

1 ORIGINAL ARTICLE

2

3 **Flow cytometry-based determination of ploidy from dried leaf specimens in genomically**
4 **complex collections of the tropical forage grass *Urochloa* s. l.**

5

6 Paulina Tomaszevska^{1)*}, Till K. Pellny²⁾, Luis Miguel Hernández³⁾, Rowan A. C. Mitchell²⁾,
7 Valheria Castiblanco³⁾, José J. de Vega⁴⁾, Trude Schwarzacher¹⁾, Pat (J.S.) Heslop-Harrison¹⁾

8

9 ¹⁾Department of Genetics and Genome Biology, University of Leicester, University Road,
10 LE1 7RH Leicester, United Kingdom

11 ²⁾Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom

12 ³⁾International Center for Tropical Agriculture (CIAT), 6713 Cali, Colombia

13 ⁴⁾Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom

14 ^{*)} For correspondence. E-mail pt186@leicester.ac.uk

15

16 ORCID:

17 PT: <https://orcid.org/0000-0002-9596-7219>;

18 LH: <https://orcid.org/0000-0002-8816-0572>;

19 RM: <https://orcid.org/0000-0002-1412-8828>;

20 VC: <https://orcid.org/0000-0003-2801-2153>;

21 JV: <https://orcid.org/0000-0003-2847-5158>;

22 TS: <https://orcid.org/0000-0001-8310-5489>;

23 PHH: <https://orcid.org/0000-0002-3105-2167>

24

25 **Abstract**

26 We aimed to develop an optimized approach to determine ploidy for dried leaf material in a
27 germplasm collection of a tropical forage grass group, including approaches to collect, dry
28 and preserve plant samples for flow cytometry analysis. *Urochloa* (including *Brachiaria*,
29 *Megathyrsus* and some *Panicum*) tropical grasses are native to Africa and are now, after
30 selection and breeding, planted worldwide, particularly in South America, as important
31 forages with huge potential for further sustainable improvement and conservation of
32 grasslands. The methods enable robust identification of ploidy levels (coefficient of variation,
33 CV, typically <5%). Ploidy of some 353 forage grass accessions (ploidy range from 2 to 9),
34 from international genetic resource collections, showing variation in basic chromosome
35 numbers and reproduction modes (apomixis and sexual), were determined using our defined
36 standard protocol. Two major *Urochloa* agamic complexes used in the current breeding
37 programs at CIAT and EMBRAPA: the '*brizantha*' and '*humidicola*' agamic complexes are
38 variable, with multiple ploidy levels and DNA content. *U. brizantha* has odd level of ploidy
39 ($x=5$), and the relative differences in nuclear DNA content between adjacent cytotypes is
40 reduced, thus more precise examination of this species is required. Ploidy measurement of *U.*
41 *humidicola* revealed some aneuploidy.

42

43 *Keywords:* ploidy, flow cytometry, apomixis, dried specimens, *Urochloa*, tropical forage
44 grasses

45

46

47

48

49 1. Introduction

50 Understanding the genome compositions of species within complexes including
51 diploid and polyploid species is critical to evaluate their biodiversity, for conservation and to
52 evaluate the potential for use in breeding; measurement of genome size, across potentially
53 large germplasm collections, underpins such work. Grasslands and rangelands with grasses as
54 the dominant species, being the largest ecosystems in the world, are the basic feed resources
55 for livestock, and contribute to the livelihoods of over 800 million people including
56 smallholders (Food and Agriculture Organization of the United Nations; <http://www.fao.org/>).

57 Only 100–150 of the 10,000 forage species have been extensively cultivated, but many more
58 have great potential for sustainable agriculture, and improvement and conservation of
59 grasslands, including the genus *Urochloa* (previously classified in *Brachiaria*, and some
60 *Eriochloa*, *Panicum* and *Megathyrsus*; González and Morton, 2005) comprising species
61 native to tropical and subtropical regions of Africa. The great forage potential of these grasses
62 have been recognized in the 1950s (Miles *et al.*, 1996), leading to the acquisition of 700
63 accessions of *Urochloa* and related genera during the joint collection mission of CGIAR
64 (Consultative Group on International Agricultural Research) lead centers: CIAT (Centro
65 Internacional de Agricultura Tropical) and ILRI (International Livestock Research Institute)
66 in Africa in the 1980s. Five species of *Urochloa*: *U. ruziziensis*, *U. decumbens*, *U. brizantha*,
67 *U. humidicola*, and *U. maxima* were then introduced in South America, and have been using
68 as fodder plants mainly in Colombia and Brazil (Keller-Grein *et al.*, 1996).

69 In exploiting biodiversity in breeding, improvements in yield and nutritional quality of
70 forages can be achieved by identifying genes increasing the digestibility of plant cell walls
71 and the protein and lipid content in vegetative tissues, and increasing biomass production
72 (Capstaff and Miller, 2018). By introduction to plant breeding programmes, genetic
73 improvement of forage lines, recurrent genetic selection of plants showing useful traits, and

74 subsequent hybridizations and back-crossings (Barrios *et al.*, 2013; Hanley *et al.*, 2020),
75 create more diverse agroecosystems resilient to climate and environmental changes
76 (Baptistella *et al.*, 2020). The DNA amount measurement for ploidy and genome size
77 estimation, and the characterization of genome composition are required for effective use of
78 diploids and polyploids in breeding programs, as well as for research purposes (Ochatt, 2008;
79 Tomaszewska *et al.*, 2021).

80 Preparation of metaphases from dividing plant tissues, followed by microscopy and
81 chromosome counting, is widely used to determine the ploidy of individual plants and show
82 polyploid series within larger groups. However, the method is time-consuming and highly
83 skilled, both in terms of growing plants and collecting root-tips or meiotic material, and in
84 making the preparations. The most rapid and convenient technique for ploidy measurement is
85 flow cytometry using suspensions of fluorescently labelled nuclei (Heslop-Harrison and
86 Schwarzacher, 1996; Doležel *et al.*, 1997; Schwarzacher *et al.*, 1997; Bennett *et al.*, 2000;
87 Śliwińska, 2018), that is now widely adopted for fresh leaf specimens. Image cytometry is
88 another tool for nuclear genome size analysis; however, despite some examples of its use
89 (Greilhuber *et al.*, 2003), it has not proven widely applicable for estimation of ploidy in plant
90 tissues, because its image processing algorithms gives imprecise and unreliable results that
91 cannot be compared to other methods (Svoboda *et al.*, 2009). Scanning microdensitometry has
92 proved reliable in measuring genome sizes, but requires equipment not now available (Bory *et*
93 *al.*, 2008). Direct sequencing of DNA, and either assembly or analysis of counts of short
94 sequence motifs present in the reads (k-mer analysis) is often used to measure genome sizes in
95 DNA sequencing programmes (Marçais and Kingsford, 2011), but is not appropriate for
96 screening collections.

97 Phenolics, hydroxamic acids, and short-chain fatty acids are present in plants, and
98 some of these phytochemicals have been identified as inhibitors of fluorescent DNA staining,

99 hence leading to inaccurate flow cytometry-based measurement of DNA content (Loureiro *et*
100 *al.*, 2006a; Bennett *et al.*, 2008; Greilhuber, 2008; Price *et al.*, 2000; Jędrzejczyk and
101 Śliwińska, 2010). The ability of tropical and subtropical plants to synthesize secondary
102 metabolites and possess allelopathic potential is exceptional (Ooka and Owens, 2018). Mild
103 winters and small temperature fluctuations mean that the growing season is year-round in
104 tropical and subtropical regions, and they provide the strong competition of plants for
105 resources, and succession. Seasonal and regional differences in accumulation of secondary
106 products may cause differences in staining for flow cytometry. Secondary metabolites and
107 their phytotoxicity on forage legumes have been recognized in *Urochloa* tropical forage
108 grasses (Ribeiro *et al.*, 2012, 2018; Oliveira *et al.*, 2017; Feitoza *et al.*, 2020), which has been
109 suggested to make it difficult to analyze these plants by flow cytometry (Penteado *et al.*,
110 2000).

111 For *Urochloa*, ploidy estimation across the whole germplasm collection (excluding
112 one species, *U. ruziziensis*, known only as a diploid) is required due to the different pathways
113 of reproduction showing sexual and apomictic accessions within same species (Roche *et al.*,
114 2001), natural triploid interspecific hybrids (Timbó *et al.*, 2014), different genome
115 compositions both within and between species (Tomaszewska *et al.*, 2021), confirmed
116 aneuploidy (Moraes *et al.*, 2019; da Rocha *et al.*, 2019; Tomaszewska *et al.*, 2021), and
117 different basic chromosome numbers ($x=6, 7, 8$ and 9 ; de Wet, 1986; Basappa *et al.*, 1987;
118 Bernini and Marin-Morales, 2001; Risso-Pascotto *et al.*, 2006; Boldrini *et al.*, 2009b;
119 Worthington *et al.*, 2019).

120 Ideally, a common reference standard for flow cytometry and ploidy measurement
121 should be a diploid plant from the taxon of the tested samples, grown and collected under
122 similar conditions, and where chromosomes can be prepared and counted. For a pool with
123 diverse ploidies, several standards are helpful, although the lack of seeds or living plants may

124 make it impossible to prepare metaphase plates from root tips, and challenges (e.g. due to
125 apomictic mode of reproduction of studied species, difficulties with germination of tropical
126 plant seeds, or having only herbarium samples), may mean a less related standard with known
127 ploidy level, genome size and basic chromosome number similar to the unknown samples
128 must be used (Śliwińska, 2018).

129 Fresh leaves usually been considered the best material for flow cytometry analysis.
130 However, there is often a requirement for use of field-material, collected under sub-optimal
131 demanding conditions compared to plants for greenhouse or experimental field and requiring
132 storage and transport to the flow cytometry facility. Also, work often needs to use herbarium
133 or stored material, which may not be possible to collect again, or is the reference for
134 published studies, or is determined as a new species/taxonomic revision, requiring
135 determination of ploidy and estimation of genome size (Suda and Trávníček, 2006). The
136 applicability of flow cytometry for dehydrated leaves is limited by several factors, including
137 insufficient amounts of tissue, sampling of mature plants, incorrect drying, storage and
138 preservation of samples, and the low efficiency of nuclei isolation due to their degradation.

139 For flow cytometry analysis of nuclear genome sizes from fresh and dried material,
140 coefficient of variation (CV) – defining the variation in fluorescence intensity from nucleus to
141 nucleus, visualized as the width of the intensity peak – is an important criterion showing
142 estimation of nuclei integrity and variation in DNA staining (Bennett and Smith, 1976;
143 Bennett *et al.*, 1982; Arumuganathan and Earle, 1991; Bennett and Leitch, 2011; Loureiro *et*
144 *al.*, 2006b). Low coefficient of variation, even for dried leaf specimens (Suda and Trávníček,
145 2006), or seeds (Jędrzejczyk and Śliwińska, 2010), petals and pollen (Roberts, 2007), can be
146 achieved by using appropriate isolation buffers and their supplementation, stains and staining
147 protocols, the practical technique used for chopping leaves in the buffer, and even choice of
148 razor blades.

149 Here, we aimed to develop an optimized and robust approach to determine ploidy for
150 dried leaf material of tropical forage grasses. The established method can be widely adopted
151 for dried leaf specimens, especially when screening genomically variable germplasm resource
152 collections, defining a standard protocol recommendation. More specifically, we intended to
153 optimize the flow cytometry assay for *Urochloa* grass group that shows variation in basic
154 chromosome numbers and reproduction modes.

155

156 2. Materials and Methods

157 2.1. Plant material

158 Accessions of *Urochloa* and related species used in the study are listed in **Supplementary**
159 **Data Table S1**. Seeds of *Urochloa* sp. PI 657653, *U. brizantha* PI 292187 and *U. maxima* PI
160 284156 (**Table 1**) were provided by United States Department of Agriculture (USDA, USA).
161 Seeds of *Panicum miliaceum* Mil69 were provided by the Vavilov Research Institute (VIR, St
162 Petersburg, Russia). Centro Internacional de Agricultura Tropical (CIAT, Colombia) provided
163 seed samples of *U. decumbens* 664 and 6370, *U. ruziziensis* 6419, *U. humidicola* 26151 and
164 16867, and *U. maxima* 6171 and 16004. Leaf samples intended for flow cytometry analysis
165 were collected from germplasm accessions grown and maintained in the field genebank at
166 CIAT Palmira campus (**Fig. 1**).

167 2.2. Collection and preservation of plant material for flow cytometry

168 1. Leaf fragments of approximately 1g fresh weight were harvested in the field, folded into
169 permeable manila seed storage envelopes (80gsm) and kept in a sealed plastic bag on wet ice.
170 Young leaves from typical vigorous specimens, representative of the population in each plot,
171 were selected. Insect damaged and discolored plants were avoided.

172 2. The envelopes were then stored in a sealed desiccators at ambient pressure, or a airtight
173 plastic box (as used for sandwiches or larger sizes), at room temperature with a thick layer of
174 self-indicating silica gel (a granular material with c. 3 to 5mm irregular beads; e.g. Type III
175 Sigma-Aldrich, S7625; or self-indicating mixed with non-indicating silica gel; cheaply
176 available from online marketplaces). The silica gel was changed daily until it did not change
177 colour, which was after approximately 4-5 days. 250g of silica gel was used for 30 leaf
178 samples.

179 3. Multiple samples in the paper envelopes are then transferred to sealed plastic bags with a
180 small amount of silica gel. If there is any question of insect contamination of leaf collections,
181 the plastic bags can be frozen (-20C, 48hr).

182 4. The plastic bags with envelopes of dried leaves and silica gel, can be shipped under
183 ambient conditions to the University of Leicester, UK (with appropriate export and import
184 documentation, here under “Section IV: Cut flowers, foliage and vegetables” and “Section III:
185 Seeds for planting” of the UK “Import requirements for plants, plant produce and products”).
186 The sealed bags, after inspection and replacement of silica gel if required, are then stored in
187 4°C in plastic boxes containing silica gel until flow cytometry analysis.

188 5. The seeds received from VIR, USDA and CIAT were germinated in a tropical greenhouse
189 (25°C), and leaf samples were collected from plants, and dried and preserve in the same way
190 as those collected in the field in Colombia, and then used as standards for flow cytometry
191 analysis.

192 **2.3. Flow cytometry protocol**

193 For ploidy measurement, *Panicum miliaceum* Mil69 ($2n=4x=36$; Hunt *et al.*, 2014) was used
194 as a first standard to recognize ploidy of some accessions of studied plants. Subsequent
195 internal standards were then included in the analyzes, and their number of chromosomes was

196 confirmed microscopically. Cell nuclei suspension from dehydrated leaf tissues were prepared
197 for flow cytometric analysis according to Doležel *et al.* (2007) with minor modifications.

198 1. 500 mg of dried leaf of each accession were chopped with a sharp razor blade in a
199 55x15mm polystyrene Petri dish with ice cold 1 mL nucleus-isolation buffer. Much smaller
200 amounts of leaf material (e.g. 100 mg) did not give suitable nuclear suspensions. We used
201 double edge stainless razor blades (AstraTM Superior Platinum), allocating one razor edge per
202 one studied accession. For safe holding of the razor blade while chopping, a rubber grip was
203 used. Single-edge razor blades are not suitable as they are too thick and not sharp enough.
204 There is variation between different makes of double-edge razor blades: the most widely
205 available Gillette blades can be used but are not as good as some other makes.

206 2. Three different standard buffers were evaluated, as showed in **Table 1**. Buffers were
207 supplemented with 15mM β -mercaptoethanol and 1% PVP-40 (polyvinylpyrrolidone-40) and
208 the effect of these chemicals on reducing negative effect of cytosolic and phenolic compounds
209 was tested.

210 3. After finely chopping the material in the buffer, the nuclei suspension was passed through a
211 50 μ m mesh nylon filter (CellTrics, Partec) into the 12x75 mm round-bottom polystyrene
212 flow cytometry tubes (Falcon[®] with caps preventing cross-contamination, but any other 5mL
213 flow cytometry tubes can be used), and placed on ice.

214 4. The nuclei suspension was then supplemented with propidium iodide (PI, final
215 concentration 50 μ g mL⁻¹; solution in deionized water, passed through a 0.22-mm filter), and
216 ribonuclease A (final concentration 50 μ g mL⁻¹) to prevent staining of double-stranded RNA,
217 and mixed gently using vortex.

218 5. Samples were incubated at least 10 min (and up to 2 hours) on ice in darkness, and then
219 were analysed in an Accuri C6 Flow Cytometer (Becton Dickinson), equipped with a 20-mW

220 laser illumination operating at 488 nm; however much simpler instruments (e.g. Partec) are
221 sufficient to measure DNA content.

222 6. The histograms (FSC-A vs SSC-A, FL1-A vs FL2-A, FL3-A vs FL2-A, and an univariate
223 histogram of FL2-A) were acquired using the CFlow® Plus software set up according to
224 Galbraith and Lambert (2012); when use other instruments, follow manufacturer's
225 instructions for appropriate setting. Here, the following filter configurations were used: FL-1 -
226 a 530/14-nm bandpass filter; FL-2 - a 585/20-nm bandpass filter; and FL-3 - a 670-nm
227 longpass filter. The primary threshold was set to channel 10,000 on FSC-A to gate out debris
228 and noise from nuclei suspension. The secondary threshold was set at 1,000 for FL-2.
229 Polygonal gating tool was used to draw a region on the FSC-A vs SSC-A plot, and a line-
230 shaped cluster of dots showing PI-stained nuclei on the biparametric dot plot of FL2-A vs
231 FL3-A. Based on this gating, G₀/G₁ and G₂ peaks appeared in an univariate histogram of FL2-
232 A.

233 7. The relative fluorescence intensity of PI-stained nuclei (FL), and the coefficient of variation
234 (CV) of the G₀/G₁ peak to estimate nuclei integrity and variation in DNA staining were
235 evaluated in each sample by placing regions of identification across the peak to export values.

236 8. Ploidy of studied plants were determined by comparing the PI fluorescence intensities of
237 samples to that of standards.

238 **2.4. Microscopy and validation of chromosome numbers**

239 For chromosome number calculation of standards we used modified protocol of Schwarzacher
240 and Heslop-Harrison (2000).

241 1. *Urochloa* seeds, like many other tropical grasses, did not germinate in Petri dishes. The
242 seeds were germinated in a 25°C greenhouse, in a 15x15cm plastic pots containing Levington
243 F2 + S soil.

244 2. Root tips were collected from plants cultivated in a greenhouse, treated with α -
245 bromonaphthalene at room temperature for 2 h, and 4°C for 4 h, and fixed in absolute ethyl
246 alcohol:acetic acid solution, 3: 1.

247 3. The root tips were washed in enzyme buffer (10mM citric acid/sodium citrate) for 15 min,
248 and then they underwent enzymatic maceration in 20U/ml 2 cellulase (e.g. Sigma C1184),
249 10U/ml 'Onozuka' RS cellulase and 20U/ml pectinase (e.g. 3 Sigma P4716 from *Aspergillus*
250 *niger*; solution in 40% glycerol) in 10mM enzyme buffer for 60 min at 37°C.

251 4. Digested root tips were squashed in 60% acetic acid. Cover slips were removed after
252 freezing with dry ice.

253 5. Air-dried slides were counterstained with DAPI (4',6-diamidino-2-phenylindole, 2 μ g/mL)
254 in antifade solution (Citifluor, Vectashield, Slowfade or any other commercial antifading
255 reagents for fluorescence microscopy), which prevents the permanent loss of fluorescence due
256 to prolonged exposure to high intensity light sources.

257 6. Slides were analyzed with an epifluorescence microscope with appropriate UV
258 illumination, filters and camera (Nikon Eclipse 80i; DS-QiMc monochromatic camera, and
259 NIS-Elements v.2.34 software, Nikon, Tokyo, Japan). The number of chromosomes were
260 counted.

261

262 **3. Results**

263 **3.1. Optimization of flow cytometry assay for dried leaves of *Urochloa***

264 **3.1.1. Flow cytometry troubleshooting**

265 Nuclei isolated from properly collected, dried and well-preserved leaf samples, as explained
266 in materials and methods, give histograms showing peaks from cells at different stages of the

267 cell cycle: higher G₀/G₁ (DNA in nuclei is unreplicated, and may come from differentiated
268 cells) and lower G₂ (DNA replicated) peaks. Sometimes more peaks are observed, like three
269 gradually declined peaks on **Fig. 2A**, indicating endoreduplication process. Use of older leaf
270 collections may give less marked, flatter, wider or additional peaks on the histogram (**Fig.**
271 **2B**). Fresh and dried leaves should give the similar position of peaks, as shown on **Fig. 2C**
272 and **2D** for comparison, however, the number of isolated nuclei from dried leaves may be
273 smaller due to sample degradation. Ideally, several samples of one accession should be run as
274 the position of the peak on the histogram may vary slightly between plants. It is extremely
275 important to use standard double-edge razor blades as those with single edge are not very
276 sharp, crushing rather than chopping the tissue, resulting in thick and short peaks on
277 histograms (**Fig. 2E**); it is important to chop rather than slice the leaves. In order to get better
278 results and remove debris and noise from histograms, gating is recommended. In the example
279 of **Fig. 2F**, nuclei of interest were being selected (gated) on the FSC-A vs SSC-A and FL2-A
280 vs FL3-A plots (as explained in M & M), resulting in sharper peaks of G₀/G₁ and G₂ and
281 lower background on univariate histogram of FL2-A, in comparison to **Fig. 2G** where gating
282 tools were not applied.

283 **3.1.2. Buffers**

284 Three different standard isolation buffers (**Table 1**) were tested to isolate nuclei from
285 dehydrated *Urochloa* leaves. No peaks (**Fig. 3A**) or very low peaks were obtained analyzing
286 samples of nuclei isolated using Galbraith's buffer (Galbraith *et al.*, 1983) which is optimized
287 for fresh material. Small numbers of nuclei were isolated using Otto's buffer (Otto, 1992)
288 giving histograms with increased level of background and high CVs (**Fig. 3B**).
289 Supplementation of Otto's buffer with β-mercaptoethanol only slightly increased the peak
290 resolution (**Fig. 3C**). Well-defined histograms with acceptable CV values and reasonable
291 number of nuclei (**Fig. 3D,E,F**) were obtained using Partec buffer (de Laat *et al.*, 1987). The

292 sharpest peaks were yielded after supplementation of this buffer with 15mM β -
293 mercaptoethanol and 1% PVP-40 (**Fig. 3F**).

294 **3.1.3. Standards used for flow cytometry analysis**

295 The procedure of counting ploidy from *Urochloa* dried leaf specimens by flow cytometry was
296 optimized by choosing appropriate buffer composition (**Table 1**, **Fig. 3**), drying and
297 preservation of plant samples (protocol in M&M, **Fig. 2**), chopping technique (**Fig. 2**) and
298 eleven different standards (**Table 2**, **Fig. 4**). *Panicum miliaceum* ($2n=2x=36$) was used as a
299 first standard to recognize accessions for which the level of ploidy was certain. The seeds of
300 these accessions were obtained from CIAT and USDA, germinated in a greenhouse, and the
301 ploidy of plants was validated by preparing mitotic slides and counting chromosomes
302 microscopically (**Fig. 4**). These samples were then used as internal standards, and their mean
303 peak indices were given in **Table 2**. The position of peaks of *Urochloa humidicola* CIAT
304 16867 on the histogram (**Fig. 4F**) suggested that this accession was most likely to be
305 heptaploid, but chromosome counting revealed it to be aneuploid with $2n=8x+2$ or $9x-4=50$.

306 **3.2. Ploidy measurement of *Urochloa* and related species**

307 DNA content of 353 accessions of *Urochloa* and related species from CIAT and USDA
308 germplasm collection were measured using flow cytometry of imported dried leaf materials
309 using the optimized technique giving very sharp peaks. Values representing peak positions
310 and CVs were exported and are given in **Supplementary Data Table S1**, and summarized in
311 **Table 3**. CV values were slightly increased comparing to the fresh leaf specimens of *Panicum*
312 *miliaceum* (approximately 2,5%). A coefficient of variation of less than 5% is desirable, but
313 analysis of older leaves often gives broader peaks with a still usable CV between 5% and
314 10%. Where possible, several leaf samples for one accession were measured enabling
315 comparison of mean peak positions between different plants of the same accession. In general,

316 these values did not differ significantly from plant to plant, proving the established method.

317 The position of mean peak samples were compared to that of the eleven standards (**Table 2**).

318 For each level of ploidy of the individual species, a range of mean peak indices have been

319 established (**Table 3**), and these ranges for the most numerous species were shown on **Fig. 5**.

320 **3.2.1. 'brizantha' agamic complex**

321 Three species belonging to the 'brizantha' agamic complex: *Urochloa ruziziensis*, *U.*

322 *decumbens* and *U. brizantha* have a basic chromosome number $x=9$. All accessions of *U.*

323 *ruziziensis* studied here were diploid (**Supplementary Data Table S1**), showing similar range

324 and average of mean peak indices to that of diploid *U. decumbens* (see **Table 3** and **Fig. 5**).

325 Within both species there are single samples showing higher mean peak indices than the

326 others. *U. decumbens* accessions differ in their ploidy levels, showing diploids, tetraploids,

327 and hexaploid (**Supplementary Data Table S1**), that can be clearly distinguishable using

328 flow cytometry, because the ranges of mean peak indices for each ploidy level did not

329 overlap. This results contrasts with *U. brizantha*, where the sample mean peak ranges of

330 diploids, tetraploids, pentaploids and hexaploids overlapped, meaning that ploidy levels of

331 this species are not so obvious (see **Fig. 5**). This is particularly evident when looking at the

332 differences in index values between samples of the same accession (see **Supplementary Data**

333 **Table S1**).

334 **3.2.2. 'humidicola' agamic complex**

335 Two polyploid species with basic chromosome number $x=6$ were assigned to the 'humidicola'

336 agamic complex: *U. humidicola* and *U. dictyoneura*. Three different ploidy levels were

337 recognized in the *U. humidicola*: hexaploid, heptaploid, and nonaploid (**Supplementary Data**

338 **Table S1**). *U. dictyoneura* accession used in our studies seemed to be heptaploid. In general,

339 each ploidy level of *U. humidicola* has its own range of mean peak values (**Fig. 5**), however

340 due to confirmed aneuploidy within species (*U. humidicola* CIAT 16867 with $2n=8x+2$ or $9x-$
341 $4=50$), additional validation, e.g. counting chromosome numbers, seems to be needed.

342 **3.2.3. *Urochloa maxima***

343 Two ploidy levels were recognized in *U. maxima*. Some diploid and tetraploid accessions
344 showed similar values of mean peaks (**Fig. 5**). Those samples that have extreme results and
345 peaks well beyond those of the reference internal standards, should have their chromosomes
346 counted.

347 **3.2.4. Related species**

348 Several tropical grass species with potential for improvement and wider use as forages have
349 been studied here, including other cultivated and wild *Urochloa* species, as well as *Paspalum*,
350 *Panicum*, *Pennisetum*, and *Andropogon*, showing different basic chromosome numbers. In
351 most cases, our internal standards were useful to establish ploidy levels of studied species.
352 However, for *Pennisetum polystachion* and *P. purpureum* with basic chromosome numbers
353 $x=9$ and $x=7$, respectively, we had to use the literature data on possible ploidy levels observed
354 for these species due to the higher genome size comparing to the internal standards belonging
355 to 'brizantha' and 'humidicola' complexes (Martel *et al.*, 1997; Campos *et al.*, 2009; dos Reis
356 *et al.*, 2014).

357

358 **4. Discussion**

359 **4.1. Flow cytometry as a standard technology**

360 Flow cytometry has become the standard technology for measuring the ploidy and genome
361 sizes of plants (Doležel and Bartoš, 2005), allowing the measurement of hundreds of samples,
362 even genetically diverse species, in a relatively short time. In most cases, freshly collected,

363 field- or garden- grown leaf material is used, with a small number of accessions. We have
364 optimized the methods for sampling, drying, storage, transport and preservation of tropical
365 forage grasses to use some time later with a robust flow cytometry protocol for measurement
366 of ploidy (**Figs 2, 3; Table 1**). We show the utility in a relatively large and diverse germplasm
367 collection (353 accessions) of the tropical forage grass genus *Urochloa* (*Brachiaria*) (**Tables**
368 **2, 3; Supplementary Data Table 1**). The method allows wider field and geographical
369 sampling of plants when fresh leaf tissues cannot be examined shortly after harvesting (Wang
370 and Yang, 2016). Integration of ploidy levels and agronomic traits, especially those related to
371 resistance and tolerance to pest and diseases, is important to define a breeding strategy to
372 exploit germplasm with diverse ploidy levels (Alves *et al.*, 2013; Barrios *et al.*, 2013; Matias
373 *et al.*, 2016). Where collections have various ploidies, flow cytometry can help the
374 verification of samples from field collections, where mislabelling, or spread of incorrect seed
375 or plants in vegetative plots may lead to replacement of one accession with another over
376 decades. Comparison of similar accessions numbers from Brazil and Colombia detects some
377 such differences. Polyploidy promotes genome diversification and gives plasticity to species
378 (Soltis and Soltis, 1993), thus it is pertinent to examine ploidy of as many accessions as
379 possible in order to choose those suitable for crossbreeding. For research purposes, sampling
380 and screening the large germplasm collections provides additional characters and help to
381 better estimate genome relationships between species within large plant complexes, such as
382 *Urochloa* (González and Morton, 2005) and hence help reconstruct phylogenies, particularly
383 those where reticulate evolution of polyploid taxa is found. Flow cytometry and the
384 measurement of nuclear DNA contents has other applications not considered here, in
385 particular for determination of cell cycle times (Francis *et al.*, 2008) , and examining
386 differentiation of cells through endopolyploidy (Bhosale *et al.*, 2018). While flow sorting of
387 chromosomes would require living materials, it is likely that dried leaf material may be used

388 to study genome size differentiation patterns in the context of cell cycle times and
389 endopolyploidy.

390 **4.2. Choice of approaches of flow cytometry**

391 For flow cytometry-based estimation of DNA content, almost every fluorescence-based flow
392 cytometer can be used, but the filter set should be compatible with the spectral properties of
393 fluorescent dyes (Doležel *et al.*, 2007). Propidium iodide (PI) is one of the most widely used
394 fluorescence reagent in flow cytometry binding to DNA by intercalating between DNA bases
395 (rather than then major or minor groove), and showing no AT or GC preference (**Fig. 6**). Its
396 fluorescence with green-light excitation is enhanced some 20-fold when bound to DNA
397 compared to in solution. The emission maximum depends on the solvent, and in the aqueous
398 solution used for nuclear isolation, the maximum is 636 nm (red) (Samanta *et al.*, 2012). PI
399 shows intermolecular proton transfer reaction in solvent; it interacts with SDS (sodium
400 dodecyl sulphate), so this widely used detergent cannot be a component of a nuclei isolation
401 buffer for flow cytometry. Propidium iodide also binds to RNA, showing enhanced
402 fluorescence (with a slightly different fluorescent colour), so for nuclear staining, RNase
403 needs to be added to the buffer. In practice, the concentration of PI and RNase in the buffer is
404 important, and peaks broaden (higher CV) when they are too high or too low. Other
405 components include Tris as buffer, NaCl (85mM) to maintain nuclear integrity, β -
406 mercaptoethanol as antioxidant, and PVP-40 (polyvinylpyrrolidone-40) to bind polyphenols
407 and anthocyanins, scavenge other polar molecules and deactivate proteins from the plant cells;
408 and Triton X-100 as a detergent to aid buffer penetration.

409 The chopping with a very sharp razor blade is a critical part of the technique. If the
410 blade is wrongly used with slicing motion, or has a dull edge, the nuclei are sheared and the
411 peaks become very broad.

412 **4.3. *Urochloa* germplasm findings**

413 Here, we verified ploidy of 353 accessions of *Urochloa* and related species, which represent a
414 significant proportion of CIAT germplasm resources. However, determining the ploidy levels
415 of grass group showing both apomictic and sexual mode of reproduction, like *Urochloa*, can
416 become a challenge and requires the use of appropriate standards of known ploidy and
417 number of chromosomes (Krahulcová and Rotreklová, 2010). For *Urochloa* grass complex,
418 different internal standards were needed due to the different genome sizes within and between
419 agamic complexes and species, and different basic chromosome numbers (**Supplementary**
420 **Data Table 1**). The average DNA content and genome sizes given as C_x values have been
421 published already for *Urochloa* species (Ishigaki *et al.*, 2010; Timbó *et al.*, 2014). Most
422 diploid accessions of *U. brizantha* studied here are apomict (Tomaszewska *et al.*, 2021),
423 showing larger mean peak indices than sexual diploid accessions of *U. decumbens* and *U.*
424 *ruziziensis*, proving that the genome size depends on the mode of reproduction (Ishigaki *et al.*,
425 2010), which is an additional challenge for screening diverse germplasm collections. While in
426 diploid and polyploid accessions of *U. decumbens* a small shift in peak position on histogram
427 usually does not compromise reliability of ploidy estimates, attention should be paid to the
428 analysis of *U. brizantha* showing odd ploidy levels, because relative differences in nuclear
429 DNA content between neighboring cytotypes (2x, 4x, 5x, 6x) is decreased (see **Fig. 5**); and
430 such a phenomenon is also observed in species with ploidy levels greater than 6x (Doležel *et*
431 *al.*, 2007). A more precise examination of *U. humidicola* is also required due to confirmed
432 aneuploidy (see **Figs 4F and 5**; Moraes *et al.*, 2019; da Rocha *et al.*, 2019), odd ploidy levels
433 (Boldrini *et al.*, 2009b), and unrecognized diploid ancestors (Boldrini *et al.*, 2009a).

434 *Urochloa* tropical forage grasses and related genera studied here, including
435 *Andropogon*, *Pennisetum*, *Paspalum*, and *Panicum* have a great potential for sustainable
436 agriculture and intensive grazing management of cover crops. Some of them are included in

437 the current breeding programs at CIAT and EMBRAPA, now mainly focused on crossing
438 tetraploids within '*brizantha*' and '*humidicola*' agamic complexes and *Urochloa maxima*
439 (Triviño *et al.*, 2017). These tropical forage grass group is genetically complex
440 (Tomaszewska *et al.*, 2021), having species recognized as being very variable in number of
441 chromosomes, and ploidy levels which is the result of apomictic reproduction, and reflecting
442 the genetic diversity present in a given population (Jank *et al.*, 2011). The ploidy levels of
443 some *Urochloa* accessions have been previously measured (Penteado *et al.*, 2000; Jungmann,
444 2009; Jungmann *et al.*, 2010; Nitthaisong *et al.*, 2016; Triviño *et al.*, 2017), but some data
445 vary between papers and reports (Tomaszewska *et al.*, 2021): thus values may requires
446 checking for a particular accession name.

447

448 **Supplementary Materials**

449 **Supplementary Data Table S1** List of accessions used in the study, their mean peak indices
450 and coefficient of variations (CVs) of the G₀/G₁ peaks.

451

452 **Acknowledgments**

453 This work was supported under the RCUK-CIAT Newton-Caldas Initiative “Exploiting
454 biodiversity in *Brachiaria* and *Panicum* tropical forage grasses using genetics to improve
455 livelihoods and sustainability”, with funding from UK's Official Development Assistance
456 Newton Fund awarded by UK Biotechnology and Biological Sciences Research Council
457 (BB/R022828/1). PT has received further support from the European Union's Horizon 2020
458 research and innovation programme under the Marie Skłodowska-Curie grant agreements No
459 844564 and No 101006417.

460 We would like to thank Dr Jennifer Hincks from The Centre for Core Biotechnology Services,
461 Flow Cytometry Facility at University of Leicester. We are grateful to USDA-Germplasm
462 Resources Information Network (GRIN), and Vavilov Research Institute (VIR, St Petersburg,
463 Russia) for their generous provision of seeds. Germplasm held in the CIAT collections is
464 available on request (<http://genebank.ciat.cgiar.org>).

465

466 **Author Contributions**

467 Writing—original draft: PT; Conceptualization: PT, TP, VC and PH-H; Investigation - flow
468 cytometry analysis, chromosome preparation and counting: PT; Sampling: TP, LM;
469 Methodology: PT, TP; Funding acquisition: RM, JV and PH-H; Supervision: PH-H;
470 Writing—review & editing: PT, TP, LM, RM, VC, JV, TS and PH-H. All authors have read
471 and agreed to the published version of the manuscript.

472

473 **Conflicts of Interest**

474 The authors declare no conflict of interest.

475

476 **References**

477 **Alves GF, de Figueiredo UJ, Filho ADP, Barrios SCL, do Valle CB. 2013.** Breeding
478 strategies for *Brachiaria* spp. to improve productivity - an ongoing project. *Proceedings of the*
479 *22nd International Grassland Congress*: 244-245.

480 **Arumuganathan K, Earle ED. 1991.** Estimation of nuclear DNA content of plants by flow
481 cytometry. *Plant Molecular Biology Reporter* **9**: 229-241.

482 **Baptistella JLC, de Andrade SAL, Favarin JL, Mazzafera P.** 2020. *Urochloa* in tropical
483 agroecosystems. *Frontiers in Sustainable Food Systems* **4**: 119. doi:10.3389/fsufs.2020.00119

484 **Barrios SCL, do Valle CB, Alves GF, Simeão RM, Jank L.** 2013. Reciprocal recurrent
485 selection in the breeding of *Brachiaria decumbens*. *Tropical Grasslands - Forrajes*
486 *Tropicales* **1**: 52-54.

487 **Basappa GP, Muniyamma M, Chinnappa CC.** 1987. An investigation of chromosome
488 numbers in the genus *Brachiaria* (Poaceae: Paniceae) in relation to morphology and
489 taxonomy. *Canadian Journal of Botany* **65**(11): 2297-2309.

490 **Bennett MD, Bhandol P, Leitch IJ.** 2000. Nuclear DNA amounts in Angiosperms and their
491 modern uses - 807 new estimates. *Annals of Botany* **86**(4): 859-909.

492 **Bennett MD, Leitch IJ.** 2011. Nuclear DNA amounts in angiosperms: targets, trends and
493 tomorrow. *Annals of Botany* **107**(3): 467-590.

494 **Bennett MD, Price HJ, Johnston JS.** 2008. Anthocyanin inhibits propidium iodide DNA
495 fluorescence in *Euphorbia pulcherrima*: implications for genome size variation and flow
496 cytometry. *Annals of Botany* **101**: 777-790.

497 **Bennett MD, Smith JB.** 1976. Nuclear DNA amounts in angiosperms. *Philosophical
498 Transactions of the Royal Society of London. B, Biological Sciences* **274**(933): 227-74.

499 **Bennett MD, Smith JB, Heslop-Harrison JS.** 1982. Nuclear DNA amounts in angiosperms.
500 *Proceedings of the Royal Society of London. Series B. Biological Sciences* **216**(1203): 179-99.

501 **Bernini C, Marin-Morales MA.** 2001. Karyotype analysis in *Brachiaria* (Poaceae) species.
502 *Cytobios* **104**: 157-171.

503 **Bhosale R, Boudolf V, Cuevas F, Lu R, Eekhout T, Hu Z, Van Isterdael G, Lambert
504 GM, Xu F, Nowack MK, Smith RS, Vercauteren I, De Rycke R, Storme V, Beeckman T,**

505 **Larkin JC, Kremer A, Höfte H, Galbraith DW, Kumpf RP, Maere S, De Veylder L.**

506 **2018.** A spatiotemporal DNA endopolyploid map of the *Arabidopsis* root reveals roles for the

507 endocycle in root development and stress adaptation. *The Plant Cell* **30**: 2330-2351.

508 **Boldrini KR, Micheletti PL, Gallo PH, Mendes-Bonato AB, Pagliarini MS, Valle CB.**

509 **2009a.** Origin of a polyploid accessions of *Brachiaria humidicola* (Poaceae: Panicoideae:

510 Paniceae). *Genetics and Molecular Research* **8**(3): 888-895.

511 **Boldrini KR, Pagliarini MS, Valle CB. 2009b.** Meiotic behavior of a nonaploid accession

512 endorses x=6 for *Brachiaria humidicola* (Poaceae). *Genetics and Molecular Research* **8**(4):

513 1444-1450.

514 **Bory S, Catrice O, Brown S, Leitch IJ, Gigant R, Chiroleu F, Grisoni M, Duval M-F,**

515 **Besse P. 2008.** Natural polyploidy in *Vanilla planifolia* (Orchidaceae). *Genome* **51**: 816-826.

516 **Campos JMS, Davide LC, Salgado CC, Santos FC, Costa PN, Silva PS, Alves CCS,**

517 **Viccini LF, Pereira AV. 2009.** *In vitro* induction of hexaploid plants from triploid hybrids of

518 *Pennisetum purpureum* and *Pennisetum glaucum*. *Plant Breeding* **128**: 101-104.

519 **Capstaff NM, Miller AJ. 2018.** Improving the yield and nutritional quality of forage crops.

520 *Frontiers in Plant Science* **9**: 535 doi: 10.3389/fpls.2018.00535

521 **Doležel J, Bartoš J. 2005.** Plant DNA flow cytometry and estimation of nuclear genome size.

522 *Annals of Botany* **95**: 99-110.

523 **Doležel J, Greilhuber J, Suda J. 2007.** Estimation of nuclear DNA content in plants using

524 flow cytometry. *Nature Protocols* **2**(9): 2233-2244.

525 **Doležel J, Lysák MA, van Den Houwe I, Dolezelová M, Roux N. 1997.** Use of flow

526 cytometry for rapid ploidy determination in *Musa* species. *Infomusa* **6**: 6-9.

527 **Feitoza RBB, Varela RM, Torres A, Molinillo JMG, Lima HRP, Moraes LFD, da Cunha**

528 **M, Macías FA. 2020.** Evaluation of the phytotoxicity of *Urochloa humidicola* roots by

529 bioassays and microscopic analysis. Characterization of new compounds. *Journal of*

530 *Agricultural and Food Chemistry* **68**: 4851-4864.

531 **Francis D, Davies MS, Barlow PW. 2008.** A strong nucleotypic effect on the cell cycle

532 regardless of ploidy level. *Annals of Botany* **101**(6): 747-57.

533 **Galbraith DW, Harkins KR, Maddox JR, Ayres NM, Sharma DP, Firoozabady E. 1983.**

534 Rapid flow cytometric analysis of the cell cycle in intact plant tissues. *Science* **220**: 1049-

535 1051.

536 **Galbraith DW, Lambert GM. 2012.** Using the BD AccuriTM C6 cytometer for rapid and

537 accurate analysis of the nuclear DNA contents of flowering plants. *BD Bioscience* 1-10.

538 **González AT, Morton CM. 2005.** Molecular and morphological phylogenetic analysis of

539 *Brachiaria* and *Urochloa* (Poaceae). *Molecular Phylogenetics and Evolution* **37**(1): 36-44.

540 **Greilhuber J. 2008.** Cytochemistry and C-values: the less-well-known world of nuclear DNA

541 amounts. *Annals of Botany* **101**(6): 791-804.

542 **Greilhuber J, Såstad SM, Flatberg KI. 2003.** Ploidy determination in *Sphagnum* samples

543 from Svalbard, Arctic Norway, by DNA image cytometry. *Journal of Bryology* **25**: 235-239.

544 **Hanley SJ, Pellny TK, de Vega JJ, Castiblanco V, Arango J, Eastmond PJ, Heslop-**

545 **Harrison JS, Mitchell RAC. 2020.** Allele mining in diverse accessions of *Urochloa* and

546 *Megathyrsus* spp. tropical grasses to improve forage quality and reduce environmental impact.

547 *Biorxiv* preprint doi.org/10.1101/2020.12.09.418087

548 **Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. 2012.**

549 Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.

550 *Journal of Cheminformatics* **4**: 17.

551 **Heslop-Harrison JS, Schwarzacher T. 1996.** Flow cytometry and chromosome sorting. In:
552 Fukui K, Nakayama S, eds. *Plant Chromosomes: Laboratory Methods*. Boca Raton: CRC, 85-
553 108.

554 **Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK, Heslop-Harrison JS. 2014.**
555 Reticulate evolution in *Panicum* (Poaceae): the origin of tetraploid broomcorn millet, *P.*
556 *miliaceum*. *Journal of Experimental Botany* **65**(12): 3165-3175.

557 **Ishigaki G, Gondo T, Ebina M, Suenaga K, Akashi R. 2010.** Estimation of genome size in
558 *Brachiaria* species. *Grassland Science* **56**(4): 240-242.

559 **Jank L, Valle CB, Resende RMS. 2011.** Breeding tropical forages. *Crop Breeding and*
560 *Applied Biotechnology* S1: 27-34.

561 **Jungmann L. 2009.** Caracterização da diversidade genética molecular em germoplasma de
562 *Brachiaria* spp. PhD thesis, Universidade Estadual de Campinas, São Paulo, Brasil.

563 **Jungmann L, Vigna BBZ, Boldrini KR, Sousa ACB, do Valle CB, Resende RMS,**
564 **Pagliarini MS, Zucchi MI, de Souza AP. 2010.** Genetic diversity and population structure
565 analysis of the tropical pasture grass *Brachiaria humidicola* based on microsatellites,
566 cytogenetics, morphological traits, and geographical origin. *Genome* **53**(9): 698-709.

567 **Jędrzejczyk I, Śliwińska E. 2010.** Leaves and Seeds as Materials for Flow Cytometric
568 Estimation of the Genome Size of 11 Rosaceae Woody Species Containing DNA-Staining
569 Inhibitors. *Journal of Botany* <https://doi.org/10.1155/2010/930895>

570 **Keller-Grein, Maass BL, Hanson J. 1996.** Natural variation in *Brachiaria* and existing 12
571 germplasm collections. In: JW Miles, Maass BL, CB do Valle (eds.) *Brachiaria: biology, 13*
572 agronomy, and improvement

573 Centro Internacional de Agricultura Tropical (CIAT); Campo
574 14 Grande, BR: Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Centro Nacional
574 de 15 Pesquisa de Gado de Corte (CNPGC), Cali, Columbia, pp 16-39.

575 **Krahulcová A, Rotreklová O. 2010.** Use of flow cytometry in research on apomictic plants.

576 *Preslia* **82**: 23-39.

577 **de Laat AMM, Göhde W, Vogelzang JDC. 1987.** Determination of ploidy of single plants

578 and plant populations by flow cytometry. *Plant Breeding* **99**: 303-307.

579 **Loureiro J, Rodriguez E, Doležel J, Santos C. 2006a.** Flow cytometric and microscopic

580 analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. *Annals of*

581 *Botany* **98**: 515-527.

582 **Loureiro J, Rodriguez E, Doležel J, Santos C. 2006b.** Comparison of four nuclear isolation

583 buffers for plant DNA flow cytometry. *Annals of Botany* **98**(3): 679-689.

584 **Marçais G, Kingsford C. 2011.** A fast, lock-free approach for efficient parallel counting of

585 occurrences of k-mers. *Bioinformatics* **27**(6): 764-770.

586 **Martel E, Nay D, Siljak-Yakovlev S, Brown S, Sarr A. 1997.** Genome size variation and

587 basic chromosome number in pearl millet and fourteen related *Pennisetum* species. *Journal of*

588 *Heredity* **88**: 139-143.

589 **Matias FI, Barrios SCL, do Valle CB, Mateus RG, Martins LB, Moro GV. 2016.**

590 Estimate of genetic parameters in *Brachiaria decumbens* hybrids. *Crop Breeding and Applied*

591 *Biotechnology* **16**: 115-122.

592 **Miles JW, Maass BL, do Valle CB (eds.). 1996.** *Brachiaria* : Biology, agronomy, and

593 improvement. Centro Internacional de Agricultura Tropical (CIAT); Campo Grande, BR:

594 Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Centro Nacional de Pesquisa de

595 Gado de Corte (CNPGC), Cali, CO. 288 p.

596 **Moraes IC, Rume GC, Sobrinho FS, Techio VH. 2019.** Characterization of aneuploidy in

597 interspecific hybrid between *Urochloa ruziziensis* (R. Germ. & Evrard) Crins and *Urochloa*

598 *decumbens* (Stapf) R. D. Webster. *Molecular Biology Reports* **46**: 1931-1940.

599 **Nitthaisong P, Ishigaki G, Tanaka H, Akashi R. 2016.** Chromosome number, genomic
600 variation, and molecular markers to assess genetic diversity of *Brachiaria* species. *Crop
601 Science* **56**: 312-321.

602 **Ochatt SJ. 2008.** Flow cytometry in plant breeding. *Cytometry Part A* **73A**: 581-598.

603 **Oliveira DR, Nepomuceno DD, Castro RN, Filho RB, de Carvalho MG. 2017.** Special
604 metabolites isolated from *Urochloa humidicola* (Poaceae). *Anais da Academia Brasileira de
605 Ciencias* 89: 789-797.

606 **Ooka JK, Owens DK. 2018.** Allelopathy in tropical and subtropical species. *Phytochemistry
607 Reviews* **17**: 1225-1237.

608 **Otto F. 1992.** Preparation and staining of cells for high-resolution DNA analysis. In:
609 Radbruch A, ed. *Flow cytometry and cell sorting*. Berlin: Springer-Verlag, 101–104.

610 **Penteado MIO, Santos ACM, Rodrigues IF, do Valle CB, Seixas MAC, Esteves A. 2010.**
611 Determinação de ploidia e avaliação da quantidade de DNA total em diferentes espécies do
612 gênero *Brachiaria*. Campo Grande: Embrapa Gado de Corte. (Embrapa Gado de Corte.
613 Boletim de Pesquisa, 11).

614 **Price HJ, Hodnett G, Johnston JS. 2000.** Sunflower (*Helianthus annuus*) leaves contain
615 compounds that reduce nuclear propidium iodide fluorescence. *Annals of Botany* **86**: 929-934.

616 **dos Reis GB, Mesquita AT, Torres GA, Andrade-Vieira LF, Pereira AV, Davide LC.**
617 **2014.** Genomic homeology between *Pennisetum purpureum* and *Pennisetum glaucum*
618 (Poaceae). *Comparative Cytogenetics* **8**(3): 199-209.

619 **Ribeiro RC, Carvalho MG, Lopes HM, Rossiello ROP, Barbieri Junior E. 2012.**
620 Allelopathic activity of the hydrolate and water wecoction of *Brachiaria humidicola* (Rendle)
621 plant parts on the germination of four tropical leguminous species. *ISRN Agronomy*: 1-6.
622 <https://doi.org/10.5402/2012/838767>

623 **Ribeiro RC, de Carvalho MG, de Moraes MLL, Rossiello ROP, de Oliveira DR, de**
624 **Amorim RMQ, Barbieri Junior E.** 2018. Chemical screening of *Urochloa humidicola*:
625 Methods for characterizing secondary metabolites and allelopathic activity on forage legumes.
626 *American Journal of Plant Sciences* **9**: 1260-1278.

627 **Risso-Pascotto C, Pagliarini MS, Valle CB.** 2006. A new basic chromosome number for the
628 genus *Brachiaria* (Trin.) Griseb. (Poaceae: Panicoideae: Paniceae). *Genetic Resources and*
629 *Crop Evolution* **53**: 7–10.

630 **Roberts AV.** 2007. The use of bead beating to prepare suspensions of nuclei for flow
631 cytometry from fresh leaves, herbarium leaves, petals and pollen. *Cytometry Part A* **71A**:
632 1039-1044.

633 **da Rocha MJ, Chiavegatto RB, Damasceno AG, Rocha LC, Sobrinho FS, Techio VH.**
634 2019. Comparative meiosis and cytogenomic analysis in euploid and aneuploid hybrids of
635 *Urochloa* P. Beauv. *Chromosome Research* **27**: 333-344.

636 **Roche D, Hanna WW, Ozias-Akins.** 2001. Is supernumerary chromatin involved in
637 gametophytic apomixis of polyploid plants? *Sexual Plant Reproduction* **13**: 343-349.

638 **Samanta A, Paul BK, Guchhait N.** 2012. Photophysics of DNA staining dye propidium
639 iodide encapsulated in bio-mimetic micelle and genomic fish sperm DNA. *Journal of*
640 *Photochemistry and Photobiology B: Biology* **109**: 58-67.

641 **Schwarzacher T, Heslop-Harrison JS.** 2000. Practical in situ Hybridization. (Oxford, UK:
642 Bios).

643 **Schwarzacher T, Wang ML, Leitch AR, Miller N, Moore G, Heslop-Harrison JS.** 1997.
644 Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture
645 line. *Theoretical and Applied Genetics* **94**: 91-97.

646 **Soltis DE, Soltis PS. 1995.** The dynamic nature of polyploid genomes. *Proceedings of the*
647 *National Academy of Sciences of the United States of America* **92**(18): 8089-8091.

648 **Suda J, Trávníček P. 2006.** Reliable DNA ploidy determination in dehydrated tissues of
649 vascular plants by DAPI flow cytometry - new prospects for plant research. *Cytometry Part A*
650 **69A:** 273-280.

651 **Svoboda D, Kozubek M, Stejskal S. 2009.** Generation of digital phantoms of cell nuclei and
652 simulation of image formation in 3D image cytometry. *Cytometry Part A* **75A:** 494-509.

653 **Śliwińska E. 2018.** Flow cytometry - a modern method for exploring genome size and
654 nuclear DNA synthesis in horticultural and medicinal plant species. *Folia Horticulturae*
655 **30**(1): 103-128.

656 **Timbó ALO, Pereira RC, Sobrinho FS, Davide C. 2014.** Nuclear DNA content and
657 chromosome number in *Brachiaria* spp. *Revista Ciência Agronômica* **45**(1): 62-67.

658 **Tomaszewska P, Vorontsova MS, Renvoize SA, Ficinski SZ, Tohme J, Schwarzacher T,**
659 **Castiblanco V, de Vega JJ, Mitchell RAC, Heslop-Harrison JS. 2021.** Complex polyploid
660 and hybrid species in an apomictic and sexual tropical forage grass group: genomic
661 composition and evolution in *Urochloa* (*Brachiaria*) species. *bioRxiv preprint*
662 <https://doi.org/10.1101/2021.02.19.431966>

663 **Triviño NJ, Perez JG, Recio ME, Ebina M, Yamanaka N, Tsuruta S, Ishitani M,**
664 **Worthington M. 2017.** Genetic diversity and population structure of *Brachiaria* species and
665 breeding populations. *Crop Science* **57**: 2633-2644.

666 **Wang G, Yang Y. 2016.** The effects of fresh and rapid desiccated tissue on estimates o
667 Ophiopogoneae genome size. *Plant Diversity* **38**: 190-193.

668 **de Wet JMJ.** 1986. Hybridization and polyploidy in the Poaceae. In: TR Soderstrom, TR
669 Hilu, WH Campbell and MEBarkworth (eds.) *Grass systematics and evolution*, pp. 179–187.
670 Smithsonian Institution Press, Washington DC, USA.

671 **Worthington M, Ebina M, Yamanaka N, Heffelfinger C, Quintero C, Zapata YP, Perez**
672 **JG, Selvaraj M, Ishitani M, Duitama J, de la Hoz JF, Rao I, Dellaporta S, Tohme J,**
673 **Arango J.** 2019. Translocation of a parthenogenesis gene candidate to an alternate carrier
674 chromosome in apomictic *Brachiaria humidicola*. *BMC Genomics* **20**: 41.

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694 **Tables**

695

696 **Table 1.** Nuclei isolation buffers and their compositions.

Buffer	Composition
Galbraith (Galbraith <i>et al.</i> , 1983)	45 mM MgCl ₂ , 20 mM MOPS, 30 mM sodium citrate, 0,1% (v/v) Triton X-100 (pH 7,0)
Otto (Otto, 1992)	Otto I: 100 mM citric acid, 0,5% (v/v) Tween 20 (pH 2–3) Otto II: 400 mM Na ₂ PO ₄ ·12H ₂ O (pH 8–9)
Partec (de Laat <i>et al.</i> , 1987)	100 mM Tris, 2,5 mM MgCl ₂ ·6H ₂ O, 85 mM NaCl, 0,1% (v/v) Triton X-100 (pH 7,0)
Tomaszewska (this paper)	100 mM Tris, 2,5 mM MgCl ₂ ·6H ₂ O, 85 mM NaCl, 0,1% (v/v) Triton X-100 (pH 7,0), 15 mM β-mercaptoethanol, 1% PVP-40

697

698

699

700

701 **Table 2.** Standards used for flow cytometry analysis of *Urochloa* germplasm collection.
702 Chromosome numbers were counted microscopically.

Standard	Accession number	Number of chromosomes	Standard mean peak
<i>Panicum miliaceum</i>	Mil69	2n=4x=36	111,925.27
<i>Urochloa brizantha</i>	PI 292187	2n=4x=36	225,075.73
<i>Urochloa decumbens</i>	CIAT 664	2n=4x=36	205,253.15
<i>Urochloa decumbens</i>	CIAT 6370	2n=4x=36	193,675.46
<i>Urochloa humidicola</i>	CIAT 26151	2n=6x=36	197,353.12
<i>Urochloa humidicola</i>	CIAT 16867	2n=8x+2 or 9x-4=50	252,917.76
<i>Urochloa maxima</i>	CIAT 6171	2n=4x=32	130,912.51
<i>Urochloa maxima</i>	CIAT 16004	2n=4x=32	119,920.97
<i>Urochloa maxima</i>	PI 284156	2n=4x=32	148,800.27
<i>Urochloa ruziensis</i>	CIAT 6419	2n=2x=18	82,708.77
<i>Urochloa</i> sp.	PI 657653	2n=4x=32	110,639.72

703

704

705

706

707

708

709

710 **Table 3.** Variation in sample mean peak indices between species, for the different ploidy
711 levels determined.

Species	Ploidy	Number of studied accessions	Number of studied plants	Sample mean peak range	Sample mean peak average	CV [%] range	CV [%] average
<i>Andropogon gayanus</i>	2n=2x	1	1	87,275.28	87,275.28	8,37	8,37
<i>Panicum coloratum</i>	2n=2x	1	1	98,614.17	98,614.17	6,27	6,27
<i>Paspalum dilatatum</i>	2n=4x	1	3	163,459.78-171,214.54	167,807.35	6,88-7,66	7,34
<i>Pennisetum polystachion</i>	2n=6x	1	1	187,090.34	187,090.34	5,75	5,75
<i>Pennisetum purpureum</i>	2n=4x	1	1	271,951.52	271,951.52	5,51	5,51
<i>Urochloa arrecta</i>	2n=4x	1	1	93,267.10	93,267.10	7,53	7,53
<i>Urochloa brizantha</i>	2n=2x	6	9	82,217.75-110,030.54	95,836.26	5,46-9,14	7,32
	2n=4x	59	70	110,560.34-225,075.73	171,889.01	2,9-9,89	5,65
	2n=5x	25	37	215,977.78-290,620.54	246,852.7	3,4-8,17	5,34
	2n=6x	1	1	303,441.43	303,441.43	3,83	3,83
<i>Urochloa decumbens</i>	2n=2x	18	19	71,965.77-103,830.83	87,468.88	2,68-6,87	4,76
	2n=4x	25	28	152,228.44-210,962.67	183,142.501	3,25-5,66	4,52
	2n=6x	1	1	270,013.17	270,013.17	4,02	4,02
<i>Urochloa dictyoneura</i>	2n=7x	1	1	220,480.25	220,480.25	5,91	5,91
<i>Urochloa dura</i>	2n=5x	1	2	254,700.46-281,586.13	268,143.3	4,82-5,18	5
<i>Urochloa humidicola</i>	2n=6x	16	21	108,291.11-205,216.7	173,567.32	3,69-6,24	4,65
	2n=7x	33	45	215,189.32-298,181.56	259,242.189	2,84-6,4	4,31
	2n=8x+2 or 9x-4	1	2	252,917.76-258,558.63	255,738.20	3,04-3,49	3,27
	2n=9x	3	4	320,307.05-338,390.83	329,674.678	3,39-5,33	4,7
<i>Urochloa jubata</i>	2n=2x	1	1	86,999.47	86,999.47	5,89	5,89
	2n=4x	1	1	122,886.75	122,886.75	4,73	4,73
<i>Urochloa maxima</i>	2n=2x	25	31	74,023.07-103,726.9	93,849.762	4,81-9,23	7,02
	2n=4x	99	102	104,144.06-189,830.96	127,810.63	3,73-8,81	5,5
<i>Urochloa nigropedata</i>	2n=4x	1	2	142,153.6-145,726.4	143,940.00	3,91-6,53	5,22
<i>Urochloa plantaginea</i>	2n=2x	1	1	90,143.39	90,143.39	6,62	6,62
<i>Urochloa platynota</i>	2n=2x	1	1	98,306.78	98,306.78	5,96	5,96
<i>Urochloa ruziziensis</i>	2n=2x	26	33	75,233.15-103,000.03	86,430.84	2,42-6,92	4,32
<i>Urochloa ruziziensis x Urochloa decumbens x Urochloa brizantha</i>	2n=4x	1	1	190,289.59	190,289.59	2,67	2,67
<i>Urochloa</i> sp. PI657653	2n=4x	1	1	110,639.72	110,639.72	4,42	4,42

712

713

714

715

716

717

718

719 **Legends to Figures**

720 **Figure 1.** Field plots of *Urochloa* tropical forage grasses in CIAT, Colombia.

721 **Figure 2.** Optimization of flow cytometry assay for dried leaf samples. (A) Three gradually
722 declined peaks of diploid *U. decumbens* CIAT 26185 indicating endoreduplication; (B)
723 Additional high peak on histogram of tetraploid *U. maxima* CIAT 16055, indicating
724 contamination of leaf sample; (C) Fresh and (D) dried leaf samples of *Panicum miliaceum*
725 showing the same position of peaks on histograms, but slight differences in number of nuclei
726 and CV; (E) Histogram of leaf sample chopped with single-edge razor blade; (F) Histogram
727 of dried leaf sample of *Panicum miliaceum* with no gating tools applied; (G) Histogram of
728 dried leaf sample of *Panicum miliaceum* where gating tools were applied, giving sharp peaks
729 and low background.

730

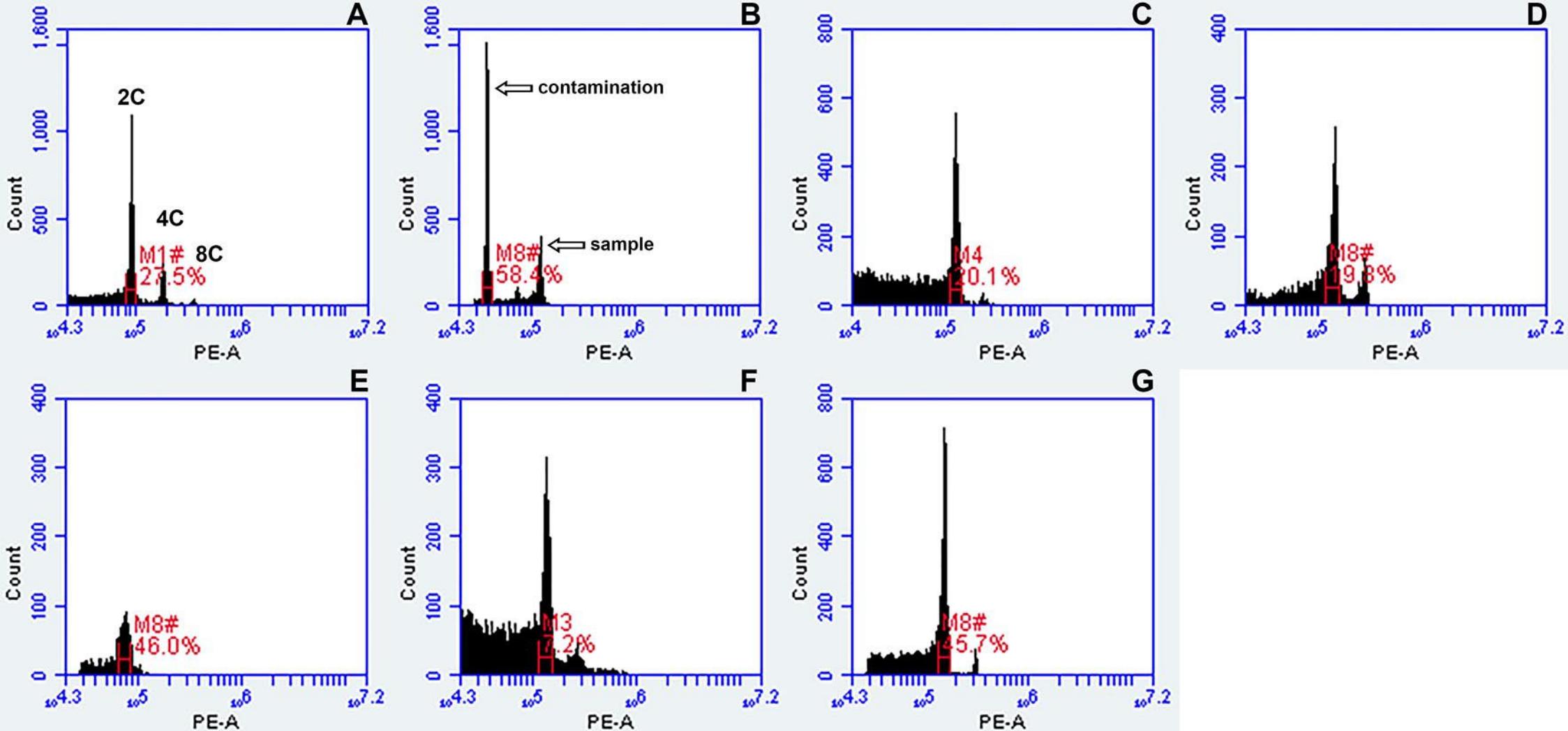
731 **Figure 3.** Comparison of three different standard buffers for nuclei isolation from dried leaves
732 of tetraploid *Urochloa* accessions, and their effect on DNA cell cycle histogram quality. (A)
733 Galbraith's buffer; (B) Otto's buffer; (C) Otto's buffer supplemented with β -mercaptoethanol;
734 (D) Partec buffer; (E) Partec buffer supplemented with β -mercaptoethanol; (F) Partec buffer
735 supplemented with 15mM β -mercaptoethanol and 1% PVP-40. Regions of identification (red)
736 were placed across the peaks to export values representing peak positions and CVs.

737

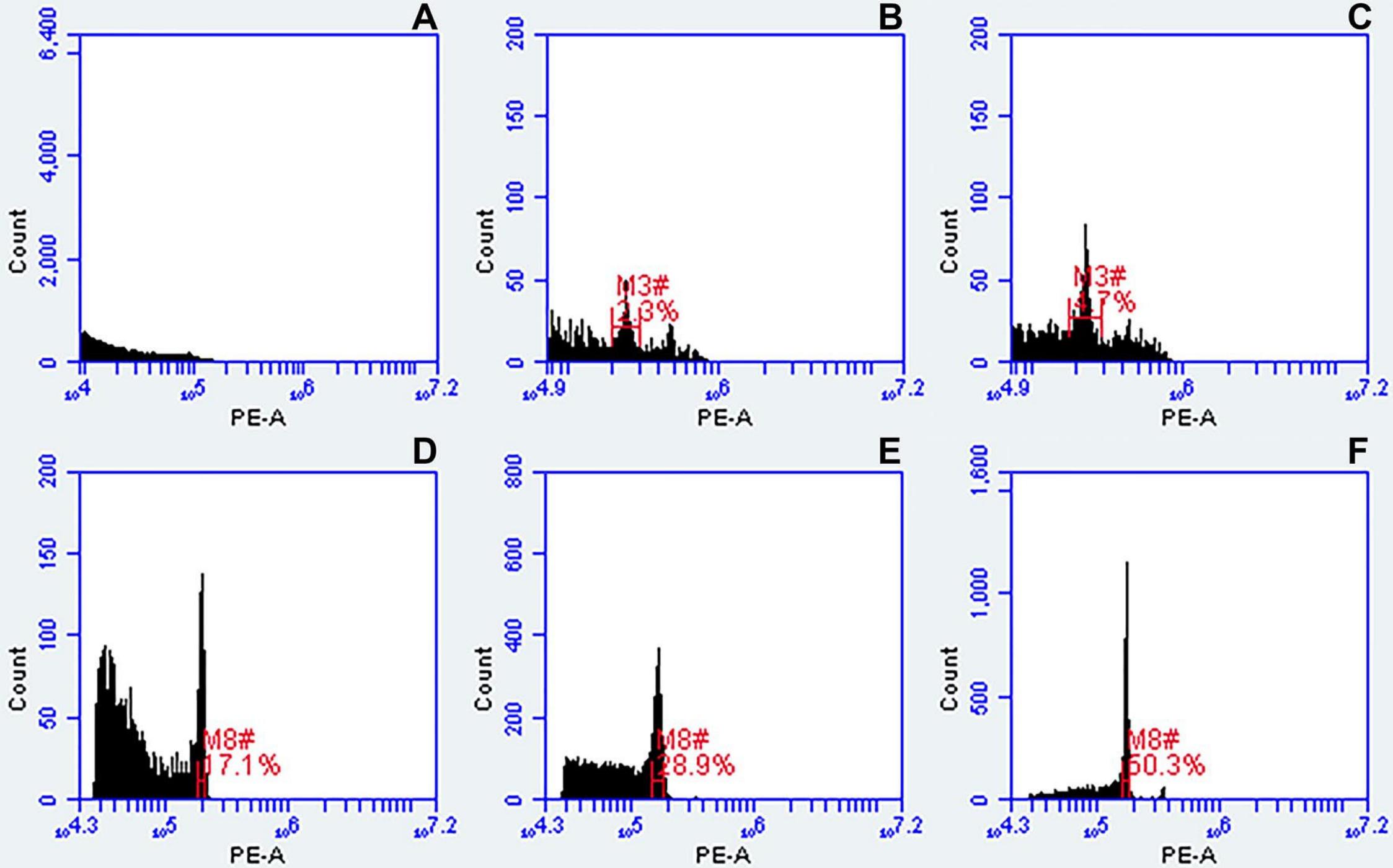
738 **Figure 4.** Histograms of relative fluorescence intensities showing ploidy levels and the
739 corresponding chromosome numbers of different genotypes used as standards for flow
740 cytometry analysis of *Urochloa* germplasm collection. Standard peak means in Table 2. (A)
741 *Panicum miliaceum* Mil69 ($2n=2x=36$); (B) *Urochloa brizantha* PI292187 ($2n=4x=36$); (C)
742 *Urochloa decumbens* CIAT 664 ($2n=4x=36$); (D) *Urochloa decumbens* CIAT 6370

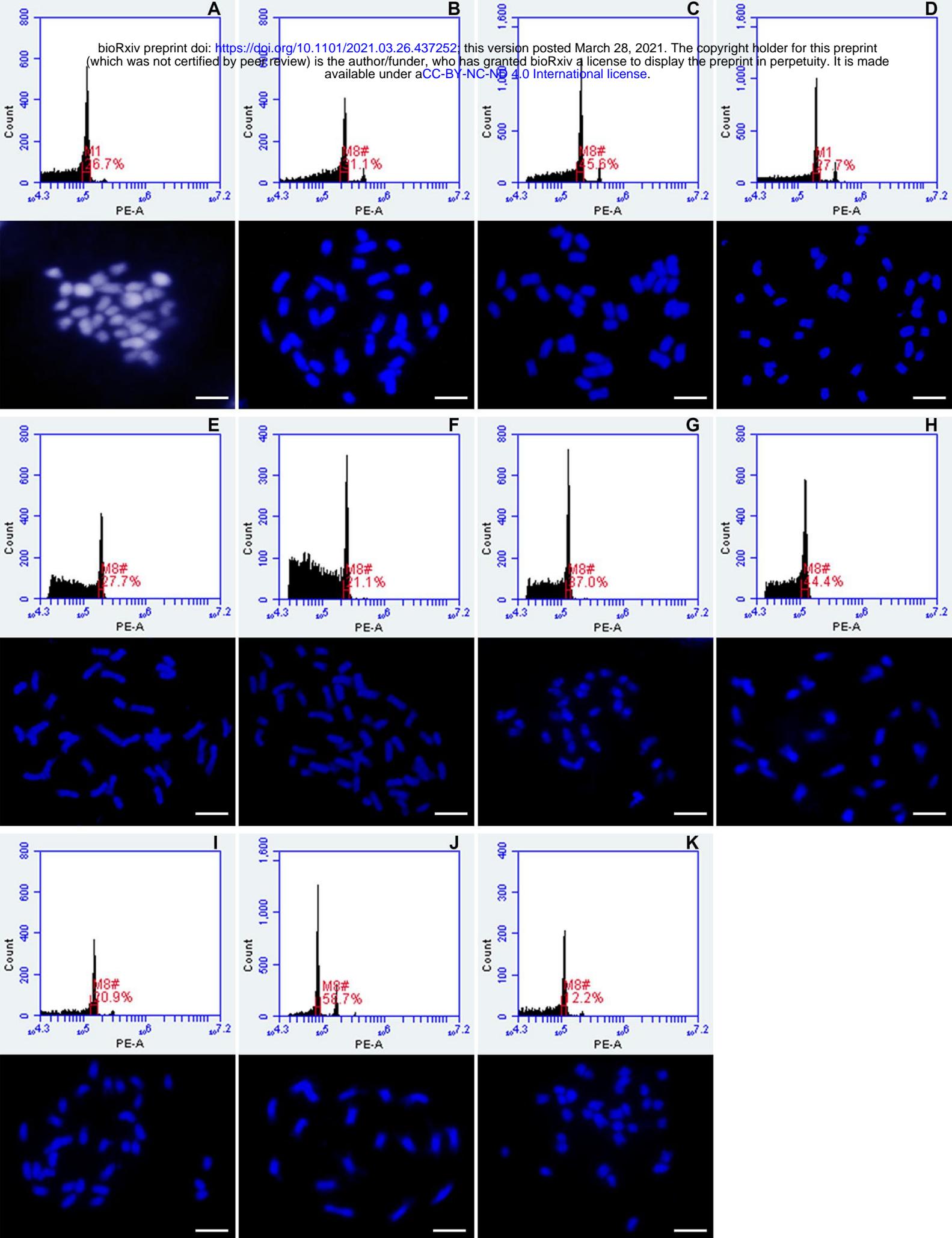
743 (2n=4x=36); (E) *Urochloa humidicola* CIAT 26151 (2n=6x=36); (F) *Urochloa humidicola*
744 CIAT 16867 (2n=8x+2 or 9x-4=50); (G) *Urochloa maxima* CIAT 6171 (2n=4x=32); (H)
745 *Urochloa maxima* CIAT 16004 (2n=4x=32); (I) *Urochloa maxima* PI 284156 (2n=4x=32); (J)
746 *Urochloa ruziziensis* CIAT 6419 (2n=2x=18); (K) *Urochloa* sp. PI 657653 (2n=4x=32).
747 Regions of identification seen on plots (red) were placed across the peaks to export values
748 representing peak positions and CVs. Scale bars = 5 μ m.

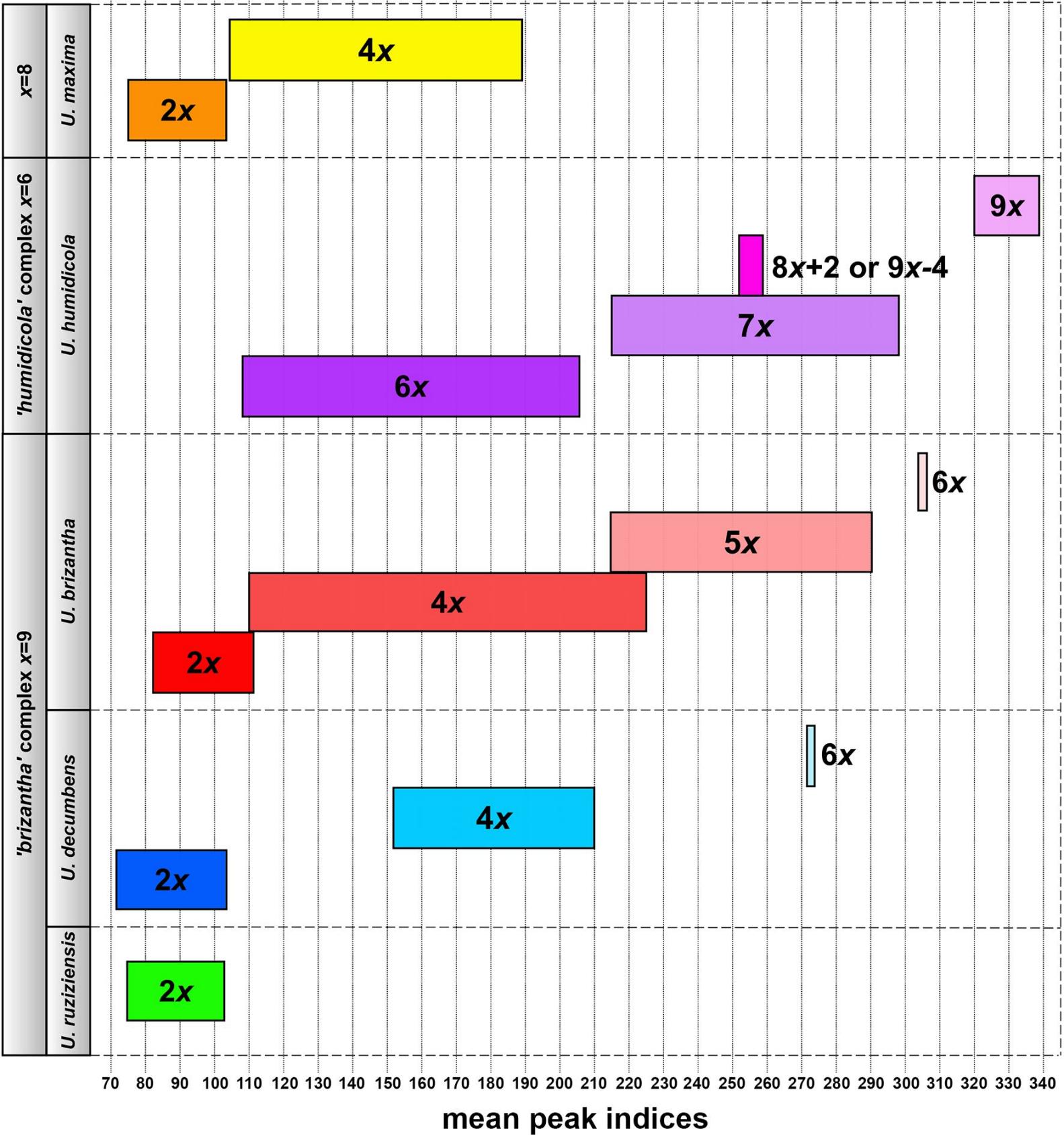
749

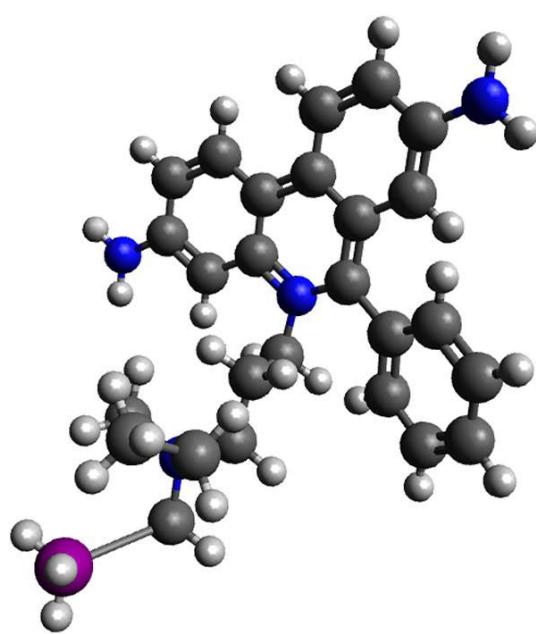

750 **Figure 5.** Ranges of mean peak indices for different ploidy levels of the most numerous
751 species ('*brizantha*' agamic complex: *U. ruziziensis*, *U. decumbens*, *U. brizantha*; '*humidicola*'
752 agamic complex: *U. humidicola*; *U. maxima*) in CIAT germplasm collection.

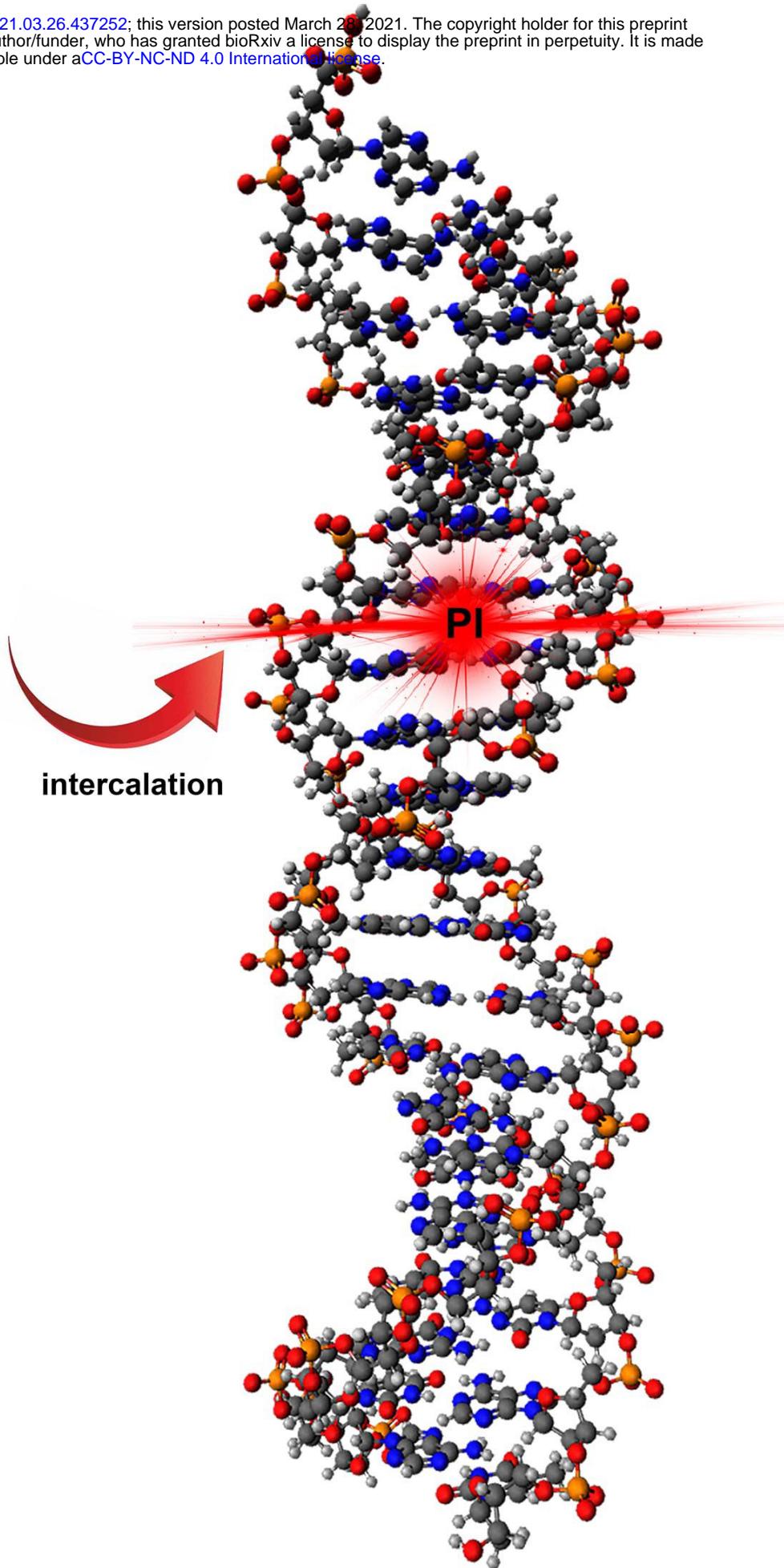
753


754 **Figure 6.** Diagram showing intercalation of propidium iodide molecule between DNA bases.
755 Avogadro program (Hanwell *et al.*, 2012) was used to create a molecule of propidium iodide,
756 and a Watson-Crick duplex using the sequence AATAACTCCCACATGTCCAT.


Tomaszewska et al. *Urochloa* ploidy measurement. Figure 1.


Tomaszewska et al. *Urochloa* ploidy measurement. Figure 2.


Tomaszewska et al. *Urochloa* ploidy measurement. Figure 3.


Tomaszewska et al. *Urochloa* ploidy measurement. Figure 4.

Tomaszewska et al. *Urochloa* ploidy measurement. Figure 5.

propidium iodide (PI)

