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Abstract		3 

Autoimmune	 diseases	 (AiDs)	 are	 complex	 heterogeneous	 diseases	 characterized	 by	4 

hyperactive	immune	responses	against	self.	Genome-wide	association	studies	have	identified	5 

thousands	 of	 single	 nucleotide	 polymorphisms	 (SNPs)	 associated	 with	 several	 AiDs.	While	6 

these	studies	have	identified	a	handful	of	pleiotropic	loci	that	confer	risk	to	multiple	AiDs,	they	7 

lack	 the	 power	 to	 detect	 shared	 genetic	 factors	 residing	 outside	 of	 these	 loci.	 Here,	 we	8 

integrated	chromatin	contact,	expression	quantitative	trait	loci	and	protein-protein	interaction	9 

(PPI)	data	to	identify	genes	that	are	regulated	by	both	pleiotropic	and	non-pleiotropic	SNPs.	10 

The	PPI	analysis	revealed	complex	interactions	between	the	shared	and	disease-specific	genes.	11 

Furthermore,	pathway	enrichment	analysis	demonstrated	that	the	shared	genes	co-occur	with	12 

disease-specific	 genes	 within	 the	 same	 biological	 pathways. In	 conclusion,	 our	 results	 are	13 

consistent	with	the	hypothesis	that	genetic	risk	loci	associated	with	multiple	AiDs	converge	on	14 

a	 core	 set	 of	 biological	 processes	 that	 potentially	 contribute	 to	 the	 emergence	 of	15 

polyautoimmunity.	 	16 
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Introduction	17 
	18 

Autoimmune	 diseases	 (AiDs)	 are	 chronic	 conditions	 that	 arise	 when	 there	 is	 an	 abnormal	19 

immune	 response	 that	 targets	 functioning	 organs.	Many	 AiDs	 share	 clinical	 symptoms	 and	20 

immunopathological	mechanisms	(Anaya,	2012).	For	instance,	it	has	been	shown	that	patients	21 

with	the	most	common	AiDs	such	as	multiple	sclerosis	(MS),	type	I	diabetes	(TID),	rheumatoid	22 

arthritis	(RA),	and	systemic	lupus	erythematosus	(SLE)	are	at	higher	risk	of	polyautoimmunity	23 

(Bao	et	al.,	2019;	Ordoñez-Cañizares	et	al.,	2020;	Ramagopalan,	Dyment,	&	Ebers,	2008).	It	is	24 

likely	 that	 environmental	 factors	 impact	 on	 the	 shared	 immunopathological	mechanisms	 to	25 

trigger	polyautoimmunity.	On	the	other	hand,	there	is	evidence	for	a	genetic	contribution	to	26 

AiD	 development	 that	 is	 supported	 by	 higher	 concordance	 rates	 in	 monozygotic	 twins,	 a	27 

relative	 increase	 in	 the	 risk	 of	 disease	 in	 dizygotic	 twins	 (Bogdanos	 et	 al.,	 2012),	 and	 the	28 

coexistence	of	AiDs	within	families	and/or	individuals	(Mäkimattila,	Harjutsalo,	Forsblom,	&	29 

Groop,	2020;	Simon	et	al.,	2020,	2017;	Somers,	Thomas,	Smeeth,	&	Hall,	2006).	We	hypothesize	30 

that	the	effects	of	AiD	associated	genetic	variants	converge	on	biological	pathways	that	increase	31 

risk	through	downstream	functional	impacts.		32 

	33 

The	major	histocompatibility	complex	(MHC)	locus	provides	the	greatest	genetic	risk	factor	for	34 

AiD	development	and	is	an	obvious	common	link	between	AiDs	(Matzaraki,	Kumar,	Wijmenga,	35 

&	Zhernakova,	2017).	In	addition	to	the	MHC	locus,	non-HLA	genes	such	as	CTLA4,	PTPN22,	and	36 

TNF	have	also	been	associated	with	multiple	AiDs	(Serrano,	Millan,	&	Páez,	2006).	Furthermore,	37 

genome-wide	 association	 studies	 (GWAS)	 have	 identified	 thousands	 of	 single	 nucleotide	38 

polymorphisms	(SNPs)	across	the	human	genome	that	are	associated	with	an	increased	risk	of	39 

developing	AiD.	The	AiDs-associated	GWAS	SNPs	are	typically	inter-genic	and	unique	to	one,	or	40 

small	set	of	AiDs	(Lettre	&	Rioux,	2008).	Given	the	phenotypic	similarities	between	the	AiDs,	it	41 

is	 however	 possible	 that	 combined	 analyses	 may	 reveal	 patterns	 of	 shared	 genetic	 and	42 

pathological	 etiology.	 Consistent	 with	 this,	 a	 cross-disease	 Immunochip	 SNP	 meta-analysis	43 

identified	novel	pleiotropic	risk	 loci	 that	represent	complex	comorbidity	 from	patients	with	44 

seronegative	immune	phenotypes	(Ellinghaus	et	al.,	2016).		45 

	46 

Trait-associated	 SNPs	 have	 been	 shown	 to	 be	more	 likely	 to	mark	 loci	 that	 are	 expression	47 

quantitative	 trait	 loci	 (eQTL)(Nicolae	 et	 al.,	 2010).	 In	 this	 study,	 we	 have	 concurrently	48 

investigated	 SNPs	 that	 were	 independently	 associated	 with	 18	 AiDs	 to	 identify	 their	49 

transcriptional	 regulatory	 activity	 (i.e.,	 as	 eQTLs),	 using	an	 in	 silico	method	 (CoDeS3D)	 that	50 

combines	 different	 levels	 of	 empirical	 evidence	 (Fadason,	 Schierding,	 Lumley,	 &	O’Sullivan,	51 
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2018).	We	 further	 identified	 the	 target	genes	of	 the	eQTLs	and	analysed	 the	 functional	 and	52 

physical	 interactions	among	the	proteins	they	encode.	Using	a	modularity-based	community	53 

detection	method,	we	extracted	the	functional	modules	from	the	protein-protein	interactions.	54 

Functional	enrichment	analysis	of	the	modules	provided	a	measure	of	how	genetically	related	55 

AiD-associated	 genes	 contribute	 to	 increasing	 the	 risk	 of	 developing	 polyautoimmune	56 

conditions.	57 

	58 

Methods	59 
 60 
Identification	of	the	target	genes	of	autoimmune	disease-associated	SNPs	61 

SNPs	associated	(p≤5x10-6)	with	18	autoimmune	diseases	[alopecia	areata	(ALO),	ankylosing	62 

spondylitis	 (AS),	 celiac	 disease	 (CED),	 Crohn's	 disease	 (CRD),	 eosinophilic	 esophagitis	 (EE),	63 

Graves’	 disease	 (GRD),	 juvenile	 idiopathic	 arthritis	 (JIA),	 multiple	 sclerosis	 (MS),	 primary	64 

biliary	 cirrhosis	 (PBC),	 psoriatic	 arthritis	 (PA),	 psoriasis	 (PSO),	 rheumatoid	 arthritis	 (RA),	65 

Sjogren’s	 syndrome	 (SJS),	 systemic	 lupus	 erythematosus	 (SLE),	 systemic	66 

scleroderma/sclerosis	(SSC),	type-I	diabetes	(T1D),	ulcerative	colitis	(ULC),	and	vitiligo	(VIT)]	67 

were	 retrieved	 from	 the	 GWAS	 catalog	 (https://www.ebi.ac.uk/gwas;	 on	 30	 April	 2020)	68 

(Supplementary	 data	 1).	 The	 SNPs	 associated	 with	 each	 disease	 were	 analysed	 separately	69 

through	a	python-based	bioinformatics	algorithm	(CoDeS3D)	(Fadason	et	al.,	2018)	to	identify	70 

which	SNPs	acted	as	expression	Quantitative	Trait	Loci	 (eQTLs)	and	 to	 identify	 their	 target	71 

genes.	 Firstly,	 CoDeS3D	 uses	 Hi-C	 chromatin	 contact	 data	 derived	 from	 70	 cell	 lines	 and	72 

primary	tissues	(Supplementary	data	2)	to	identify	target	genes	that	are	spatially	interacting	73 

with	the	SNPs.	Secondly,	eQTL	data	from	49	human	tissues	(GTEx	V8)	(Aguet	et	al.,	2020))	were	74 

used	 to	 identify	 the	 SNPs	 (eQTLs)	 that	 are	 associated	with	 the	 expression	 changes	 of	 their	75 

target	 genes	 (eGenes).	 	 Lastly,	 false	 positive	 associations	 were	 controlled	 using	 a	 multiple	76 

testing	 correction	 (Benjamini-Hochberg	 False	 Discovery	 Rate	 (FDR	 <	 0.05)).	 Chromosome	77 

positions	 of	 SNPs	 and	 genes	 are	 reported	 according	 to	 the	 Human	 reference	 genome	78 

GRCh38/hg38	assembly.		79 

 80 

Construction	of	the	autoimmune	disease	network	using	protein-protein	81 

interaction	(PPI)	data	82 

The	python	‘networkx’	library	was	used	to	construct	the	autoimmune	disease	network	in	two	83 

steps:	 (i)	A	 reference	PPI	network	 (ref-PPIN)	was	constructed	using	data	downloaded	 from	84 

STRING	 v11.0	 (Szklarczyk	 et	 al.,	 2019).	 Only	 protein	 pairs	 with	 no	 self-links	 and	 a	 high-85 
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confidence	 score	 (combined	 score	 >	 0.7)	were	 retained,	 yielding	 a	 reference	 network	with	86 

16758	 proteins	 (nodes)	 and	 411585	 interactions	 (edges).	 (ii)	 All	 genes	 whose	 expression	87 

changes	were	correlated	with	the	SNPs	from	one	or	more	of	the	18	autoimmune	diseases	were	88 

analyzed	 to	 determine	 if	 they	 were	 involved	 in	 PPIs	 within	 the	 ref-PPIN.	 The	 resulting	89 

autoimmune	 PPI	 network	 (Ai-PPIN)	 consisted	 of	 2925	 proteins	 and	 19173	 interactions.	90 

Cytoscape	(version	3.8.2)	was	used	for	PPI	network	visualization.		91 

	92 

Identification	of	modules	from	the	autoimmune	PPI	network	(Ai-PPIN)	93 

Functional	 modules	 can	 be	 defined	 as	 either:	 a)	 a	 stable	 protein	 complex;	 or	 b)	 a	 set	 of	94 

transiently	interacting	proteins	that	together	act	to	accomplish	a	specific	biological	function.	95 

Here,	 we	 extracted	 the	 functional	 modules	 from	 the	 Ai-PPIN	 using	 the	 Louvain	 module	96 

detection	algorithm	(Blondel,	Guillaume,	Lambiotte,	&	Lefebvre,	2008).	The	Louvain	algorithm	97 

identifies	 functional	 modules	 by	 optimizing	 the	 modularity	 (Q)	 of	 the	 network.	 For	 an	98 

undirected	graph	G=(V,	E)	with	V	 number	of	nodes	 and	E	 number	of	 edges,	Q	 is	defined	as	99 

(Dugué	&	Perez,	2015),	100 

𝑄 = !
"#
∑ $𝐴$% −

&!&"
"#
' 𝛿(𝑐$ , 𝑐%)$% 	 	 (1)																																		101 

where	m	is	the	number	of	edges	(E)	of	G,	𝐴$% 	represents	the	weight	of	the	edge	between	nodes	102 

i	and	j,	𝑑$ 	and	𝑑% 	are	degrees	of	node	i	and	j,	𝑐$and	𝑐% 	are	the	communities	to	which	i	and	j	belong,	103 

and	𝛿-	 function	 for	which	δ(𝑐$ , 𝑐%)	 equals	 1	 if	𝑐$=𝑐% ,	 and	 0	 if	𝑐$≠	𝑐% .	 The	 communities	 or	 the	104 

functional	modules	are	found	by	maximizing	the	Q	function	in	an	iterative	manner.	In	the	initial	105 

stage,	 all	 nodes	 in	 the	 network	 are	 considered	 as	 independent	modules	 and	 the	 algorithm	106 

progressively	combines	two	modules	that	increase	the	Q	of	the	resulting	network.	Combining	107 

nodes	and	modules	continues	until	there	is	no	further	increase	in	the	Q	of	the	network.	The	108 

Louvain	module	detection	algorithm	has	previously	been	proposed	to	be	the	best	method	to	109 

find	modules	within	the	human	PPI	network	(Rahiminejad,	Maurya,	&	Subramaniam,	2019).			110 

	111 

The	qs-test	was	used	to	evaluate	the	significance	of	modules	according	to	the	quality	function	112 

(q)	and	size	 (s)	of	 the	module.	A	module,	M,	 is	deemed	significant	 if	 its	quality	 function,	𝑞' 	113 

(modularity),	 is	 larger	 than	 those	 for	detected	modules	 of	 the	 same	 size	𝑠'		 in	 randomized	114 

networks	(Kojaku	&	Masuda,	2018).	The	size	function	is	calculated	by	summing	the	degrees	of	115 

nodes	in	a	module.		116 

	117 
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Identification	of	central	genes	within	the	functional	modules	118 

In	 network	 theory,	 the	 centrality	 of	 a	 node	 measures	 its	 relative	 importance	 within	 the	119 

network.	We	 regarded	 each	module	 identified	 from	 Ai-PPIN	 as	 an	 individual	 network	 and	120 

identified	central	nodes	using	three	centrality	measures:	degree,	closeness,	and	eigenvector.		121 

The	python	package	“networkx”	was	used	for	centrality	analysis.	122 

	123 

Degree	centrality	(DC).	The	DC	indicates	the	number	of	direct	neighbors	of	a	node.	The	DC	of	a	124 

node	i	is	defined	as,	125 

𝐷𝐶(𝑖) = ∑ 𝐴$%)
%*! 	 	 	 (2)	126 

where	A	is	the	adjacency	matrix,	and	n	is	the	total	number	of	nodes	in	a	graph	(G).	DC	values	127 

are	normalized	by	dividing	them	by	the	maximum	possible	degree	(n	-	1),	where	n	is	the	number	128 

of	nodes	in	G.	129 

	130 

Closeness	centrality	(CC).	The	CC	is	the	reciprocal	of	average	shortest	path	distance	between	a	131 

node	i	and	all	other	reachable	nodes	in	the	network.	CC	of	a	node	i	is	defined	as,	132 

𝐶𝐶(𝑖) = )+!
∑ &($,%)#$%
"&%

	 	 	 (3)	133 

where	𝑑(𝑖, 𝑗)	is	the	shortest	path	distance	between	i	and	j,	and	n	is	the	number	of	nodes	that	134 

can	reach	i.		135 

	136 

Eigenvector	centrality	(EC).	The	EC	computes	the	centrality	of	a	node	based	on	the	centrality	of	137 

its	neighbours.	EC	measures	the	influence	of	a	node	on	the	connectivity	of	the	network.	EC	of	a	138 

node	i	is	defined	as,		139 

𝐸𝐶(𝑖) = !
0
	∑ 𝑥%%	∈'($) 		 	 (4)	140 

where	𝑀(𝑖)	is	a	set	of	neighbours	of	i,	𝜆	is	the	largest	eigenvalue	of	A(adjacency	matrix).	If	a	141 

node	is	connected	to	other	well-connected	nodes	in	the	PPI,	it	will	have	the	maximum	EC	value.		142 

	143 

We	sorted	the	proteins	in	decreasing	order	according	to	their	degree,	closeness	and	eigenvector	144 

centrality	scores	and	selected	the	top	10%	of	proteins	from	each	group.	We	defined	the	proteins	145 

that	are	present	in	common	across	all	three	groups	as	central.		146 

	147 

Functional	annotation	of	the	modules	148 

Pathway	and	GO	enrichment	analyses	were	performed	(R	package	g:profiler	(version	2_0.1.9)	149 

(Raudvere	 et	 al.,	 2019))	 on	 every	 module	 detected	 from	 Ai-PPIN	 to	 identify	 significantly	150 
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 6 

enriched	pathways	and	biological	processes	terms	(false	discovery	rate	correction	threshold	of	151 

0.05).	 Kyoto	 Encyclopedia	 of	 Genes	 and	 Genomes	 (KEGG)	 pathways	 (accessed	 10-October-152 

2020)	and	gene	ontology	(GO)	biological	processes	 (accessed	20-January-2021)	 terms	were	153 

used	as	the	reference	libraries	in	these	analyses.	DGIdb	version	3.0	(Cotto	et	al.,	2018)	was	used	154 

to	identify	potential	drug	interactions	with	the	eGenes.		155 

	156 
	 	157 
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Results:	158 

An	overview	of	the	gene	regulatory	network	of	the	AiDs	159 

The	 SNP-gene	 regulatory	network	 encompassing	2065	 eQTLs	 (70%	of	 the	 total	 input	 SNPs	160 

(N=2953))	and	4789	eGenes	across	18	diseases	(Supplementary	data	3)	was	identified	using	161 

CoDeS3D	(Fadason	et	al.,	2018)	(Figure	1A).	The	eQTLs	and	eGenes	are	hereafter	referred	to	as	162 

“SNPs”	 and	 “genes”	 for	 simplicity.	Almost	 all	 SNPs	 (N=1879;	 91%)	 are	non-pleiotropic	 (i.e.,	163 

associated	with	only	one	AiD).	There	are	pleiotropic	SNPs	(N=186;	9%)	implicated	in	two	or	164 

more	 AiDs	 (Figure	 1B),	 where	 two	 or	 more	 GWAS	 on	 different	 diseases	 independently	165 

identified	 the	 same	 SNP.	 Of	 these,	 approximately	 one-third	 of	 the	 pleiotropic	 SNPs	 (N=60;	166 

32.3%)	were	associated	only	between	CRD	and	ULC.	The	remaining	126	(67.7%)	were	shared	167 

between	two	to	five	disease	conditions	(Supplementary	data	4).	Together,	the	pleiotropic	SNPs	168 

are	associated	with	the	expression	levels	of	833	(17.4%)	genes.	A	small	proportion	of	genes	169 

(N=225;	 4.7%)	 are	 regulated	 only	 by	 pleiotropic	 SNPs	 (figure	 1B,	 (i)	 termed	 as	 “identical	170 

genes”),	608	genes	(12.7%)	regulated	by	both	pleiotropic	and	non-pleiotropic	SNPs	and	889	171 

genes	(18.6%)	regulated	by	>2	non-pleiotropic	SNPs	associated	with	different	AiDs	(figure	1B,	172 

(ii)	termed	as	“shared	genes”).	However,	the	vast	majority	of	the	genes	(N=3067;	64%)	were	173 

unique	 to	 each	 disease	 condition	 (figure	 1B,	 (iii)	 termed	 as	 “disease-specific”).	 These	174 

observations	 are	 consistent	 with	 the	 existence	 of	 a	 shared	 genetic	 architecture	 between	175 

autoimmune	diseases	that	is	primarily	manifested	by	the	disease-specific	genetic	mechanisms.		176 

	177 

The	2065	SNPs	identified	from	the	18	AiDs	were	connected	to	the	4789	genes	via	9183	cis	and	178 

5414	trans	regulatory	interactions	across	49	tissues	(Supplementary	data	3).	However,	only	179 

40%	(N=1914)	of	the	genes	were	regulated	by	cis-SNPs	and	52%	(N=2498)	were	regulated	by	180 

trans-SNPs	(Figure	1C).	The	vast	majority	of	trans-genes	84%	(N=2100)	were	identified	in	only	181 

one	of	the	49	tissues	analyzed.	(Figure	1D).	This	observation	suggests	that	the	impacts	of	the	182 

AiD	associated	SNPs	are	largely	tissue-specific	in	nature.		183 

	184 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.28.437437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.28.437437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

	185 
Figure1.	Global	overview	of	the	genetic	architecture	of	AIDs.	186 
(A)	SNPs	associated	with	each	of	18	AiDs	(D1	to	D18)	were	analyzed	through	the	CoDeS3D	algorithm	(Fadason	et	187 
al.,	2018).	Briefly:	(i)	genes	that	are	in	physical	contact	with	the	SNPs	(cis	-	located	within	1	Mb	distance,	trans-188 
intrachromosomal-	located	on	the	same	chromosome	but	more	than	1	Mb	apart,	and	trans-interchromosomal	-	189 
located	on	the	different	chromosomes)	within	the	three-dimensional	organization	of	the	nucleus	are	identified;	190 
and	(ii)	SNP-gene	pairs	are	queried	through	GTEx	to	identify	those	that	overlap	eQTL-eGene	correlations.	Lastly,	191 
the	regulatory	SNP-gene	associations	identified	for	each	of	18	AiDs	were	consolidated	to	identify	the	genes	(1),	192 
associated	 with	 pleiotropic	 SNPs	 only,	 (2)	 associated	 with	 pleiotropic	 &	 non-pleiotropic	 SNPs,	 or	 >2	 non-193 
pleiotropic	SNPs	associated	with	different	AiDs	and,	(3)	associated	with	non-pleiotropic	SNPs	only.	(B)	Summary	194 
of	pleiotropic	and	non-pleiotropic	SNPs	(left)	and	their	target	genes	(right)	across	18	AiDs	by	proportion.	Dotted	195 
lines	indicate	associations	between	categories	of	SNPs	and	genes.	(C)	The	proportion	of	genes	regulated	in	cis,	196 
trans	(inter-	and/or	intra-chromosomal),	or	both	cis	and	trans	by	the	SNPs	across	18	AiDs.	(D)	Trans-regulatory	197 
connections	were	enriched	in	single	tissue.	Proportion	of	genes	was	calculated	as	percentage	total	genes.	198 
	199 

AiD	associated	genes	organize	into	highly	modular	communities	200 

We	constructed	an	autoimmune	protein-protein	interaction	network	(Ai-PPIN)	for	the	proteins	201 

encoded	by	the	genes	we	identified.	The	schematic	representation	of	the	network	analysis	is	202 

presented	(Figure	2A).	Non-coding	genes	and	those	with	missing	entrez	gene	identifiers	were	203 

filtered	from	the	PPI	analysis,	resulting	in	a	set	of	4253	genes,	of	which	Ai-PPIN	contained	the	204 
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protein	 products	 of	 2925	 genes	 (Supplementary	 data	 5	 Table	 1)	 and	 19173	 interactions	205 

(Supplementary	data	5	Table	2).		206 

	207 

It	is	established	that	within	a	biological	network,	disease-associated	genes	are	likely	to	form	208 

modules	that	are	important	for	the	cellular	processes	underlying	disease	pathogenesis	(Sharma	209 

et	al.,	2014).	We	identified	network	modules	using	the	Louvain	community	detection	algorithm	210 

(Blondel	et	al.,	2008)	and	tested	their	statistical	significance	against	10000	randomly	generated	211 

networks	 using	 the	 qs-test	 (Kojaku	 &	 Masuda,	 2018).	 The	 Louvain	 algorithm	 detected	 81	212 

potential	 modules	 from	 the	 network,	 of	 which	 14	 were	 statistically	 significant.	 These	 14	213 

significant	modules	contained	between	73	to	472	proteins	each	and	accounted	for	2676	of	the	214 

proteins	 in	 the	 Ai-PPIN	 (Figure	 2B,	 Supplementary	 data	 6).	 The	 remaining	 249	 proteins	215 

assembled	into	67	non-significant	modules	were	excluded	from	the	analysis.	As	expected,	the	216 

gene	products	encoded	by	the	HLA	genes	exhibited	high	interaction	and	were	organized	into	a	217 

single	module	(Module	1).	The	aggregation	of	proteins	into	distinct	communities	within	the	Ai-218 

PPIN	suggests	a	high	tendency	of	AiD	associated	proteins	to	physically	or	functionally	interact	219 

to	perform	the	intended	cellular	function.	220 

	221 

We	 annotated	 the	 functions	 of	 the	 modules	 using	 KEGG	 pathways	 enrichment	 analysis.	222 

According	to	the	top	5	significantly	enriched	pathways,	each	module	is	classified	with	distinct	223 

biological	 functions.	 For	 instance,	 Module	 1	 is	 enriched	 for	 proteins	 involved	 in	 pathways	224 

related	to	immune	system	and	immune	diseases;	Module	11	is	enriched	for	endocytosis	and	225 

infectious	disease	 related	pathways;	Module	3,	8	and	13	 for	genetic	 information	processing	226 

pathways	(e.g.,	RNA	degradation,	spliceosome,	Ubiquitin	mediated	proteolysis),	Module	4,	10	227 

and	 14	 for	 distinct	 metabolic	 pathways	 (Supplementary	 data	 7).	 Each	 functional	 module	228 

exhibits	 functional	 heterogeneity,	 meaning	 that	 they	 are	 involved	 in	 diverse	 biological	229 

functions.	 Functional	 heterogeneity	 of	 the	modules	 suggest	 that	 they	may	 consist	 of	 one	or	230 

more	transiently	interacting	protein	complexes	(Li,	Wu,	Wang,	&	Pan,	2012),	which	also	reveal	231 

a	potential	link	between	apparently	unrelated	biological	processes.		232 

	233 

	234 

	235 

	236 
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	237 
Figure	2.	Overview	of	the	functional	modules	identified	from	Ai-PPIN.	(A).	Schematic	representation	of	the	238 
Ai-PPIN	module	analysis.	The	Louvain	community	detection	algorithm	(Blondel	et	al.,	2008)	was	applied	to	detect	239 
communities/modules	within	 the	Ai-PPIN	network.	 Statistically	 significant	 (qs-test)	 (Kojaku	&	Masuda,	2018)	240 
modules	 (yellow	 bubble)	 were	 identified	 by	 comparison	 with	 modules	 from	 10000	 random	 networks.	 Non-241 
significant	modules	(red	bubble)	were	excluded	from	further	analysis.	Functional	enrichment	analyses	using	KEGG	242 
pathways	and	GO:BP	(gene	ontology	biological	process	terms)	were	performed	to	identify	the	biological	functions	243 
enriched	within	each	module.	(B)	The	Ai-PPIN	contains	fourteen	significant	modules.	In	each	module,	the	nodes	244 
represent	proteins.	The	lines	connecting	the	nodes	represent	interactions	between	proteins.	N	and	E	denotes	the	245 
number	of	nodes	and	edges	present	in	each	module	respectively.	The	p-value	denotes	the	statistical	significance	246 
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of	 the	modules	(qs-test)	 (Kojaku	&	Masuda,	2018).	Cytoscape	(version	3.8.2)	was	used	 for	visualization	of	 the	247 
network.	248 
	249 

Shared	genes	display	predominant	role	in	AiD	modules	250 
 251 
Altogether,	 the	 significant	modules	 identified	within	 the	 Ai-PPIN	 network	 are	 composed	 of	252 

approximately	30%	shared,	65%	disease-specific,	and	4%	identical	proteins.	Module	14	is	an	253 

exception	as	it	does	not	contain	any	protein	encoded	by	identical	genes.	Within	each	module,	254 

at	 least	 12	 AiDs	 were	 represented	 by	 disease-specific	 proteins.	 Notably,	 all	 18	 AIDs	 were	255 

represented	by	disease-specific	proteins	 in	Modules	2,	3,	and	12.	This	 is	consistent	with	the	256 

hypothesis	that	interactions	between	multiple	AiD	associated	proteins	may	contribute	to	co-257 

morbid	 features.	Remarkably,	 the	proportion	of	 shared	proteins	 is	 considerably	 larger	 than	258 

those	of	the	disease-specific	or	identical	proteins	in	all	14	modules	(Figure	3A).		KEGG	pathway	259 

analysis	 identified	that	34%	(18.5714±7.764)	of	proteins	that	are	enriched	within	the	top	5	260 

biological	 pathways	 are	 shared	 between	 multiple	 AiDs	 (Figure	 3B).	 Moreover,	 the	 shared	261 

proteins	 are	 also	 essential	 to	 the	 modules	 as	 confirmed	 by	 the	 centrality	 analysis	262 

(Supplementary	data	8).	Notably,	more	than	50%	of	the	proteins	representing	central	nodes	in	263 

Module	1	(enriched	for	immune	pathways)	and	Module	4	(enriched	for	metabolic	pathways)	264 

are	shared	between	AiDs	(Figure	3C).		The	co-occurrence	of	shared	proteins	in	central	positions	265 

within	 the	 pathways	 containing	 disease-specific	 proteins	 might	 contribute	 to	 the	 risk	 of	266 

developing	comorbid	conditions.		267 
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	268 
Figure	 3.	 Shared	 genes	 display	 predominant	 role	 in	 AiD	 modules.	 (A)	 Heatmap	 of	 proportion	 of	269 
genes/proteins	 from	 each	 AiD	 that	 were	 attributed	 to	 modules	 1-14.	 Dark	 shaded	 square	 indicates	 higher	270 
proportions	of	proteins.	(B)	The	proportion	of	shared,	disease-specific	and	identical	proteins	present	in	the	top	5	271 
enriched	biological	 pathways	 (KEGG),	 by	module.	 (C)	The	proportion	of	disease-specific,	 shared	and	 identical	272 
proteins	that	constitutes	central	nodes	within	each	module.	(D)	The	central	proteins	in	13	modules	are	targeted	273 
by	FDA	approved	drugs,	of	which	45%	proteins	are	shared	between	diseases.	Proteins	that	are	targeted	by	more	274 
than	20	drugs	are	labeled.			275 
	276 
DGIdb	analysis	determined	that	80	of	173	(about	46%;	Supplementary	data	9	Table	1)	of	the	277 

central	proteins	across	the	14	modules	have	known	drug	targets	with	45%	of	the	druggable	278 

proteins	 being	 shared	 between	 AiDs	 (Figure	 3D;	 Supplementary	 data	 9	 Table	 2).	 These	279 

proportions	are	much	greater	than	the	proportion	of	GENCODE	genes	with	known	drug	targets	280 

(4807	out	of	54592,	9%),	which	informs	the	pharmacological	value	of	the	central	and	shared	281 

proteins,	respectively.		282 

	283 
	284 
Human	leukocyte	antigen	(HLA)	genes	are	central	to	immune	function	rich	285 
module		286 
	287 
Genetic	risk	 for	autoimmune	diseases	 including	T1D,	CED,	autoimmune	thyroid	disease,	SJS,	288 

SLE,	RA,	MS,	and	autoimmune	hepatitis	(Cruz-Tapias	et	al.,	2012;	Fridkis-Hareli,	2008)	has	been	289 

previously	attributed	to	variants	within	the	MHC	region.	Consistent	with	this,	we	observed	that	290 

proteins	encoded	by	the	MHC	region	genes	interact	with	other	non-MHC	gene	products	to	form	291 
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the	densely	connected	Module	1	 (Figure	4A)	 (clustering	coefficient=0.586;	 indicates	greater	292 

connectivity	of	 the	neighborhood	of	 the	nodes).	Module	1	contains	disease-specific	proteins	293 

(60%),	associated	with	17	AiDs,	shared	(34%)	and	identical	proteins	(6%;	Supplementary	data	294 

10	Table	1).	Gene	ontology	analysis	revealed	that	the	199	proteins	located	within	Module	1	are	295 

overrepresented	 in	 677	 biological	 processes	 (Supplementary	 data	 10	 Table	 2),	 including	296 

significantly	enriched	terms	related	to	cellular	transport,	localization	and	the	immune	system	297 

associated	 functions	 (Figure	 4B).	 KEGG	 pathway	 enrichment	 analysis	 confirmed	 significant	298 

enrichment	in	pathways	that	are	predominantly	linked	to	immune	system,	immune	diseases,	299 

and	 infectious	 diseases	 (Figure	 4C;	 Supplementary	 data	 10	 Table	 3).	 Centrality	 analysis	300 

identified	that	the	HLA	class	I	and	II	proteins	and	six	other	proteins	(CAPZB,	CAPZA1,	CAPZA2,	301 

DCTN2,	ACTR1A,	and	DYNC1I1)	as	being	most	essential	within	Module	1	(Figure	4A).	Notably,	302 

the	significantly	enriched	biological	process	terms	(N=29	of	top	30)	and	pathways	(N=33	of	44)	303 

contained	shared	proteins	that	were	central	to	the	module	(Figure	4B	and	4C;	Supplementary	304 

data	10	Table	4	and	5).	Similarly,	the	expression	of	transcripts	from	the	HLA-DQA2,	HLA-DRB1,	305 

HLA-DQB1,	HLA-DRA,	HLA-DRB5,	HLA-G,	and	HLA-C	genes	is	altered	by	SNPs	associated	with	306 

between	11	to	16	AiDs	(Figure	4A,	Supplementary	data	10	Table	6).	These	observations	are	307 

consistent	with	 the	 central	 role(s)	 for	HLA	encoded	genes	 in	 the	pathogenesis	of	AIDs.	The	308 

interactions	 involving	 HLA	 genes,	 that	 are	 highly	 influenced	 by	 the	 epistatic	 interaction	 of	309 

multiple	disease-specific	SNPs,	may	potentially	modulate	the	biological	processes	or	pathways	310 

related	to	immune	system	response	and	functions.	311 

	312 
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	313 
Figure	4.		HLA	genes	are	central	to	immune	function	rich	module.	(A)	Network	representation	of	Module	1.	314 
The	color	of	the	nodes	denotes	the	disease	with	which	the	protein	is	associated.	Node	shape	indicates	if	the	SNP	315 
acts	locally	(cis	-	circle),	distally	(trans	-	diamond),	or	both	(cis	and	trans	–	rounded	square)	on	the	genes	encoding	316 
proteins.	 Central	 nodes	 are	 highlighted	 in	 red	 borders	 and	 labelled.	 Cytoscape	 (version	 3.8.2)	 was	 used	 for	317 
visualization	of	the	module.	(B)	Relatively	greater	proportions	of	proteins	(>40%)	in	the	Module	1	are	enriched	318 
for	transport,	localization	and	immune	processes.	The	top	30	enrichment	results	are	shown	(FDR≤6.01e-14)	(C)	319 
KEGG	pathway	enrichment	analysis	identified	enrichment	in	immune	related	pathways	(FDR<0.05).	In	(B)	and	320 
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(C),	 the	numbers	on	 top	of	 each	bar	denote	 the	number	of	 proteins	 enriched	 for	 that	 term/pathway,	 and	 the	321 
asterisk	 denotes	 that	 the	 term/pathway	 is	 also	 enriched	 for	 shared	 proteins	 that	 are	 central	 to	 the	 network	322 
(Supplementary	data	10	Table	4	and	5).		323 
	324 

Non-HLA	proteins	organize	into	a	module	enriched	for	immune	responses		325 

Module	 5	 consists	 of	 177	 proteins	 (Supplementary	 data	 11	 Table	 1),	 59%	 of	 which	 are	326 

associated	with	one	of	16	AiDs,	with	a	clustering	coefficient	of	0.568.	In	contrast	to	Module	1,	327 

three-fourth	(12	out	of	16;	75%)	of	 the	central	proteins	within	module	5	 is	disease-specific	328 

(Figure	5A).	The	central	proteins	that	are	shared	between	conditions	are	associated	with	two	329 

to	 six	 AiDs.	 For	 example,	 PLAU	 is	 shared	 between	 CRD	 (rs2227551,	 rs2227564),	 MS	330 

(rs2688608),	 and	 PSO	 (rs2675662);	 ITGAM	 is	 shared	 between	 GRD	 (rs57348955),	 PSO	331 

(rs12445568,	rs10782001,	rs13708)	and	SLE	(rs11150610);	RAP1A	is	shared	between	CRD	332 

(rs488200)	 and	 PSO	 (rs11121129);	 and	 ATP8B4	 is	 targeted	 by	 the	 pleiotropic	 SNPs	333 

rs12946510,	 rs12946510,	 rs12946510	 -	 associated	 with	 CRD,	 MS,	 and	 ULC;	 rs2305480,	334 

rs2305480	 -associated	 with	 RA	 and	 ULC;	 and	 non-pleiotropic	 SNPs-	 rs883770	 (SSC),	 and	335 

rs2290400	(TID).	The	proteins	within	Module	5	are	significantly	enriched	for	ontological	terms	336 

including	 immune	 response	 and	 transport	 (Supplementary	 data	 11	 Table	 2)	 and	 biological	337 

pathways	related	to	cellular	signaling,	infectious	diseases	and	immune	system	(Supplementary	338 

data	 11	 Table	 3).	 Furthermore,	 the	 shared	 central	 proteins	 are	 involved	 in	 the	 biological	339 

processes	 (N=29	 of	 top	 30)	 predominantly	 linked	 to	 immune	 responses	 (Figure	 5B;	340 

Supplementary	data	11	Table	4)	and	KEGG	pathways	(N=10	of	19)	including	those	linked	to	341 

immune	processes	such	as	complement	and	coagulation	cascades,	hematopoietic	cell	lineage	342 

and	 leukocyte	 transendothelial	migration	 (Figure	 5C;	 Supplementary	 data	 11	Table	 5).	 The	343 

enrichment	 of	 proteins	 in	 Module	 5	 for	 the	 immune	 system	 related	 processes	 can	 lead	 to	344 

speculation	 that	non-HLA	 loci	may	contribute	 to	 the	AiD	pathology	by	modulating	alternate	345 

immune	response	pathways.	346 

	347 
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	348 
Figure	 5.	 Non-HLA	 proteins	 organize	 into	 a	 module	 enriched	 for	 immune	 responses.	 (A)	 Network	349 
representation	of	Module	5.	The	color	of	the	nodes	denotes	the	disease	with	which	the	protein	is	associated.	Node	350 
shape	indicates	if	the	SNP	acts	locally	(cis	-	circle),	distally	(trans	-	diamond),	or	both	(cis	and	trans	–	rounded	351 
square)	on	 the	genes	encoding	proteins.	Central	nodes	are	highlighted	 in	 red	borders	and	 labelled.	Cytoscape	352 
(version	3.8.2)	was	used	for	visualization	of	the	module.		(B)	Module	5	is	highly	enriched	for	immune	processes.	353 
The	top	30	enrichment	results	are	shown	(FDR≤5.6e-09)	(C)	KEGG	pathway	enrichment	results	with	FDR<0.05	is	354 
shown.	In	(B)	and	(C),	the	numbers,	to	the	right	of	each	bar,	denote	the	number	of	proteins	enriched	for	that	term	355 
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or	pathway.	The	asterisk	designates	terms	or	pathways	that	were	also	enriched	for	shared	proteins	that	are	central	356 
to	the	network	(Supplementary	data	11	Tables	4	and	5	respectively).	357 
	358 
	359 
The	largest	network	module	is	enriched	for	cellular	signalling	and	cancer	360 
pathways	361 
	362 
Module	7	is	the	largest	(N=472	proteins)	functional	module,	with	the	clustering	coefficient	of	363 

0.425,	identified	from	the	Ai-PPIN	network.	As	observed	for	modules	1	and	5,	the	bulk	of	the	364 

proteins	within	module	7	is	encoded	by	disease-specific	genes	(281:	163:	28,	disease-specific:	365 

shared:	identical;	Supplementary	data	12	Table	1).	As	observed	for	Module	1,	a	large	proportion	366 

(48%;	N=14	of	29)	of	the	central	nodes	within	Module	7	 is	shared	proteins.	However,	some	367 

disease-specific	proteins	are	also	central	to	this	cluster.	For	example,	the	transcript	levels	of	368 

tumor-suppressor	 gene	TP53	 are	 associated	only	with	a	PBC-associated	SNP	 (rs12708715).	369 

However,	TP53	interacts	with	62	other	proteins	(42	and	20	encoded	by	disease-specific	and	370 

shared,	respectively)	within	Module	7.	Transcript	levels	of	an	additional	twelve	cancer-related	371 

genes	(i.e.,	HRAS,	ERBB2,	STAT3,	RHOA,	SYK,	MAP2K1,	LYN,	PRKCB,	NFKB1,	MAPK3,	IL2RA,	and	372 

GRB2;	human	protein	atlas)	are	associated	with	SNPs	from	more	than	two	AiDs	and	also	highly	373 

interconnected	with	other	genes	in	Module	7.	GO	analysis	identified	enrichment	for	biological	374 

process	 terms	associated	with	 system-wide	 regulatory	activities	 (Figure	6b;	 Supplementary	375 

data	12	Table	2).	Similarly,	KEGG	pathway	analyses	 indicated	 that	Module	7	 is	enriched	 for	376 

proteins	 that	 are	 involved	 in	 axon	 guidance,	 immune	 function,	 cellular	 signaling,	 cancer,	377 

apoptosis,	 and	 infectious	diseases	 (Figure	6c;	 Supplementary	data	12	Table	3).	 Collectively,	378 

these	results	indicate	that	the	impacts	of	proteins	within	Module	7	is	not	only	limited	to	specific	379 

cellular	mechanisms	but	may	disrupt	wider	processes	during	the	course	of	development	of	a	380 

disease.	 Moreover,	 Module	 7	 provides	 a	 potential	 mechanism	 for	 observed	 increases	 in	381 

multimorbidity	between	AiDs	and	certain	forms	of	cancer	(Hai-long	Wang,	Zhou,	Zhu,	Yang,	&	382 

Hua,	2018).	383 
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	384 
	385 
Figure	6.	The	largest	network	module	is	enriched	for	cellular	signalling	and	cancer	pathways.		386 
(A)	Network	representation	of	the	module.	The	color	of	the	nodes	denotes	the	disease	with	which	the	protein	is	387 
associated.	Node	shape	indicates	if	the	SNP	acts	locally	(cis	-	circle),	distally	(trans	-	diamond),	or	both	(cis	and	388 
trans	–	rounded	square)	on	the	genes	encoding	proteins.	Central	nodes	are	highlighted	in	red	borders	and	labelled.	389 
Cytoscape	(version	3.8.2)	was	used	for	visualization	of	the	module.	(B)	Module	7	is	enriched	for	signalling	and	390 
metabolic	processes.	The	top	30	enrichment	results	are	shown	(FDR≤4.77E-36).	(C)		KEGG	pathway	enrichment	391 
analysis	identified	enrichment	in	signalling	and	cancer	related	pathways	(FDR≤3.70E-09).	The	top	30	pathway	392 
enrichment	results	are	shown.	In	(B)	and	(C),	the	numbers,	to	the	right	of	each	bar,	denote	the	number	of	proteins	393 
enriched	 for	 that	 term	or	pathway.	The	asterisk	designates	 terms	or	pathways	 that	were	enriched	 for	 shared	394 
proteins	that	are	central	to	the	network	(Supplementary	data	12	Table	4	and	5	respectively).	395 
	396 
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Discussion	397 
	398 
In	 this	 study,	we	 integrated	 information	 from	different	biological	 levels	 (i.e.	Hi-C	chromatin	399 

conformation	data,	eQTL	data,	and	protein	interaction	data)	to	determine	how	SNPs	that	were	400 

independently	 associated	 with	 18	 AiDs	 might	 contribute	 to	 the	 observed	 multimorbidity	401 

between	these	conditions.	Our	analysis	revealed	a	subset	of	genes	whose	transcript	levels	are	402 

regulated	by	multiple	AiD-associated	SNPs.	We	have	demonstrated	 that	 these	 shared	genes	403 

form	highly	connected	hubs	within	the	Ai-PPIN	network,	and	are	significantly	enriched	in	major	404 

biological	processes	that	include	immunity,	cellular	metabolism	and	signaling	cascades.	The	14	405 

highly	connected	modules	we	identified	within	the	Ai-PPIN	were	significantly	enriched	in	HLA,	406 

non-HLA,	and	cancer-related	aspects	of	immunity.	We	contend	that	these	observations	will	aid	407 

in	identifying	AiD	specific	subsets	of	genes	that	contribute	to	specific	features	of	the	disease	408 

and	might	serve	as	targets	for	drug	repurposing.	409 

	410 

The	highly	polymorphic	HLA	complex	genes	are	among	the	strongest	risk	factors	of	all	immune-411 

mediated	diseases.	We	identified	33	HLA	genes	that	are	associated	with	SNPs	from	at	least	two	412 

of	 17	 autoimmune	 conditions.	 In	 so	 doing,	 we	 provide	 evidence	 that	 corroborates	 the	413 

fundamental	 relevance	 of	 the	HLA	 complex	 in	AiDs.	Notably,	we	did	 not	 observe	 any	 eQTL	414 

association	 involving	 HLA	 genes	 and	 eosinophilic	 esophagitis	 (EE)	 associated	 SNPs.	 This	415 

suggests	that	the	primary	risk	factors	for	EE	reside	outside	of	the	HLA	genes	(Kottyan	et	al.,	416 

2019).	Despite	this,	the	identification	of	eQTL	SNPs	for	EE	that	regulate	non-HLA	genes	(e.g.,	417 

DOCK3,	C4A,	BLK,	ERI1)	which	were	also	regulated	by	other	AiDs,	is	evidence	for	the	existence	418 

of	a	common	HLA-independent	genetic	mechanisms	for	EE	and	other	AiDs.			Further	support	419 

for	common	HLA-independent	genetic	mechanisms	was	provided	by	the	identification	of	non-420 

HLA	risk	loci	that	were	associated	with	more	than	one	AiD.	We	propose	that	these	shared	non-421 

HLA	loci	contribute	to	variation	in	the	immune	system	that	alters	the	presentation	of	the	driving	422 

AiD	to	include	alternative	morbidities.		423 

	424 

Despite	the	incompleteness	of	human	protein	interactome	maps,	proteins	encoded	by	genes	425 

associated	with	similar	disorders	show	a	higher	likelihood	of	physical	interactions	(Goh	et	al.,	426 

2007).	Moreover,	 it	 is	widely	recognized	that	 if	a	gene	or	protein	 is	 involved	 in	a	molecular	427 

process,	 its	 direct	 interactors	 are	 also	 frequently	 involved	 in	 the	 same	 process	 (Oti,	 Snel,	428 

Huynen,	 &	 Brunner,	 2006).	 Consistent	 with	 this,	 the	 proteins	 encoded	 by	 the	 genes	 we	429 

identified	 as	 being	 regulated	 by	 the	 AiD-associated	 SNPs	 formed	 highly	 inter-connected	430 

networks.	Moreover,	the	functional	modules	we	identified	contained	protein	products	encoded	431 
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by	genes	that	were	subject	to	regulation	by	SNPs	from	between	one	to	ten	AiDs.	Multiple	AiD-432 

associated	SNPs	regulatory	impacts	on	these	functional	genetic	modules	is	consistent	with	the	433 

existence	 of	 overlapping	 clinical	 presentations	 and	 common	 biochemical	 processes,	 or	434 

pathways.	Thus,	despite	the	apparent	independence	of	the	genetic	variants	that	are	associated	435 

with	these	AiDs,	it	is	clear	that	the	diseases	are	not	independent	at	the	molecular	level.	As	such,	436 

it	 is	 likely	 that	environmental	 stimulation	of	 the	pathways	on	which	 the	regulatory	 impacts	437 

converge	will	initiate	a	cascade	of	events	that	triggers	the	emergence	of	multiple	phenotypes,	438 

the	severity	of	which	is	dependent	upon	the	number	of	contributory	genetic	variants	contained	439 

within	individual’s	genome.	440 

	441 

The	bidirectional	relationship	between	AiDs	and	cancer	is	well-established	(Giat,	Ehrenfeld,	&	442 

Shoenfeld,	2017).	The	dysregulation	of	genes	involved	in	tumor	suppression	(e.g.,	TP53)	and	443 

neoplastic	processes	(e.g.,	ERRB2,	EGFR)	by	AiD-associated	SNPs	provides	new	insights	into	this	444 

complex	 relationship.	 The	 proteins	 encoded	 by	 these	 cancer-risk	 genes	 and	 other	 proteins	445 

encoded	 by	 AiD-associated	 genes	 were	 organized	 into	 a	 highly	 interconnected	 functional	446 

module	(Module	7).	Notably	this	module	was	enriched	for	genes	associated	with	many	cancer	447 

types	(e.g.,	colorectal,	endometrial,	gastric,	thyroid,	breast,	prostate,	non-small	cell	lung	cancer)	448 

as	well	as	many	cellular	signalling	(e.g.,	axon	guidance,	PI3K-Akt	Ras,	mTOR,	MAPK	signalling	449 

pathways),	 infectious	disease	(e.g.,	Tuberculosis,	Pertussis,	 Influenza),	and	 immune	 function	450 

(e.g.,	T	cell	receptor	signalling,	Th17	cell	differentiation,	 IL-17	signalling).	Collectively,	 these	451 

findings	suggest	that	a	subset	of	the	AiD	risk	variants	might	increase	the	risk	of	cancer	indirectly	452 

through	alterations	 to	 the	 intermediary	phenotype	 (i.e.,	 gene	expression)	of	 the	 cancer-risk	453 

genes.	 It	 is	not	unreasonable	to	speculate	that	the	inter-connectedness	of	the	genes	that	are	454 

affected	by	AiD-associated	SNPs,	within	a	 functional	module	 that	 is	enriched	 for	cancer	and	455 

immune	processes,	may	alter	the	precarious	balance	between	immune	oversurveillance	(AiD)	456 

and	 under-surveillance	 (unchecked	 growth	 in	 cancer	 and	 infectious	 disease)	 in	 genetically	457 

predisposed	individuals.			458 

	459 

There	are	a	number	of	potential	limitations	to	this	study.	Firstly,	our	analysis	was	restricted	to	460 

GWAS	SNPs	that	were	identified	as	having	both	an	eQTL	association	and	physically	interacting	461 

with	the	target	genes.	As	such,	it	is	possible	that	we	have	missed	some	proximal	gene	targets	if	462 

they	were	not	 resolved	 at	 the	 level	 of	 the	Hi-C	 restriction	 fragments.	 Secondly,	most	 of	 the	463 

spatial	chromatin	interactions	were	identified	from	immortalized	cancer	cell-lines	or	primary	464 

tissues.	By	contrast,	the	eQTL	associations	were	obtained	mostly	from	post-mortem	samples	465 
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taken	 from	 a	 cross-sectional	 cohort	 (20-	 70	 years).	 Therefore,	 it	 is	 possible	 that	 the	 Hi-C	466 

interactions	and	eQTL	sets	were	not	representative	of	the	tissues	in	which	they	were	tested.	467 

However,	 in	 spite	 of	 this	 obvious	 technical	 bias,	 our	 results	were	 reproducible	 and	 tissue-468 

specific	(FDR	<	0.05)	and	this	provide	an	overall	systems-level	understanding	of	the	regulatory	469 

interactions	 observed	 between	 AiD-associated	 SNPs	 and	 their	 target	 genes.	 Thirdly,	 eQTL	470 

associated	transcript	level	changes	were	used	as	a	proxy	for	changes	to	gene	expression.	While	471 

some	 studies	 have	 noted	 a	 positive	 correlation	 between	 mRNA	 expression	 and	 protein	472 

expression	(Schwanhüusser	et	al.,	2011;	Wilhelm	et	al.,	2014),	particularly	when	considering	473 

transcripts	and	proteins	encoded	by	the	same	gene	(Haiyun	Wang	et	al.,	2010),	transcript-level	474 

is	widely	 recognized	 as	 being	 in-sufficient	 to	 accurately	predict	 protein	 levels.	Despite	 this,	475 

these	limitations	should	not	be	allowed	to	detract	from	the	significance	of	the	convergence	of	476 

AiD-associated	SNPs	upon	shared	biological	pathways.		477 

	478 

In	conclusion,	as	we	move	into	the	era	of	genome	editing	and	personalized	medicine,	we	must	479 

translate	our	understanding	of	genetic	 risk	 to	 the	biological	pathways	 that	 represent	viable	480 

targets	for	therapeutic	intervention.	Our	results	represent	one	such	analysis	of	discrete	genetic	481 

data	that	enabled	the	identification	of	functional	protein	modules	that	putatively	contribute	to	482 

the	 shared	 pathogenesis	 underlying	 the	 development	 of	 comorbidity	 within	 AiDs.	 Future	483 

experiments	will	determine	if	the	predictions	of	shared	pathways	will	aid	in	the	treatment	of	484 

patients	with	multiple	AiD	presentations.		485 
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