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Abstract 25 

We aimed to develop an optimized approach to determine ploidy for dried leaf material in a 26 

germplasm collection of a tropical forage grass group, including approaches to collect, dry 27 

and preserve plant samples for flow cytometry analysis. Urochloa (including Brachiaria, 28 

Megathyrus and some Panicum) tropical grasses are native to Africa and are now, after 29 

selection and breeding, planted worldwide, particularly in South America, as important 30 

forages with huge potential for further sustainable improvement and conservation of 31 

grasslands. The methods enable robust identification of ploidy levels (coefficient of variation, 32 

CV, typically <5%). Ploidy of some 353 forage grass accessions (ploidy range from 2 to 9), 33 

from international genetic resource collections, showing variation in basic chromosome 34 

numbers and reproduction modes (apomixis and sexual), were determined using our defined 35 

standard protocol. Two major Urochloa agamic complexes used in the current breeding 36 

programs at CIAT and EMBRAPA: the 'brizantha' and 'humidicola' agamic complexes are 37 

variable, with multiple ploidy levels and DNA content. U. brizantha has odd level of ploidy 38 

(x=5), and the relative differences in nuclear DNA content between adjacent cytotypes is 39 

reduced, thus more precise examination of this species is required. Ploidy measurement of U. 40 

humidicola revealed some aneuploidy. 41 

 42 
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1. Introduction 49 

 Understanding the genome compositions of species within complexes including 50 

diploid and polyploid species is critical to evaluate their biodiversity, for conservation and to 51 

evaluate the potential for use in breeding; measurement of genome size, across potentially 52 

large germplasm collections, underpins such work. Grasslands and rangelands with grasses as 53 

the dominant species, being the largest ecosystems in the world, are the basic feed resources 54 

for livestock, and contribute to the livelihoods of over 800 million people including 55 

smallholders (Food and Agriculture Organization of the United Nations; http://www.fao.org/). 56 

Only 100–150 of the 10,000 forage species have been extensively cultivated, but many more 57 

have great potential for sustainable agriculture, and improvement and conservation of 58 

grasslands, including the genus Urochloa (previously classified in Brachiaria, and some 59 

Eriochloa, Panicum and Megathyrsus; González and Morton, 2005) comprising species 60 

native to tropical and subtropical regions of Africa. The great forage potential of these grasses 61 

have been recognized in the 1950s (Miles et al., 1996), leading to the acquisition of 700 62 

accessions of Urochloa and related genera during the joint collection mission of CGIAR 63 

(Consultative Group on International Agricultural Research) lead centers: CIAT (Centro 64 

Internacional de Agricultura Tropical) and ILRI (International Livestock Research Institute) 65 

in Africa in the 1980s. Five species of Urochloa: U. ruziziensis,  U. decumbens, U. brizantha, 66 

U. humidicola, and U. maxima were then introduced in South America, and have been using 67 

as fodder plants mainly in Colombia and Brazil (Keller-Grein et al., 1996). 68 

In exploiting biodiversity in breeding, improvements in yield and nutritional quality of 69 

forages can be achieved by identifying genes increasing the digestibility of plant cell walls 70 

and the protein and lipid content in vegetative tissues, and increasing biomass production 71 

(Capstaff and Miller, 2018). By introduction to plant breeding programmes, genetic 72 

improvement of forage lines, recurrent genetic selection of plants showing useful traits, and 73 
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subsequent hybridizations and back-crossings (Barrios et al., 2013; Hanley et al., 2020), 74 

create more diverse agroecosystems resilient to climate and environmental changes 75 

(Baptistella et al., 2020). The DNA amount measurement for ploidy and genome size 76 

estimation, and the characterization of genome composition are required for effective use of 77 

diploids and polyploids in breeding programs, as well as for research purposes (Ochatt, 2008; 78 

Tomaszewska et al., 2021).  79 

Preparation of metaphases from dividing plant tissues, followed by microscopy and 80 

chromosome counting, is widely used to determine the ploidy of individual plants and show 81 

polyploid series within larger groups. However, the method is time-consuming and highly 82 

skilled, both in terms of growing plants and collecting root-tips or meiotic material, and in 83 

making the preparations. The most rapid and convenient technique for ploidy measurement is 84 

flow cytometry using suspensions of fluorescently labelled nuclei (Heslop-Harrison and 85 

Schwarzacher, 1996; Doležel et al., 1997; Schwarzacher et al., 1997; Bennett et al., 2000; 86 

Śliwińska, 2018), that is now widely adopted for fresh leaf specimens. Image cytometry is 87 

another tool for nuclear genome size analysis; however, despite some examples of its use 88 

(Greilhuber et al., 2003), it has not proven widely applicable for estimation of ploidy in plant 89 

tissues, because its image processing algorithms gives imprecise and unreliable results that 90 

cannot be compared to other methods (Svoboda et al., 2009). Scanning microdensitometry has 91 

proved reliable in measuring genome sizes, but requires equipment not now available (Bory et 92 

al., 2008). Direct sequencing of DNA, and either assembly or analysis of counts of short 93 

sequence motifs present in the reads (k-mer analysis) is often used to measure genome sizes in 94 

DNA sequencing programmes (Marçais and Kingsford, 2011), but is not appropriate for 95 

screening collections. 96 

 Phenolics, hydroxamic acids, and short-chain fatty acids are present in plants, and 97 

some of these phytochemicals have been identified as inhibitors of fluorescent DNA staining, 98 
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hence leading to inaccurate flow cytometry-based measurement of DNA content (Loureiro et 99 

al., 2006a; Bennett et al., 2008; Greilhuber, 2008; Price et al., 2000; Jędrzejczyk and 100 

Śliwińska, 2010). The ability of tropical and subtropical plants to synthesize secondary 101 

metabolites and possess allelopathic potential is exceptional (Ooka and Owens, 2018). Mild 102 

winters and small temperature fluctuations mean that the growing season is year-round in 103 

tropical and subtropical regions, and they provide the strong competition of plants for 104 

resources, and succession. Seasonal and regional differences in accumulation of secondary 105 

products may cause differences in staining for flow cytometry. Secondary metabolites and 106 

their phytotoxicity on forage legumes have been recognized in Urochloa tropical forage 107 

grasses (Ribeiro et al., 2012, 2018; Oliveira et al., 2017; Feitoza et al., 2020), which has been 108 

suggested to make it difficult to analyze these plants by flow cytometry (Penteado et al., 109 

2000).  110 

 For Urochloa, ploidy estimation across the whole germplasm collection (excluding 111 

one species, U. ruziziensis, known only as a diploid) is required due to the different pathways 112 

of reproduction showing sexual and apomictic accessions within same species (Roche et al., 113 

2001), natural triploid interspecific hybrids (Timbó et al., 2014), different genome 114 

compositions both within and between species (Tomaszewska et al., 2021), confirmed 115 

aneuploidy (Moraes et al., 2019; da Rocha et al., 2019; Tomaszewska et al., 2021), and 116 

different basic chromosome numbers (x=6, 7, 8 and 9; de Wet, 1986; Basappa et al., 1987; 117 

Bernini and Marin-Morales, 2001; Risso-Pascotto et al., 2006; Boldrini et al., 2009b; 118 

Worthington et al., 2019).  119 

Ideally, a common reference standard for flow cytometry and ploidy measurement 120 

should be a diploid plant from the taxon of the tested samples, grown and collected under 121 

similar conditions, and where chromosomes can be prepared and counted. For a pool with 122 

diverse ploidies, several standards are helpful, although the lack of seeds or living plants may 123 
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make it impossible to prepare metaphase plates from root tips, and challenges (e.g. due to 124 

apomictic mode of reproduction of studied species, difficulties with germination of tropical 125 

plant seeds, or having only herbarium samples), may mean a less related standard with known 126 

ploidy level, genome size and basic chromosome number similar to the unknown samples 127 

must be used (Śliwińska, 2018). 128 

 Fresh leaves usually been considered the best material for flow cytometry analysis. 129 

However, there is often a requirement for use of field-material, collected under sub-optimal 130 

demanding conditions compared to plants for greenhouse or experimental field and requiring 131 

storage and transport to the flow cytometry facility. Also, work often needs to use herbarium 132 

or stored material, which may not be possible to collect again, or is the reference for 133 

published studies, or is determined as a new species/taxonomic revision, requiring 134 

determination of ploidy and estimation of genome size (Suda and Trávníček, 2006). The 135 

applicability of flow cytometry for dehydrated leaves is limited by several factors, including 136 

insufficient amounts of tissue, sampling of mature plants, incorrect drying, storage and 137 

preservation of samples, and the low efficiency of nuclei isolation due to their degradation. 138 

 For flow cytometry analysis of nuclear genome sizes from fresh and dried material, 139 

coefficient of variation (CV) – defining the variation in fluorescence intensity from nucleus to 140 

nucleus, visualized as the width of the intensity peak – is an important criterion showing 141 

estimation of nuclei integrity and variation in DNA staining (Bennett and Smith, 1976; 142 

Bennett et al., 1982; Arumuganathan and Earle, 1991; Bennett and Leitch, 2011;  Loureiro et 143 

al., 2006b). Low coefficient of variation, even for dried leaf specimens (Suda and Trávníček, 144 

2006), or seeds (Jędrzejczyk and Śliwińska, 2010), petals and pollen (Roberts, 2007), can be 145 

achieved by using appropriate isolation buffers and their supplementation, stains and staining 146 

protocols, the practical technique used for chopping leaves in the buffer, and even choice of 147 

razor blades.  148 
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 Here, we aimed to develop an optimized and robust approach to determine ploidy for 149 

dried leaf material of tropical forage grasses. The established method can be widely adopted 150 

for dried leaf specimens, especially when screening genomically variable germplasm resource 151 

collections, defining a standard protocol recommendation. More specifically, we intended to 152 

optimize the flow cytometry assay for Urochloa grass group that shows variation in basic 153 

chromosome numbers and reproduction modes. 154 

 155 

2. Materials and Methods 156 

2.1. Plant material 157 

Accessions of Urochloa and related species used in the study are listed in Supplementary 158 

Data Table S1. Seeds of Urochloa sp. PI 657653, U. brizantha PI 292187 and U. maxima PI 159 

284156 (Table 1) were provided by United States Department of Agriculture (USDA, USA). 160 

Seeds of Panicum miliaceum Mil69 were provided by the Vavilov Research Institute (VIR, St 161 

Petersburg, Russia). Centro Internacional de Agricultura Tropical (CIAT, Colombia) provided 162 

seed samples of U. decumbens 664 and 6370, U. ruziziensis 6419, U. humidicola 26151 and 163 

16867, and U. maxima 6171 and 16004. Leaf samples intended for flow cytometry analysis 164 

were collected from germplasm accessions grown and maintained in the field genebank at 165 

CIAT Palmira campus (Fig. 1).  166 

2.2. Collection and preservation of plant material for flow cytometry 167 

1. Leaf fragments of approximately 1g fresh weight were harvested in the field, folded into 168 

permeable manila seed storage envelopes (80gsm) and kept in a sealed plastic bag on wet ice. 169 

Young leaves from typical vigorous specimens, representative of the population in each plot, 170 

were selected. Insect damaged and discolored plants were avoided. 171 
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2. The envelopes were then stored in a sealed desiccators at ambient pressure, or a airtight 172 

plastic box (as used for sandwiches or larger sizes), at room temperature with a thick layer of 173 

self-indicating silica gel (a granular material with c. 3 to 5mm irregular beads; e.g. Type III 174 

Sigma-Aldrich, S7625; or self-indicating mixed with non-indicating silica gel; cheaply 175 

available from online marketplaces). The silica gel was changed daily until it did not change 176 

colour, which was after approximately 4-5 days. 250g of silica gel was used for 30 leaf 177 

samples. 178 

3. Multiple samples in the paper envelopes are then transferred to sealed plastic bags with a 179 

small amount of silica gel. If there is any question of insect contamination of leaf collections, 180 

the plastic bags can be frozen (-20C, 48hr). 181 

4. The plastic bags with envelopes of dried leaves and silica gel, can be shipped under 182 

ambient conditions to the University of Leicester, UK (with appropriate export and import 183 

documentation, here under “Section IV: Cut flowers, foliage and vegetables” and “Section III: 184 

Seeds for planting” of the UK “Import requirements for plants, plant produce and products”). 185 

The sealed bags, after inspection and replacement of silica gel if required, are then stored in 186 

4oC in plastic boxes containing silica gel until flow cytometry analysis. 187 

5. The seeds received from VIR, USDA and CIAT were germinated in a tropical greenhouse 188 

(25oC), and leaf samples were collected from plants, and dried and preserve in the same way 189 

as those collected in the field in Colombia, and then used as standards for flow cytometry 190 

analysis. 191 

2.3. Flow cytometry protocol 192 

For ploidy measurement, Panicum miliaceum Mil69 (2n=4x=36; Hunt et al., 2014) was used 193 

as a first standard to recognize ploidy of some accessions of studied plants. Subsequent 194 

internal standards were then included in the analyzes, and their number of chromosomes was 195 
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confirmed microscopically. Cell nuclei suspension from dehydrated leaf tissues were prepared 196 

for flow cytometric analysis according to Doležel et al. (2007) with minor modifications.  197 

1. 500 mg of dried leaf of each accession were chopped with a sharp razor blade in a 198 

55x15mm polystyrene Petri dish with ice cold 1 mL nucleus-isolation buffer. Much smaller 199 

amounts of leaf material (e.g. 100 mg) did not give suitable nuclear suspensions. We used 200 

double edge stainless razor blades (AstraTM Superior Platinum), allocating one razor edge per 201 

one studied accession. For safe holding of the razor blade while chopping, a rubber grip was 202 

used. Single-edge razor blades are not suitable as they are too thick and not sharp enough. 203 

There is variation between different makes of double-edge razor blades: the most widely 204 

available Gillette blades can be used but are not as good as some other makes. 205 

2. Three different standard buffers were evaluated, as showed in Table 1. Buffers were 206 

supplemented with 15mM β-mercaptoethanol and 1% PVP-40 (polyvinylpyrrolidone-40) and 207 

the effect of these chemicals on reducing negative effect of cytosolic and phenolic compounds 208 

was tested.  209 

3. After finely chopping the material in the buffer, the nuclei suspension was passed through a 210 

50 μm mesh nylon filter (CellTrics, Partec) into the 12x75 mm round-bottom polystyrene 211 

flow cytometry tubes (Falcon® with caps preventing cross-contamination, but any other 5mL 212 

flow cytometry tubes can be used), and placed on ice. 213 

4. The nuclei suspension was then supplemented with propidium iodide (PI, final 214 

concentration 50 µg mL-1; solution in deionized water, passed through a 0.22-mm filter), and 215 

ribonuclease A (final concentration 50 µg mL-1) to prevent staining of double-stranded RNA, 216 

and mixed gently using vortex. 217 

5. Samples were incubated at least 10 min (and up to 2 hours) on ice in darkness, and then 218 

were analysed in an Accuri C6 Flow Cytometer (Becton Dickinson), equipped with a 20-mW 219 
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laser illumination operating at 488 nm; however much simpler instruments (e.g. Partec) are 220 

sufficient to measure DNA content.  221 

6. The histograms (FSC-A vs SSC-A, FL1-A vs FL2-A, FL3-A vs FL2-A, and an univariate 222 

histogram of FL2-A) were acquired using the CFlow® Plus software set up according to 223 

Galbraith and Lambert (2012); when use other instruments, follow manufacturer’s 224 

instructions for appropriate setting. Here, the following filter configurations were used: FL-1 - 225 

a 530/14-nm bandpass filter; FL-2 - a 585/20-nm bandpass filter; and FL-3 - a 670-nm 226 

longpass filter. The primary threshold was set to channel 10,000 on FSC-A to gate out debris 227 

and noise from nuclei suspension. The secondary threshold was set at 1,000 for FL-2. 228 

Polygonal gating tool was used to draw a region on the FSC-A vs SSC-A plot, and a line-229 

shaped cluster of dots showing PI-stained nuclei on the biparametric dot plot of FL2-A vs 230 

FL3-A. Based on this gating, G0/G1 and G2 peaks appeared in an univariate histogram of FL2-231 

A.  232 

7. The relative fluorescence intensity of PI-stained nuclei (FL), and the coefficient of variation 233 

(CV) of the G0/G1 peak to estimate nuclei integrity and variation in DNA staining were 234 

evaluated in each sample by placing regions of identification across the peak to export values.  235 

8. Ploidy of studied plants were determined by comparing the PI fluorescence intensities of 236 

samples to that of standards. 237 

2.4. Microscopy and validation of chromosome numbers 238 

For chromosome number calculation of standards we used modified protocol of Schwarzacher 239 

and Heslop-Harrison (2000). 240 

1. Urochloa seeds, like many other tropical grasses, did not germinate in Petri dishes. The 241 

seeds were germinated in a 25oC greenhouse, in a 15x15cm plastic pots containing Levington 242 

F2 + S soil. 243 
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2. Root tips were collected from plants cultivated in a greenhouse, treated with α-244 

bromonaphthalene at room temperature for 2 h, and 4oC for 4 h, and fixed in absolute ethyl 245 

alcohol:acetic acid solution, 3: 1.  246 

3. The root tips were washed in enzyme buffer (10mM citric acid/sodium citrate) for 15 min, 247 

and then they underwent enzymatic maceration in 20U/ml 2 cellulase (e.g. Sigma C1184), 248 

10U/ml 'Onozuka' RS cellulase and 20U/ml pectinase (e.g. 3 Sigma P4716 from Aspergillus 249 

niger; solution in 40% glycerol) in 10mM enzyme buffer for 60 min at 37oC. 250 

4. Digested root tips were squashed in 60% acetic acid. Cover slips were removed after 251 

freezing with dry ice.  252 

5. Air-dried slides were counterstained with DAPI (4',6-diamidino-2-phenylindole, 2 µg/mL) 253 

in antifade solution (Citifluor, Vectashield, Slowfade or any other commercial antifading 254 

reagents for fluorescence microscopy), which prevents the permanent loss of fluorescence due 255 

to prolonged exposure to high intensity light sources.  256 

6. Slides were analyzed with an epifluorescence microscope with appropriate UV 257 

illumination, filters and camera (Nikon Eclipse 80i; DS-QiMc monochromatic camera, and 258 

NIS-Elements v.2.34 software, Nikon, Tokyo, Japan). The number of chromosomes were 259 

counted. 260 

 261 

3. Results 262 

3.1. Optimization of flow cytometry assay for dried leaves of Urochloa 263 

3.1.1. Flow cytometry troubleshooting 264 

Nuclei isolated from properly collected, dried and well-preserved leaf samples, as explained 265 

in materials and methods, give histograms showing peaks from cells at different stages of the 266 
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cell cycle: higher G0/G1 (DNA in nuclei is unreplicated, and may come from differentiated 267 

cells) and lower G2 (DNA replicated) peaks. Sometimes more peaks are observed, like three 268 

gradually declined peaks on Fig. 2A, indicating endoreduplication process. Use of older leaf 269 

collections may give less marked, flatter, wider or additional peaks on the histogram (Fig. 270 

2B). Fresh and dried leaves should give the similar position of peaks, as shown on Fig. 2C 271 

and 2D for comparison, however, the number of isolated nuclei from dried leaves may be 272 

smaller due to sample degradation. Ideally, several samples of one accession should be run as 273 

the position of the peak on the histogram may vary slightly between plants. It is extremely 274 

important to use standard double-edge razor blades as those with single edge are not very 275 

sharp, crushing rather than chopping the tissue, resulting in thick and short peaks on 276 

histograms (Fig. 2E); it is important to chop rather than slice the leaves. In order to get better 277 

results and remove debris and noise from histograms, gating is recommended. In the example 278 

of Fig. 2F, nuclei of interest were being selected (gated) on the FSC-A vs SSC-A and  FL2-A 279 

vs FL3-A plots (as explained in M & M), resulting in sharper peaks of G0/G1 and G2 and 280 

lower background on univariate histogram of FL2-A, in comparison to Fig. 2G where gating 281 

tools were not applied. 282 

3.1.2. Buffers 283 

Three different standard isolation buffers (Table 1) were tested to isolate nuclei from 284 

dehydrated Urochloa leaves. No peaks (Fig. 3A) or very low peaks were obtained analyzing 285 

samples of nuclei isolated using Galbraith's buffer (Galbraith et al., 1983) which is optimized 286 

for fresh material. Small numbers of nuclei were isolated using Otto's buffer (Otto, 1992) 287 

giving histograms with increased level of background and high CVs (Fig. 3B). 288 

Supplementation of Otto's buffer with β-mercaptoethanol only slightly increased the peak 289 

resolution (Fig. 3C). Well-defined histograms with acceptable CV values and reasonable 290 

number of nuclei (Fig. 3D,E,F) were obtained using Partec buffer (de Laat et al., 1987). The 291 
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sharpest peaks were yielded after supplementation of this buffer with 15mM β-292 

mercaptoethanol and 1% PVP-40 (Fig. 3F). 293 

3.1.3. Standards used for flow cytometry analysis  294 

The procedure of counting ploidy from Urochloa dried leaf specimens by flow cytometry was 295 

optimized by choosing appropriate buffer composition (Table 1, Fig. 3), drying and 296 

preservation of plant samples (protocol in M&M, Fig. 2), chopping technique (Fig. 2) and 297 

eleven different standards (Table 2, Fig. 4). Panicum miliaceum (2n=2x=36) was used as a 298 

first standard to recognize accessions for which the level of ploidy was certain. The seeds of 299 

these accessions were obtained from CIAT and USDA, germinated in a greenhouse, and the 300 

ploidy of plants was validated by preparing mitotic slides and counting chromosomes 301 

microscopically (Fig. 4). These samples were then used as internal standards, and their mean 302 

peak indices were given in Table 2. The position of peaks of Urochloa humidicola CIAT 303 

16867 on the histogram (Fig. 4F) suggested that this accession was most likely to be 304 

heptaploid, but chromosome counting revealed it to be aneuploid with 2n=8x+2 or 9x-4=50. 305 

3.2. Ploidy measurement of Urochloa and related species 306 

DNA content of 353 accessions of Urochloa and related species from CIAT and USDA 307 

germplasm collection were measured using flow cytometry of imported dried leaf materials 308 

using the optimized technique giving very sharp peaks. Values representing peak positions 309 

and CVs were exported and are given in Supplementary Data Table S1, and summarized in 310 

Table 3. CV values were slightly increased comparing to the fresh leaf specimens of Panicum 311 

miliaceum (approximately 2,5%). A coefficient of variation of less than 5% is desirable, but 312 

analysis of older leaves often gives broader peaks with a still usable CV between 5% and 313 

10%. Where possible, several leaf samples for one accession were measured enabling 314 

comparison of mean peak positions between different plants of the same accession. In general, 315 
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these values did not differ significantly from plant to plant, proving the established method. 316 

The position of mean peak samples were compared to that of the eleven standards (Table 2). 317 

For each level of ploidy of the individual species, a range of mean peak indices have been 318 

established (Table 3), and these ranges for the most numerous species were shown on Fig. 5. 319 

3.2.1. 'brizantha' agamic complex 320 

Three species belonging to the 'brizantha' agamic complex: Urochloa ruziziensis, U. 321 

decumbens and U. brizantha have a basic chromosome number x=9. All accessions of U. 322 

ruziziensis studied here were diploid (Supplementary Data Table S1), showing similar range 323 

and average of mean peak indices to that of diploid U. decumbens (see Table 3 and Fig. 5). 324 

Within both species there are single samples showing higher mean peak indices than the 325 

others. U. decumbens accessions differ in their ploidy levels, showing diploids, tetraploids, 326 

and hexaploid (Supplementary Data Table S1), that can be clearly distinguishable using 327 

flow cytometry, because the ranges of mean peak indices for each ploidy level did not 328 

overlap. This results contrasts with U. brizantha, where the sample mean peak ranges of 329 

diploids, tetraploids, pentaploids and hexaploids overlapped, meaning that ploidy levels of 330 

this species are not so obvious (see Fig. 5). This is particularly evident when looking at the 331 

differences in index values between samples of the same accession (see Supplementary Data 332 

Table S1).  333 

3.2.2. 'humidicola' agamic complex 334 

Two polyploid species with basic chromosome number x=6 were assigned to the 'humidicola' 335 

agamic complex: U. humidicola and U. dictyoneura. Three different ploidy levels were 336 

recognized in the U. humidicola: hexaploid, heptaploid, and nonaploid (Supplementary Data 337 

Table S1). U. dictyoneura accession used in our studies seemed to be heptaploid. In general, 338 

each ploidy level of U. humidicola has its own range of mean peak values (Fig. 5), however 339 
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due to confirmed aneuploidy within species (U. humidicola CIAT 16867 with 2n=8x+2 or 9x-340 

4=50), additional validation, e.g. counting chromosome numbers, seems to be needed.   341 

3.2.3. Urochloa maxima 342 

Two ploidy levels were recognized in U. maxima. Some diploid and tetraploid accessions 343 

showed similar values of mean peaks (Fig. 5). Those samples that have extreme results and 344 

peaks well beyond those of the reference internal standards, should have their chromosomes 345 

counted. 346 

3.2.4. Related species 347 

Several tropical grass species with potential for improvement and wider use as forages have 348 

been studied here, including other cultivated and wild Urochloa species, as well as Paspalum, 349 

Panicum, Pennisetum, and Andropogon, showing different basic chromosome numbers. In 350 

most cases, our internal standards were useful to establish ploidy levels of studied species. 351 

However, for Pennisetum polystachion and P. purpureum with basic chromosome numbers 352 

x=9 and x=7, respectively, we had to use the literature data on possible ploidy levels observed 353 

for these species due to the higher genome size comparing to the internal standards belonging 354 

to 'brizantha' and 'humidicola' complexes (Martel et al., 1997; Campos et al., 2009; dos Reis 355 

et al., 2014). 356 

 357 

4. Discussion 358 

4.1. Flow cytometry as a standard technology 359 

Flow cytometry has become the standard technology for measuring the ploidy and genome 360 

sizes of plants (Doležel and Bartoš, 2005), allowing the measurement of hundreds of samples, 361 

even genomically diverse species, in a relatively short time. In most cases, freshly collected, 362 
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field- or garden- grown leaf material is used, with a small number of accessions. We have 363 

optimized the methods for sampling, drying, storage, transport and preservation of tropical 364 

forage grasses to use some time later with a robust flow cytometry protocol for measurement 365 

of ploidy (Figs 2, 3; Table 1). We show the utility in a relatively large and diverse germplasm 366 

collection (353 accessions) of the tropical forage grass genus Urochloa (Brachiaria) (Tables 367 

2, 3; Supplementary Data Table 1). The method allows wider field and geographical 368 

sampling of plants when fresh leaf tissues cannot be examined shortly after harvesting (Wang 369 

and Yang, 2016). Integration of ploidy levels and agronomic traits, especially those related to 370 

resistance and tolerance to pest and diseases, is important to define a breeding strategy to 371 

exploit germplasm with diverse ploidy levels (Alves et al., 2013; Barrios et al., 2013; Matias 372 

et al., 2016). Where collections have various ploidies, flow cytometry can help the 373 

verification of samples from field collections, where mislabelling, or spread of incorrect seed 374 

or plants in vegetative plots may lead to replacement of one accession with another over 375 

decades. Comparison of similar accessions numbers from Brazil and Colombia detects some 376 

such differences. Polyploidy promotes genome diversification and gives plasticity to species 377 

(Soltis and Soltis, 1993), thus it is pertinent to examine ploidy of as many accessions as 378 

possible in order to choose those suitable for crossbreeding. For research purposes, sampling 379 

and screening the large germplasm collections provides additional characters and help to 380 

better estimate genome relationships between species within large plant complexes, such as 381 

Urochloa (González and Morton, 2005) and hence help reconstruct phylogenies, particularly 382 

those where reticulate evolution of polyploid taxa is found. Flow cytometry and the 383 

measurement of nuclear DNA contents has other applications not considered here, in 384 

particular for determination of cell cycle times (Francis et al., 2008) , and examining 385 

differentiation of cells through endopolyploidy (Bhosale et al., 2018). While flow sorting of 386 

chromosomes would require living materials, it is likely that dried leaf material may be used 387 
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to study genome size differentiation patterns in the context of cell cycle times and 388 

endopolyploidy. 389 

4.2. Choice of approaches of flow cytometry 390 

For flow cytometry-based estimation of DNA content, almost every fluorescence-based flow 391 

cytometer can be used, but the filter set should be compatible with the spectral properties of 392 

fluorescent dyes (Doležel et al., 2007). Propidium iodide (PI) is one of the most widely used 393 

fluorescence reagent in flow cytometry binding to DNA by intercalating between DNA bases 394 

(rather than then major or minor groove), and showing no AT or GC preference (Fig. 6). Its 395 

fluorescence with green-light excitation is enhanced some 20-fold when bound to DNA 396 

compared to in solution. The emission maximum depends on the solvent, and in the aqueous 397 

solution used for nuclear isolation, the maximum is 636 nm (red) (Samanta et al., 2012). PI 398 

shows intermolecular proton transfer reaction in solvent; it interacts with SDS (sodium 399 

dodecyl sulphate), so this widely used detergent cannot be a component of a nuclei isolation 400 

buffer for flow cytometry. Propidium iodide also binds to RNA, showing enhanced 401 

fluorescence (with a slightly different fluorescent colour), so for nuclear staining, RNase 402 

needs to be added to the buffer. In practice, the concentration of PI and RNase in the buffer is 403 

important, and peaks broaden (higher CV) when they are too high or too low. Other 404 

components include Tris as buffer, NaCl (85mM) to maintain nuclear integrity, β-405 

mercaptoethanol as antioxidant, and PVP-40 (polyvinylpyrrolidone-40) to bind polyphenols 406 

and anthocyanins, scavenge other polar molecules and deactivate proteins from the plant cells; 407 

and Triton X-100 as a detergent to aid buffer penetration. 408 

The chopping with a very sharp razor blade is a critical part of the technique. If the 409 

blade is wrongly used with slicing motion, or has a dull edge, the nuclei are sheared and the 410 

peaks become very broad. 411 
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4.3. Urochloa germplasm findings 412 

Here, we verified ploidy of 353 accessions of Urochloa and related species, which represent a 413 

significant proportion of CIAT germplasm resources. However, determining the ploidy levels 414 

of grass group showing both apomictic and sexual mode of reproduction, like Urochloa, can 415 

become a challenge and requires the use of appropriate standards of known ploidy and 416 

number of chromosomes (Krahulcová and Rotreklová, 2010). For Urochloa grass complex, 417 

different internal standards were needed due to the different genome sizes within and between 418 

agamic complexes and species, and different basic chromosome numbers (Supplementary 419 

Data Table 1). The average DNA content and genome sizes given as Cx values have been 420 

published already for Urochloa species (Ishigaki et al., 2010; Timbó et al., 2014). Most 421 

diploid accessions of U. brizantha studied here are apomict (Tomaszewska et al., 2021), 422 

showing larger mean peak indices than sexual diploid accessions of U. decumbens and U. 423 

ruziziensis, proving that the genome size depends on the mode of reproduction (Ishigaki et al., 424 

2010), which is an additional challenge for screening diverse germplasm collections. While in 425 

diploid and polyploid accessions of U. decumbens a small shift in peak position on histogram 426 

usually does not compromise reliability of ploidy estimates, attention should be paid to the 427 

analysis of U. brizantha showing odd ploidy levels, because relative differences in nuclear 428 

DNA content between neighboring cytotypes (2x, 4x, 5x, 6x) is decreased (see Fig. 5); and 429 

such a phenomenon is also observed in species with ploidy levels greater than 6x (Doležel et 430 

al., 2007). A more precise examination of U. humidicola is also required due to confirmed 431 

aneuploidy (see Figs 4F and 5; Moraes et al., 2019; da Rocha et al., 2019), odd ploidy levels 432 

(Boldrini et al., 2009b), and unrecognized diploid ancestors (Boldrini et al., 2009a). 433 

Urochloa tropical forage grasses and related genera studied here, including 434 

Andropogon, Pennisetum, Paspalum, and Panicum have a great potential for sustainable 435 

agriculture and intensive grazing management of cover crops. Some of them are included in 436 
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the current breeding programs at CIAT and EMBRAPA, now mainly focused on crossing 437 

tetraploids within 'brizantha' and 'humidicola' agamic complexes and Urochloa maxima 438 

(Triviño et al., 2017). These tropical forage grass group is genomically complex 439 

(Tomaszewska et al., 2021), having species recognized as being very variable in number of 440 

chromosomes, and ploidy levels which is the result of apomictic reproduction, and reflecting 441 

the genetic diversity present in a given population (Jank et al., 2011). The ploidy levels of 442 

some Urochloa accessions have been previously measured (Penteado et al., 2000; Jungmann, 443 

2009; Jungmann et al., 2010; Nitthaisong et al., 2016; Triviño et al., 2017), but some data 444 

vary between papers and reports (Tomaszewska et al., 2021): thus values may requires 445 

checking for a particular accession name.   446 

 447 

Supplementary Materials 448 

Supplementary Data Table S1 List of accessions used in the study, their mean peak indices 449 

and coefficient of variations (CVs) of the G0/G1 peaks. 450 
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Tables 694 

 695 

Table 1. Nuclei isolation buffers and their compositions. 696 

Buffer Composition 

Galbraith (Galbraith et al., 1983)  45 mM MgCl2, 20 mM MOPS, 30 mM sodium citrate, 0,1% (v/v) Triton X-100 (pH 7,0) 

Otto (Otto, 1992) Otto I: 100 mM citric acid, 0·5�% (v/v) Tween 20 (pH 2–3)  

Otto II: 400 mM Na2PO4·12H2O (pH 8–9)  

Partec (de Laat et al., 1987) 100 mM Tris, 2,5 mM MgCl2·6H2O, 85 mM NaCl, 0,1% (v/v) Triton X-100 (pH 7,0) 

Tomaszewska (this paper) 100 mM Tris, 2,5 mM MgCl2·6H2O, 85 mM NaCl, 0,1% (v/v) Triton X-100 (pH 7,0),  
15 mM β-mercaptoethanol, 1% PVP-40 

 697 

 698 

 699 

 700 

Table 2. Standards used for flow cytometry analysis of Urochloa germplasm collection. 701 

Chromosome numbers were counted microscopically. 702 

Standard Accession number Number of chromosomes Standard mean peak 

Panicum miliaceum Mil69 2n=4x=36 111,925.27 

Urochloa brizantha PI 292187 2n=4x=36 225,075.73 

Urochloa decumbens CIAT 664 2n=4x=36 205,253.15 

Urochloa decumbens CIAT 6370 2n=4x=36 193,675.46 

Urochloa humidicola CIAT 26151 2n=6x=36 197,353.12 

Urochloa humidicola CIAT 16867 2n=8x+2 or 9x-4=50 252,917.76 

Urochloa maxima CIAT 6171 2n=4x=32 130,912.51 

Urochloa maxima CIAT 16004 2n=4x=32 119,920.97 

Urochloa maxima PI 284156 2n=4x=32 148,800.27 

Urochloa ruziziensis CIAT 6419 2n=2x=18 82,708.77 

Urochloa sp. PI 657653 2n=4x=32 110,639.72 
 703 

 704 

 705 

 706 

 707 

 708 

 709 
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Table 3. Variation in sample mean peak indices between species, for the different ploidy 710 

levels determined. 711 

Species Ploidy 
Number of 

studied 
accessions 

Number of 
studied 
plants 

Sample mean peak 
range 

Sample mean 
peak average 

CV [%] 
range 

CV [%] 
average 

Andropogon gayanus 2n=2x 1 1 87,275.28 87,275.28 8,37 8,37 

Panicum coloratum 2n=2x 1 1 98,614.17 98,614.17 6,27 6,27 

Paspalum dilatatum 2n=4x 1 3 163,459.78-171,214.54 167,807.35 6,88-7,66 7,34 

Pennisetum polystachion 2n=6x 1 1 187,090.34 187,090.34 5,75 5,75 

Pennisetum purpureum 2n=4x 1 1 271,951.52 271,951.52 5,51 5,51 

Urochloa arrecta 2n=4x 1 1 93,267.10 93,267.10 7,53 7,53 

Urochloa brizantha 2n=2x 6 9 82,217.75-110,030.54 95,836.26 5,46-9,14 7,32 

 
2n=4x 59 70 110,560.34-225,075.73 171,889,01 2,9-9,89 5,65 

 
2n=5x 25 37 215,977.78-290,620.54 246,852,7 3,4-8,17 5,34 

 
2n=6x 1 1 303,441.43 303,441.43 3,83 3,83 

Urochloa decumbens 2n=2x 18 19 71,965.77-103,830.83 87,468.88 2,68-6,87 4,76 

 
2n=4x 25 28 152,228.44-210,962.67 183,142.501 3,25-5,66 4,52 

 
2n=6x 1 1 270,013.17 270,013.17 4,02 4,02 

Urochloa dictyoneura 2n=7x 1 1 220,480.25 220,480.25 5,91 5,91 

Urochloa dura 2n=5x 1 2 254,700.46-281,586.13 268,143.3 4,82-5,18 5 

Urochloa humidicola 2n=6x 16 21 108,291.11-205,216.7 173,567.32 3,69-6,24 4,65 

 
2n=7x 33 45 215,189.32-298,181.56 259,242.189 2,84-6,4 4,31 

 
2n=8x+2 or 

9x-4 
1 2 252,917.76-258,558.63 255,738.20 3,04-3,49 3,27 

 
2n=9x 3 4 320,307.05-338,390.83 329,674.678 3,39-5,33 4,7 

Urochloa jubata 2n=2x 1 1 86,999.47 86,999.47 5,89 5,89 

 
2n=4x 1 1 122,886.75 122,886.75 4,73 4,73 

Urochloa maxima 2n=2x 25 31 74,023.07-103,726.9 93,849.762 4,81-9,23 7,02 

 
2n=4x 99 102 104,144.06-189,830.96 127,810.63 3,73-8,81 5,5 

Urochloa nigropedata 2n=4x 1 2 142,153.6-145,726.4 143,940.00 3,91-6,53 5,22 

Urochloa plantaginea 2n=2x 1 1 90,143.39 90,143.39 6,62 6,62 

Urochloa platynota 2n=2x 1 1 98,306.78 98,306.78 5,96 5,96 

Urochloa ruziziensis 2n=2x 26 33 75,233.15-103,000.03 86,430.84 2,42-6,92 4,32 

Urochloa ruziziensis x 
Urochloa decumbens x 

Urochloa brizantha 
2n=4x 1 1 190,289.59 190,289.59 2,67 2,67 

Urochloa sp. PI657653 2n=4x 1 1 110,639.72 110,639.72 4,42 4,42 

 712 

 713 

 714 

 715 

 716 

 717 

 718 
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Legends to Figures 719 

Figure 1. Field plots of Urochloa tropical forage grasses in CIAT, Colombia. 720 

Figure 2. Optimization of flow cytometry assay for dried leaf samples. (A) Three gradually 721 

declined peaks of diploid U. decumbens CIAT 26185 indicating endoreduplication; (B) 722 

Additional high peak on histogram of tetraploid U. maxima CIAT 16055, indicating 723 

contamination of leaf sample; (C) Fresh and (D) dried leaf samples of Panicum miliaceum 724 

showing the same position of peaks on histograms, but slight differences in number of nuclei 725 

and CV; (E) Histogram of leaf sample chopped with single-edge razor blade; (F) Histogram 726 

of dried leaf sample of Panicum miliaceum with no gating tools applied; (G) Histogram of 727 

dried leaf sample of Panicum miliaceum where gating tools were applied, giving sharp peaks 728 

and low background. 729 

 730 

Figure 3. Comparison of three different standard buffers for nuclei isolation from dried leaves 731 

of tetraploid Urochloa accessions, and their effect on DNA cell cycle histogram quality. (A) 732 

Galbraith's buffer; (B) Otto's buffer; (C) Otto's buffer supplemented with β-mercaptoethanol; 733 

(D) Partec buffer; (E) Partec buffer supplemented with β-mercaptoethanol; (F) Partec buffer 734 

supplemented with 15mM β-mercaptoethanol and 1% PVP-40. Regions of identification (red) 735 

were placed across the peaks to export values representing peak positions and CVs. 736 

 737 

Figure 4. Histograms of relative fluorescence intensities showing ploidy levels and the 738 

corresponding chromosome numbers of different genotypes used as standards for flow 739 

cytometry analysis of Urochloa germplasm collection. Standard peak means in Table 2. (A) 740 

Panicum miliaceum Mil69 (2n=2x=36); (B) Urochloa brizantha PI292187 (2n=4x=36); (C) 741 

Urochloa decumbens CIAT 664 (2n=4x=36); (D) Urochloa decumbens CIAT 6370 742 
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(2n=4x=36); (E) Urochloa humidicola CIAT 26151 (2n=6x=36); (F) Urochloa humidicola 743 

CIAT 16867 (2n=8x+2 or 9x-4=50); (G) Urochloa maxima CIAT 6171 (2n=4x=32); (H) 744 

Urochloa maxima CIAT 16004 (2n=4x=32); (I) Urochloa maxima PI 284156 (2n=4x=32); (J) 745 

Urochloa ruziziensis CIAT 6419 (2n=2x=18); (K) Urochloa sp. PI 657653 (2n=4x=32). 746 

Regions of identification seen on plots (red) were placed across the peaks to export values 747 

representing peak positions and CVs. Scale bars = 5µm. 748 

 749 

Figure 5. Ranges of mean peak indices for different ploidy levels of the most numerous 750 

species ('brizantha' agamic complex: U. ruziziensis, U. decumbens, U. brizantha; 'humidicola' 751 

agamic complex: U. humidicola; U. maxima) in CIAT germplasm collection. 752 

 753 

Figure 6. Diagram showing intercalation of propidium iodide molecule between DNA bases. 754 

Avogadro program (Hanwell et al., 2012) was used to create a molecule of propidium iodide, 755 

and a Watson-Crick duplex using the sequence AATAACTCCCACATGTCCAT. 756 
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