

1 **Target Capture Sequencing of SARS-CoV-2 Genomes Using the ONETest Coronaviruses**

2 **Plus**

3

4 Shing H. Zhan^{1,†,*}, Sepideh M. Alamouti^{1,†}, Brian S. Kwok¹, Meng-Hsun Lee¹, Jaswinder

5 Khattra¹, Habib Daneshpajouh¹, Herbert J. Houck², Kenneth H. Rand²

6

7 ¹Fusion Genomics Corporation, Burnaby, British Columbia, Canada.

8 ²Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College
9 of Medicine, Gainesville, Florida, USA.

10 [†]Equal contribution.

11 *Correspondence: Shing H. Zhan. Address: Fusion Genomics Corporation, Discovery 1, Room
12 1450, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. E-mail:
13 szhan@fusiongenomics.com or info@fusiongenomics.com.

14

15 Running title: Target capture NGS for SARS-CoV-2.

16

17 **ABSTRACT**

18 **Background**

19 Genomic sequencing is important to track and monitor genetic changes in SARS-CoV-2. We
20 introduce a target capture next-generation sequencing methodology, the ONETest
21 Coronaviruses Plus, to sequence SARS-CoV-2 genomes and select genes of other respiratory
22 viruses simultaneously.

23 **Methods**

24 We applied the ONETest on 70 respiratory samples (collected in Florida, USA between May
25 and July, 2020), in which SARS-CoV-2 had been detected by a qualitative PCR assay. For 48
26 (69%) of the samples, we also applied the ARTIC protocol for Illumina sequencing. All the
27 libraries were sequenced as 2x150 nucleotide reads on an Illumina instrument. The ONETest
28 data were analyzed using an in-house pipeline and the ARTIC data using a published pipeline
29 to produce consensus SARS-CoV-2 genome sequences, to which lineages were assigned
30 using *pangolin*.

31 **Results**

32 Of the 70 ONETest libraries, 45 (64%) had a complete or near-complete SARS-CoV-2 genome
33 sequence (> 29,000 bases and with > 90% of its bases covered by at least 10 reads). Of the 48
34 ARTIC libraries, 25 (52%) had a complete or near-complete SARS-CoV-2 genome sequence.
35 In 24 out of 34 (71%) samples in which both the ONETest and ARTIC sequences were
36 complete or near-complete and in which lineage could be assigned to both the ONETest and
37 ARTIC sequences, the SARS-CoV-2 lineage identified was the same.

38 **Conclusions**

39 The ONETest can be used to sequence the SARS-CoV-2 genomes in archived samples and
40 thereby enable detection of circulating and emerging SARS-CoV-2 variants. Target capture
41 approaches, such as the ONETest, are less prone to loss of sequence coverage probably due
42 to amplicon dropouts encountered in amplicon approaches, such as ARTIC. With its added

43 value of characterizing other major respiratory pathogens, although not assessed in this study,
44 the ONETest can help to better understand the epidemiology of infectious respiratory disease in
45 the post COVID-19 era.

46

47 **Keywords:** genome sequencing, target hybridization, respiratory disease.

48 **INTRODUCTION**

49 SARS-CoV-2 genome sequencing is widely achieved using the amplicon next-generation
50 sequencing (NGS) ARTIC methodology¹. Because of its ease of use and low cost of
51 sequencing, ARTIC has become the method of choice among many laboratories.
52 Notwithstanding its advantages, the ARTIC PCR primer set needs to be maintained and updated
53 due to amplicon dropouts¹, which may be caused by primer interactions² and mutations at
54 primer binding sites³. Without continual upkeep, amplicon sequencing may yield incomplete
55 SARS-CoV-2 genome sequences and therefore create a loss of valuable genetic information.
56 This could weaken our vigilance towards SARS-CoV-2 mutations, which may impact our
57 diagnostic, therapeutic, and vaccination efforts⁴, and SARS-CoV-2 lineages, especially variants
58 of concern such as B.1.1.7 and B.1.135 that may enhance the virus' transmissibility or lethality
59^{5,6}.

60

61 Alternatively, SARS-CoV-2 genome sequencing can be accomplished using probe-based liquid-
62 phase hybridization followed by NGS^{3,7,8}. A major appeal of target capture NGS methodologies
63 is its capacity to enrich samples for a practically limitless repertoire of genetic loci without
64 needing to constantly update the primers and or deal with multiplexing issues encountered with
65 amplicon-based approaches. Indeed, virome target capture NGS methodologies have been
66 developed (e.g.,^{9,10}). Another advantage is that target capture NGS approaches perform better
67 than amplicon NGS approaches in degraded samples (e.g., archived FFPE samples¹¹). A
68 validated target capture NGS solution with end-to-end automation for concurrent detection and
69 sequence characterization of SARS-CoV-2 and other common respiratory pathogens can be a
70 powerful tool for genomic surveillance of respiratory infectious disease in the post COVID-19
71 era and can play a crucial role in timely generation and dissemination of genomic data.

72

73 The ONETest™ is a pre-commercial target capture NGS platform developed by Fusion
74 Genomics Corp. (Burnaby, BC, Canada). The platform offers a sequencer-agnostic end-to-end
75 NGS workflow that includes library preparation, probe-based liquid phase hybridization, and
76 cloud-based bioinformatics analysis. The ONETest™ Coronaviruses Plus
77 (<http://www.fusiongenomics.com/onetestplatform/coronavirusesplus/>), based on the ONETest™
78 platform, has been demonstrated to enrich samples for select genetic loci of various respiratory
79 viruses (e.g., influenza A viruses) in a separate study (*in preparation*). Furthermore, the
80 ONETest™ EnviroScreen, also based on the ONETest™ platform, has been shown to detect
81 diverse subtypes of avian influenza viruses in wetland sediments ¹².

82

83 To capture the full-length genome of SARS-CoV-2, we have expanded the probe design of the
84 ONETest Coronaviruses Plus. Here, using the updated ONETest, we sequenced the SARS-
85 CoV-2 genomes in 70 retrospectively selected samples, which were initially tested at the
86 University of Florida (UF) Health Shands Hospital Clinical Laboratory during the COVID-19
87 pandemic in 2020. We also processed a subset of them (n = 48) using the ARTIC protocol for
88 Illumina sequencing. These data allowed us to demonstrate the ability of the ONETest to
89 determine the genome sequences of SARS-CoV-2 from respiratory samples.

90

91 **RESULTS**

92 ***ONETest yields complete or near-complete SARS-CoV-2 genome more often than ARTIC***
93 The ONETest libraries of the 70 samples had a total of ~186 million paired-end reads, and each
94 of the libraries had ~2.66 million paired-end reads on average (range, ~0.45 to ~6.14 million)
95 (**Table S1**). This per-sample amount of sequencing is comparable to that used in a study ³
96 evaluating another target capture product (7.4 million 1x100 nt filtered reads per sample). Of
97 the 70 ONETest libraries, 45 (64%) had a complete or near-complete SARS-CoV-2 genome

98 sequence that was > 29,000 nucleotides (nt) long and had > 90% well covered bases
99 (specifically, $\geq 10x$ depth). Even after sub-sampling, the ONETest libraries had a complete or
100 near-complete genome sequence for 43 (61%) of the samples. Additionally, we processed 48
101 (69%) of the 70 samples using ARTIC. The ARTIC libraries had a total of ~30 million paired-
102 end reads, and each of the libraries had ~0.63 million paired-end reads on average (range,
103 ~0.20 to ~2.1 million) (**Table S1**). This amount of sequencing is comparable to that in the
104 ARTIC experiments performed by other groups (**Figure S1**). Of the 48 ARTIC libraries, 25
105 (52%) had a complete or near-complete SARS-CoV-2 genome sequence.

106

107 When considering the 48 samples for which both ONETest and ARTIC libraries were made, the
108 mean percent poorly covered bases in the ONETest sequences was 23% (range, 0% to 100%),
109 whereas that in the ARTIC sequences was 25% (range, 3% to 99%) (**Table S1**). For 34 (71%)
110 of the samples, there was sufficient sequence information in both the ONETest and ARTIC
111 libraries so that lineage could be assigned to both the ONETest and ARTIC sequences using
112 *pangolin* (see below). We focused on these lineage-assigned matched ONETest and ARTIC
113 library pairs to compare the genome sequences from the two methodologies.

114

115 In the matched ONETest and ARTIC library pairs, there were fewer poorly covered bases (<
116 10x depth) across the SARS-CoV-2 genome in the ONETest libraries than in the ARTIC
117 libraries (**Figure 1**; **Figure S2**). Some of this difference may be explained by the fact that the
118 ONETest libraries were sequenced deeper than the ARTIC libraries (almost four times deeper
119 on average). However, a sub-sampling analysis indicated that even at similar sequencing
120 depths, the ONETest libraries yielded better sequence coverage than the ARTIC libraries
121 (**Figure S3**).

122

123 ***Regions with poorer sequence coverage in the ARTIC libraries than the ONETest libraries***

124 While there were several regions of the SARS-CoV-2 genome in the ARTIC libraries that had
125 poor sequence coverage compared to the ONETest libraries, we closely examined one region
126 that had particularly poor sequence coverage in the ARTIC libraries (**Figure 1**). We observed
127 that depth of coverage was generally poor in the ~19,900-20,500 region of the SARS-CoV-2
128 genome in the ARTIC libraries (**Figure 1**). This region is targeted by the ARTIC primer pairs
129 66_LEFT/66_RIGHT (pool 2, MN908947.3: 19,844-20,255) and 67_LEFT/67_RIGHT (pool 1,
130 MN908947.3: 20,172-20,572). In contrast, the ~19,900-20,500 region was well covered overall
131 in the ONETest libraries (**Figure 1**). For example, depth of coverage across the SARS-CoV-2
132 genome in the ARTIC library of sample 27 was high (mean, 3,937x), except in that region
133 amplified by the two primer pairs (visualized using IGV ¹³ in **Figure S4**); on the other hand, the
134 ONETest library of sample 27 had high depth of coverage across the virus' genome (mean,
135 10,354x with duplicate reads and 1,237x without duplicate reads), even in the region targeted by
136 those two problematic ARTIC PCR primer pairs (**Figure S4**).
137

138 ***Difference in sequence coverage between samples positive for three genes by PCR and***
139 ***samples positive for one or two genes by PCR***

140 In some ONETest and ARTIC libraries, incomplete SARS-CoV-2 genome sequences might
141 have arisen from low-titer samples. Because we used a qualitative PCR assay, we did not have
142 quantitative estimates of viral titer in the samples. Instead, we considered the samples in which
143 three SARS-CoV-2 genes (N, RdRp, and E) were detected by the PCR assay to be of relatively
144 high titer (although some might be of low titer), whereas the samples in which one or two genes
145 (N only, or both N and RdRp) were detected to be of relatively low titer (although some might be
146 of high titer). We noticed that the ONETest and ARTIC libraries from the low-titer samples
147 yielded less complete SARS-CoV-2 genome sequences than the libraries from the high-titer
148 samples. The ONETest sequences from the low-titer samples had more poorly covered bases

149 (mean \pm standard deviation; 75% \pm 28%) than those from the high-titer samples (2% \pm 6%) ($p <$
150 0.001, Wilcoxon's test; including only the ONETest libraries with the matched ARTIC libraries).
151 In line with this observation, the ARTIC sequences from the low-titer samples had more poorly
152 covered bases (60% \pm 34%) than those from the high-titer samples (12% \pm 13%) ($p < 0.001$;
153 Wilcoxon's test).

154

155 ***ONETest and ARTIC determined SARS-CoV-2 genome sequences with concordant***
156 ***lineage assignments***

157 For 34 samples, the consensus sequences from both the ONETest and ARTIC libraries could
158 be assigned to a SARS-CoV-2 lineage using *pangolin*. In 24 (71%) of these samples, the
159 lineage assignment was identical for the ONETest and ARTIC libraries (e.g., in sample 50, both
160 the ONETest and ARTIC sequences were assigned to B.1.509). In the other 10 samples, the
161 lineage assignment was nevertheless in the same major lineage (e.g., in sample 46, both the
162 ONETest and ARTIC sequences were assigned to the B.1 lineage rather than the A.1 lineage).
163 These differences in lineage assignment likely stemmed from differences in sequence coverage
164 between the ONETest and ARTIC libraries. In the 10 samples, the mean difference in percent
165 poorly covered bases between the ARTIC and ONETest sequences was 5.3%.

166

167 ***SARS-CoV-2 lineages detected in the ONETest libraries***

168 Of the 70 samples sequenced in this study using the ONETest, 45 had a complete or near-
169 complete SARS-CoV-2 genome sequence. We found 15 distinct SARS-CoV-2 lineage
170 assignments to the ONETest sequences of the samples (**Figure 2**).

171

172 **DISCUSSION**

173 Vaccines against SARS-CoV-2 are presently being administered around the globe, but we have
174 yet to see how effectively the vaccines will protect our populations from the new variants of

175 concerns. Having multiple technologies in our SARS-CoV-2 genome sequencing toolbox
176 should help to heighten our vigilance towards new SARS-CoV-2 variants that may escape our
177 vaccines. Here, we propose the ONETest target capture NGS methodology to sequence
178 SARS-CoV-2 genomes to aid in efforts to track SARS-CoV-2 variants.

179
180 Using the ONETest and ARTIC, we sequenced SARS-CoV-2 genomes from archived samples
181 in which SARS-CoV-2 had been detected by a FDA EUA qualitative PCR assay. Our data
182 demonstrate that the ONETest can yield complete SARS-CoV-2 genome sequences more often
183 than ARTIC (64% versus 52%). While relatively shallow sequencing of the ARTIC libraries may
184 account for some of the other poorly covered regions, a sub-sampling analysis indicates that the
185 ONETest produces complete genome sequences more often than ARTIC even at about one
186 fourth the amount of sequencing on average. Nonetheless, there are consistently poorly
187 covered regions in the SARS-CoV-2 genome across the ARTIC libraries. In particular, the
188 ~19,900-20,500 SARS-CoV-2 genome region targeted by two ARTIC PCR primer pairs (e.g.,
189 sample 27) is poorly covered in many ARTIC libraries, even though other genomic regions in
190 the same libraries are well covered. As shown by an analysis of the SARS-CoV-2 genome
191 sequences deposited in GISAID ¹⁴, many publicly available sequences contain problematic
192 regions (i.e., contiguous stretches of 200 Ns) around the 20,000th nucleotide position. Many of
193 the genome sequences were produced using an amplicon NGS methodology, in particular
194 ARTIC. Furthermore, by comparing the lineage assignments of the ONETest and ARTIC
195 sequences, which are generally concordant, we show that the ONETest can provide quality
196 genome sequences to study the evolution and epidemiology of SARS-CoV-2.

197
198 In this study, we did not have quantitative estimates of viral load (e.g., cycle threshold values
199 from a quantitative PCR assay) for the samples examined here to directly observe the effect of
200 viral load on the quality of the consensus sequences. By using the number of target genes

201 detected by a PCR assay (three genes versus one or two genes) as a proxy instead, we find
202 that the ONETest and ARTIC consensus sequences are of higher quality in the samples
203 positive for three genes, suggesting that the partial genome sequences in about 40% of the
204 ONETest libraries and about 50% of the ARTIC libraries resulted from low viral titer.

205

206 Target capture NGS methodologies, such as the ONETest, should be able to detect mutations
207 that can impact the performance of amplicon NGS methodologies, such as ARTIC. Kim et al.³
208 showed a case in which target capture NGS detected a large 382 nt deletion in the ORF8 gene
209 of SARS-CoV-2 that ablated sequence coverage in four contiguous genes (ORF3a, E, M, and
210 ORF6) in the ARTIC library due to PCR amplification failure. Although we did not encounter
211 such a dramatic case in this study, we anticipate that as we sequence more samples using the
212 ONETest, the ONETest will detect large deletions in the SARS-CoV-2 genome that could
213 severely reduce sequence coverage when using amplicon NGS methodologies. This
214 advantage of target capture NGS approaches is important as new SARS-CoV-2 genetic
215 mutations of unpredictable nature continue to emerge.

216

217 Our data show the ability of the ONETest to determine the genome sequences of SARS-CoV-2
218 in respiratory samples. Importantly, our data indicate that the ONETest is less prone to loss of
219 sequence coverage that may be caused by poor or failed target binding (e.g., the amplicon
220 dropouts in the ARTIC libraries shown here and in studies by other groups), which can
221 ultimately result in inaccurate SARS-CoV-2 genotyping and lineage identification. The added
222 value of the ONETest to characterize multiple respiratory pathogens, although not assessed in
223 this study, would help us to better understand the epidemiology of respiratory pathogens in the
224 post COVID-19 era. Furthermore, Fusion Genomics Corp., at the time of this writing, is
225 validating a fully automated ONETest workflow that allows for flexible sample batching (i.e., as
226 few as eight libraries to as many as 384 libraries per sequencing run).

227

228 **MATERIALS AND METHODS**

229 ***Ethics review***

230 Approval for this study was obtained from the University of Florida Institutional Review Board
231 (IRB202001328).

232

233 ***Respiratory samples***

234 Nasopharyngeal (NP) swabs (n = 61) and endotracheal aspirates (n = 9) were collected from
235 patients, who had respiratory illness and were suspected to have COVID-19, at UF Health
236 Shands Hospital in May (n = 31) and in July (n = 39), 2020. Among the patients, 30 (43%) were
237 male and 40 (57%) were female. The mean age of the patients (\pm standard deviation) was 46.1
238 (\pm 19.8) years (range, 5 to 102 years; interquartile range, 27.8 to 54.0 years). Three patients
239 had two separate samples collected seven to 12 days apart; one patient had four samples, two
240 samples collected in May (one NP swab and one endotracheal aspirate on the same day) and
241 two samples collected in July that were duplicate samples. The samples were initially tested for
242 SARS-CoV-2 using a FDA Emergency Use Authorization qualitative PCR assay (GeneFinder™
243 COVID-19 Plus RealAmp Kit from OSANG Healthcare Co. Ltd., South Korea), which targets the
244 RdRp, N, and E genes. We retrospectively selected 70 samples in which SARS-CoV-2 had
245 been detected by the PCR assay.

246

247 ***RNA extraction***

248 Nucleic acids were isolated from 200 μ L of the samples and eluted in 100 μ L, of which 10 μ L
249 was tested for SARS-CoV-2 by the ELITe InGenius® platform (ELITechGroup, Puteaux, France)
250 using the GeneFinder™ COVID-19 Plus RealAmp Kit, as per the manufacturer's instructions.
251 The remaining 90 μ L of de-identified RNA extracts were then shipped to Fusion Genomics Corp.
252 (Burnaby, BC, Canada). Each RNA extract was treated with DNase (MilliporeSigma Canada,

253 Ontario) and partitioned into two aliquots. One aliquot was processed using the ARTIC protocol
254 and the other using the ONETest protocol.

255

256 ***ARTIC protocol***

257 We processed 2 μ L of RNA extract from each sample using the ARTIC Illumina protocol
258 (<https://www.protocols.io/view/covid-19-artic-v3-illumina-library-construction-an-bibtkann>). This
259 protocol utilizes two pools of ARTIC V3 primer pairs to amplify 98 ~400 nt partially overlapping
260 regions that tile the entire SARS-CoV-2 genome (https://github.com/artic-network/artic-ncov2019/blob/master/primer_schemes/nCoV-2019/V3/), which were ordered from Sigma-
261 Aldrich (Oakville, ON, Canada). Libraries were constructed using TruSeq Nano from Illumina Inc.
262 (San Diego, CA, USA), as per the manufacturer's instructions. Libraries were normalized, pooled
263 together, and sequenced as 2x150 nt reads on an Illumina NextSeq 500 instrument (San Diego,
264 CA, USA). Reads from these libraries were analyzed using a bioinformatics pipeline (v1.3.0;
265 <https://github.com/connor-lab/ncov2019-artic-nf>) that automates the ARTIC data analysis
266 protocol for Illumina reads (<https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html>),
267 which utilizes *bwa mem*¹⁵, *samtools*¹⁶, and *iVar*¹⁷.

269

270 ***ONETest: probe design***

271 We have expanded the ONETest probe set (QuantumProbesTM;
272 <http://www.fusiongenomics.com/onetestplatform/>), which originally targets non-SARS-CoV-2
273 respiratory pathogens, to capture the entire SARS-CoV-2 genome based on the Wuhan-Hu-1
274 reference sequence (NC_045512.2). Additionally, we designed probes to capture the
275 nucleotide variants frequently observed in SARS-CoV-2 genomes (> 1%; retrieved from NCBI
276 GenBank in July, 2020) and to cover the GC-poor regions (< 35% GC) of the virus' genome.

277

278 ***ONETest: library preparation, target capture, and NGS***

279 Next, we processed 11 μ L of RNA extract from each sample using the ONETest protocol. RNA
280 extracts were then treated with deoxyribonuclease from Sigma-Aldrich (Oakville, ON, Canada).
281 Target-enriched Illumina-compatible libraries were prepared from RNA using the ONETest kit
282 from Fusion Genomics Corp. (Burnaby, BC, Canada). Total RNA was subject to rRNA and
283 mRNA removal using biotin-labeled depletion probes captured via magnetic streptavidin-coated
284 beads. Cleaned RNA was then reverse transcribed using random primers with adapters, and
285 the resulting cDNA was fragmented. Whole transcriptome amplification was then performed,
286 and cDNA was ligated with Illumina-compatible indexed adapters, according to the
287 manufacturer's instructions. The indexed libraries were mixed with Illumina adapter-specific
288 blocking reagents, human Cot-1 placental DNA from Sigma-Aldrich (Oakville, ON, Canada), and
289 target-specific biotin-labeled probes in hybridization solution. Hybridization occurred overnight
290 at 50°C. The target-probe duplexes were then captured by using magnetic beads and by
291 iteratively washing off unhybridized nucleic acids with increasingly stringent buffers. Enriched
292 libraries were universally re-amplified for 20 cycles using Illumina adapter-specific primers.
293 Normalization and pooling of the enriched libraries were based on quantification using the
294 Quant-iT dsDNA kit (Life Technologies, ON, Canada). Molar quantification of the pooled library
295 was performed using GeneRead Library Quant Kit for Illumina (Qiagen Canada, ON). The
296 pooled library was sequenced as 2x150 nt reads on an Illumina NextSeq 500 instrument, as per
297 the manufacturer's instructions.

298

299 ***ONETest: NGS data analysis***

300 Reads from the ONETest libraries were analyzed using an in-house bioinformatics pipeline.
301 The pipeline preprocesses raw NGS reads using a custom C/C++ program (removing adapter
302 sequences, trimming off poor-quality bases of < Q30, and filtering out reads of < 50 nt and
303 reads with low complexity of normalized trimer entropy of < 60, poor mean base quality of <
304 Q27, or percent G of > 40%). Reads were discarded that mapped to the human genome

305 sequence (GRCh38.p13, release 35) using *bowtie2* v2.4.2¹⁸. Then, it aligned the remaining
306 reads to the SARS-CoV-2 Wuhan-Hu-1 reference sequence (MN996528.1) using *bowtie2* (with
307 the settings ‘--very-sensitive-local --score-min G,100,9’), marking duplicate reads using
308 *samtools* v1.11¹⁶. Finally, the pipeline performed iterative comparative assembly (up to five
309 attempts) to reconstruct consensus SARS-CoV-2 genome sequences using *bcftools* v1.11.
310 Nucleotides were called at positions that were covered by \geq 10 reads (excluding duplicate
311 reads); otherwise, they were masked as Ns. Discounting poor-quality bases of $<$ Q15 and
312 excluding duplicate reads, nucleotide variants were filtered out unless (1) their quality score was
313 \geq Q15, (2) they were supported by $>$ 1 forward aligned read and $>$ 1 reverse aligned read, (3)
314 they were supported by $>$ 25% of the reads, and (4) the number of variant-supporting reads is \geq
315 the number of reference-supporting reads; a maximum depth of 30,000 was allowed during
316 pileup. Indels were normalized after calling. The pipeline was implemented in C/C++ and
317 Python using a combination of in-house software and third-party tools, including *Biopython*
318 v1.78¹⁹, *bedtools* v2.29.2²⁰, *pybedtools* v0.8.1²¹, *samtools/bcftools/htslib* v1.11¹⁶, and
319 *Snakemake* v5.26.1²².

320

321 ***ONETest: sub-sampling analysis***

322 We sequenced the ONETest libraries at 2.66 million 2x150 nt reads on average, nearly four
323 times as deep as that of the ARTIC libraries (0.63 million 2x150 nt reads on average). To
324 assess whether the observed differences in genome coverage between the ONETest and
325 ARTIC libraries might have resulted from deeper sequencing of the ONETest libraries, we
326 conducted a sub-sampling analysis in which we compared down-sampled ONETest libraries
327 with the full ARTIC libraries. Using *seqtk* v1.3 (<https://github.com/lh3/seqtk>), we randomly
328 down-sampled (without replacement) the 2x150 nt reads of each ONETest library so that the

329 resulting library had the same number of reads as the matched ARTIC library; each ONETest
330 library was sub-sampled three times in this manner to generate three simulated replicates of the
331 library. Then, we analyzed those sub-sampled reads to determine which bases were poorly
332 covered across the SARS-CoV-2 genome in the simulated ONETest libraries.

333

334 ***Depth of coverage analysis***

335 Using *bedtools*, we generated depth of sequence coverage profiles for the full ONETest libraries
336 and the sub-sampled ONETest libraries based on *bowtie2* read alignments and the ARTIC
337 libraries based on the *bwa mem* read alignments. For the ONETest libraries, we excluded
338 duplicate reads, but for the ARTIC libraries, we included duplicate reads. Visualization was
339 done in R using *ggplot2*²³.

340

341 ***Lineage analysis***

342 We identified the lineages of SARS-CoV-2 in the samples based on the ONETest and ARTIC
343 consensus sequences using *pangolin* v2.1.10 (<https://github.com/cov-lineages/pangolin>). This
344 tool assigns SARS-CoV-2 lineages according to a dynamic nomenclature system²⁴.

345

346 **DATA AVAILABILITY**

347 The complete or near-complete consensus SARS-CoV-2 genome sequences from the ONETest
348 libraries are available via GISAID (accessions: To be deposited during submission). All de-
349 identified FastQ files (with human reads removed) of the ONETest and ARTIC libraries are
350 publicly available via the NCBI Short Read Archive (BioProject: To be deposited during
351 submission).

352

353 **FUNDING STATEMENT**

354 This study was funded by Fusion Genomics Corporation and supported in part by the
355 Department of Pathology, Immunology and Laboratory Medicine, University of Florida
356 (Gainesville, FL, USA).

357

358 **ACKNOWLEDGMENTS**

359 We thank Dr. Mohammad A. Qadir (Fusion Genomics Corp.) for providing guidance throughout
360 this study and constructive feedback on this manuscript and Greg Stazyk (Fusion Genomics
361 Corp.) for setting up the computing infrastructure that enabled this study. We are grateful to
362 Compute Canada and Simon Fraser University for providing the computing resources that
363 facilitated this study. Also, we gratefully acknowledge the support of the staff from the
364 University of Florida Health Shands Hospital Laboratory.

365

366 **COMPETING INTERESTS**

367 S. H. Z., S. M. A., B. S. K., M. H. L., J. K., and H. D. are current or former employees and/or
368 shareholders of Fusion Genomics Corp. H. J. H. and K. H. R. do not have competing interests
369 to declare.

370

371 **AUTHOR CONTRIBUTIONS**

372 S. H. Z.: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data
373 curation, Visualization, Writing – original draft preparation, Writing – review and editing.

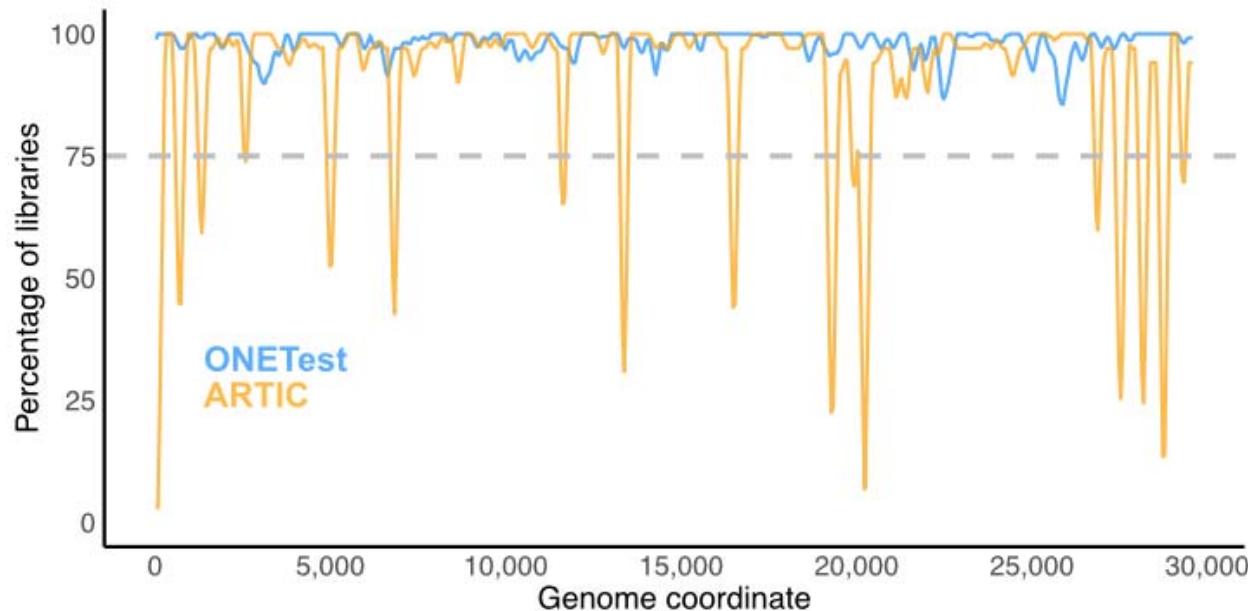
374 S. M. A.: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Project
375 administration, Writing – review and editing.

376 B. S. K.: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Project
377 administration, Writing – review and editing.

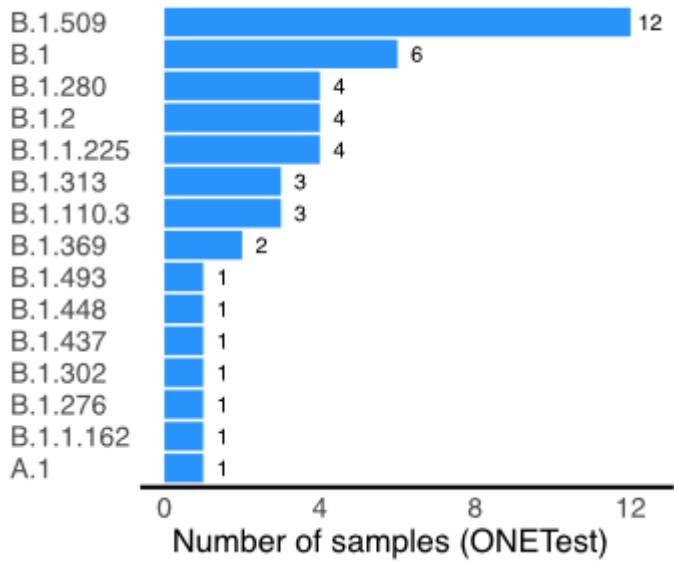
378 M. H. L.: Methodology, Software, Formal analysis, Investigation, Writing – review and editing.

379 J. K.: Methodology, Formal analysis, Data curation, Investigation.

380 H. D.: Formal analysis, Data curation, Investigation, Writing – review and editing.


381 H. J. H.: Methodology, Data curation, Resources.

382 K. H. R.: Conceptualization, Methodology, Investigation, Data curation, Resources, Writing –

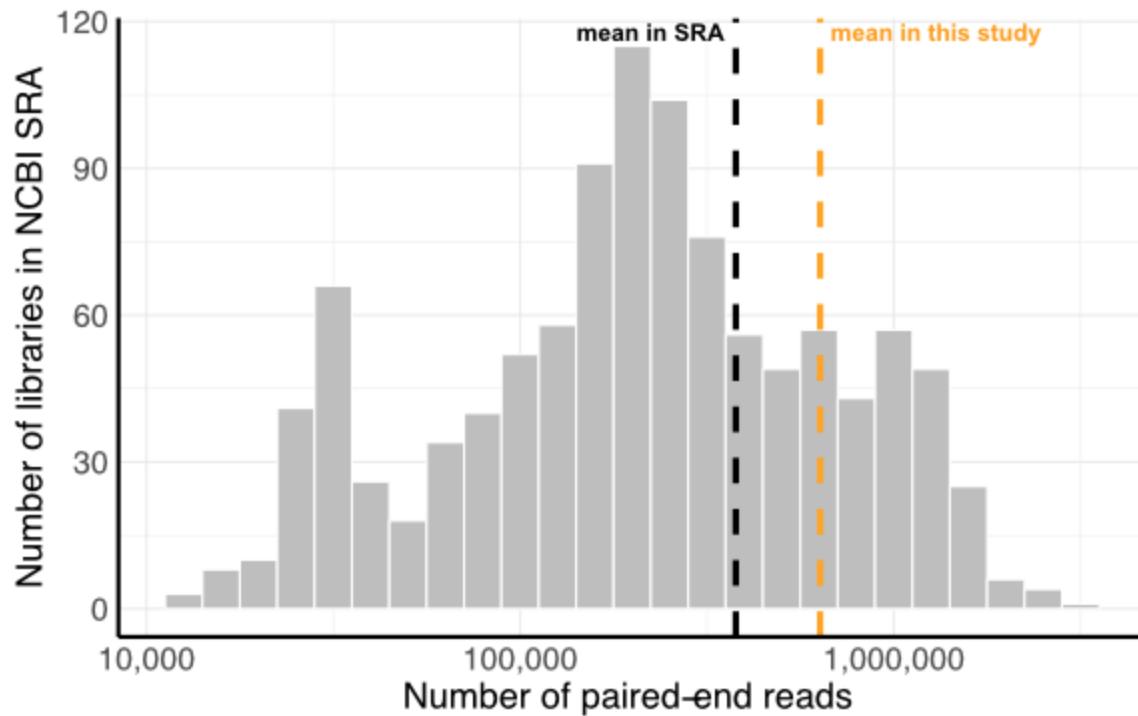

383 review and editing.

384

385 **FIGURES**

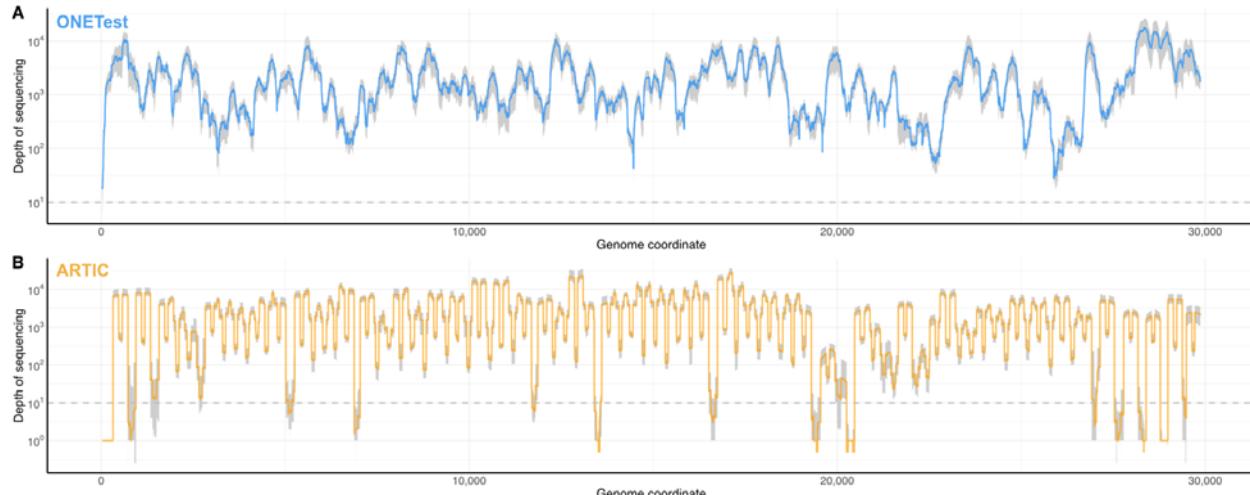
387 **Figure 1.** Aggregate summary of sequence coverage over the SARS-CoV-2 genome in the
388 ONETest and ARTIC libraries from the samples examined in this study. Here, we considered
389 only the 34 samples for which lineage could be assigned to both its ONETest and ARTIC
390 sequences using *pangolin*. For each position in the SARS-CoV-2 reference sequence targeted
391 by the ARTIC PCR primers (MN996528.1: 30 to 29,866), we computed the percentage of
392 samples in which its depth of coverage was ≥ 10 (excluding duplicates for the ONETest libraries
393 and including duplicates for the ARTIC libraries). This percentage was averaged across the
394 positions of each 200 nt partially overlapping window across the genome (skip size of 50 nt).
395 Poorly covered regions in the SARS-CoV-2 genome appear as troughs below the dashed line.
396

397


398 **Figure 2.** SARS-CoV-2 lineages identified in the samples examined in this study using the
399 ONETest. Lineage was assigned to the complete or near-complete SARS-CoV-2 genome
400 sequences from the ONETest libraries of 45 samples.

401

402 **SUPPLEMENTARY MATERIAL**


403 **Table S1.** Information about the ONETest and ARTIC libraries and results of SARS-CoV-2
404 genome sequence analysis. For each sample, the sequence name in GISAID accession,
405 collection date, and sample type, and the SARS-CoV-2 genes (N, RdRp, and E) detected by the
406 OSANG PCR assay are indicated. For each library, the total number of paired-end reads, the
407 number of reads mapped to the SARS-CoV-2 genome (for the ONETest libraries, read pairs
408 were counted, but for the ARTIC libraries, reads were counted), the length of its consensus
409 genome sequence (excluding the Ns at the ends), and mean depth of coverage over the
410 genome (excluding duplicate reads in the ONETest libraries, and including duplicate reads in
411 the ARTIC libraries), the lineage assigned to its consensus sequence using *pangolin* are
412 provided. Abbreviations: NP = nasopharyngeal; ETA = endotracheal aspirates; N/A = not
413 assigned or not available.

414

415

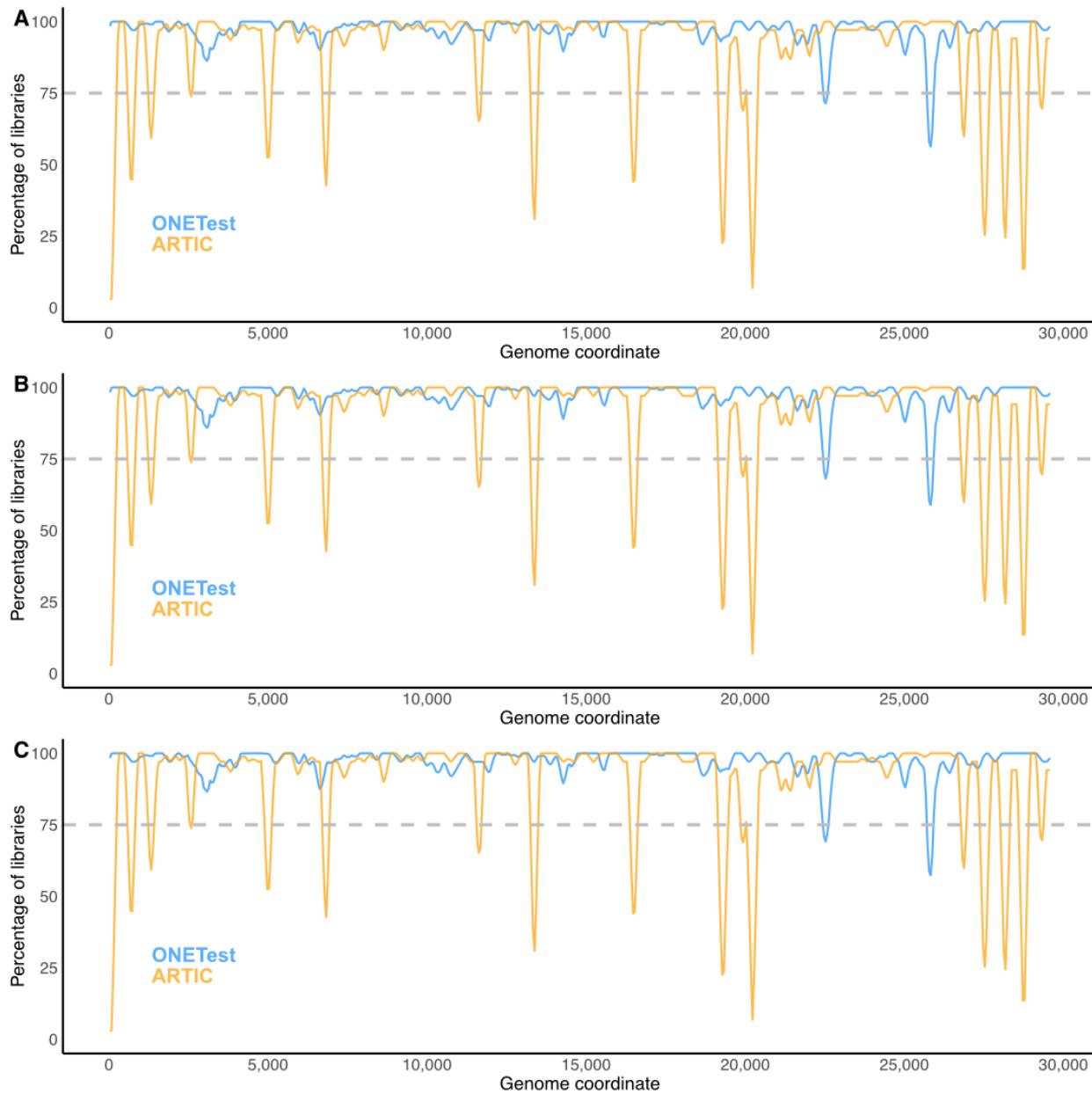
416 **Figure S1.** Amount of sequencing in the ARTIC Illumina libraries in the NCBI Short Read
417 Archive. We searched the SRA for 2x150 nt ARTIC Illumina libraries using the query
418 “((((Severe acute respiratory syndrome coronavirus 2[Organism]) AND Illumina[Platform]) AND
419 PAIRED[Layout]) AND 150[ReadLength]) AND AMPLICON[Strategy]) AND ARTIC” and then
420 again using the same query except “149[ReadLength]” (accessed on Mar. 6, 2021). Ten
421 libraries with < 10,000 paired-end reads were excluded. Also, we excluded entries from
422 SRP287442, which involved sequencing SARS-CoV-2 genomes in cell cultures and mouse
423 models. The vertical black dashed line indicates the mean number of paired-end reads in 1,089
424 ARTIC libraries in the SRA ($0.38 \text{ million} \pm 0.42 \text{ million}$), and the orange line indicates the mean
425 number of paired-end reads in the ARTIC libraries in this study ($0.63 \text{ million} \pm 0.30 \text{ million}$).
426

427

428 **Figure S2.** Depth of sequencing coverage over the SARS-CoV-2 genome in the 34 matched

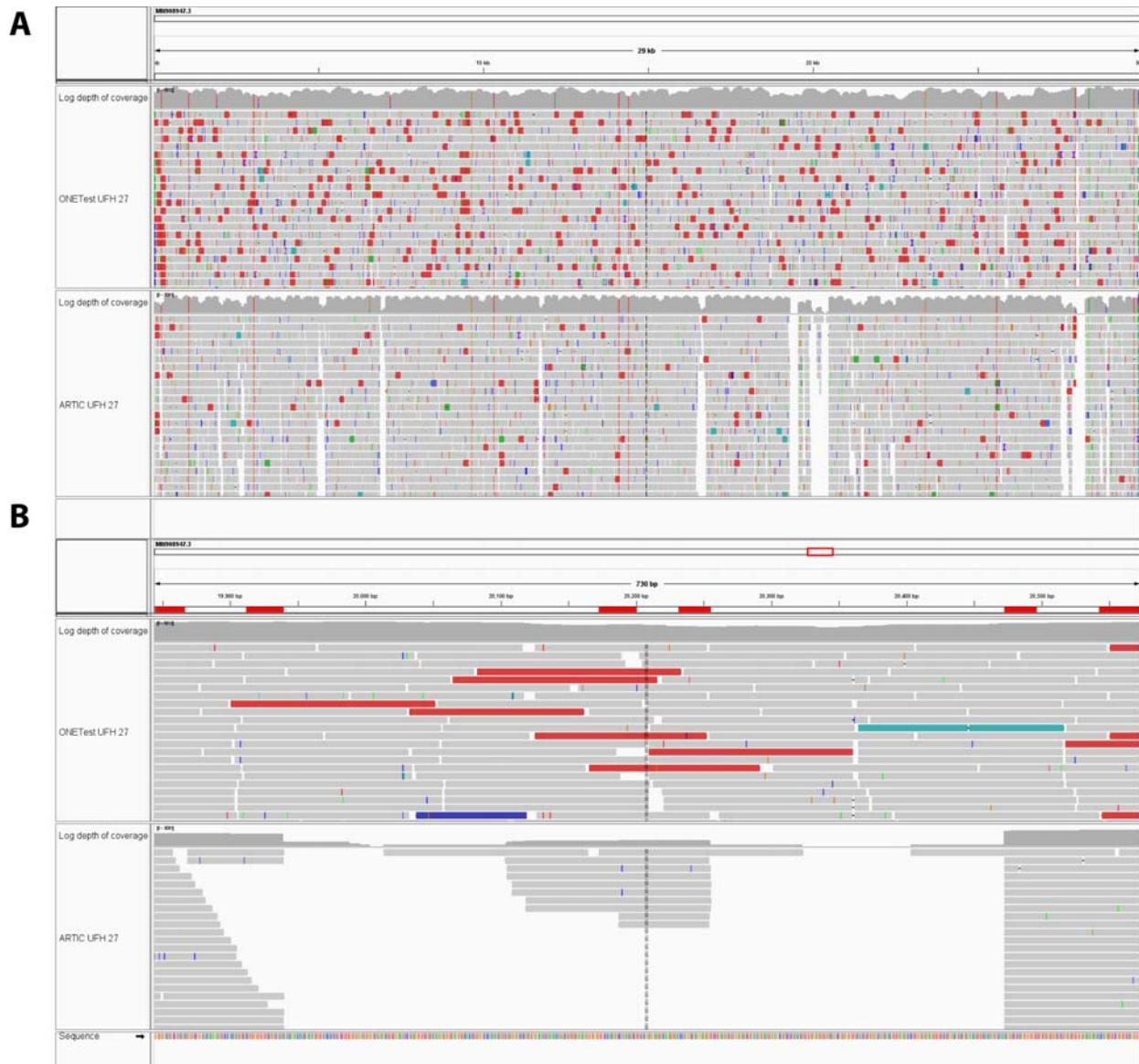
429 pairs of ONETest library (A) and ARTIC library (B) for which lineage could be assigned.

430 Duplicate reads in the ONETest libraries were excluded, and duplicate reads in the ARTIC


431 libraries were included. The y-axis is shown in log10 scale; zeroes were set to one for

432 visualization in log10 scales. The colored line represents the median, and the grey area

433 indicates the 25%-75%tile range. The dashed horizontal line indicates the minimum threshold


434 (≥ 10 depth) to call a base in the consensus genome sequences.

435

436

437 **Figure S3.** Aggregate summary of sequence coverage over the SARS-CoV-2 genome in the
438 sub-sampled ONETest libraries and the full ARTIC libraries. For each of the 34 samples for
439 which lineage could be assigned to both its ONETest and ARTIC sequences, we randomly sub-
440 sampled its ONETest library three times so that the sub-sampled read sets had the exact
441 number of raw reads as the matched ARTIC library. These data were analyzed the same way
442 as described in **Figure 1**.

444 **Figure S4.** Read alignments over the entire SARS-CoV-2 genome (MN996528.1) (A) and over
445 the 19,844-20,572 region (B) in the ONETest library and the ARTIC library of sample 27. The
446 19,844-20,572 region is targeted by two ARTIC V3 primer pairs (66_LEFT/66_RIGHT,
447 MN908947.3: 19,844-20,255; 67_LEFT/67_RIGHT, MN908947.3: 20,172-20,572). Visualization
448 was performed using IGV.

449

450 **REFERENCES**

- 451 1. Tyson JR, James P, Stoddart D, et al. Improvements to the ARTIC multiplex PCR method
452 for SARS-CoV-2 genome sequencing using nanopore. doi:10.1101/2020.09.04.283077
- 453 2. Itokawa K, Sekizuka T, Hashino M, Tanaka R, Kuroda M. Disentangling primer interactions
454 improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. *PLOS ONE*.
455 2020;15(9):e0239403. doi:10.1371/journal.pone.0239403
- 456 3. Kim KW, Deveson IW, Pang CNI, et al. Respiratory viral co-infections among SARS-CoV-2
457 cases confirmed by virome capture sequencing. *Scientific Reports*. 2021;11(1).
458 doi:10.1038/s41598-021-83642-x
- 459 4. Chen AT, Altschuler K, Zhan SH, Chan YA, Deverman BE. COVID-19 CG enables SARS-
460 CoV-2 mutation and lineage tracking by locations and dates of interest. *Elife*. 2021;10.
461 doi:10.7554/elife.63409
- 462 5. Iacobucci G. Covid-19: New UK variant may be linked to increased death rate, early data
463 indicate. *BMJ*. 2021;372:n230.
- 464 6. Tegally H, Wilkinson E, Giovanetti M, et al. Emergence of a SARS-CoV-2 variant of
465 concern with mutations in spike glycoprotein. *Nature*. Published online March 9, 2021.
466 doi:10.1038/s41586-021-03402-9
- 467 7. Charre C, Ginevra C, Sabatier M, et al. Evaluation of NGS-based approaches for SARS-
468 CoV-2 whole genome characterisation. doi:10.1101/2020.07.14.201947
- 469 8. Nasir JA, Kozak RA, Aftanas P, et al. A Comparison of Whole Genome Sequencing of
470 SARS-CoV-2 Using Amplicon-Based Sequencing, Random Hexamers, and Bait Capture.
471 *Viruses*. 2020;12(8). doi:10.3390/v12080895
- 472 9. Briese T, Kapoor A, Mishra N, et al. Virome Capture Sequencing Enables Sensitive Viral
473 Diagnosis and Comprehensive Virome Analysis. *mBio*. 2015;6(5). doi:10.1128/mbio.01491-
474 15
- 475 10. Chalkias S, Gorham JM, Mazaika E, et al. ViroFind: A novel target-enrichment deep-
476 sequencing platform reveals a complex JC virus population in the brain of PML patients.
477 *PLOS ONE*. 2018;13(1):e0186945. doi:10.1371/journal.pone.0186945
- 478 11. Zakrzewski F, Gieldon L, Rump A, et al. Targeted capture-based NGS is superior to
479 multiplex PCR-based NGS for hereditary BRCA1 and BRCA2 gene analysis in FFPE tumor
480 samples. *BMC Cancer*. 2019;19(1):396.
- 481 12. Himsworth CG, Duan J, Prystajecky N, et al. Targeted Resequencing of Wetland Sediment
482 as a Tool for Avian Influenza Virus Surveillance. *Journal of Wildlife Diseases*.
483 2020;56(2):397. doi:10.7589/2019-05-135
- 484 13. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. *Nature
485 Biotechnology*. 2011;29(1):24-26. doi:10.1038/nbt.1754
- 486 14. Cotten M, Bugembe DL, Kaleebu P, Phan MVT. Alternate primers for whole-genome
487 SARS-CoV-2 sequencing. *Virus Evolution*. Published online 2021. doi:10.1093/ve/veab006

488 15. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
489 *arXiv [q-bioGN]*. Published online March 16, 2013. <http://arxiv.org/abs/1303.3997>

490 16. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools.
491 *Bioinformatics*. 2009;25(16):2078-2079.

492 17. Grubaugh ND, Gangavarapu K, Quick J, et al. An amplicon-based sequencing framework
493 for accurately measuring intrahost virus diversity using PrimalSeq and iVar. *Genome Biol.*
494 2019;20(1):8.

495 18. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nature Methods*.
496 2012;9(4):357-359. doi:10.1038/nmeth.1923

497 19. Cock PJA, Antao T, Chang JT, et al. Biopython: freely available Python tools for
498 computational molecular biology and bioinformatics. *Bioinformatics*. 2009;25(11):1422-
499 1423. doi:10.1093/bioinformatics/btp163

500 20. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.
501 *Bioinformatics*. 2010;26(6):841-842. doi:10.1093/bioinformatics/btq033

502 21. Dale RK, Pedersen BS, Quinlan AR. Pybedtools: a flexible Python library for manipulating
503 genomic datasets and annotations. *Bioinformatics*. 2011;27(24):3423-3424.
504 doi:10.1093/bioinformatics/btr539

505 22. Koster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine.
506 *Bioinformatics*. 2012;28(19):2520-2522. doi:10.1093/bioinformatics/bts480

507 23. Wickham H, Chang W, Others. ggplot2: An implementation of the Grammar of Graphics. *R*
508 *package version 0.7, URL: http://CRAN R-project org/package= ggplot2*. 2008;3.

509 24. Rambaut A, Holmes EC, O'Toole Á, et al. A dynamic nomenclature proposal for SARS-
510 CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol*. 2020;5(11):1403-1407.

511