

1

2 **Anatomy of unfolding: The site-specific fold stability of Yfh1 measured by 2D NMR**

3

4 Rita Puglisi¹, Gogulan Karunanithy², D. Flemming Hansen², Annalisa Pastore^{1*}, Piero
5 Andrea Temussi^{1*}

6 ¹UK-DRI at King's College London, The Wohl Institute, 5 Cutcombe Rd, SE59RT London
7 (UK)

8 ²Department of Structural Biology, Division of Biosciences, University College London,
9 London, UK, WC1E 6BT

10

11 *To whom correspondence should be addressed

12 annalisa.pastore@crick.ac.uk

13 temussi@unina.it

14

15 **Keywords:** biophysics, cold denaturation, NMR, protein stability, thermal unfolding,
16 thermodynamics

17 **Running title:** Site specific fold stability of Yfh1 by 2D NMR

18

19 **Abstract**

20 Most techniques allow detection of protein unfolding either by following the behaviour of
21 single reporters or as an averaged all-or-none process. We recently added 2D NMR
22 spectroscopy to the well-established techniques able to obtain information on the process of
23 unfolding using resonances of residues in the hydrophobic core of a protein. Here, we
24 questioned whether an analysis of the individual stability curves from each resonance could
25 provide additional site-specific information. We used the Yfh1 protein that has the unique
26 feature to undergo both cold and heat denaturation at temperatures above water freezing at low
27 ionic strength. We show that stability curves inconsistent with the average NMR curve from
28 hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide
29 precious information. By monitoring both cold and heat denaturation of individual residues we
30 gain knowledge on the process of cold denaturation and convincingly demonstrate that the two
31 unfolding processes are intrinsically different.

32

33

34 **Introduction**

35 We are all accustomed to the concept that proteins unfold when temperature is increased. Less
36 well known is that all proteins unfold in principle also at low temperatures as demonstrated by
37 P. Privalov on purely thermodynamics grounds (Privalov, 1990). According to this theory, the
38 driving force of heat denaturation is the increase of conformational entropy with temperature.
39 This automatically involves the hydrophobic core and disfavours less ordered parts of the
40 architecture. On the contrary, while the mechanism of cold denaturation is still debated, the
41 current hypothesis is that this transition occurs when entropy decreases. In this case, the driving
42 force of unfolding would be driven by the sudden solvation of the hydrophobic residues of the
43 core (Privalov, 1990).

44 The reason why cold denaturation is much less understood than the heat transition is that
45 most proteins undergo cold denaturation at temperatures below the water freezing point. This
46 is unfortunate because observation of both unfolding temperatures is in principle very valuable
47 as it allows calculation of reliable stability curves of the protein and of the whole set of
48 thermodynamic parameters.

49 We have identified a protein, Yfh1, that, as a full-length natural protein, undergoes cold
50 and heat denaturation at detectable temperatures when in the absence of salt (Pastore et al.,
51 2007). We have extensively exploited these properties to gain new insights both on the
52 denatured states of Yfh1 (Adrover et al., 2012) and on the factors that may influence its stability
53 (Martin et al., 2008). The value of Yfh1 as a tool to investigate the unfolding process is
54 evidenced not only by our subsequent work (Sanfelice et al., 2013; Pastore and Temussi, 2017;
55 Sanfelice et al., 2014; Alfano et al., 2017) but also by papers from other laboratories (Espinosa
56 et al., 2016; Chatterjee et al., 2014; Bonetti et al., 2014; Aznauryan et al., 2013).

57 In our studies, we noticed that most techniques employed to monitor protein stability are
58 however not “regiospecific”, as they yield a global result, *i.e.* an estimate of the stability of the
59 whole protein architecture, observable through the global evolution of secondary structure
60 elements upon an environmental insult. This is because we postulate an all-or-none cooperative
61 process in which the protein collapses altogether from a folded to an unfolded state. When
62 monitoring unfolding of a protein by CD spectroscopy, for instance, we observe intensity
63 changes related to the disruption of alpha helices and/or beta sheets under the influence of
64 physical or chemical agents.

65 It would instead be interesting to gauge the response of selected regions of the protein at
66 the single residue level to gain new insights into the mechanisms of unfolding of selected parts
67 of the protein structure. A technique ideally suited for this purpose is 2D ^{15}N HSQC

68 spectroscopy since it provides a direct fingerprint of the protein through mapping each of the
69 amide protons. Volume variations of the NMR resonances may reflect changes affecting single
70 atoms of each residue and indirectly report on how they are individually affected by the
71 unfolding process. We recently showed, using Yfh1 as a suitable model, that it is possible to
72 use 2D NMR to measure protein stability and get thermodynamic parameters comparable to
73 those obtained by CD (Puglisi et al., 2020). We showed that this is possible provided that the
74 residues chosen are those buried in the hydrophobic core, thus experiencing the unfolding
75 process directly. To reliably select these residues, we introduced a parameter RAD which was
76 defined as the combination of the depth of an amide group from the protein surface and the
77 relative accessibility at the atom level (Puglisi et al., 2020). We demonstrated that, by excluding
78 most of the exposed residues (RAD values for the amide nitrogens ≥ 0.5) and averaging over
79 resonances from residues with RAD values lower than 0.1, we can obtain thermodynamics
80 parameters indistinguishable, within experimental error, from those obtained by CD or 1D
81 NMR (Puglisi et al., 2020).

82 Using the approach previously developed (Puglisi et al, 2020), we systematically
83 analysed in the current work the heat and cold denaturation of Yfh1 at residue detail but we
84 reversed the perspective and wondered what information, if any, would be carried by residues
85 far from the hydrophobic core and how they reflect the process of unfolding. This subject has
86 increasingly attracted attention: as put in the words of a recent study by Grassein et al. (2020):
87 “For most of the proteins, this global heat-induced denaturation curve can be formally
88 described by a simple two-state (folded/unfolded) statistical model. Agreement with a two-
89 state model does not imply, however, that the macromolecule does not unfold through a number
90 of intermediate states.... Hence, the global denaturation curve hides the heterogeneity of
91 protein unfolding. ...Local nativeness is not uniquely defined and is probe dependent.”
92 Understanding how individual residues report on protein unfolding is also relevant in view of
93 an increasing number of studies on protein stability based on the intensity variations of the
94 resonance of a single residue upon unfolding (Danielsson et al., 2015; Smith et al., 2016;
95 Guseman et al., 2018). The excellent agreement between NMR and CD thermodynamic
96 parameters using 2D NMR (Puglisi et al., 2020) put us in the position to examine the output of
97 single residues critically and follow the process of unfolding at an atomic level.

98 Using once again Yfh1, we show here that it is possible to sort out which individual
99 single residues yield stability curves consistent with the global unfolding process and that we
100 can obtain valuable information on the process of unfolding from residues that diverge from
101 the average behaviour: whereas some of the residues signal a single folding/unfolding event,

102 we find that others report on more complex thermodynamic events. Our data directly
103 demonstrate that the cold and heat denaturation processes have distinctly different mechanisms
104 and provide site-specific information on solvent interactions supporting Privalov's
105 interpretation of cold denaturation (Privalov, 1990). Our results also clearly demonstrate the
106 considerable advantages of NMR over other approaches, such as in CD or fluorescence, that
107 probe only bulk transitions or individual residues.

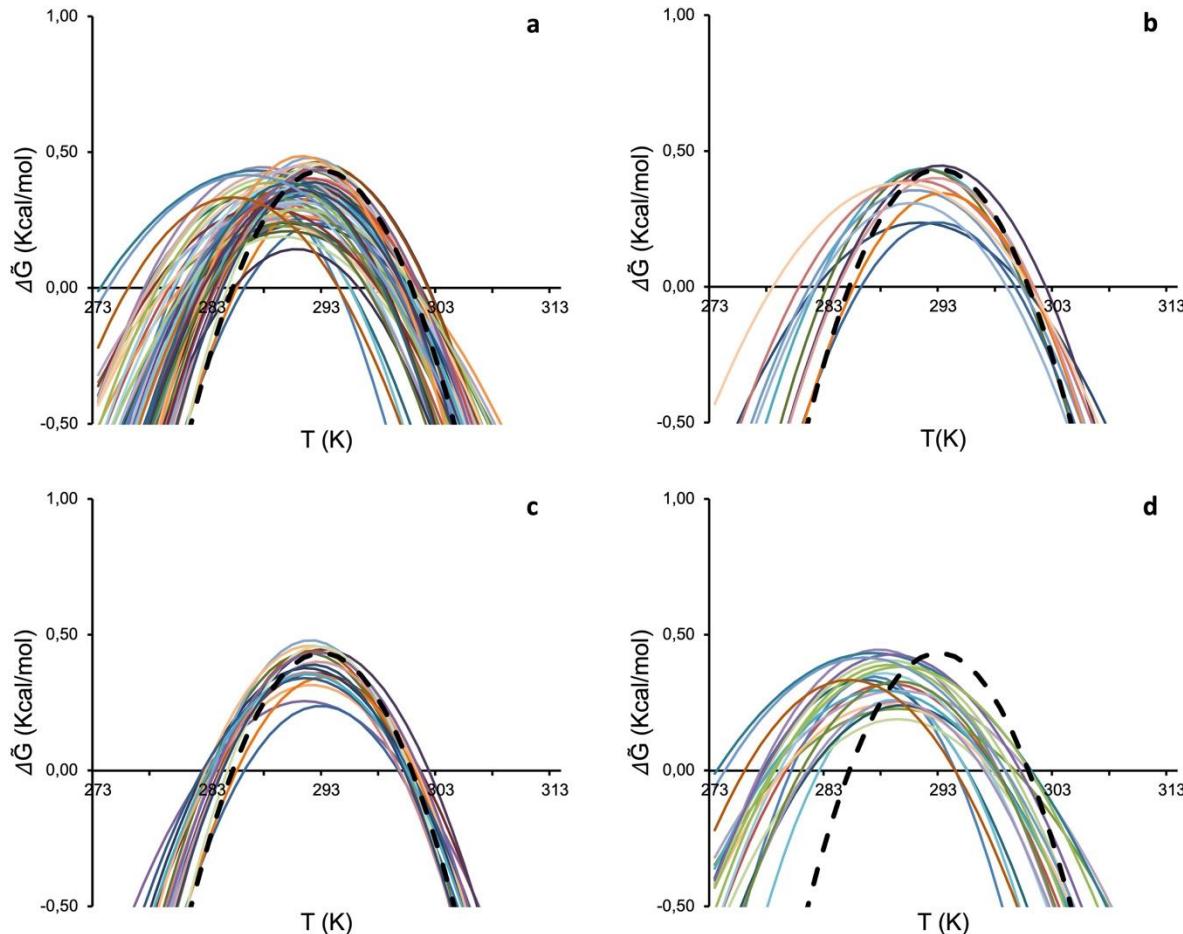
108

109 **Results**

110 **Data collection and preliminary considerations**

111 To study the unfolding of Yfh1, we collected ^{15}N HSQC spectra of Yfh1 at different
112 temperatures and extracted the volumes of individual residues as a function of temperature
113 (**Figure S1 of Suppl. Mat.**). This could be confidently done for 68 (out of the expected 109)
114 well resolved resonances. The behaviour of ^{15}N HSQC spectra of Yfh1 as a function of
115 temperature was not uniform: some peaks could be observed nearly at all temperatures in the
116 range 273-323 K, others disappeared at temperatures intermediate between room temperature
117 and the two unfolding temperatures, *i.e.* lower than 323 K or higher than 273 K (**Figures S2**
118 **and S3 of Suppl. Mat.**). This behaviour can of course be ascribed to the exchange regime
119 (intermediate) between folded and unfolded conformations of these residues and told us that
120 they are not an integral part of the architecture of the folded form. The possibility that the
121 intensity changes in the HSQCs at low temperature could be solely due to exchange broadening
122 and not to unfolding can however be excluded by the practically perfect agreement between
123 the curves obtained by CD and by NMR (both 1D (Pastore et al., 2007) and 2D (Puglisi et al.,
124 2020)). Cold denaturation of Yfh1 has also been independently confirmed by five independent
125 techniques (Espinosa et al., 2016; Chatterjee et al., 2014; Bonetti et al., 2014; Aznauryan et al.,
126 2013).

127

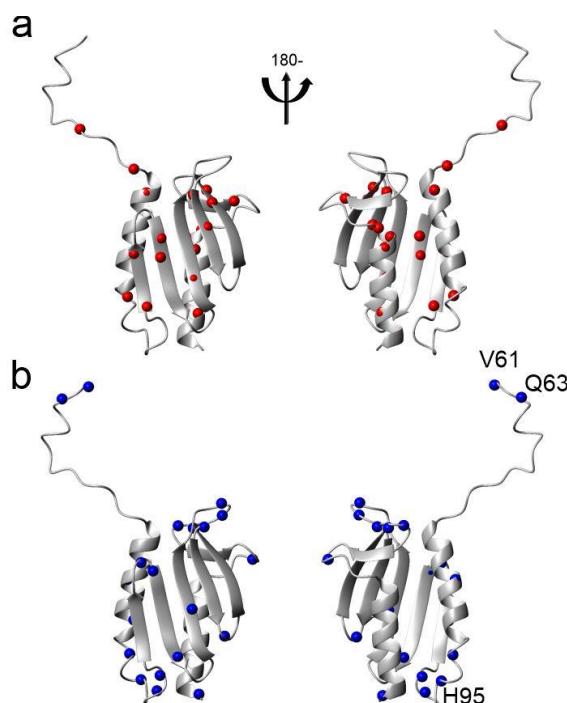

128 **Extraction of the thermodynamics parameters**

129 We could then extract the thermodynamic parameters of the unfolding process for the selected
130 resonance assuming that some conditions are met (Privalov, 1990; Martin et al., 2008). We
131 first assumed that unfolding transitions are, at a first approximation, two-state processes from
132 folded (F) to unfolded (U) states. We then postulated that the difference of the heat capacity of
133 the two forms (ΔC_p) does not depend on temperature. This assumption is considered reasonable
134 when the heat capacities of the native and denatured states change in parallel with temperature

135 variations (Privalov, 1990). When these two conditions are reasonably met, the populations of
136 the two states at temperature T, $f_F(T)$ and $f_U(T)$, are a function of the Gibbs free energy of
137 unfolding, $\Delta G^\circ(T)$ (see Methods and Martin et al., 2008). The plot of the free energy of
138 unfolding as a function of temperature provides what is called the stability curve of a protein
139 (Becktel and Schellman, 1987). From this equation the main thermodynamic parameters, i.e.
140 heat melting temperature (T_m), enthalpy difference at the melting point (ΔH_m) and the heat
141 capacity difference at constant pressure (ΔC_p), can be determined using a non-linear fit
142 (damped least-squares method, also known as the Levenberg-Marquardt algorithm)
143 (Levenberg, 1944; Marquardt, 1963). Other parameters, *e.g.* the low temperature unfolding
144 (T_c), can be read from the stability curve. When the original assumptions are significantly
145 wrong, fitting results in unrealistic numbers. In our case, the volumes were transformed into
146 relative populations of folded Yfh1 assuming that, as measured by CD and confirmed in other
147 studies on Yfh1 (Pastore et al., 2007; Martin et al., 2008; Sanfelice et al., 2014; Alfano et al.,
148 2017), unfolded forms are in equilibrium with, on average, a 70% population of folded Yfh1
149 at room temperature. The concurrent presence of an equilibrium between folded and unfolded
150 species of Yfh1 at low ionic strength was proven by the co-existence of minor extra peaks
151 which disappear as soon as physiologic concentrations of salt are added (Vilanova et al., 2014).
152

153 **Identification of residues consistent with or outliers from the global behaviour**

154 We correlated each amide resonance to the corresponding value of RAD, the parameter
155 introduced in Puglisi et al. (2020), to pinpoint residues close to the hydrophobic core (**Table**
156 **1**). Of the 68 residues selected, 39 had $\text{RAD} < 0.5$, 37 with $\text{RAD} < 0.4$, 33 with $\text{RAD} < 0.3$, 24
157 with $\text{RAD} < 0.2$ and 11 $\text{RAD} < 0.1$ (**Table 1**). The residues with $\text{RAD} < 0.1$ (henceforth called
158 RAD_0.1) were used to calculate the average. Comparison of the stability curves of the non-
159 overlapping amide resonances with this average showed that several residues with quite
160 different RAD values yield stability curves drastically different from the average (**Figures 1a**).
161 We next tried to classify the individual stability curves into those that matched well the average
162 RAD_1 curve ('well-behaved') and those that did not ('ill-behaved'). The curves for residues
163 in the hydrophobic core were in good agreement with the average curve (**Figures 1b**).
164


165

166 **Figure 1.** Comparison of single residue stability curves with the global RAD_0.1 best curve
167 (dashed black). **a)** Stability curves of all observable isolated residues. **b)** Stability curves of
168 residues with a $\text{RAD} < 0.1$. **c)** Stability curves of single residues for which the difference in the
169 unfolding temperatures with respect to values of the reference curve (ΔT_m and ΔT_c) is on
170 average below 1.5 °C **d)** Stability curves of single residues for which the difference in the
171 unfolding temperatures with respect to values of the average curve (ΔT_m and ΔT_c) is on
172 average above 3 K. For simplicity, colour coding is not the same in the different panels.

173

174 However, we could not find in general a clear-cut criterion to decide when the curves were not
175 consistent with the average. We arbitrarily chose to set a cut-off at values of the unfolding
176 temperatures (T_m and T_c) that differed, on average, less than 1.5 K from those corresponding
177 to the average (RAD_0.1). These ΔT_m and ΔT_c differences are smaller than the variability that
178 we had observed among different preparations and measurements of the same protein (Pastore
179 et al., 2007; Martin et al., 2008; Sanfelice et al., 2014; Sanfelice et al., 2015; Alfano et al.,
180 2017; Puglisi et al., 2020). The residues selected according to this criterion are E71, E75, D78,
181 L91, D101, L104, M109, T110, Y119, I130, L132, F142, D143, L152, L158, T159, D160 and
182 K168 (**Figure 1c**). Most of the amide groups of the well-behaved residues are spread among
183 well-structured secondary elements, but a few are in less ordered regions (**Figure 2a**). By the

184 same token, we selected as ‘ill-behaved’ residues those whose T_m and T_c values differed from
185 the average curve, on average, more than 3 K with respect to the best curve RAD_0.1. Twenty-
186 one residues (V61, Q63, H83, L88, S92, H95, C98, I99, G107, V108, I113, V120, N127, K128,
187 Q129, L136, N146, G147, N154, K172, Q174) belong to this sub-set. Except for a few outliers,
188 they are all in less structured regions (**Figure 2b**). Amongst these residues, V61, Q63, H95
189 which are positioned in flexible regions (either in the N-terminal tail or in a loop), are those
190 with the largest shift of T_c . This behaviour is, however, not a general rule as some of the best-
191 behaved residues reported in **Figure 1c** are not in regular secondary structure elements
192 confirming the complexity of the system under study.

193
194 **Figure 2.** Distribution of residues on the structure of Yfh1 (pdb id 2fql). a) Distribution of the
195 nitrogen atoms of residues for which the difference in the unfolding temperatures with respect
196 to values of the RAD_0.1 curve (ΔT_m and ΔT_c) is on average below 1.5 K. b) Distribution of
197 the N atoms of residues for which the difference in the unfolding temperatures with respect to
198 values of the average curve (ΔT_m and ΔT_c) is on average above 3 K. Indicated explicitly are
199 the three residues whose stability curve is most shifted to lower temperatures with respect to
200 the average RAD_0.1. The structure pairs are rotated by 180 degrees around the y axis.
201

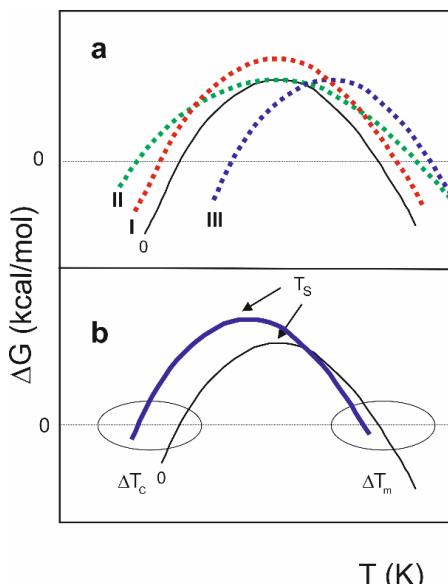
202 The stability curves of the residues that differ from the average (**Figure 1d**) have an
203 important peculiarity: most stability curves show a moderate decrease of T_m ($\Delta T_m < 0$) and a
204 large decrease of T_c ($\Delta T_c < 0$) from the average. This finding would imply that the
205 corresponding transition temperatures for the heat and cold unfolding point to a decreased
206 stability for heat denaturation but an increased stability for cold denaturation.
207

208 **Evaluating the contribution of errors**

209 To make sure that the effect is beyond experimental errors, we reasoned that three phenomena
210 could potentially lead to erroneous populations, $f_F(T)$ and $f_U(T)$, and thus stability curves: 1)
211 the folding exchange dynamics leading to a time-dependent fluctuation of the ^1H chemical shift
212 and loss of intensity during the INEPTs of the ^{15}N -HSQC, 2) differential intrinsic relaxation
213 rates in the folded and unfolded states, and 3) exchange of the detected amide protons with the
214 bulk solvent. We thus performed simulations to evaluate how much these phenomena could
215 influence the resulting curves (for a more detailed discussion see **Suppl. Mat.**). We found that,
216 although the three contributions affect the derived populations, the stability curves that are
217 naively calculated from the intensities observed in the NMR spectra as $\widetilde{\Delta G}(T) =$
218 $-RT \ln((1 - I_f)/I_f)$, where I_f is the peak intensity of the folded species, recapitulate the
219 general features of the expected stability curve, $\Delta G(T)$. Of particular interest is that the
220 temperature of maximum stability T_s (so called because it corresponds to zero entropy of the
221 stability curve), is well reproduced despite the deviations observed for the other parameters
222 (**Figure S4 of Suppl. Mat.**).

223 Our observations are thus beyond experimental error and indicate that the mechanisms
224 of the two unfolding processes, at high and low temperatures, are intrinsically different in
225 agreement with Privalov's theory (Privalov, 1990).

226


227 **A possible classification of the outliers**

228 The negative values of ΔT_m and ΔT_c observed for some residues (**Figure 1d**) imply that also
229 the temperature of maximum stability T_s for these residues is lower than that observed for the
230 best average RAD_0.1. A shift of T_s towards higher temperature values, when studying several
231 cases of thermophilic proteins, was attributed by Razvi & Scholtz (2006) to a decrease in the
232 entropy difference in unfolding. Obviously, a *decrease* of T_m or T_c caused by shifting the T_s to
233 lower temperatures is connected to an increase in the entropy difference. This interpretation is
234 based on the classification by Nojima et al. (1977) of the main mechanisms of changing the
235 thermal resistance, that is the resistance of heat to cross a material, of a protein. According to
236 the rough classification of Nojima et al. (1977), altered thermostability can be achieved
237 thermodynamically in three extreme cases (**Figure 3**). Real situations might of course contain
238 mixtures of the three possibilities.

239 According to mechanism I, when ΔH_s (the change in enthalpy measured at T_s) increases,
240 the stability curve retains the same shape, but with greater ΔG values at all temperatures. With

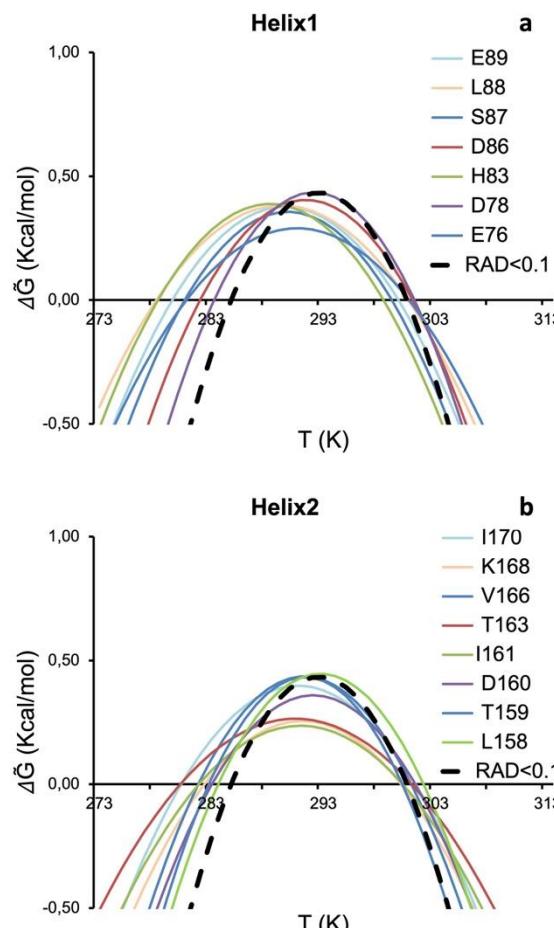
241 mechanism II, a decreased ΔC_p leads to a broadened stability curve retaining the same
242 maximum, because the curvature of the stability curve is given by $\frac{\partial^2 \Delta G}{\partial T^2} = -\frac{\Delta C_p}{T}$ (Becktel, &
243 Schellman, 1987). According to mechanism III, the entire curve can shift towards higher or
244 lower temperatures. It is possible to show (Privalov, 1990) that:

245
$$T_s = T_m \cdot \exp \left[-\frac{\Delta S_m}{\Delta C_p} \right] = T_m \cdot \exp \left[-\frac{\Delta H_m}{T_m \cdot \Delta C_p} \right]. \quad (1)$$

246

247 **Figure 3.** Mechanisms that influence stability curves of a protein (adapted from Nojima
248 et al, 1977). **a)** Dependence of the difference of free energy between unfolded and folded
249 states (ΔG) of a hypothetical protein vs temperature (T) (curve 0). Mechanism I illustrates
250 the effect of increasing ΔH_s (curve I). Mechanism II shows the effect of reducing ΔC_p
251 (curve II). Mechanism III shows the shift of the whole stability curve towards higher
252 temperatures caused by decreasing ΔS_m (curve III). **b)** A combination of the three
253 mechanisms. The solid blue curve, with a prevalent low shift of T_s , corresponds
254 qualitatively to the cases of Yfh1 reported in **Figure 1d**.

255


256 Increasing the difference in entropy between the folded and unfolded states (ΔS_m) can shift
257 values of T_s towards lower temperatures. Most of the curves in **Figure 1d** do not correspond
258 to a single mechanism, but to a combination of them (**Figure 3b**). Nevertheless, all curves are
259 shifted towards lower values of T_s and larger low-temperature differences correlate well with
260 less ordered regions of the structure. It is thus not surprising to find this behaviour for residues
261 at the N- and C-termini (Q63 and K172) or in connecting loops (G107, N127, N146 and N154)
262 which are bound to be flexible (Halle, 2002). More surprising is, however, to find amongst
263 these residues also V120 which is right in the middle of the beta sheet. While we have not a

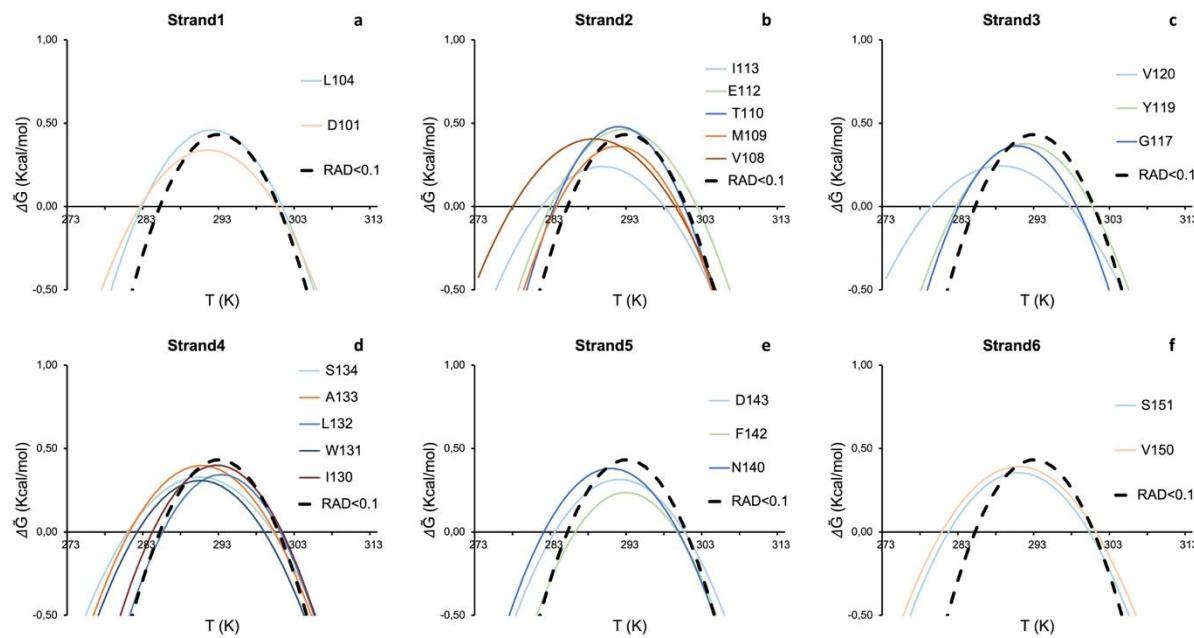
264 definite explanation for this observation at the moment, it could indicate a local frustration
265 point in this region.

266

267 **Exploring the correlation between stability and secondary structure elements**

268 We have previously shown that, in addition to the criteria of depth and exposition, an
269 alternative selection of residues over which average populations might be based on elements
270 of regular secondary structure (Puglisi et al., 2020). It is now possible to analyse the behaviour
271 of each secondary structure element. Of the 68 residues selected, 35 were in secondary structure
272 elements (15 in alpha helices, 20 in beta sheets). The largest number of residues of secondary
273 structure traits whose resonance is accessible belongs to the two helices (**Figure 4**).

274


275 **Figure 4.** Stability curves of residues belonging to secondary structure elements. **a)** Helix 1.
276 **b)** Helix 2. Residues are labelled with single letter code. The average stability curve is shown
277 as black dashed line.

278

279 Several resonances have stability curves far from the reference one (dashed black curve of
280 RAD_0.1). These are those of His83 and Leu88 for helix 1 (**Figure 4a**). All the others are in
281 fair agreement with the average curve. The best-behaved residue (Asp78) is located at the end

282 of the helix with its amide groups in the buried side of the helix. For helix 2, the worst
283 agreement is found for Thr163 and Ile170, whereas the best agreement is for Leu158, Thr159,
284 Asp160 and Lys168 (**Figure 4b**). This implies that residues of helix 2 with a good agreement
285 are distributed over the whole secondary structure element. Some residues of helix 2 have also
286 lower stability curves which indicate a lower ΔH .

287 The number of residues belonging to beta strands for which it was possible to extract
288 stability curves is more limited (**Figure 5**).
289

290 **Figure 5.** Stability curves of residues belonging to secondary structure elements. a) Strand 1.
291 b) Strand 2. c) Strand 3. d) Strand 4. e) Strand 5. f) Strand 6. Residues are labelled with single
292 letter code. The average stability curve is shown as black dashed line.
293

294 The best agreement was found for Leu104 of strand 1, Met109 and Thr110 of strand 2, Tyr119
295 for strand 3, Ile130 and Leu132 of strand 4 and Phe142 and Asp143 of strand 5.
296

297

298 The behaviour of tryptophan side chains

299 We then looked into the possibility of following the process of unfolding and calculating
300 thermodynamic parameters using the tryptophan side chains. This choice directly parallels
301 studies based on following the process of unfolding by fluorescence using the intrinsic
302 tryptophan fluorescence (Monsellier & Bedouelle, 2002). Yfh1 has two tryptophans: W131 is
303 fully exposed to the solvent whereas W149 is buried. Both residues are fully conserved
304 throughout the frataxin family and the two side chain resonances are clearly identifiable
305 (**Figure S5a of Suppl. Mat.**). We calculated the thermodynamic parameters for the side chain

306 indole groups of both residues by the same procedure outlined for main chain NHs, generating
307 first a stability curve. The resonance of W149, which could potentially be more interesting,
308 could not be used for quantitative measurements because the temperature dependence of its
309 volume yields a stability curve very different from the others (**Figure S5b of Suppl. Mat.**) and
310 leads to impossible fitting parameters. This might be explained by the co-existence of folded
311 and partially unfolded species in equilibrium with each other in solution. As a consequence,
312 the indole of W149 resonates both at 9.25 and 127.00 ppm (folded species) and at ca. 10.05
313 and 129.20 ppm (split into three closely adjacent peaks, unfolding intermediates) (**Figure S5a**
314 **of Suppl. Mat.**). As previously proven experimentally, the resonances of the unfolding
315 intermediates disappear upon addition of salt (Figure 1, panel A and B in Vilanova et al., 2014).
316 These resonances are also at the same chemical shifts observed for the tryptophan indole groups
317 at low and high temperature where however the three signals collapse into one (**Figure S1 of**
318 **Suppl. Mat.**). The complex equilibrium between different species could thus explain the ill-
319 behaviour of the corresponding stability curve of this residue.
320 The behaviour of the resonance of the exposed W131 side chain is instead fully consistent with
321 that of RAD_0.1 and also with the original curve calculated from 1D NMR data (Pastore et al.,
322 2007) (**Table 1**). On the whole, these results exemplify well the complexity of the selection
323 choice of the unfolding reporter and advocate in favour of a wholistic analysis of all the
324 available data.

325

326 **Discussion**

327 The *de facto* demonstration that it is possible to reliably measure the thermodynamic
328 parameters of protein unfolding by 2D NMR spectroscopy (Puglisi et al., 2020) has opened a
329 new territory to study protein unfolding at atomic resolution using site-specific information.
330 Following protein folding/unfolding looking at specific residues rather than obtaining an
331 average overall picture is not a novelty. Despite some intrinsic limitations, fluorescence has,
332 for instance, been used for decades to probe protein unfolding following the intrinsic
333 tryptophan fluorescence (Monsellier & Bedouelle, 2002; Bolis et al., 2004). Another elegant,
334 although sadly still underexploited technique able to report local behaviour at the level of
335 specific residues is chemically induced dynamic nuclear polarization (CIDNP), first introduced
336 to the study of proteins by Robert Kaptein (Kaptein et al., 1978). This technique allows the
337 selective observation of exposed tryptophans, histidines and tyrosines. In protein folding, it
338 was, for instance, used to characterize the unfolded states of lysozyme (Broadhurst et al., 1991;
339 Schlörb et al., 2006) and the molten globule folding intermediate of α -lactalbumin (Impronta et

340 al., 1995; Lyon et al., 2002). Real-time CIDNP was also used to study the refolding of
341 ribonuclease A (Day et al., 2009) and HPr (Canet et al., 2003). The only drawback of this
342 technique is that, as in fluorescence, the information is limited to specific aromatic residues.

343 Another important technique that reports on protein unfolding at the single residue level
344 is stopped-flow methods coupled with NMR (Kim and Baldwin, 1991; Roder and Wüthrich,
345 1986) or mass spectrometry (Miranker et al., 1993) measurements of hydrogen exchange. In a
346 classic paper (Miranker et al., 1991), Dobson and co-workers described, for instance, NMR
347 experiments based on competition between hydrogen exchange as observed in COSY spectra
348 and the refolding process. The authors concluded that the two structural domains of lysozyme
349 followed two distinct folding pathways, which significantly differed in the extent of
350 compactness in the early stages of folding. Similar and complementary conclusions could be
351 reached by integrating NMR with mass spectrometry (Miranker et al., 1993). While these
352 studies retain their solid importance, the possibility of following the resonance intensities also
353 by HSQC spectra may provide a more flexible tool to obtain detailed information on unfolding,
354 as this technique reports on the exchange regime but also, implicitly, on the chemical
355 environment. The use of 2D HSQC had been discouraged by the non-linear relationship
356 between peak intensity (or volume) and populations with temperature as the consequence of
357 relaxation, imperfect pulses, and mismatch of the INEPT delay with specific J-couplings. We
358 have previously suggested an approach to compensate for these effects and demonstrated that
359 the non-linearity does not affect the spectra of Yfh1 (Puglisi et al., 2020), even though these
360 conclusions might be protein dependent.

361 Here, we used the approach developed in our previous work (Puglisi et al., 2020) to
362 analyse individual stability curves for most of the residues of Yfh1. Our analysis is highly
363 complementary to the single residue information that may be obtained through HDX by NMR
364 or mass spectrometry (Englander and Mayne, 1992; Miranker et al., 1996). A clear advantage
365 of the current approach is the availability of signals of almost all residues and the relative
366 simplicity of the analysis.

367 We noted that Yfh1 shows a multitude of events on top of the overall folding/unfolding.
368 We observed that the behaviour of the individual stability curves is not distributed uniformly
369 along the sequence. Residues can be clearly divided into two groups, i.e. those consistent with
370 the average behaviour of an all-or-none mechanism of unfolding and those differing, even
371 strongly, from the best average RAD_0.1. This finding alone proved that it is not possible to
372 measure stability using a single residue without a careful evaluation of the role of the specific
373 residue in the protein fold. This conclusion is partially mitigated by our results on the

374 parameters obtained for a tryptophan indole. However, in the whole, also for these side chains
375 it may be difficult, *a priori*, to infer which tryptophan is more reliable. We showed that, of the
376 two tryptophans present in Yfh1 only the fully exposed W131 is suitable for the analysis. Our
377 results thus demonstrate that unfolding studies based on fluorescent measurements using the
378 intrinsic fluorescence of tryptophan should always be taken with a pinch of salt: in many cases
379 no independent controls are feasible to evaluate the accuracy of the results. The possibility of
380 using 2D NMR and the introduction of the easily approachable RAD parameter may assist in
381 this choice in future studies.

382 Analysis of individual secondary structure elements, i.e. helices and strands, showed that
383 there is no clear hierarchy among them, and there is no indication that any of the elements
384 undergoes disruption before the others, either at high or low temperature. This implies that,
385 overall, the folding/unfolding of the core of Yfh1 can be described as a single, highly
386 cooperative event, but not all residues could be used for following the transition. It will be
387 interesting in the future to study lysozyme to have an example in which two subdomains unfold
388 independently (Miranker et al., 1991). In addition to information on regular secondary structure
389 elements, our analysis yielded also interesting information on less ordered traits. Intrinsically
390 flexible elements, i.e. regions characterized by multiple conformers, can be identified
391 unequivocally by their thermodynamic parameters, without recurring to interpretative
392 mechanisms.

393 Another important point is that we observed a clear difference between parameters
394 corresponding to the cold and the heat denaturation processes: residues that are outliers from
395 the average stability curve tend to have a strong stabilization effect at low temperature and a
396 weaker destabilising effect at high temperature. This is a strong confirmation that the
397 mechanisms of the two transitions are intrinsically different according to the mechanism of
398 cold unfolding proposed by Privalov. In this model, cold denaturation is intimately linked to
399 the hydration of hydrophobic residues of the core (Privalov, 1990) and with his suggestion that
400 the disruption of the hydrophobic core at low temperature would be caused by the hydration of
401 hydrophobic residue side chains of the core, whereas the high temperature transition is mainly
402 linked to entropic factors, consistent with the increase of thermal motions when temperature is
403 increased. This is what we observed in our NMR analysis of Yfh1 and is in line with our
404 previous evidence that showed that the unfolded species at low temperature has a volume
405 higher than the folded species and of the high temperature unfolded species (Alfano et al.,
406 2017) and that cold denaturation is caused by a hydration increase (Adrover et al., 2012).

407 We also observed, more surprising, that some residues not belonging to the hydrophobic
408 core have $T_{\text{c}s}$ appreciably lower than the average. A possible explanation for this behaviour is
409 that, at the temperature of global unfolding, corresponding to that of the average RAD_0.1 of
410 the deeply buried protein core, residues outside the hydrophobic core and in regions classified
411 as flexible could be more resilient against unfolding. This would imply that, at low temperature,
412 opening of the hydrophobic core and its disruption could happen before the collapse of external
413 and more exposed elements: the core would unfold in lowering the temperature whereas outer
414 turns could be affected last.

415

416 **Conclusions**

417 In conclusion, we have provided here a nice example of a protein that only apparently follows
418 a simple two-state (folded/unfolded) statistical model and for which a global denaturation curve
419 simply hides a profound intrinsic heterogeneity. We described in detail how the unfolding of
420 Yfh1 is a much more complex process than a two-step global unfolding both at high and low
421 temperature. Our data clearly show how, as recently advocated by Grassein et al. (2020), local
422 nativeness is probe dependent and, as such, needs to be studied at the individual residue level.
423 The possibility of studying the process relied in our case on the nearly unique properties of
424 Yfh1 but also, more in general, on the use of NMR which is probably the most suitable
425 technique to analyse the contributions to the (un)folding process in a residue-specific manner.
426 We can certainly state that monitoring protein unfolding by the stability curves of individual
427 residues, as allowed by 2D NMR spectroscopy, yielded a much more informative picture than
428 what may have been obtained by any other traditional method. Our work thus paves a new way
429 to the study of protein unfolding that will need to be explored in the future using a number of
430 completely different systems to reconstruct a more complete picture of the complexity of the
431 process.

432

433 **Experimental session**

434 *Sample preparation*

435 Yeast frataxin (Yfh1) was expressed in BL21(DE3) *E. coli* as previously described (Pastore et
436 al., 2007). To obtain uniformly ^{15}N -enriched Yfh1, bacteria were grown in M9 using ^{15}N -
437 ammonium sulphate as the only source of nitrogen until an OD of 0.6-0.8 was reached and
438 induced for 4 hours at 310K with IPTG. Purification required two precipitation steps with
439 ammonium sulphate and dialysis followed by anion exchange chromatography using a Q-
440 sepharose column with a NaCl gradient. After dialysis the protein was further purified by a

441 chromatography using a Phenyl Sepharose column with a decreasing gradient of ammonium
442 sulphate.

443

444 *NMR measurements*

445 2D NMR ^{15}N -HSQC experiments were run on a 700 MHz Bruker AVANCE spectrometer. ^{15}N -
446 labelled Yfh1 was dissolved in 10 mM Hepes at pH 7.5 to reach 0.1 mM with 0.1 mM
447 selectively ^{15}N -labelled tyrosine CyaY. Spectra were recorded in the range 278-313 K with
448 intervals of 2.5 K and using the Watergate water suppression sequence (Piotto et al., 1992). For
449 each increment 8 scans were accumulated, for a total of 240 increments (TD). Spectra were
450 processed with NMRPipe and analysed with CCPNMR software. Gaussian (LB -15 and GB
451 0.1) and cosine window functions were applied for the direct and indirect dimension
452 respectively. The data were zero-filled twice in both dimensions. Spectral assignments of Yfh1
453 were taken from the BMRB deposition entry 19991.

454

455 *Selection of the amides to be used in our analysis*

456 Yfh1 contains 114 backbone amide protons. The first 23 residues are intrinsically disordered
457 (Popovic et al., 2015) and are part of the signal peptide for mitochondrial import, leading to 91
458 resonances in the globular domain. Sixty eight residues have non-overlapping and isolated
459 resonances that allow easily detectable and reliable volume calculation. Most of the excluded
460 overlapping resonances corresponded to disordered regions or to partially unfolded
461 conformations in equilibrium with the folded one in a slow exchange regime at room
462 temperature (Sanfelice et al., 2014).

463

464 *Calculations of the RAD parameters*

465 The RAD parameter of the backbone amide nitrogen atoms of Yfh1 was calculated on the
466 crystallographic coordinates of a Tyr73-to-Ala mutant solved at 3.0 Å resolution (2fql, Kalberg
467 et al., 2006). This choice was dictated by the better resolution of this structure as compared to
468 an alternative NMR structure (2ga5) or to homology models. The mutation, that is at the very
469 beginning of the globular region of the protein, does not affect the structure of the protein as
470 demonstrated by comparison with other orthologs but changes the self-assembly properties of
471 the protein (Kalberg et al., 2006). No hydrogen atoms were added. RAD was obtained using
472 the software Pops (<https://github.com/mathbio-nimr-mrc-ac-uk/POPS>) and SADIC
473 (<http://www.sbl.unisi.it/prococoa/>). As previously described (Puglisi et al., 2020), the RAD
474 parameter was defined according to the equation

$$\text{RAD} = (D \times RA \times 100) \quad (5)$$

476 where D was the distance of an atom from the protein surface as calculated by the
477 program SADIC (Varrazzo et al., 2005). RA was the relative accessibility at atomic level RA
478 defined as the ratio between the exposed surface of a nitrogen atom with respect to that of the
479 whole residue and calculated by the software POP (Cavallo et al., 2003). Most of the exposed
480 residues had RAD values for the amide nitrogens considerably higher than 0.5 and were
481 excluded from the analysis (**Table 1**). The curves obtained for individual resonances using
482 RAD values between 0.5 and 0.1 had a lower relative spread and a much better agreement with
483 the CD curve (**data not shown**). The stability curve and the thermodynamics parameters
484 calculated from averaging amide volumes from residues with a RAD value below 0.1
485 (RAD_0.1) were fully consistent with those calculated from CD spectroscopy, within
486 experimental error (Puglisi et al., 2020). Residues involved in secondary structures were
487 evaluated according to the DSSP program (<https://swift.cmbi.umcn.nl/gv/dssp/>).

488

489 *Calculation of the stability curves*

490 Volumes were calculated by summation of the intensities in a set box using the CCPNMR
491 software (<https://www.ccpn.ac.uk/v2-software/software>). The volumes were normalized by
492 dividing the volume of each peak of Yfh1 at a given temperature by the volume of CyaY Tyr69
493 amide peak at the same temperature as previously described (Puglisi et al., 2020). This
494 normalization is meant to filter out the non-linearity of the relationship between peak intensity
495 (or volume) and populations due to instrumental effects. The corrected volumes were
496 transformed into relative populations of folded Yfh1.

497 At each temperature, the fraction of folded protein was estimated by the equation

$$f_U = (V_{exp} - V_U) / (V_F - V_U) \quad (2)$$

499 where V_{exp} is the measured volume, V_U is the volume of the unfolded state (assumed at 313 K),
 500 and V_F is the volume of the folded (maximum value) taking into account that, as previously
 501 proven (Pastore et al., 2007), at room temperature the unfolded forms of Yfh1 are in
 502 equilibrium with the folded population present on average at 70%.

503 The fraction of folded, $f_F(T)$, and unfolded, $f_U(T)$, forms are a function of the Gibbs free energy
 504 of unfolding, $\Delta G^\circ(T)$. If the heat capacity difference between the folded and unfolded forms,
 505 ΔC_p , is assumed independent of temperature, the free energy is given by the Gibbs-Helmholtz
 506 equation (Martin et al., 2008). The thermodynamic parameters T_m , ΔH_m and ΔC_p were derived
 507 by nonlinear least-squares fitting using the Levenberg-Marquardt algorithm from the following

508 equation and omitting the points at 313 K for which, by definition from our assumption, f_U is
509 equal to 1.

510
$$f_U(T) = \frac{e^{-\frac{\Delta G^\circ(T)}{RT}}}{1 + e^{-\frac{\Delta G^\circ(T)}{RT}}} \quad (3)$$

511

512 in which T_m , ΔH_m and ΔC_p can be obtained by fitting the modified Gibbs-Helmholtz equation

$$\Delta G = \Delta H_m \left[1 - \frac{T}{T_m} \right] + \Delta C_p \left\{ (T - T_m) - T \ln \left[\frac{T}{T_m} \right] \right\}$$

513 (4)

514 The curve corresponding to this equation is known as the stability curve of the protein (Becktel
515 and Schellman, 1987). Other parameters for low temperature unfolding, e.g. the low
516 temperature unfolding (T_c), were obtained from the stability curve.

517 Errors on the stability curves were evaluated propagating the errors from the covariance matrix
518 of the fit. In the representative fits reported in **Suppl. Mat. (Figures S6-S8)**, errors were
519 represented as gray lines calculated by the covariance method (Press et al., 1988). They
520 represent how well the measured populations (and thus ΔG) vs. temperature agree with the
521 equation for the stability curve. We reported six representative curves from the subset used to
522 calculate RAD_0.1 (**Figure S6**), four curves from the subset of Figure 1c (**Figure S7**), and four
523 curves corresponding to the best-behaved residues of the beta sheet (**Figure S8**). The curves
524 do not fully represent ΔG because, despite we assumed the protein completely unfolded at
525 313K, fitting showed that not all the residues reached a plateau of unfolding at high
526 temperature. We thus indicated the curves as $\widetilde{\Delta G}(T)$ to underline the distinction.

527

528 Acknowledgments

529 This manuscript is meant in celebration of the 80th birthday of Prof. Robert Kaptein. We thank
530 Geoff Kelly and Tom Frenkiel of the MRC Biomedical NMR Centre for helpful discussions
531 and technical support, Neri Niccolai and Franca Fraternali for help with their software SADIC
532 and PopS respectively. We also thankfully acknowledge the use of the NMR spectrometers at
533 the Randall unit of King's College London and the Francis Crick Institute for access to the
534 MRC Biomedical NMR Centre. The Crick Institute receives its core funding from Cancer
535 Research UK (FC001029), the UK Medical Research Council (FC001029) and the Wellcome
536 Trust (FC001029). The research was supported by UK Dementia Research Institute (RE1 3556)
537 that is funded by the Medical Research Council, Alzheimer's Society and Alzheimer's
538 Research UK.

539

540 **References**

541 Adrover, M., Martorell, G., Martin, S. R., Urosev, D., Konarev, P. V., Svergun, D. I., Daura, X., Temussi, P. and Pastore, A. The role of hydration in protein stability: comparison of the cold and heat unfolded states of Yfh1. *J. Mol. Biol.* 417, 413-24., 2012, doi: 10.1016/j.jmb.2012.02.002.

545 Alfano, C., Sanfelice, D., Martin, S. R., Pastore, A. and Temussi, P. A. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states. *Nat. Commun.*, 8, 15428, 2017, doi: 10.1038/ncomms15428.

548 Aznauryan, M., Nettels, D., Holla, A., Hofmann, H. and Schuler, B. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. *J. Am. Chem. Soc.* 135, 14040-3, 2013, doi: 10.1021/ja407009w.

551 Becktel, W. J. and Schellman, J. A.: Protein stability curves, *Biopolymers*, 26, 1859-77, 1987, doi: 10.1002/bip.360261104.

553 Bolis, D., Politou, A. S., Kelly, G., Pastore, A. and Temussi, P. A. Protein stability in nanocages: a novel approach for influencing protein stability by molecular confinement. *J. Mol. Biol.*, 336, 203-12, 2004, doi:10.1016/j.jmb.2003.11.056.

556 Bonetti, D., Toto, A., Giri, R., Morrone, A., Sanfelice, D., Pastore, A., Temussi, P., Gianni, S. and Brunori, M. The kinetics of folding of frataxin. *Phys. Chem. Chem. Phys.*, 16, 6391-7, 2014, doi: 10.1039/c3cp54055c.

559 Broadhurst, R. W., Dobson, C. M., Hore, P. J., Radford, S. E. and Rees, M. L. A photochemically induced dynamic nuclear polarization study of denatured states of 560 lysozyme. *Biochemistry* 30, 405-412, 1991. doi:10.1021/bi00216a015.

562 Cavallo, L., Kleinjung, J. and Fraternali, F. POPS: A fast algorithm for solvent accessible 563 surface areas at atomic and residue level. *Nucleic Acids Res.* 31, 3364-6., 2003, doi: 564 10.1093/nar/gkg601.

565 Chatterjee, P., Bagchi, S. and Sengupta, N. The non-uniform early structural response of 566 globular proteins to cold denaturing conditions: a case study with Yfh1. *J Chem Phys.*, 141, 567 205103, 2014, doi: 10.1063/1.4901897. PMID: 25429964.

568 Danielsson, J., Mu, X., Lang, L., Wang, H., Binolfi, A., Theillet, F. X., Bekei, B., Logan, D. T., Selenko, P., Wennerström, H. and Oliveberg, M.: Thermodynamics of protein 569 destabilization in live cells, *Proc. Natl. Acad. Sci. U. S. A.* 112, 12402-7, 2015, doi: 570 10.1073/pnas.1511308112.

572 Day, I.J., Maeda, K., Paisley, H.J., Mok, K.H. and Hore, P.J. Refolding of ribonuclease A 573 monitored by real-time photo-CIDNP NMR spectroscopy. *J. Biomol. NMR.* 44, 77-86, 2009. 574 doi:10.1007/s10858-009-9322-2

575 Englander, S.W., Mayne, L. Protein folding studied using hydrogen-exchange labeling and 576 two-dimensional NMR. *Annu Rev Biophys Biomol Struct.* 21, 243-65, 1992. doi: 577 10.1146/annurev.bb.21.060192.001331.

578 Espinosa, Y. R., Grigera, J. R. and Caffarena, E. R. Essential dynamics of the cold denaturation: 579 pressure and temperature effects in yeast frataxin. *Proteins*, 85, 125-136, 2017, doi: 580 10.1002/prot.25205. Epub 2016 Nov 20. PMID: 27802581.

581 Grassein P, Delarue P, Nicolaï A, Neiers F, Scheraga HA, Maisuradze GG, Senet P. Curvature
582 and Torsion of Protein Main Chain as Local Order Parameters of Protein Unfolding. *J Phys*
583 *Chem B*. 2020 Jun 4;124(22):4391-4398. doi: 10.1021/acs.jpcb.0c01230.

584 Guseman, A. J., Speer, S. L., Perez Goncalves, G. M. and Pielak, G. J.: Surface Charge
585 Modulates Protein-Protein Interactions in Physiologically Relevant Environments,
586 *Biochemistry* 57, 1681-1684, 2018, doi: 10.1021/acs.biochem.8b00061.

587 Halle, B. Flexibility and packing in proteins. *Proc Natl Acad Sci U S A*. 99, 1274-9, 2002, doi:
588 10.1073/pnas.032522499.

589 Imrota, S., Molinari, H., Pastore, A., Consonni, R. and Zetta, L. Probing protein structure by
590 solvent perturbation of NMR spectra. Photochemically induced dynamic nuclear polarization
591 and paramagnetic perturbation techniques applied to the study of the molten globule state of
592 alpha-lactalbumin. *Eur. J. Biochem.*, 227, 87-96, 1995, doi: 10.1111/j.1432-
593 1033.1995.tb20362.x.

594 Kabsch, W. and Sander, C. Dictionary of protein secondary structure: pattern recognition of
595 hydrogen-bonded and geometrical features. *Biopolymers*, 22, 2577-637., 1983, doi:
596 10.1002/bip.360221211.

597 Kaptein, R., Dijkstra, K. and Nicolay, K. Laser photo-CIDNP as a surface probe for proteins
598 in solution. *Nature*, 274, 293-4, 1978, doi:10.1038/274293a0.

599 Kim, P. S. and Baldwin, R. L. Intermediates in the folding reactions of small proteins, *Annu.*
600 *Rev. Biochem.*, 59, 631-60, 1990, doi:10.1146/annurev.bi.59.070190.003215.

601 Levenberg, K.. A Method for the Solution of Certain Non-Linear Problems in Least Squares.
602 *Quart. Appl. Math.* 2, 164–168., 1944, doi:10.1090/qam/10666.

603 Lyon, C.E., Suh, E.S., Dobson, C.M. and Hore, P.J. Probing the exposure of tyrosine and
604 tryptophan residues in partially folded proteins and folding intermediates by CIDNP pulse-
605 labeling. *J Am Chem Soc.* 124, 13018-13024, 2002, doi:10.1021/ja020141w.

606 Maciejewski MW, Liu D, Prasad R, Wilson SH, Mullen GP. Backbone dynamics and refined
607 solution structure of the N-terminal domain of DNA polymerase beta. Correlation with DNA
608 binding and dRP lyase activity. *J Mol Biol.* 296, 229-53, 2000 doi: 10.1006/jmbi.1999.3455.

609 Marquardt, D.. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. *SIAM*
610 *J. Appl. Math.* 1, 431–441., 1963, doi:10.1137/0111030. hdl:10338.dmlcz/104299.

611 Martin, S. R., Esposito, V., De Los Rios, P., Pastore, A. and Temussi, P. A.: The effect of
612 low concentrations of alcohols on protein stability: a cold and heat denaturation study of
613 yeast frataxin, *J. Am. Chem. Soc.*, 130, 9963–9970, 2008, doi: 10.1021/ja803280e.

614 Miranker, A., Radford, S. E., Karplus, M. and Dobson, C. M. Demonstration by NMR of
615 folding domains in lysozyme, *Nature*, 349, 633-6, 1991, doi: 10.1038/349633a0.

616 Miranker, A., Robinson, C. V., Radford, S. E., Aplin, R. T. and Dobson, C. M. Detection of
617 transient protein folding populations by mass spectrometry, *Science*, 262, 896-900, 1993, doi:
618 10.1126/science.8235611.

619 Miranker, A., Robinson, C.V., Radford, S.E., Dobson, C.M. Investigation of protein folding
620 by mass spectrometry. *FASEB J.* 10, 93-101, 1996. doi: 10.1096/fasebj.10.1.8566553.

621 Monsellier, E. and Bedouelle, H. Quantitative measurement of protein stability from unfolding
622 equilibria monitored with the fluorescence maximum wavelength. *Protein Eng. Des. Sel.* 18,
623 445-56, 2005, doi: 10.1093/protein/gzi046.

624 Nojima, H., Ikai, A., Oshima, T. and Noda, H.: Reversible thermal unfolding of thermostable
625 phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change, *J. Mol.*
626 *Biol.*;116, 429-42, 1977, doi: 10.1016/0022-2836(77)90078-x.

627 Pastore, A. and Temussi, P. A. The Emperor's new clothes: Myths and truths of in-cell NMR.
628 *Arch. Biochem. Biophys.*, 628, 114-122, 2017, doi: 10.1016/j.abb.2017.02.008.

629 Pastore, A., Martin, S. R., Politou, A., Kondapalli, K. C., Stemmler, T. and Temussi, P. A.:
630 Unbiased cold denaturation: low- and high-temperature unfolding of yeast frataxin under
631 physiological conditions, *J. Am. Chem. Soc.*, 129, 5374-5, 2007, doi: 10.1021/ja0714538.

632 Piotto, M., Saudek, V., Sklenár, V.: Gradient-tailored excitation for single-quantum NMR
633 spectroscopy of aqueous solutions, *J Biomol NMR*. 2, 661-665, 1992

634 Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., *Numerical Recipes in C*.
635 Cambridge University Press: Cambridge, 1988, <https://doi.org/10.2307/3619708>.

636 Privalov, P. L.: Cold denaturation of proteins, *Crit. Rev. Biochem. Mol. Biol.*, 25, 281-305,
637 1990, doi: 10.3109/10409239009090612.

638 Puglisi, R., Brylski, Alfano, C., Martin, S. R., Pastore, A. & Temussi, P. A.: Thermodynamics
639 of protein unfolding in complex environments: using 2D NMR to measure protein stability
640 curves. *Commun. Chem.* 3, 100, 2020, doi:10.1038/s42004-020-00358-1

641 Razvi, A. and Scholtz, J. M.: Lessons in stability from thermophilic proteins, *Protein Sci.* 15,
642 1569-78, 2006, doi: 10.1110/ps.062130306.

643 Roder, H. and Wüthrich, K. Protein folding kinetics by combined use of rapid mixing
644 techniques and NMR observation of individual amide protons. *Proteins*, 1, 34-42, 1986, doi:
645 10.1002/prot.340010107.

646 Sanfelice, D., Morandi, E., Pastore, A., Niccolai, N. and Temussi, P. A.: Cold Denaturation
647 Unveiled: Molecular Mechanism of the Asymmetric Unfolding of Yeast Frataxin,
648 *Chemphyschem*. 16, 3599-602, 2015, doi: 10.1002/cphc.201500765.

649 Sanfelice, D., Politou, A., Martin, S. R., De Los Rios, P., Temussi, P. A. and Pastore A. The
650 effect of crowding and confinement: A comparison of Yfh1 stability in different environments
651 *Phys. Biol.* 10, 045002, 2013, doi: 10.1088/1478-3975/10/4/045002.

652 Sanfelice, D., Puglisi, R., Martin, S. R., Di Bari, L., Pastore, A. and Temussi, P. A.: Yeast
653 frataxin is stabilized by low salt concentrations: cold denaturation disentangles ionic strength
654 effects from specific interactions, *PLoS One.* 9, e95801, 2014, doi:
655 10.1371/journal.pone.0095801.

656 Schlörb, C., Mensch, S., Richter, C. and Schwalbe, H. Photo-CIDNP reveals differences in
657 compaction of non-native states of lysozyme. *J Am Chem Soc.* 128, 1802-1803, 2006.
658 doi:10.1021/ja056757d.

659 Smith, A. E., Zhou, L. Z., Gorenske, A. H., Senske, M. and Pielak, G. J. In-cell
660 thermodynamics and a new role for protein surfaces. *Proc. Natl. Acad. Sci. U S A.* 113, 1725-
661 30, 2016, doi: 10.1073/pnas.1518620113.

662 Varrazzo, D., Bernini, A., Spiga, O., Ciutti, A., Chiellini, S., Venditti, V., Bracci, L. and
663 Niccolai, N. Three-dimensional computation of atom depth in complex molecular structures.
664 *Bioinformatics*. 21, 2856-60., 2005, doi:10.1093/bioinformatics/bti444.

665 Vilanova, B., Sanfelice, D., Martorell, G., Temussi, P. A. and Pastore, A. Trapping a salt-
666 dependent unfolding intermediate of the marginally stable protein Yfh1. *Front Mol Biosci.*, 1,
667 13, 2014, doi: 10.3389/fmolb.2014.00013.

668

669 **Table 1.** Thermodynamic parameters of the detectable residues. The average stability curve was obtained selecting
 670 the residues with RAD_0.1 indicated in the table in bold face (Puglisi et al., 2020).

	ΔH (Kcal/mol)	ΔS (Kcal/mol)	ΔCp (Kcal/molK)	Tm (K)	Tc (K)	RAD
61 Val	19,9	0,067	1,58	298,4	273,9	48,20
63 Gln	21,1	0,072	2,24	294,0	275,6	3,64
64 Glu	27,7	0,093	3,30	298,0	281,5	2,52
65 Val	24,3	0,081	2,71	299,7	282,2	0,31
68 Leu	21,0	0,071	3,02	296,5	282,8	0,75
70 Leu	28,5	0,096	3,73	298,2	283,1	2,35
71 Glu	29,1	0,097	3,59	299,8	283,9	7,13
72 Lys	33,1	0,111	3,73	299,6	282,2	6,24
75 Glu	24,3	0,081	2,75	300,0	282,7	2,07
76 Glu	17,4	0,058	1,71	300,6	280,8	0,91
78 Asp	29,0	0,096	3,18	301,1	283,2	0,17
83 His	22,8	0,076	2,21	298,4	278,2	0,21
86 Asp	25,4	0,084	2,62	301,0	282,0	0,27
87 Ser	22,8	0,076	2,42	299,1	280,6	0,34
88 Leu	20,2	0,067	1,75	300,6	278,1	0,04
89 Glu	22,1	0,074	2,14	299,7	279,5	0,20
90 Glu	26,1	0,087	2,50	300,9	280,5	0,52
91 Leu	34,1	0,114	4,19	300,3	284,3	0,16
92 Ser	22,6	0,075	1,97	299,7	277,3	0,15
93 Glu	19,5	0,065	1,97	300,1	280,7	0,61
94 Ala	23,6	0,079	2,55	299,6	281,5	4,10
95 His	18,6	0,062	1,31	300,7	273,2	0,28
97 Asp	23,3	0,078	2,52	299,0	280,9	0,95
98 Cys	22,6	0,076	2,59	297,7	280,6	0,26
99 Ile	17,6	0,059	1,75	297,5	277,8	0,11
101 Asp	22,3	0,074	2,42	300,2	282,1	1,08
104 Leu	29,5	0,098	3,12	300,9	282,4	0,78
105 Ser	23,7	0,079	2,51	299,7	281,2	1,18
107 Gly	19,3	0,065	2,44	296,6	281,1	3,58
108 Val	22,3	0,075	2,03	299,0	277,5	0,50
109 Met	26,6	0,089	3,25	299,4	283,3	0,63
110 Thr	33,2	0,111	3,79	300,2	283,0	0,23
112 Glu	28,5	0,094	2,88	301,9	282,5	0,41
113 Ile	17,4	0,059	2,11	297,6	281,3	0,12
115 Ala	15,4	0,052	2,77	295,8	284,9	2,48
116 Phe	14,8	0,049	1,73	298,0	281,3	0,62
117 Gly	27,6	0,093	3,48	298,2	282,6	0,98
119 Tyr	24,9	0,083	2,72	300,3	282,3	0,22
120 Val	15,7	0,053	1,68	297,3	279,0	0,33
127 Asn	23,0	0,077	2,46	297,0	278,7	5,81
128 Lys	15,5	0,052	1,35	300,4	277,9	0,66
129 Gln	14,3	0,048	1,80	296,8	281,2	0,20
130 Ile	27,9	0,093	3,19	300,9	283,8	0,02
131 Trp	21,7	0,073	2,54	298,6	281,8	0,04
132 Leu	26,4	0,088	3,34	300,7	285,1	0,02
133 Ala	24,7	0,082	2,52	299,9	280,7	0,19
134 Ser	20,3	0,068	2,07	299,7	280,5	0,13
136 Leu	13,2	0,044	1,27	299,3	278,9	0,25
140 Asn	25,4	0,085	2,80	299,4	281,6	0,17
142 Phe	20,9	0,070	3,06	299,3	285,8	0,03
143 Asp	21,9	0,073	2,50	300,2	283,1	0,13
146 Asn	23,6	0,080	3,61	295,0	282,1	2,00
147 Gly	25,2	0,085	2,37	297,8	277,0	4,80
148 Glu	21,6	0,072	2,69	298,8	283,0	1,40
150 Val	22,9	0,076	2,20	300,7	280,4	0,03
151 Ser	22,7	0,076	2,39	299,9	281,3	0,05
152 Leu	32,2	0,107	3,87	300,0	283,7	0,16
154 Asn	21,9	0,074	2,40	295,1	277,2	1,14
158 Leu	29,1	0,096	3,11	301,9	283,6	0,03
159 Thr	29,8	0,099	3,38	300,0	282,8	0,09
160 Asp	23,6	0,078	2,55	301,2	283,1	0,28
161 Ile	15,4	0,051	1,66	300,1	281,9	0,09
163 Thr	15,2	0,051	1,44	300,9	280,2	0,15
166 Val	27,3	0,091	2,81	300,8	281,8	0,06
168 Lys	17,3	0,058	1,93	299,9	282,4	0,16
170 Ile	22,6	0,075	2,11	301,3	280,3	0,31
172 Lys	28,1	0,095	3,84	294,1	279,7	1,5
174 Gln	20,6	0,069	2,2	297,5	279,2	
131 Trp sc	27,1	0,091	3,21	299,4	282,8	

671