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ABSTRACT
The critical functions of the human liver are coordinated through the interactions of

hepatic parenchymal and non-parenchymal cells. Recent advances in single cell transcriptional
approaches have enabled an examination of the human liver with unprecedented resolution.
However, dissociation related cell perturbation can limit the ability to fully capture the human
liver’s parenchymal cell fraction, which limits the ability to comprehensively profile this organ.
Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched
single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq).
The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at single-cell
resolution, revealed the presence of rare subtypes of hepatic stellate cells previously only seen in
disease, and detection of cholangiocyte progenitors that had only been observed during in vitro
differentiation experiments. However, T and B Ilymphocytes and NK cells were only
distinguishable using scRNA-seq, highlighting the importance of applying both technologies to
obtain a complete map of tissue-resident cell-types. We validated the distinct spatial distribution
of the hepatocyte, cholangiocyte and stellate cell populations by an independent spatial
transcriptomics dataset and immunohistochemistry. Our study provides a systematic comparison
of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map

of the parenchymal cell populations in the healthy human liver.
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INTRODUCTION

The liver is an essential organ responsible for critical functions including lipid and
glucose metabolism, protein synthesis, bile secretion and immune functions. Single cell RNA
sequencing (scRNA-seq) technologies enable the analysis of the transcriptome of individual cells
and have provided important insights regarding development(1), physiology(2,3) and
pathology(4—6) of the human liver. These studies have shed light into previously inaccessible
aspects of human liver physiology such as hepatic lobular zonation, cell to cell interactions, and

immune cell phenotype and heterogeneity.

Previously, we examined the cellular complexity of the human liver by single cell RNA
sequencing (scRNA-seq) and identified 20 distinct cell clusters including two distinct
populations of liver resident macrophages with immunoregulatory and inflammatory
properties.(2) An observation from this work was that enzymatic and mechanical dissociation of
the human liver tissue significantly impacted the composition of the liver map in that hepatocytes
were sensitive to dissociation-induced damage and cholangiocytes and hepatic stellate cells were
not well-released by our dissociation technique. For example, cholangiocytes, parenchymal cells
that form the bile duct and are expected to make up 3-5% of all liver cells,(7) comprised only
199 (0.64%) cells of our scRNA-seq 8444 map. Capturing cholangiocyte heterogeneity is key to
understanding the pathogenesis of cholangiopathies, such as primary sclerosing cholangitis, for

which there are no curative therapeutic interventions.(8)
Single nucleus RNA sequencing (snRNA-seq) is an approach that bypasses the cell
dissociation step required for scRNA-seq by using detergents to release nuclei from intact cells.

SnRNA-seq data is also compatible with snap frozen samples that may be available from tissue
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archives. Recently, Slyper et al.(9) assessed three different nuclei isolation protocols for
snRNA-seq from frozen tissues that each employed different detergent based buffers: Nonidet
P40 with salts and Tris (NST), Tween-20 with salts and Tris (TST), and CHAPS with salts and
Tris (CST). Here, we carried out matched snRNA-seq using these three protocols and
scRNA-seq using our published experimental and analysis workflow(2) on four healthy human
liver samples (Fig. 1a). Using multiple protocols on the same samples enables us to evaluate the
ability of these three snRNA-seq protocols to reduce dissociation-related effects compared to
scRNA-seq protocols, contrast the expression profiles of cells measured with each protocol, and
develop an approach to integrate the results into a single map that is more comprehensive than

possible with any individual method.

Our work highlights cell type composition differences between snRNA-seq and
scRNA-seq technologies as applied to human liver, and reveals cholangiocyte and hepatic
stellate cell subpopulations specific to the snRNA-seq data, previously not identified in single
cell transcriptomic studies. Combining results from both technologies creates a rich new data set
for the interpretation of human liver biology, identifying key cell-type defining marker genes

across both technologies (Supplementary Table 1).

RESULTS

Examining the quality of liver mapping via scRNA-seq vs. scRNA-seq

Single cell and single nucleus transcriptomes were generated from four healthy human
livers from neurologically deceased donors that were undergoing transplantation into living
recipients. Samples were chosen from a total of 23 to preference those with the most intact

hepatocytes in preliminary analyses. In total, 29,432 single cells were captured from fresh liver
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dissociates and 43,863 single nuclei were captured from matched snap frozen tissue and
sequenced using the 10X Chromium platform. These data underwent identical quality control
processing, and the matched samples were systematically compared.

SnRNA-seq captured a greater diversity of genes than scRNA-seq (Fig. 1b). These
differences are largely due to the high proportion of UMIs in scRNA-seq data that are derived
from transcripts encoding ribosomal proteins and genes encoded in the mitochondrial genome
which are not present in snRNA-seq data (Supplementary Table 2). Minimal differences were
observed between different detergents used to extract nuclei (Supplementary Table 3).
Furthermore, snRNA-seq contained a significantly higher proportion of ambient RNA than

scRNA for most samples, estimated by SoupX (Supplementary Fig. 1).

Integrating scRNA-seq and snRNA-seq maps

Using a typical computational processing pipeline, sSCRNA and snRNA do not cluster
together (Fig. 1¢, Extended Data Fig. 1), due to the systematic differences between RNA found
in the nucleus versus the cytoplasm of cells. Additional technical confounding effects may be
introduced during tissue processing and cell handling. The scRNA-seq samples were derived
from fresh tissue that was enzymatically and mechanically dissociated which may introduce
stress responses in cells. Whereas, the snRNA-seq samples were extracted from flash frozen
tissue which should be less impacted by dissociation-related stresses. In addition, we see
significant batch effects between individual donors when using the same sequencing technology,
particularly in hepatocytes (Extended Data Fig. 2). This may be related to environmental
influences on liver metabolism, and is consistent with our previously reported single-cell liver

map.(2)
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However, if samples are normalized and scaled individually before merging, cells and
nuclei broadly cluster by cell-type rather than by transcriptome mapping technology (Fig. 1c).
However, significant differences between technologies are still evident and application of
Harmony,(10) a commonly used single cell data integration method, overcomes this and enables

integrationed and co-clustering of sScRNA-seq and snRNA-seq data (Fig. 1d).

Systematic differences in nuclear and whole cell transcriptomes

The necessity to scale datasets individually to enable scRNA-seq and snRNA-seq to be
integrated demonstrates that there are significant systematic gene expression differences between
data generated by these technologies. Examining these systematically differentially expressed
genes revealed that both gene function and gene length were strongly associated with expression
as measured by scRNA-seq or snRNA-seq (Extended Data Fig. 3, 4). Genes encoded by the
mitochondrial genome and nuclear genes that encode mitochondrial proteins are more highly
expressed in sScCRNA-seq (Extended Data Fig. 4). Similarly, mRNA encoding ribosome-related
proteins are more than 4-fold more highly expressed in scRNA-seq than snRNA-seq. This is
expected, as mitochondria and ribosomes are prevalent in the cytoplasm in liver cells, especially
hepatocytes, and cytoplasm is mostly missing from snRNA-seq material input. In contrast, other
“housekeeping” protein-coding genes(11) were equally expressed in snRNA-seq and
scRNA-seq. In agreement with results from other tissues,(12,13) long non-coding RNAs
(IncRNA) were 0.7-fold more highly expressed in snRNA-seq than scRNA-seq, however, this is
not significantly different from other non-housekeeping protein-coding genes, which were
0.8-fold more highly expressed in snRNA-seq.

Aside from gene function, overall gene length had the strongest correlation with relative

expression in snRNA-seq vs. scRNA-seq (Extended Data Fig. 5). Longer genes (>37kb) were
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more highly expressed in snRNA-seq, and short genes (<15kb) were more highly expressed in

scRNA-seq. This was true even after excluding ribosomal and mitochondrial-related genes.

The cells of the human liver as revealed by scRNA-seq vs. snRNA-seq

After integrating the data (see: Methods), the data was clustered and annotated using
known markers;(2) the resulting map revealed all major known hepatic cell-types (Fig. le,g).
These cell types were represented in both scRNA-seq and snRNA-seq and in all samples
(Extended Data Fig. 5,6), but were captured at different frequencies. In particular scRNA-seq
captured a higher proportion of immune cells with 7% of all cells sequenced identified as
lymphocytes and 9% identified as macrophages, compared to snRNA-seq with 3% lymphocytes
and 5% macrophages. In contrast, snRNA-seq captured twice as many cholangiocytes, and
hepatic stellate cells as scCRNA-seq (Fig. 1f, Supplementary Table 4). We obtained similar
percentages of liver sinusoidal endothelial cells (LSECs) and endothelial cells with both
methods. However, these frequencies depend on the detergent used for the snRNA-seq. CST and
NST extracted a higher frequency of LSECs, 25% and 20% respectively, and higher frequencies

of stellate cells, 7% in CST and 12% in NST, but lower frequencies of hepatocytes.

Hepatocytes

Hepatocytes are the main parenchymal cell of the hepatic lobule responsible for the
majority of liver function. They exhibit functional zonation from the pericentral vein to the
periportal region. Currently it is difficult to identify interzonal human hepatocytes due to a
paucity of known markers.(2,3) Recent work has demonstrated the importance of hepatocytes of
this region for liver homeostasis and regeneration.(14) Subclustering our hepatocyte cluster
revealed six distinct clusters (Fig. 2a,b) sourced from both scRNA-seq and snRNA-seq (Fig. 2c¢),

and all samples (Fig. 2d). Correlating these clusters with zonated expression from microdissected
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mice(15) enabled the annotation of three of these clusters as containing either pericentral (CV) or
periportal hepatocytes (PP1, PP2) (Fig 2e). These annotations were confirmed using known
pericentral marker genes (CYP3A44, ADH4, GLUL, and BCHE) and periportal marker genes
(HAL, CPS1, and HMGCS]1) (Fig. 1g). Of the remaining three subclusters, one was most strongly
correlated with mouse layer 7, another was most strongly correlated with mouse layer 5
suggesting these two clusters (IZ1, 1Z2) represent human interzonal hepatocytes (Fig. 2¢). We
validated the interzonal hepatocyte identity by comparing to bulk RNAseq derived from human
microdissected livers, where these clusters correlated most strongly with interzonal layer
4(Extended Data Fig. 7).(5) Novel interzonal markers identified from these two clusters (HINT,
COX7C, APOCI, FABPI1, MT2A, MT1G and NDUFBI) were validated using spatial
transcriptomics and immunofluorescence where they exhibit clearly distinct expression patterns
from either periportal or pericentral markers (Fig. 2g-1, Extended Data Fig. 8-12).

The final cluster of 4LB-expressing hepatocytes expressed periportal hepatocyte markers
like SERPINAI, TTR, APOAI, and APOC3. However, this cluster did not correlate strongly with
the periportal mouse sinusoid regions nor express many other periportal marker genes like HAL,
CPS1, and HMGCS|1. Furthermore, the expression profile correlated most strongly with the
interzonal layer 4 of the human sinusoid, but did not correlate with any mouse zonation layer
(top DE: ALB, SERPINAI, APOAI, HP, FTL, APOC3, SAA1, STABI, TTR, B2M, LIFR). These
results suggest this cluster may represent a human-specific interzonal hepatocyte cluster, but
further work will be required to confirm this identity.

Hepatocytes as a whole were captured equally well in sc and snRNA-seq (Extended
Table 2), however CV1 hepatocytes were almost twice as frequent (17% vs 9%, p < 107°°) in
snRNA-seq than scRNAseq (Fig. 2b,c, Extended Table 3). Whereas, interzonal hepatocytes were

most frequent in sScRNAseq (15% and 9% vs 8% and 3%, p < 10™"). Several significant genes
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identified in CV1 hepatocytes by snRNA-seq were not identified by scRNA-seq (Fig. 2k) while
the gene expression patterns for periportal hepatocytes correlated significantly across both
technologies (Fig. 2m). The greatest discordance exists for the interzonal hepatocytes where
many of the genes upregulated in snRNA-seq are downregulated in scRNA-seq (Fig. 21).
However, despite these differences we observe almost all hepatocyte related pathways exhibiting
elevated expression in snRNA-seq-derived hepatocytes (Fig. 2j). This may reflect poor viability
or disrupted cellular state within hepatocytes due to the dissociation(16) required for scRNAseq
which is not present when examining hepatocytes with snRNA-seq. Thus, snRNA-seq may

provide better characterization of hepatocytes than scRNAseq despite similar capture rates.

Cholangiocytes

Cholangiocytes are epithelial cells that line the bile ducts and generate 30% of the total
bile volume.(17) Our previous attempt to characterize these cells using exclusively scRNA-seq
identified only a single population encompassing 1.4% (199/8444) of the cells expressing
cholangiocyte markers (EPCAM, SOX9 and KRT1).

In this study, we found that snRNA-seq captured a higher proportion of KRT7, SOX9,
ANXA4 expressing cholangiocytes (3.4% vs 2.4%) resulting in a total of 448 cholangiocyte-like
cells (Fig. 1g, Extended Table 2). Subclustering this population revealed six
transcriptionally-distinct subpopulations (labelled Chol-1 to Chol-6) (Fig. 3a). We identified
three ASGR I+ hepatocyte-like clusters, two typical cholangiocyte-like clusters (KR77, KRT1IS,
SLC4A2 high), and a cluster of progenitors,>82% of which were derived from snRNA-seq (Fig.
3b,c, Supplementary Table 6). These clusters were not specific to a particular sample or donor
indicating they were not the result of batch effects or donor-specific variation (Fig. 3d). Rather,

these clusters formed a branching trajectory extending from bipotent progenitors to both
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hepatocyte and cholangiocyte cell fates, as computed using both Slingshot(18) and diffusion
maps (Fig. 3g, Extended Fig. 20).

At the most differentiated end of the cholangiocyte branch was the Chol-4 population
which contained mature cholangiocytes expressing differentiated cholangiocyte markers (AQP1,
KRTS, KRTI1S8, KRT7, DEFBI, CD24, PIGR, ANXA4) (Fig. 3e, Extended Data Fig. 13a), many of
which are highly specific to human bile ducts (Extended Data Fig. 14a).(19) Furthermore,
classical cholangiocyte pathways, such as cell polarity, ion transport, ABC transporters and many
immune pathways, were enriched among the genes upregulated in this cluster (Fig. 3f, Extended
Data Fig. 15a). Cells of this cluster were derived in equal measure from scRNA-seq and
snRNA-seq, and the significantly upregulated markers, including AQP1, SPPI and DEFBI,
were relatively consistent across both technologies (Extended Data Fig. 16). Thus mature
cholangiocytes are well characterized by either sn- or sScRNA-seq.

The less differentiated cholangiocyte population (Chol-5) was specific to snRNA-seq
(177 nuclei vs 33 cells). Cholangiocyte identity was confirmed by the expression of key
transcription factors (HNFIB, ONECUTI, and SOX9) and enrichment of WNT signalling, ABC
and 1on transporters(20)(Extended Data Fig. 15b). We determined this cluster contained
specifically small cholangiocytes on the basis of BCL2 expression (Fig. 3e, Extended Data Fig.
13a), which is not expressed by large cholangiocytes.(20) This was confirmed by noting
bile-duct restricted expression of BCL2 by immunohistochemistry(19) (Extended Data Fig. 14b).
We note high expression of many stem-ness markers(21) in this cluster which is consistent with
previous reports of a less differentiated phenotype of these cholangiocytes(20)(Fig. 3e, Extended
Data Fig. 13a,b). Novel markers of this cluster were identified using snRNA-seq (CYP3A435,

PPARGCIA, FHIT, FMOS5, TDO2, SOX6), however, these were not recapitulated in scRNA-seq
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reinforcing that this population can only be characterized using snRNA-seq (Extended Data Fig.
16).

At the far end of the opposite branch was Chol-3, a population of central venous
hepatocyte-like cells, expressing high levels of CYP344, GPC6, and AOX1 (Extended Data Fig.
9). These cells clustered together with cholangiocytes because of their high expression of many
bile metabolism genes (i.e. ABCAS, ABCA6, HAOI, ABCAI, SLC27A2) indicating involvement
in biliary function. Interestingly, these cells express HNF4a, which is first expressed in
progenitor hepatocytes and is a central regulator of hepatocyte differentiation.(22)

Two additional hepatocyte-biased clusters, Chol-2 and Chol-6, expressed some typical
cholangiocyte markers (KR77, SOX9 and CD24) but also expressed early hepatocyte
lineage-defining transcription factors (HNF4a, FOXA2, PROXI, ONECUTI, and ONECUT2)
suggesting an intermediate or progenitor phenotype (Fig. 3e, Extended Data Fig. 13b,c, 17). Both
Chol-6 and Chol-2 highly expressed genes related to progenitor-associated markers, such as
FOXA2, FGFR3, HES1, JAGI (Fig. 3e, Extended Data Fig. 13b,d). The key difference between
the clusters being the expression of proliferation-related genes in Chol-6 . Indicating these cells
were proliferative and non-proliferative hepatic progenitors.

At the root of these lineage-biased branches was a large cluster of bipotent progenitors
(Chol-1), containing predominantly sequenced single-nuclei (621 nuclei vs 134 cells, Extended
Table 6, Fig.3c). This cluster did not express mature cholangiocyte markers, rather a collection of
many stem-like and progenitor markers, including POUS5SF1, FOXO2, RUNX2, SOX6, CD133,
ANPEP, and SOX9 (Extended Data Fig. 13b-d). This cluster was consistent with bipotent
progenitors that have previously been observed only in vitro.(3) Furthermore, using pathway
analysis we identify the NOTCH2 signalling pathway (NOTCH2, RBPJ, MAML?2, MAML3,

MAMLA4) as a key feature of these progenitor cells. Endoderm, cell cycle, and cell division
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pathways were enriched in this population relative to the other clusters supporting a stem-like
state (Extended Data Fig. 14f, 17). Marker genes of Chol-1 (ie. FOXO3, GATA6, FGFR3,
ANPEP) were localized to bile ducts in both our spatial transcriptomics data and publicly
available immunofluorescence data, suggesting these may be the progenitor niche (Extended
Data Fig. 18, 19).(19)

Employing the combined map presented here as a reference, we were able to use the
automatic annotation tool scmap-cell(23) to identify and label two distinct subsets of
cholangiocytes that were unable to be detected in our previous map (Fig 31,j). We identified cells
from both mature cholangiocytes (Chol-4) and a small number of bipotent progenitors (Chol-1)
which could only be identified using the snRNA-seq data, demonstrating the utility of our

combined sc & sn liver map.

Hepatic stellate cells

Hepatic stellate cells (HSCs) are heterogeneous cells that can exist in either an activated
or quiescent state and play a role in retinol storage and the response to liver injury.(24) Under
physiological conditions, HSCs maintain a quiescent and non-proliferative phenotype and are
localized between the layers of LSECs and hepatocytes in the space of Disse.(2,24) . Previous
single-cell studies have focused on heterogeneity in HSCs during disease or injury, and typically
must use additional cell handling steps to enrich for HSCs.(4,25) However, using snRNA-seq
we reveal that stellate cell heterogeneity is present in healthy livers at low frequencies (Fig 4).
Subclustering our HSC cluster revealed seven distinct subtype of HSCs (HSC 1-7) present in
healthy liver, of these only HSC-1, 2, and 4 contained more than 10 cells captured with

scRNAseq and only HSC-4 was roughly equally captured by both methodologies and in all
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samples (Fig. 4a,c,d Extended Table 7). Overall, HSCs were composed of 2.5% of single nuclei,
more than double their 1% of single cells captured (Fig. 4b).

The majority of HSCs (70% of HSC nuclei) comprised quiescent HSCs (HSC-1)
specializing in vitamin A storage and metabolism with high expression of RBPI, LRAT and
PDE3B (Extended Data Fig. 21a).(26) HSC initiation is characterized by the loss of
retinol-bearing lipid droplets, the rapid induction of growth factor receptors, the development of
a contractile phenotype and the modulation of growth factor signaling.(27) The second most
frequent population (24% of HSC nuclei) were initiated HSCs (HSC-2) expressing retinol and
lipid processing genes (40X1, PDE3D, and PDE4D), as well as engaging in the complement
cascade but lacking typical quiescence and activation markers (Fig. 4f). Furthermore, this cluster
also showed expression of cytokine and growth factor receptors, and fibrotic, angiogenic and
proliferative factors (i.e. TGFBI, TGFBR?2) (Extended Data Fig. 21c,d).

The other 5 HSC clusters comprised only 10% of HSC nuclei (112/1069), and contained
heterogeneous subsets of activated HSCs. HSCs typically become activated following liver
damage, in response to cytokines, local damage, growth factors and fibrogenic signals.(24,28)
HSC-4 and HSC-6 exhibited a pro-fibrogenic phenotype, expressing several fiber-associated
genes: ACTA2, SPARC, TAGLN, COLIAI, TIMPI (Fig. 4e, Extended Data Fig. 21b). Enriched
pathways included: collagen formation, extracellular matrix and integrin signaling in both of
these clusters (Fig. 4f). HSC-6 expressed high levels of fibrogenic growth factors like CTGF and
TGFBI (Extended Data Fig. 21d) and enrichment in contractile phenotype indicating a
specialization in contractile fibers. Whereas HSC-4 was enriched in senescence-related pathways
and inflammatory genes (/IL32, CSFI, TNFSF10, CCL2, IL6ST) indicating a later stage in HSC
activation. HSC-3 and HSC-5 expressed aHSC-associated genes ACTA2 and TAGLN but not

collagen or matrix remodelers. Importantly these clusters expressed high levels of PPARG, a
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transcription factor linked with reversion of activated HSC to a more quiescent phenotype,
indicating these clusters contain iHSCs in the process of returning to a qHSC state (Extended
Data Fig. 21¢).(24,29) RBP1, HGF, LRAT and DCN gene expression and many
lymphocyte-associated markers indicating they are likely to be doublets.

The trajectories inferred by both Slingshot and diffusion maps was consistent with these
labels, estimating a path from qHSCs (HSC5, HSC1), through the aHSCs (HSC4 and HSC6),
and ending at the iHSCs (HSC3) (Fig. 4g, Extended Data Fig. 21f,g). In addition, spatial
transcriptomics independently confirmed qHSC expression to be higher and dispersed
throughout liver tissue whereas aHSCs were primarily located in periportal regions (Extended
Data Fig. 22). Only the gHSC population would be discoverable using scRNAseq alone, it is
only because of the addition of snRNA-seq that the full diversity of HSCs in normal tissue was

captured.

Liver endothelial cells

The endothelium of the liver vasculature is made up of LSECs and vascular endothelial cells.
LSEC populations were annotated using previously defined markers (Fig. 5a,e).(2) Similar to
hepatocytes, central venous LSECs were more frequently captured with snRNA-seq (7.52%)
than scRNA-seq (5.2%) (Fig. 5b-d). Whereas periportal LSECs and Portal endothelial cells were
present in similar frequencies using either technology (ppLSECs: 1.15% in snRNA-seq and
1.32% in scRNA-seq, PortalEndo: 0.76% and 0.63% respectively, Supplementary Table 8).
Markers of these populations were generally consistent across sc & snRNA-seq though
fold-changes were typically smaller in snRNA-seq (Fig. 5g-1), this was particularly true for

portal markers: VWFE CLECI14A, ID1, SPARCLI, CTGF. (Fig. 5e).
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Intrahepatic monocytes/macrophages

We previously characterized two populations of intrahepatic macrophages with
immunoregulatory or inflammatory properties respectively.(2) We identified both of these
populations in sc and sn RNA-seq, however we note a higher overall proportion of macrophages
in snRNA-seq (7.4% of nuclei vs 4.1% of cells) and a lower relative proportion of inflammatory
macrophages in snRNA-seq (46% vs 59%) (Fig. 6a-d, Supplementary Table 9). Although
snRNA-seq was more efficient at capturing non-inflammatory macrophages and their associated
marker genes (Fig. 6b,e), several marker genes for these populations are present in both
snRNA-seq and scRNA-seq maps (CD68, PTPRC, MARCO). Meanwhile, the markers used to
describe inflammatory macrophages (LYZ, S10048, S10049) were better represented
byscRNA-seq (Fig. 6f). Immune-associated pathways : IFNg, leukocyte activation, phagocytosis,
bacterial response, were more highly expressed in snRNA-seq rather than scRNA-seq (Fig. 6g),

suggesting that macrophages may be dissociation-sensitive.

Intrahepatic lymphocyte populations

We previously observed that lymphocytes are well-detected after hepatic tissue
disruption.(2). Major lymphocyte populations were captured by each protocol (Fig. 7a) and in
each sample (Fig. 7b), lymphocytes comprise 5.2% of the scRNA-seq dataset (1524/29432) but
make up only 1.8% of the snRNA-seq dataset (804/43863). All lymphocyte subpopulations were
captured at higher frequency by scRNA-seq (Fig. 7c,d). B cell populations in particular make up
only 0.2% of the snRNA-seq dataset but are enriched almost 2x for in sScRNA-seq data (0.5%)
(Supplementary Table 10). In our examination of marker genes for each cluster present across
both protocols (Fig. 7¢), IL7R and S100A4 serve as best markers for resident memory T cells.
The top marker genes for yO T cells and NK cells have significant overlap. Unfortunately, B cell

receptor and T cell receptor genes were not well-captured by snRNA-seq (Extended Data Fig.
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24). As such, scRNA-seq captures transcripts that provide the resolution for differentiating

distinct lymphocyte populations.

DISCUSSION

Comparing single-cell and single-nucleus RNA-seq protocols applied to four samples of
healthy human liver, revealed several significant differences. Both techniques produced high
quality data that could elucidate the major cell classifications in the human liver. However,
cell-type frequencies are distorted in scRNA-seq, mainly due to the resiliency of immune cells to
tissue dissociation compared to parenchymal cells. These differences impact the sensitivity of
each method to delineate subtypes of the respective cell types. SnRNA-seq enables the detection
of many additional cell subtypes of cholangiocytes and stellate cells which are difficult to
distinguish using scRNA-seq. For example, the transcriptional profile of small duct
cholangiocytes provided in this dataset may act as a reference for assessing how cholangiocytes
in small-duct cholangio-pathologies like primary biliary cholangitis (PBC) might differ
transcriptionally to those in the healthy liver. Furthermore, this platform could potentially allow
for distinguishing differences in the cellular landscape of poorly understood autoimmune liver
diseases, for example differentiating between PBC and primary sclerosing cholangitis, which is a
disease mainly affecting large bile ducts.

A complete characterization of the intrahepatic immune landscape is also crucial to
understanding the pathogenesis of liver disease. Despite the advantages of nuclei profiling, many
important markers of immune cells were completely absent from snRNA-seq data. For instance,
none of the T cell receptor or B cell receptor components were detected in our single-nucleus
RNA-seq samples. Thus, we recommend that studies investigating intrahepatic immune

populations use scCRNA-seq.
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The ability of snRNA-seq to overcome the limitations associated with tissue dissociation
and to capture parenchymal cells in high resolution, opens a new avenue for a detailed
examination of the interplay between parenchymal and NPCs in health and disease. Additionally,
the ability to perform snRNA-seq in frozen tissues can enable the examination of biobanked
samples with single-cell resolution. Taken together, we have shown that single-cell and
single-nucleus RNA-seq generate high-quality data from normal liver samples, with single
nucleus allowing for better examination of parenchymal cells, including stellate cells and
cholangiocytes. This combined dataset enables a complex examination of parenchymal cells

complexity and provides a foundation for single cell liver disease studies.

EXPERIMENTAL PROCEDURES

Preparation of fresh tissue homogenates and nuclei from snap-frozen human liver tissue
Human liver tissue from the caudate lobe was obtained from neurologically-deceased donor liver
acceptable for liver transplantation. Samples were collected with institutional ethics approval
from the University Health Network (REB# 14-7425-AE). A 3mm-cubed fragment of tissue was
preserved for snRNA-seq by snap freezing in liquid nitrogen. Single cell suspensions of fresh
human liver were generated as previously described (2) two step collagenase perfusion protocol

[https://doi.org/10.17504/protocols.io.m9sc96¢]. Single nucleus extraction was performed as

previously described (9). The full description of processing is found in the extended methods.

10x sample processing, cDNA library preparation, sequencing and data processing
Samples were prepared as outlined by the 10x Genomics Single Cell 3’ v2 and 3’ v3 Reagent Kit

user guides and as described previously (2). Single cell data was processed using 10x Cell
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Ranger software version 3.01, mapping reads to the GRCh38 human genome. Single nucleus

data was processed using Cell Ranger version 3, and reads were mapped to a modified
transcriptome based on GRCh38 which included intronic regions to ensure quantification of
reads derived from immature, unspliced mRNA present in the nucleus. The full description of

10x sample and data processing is found in the extended methods.

Data integration and clustering

The data was integrated using default parameters of Harmony (10), then clustered using
Seurat’s SNN-Louvain clustering algorithm (30). The data was clustered using 30 sets of
parameters, and the most consistent clusterings were identified using apcluster (31) on the
cluster-cluster distance matrix calculated using the Variation of Information criterion (32). The

full description of data integration and clustering can be found in the extended methods.

Gene-type and gene length biases between scRNA-seq and snRNA-seq data

3,804 housekeeping genes were obtained from the literature (11). Long non-coding RNAs and
protein coding gene lists were obtained from Ensembl. Nuclear-encoded mitochondrial proteins
were obtained from MitoCarta3.0 (33). Ribosomal genes were obtained from the Ribosomal
Protein Gene database (34). Transcript GC content, miRNA binding sites, transcript length, UTR
lengths and intron length were obtained from Ensembl Biomart. Log Fold changes of mean
expression across all cell-types in scRNA-seq and snRNA-seq were calculated across all

samples.
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Pathway enrichment, correlation and trajectory inference analysis

Pathway enrichment analysis was performed as previously described (2) with the addition of a
dissociation signature to the pathway gene set database (16). Slingshot (v1.8.0) was employed to
infer the pseudotime based on the Harmony embedding matrix of cells. Lineages were calculated
using the Slingshot UMAP embedding protocol (18). Diffusion maps (35) (destiny, v3.1.1) were
computed with both the raw counts matrix and the PCA loadings. Spearman’s rank correlation
coefficient was calculated on each pair of outputs of these analyses and plotted using corrplot

(v0.84). The full description of this analysis is found in the extended methods.

Validation of zonated gene signatures using spatial transcriptomics

Healthy human liver tissue was embedded in OCT, frozen and cryosectioned with 16um
thickness at —10C (cryostar NX70 HOMP). Sections were placed on a chilled Visium Tissue
Optimization Slide (10x Genomics) and processed following the Visium Spatial Gene
Expression User Guide. Tissue was permeabilized for 12 minutes, based on an initial
optimizations trial and libraries were prepared according to the Visium Spatial Gene Expression

User Guide. Samples were sequenced on a NovaSeq 6000.

Visium spatial transcriptomics

The Visium spatial transcriptomic data was sequenced to a depth of 167,400,637 reads, a
saturation of 77%. These reads were mapped to the GRCh38 human genome and expression was
quantified with the spaceranger-1.1.0. Further processing and visualization was performed with
Seurat (version 3.2.1). The full description of Visium data processing is found in the extended

methods.
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Validation of zonated protein expression via the Human Protein Atlas. Immunostaining

images were obtained from the Human Protein Atlas (https://www.proteinatlas.org) (19). Lobule

annotation was confirmed by a liver pathologist (C. Thoeni).

Data availability: Raw data, processed data, code and all cluster-specific DE genes will be made

publicly available through respective databases upon acceptance.
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Fig. 1: Technical differences between scRNA-seq and snRNA-seq in profiling cells
from the healthy human liver. a: Overview of single cell and single nucleus isolation,
datasets integration and analysis workflows. b: Sensitivity of each approach as
measured by the number of genes and transcripts identified in each cell/nucleus. c:
UMAP projection of cells derived from scRNA-seq and snRNA-seq i) merged and then
scaled ii) individually scaled before merging. d: UMAP projection of cells from
scRNA-seq (pink) and snRNA-seq (blue) individually scaled before merging and then
integrated using harmony. e: UMAP plot showing the assigned identity for each cluster
after scaling individually, merging and integrating. f: Frequency of each major cell
population in their source dataset, error bars indicates 95% confidence intervals across
samples. g: Heatmap showing scaled mean expression of known marker genes in each
cluster. LSECs: Liver sinusoidal endothelial cells, cvLSECS: Central Venous Liver
Sinusoidal endothelial cells. UMAP: Uniform Manifold Approximation and Projection.
PCA: Principal Component Analysis
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Fig. 2: Hepatocyte populations in sample-matched scRNA-seq and snRNA-seq
data are spatially resolved by spatial transcriptomics. a: UMAP plot with the six
major populations of hepatocytes split by protocol. b: stacked bar-plot indicating the
frequency of each population in either scRNA-seq or snRNA-seq datasets. Distribution
of hepatocytes by protocol (¢) or by donor sample (d) in the combined dataset. e:
Correlation of human hepatocyte clusters to known mouse liver sinusoid layers
calculated using Spearman correlation. ***P<0.001, **P< 0.01, *P<0.05. f: Expression of
known marker genes in hepatocyte subpopulations in the combined dataset. Gene
signature scores of the top 30 marker genes in clusters CV (g), PP2 (h) and 1Z2 (i)
across the spatial transcriptomics spots of a healthy human liver cryosection. j: Pathway
enrichment analysis examining which cellular pathways are better represented by
snRNA-seq (cyan) and scRNA-seq (pink) in the central venous, periportal and
interzonal hepatocyte populations. Circles (nodes) represent pathways, sized by the
number of genes included in that pathway. Related pathways, indicated by light blue
lines, are grouped into a theme (black circle) and labeled. Intra-and inter-pathway
relationships are shown in light blue and represent the number of genes shared
between each pathway. Log2FC of significant genes (g-value<0.05) within either
scRNA-seq (Red) or snRNA-seq (blue) or both (black) for CV hepatocytes (k: cluster
CV), PP clusters (I: clusters: PP1 and PP2), and IZ clusters (m: clusters: IZ1 and
1Z2).CV: Central Venous, IZ: Inter-zonal, PP: Periportal.

26


https://doi.org/10.1101/2021.03.27.436882
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.27.436882; this version posted March 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

scRNA-seq
a scRNA-seq snRNA-seq b ¢ = snRNA-seq d Samples
100= 1009
2 A g W c41_sc
s Py K] ared W c41_csT
« 0 r = Cluster o7se W c41_NST
g A= 9 I Chol-1 . M c41_TST
= p 8 [ Chol-2 ¢ 5 W cs8_SC
S -2 g I Chol-3 §m. g o W cs8_TST
] 1 Chol-4 W c70_sc
4 g W Chol-5 M c70_TST
2" Wi Chol-6 026 W cr2_sc
K W cr2_T8T
®
10 -
UMAP1 o ™ 000 W [ — )
@®chol-1 @ Chol-2 ®Chol-3 ®Chol-4 @ Chol-5 @ Chol-6 s & s oy 6 o PN P oy oo
<5 L L2882 L LeLeLLl
55 g O o g O O S 0 6 U6 G O
5§
e ’
Hepatocyte Progenitor-associated markers Cholangiocyte
r 1T 1 1
Avg Expression
cho-+{@OO@O00 00000 - Do : 0:000000000000000000000°0000000°0 - .
1
cho-5 )OO0 0000 - 00 - ¢ -@:-¢ - ¢:000000000000000000 00 -:-000000 ¢ N
zcho-1{@@O@0 000 00 -0 -@-° -  ©:-0000000000000000cQ0cco:--000000 o - -
g
Echo2|@@O@@O®® 00 - 0@ - o - @ o o - o 0000000000000 0 0000000000 ¢ o - PctExpessed
-0
cho-6 (@@ OOOO0 000000 c@c0 - 2:000000000000000000 0 000000 0 ¢
50
3|0 00000000000 0 00 - - 020000000000000000cQc0::-000000 - o - :75

. 100

<&

‘b R & D O \a N > © P o D N N DD N o &N
%&@?‘?‘QYP‘ D T PP & RS 5 &V QS'Q'?‘Q‘FQ'Y?\} P @ P P @ LR L B N
FEEE S ST SIS Qo%ogoo&o@@ooa&@ TESSFFTEFT O E L0 5g \% P ELEL TGOS
&
Features
MacParland et al. 2018
h Cholangiocyte sub-clustering
9.
® o~
f 5
o
4 =
3o 3
N =
poﬁ:‘r‘“y Gralpha Cholangiocyte S
signaling _integrin
. . . (Chol-4, Chol-5) .
lipoprotein cD8 !
article, .
scavenglng@p ® i
T T T T
lymphocyte endoderm  coagulation 5 0 5 10 ALE
inhibition ® . . s
. UMAP 1 o
JFCR3 o AMB2 < BMP .xenoblonc AeR
integrin metabolism homeostasis Slingshot Pseudotime 1 gs,;é
neuron E3 NFkB CYP3AG
projeclion@ IIgases@ RHO® N 0 ‘SE'ZE
purine WNT 10 20 30 40 50 ERRFI1
PDGF  JAK/STAT ~ Mmetabolism hefew‘yplc wirs ERREER
adhesion GATA4
Prox1 MM Iil
Foxos IINIIMIN RN ]
proteoglycan ometaphase oNEREER
° . Pathways enriched in aueis [
el glycoprotein Single Nucleus RNA-seq s e ‘.”",”
junction mesenchme@ ) . accau fl [ ]
ransport P Pathways enriched in P
O i seTramer o mee Single Cell RNA-seq e
circulation » BCR RUNX1
FRA @ % @ ECM SOX8
allograft carboxylic regulators cton
rejection acid @ >\ tube CDH1
ELF3
cell cycle MHC 11 - size  cell SPP1
RAS inhibition @ @ @ innate projection oK
L1 cytokine amide immunity innate temperature © ShEne
biosynthesis metabolism receptor stimulus SERPINAS
; cxeis
SHP2 translation proliferation cell djvision i cyrel
cell membrane multi organism protein bt
alpha @c cle . organization TNF inhibition location KRT18
amino acid Yy mitochondrial ® @ KRT7
permeability membane @ OCh3:
BDNF Huntington i i LCN2
! dlseagse . cumyg  epidermis . lo ther caspase o
D D
angiopoietin GPCR stress @ protein viral J Lo op
° Leptin inhibition  abolism  Neutrophil excision transport endomembrane  response o] ¥R ® Chok-1
phagocytosis  inhibition activation repair .}. '\‘.: ® Chol-4
. . N @ Unassigned
biomineral  cxCR4 % 5;
tissue endothelial . WNT >
TGFb P53 migration signaling
. °

Mature Hepatocyte (Chol-3)

Progenitor cell types (Cho Choe

0 5
UMAP 1

Fig. 3: Cholangiocyte-associated cells as revealed by SnRNA-seq. a: UMAP plot
with the six major populations of cholangiocytes and progenitor cells identified in the
combined dataset split by protocol. b: Frequency of each population in either
scRNA-seq or snRNA-seq datasets. Distribution of each population by protocol (¢) and
by sample (d) in the combined dataset. e: Expression of known cholangiocyte,
progenitor and hepatocyte marker genes in each population. The size of the circle
indicates the percentage of cells in each population expressing each gene. f: Pairwise
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pathway analysis comparing cholangiocyte-like, progenitor-like and mature
hepatocyte-like cells from snRNA-seq (cyan) to those from scRNA-seq (pink). Circles
(nodes) represent pathways, sized by the number of genes included in that pathway.
Related pathways, indicated by light blue lines, are grouped into a theme (black circle)
and labeled. Due to low cell number, similar clusters were combined for pathway
analysis (see Extended Data Fig. 15) for more details. g: UMAP plot coloured by
Slingshot (18) pseudotime values with the inferred cholangiocyte to hepatocyte
trajectory overlayed. h: UMAP of sub-clustered cholangiocyte-like populations from an
independent scRNA-seq healthy human liver dataset (2). i: Heatmap depicting the
relative expression of cholangiocyte sub-population associated marker genes in (2)
cholangiocyte-like cells. j: Projection of cell-type annotations from the combined
scRNA-seq and snRNA-seq cholangiocyte dataset on to scRNA-seq data from (2) using
scmap-cell (23). CV: Central Venous.
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Fig. 4: Identification of quiescent, activated and inactivated HSCs in the healthy
human liver through scRNA-seq and snRNA-seq. a: UMAP plots with the seven
major clusters of stellate cells in the combined dataset, split by protocol. b: stacked
bar-plot indicating the frequency of each population in either scRNA-seq or snRNA-seq
datasets. Distribution of each population by protocol (¢) and by sample (d) in the
combined dataset. e: Dot-plot indicating the relative expression of known stellate
subtype specific marker genes in each population. The size of the circle indicates the
percentage of cells in each cluster expressing each gene. f: Pathway enrichment
analysis examining what are the upregulated (red) and down-regulated (cyan) biological
pathways in each stellate cell cluster in the combined scRNA-seq and snRNA-seq
dataset. Circles (nodes) represent pathways, sized by the number of genes included in
that pathway. Related pathways, indicated by light blue lines, are grouped into a theme
(black circle) and labeled. g: The original stellate cell UMAP plot coloured by Slingshot
(18) pseudotime values with the inferred lineage overlayed. h-n: Log2FC of significant
genes (g-value<0.05) within either scRNA-seq (Red) or snRNA-seq (blue) or both
(black) for each cluster within the stellate cell dataset. HSC: Hepatic Stellate Cell.
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Fig. 5: Analysis of LSECs in the combined scRNA-seq and snRNA-seq dataset. a:
UMAP plots with the three major endothelial cell populations in the combined dataset
split by protocol. b: Frequency of each population in either scRNA-seq or snRNA-seq
datasets. Distribution of each population by protocol (¢) and by sample (d) in the
combined dataset. e: Dot-plot indicating the relative expression of known LSEC marker
genes in each population by protocol. The size of the circle indicates the percentage of
cells in each population expressing each gene. f: Pathway enrichment analysis
examining which cellular pathways are better represented by snRNA-seq (cyan) and
scRNA-seq (pink) in each of the LSEC subpopulations. Circles (nodes) represent
pathways, sized by the number of genes included in that pathway. Related pathways,
indicated by light blue lines, are grouped into a theme (black circle) and labeled. g,i:
Log2FC of significant genes (g-value<0.05) within either scRNA-seq (Red) or
snRNA-seq (blue) or both (black) for each cluster within the LSEC dataset. LSEC: Liver
Sinusoidal Endothelial cells.
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Fig. 6: Analysis of liver resident macrophages in the combined scRNA-seq and
snRNA-seq dataset. a: UMAP plots depicting the clustering of inflammatory and
non-inflammatory macrophages in the combined dataset split by protocol. b: stacked
bar-plot indicating the frequency of each population in either scRNA-seq or snRNA-seq
datasets. Distribution of each population by protocol (¢) and by sample (d) in the
combined dataset. e: Dot-plot indicating the relative expression of known inflammatory
and non-inflammatory macrophage marker genes in each cluster by protocol. The size
of the circle indicates the percentage of cells in each population expressing each gene.
f: Log2FC of significant genes (5% FDR) within either scRNA-seq (Red) or snRNA-seq
(blue) or both (black) for each cluster within the macrophage populations,
non-significant shown in grey. g: Pairwise pathway enrichment analysis comparing
snRNA-seq to scRNA-seq in each macrophage subpopulation. Pathways enriched in
snRNA-sq are labelled in cyan and pathways enriched in scRNA-seq are indicated in
pink. Circles (nodes) represent pathways, sized by the number of genes included in that
pathway. Related pathways, indicated by light blue lines, are grouped into a theme
(black circle) and labeled. Macs: Macrophages.
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Fig. 7: Liver-resident lymphocytes are enriched in scRNA-seq datasets. a: UMAP
plots depicting the clustering of various lymphocyte subpopulations in the combined
dataset split by protocol. b: Frequency of each population in either scRNA-seq or
snRNA-seq datasets. Distribution of each population by protocol (¢) and by sample (d)
in the combined dataset. e: Heat-map showing the most- significantly upregulated
genes per cluster. ab: alpha-beta; gd: gamma-delta; NK: natural killer.
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