comprises of single pair of lobes
containing roughly 20 cells each. These cells proliferate to give rise to around 200 cells by the
second instar stage (Jung et al., 2005). At this time, one also finds additional posterior lobes beyond
the primary lobe. This growth of the primary lobe by 60 hours post egg-laying, is accompanied by
the segregation of the MZ and CZ, which can be readily identified based on the markers expressed
(Jung et al., 2005, Banerjee et al., 2019). The MZ progenitors express Domeless (Dome), a receptor
of the JAK/STAT pathway, which serves as a progenitor marker and is detected until progenitor
cells initiate differentiation following which they gradually lose Dome expression (Krzemien et al.
2010, Banerjee et al., 2019). The progenitors proliferate from early 1% instar as evident by increased
BrdU uptake and the presence of mitotically active cells (Jung et al., 2005, Krzemien et al., 2010).
The progenitors eventually cease proliferation by third larval instar stage when they arrest in G2
phase of the cell cycle (Sharma et al., 2019) while the cells of the CZ initiate proliferation
(Krzemien et al., 2010). The exit of progenitors from being in arrest into mitosis is linked to
developmental signals perceived by them from differentiating cells (Mondal et al., 2011) which
subsequently sets up the progenitors on a differentiation trajectory. Hence mechanisms governing
cell cycle control in progenitor cells are also responsible for their maintenance and functionality.
This journey of progenitors from the onset of proliferation at the late embryonic stage to reach
quiescence by G2 arrest has intervening landmarks of cell cycle transitions that is not completely

understood thus far.

In an attempt to address other neurotransmitters in progenitor development and function, a

preliminary expression analysis of neurotransmitters and their sensing modules revealed
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components of dopamine pathway in progenitor cells. We explored dopamine in the development of
myeloid-like progenitor cells during Drosophila larval hematopoiesis with the expectation to
uncover any role dopamine might play in this process.

Our work demonstrates the utilisation of dopamine in regulating lymph gland size by controlling
progenitor cell cycle phasing. We find that Dome positive progenitor cells synthesize dopamine and
utilize distinct modules of dopamine synthesis, signalling and uptake to regulate lymph gland
proliferative index. Early in lymph gland development, progenitor cells synthesize and internalize
dopamine to coordinate exit of cells from the S-phase of the cell cycle, while signalling later in
development through dopamine receptor function, Dop2R, drives progenitor cell exit from G2 into
mitotic phase of the cycle. The dual regulation exerted by this monoamine contributes to
maintenance of the cell-cycle phasing and building mitotic capacity of progenitor cells necessary
for lymph gland growth. This regulation of size via dopamine is dispensable in the differentiating
population i.e., the CZ thereby revealing specificity to dopamine’s requirement by the MZ
progenitors. The study is the first description of dopamine in myeloid-progenitor proliferation and
development. The importance of dopamine as a metabolite in induction of cellular proliferation

portrays the non-canonical function of this monoamine in hematopoiesis.
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Results and Discussion

The neurotransmitter dopamine is expressed in the growing lymph gland.

The importance of neurotransmitters in Drosophila larval blood development has emerged from
studies that have implicated GABA function in blood progenitor maintenance and differentiation
(Shim et al., 2013, Madhwal et al., 2020) and serotonin in mature blood cells for phagocytosis (Qi
et al., 2016). These findings demonstrate non-neuronal functions of neurotransmitters in mature
differentiated cells as well as the development and maintenance of multi-potent blood progenitor
cells. In this regard, dopamine is one monoamine whose role in mammalian immune function is
known. Specifically, dopamine synthesis in the follicular helper T cells has been shown to enhance
interactions with B cells to maximise the latter’s output (Papa et al., 2017). We undertook an
antibody based staining approach to investigate if blood cells of the Drosophila larval lymph gland
showed any levels of dopamine. We performed an analysis of this monoamine in a late 3 instar
(96-102h After Egg Laying, AEL) lymph gland hematopoietic tissue, using an antibody raised
against dopamine that is routinely used to detect dopamine in neuronal cultures (Banks et al., 2017,
Chabrat et al., 2019) and also been reported in invertebrate hemocytes (Wu SF et al., 2015). The
staining was undertaken in a genetic background that allowed comparative analysis of dopamine in
progenitor cells (using a progenitor marker domeMESO-Gal4, UAS-GFP) which are Dome* GFP*
as opposed to differentiating cells that are Dome GFP". As previously shown for GABA (Madhwal
et al., 2020, See Materials and Methods for details), we used a stringent staining protocol (with
0.3% PBT (1X PBS with 0.3% Triton X 100) washes) to detect intra-cellular dopamine.
Interestingly, we detected dopamine in the 3 instar lymph gland (Fig. 1A-D, inset in B’-C”). To
test the validity and specificity of the antibody in our assays, its localization was assessed in
dopaminergic neurons in the brain that are positive for tyrosine hydroxylase (TH) expression. TH
catalyses the first and the rate-limiting step in dopamine synthesis (Daubner et al., 2011). Neurons
in the larval brain (Supplementary Fig. 1A-A’’, pointed in white arrows) that were positive for TH

(Supplementary Fig. 1A”) overlapped with anti-dopamine antibody staining (Supplementary Fig.


https://doi.org/10.1101/2021.03.29.437463
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437463; this version posted March 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

1A’"). Apart from the intense anti-dopamine antibody expression in the TH* neurons, the overall
background staining with the antibody was negligible. This protocol validated the specificity of the
dopamine antibody and the stringent washes ensured that the expression of dopamine detected in

lymph gland blood cells was indeed intracellular.

We next conducted a temporal analysis of dopamine expression in lymph glands blood cells at
earlier developmental time-point and observed that levels of dopamine detected at 72h AEL (Fig.
1E-H) was higher than levels at 48h AEL (Fig. 11-L). Comparative analysis of dopamine levels
detected at 48h AEL (Fig. 1K, L), 72h AEL (Fig. 1G, H) and 96h (96 Fig. 1C, D), implied
increasing intracellular levels of dopamine over time. Moreover, as the animal progressed through
the instars, dopamine levels were found to be significantly higher specifically in the Dome*
population later (Fig. 1C and G) in development than earlier (Fig. 1K). For better understanding of
this observation, the dopamine channel was converted to spectral mode using ImageJ (LUT->NICE
command). The blue pixels indicate lowest intensity, with the maximum depicted by red (See
calibration bar below Fig. 1L). With this reference, it could be inferred that as the lymph gland
increased in size, the dopamine levels concomitantly increased (Fig. 1L, H and D). We confirmed
this differential expression of dopamine in the lymph gland zones by conducting the same staining
protocol using cortical zone (CZ) marker (Hml“-Gal4, UAS-2xEGFP). A recapitulation of increased
dopamine levels was observed when lymph glands from Hml“-Gal4, UAS-2xEGFP backgrounds
were analysed at different developmental time points (Supplementary Fig. 1D, H, L and E, I, M).
Hml or Hemolectin expression is detected is differentiating cells and in Hml*-Gal4 background as
well, Hml negative, undifferentiated progenitor cells showed high dopamine expression compared
to Hml positive differentiating cells (Supplementary Fig. 1K’-L”). Thus further confirming the
expression of dopamine in progenitor cells and ruling out the background effect of the genotypes
utilised. Finally, dopamine levels were also detected in the Antp™ niche region and this showed no
differences in intensity at the late 3" instar stage (110+6h AEL) compared to the remaining tissue

(Supplementary Fig. 1N-P). Based on these observations we concluded that the neurotransmitter
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dopamine was detected in the lymph gland and gradually increased in progenitor cells as the tissue

grew in size.

Dopamine is synthesised by the medullary zone progenitors and regulates lymph gland size.

Our observations on the detection of dopamine in the lymph gland progenitor cells led us to
interrogate its source in this tissue. As the staining protocol utilised stringent detergent washes, the
levels detected reflected residual dopamine present inside these cells. Therefore, the possibility of

dopamine synthesis by the lymph gland cells was assessed.

Dopamine synthesis is a two-step process where the first step serves as the rate limiting step
catalysed by the enzyme tyrosine hydroxylase (TH). The precursor molecule tyrosine is converted
to an intermediate, L-dopa in this step which is then further converted to dopamine by the enzyme
Dopa decarboxylase (Ddc) (Daubner et al., 2011) (Fig. 2A). We checked for the TH and Ddc
enzymes in the developing 3" instar lymph gland (96h AEL) via immunostaining. We detected TH
expression uniformly distributed in all cells of the lymph gland (Fig. 2B-D, inset in B’-C’). The
expression of Ddc was elevated in progenitor cells (Fig. 2E-G). The presence of both the enzymes
in the lymph gland blood cells implied a possibility of dopamine synthesis within the hematopoietic
tissue. More importantly, elevated Ddc expression in progenitor cells along with elevated dopamine
expression, implicated multi-potent progenitor cells as the site of dopamine synthesis (Fig. 2E-G,
spectral mode in G and Fig. 1C-D). We therefore knocked down the enzyme's TH and Ddc using a
RNAI based approach in MZ progenitors using domeMESO-Gal4, UAS-GFP. This led to a
substantial reduction in the levels of TH (Supplementary Fig. 2A-B’, quantification in E) and Ddc
proteins respectively (Supplementary Fig. 2C-D’, quantification in F). The genetic knock-downs
also led to a 50% reduction in intra-cellular dopamine levels in lymph gland blood cells when
compared to levels detected in age-matched genetic controls (Fig. 2H-J, quantification in K). This

analysis was undertaken at the wandering 3" instar larval stage (~120h AEL), when the lymph
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gland has completely grown in size. In addition to the reduction in dopamine levels, a significant
reduction in lymph gland size was also noticeable upon knocking down TH and Ddc expression in
progenitor cells (Fig. 2L-N, quantification in O). This implied a functional role for intracellular
dopamine synthesis in blood progenitor cells during lymph gland growth. We substantiated the
small lymph phenotype by using another MZ specific Gal4-driver, Tep4-Gal4, UAS-mcherry to
express TH and Ddc RNAI in progenitor cells (Supplementary Fig. 2G-1). Tep4-Gal4, driver, unlike
domeMESO-Gal4, is expressed in a restricted subset of blood progenitor cells (Dey et al., 2016), but
expressing the respective RNAI’s using this driver also led to a comparable reduction in lymph
gland size (Supplementary Fig. 2J). This further confirmed dopamine’s role in lymph gland

progenitor cells and its requirement in overall growth of the lymph gland.

We assessed if progenitor-specific loss of dopamine synthesis (via TH™*" and Ddc™*) affected any
aspect of progenitor maintenance or differentiation. This was addressed by assessing proportions of
MZ and CZ in TH and Ddc loss-of-function backgrounds using respective markers of these zones
(as described previously in Madhwal et.al., 2020). The assessment showed an expansion of around
8-10% in the Dome positive population in conditions with loss of both TH and Ddc from progenitor
cells (Fig. 2P, green bars). This progenitor increase was associated with a concomitant reduction in
the population of differentiated plasmatocytes that are positively marked for P1 (Fig. 2P, red bars).
Compared to TH, Ddc loss of function showed stronger reduction in P1 differentiation (Fig. 2P, red
bars). We checked for the crystal cell population through PPO staining (Evans et al., 2003) and
observed that both TH and Ddc loss of function led to a significant reduction in crystal cell
population (Supplementary Fig. 2L-N, quantification in O) as well. Similar analysis was
undertaken using Tep4-Gal4, UAS-mcherry, however the loss of TH or Ddc using this driver did not
lead to any changes in Tep4 or P1 areas (Supplementary Fig. 2K). The lack of any P1 expression in
Ddc™ A condition is because of both the lines being P1 negative (Honti et al., 2013). Taken
together, these data implied a significant requirement for intracellular dopamine synthesis in blood
progenitor cells for lymph gland growth. The data also demonstrated a requirement for dopamine

synthesis in differentiation of blood progenitor cells however the differences in phenotypes detected
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using Dome-Gal4 versus Tep4-Gal4, suggested its requirement either in the subset of Dome* Tep4”

progenitor cells or a temporal function of dopamine in progenitor differentiation.

Extracellular sensing of dopamine via dopamine receptor Dop2R and dopamine transporter

(DAT) in the progenitor cells

Next, we examined the mechanisms by which blood progenitor cells sensed dopamine. Dopamine,
can be sensed by dopamine receptors and via the dopamine transporter (DAT) that transports

dopamine into cells.

To test if lymph gland blood progenitor cells were responsive to dopamine-based receptor
activation, we employed the use of a GPCR activation-based Dopamine (GRABp,) sensor. This
fluorescent based sensor enables a sensitive, direct and cell specific detection of extracellular
dopamine. The sensor is a dopamine receptor that has been engineered to contain a GFP reporter
that gives fluorescence upon dopamine binding induced conformational change in the receptor (Sun
etal., 2018). We expressed this sensor (UAS-DA1m) in lymph gland progenitor cells using
domeMESO-Gal4 driver. Compared to age matched control lymph glands, where expression of the
driver, domeMESO-Gal4 driving mCD8::GFP (Fig. 3A-C), was detected in 70% of cells, the
dopamine receptor-based activity sensor was detected only in a subset of these (Fig. 3A’-C”). This
localized activity-based fluorescence of the sensor implied dopamine receptor signalling in only
specific subset of the blood progenitor cells. The restriction in activity-based fluorescence to a
subset is not because of the inability of the construct to be expressed in other cells as when driver
line expression was assessed by analysing its ability to drive UAS-mCD8::GFP,(Fig. 3A-C), the
expression of GFP was detected in a large population of cells. Compared to this, the expression of
the dopamine receptor activity reporter was detected in substantially fewer cells. We also found that
as lymph gland development progressed, the number of cells expressing the receptor activity

increased over time (Fig. 3A°-C’). At earlier time points, dopamine receptor activity was detected in
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a small subset of progenitor cells that were localized at the periphery of the lymph gland (Fig. 3A’-
B’). As development progressed, cells in the leading edge of the MZ, closer to the CZ (Fig. 3A’-B’)
were positive for dopamine receptor activity. By mid 3" instar this pattern emerged more clearly
and the cells at the juxtaposition of MZ and peripheral CZ cells showed active receptor signalling
(Fig. 3C). This pattern of activity was reminiscent of the positioning of the intermediate or
transitioning progenitors (Blanco-Obregon et al., 2020) and the sensor expression analysis

highlighted dopamine signalling at this interface.

Intracellular dopamine availability is also regulated by transport (uptake) through the dopamine
transporter, DAT. DAT belongs to the SLC6 family of transporters that couples the Na+/Cl-gradient
with the inward movement of dopamine (Vaughan and Foster, 2013). This module regulates the
amount of dopamine entering cells from the external milieu. An anti-DAT antibody (Ueno and
Kume, 2014) was used to assess DAT expression during lymph gland development. We found
substantial levels of DAT throughout cells of the lymph gland (Fig. 3D-F’). Specifically, the
expression of DAT was found to be higher in the MZ region (Supplementary Fig. 3_1A-C) of later
3 instar lymph glands. This pattern was consistent with increasing levels of dopamine (Fig.1),
dopamine synthesising enzyme, Ddc (Fig. 2G) and receptor activity reporter (Fig. 3C*). These
observations suggested that the elevated intracellular dopamine detected in progenitor cells was

most likely a consequence of increased synthesis and intracellular transport.

Extracellular sensing of dopamine via dopamine receptor Dop2R and dopamine transporter

(DAT) in the progenitor cells maintains lymph gland size

This expression pattern of the receptor-activity sensor and transporter led us to investigate the
impact of their modulation in progenitor development as undertaken for TH and Ddc. Drosophila is
known to have three kinds of dopamine receptors which are G protein coupled receptors (GPCRS)
that includes i) D1 like which includes Dop1R1 and DoplR2 ii) a D2 like that includes Dop2R and

Iii) @ non-canonical receptor DopECcR that can bind to both ecdysone and dopamine as ligands
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(Yamamoto and Seto, 2014, Karam et al., 2019). These receptors differ in their mechanism of
action downstream by either activating (D1 class and DopEcR) or inhibiting (D2 like) adenylate
cyclase. In order to address which dopaminergic receptors were of relevance to lymph gland
development, we examined the effects of down-regulating each of these in progenitor cells, by
driving RNAI using domeMESO-Gal4, UAS-GFP as the driver. The specific loss of Dop2R in the
progenitors caused a severe reduction in lymph gland size and recapitulated the TH and Ddc small
lymph gland phenotype (Fig. 3G, H, quantification in J). Unlike synthesis, Dop2R loss-of-function
condition did not alter the proportions of MZ (marked with GFP) and CZ (marked with P1 in red)
which remained unchanged (Fig. 3K). Crystal cell status as assessed by PPO staining also showed
no changes (Supplementary Fig. 3_1D, E and quantification in G). This implied that the MZ
progenitors of the lymph gland relied on Dop2R mediated dopamine sensing to regulate lymph
gland size without altering the progenitor/differentiation balance. The loss of other dopamine
receptors- Dop1R1 and DopEcR did not result in an appreciable reduction in lymph gland size
(Supplementary Fig. 3_1H-J, quantification in L). Lymph gland size dependence on Dop2R was
further strengthened by i) the analysis using another RNAi line for Dop2R (BDSC 26001)
(Supplementary Fig. 3_1K and quantification in L) ii) as well as using another MZ specific driver,
Tep4-Gal4, UAS-mCherry (Supplementary Fig. 3_1M, N and quantification in P). In both
conditions, a small lymph gland size was recapitulated with no difference in proportions of Tep4

and P1 positive areas (Supplementary Fig. 3_1Q).

The down-regulation of DAT in progenitor cells also resulted in small lymph glands (Fig. 3G, | and
quantification in J) with no defects in the maintenance and differentiation of progenitor cells, as
detected by %P1 area (Fig. 3K). Employing another MZ specific Gal4 driver, Tep4-Gal4, UAS-

mCherry, to express DATRVA

recapitulated the small lymph gland size phenotype (Supplementary
Fig.3_1M, O and quantifications in P) and this also did not lead to any defect of Tep4 and P1 areas
(Supplementary Fig.3_1M, O and quantifications in Q). Assessment of crystal cells did not show
any defects upon progenitor loss of DAT using domeMESO-Gal4, UAS-GFP driver (Supplementary

Fig. 3_1D, F and quantification in G). These findings showed that unlike dopamine synthesis,


https://doi.org/10.1101/2021.03.29.437463
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437463; this version posted March 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

extracellular dopamine sensing via Dop2R or uptake via DAT in the progenitor cells allowed lymph

gland growth without perturbing their maintenance or differentiation status.

Lymph gland growth kinetics

The small lymph gland size phenotype was a common observation in all dopamine modules;
synthesis, receptor-based sensing via Dop2R and uptake via the transporter. Importantly, their
down-regulation in the differentiating blood cells using Hml“-Gal4, UAS-2xEGFP did not result in
any change in the sizes of the tissue (Supplementary Fig. 3_2A-F). These results suggested that
dopamine is predominantly required by the lymph gland blood progenitor cells to coordinate lymph

gland growth.

To assess the underlying reasons for the small size of the lymph gland, we investigated if any
increase in cell death would account for the phenotype. We used cleaved-caspase 3 staining to mark
apoptotic nuclei (Grigorian et al., 2013) in late 3" instar lymph glands, genetically manipulated for
loss of either dopamine synthesis or sensing proteins in progenitor cells. As a positive control,
Hml“-Gal4, UAS-GFP, UAS-Hid expressing lymph glands were used, wherein apoptosis was
induced and caspase 3 puncta around the nucleus were detected (Supplementary Fig. 4 1A-A’, inset
in A’”). Here, we failed to detect any apoptotic nuclei (Supplementary Fig. 4 1B-F’’) in these
genetic conditions. This showed that the size reduction was not a consequence of increased cellular

death.

The lymph gland growth is accomplished by rapid proliferation of progenitor cells at earlier stages
of development which gradually ceases later on (Jung et al., 2005, Krzemien et al., 2010, Mondal et
al., 2011, Sharma et al., 2019). Hence, we next undertook a comparative analysis of growth profiles
of control and mutant lymph glands lacking dopamine function in progenitor cells. We estimated
total cell counts of lymph gland primary lobes (please see Methods) that were obtained from larvae

at 48, 72 and 96h AEL for this analysis.
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We observed that in control conditions, lymph gland cell numbers doubled from 48 to 72h AEL and
tripled from 72 to 96h AEL (Fig. 4A). The late proliferative burst occurring at 72h was unexpected
and has not been described previously. In conditions lacking dopamine function in the progenitors,
either synthesis (TH and Ddc RNAI) or sensing (Dop2R and DAT RNAI), we observed an overall
reduction in total cell numbers at 96h AEL (Fig. 4A). This confirmed that the lymph gland size
reduction was a consequence of fewer number of cells. When assessed at an earlier developmental
stage at 48h AEL, in all conditions genetically manipulated for dopamine, the total cell numbers
were either mildly reduced or comparable to controls (Fig. 4A). At 72h AEL, when the control had
doubled its cell numbers, the synthesis and transporter mutants failed to demonstrate any increase
and the total cell numbers remained comparable to cell counts detected at 48h AEL (Fig. 4A, please
see the brown dashed line for control’s reference at each time point). This implied that after 48h,
dopamine synthesis and uptake was necessary to build intracellular dopamine to support the
doubling of progenitor cell numbers. Contrary to this, loss of dopamine receptor function showed
comparable total cell numbers both at 48 and 72h AEL. This implied that despite the loss of
progenitor Dop2R function, cell counts doubled and lymph glands grew comparable to controls.
From 72 to 96h AEL, however, when the controls tripled their cell counts, the Dop2R mutants
showed a marginal doubling in cell numbers. These data suggested a temporal requirement for
Dop2R signalling in ramping lymph gland cell numbers from 72 to 96h AEL as opposed to

synthesis, which was required from earlier stages of its development.

Dual control of dopamine in the regulation of lymph gland proliferation

We analysed cell cycle phasing to gain insight into how cell numbers increased during lymph gland
development. For this, we employed the use of the FUCCI reporter, a fluorescent ubiquitination-
based cell cycle indicator, and performed a comparative assessment of cell cycle profiles. The
FUCCI fluorescence assay gives details on stages of cell cycle progression and utilizes two probes

that are sensitive to ubiquitination-based degradation by ubiquitin E3 ligases, depending on the state


https://doi.org/10.1101/2021.03.29.437463
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437463; this version posted March 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

of the cell cycle. The first probe contains a GFP reporter fused to the E2F protein that is targeted by
the CRL4““ ubiquitin ligase. This degradation step occurs in the S phase of the cell cycle. The
second construct harbours monomeric red fluorescent protein as the reporter tagged to the Cyclin B
(regulator of G2 to M phase). This Cyclin B protein is targeted for degradation by APC/C complex
in the G1 phase of the cell cycle. Thus, based on the fluorochrome expression, it can be deciphered
whether the cells are in G1 (green fluorescence), S (red fluorescence) or G2/M phase (yellow

fluorescence) (Zielke et al., 2014, Fig. 4B).

A temporal analysis of progenitor cell cycle states respectively at 48, 72 and 96h AEL was
undertaken and the percentage cell number in G1, S or G2/M phases of the cell cycle, was assessed.
For this, the number of cells in each phase of the cell cycle were counted and represented against
the total number of cells positive for the reporter (See Methods for detail). Using this approach, we
observed that in control larvae at 48h, when the lymph gland comprises only of Dome™ progenitor
cells, almost 65% of progenitor cells, were detected in the S phase, with 30% in G2/M and a small
population of 5% cells in G1 phase of the cell cycle (Fig. 4C and Supplementary Fig. 4_2A).
Another 24 hrs into development, at 72h AEL, a decline in the proportion of S phase cells was
noticed. This was accompanied by a rise in the G2/M population and a small increase in G1 cells
(Fig. 4C and Supplementary Fig. 4_2F). The cell cycle status at 72h, coincides with progenitor
differentiation and the formation of a distinct CZ. By mid-3" instar, at 96h AEL, a majority of
progenitor cells (around 60%) were now in the G2/M phase while the S phase population had
substantially reduced to 30-35% (Fig. 4C and Supplementary Fig. 4 _2K). Interestingly, the G1
phase was maintained at 5-7% of the progenitor population (Fig. 4C and Supplementary Fig. 4 2A,
F and K). This suggested, that progenitor cells earlier in development were maintained in S phase of
the cell cycle and gradually transitioned into G2 which ultimately led to majority being retained in
G2 by 96h AEL. The accumulation of progenitor cells in G2 was consistent with published data
(Sharma et al., 2019) and our data here highlighted the cell cycle trajectory over developmental

time course that led to G2.
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The FUCCI yellow marker, marks cells both in G2 and M phase (Fig. 4B).Therefore, to gauge the
number of cells mitotically active in the yellow/G2 subset, the mitotic index at the different time
points was characterized. We undertook staining to mark for phosphorylation of Histone (pH3),
which is a robust marker of mitotically active cells, as the serine residues 10 and 28 are heavily
phosphorylated in the metaphase stage of the cell cycle (Ye-Kim et al., 2017). We undertook pH3
analysis at 48, 72 and 96h AEL (Fig. 5A-O’) and estimated the percentage of mitotically active cells
in the lymph gland. We observed that, in controls, throughout development, the mitotic index
remained fairly consistent at 5% (Fig. 4D). Which implied that the increasing proportion of
progenitor population into G2 during development increased the probability of cells to enter M
phase but at any given time point only 5% cells were mitotically active. We speculate that the
developmental requirement to maintain higher number of cells in G2 by 72h AEL, increased the
overall mitotic potential of the lymph gland. This may be necessary to enable the rapid increase in
lymph gland size detected from 72 to 96h AEL (Fig. 4A) and prime their entry into differentiation

trajectory (Mondal et.al., 2011).

The FUCCI tool was next driven in progenitor cells lacking dopamine synthesis, signalling and
uptake in a temporal manner (Supplementary Fig. 4 2A-0O) and analysed as above. Upon progenitor
specific loss of dopamine synthesis via TH or Ddc, the FUCCI analysis revealed that at 48h AEL, a
significant expansion in the S phase population was evident (Supplementary Fig. 4_2B-C compared
to A). About 80-85% cells were detected in S phase of their cell cycle with only 12-14% in G2/M
(Fig. 4C). This cell cycle state was consistently seen over time at 72 and 96h AEL (Supplementary
Fig. 4 2G-H compared to F and L-M compared to K, quantification in Fig. 4C). Thus, a reduction
in total cell counts seen in these mutants (Fig. 4A) and the accompanying growth defect was a
consequence of cells being maintained in S phase of the cell cycle. These data implied a function

for intracellular dopamine synthesis in driving exit of cells from S phase of the cell cycle.

Loss of DAT function recapitulated a similar increase in S phase cells at 48h AEL with a reduction

in G2/M phase (Supplementary Fig. 4_2E compared to A, quantification in Fig. 4C). At 72 and 96h
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AEL, the progenitors with loss of DAT function showed lesser proportion in S phase with an
increase in G2/M phase, however the number of cells in S phase continued to remain moderately
higher than seen in controls (Supplementary Fig. 4_2J compared to F, O compared to K,
quantification in Fig. 4C). The loss of DAT data corroborated with a requirement for intracellular
dopamine as seen with TH and Ddc and suggested that in blood progenitor, the gradual increase in
intracellular dopamine level was a consequence of both synthesis and increased DAT mediated
uptake. This may be necessary for progenitor cells to reach a certain threshold of intracellular
dopamine required to exit S and enter G2. The mitotic index at 48 and 72h AEL, upon loss of
dopamine synthesis (Fig. 5B-C’ compared to A-A’ for 48h and G-H’ compared to F-F’ for 72h) or
transporter (Fig. 5E-E’ for 48h and J-J* for 72h) showed a significant reduction (Fig. 4D), which
was consistent with the increased S and reduced G2 phase cells detected in these conditions (Fig.
4B). This explained the reduction in the total cell counts observed in the mutant lymph gland (Fig.
4A). At 96h, the mitotic index however did not show any difference and was restored back to
control levels (Fig. 5L-M’ for synthesis loss of function and O-O’ for DAT loss of function,
quantification in Fig. 4D) which suggested dopamine independent control of lymph gland

development at later stages.

Loss of dopamine signalling via Dop2R, however showed no difference at 48h in terms of S, G2/M
cell populations (with a minor increase in G1) and was unlike loss of dopamine synthesis or uptake
(TH or Ddc or DAT knockdown) (Supplementary Fig. 4_2D compared to A, quantification in Fig.
4C). Later, at 72 or 96h only minor increase in S and minor reduction in G2/M was noticeable
(Supplementary Fig. 4_ 21 compared to F for 72h, N compared to K for 96h, quantification in Fig.
4C). This implied that the reduction in total cell numbers seen from 72 to 96h AEL (Fig. 4A) was
not a consequence of any alteration in S or G2 cell cycle phasing. We assessed the mitotic index at
these time points and observed a significant reduction specifically at 72h. (Fig. 51-1’ compared to F-
F’, quantification in Fig. 4D). At 48h, or later at 96h, the mitotic potential remained comparable to
control, which implied that the mitotic potential at 72h (Fig. 4A) was under the control of dopamine

receptor signaling. After this time point, the mitotic index was independent of dopamine regulation
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(Fig. 5N-N’ compared to K-K’, quantification in Fig. 4D). Based on these data we propose that, at
72h AEL, the lymph gland progenitor cells lacking dopamine receptor signalling had reduced
mitosis (Supplementary Fig. 5A), hence the number of total cells ended up being lesser at 96h (Fig.
4A). These data revealed a temporal requirement for Dop2R function from 72h onwards until 96h
for driving the proliferative boost seen in control lymph glands. Consistent with this result, cells
positive for dopamine receptor sensor were positive for pH3 only at 72 h and not at earlier time
point (Supplementary Fig. 5B-D, yellow arrows for indicating pH3 positive either non-overlapping

with the sensor (B) or overlapping (C, D), see inset in panel C).

Previous studies have implicated the use of neurotransmitters by progenitor cells in their
maintenance (Shim et al., 2013) and immune response (Madhwal et al., 2020) and by mature
immune cells for their function (Qi et al., 2018). These findings led us to explore other
neurotransmitters in blood development and our work in this study features dopamine in controlling
a fundamental process of lymph gland growth. The current study showcases the utilization of
dopamine by progenitor cells as an essential proliferative cue to coordinate their cell cycle

progression and achieve growth of the hematopoietic tissue.

Dopamine, a member of the catecholamine family, is obtained from tyrosine. Tyrosine hydroxylase
(TH) catalyses the rate limiting conversion of tyrosine to the intermediate L-Dopa, which is
converted to dopamine through Dopa decarboxylase (Ddc) dependent reaction. Dopamine is
packed in vesicles via vesicular monoamine transporter (VMATS) to be subsequently released in the
synapse enabling its recycling. The receiving cells sense dopamine by either D1 or D2 class of
receptors (in vertebrates) (Yamamoto and Vernier, 2011) or DopR, Dop2R and DopEcR (in
Drosophila) (Yamamoto and Seto, 2014). Dopamine transporter (DAT) is known to re-uptake
dopamine from the synaptic cleft into the presynaptic neuron once the downstream postsynaptic
neuron has received the stimulus (Vaughan and Foster, 2013). As a neurotransmitter, dopamine is
well recognised for its various roles in arousal (Kume et al., 2005), motivation (Wise, 2004),

learning and forgetting (Berry et al., 2012) to name a few. It’s function in enabling proliferation of
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adult neural precursor cell (O'Keeffe C et al., 2009) and immature human CD34" hematopoietic
progenitor cells (Spiegel et al., 2007) are findings which exhibits growth regulatory aspect of this

neurotransmitter, but mainly focused through the lens of receptor mediated signalling.

Our data proposes a non-neuronal function of dopamine in blood progenitor cells that is necessary
to moderate the overall growth of the lymph gland (Fig. 6). Growth of this blood forming tissue is
supported by dual function of dopamine. Initially, as the lymph gland begins its growth, progenitors
are mainly in S phase of the cell cycle. Dopamine synthesis is initiated in early progenitor cells and
a threshold of intracellular dopamine is built over time, by utilizing both synthesis and uptake (Fig.
6, shown by red triangle). The increased availability of intracellular dopamine in progenitor cells,
facilitates their exit from S and promotes entry into G2. The increased accumulation in G2 by 72h is
also the time when the lymph gland begins to rapidly grow in size. At this time, an increase in
Dop2R activity in progenitor cells primes their potential to exit G2. We hypothesize, that the entry
into mitosis is governed by an additional “input”. We propose that cells that are in G2 are activated
for Dop2R signalling and are competent to enter mitosis, such that in the presence of this additional
trigger, the cells readily enter mitosis. Thus, with time as more Dop2R activated cells become
available, the mitotic capacity of progenitor cells is increased. Signalling by molecules like
adenosine or GABA which have been implicated in lymph gland growth and proliferation are
potential candidates (Mondal et al., 2011, Shim et al., 2013). This allows the rapid increase in cell
numbers. The mechanisms by which dopamine intracellularly manifests exit of cells from the S
phase or entry into G2 remains unclear. In this regard, either processes linked to dopamine
breakdown or secondary modifications, as described for serotonin (Walther et al., 2011),
dopaminylation (Lepack et al., 2020) of proteins can be speculated as a possibility, but this remains

to be tested.

Apart from a few studies which have described dopamine’s role in early neurogenesis (Hoglinger et
al., 2004, O'Keeffe C et al., 2009), the importance of dopamine as a proliferative cue is not

established. Dopamine’s utilization by blood cells as a pro-growth and a mitotic cue both at the
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level of it being a metabolite and as a signalling molecule are significant findings that illustrate its
non-canonical functions in blood development. Our work presented here broadens the
understanding of neurotransmitters and their function in non-canonical contexts. The canonical
attribution of neurotransmitters in the regulation of brain functions along with neuronal innervations
to different tissues where their influence is exerted is most well established. The importance of
intracellular dopamine synthesis as a growth signal in blood progenitor cells is unexpected and
opens avenues for investigating dopamine from this perspective, which has not yet been undertaken

both in neuronal development and also in the hematopoietic field.


https://doi.org/10.1101/2021.03.29.437463
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437463; this version posted March 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Materials and Method

Drosophila husbandry, stocks, genetics

The following Drosophila stocks were used in this study: yw; +/+; +/+ (wild type, wt)
domeMESO-Gal4, UAS-EYFP (U. Banerjee), Hml*-Gal4, UAS-2xEGFP (S. Sinenko), Tep4-Gal4,
UAS-mCherry (U. Banerjee), domeMESO-Gal4 (U. Banerjee), Tep4-Gal4 (L. Mandal). The RNA
stocks were obtained from Bloomington (BL) Drosophila stock centres. The lines used for the study
are: Dop1R1"MA (BL 62193), Dop2R™A (BL 26001, Neckameyer and Bhatt, 2012, Inagaki et al.,
2012, BL 36824), DopEcR™A' (BL 31981, Aranda et al., 2017), DDC™A (BL 27030, Smith and
Macdonald, 2020), TH™A' (BL 25796, Vaccaro et al., 2017), DAT™ (BL 50619, Jaksic’ et al.,
2020), UAS-FUCCI (BL 55121), UAS-DA1m (BL 80047), UAS-Hid (BL 65403), UAS-mCD8::GFP
(BDSC 5137). All fly stocks were reared on standard corn meal agar food medium with yeast
supplementation at 25°C incubator unless specified. The crosses involving RNAI lines were
maintained at 29°C to maximize the efficacy of the Gal4-UAS RNAi system. The controls in the

study correspond to either yw; +/+; +/+ or Gal4 drivers crossed with yw; +/+; +/+.

Immunostaining and Immunohistochemistry

Lymph glands isolated from larvae were stained following the staining protocol as described
previously (Jung et al., 2005). Briefly, the lymph gland tissues from synchronised larvae of a
specific developmental stage were dissected in 1X PBS (phosphate buffered saline) from. The
tissues were then fixed in 4% formaldehyde for 20 mins followed by three washes with 0.3% PBT
(1X PBS + 0.3% Triton X 100) of 10 mins each. Blocking was next carried out in 5% NGS (normal
goat serum) for 30-45 mins and the samples were then subjected to primary antibody (Ab) staining
of specific dilutions in an overnight, 4°C condition. After the primary antibody treatment, the
tissues were washed with 0.3% PBT thrice for 10 mins each to remove the residual antibody. Post

this step, a secondary antibody treatment was employed wherein an Alexa Flour conjugated
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secondary antibody and Hoechst 33342 (for nuclei) of 1:500 dilution was prepared in 5% NGS and

tissues were then incubated for 2 hrs at room temperature.

Immunohistochemistry on lymph gland was performed with the following primary antibodies:
mouse anti-P1 (1:100, I. Ando), rabbit anti-Pxn (1:2000, J. Shim), rabbit anti-PPO (1:1000, H.
Miiller), rabbit anti-Dopamine (1:10,000, Abcam 6427), mouse anti-TH (1:100, Immunostar
#22941), rabbit anti-Ddc (1:1000, Jay Hirsh), rat anti-DAT (1:1000, Millipore MAB369), rabbit
anti-pH3 (1:100, CST #3642S), rabbit anti-Caspase3 (1:200, CST #9661S), rabbit anti-GFP (1:100,

Abcam ab6556).

The following secondary antibodies were used at 1:500 dilutions: FITC, Cy3 and Cy5 (Jackson
ImmunoResearch Laboratories) and Alexa Flour 546, 647 (Invitrogen) that was mouse, rabbit or rat
specific. Nuclei were stained and visualized using Hoechst 33342 (Sigma B2261). Samples were
mounted with Vectashield (Vector Laboratories). A minimum of ten independent biological

replicates were analysed from which one representative image is shown.

Dopamine staining of lymph gland tissues: For detection of intracellular dopamine levels in the
lymph gland, Drosophila larvae of different developmental timings (as per experimental
requirement) were dissected in 1X PBS. This was followed by fixation in 4% formaldehyde for 20-
25 mins and then stringent washes in 0.3% PBT (1X PBS + 0.3% Triton X 100) for 45 mins (3
washes for 15 mins each). The tissues were then incubated in 5% NGS for 45 mins. Dopamine
antibody was then diluted in 5% NGS at a 1:10,000 dilution which was subsequently used to stain
the lymph gland tissues overnight (15-18hrs) in 4°C. The secondary antibody treatment was

conducted using the standard protocol described above.

Imaging

Immuno-stained lymph glands images were acquired using Olympus FVV3000 confocal microscopy
under 40X oil-immersion objective with or without digital zooming (mentioned for the relevant
experiment in the figure legends). It was made sure that the settings for acquisition were unaltered

for different genotypes for each experimental set.
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Quantification of lymph gland phenotypes
All images were quantified using ImageJ software (NIH, USA) software (available at
imagej.nih.gov/ij). The detailed methodology for analysis of various parameters is described as

follows.

Lymph gland and zone area analysis: The lymph gland and medullary/cortical zone area analysis
was conducted as described in Shim et al., 2012. Specifically, middle two confocal Z-stacks were
merged and the lymph gland area was estimated by outlining the primary lobe with the freehand
selection tool in ImageJ followed by selecting the ‘analyse-measure’ option. This was also done for
respective zones where Dome/Tep4 was used to estimate the progenitor area while P1 was used for
the differentiated zone analysis. The zone areas is represented in percentage values, normalised to
lymph gland area, in the graphs. In order to estimate the Dome/P1 overlap area, a single middle
stack of the acquired confocal image was selected that best represented the progenitors and
differentiated cells. The total lymph gland, Dome positive and P1 positive areas was measured by
outlining (as mentioned above). The outlined region of interest (ROIs) of Dome and P1 areas
marked were selected and then subjected to “More> AND’ command in the ROI manager of
ImageJ to give the overlap area. This was normalised to total lymph gland area and plotted as
%Dome/P1 overlap. Controls were analysed in parallel to the tests every time. A minimum of 10

animals were analysed each time and the experiment was repeated at least three times.

Crystal cell and pH3 positive nuclei analysis: The crystal cell population was assessed by
counting the total number of PPO positive cells across the confocal Z stacks of the lymph gland and
represented as crystal cells per lobe. Similarly, pH3 positive nuclei was counted across the Z stacks
and normalised to total number of nuclei of the primary lobe and represented as ‘mitotic index’. A
minimum of 10 animals were analysed each time and the experiment was repeated at least three

times.
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Total nuclei count analysis: To count total nuclei, we adapted the spot detection methodology
available in IMARIS, used for similar analysis in Sharma et al., 2019 and Rodrigues et al., 2021.
Briefly, the confocal Z stacks of the lymph gland tissue were merged and the primary lobe was
outlined using freehand selection tool. Following this, the remaining tissue like the ring gland,
dorsal vessel, secondary lobes were cleared using the clear outside tool (under ‘Edit” option). The
nuclei of the primary lobe were then carefully thresholded using ‘Image-Adjust-Threshold’ option
and applied to obtain an 8-bit image. The resulting image was then used for watershed (under
‘Process-Binary’ command) followed by particle analysis where the parameter used for nuclei size
was (3-infinity) and circularity (0.04-1.00). The obtained ROls as a result were then overlayed on
the original image to avoid under/over counting of nuclei. A minimum of 10 animals were analysed

each time and the experiment was repeated at least three times.

FUCCI area analysis: To estimate the G1, S G2/M population in the progenitor pool, middle 2 Z
stacks were merged, that best represented the medullary zone (Shim et al., 2012), of the acquired
confocal image of the lymph gland at a specific development time point. After this, the channels of
the merged image were separated to analyse the green and red channels, individually. For this,
FUCKCI reporter positive cells (green/red) were thresholded followed by ‘watershed’ and ‘analyse
particles’ command to obtain the number of green and red positive cells, separately. To estimate the
yellow population, the ROIs of the green positive cells were overlayed on the red channel image
and the “green only” cell was counted manually. This “green only” value represents number of cells
in G1 phase which was then eliminated from the total green positive cells counted, to obtain the
yellow cells that represents G2/M population. The “red only” which represents S phase was
similarly acquired by eliminating yellow cells from the total red cells calculated. These values were
then normalised to the total FUCCI positive cells of the merged stacks and represented as %G1, %S

or %G2/M population.

Intensity analysis: The mean intensities in lymph gland tissues was calculated as described in

Madhwal et al., 2020, Sharma et al., 2019. Briefly, the middle 2 stacks of the lymph gland images
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were selected, the area to be measured per lobe was defined using the freehand selection tool and
the mean intensity measurement was then conducted using the measure tool. The relative fold
change in intensities per lobe was calculated using mean intensity values. For all intensity
quantifications, the laser setting for each individual experimental set-up was kept constant. Controls
were analysed in parallel to the tests every time. A minimum of 10 animals were analysed each time
and the experiment was repeated at least three times. The quantifications shown are for all the sets

analysed.

Statistical Analysis

All the statistical tests for the respective experiments were carried out using GraphPad Prism 9 and
Microsoft Excel 2019 software. Either Student’s t- test or Mann-Whitney U test depending on the

distribution of the data set acquired. The images represented have processed in ImageJ and Adobe

Illustrator (2020).
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Main figure legends

Fig 1: Dopamine expression during lymph gland growth.

DNA is stained with Hoechst in blue, intracellular Dopamine (iDopamine) in red, domeMESO
expression in green (representative of progenitors in the medullary zone, MZ). The iDopamine
channel has been converted to spectral mode in panels D, H and L. All panels from A-C, E-G, I-K
show a 20um scale bar. The inset represents 2X zoom of region of interest (ROIs) marked in yellow
dashed square. AEL indicates After Egg Laying. For better representation, the primary lobe of the
lymph gland has been represented and outlined in white dashed lines.

(A-D) Immunostaining with antibody against dopamine at mid-3" instar (96h AEL) shows an
elevated expression of the molecule in the progenitors, marked with domeMESO-GFP and outlined
with yellow dashed line as opposed to non GFP cells of the cortical zone. The inset shows Dome”
GFP” cells (B’) and the corresponding dopamine levels (C”) in them.

Similar expression analysis at early 3 (72h AEL, E-H) and early 2" instar (48h AEL, I-L)
represents uniform dopamine expression pattern as evident from the inset in J°, K’ with arrowhead
representing Dome” GFP™ and arrow representing Dome” GFP" cells. The spectral mode of
iDopamine representation in D and L shows elevated dopamine expression with increasing lymph

growth.

Figure 2: The medullary zone progenitors synthesize dopamine to control lymph gland size

and differentiation.

DNA is stained with Hoechst in blue, iDopamine in red, Tyrosine hydroxylase (TH) in red, Dopa
decarboxylase (Ddc) in red, domeMESO (representative of progenitors) expression in green, P1
(representative of mature plasmatocytes) in red. All image panels show a 20um scale bar. AEL
indicates After Egg Laying. The quantifications in K and O represents mean with standard

deviation and in P represents the mean. The statistical analysis applied in K is Mann-Whitney test
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while that applied in O and P unpaired t-test, two-tailed. ‘n’ represents the number of lymph gland
lobes analyzed. For better representation, the primary lobe of the lymph gland has been represented
and outlined in white dashed lines.

(A) Schematic representation of the dopamine synthesis pathway where the amino acid tyrosine is
converted to L-dopa via Tyrosine hydroxylase (TH), the rate limiting enzyme. Further L-dopa is
converted to dopamine by the action of Dopa decarboxylase (Ddc).

(B-D) The expression of TH in the mid-3rd instar (96h AEL) lymph glands of control (domeMESO-
Gal4, UAS-GFP/+) shows a uniform cytosolic pattern (inset in C’) while the expression of Ddc in
the similar stage and background shows elevated expression in the Dome* GFP” region (E-G),
supporting the increased expression of dopamine in the progenitors.

(H-J) Assessment of dopamine levels upon the knockdown of TH and Ddc in the progenitors using
domeMESO-Gal4, UAS-GFP driver shows a 40-50% reduction in dopamine levels.

(K) The fold change in dopamine levels in TH and Ddc loss of function in the progenitors.
Compared to control (domeMESO-Gal4, UAS-GFP/+, n=40), a 0.5fold reduction in dopamine
levels is observed in loss of TH (domeMESO-Gal4, UAS-GFP; TH™A n= 17, **p=0.0017) and
Ddc (domeMESO-Gal4, UAS-GFP; Ddc™M| n= 34, ***p=0.0003)

(L-N) Loss of progenitor TH and Ddc function using domeMESO-Gal4, UAS-GFP shows a reduced
lymph gland size compared to control (at wandering 3" instar, 120h AEL).

(O) Quantifications of lymph gland size shows an almost 50% reduction in lymph gland size upon
loss of TH (domeMESO-Gal4, UAS-GFP; TH™ A n= 34, ****p<0.0001) and Ddc (domeMESO-
Gal4, UAS-GFP; DdcR™A n= 56, ****p<0.0001) when compared to stage matched control
(domeMESO-Gal4, UAS-GFP/+, n=91).

(P) Quantifications of the proportions of % Dome (green bars for MZ), % negative (blue bar),
%overlap (Dome and P1, yellow bars) and %P1 (red bars for CZ). An 8-10% expansion of Dome
positive area was observed in the progenitor specific loss of TH (domeMESO-Gal4, UAS-GFP;
THRVA n= 15, ****p<0.0001) and Ddc (domeMESO-Gal4, UAS-GFP; Ddc®™A n= 18,
****p<0.0001) function w.r.t to control (domeMESO-Gal4, UAS-GFP/+, n=27). No significant

changes in the % negative and % overlap areas were found upon TH knockdown (domeMESO-
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Gal4, UAS-GFP; TH™A n= 15, p=0.4346 and p=0.0998, for %negative and %overlap respectively)
compared to controls (domeMESO-Gal4, UAS-GFP/+, n=27). A mild reduction in % negative area
was found upon loss of Ddc (domeMESO-Gal4, UAS-GFP; Ddc™* n= 18, *p=0.0410) and a
significant reduction in overlap of Dome/P1 population was noticed (domeMESO-Gal4, UAS-GFP;
Ddc™A n= 18, ***p=0.0003). The loss of dopamine synthesis in the progenitors caused a
significant reduction in the plasmatocytes differentiation when compared to controls (domeMESO-
Gal4, UAS-GFP/+, n=27, domeMESO-Gal4, UAS-GFP; TH™A n= 15, ****p<0.0001 and

domeMESO-Gal4, UAS-GFP; Ddc™A n= 18, ****p<0.0001).

Fig 3: Dopamine sensing in the progenitors via dopamine receptor Dop2R and dopamine

transporter DAT contributes to lymph gland size regulation.

DNA is stained with Hoechst in blue, Dopamine transporter (DAT) in red, Dopamine receptor-
based reporter (DAL1m) in red, domeMESO (representative of progenitors) expression in green, P1
(representative of mature plasmatocytes) in red, mCD8::GFP in green. All image panels show a
20um scale bar. AEL indicates After Egg Laying. The quantification in J represents mean with
standard deviation and in K represents mean. The statistical analysis applied in J and K is unpaired
t-test, two tailed. ‘n’ represents the number of lymph gland lobes analyzed. For better
representation, the primary lobe of the lymph gland has been represented and outlined in white
dashed lines.

(A-C’) Expression of dopamine receptor reporter (UAS-DA1m), a GPCR based activation reporter,
in the progenitors using domeMESO-Gal4 driver was conducted in a temporal manner-early 2™
(48h AEL, A’), early 3" (72h AEL, B’) and mid-3" (96h AEL, C’) instar lymph glands. A subset of
the progenitors showed expression of the reporter (active signaling cells) when compared to age
matched controls expressing mCD8::GFP (A-C). Additionally, an increase in number of cells
active for dopamine signaling was found with increasing lymph gland size.

(D-F’) Immunostaining with anti-DAT antibody shows transporter expression in the lymph gland

primary lobe with higher expression in the inner core region, Dome positive, of the tissue.
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(G-1) Using domeMESO-Gal4, UAS-GFP driver line, Dop2R and DAT knockdown was conducted
and this gave a reduction in lymph size in the (H and | compared to G).

(J) Quantification of lymph gland size (domeMESO-Gal4, UAS-GF/+, n= 49, domeMESO-Gal4,
UAS-GFP; Dop2R™A n= 28, ****p<0.0001, domeMESO-Gal4, UAS-GFP; DAT™™ n= 33,
Hxx%0<0.0001).

(K) Quantifications of the proportions of % Dome (green bars for MZ), % negative (blue bar), %
overlap (Dome and P1, yellow bars) and % P1 (red bars for CZ) suggested no significant
differences in the Dome area between the knockdown of Dop2R and DAT when compared to the
control (domeMESO-Gal4, UAS-GF/+, n= 26, domeMESO-Gal4, UAS-GFP; Dop2R™A n= 186,
p=0.6032, domeMESO-Gal4, UAS-GFP; DATRVA n= 22, p=0.191) and the % negative area
(domeMESO-Gal4, UAS-GF/+, n= 27, domeMESO-Gal4, UAS-GFP; Dop2R™A n= 16, p=0.3152,
domeMESO-Gal4, UAS-GFP; DAT™Y n= 24, p=0.6586). A slight but significant increase in
%overlap (Dome/P1) was observed upon loss of Dop2R in the progenitors, which was not the case
with DAT knockdown (domeMESO-Gal4, UAS-GF/+, n= 27, domeMESO-Gal4, UAS-GFP;
Dop2R™A' n= 16, *p=0.0116, domeMESO-Gal4, UAS-GFP; DAT™' n= 24, p=0.156). The %P1
population remained unchanged in Dop2R loss of function condition (domeMESO-Gal4, UAS-GFP;
Dop2R™A n= 16, p=0.5235) and had a mild increased in DAT loss of function condition
(domeMESO-Gal4, UAS-GFP; DAT™A n= 24, *p=0.0314) when compared to control

(domeMESO-Gal4, UAS-GF/+, n= 27).

Fig. 4: The trilogy of dopamine sensing, synthesis and uptake regulate lymph gland growth

and show differential effects on cell cycle phasing.

DNA is stained with Hoechst in blue, FUCCI (fluorescent ubiquitination-based cell cycle indicator)
reporter shows G1 phase cells in green, S phase cells in red and G2/M phase cells in

yellow. All panels show a 20um scale bar. AEL indicates After Egg Laying. The quantification in
A represents median with box plots and that in R represents mean. The statistical analysis applied in

A and R is Mann-Whitney test while. ‘n’ represents the number of lymph gland lobes analyzed. For
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better representation, the primary lobe of the lymph gland has been represented and outlined in
white dashed lines.

(A) An assessment of total nuclei counts in a temporal manner was conducted upon perturbation of
dopamine modules of synthesis, signaling via Dop2R and uptake through DAT in the progenitors
using domeMESO-Gal4, UAS-GFP driver. These perturbations resulted in reduction of total nuclei
counts upon downregulation of TH, Ddc and DAT at 48h AEL (domeMESO-Gal4, UAS-GF/+, n=
36, domeMESO-Gal4, UAS-GFP; TH™A n= 21, p=0.0718, domeMESO-Gal4, UAS-GFP; Ddc™A
n= 16, **p=0.0016, domeMESO-Gal4, UAS-GFP; DAT™A n= 15, ***p=0.0008). The loss of
Dop2R did not show any significant reduction at this time (domeMESO-Gal4, UAS-GFP;
Dop2R™A n= 21, p=0.2374). Later, at 72h AEL, the total number of nuclei remained significantly
low in TH, Ddc and DAT knockdowns (domeMESO-Gal4, UAS-GF/+, n= 26, domeMESO-Gal4,
UAS-GFP; TH™A n= 21, ****p<0.0001, domeMESO-Gal4, UAS-GFP; Ddc™A n=17,
***+1<0.0001, domeMESO-Gal4, UAS-GFP; DAT™A n= 22, ****p<0.0001). This was still not
the case for Dop2R loss of function condition (domeMESO-Gal4, UAS-GFP; Dop2R™A' n= 18,
p=0.126). At 96h AEL, the perturbation of all these modules reflected a reduction in total nuclei
counts (domeMESO-Gal4, UAS-GF/+, n= 18, domeMESO-Gal4, UAS-GFP; TH™A n=21,
**x+1<0.0001, domeMESO-Gal4, UAS-GFP; DA™ n= 17, ****p<0.0001, domeMESO-Gal4,
UAS-GFP; DAT™NA n= 22, ****p<0.0001, domeMESO-Gal4, UAS-GFP; Dop2R™A n= 20,
*x%x0<0,0001).

(B) Color coding scheme to represent the cell cycle phase as shown through FUCCI reporter.

(C) Quantifications of the % cell cycle phase i.e., %G1, %S and %G2/M at different time points, in
the dopamine perturbed backgrounds. For 48h AEL, significant differences were found in synthesis
and uptake module compared to control (domeMESO-Gal4; UAS-FUCCI/+, n=34 [%G1], n=35
[%S], n=35 [%G2/M], domeMESO-Gal4; UAS-FUCCI; TH™A n=13 [%G1, p=0.2215], n=13
[%S, *p=0.0312], =13 [%G2/M, **p=0.0023], domeMESO-Gal4; UAS-FUCCI; Ddc™™ n= 15
[%G1, p=0.9865], n=15 [%S, **p=0.0014], n=15 [%G2/M, ***p=0.0004], domeMESO-Gal4;
UAS-FUCCI; DAT™NA n= 17 [%G1, p=0.6069], n=17 [%S, ***p=0.001], n=17 [%G2/M,

**p=0.0019]). This accumulation in S phase was not found in Dop2R loss of function condition,
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although an increase in G1 phase was noticed (domeMESO-Gal4; UAS-FUCCI; Dop2R™ A n=19
[%G1, **p=0.0013], n=19 [%S, p=0.7569], n=19 [%G2/M, p=0.453]). At 72h, Dop2R loss of
function started showing an S phase accumulation with reduction in G2/M along with loss of
synthesis modules which however was not demonstrated by DAT perturbation (domeMESO-Gal4;
UAS-FUCCI/+, n=38 [%G1], n=38 [%S], n=38 [%G2/M], domeMESO-Gal4; UAS-FUCCI;
TH™A n= 22 [%G1, ****p<0.0001], n=19 [%S, ****p<0.0001], n=15 [%G2/M, ****p<0.0001],
domeMESO-Gal4; UAS-FUCCI; Ddc™™ n= 29 [%G1, ****p<0.0001], n=26 [%sS,
**x41<0.0001], =22 [%G2/M, ****p<0.0001], domeMESO-Gal4; UAS-FUCCI; Dop2R™*' n=
47 [%G1, p=0.4194], n=47 [%S, **p=0.0047], n=47 [%G2/M, **p=0.0042], domeMESO-Gal4;
UAS-FUCCI; DATRM n= 29 [%G1, p=0.7557], n=29 [%S, p=0.2322], n=29 [%G2/M, p=0.1863]).
At 96h AEL, all the modules showed an expansion of S phase with decrease in G2/M phase, albeit
with differences in the levels (domeMESO-Gal4; UAS-FUCCI/+, n=55 [%G1], n=55 [%S], n=55
[%G2/M], domeMESO-Gal4; UAS-FUCCI; TH™A n= 14 [%G1, **p=0.0047], n=14 [%S,
**x41<0.0001], n=14 [%G2/M, ****p<0.0001], domeMESO-Gal4; UAS-FUCCI; Ddc®™ n= 20
[%G1, ****p<0.0001], n=19 [%S, ****p<0.0001], n=19 [%G2/M, ****p<0.0001], domeMESO-
Gal4; UAS-FUCCI; Dop2R™A' n= 23 [%G1, p=0.9761], n=23 [%S, ****p<0.0001], n=23
[%G2/M, ***p=0.0004], domeMESO-Gal4; UAS-FUCCI; DAT™A n= 19 [%G1, p=0.0872], n=19
[%S, ****p<0.0001], n=19 [%G2/M, ****p<0.0001]).

(D) Quantification of the mitotic index in a time course manner with dopamine modules
perturbation in the progenitors using domeMESO-Gal4; UAS-GFP driver. At 48h, mild reduction
was observed in TH and Dop2R loss of function condition (domeMESO-Gal4; UAS-GFP/+, n=33,
domeMESO-Gal4; UAS-GFP; TH™A n=18, *p=0.0498, domeMESO-Gal4; UAS-GFP; Ddcf™
n=16, p=0.4187, domeMESO-Gal4; UAS-GFP; Dop2R™A' n=21, *p=0.0219, domeMESO-Gal4;
UAS-GFP; DAT™™A n=15, p=0.1215). At 72h, a significant reduction in the mitotic index was
observed (domeMESO-Gal4; UAS-GFP/+, n=28, domeMESO-Gal4; UAS-GFP; THfNA n=23,
***p=0.0002, domeMESO-Gal4; UAS-GFP; DdcfA n=17, ***p=0.001, domeMESO-Gal4; UAS-
GFP; Dop2R™A n=25, ***p=0.0003, domeMESO-Gal4; UAS-GFP; DAT™A n=27,

****p<0.0001). At 96h, no significant reduction was found (domeMESO-Gal4; UAS-GFP/+, n=16,
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domeMESO-Gal4; UAS-GFP; TH™, n=21, p=0.0726, domeMESO-Gal4; UAS-GFP; Ddc™™,
n=16, p=0.6088, domeMESO-Gal4; UAS-GFP; Dop2R™A' n=18, *p=0.0271, domeMESO-Gal4;

UAS-GFP; DAT™A n=21, p=0.5144).

Fig. 5: Dopamine exhibits dual modulation on lymph gland growth dynamics.

DNA is stained with Hoechst in blue, domeMESO (representative of progenitors) in green, pH3
(phospho-Histone 3) in grey. All panels show a 20um scale bar. AEL indicates After Egg Laying.
The quantification in P represents median with box plots. The statistical analysis applied in P is
Mann-Whitney test. ‘n’ represents the number of lymph gland lobes analyzed. For better
representation, the primary lobe of the lymph gland has been represented and outlined in white
dashed lines.

(A-E’) Representative lymph gland images at 48h AEL reflecting proliferation profile (via pH3
analysis) in control (A-A”) and loss of function of function of TH (B-B’), Ddc (C-C”), Dop2R (D-
D’) and DAT (E-E’) using domeMESO-Gal4; UAS-GFP driver. No significant differences in
mitotic index were observed in the dopamine perturbed backgrounds when compared to control.
(F-J’) Representative lymph gland images at 72h AEL reflecting proliferation profile (via pH3
analysis) in control (F-F’) and loss of function of function of TH (G-G”), Ddc (H-H’), Dop2R (I-I")
and DAT (J-J°) using domeMESO-Gal4; UAS-GFP driver. An overall reduction in mitotic

index was observed in the dopamine perturbed backgrounds when compared to control.

(K-O”) Representative lymph gland images at 96h AEL reflecting proliferation profile (via pH3
analysis) in control (K-K”) and loss of function of function of TH (L-L”), Ddc (M-M”), Dop2R (N-
N”) and DAT (O-0O’) using domeMESO-Gal4; UAS-GFP driver. Here TH and Dop2R showed
milder reduction in mitotic index when compared to control which was not the case for Ddc and

DAT loss of function condition.
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Fig. 6: Non-canonical function of dopamine, a neurotransmitter, in enabling progenitor

proliferation to achieve lymph gland growth.

The study presented here highlights the non-canonical function of dopamine in the proliferation of
the hematopoietic progenitor population. The progenitor cells employ the module of dopamine
synthesis (enzymes TH and Ddc) and transporter (DAT) to build up the levels of intracellular
dopamine (iDopamine). During the earlier stages of lymph gland development, specifically at 48 to
72h AEL, this reservoir of dopamine (as depicted by the red triangle) enables the progenitor pool to
transit from S to G2 phase of the cell cycle, Further, the Dop2R mediated dopamine signaling, that
occurs in a subset of the progenitor population, confers mitotic competency to these progenitor cells
enabling them to transit from G2 to M phase of the cell cycle. We also speculate the contributions
of dopamine synthesis and uptake in this regard. This culminates in the lymph gland growth to an
appropriate size. Overall, dopamine functions not only as a signaling entity but also as an

intracellular metabolite to regulate proliferation and cell cycle phasing.
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