

Demonstration of local adaptation of maize landraces by reciprocal transplantation

Authors: Garrett M. Janzen^{1,2,*}, María Rocío Aguilar-Rangel³, Carolina Cíntora-Martínez³, Karla Azucena Blöcher-Juárez³, Eric González-Segovia³, Anthony J. Studer⁴, Daniel E. Runcie⁵, Sherry A. Flint-Garcia^{6,7}, Rubén Rellán-Álvarez^{3,8}, Ruairidh J. H. Sawers^{3,9}, and Matthew B. Hufford^{1,*}

¹Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA 50011

²Present address: Department of Plant Biology, University of Georgia, Athens, Georgia, USA 30602

³Langebio, Cinvestav, Km 9.6 Libramiento Norte Carretera Len, Irapuato, Guanajuato, Mexico 36821

⁴Department of Crop Sciences, University of Illinois Urbana-Champaign, 1201 West Gregory Drive, Urbana, Illinois, USA 61801

⁵Department of Plant Sciences, University of California-Davis, 278 Robbins, Berkeley, California, USA 95616

⁶Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri, 65211

⁷University of Missouri, 301 Curtis Hall, Columbia, Missouri, USA 65211

⁸Present address: Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, North Carolina, USA 27695-7622

⁹Present address: Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, USA, 16802

*Correspondence: mhufford@iastate.edu (Matthew B Hufford)

1 Abstract

2 Populations are locally adapted when they exhibit higher fitness than foreign populations in their
3 native habitat. Maize landrace adaptations to highland and lowland conditions are of interest to
4 researchers and breeders. To determine the prevalence and strength of local adaptation in maize
5 landraces, we performed a reciprocal transplant experiment across an elevational gradient in Mexico.
6 We grew 120 landraces, grouped into four populations (Mexican Highland, Mexican Lowland, South
7 American Highland, South American Lowland), in Mexican highland and lowland common gardens
8 and collected phenotypes relevant to fitness, as well as reported highland-adaptive traits such as
9 anthocyanin pigmentation and macrohair density. 67k DArTseq markers were generated from field
10 specimens to allow comparison between phenotypic patterns and population genetic structure.

11 We found phenotypic patterns consistent with local adaptation, though these patterns differ
12 between the Mexican and South American populations. While population genetic structure largely
13 recapitulates drift during post-domestication dispersal, landrace phenotypes reflect adaptations to
14 native elevation. Quantitative trait Q_{ST} was greater than neutral F_{ST} for many traits, signaling
15 divergent directional selection between pairs of populations. All populations exhibited higher fitness

16 metric values when grown at their native elevation, and Mexican landraces had higher fitness than
17 South American landraces when grown in our Mexican sites. Highland populations expressed
18 generally higher anthocyanin pigmentation than lowland populations, and more so in the highland
19 site than in the lowland site. Macrohair density was largely non-plastic, and Mexican landraces and
20 highland landraces were generally more pilose. Analysis of $\delta^{13}\text{C}$ indicated that lowland populations
21 may have lower WUE. Each population demonstrated garden-specific correlations between highland
22 trait expression and fitness, with stronger positive correlations in the highland site.

23 These results give substance to the long-held presumption of local adaptation of New World
24 maize landraces to elevation and other environmental variables across North and South America.

25

26 **Key Words**

27 *Zea mays*, landrace, population genetics, local adaptation, highland adaptation, reciprocal trans-
28 plant

29

30 **1 Introduction**

31 Populations evolve adaptations to selective pressures imparted by biotic and abiotic environments.
32 Over time, given sufficiently low genetic drift and gene flow, theory predicts that a population will
33 adapt to the particular selective pressures of its local environment (Leimu and Fischer, 2008). In
34 particular, populations are said to be locally adapted when they meet the “Foreign vs. Local” crite-
35 rion of local adaptation, in which a local population exhibits higher fitness than foreign populations
36 when grown in the same environment (Kawecki and Ebert, 2004).

37 Traditionally, attempts to identify and quantify local adaptation in natural populations have
38 relied on common garden experiments (Turesson, 1922; Clausen et al., 1940; Fraser et al., 2011;
39 Savolainen et al., 2013). Reciprocal transplant experiments are in many cases preferable to common
40 garden experiments, as the scale, complexity, and variety of the environments of the included pop-
41ulations can be modeled more holistically, rather than being reduced to single or few environmental
42 variables (Kawecki and Ebert, 2004; Savolainen et al., 2013; Limpens et al., 2012; Gibson et al.,
43 2016). Exposing individuals from different populations to common environments can reveal that
44 environments affect populations differently, a situation known as genotype-by-environment ($G \times E$)
45 interaction (Savolainen et al., 2013). Local adaptation is a type of $G \times E$ interaction in which a
46 population has higher fitness in its native environment than any other non-native population in
47 that environment. Local adaptation is illustrated by crossing fitness reaction norms in a reciprocal
48 transplant experiment (Kawecki and Ebert, 2004; Savolainen et al., 2013).

49 Maize (*Zea mays* subsp. *mays*) is an extensively studied model system of high agronomic
50 (Shiferaw et al., 2011), economic (Shiferaw et al., 2011; Ranum et al., 2014), cultural (Fernan-
51 dez Suarez et al., 2013; Perales, 2016), and scientific (Dumas and Mogensen, 1993; Fedoroff, 2001;
52 Stern et al., 2004) value. Maize was domesticated in the lowlands of the Balsas River Valley in
53 Mexico from the teosinte taxon *Zea mays* subsp. *parviglumis* roughly 9000 years BP (Matsuoka
54 et al., 2002). From there, maize was carried across North America and into South America as early
55 as 6000 years BP (Grobman et al., 2012; Bush et al., 1989), north into the present-day United States
56 by about 4500 years BP (Merrill et al., 2009), and around the world as part of the Columbian ex-
57 change (Tenaillon and Charcosset, 2011; Van Heerwaarden et al., 2011). Presently, maize is grown
58 across a greater range of elevations and latitudes than any other crop (Ruìz Corral et al., 2008;
59 Shiferaw et al., 2011), experiencing a broad range of temperature, precipitation, and soil types.

60 At locations along the historical range expansion of maize, farmers selected lines that were both

61 suitable for growth in their local environment and desirable for human consumption and applica-
62 tions. Over generations of propagation and selection, this process formed varietal populations called
63 landraces. These landraces are grown and maintained by smallholder farmers to the present day as
64 dynamic, evolving populations (Mijangos-Cortes et al., 2007; Dyer and López-Feldman, 2013) with
65 low but significant gene flow between them (Ortega, 1995) (see Villa et al. (2005) for a review of the
66 defining characteristics of landraces). Most of the arable land in Mexico is managed by subsistence
67 farms that cultivate maize landraces (Bellon et al., 2018). Landraces are typically out-yielded by
68 modern hybrids in industrial agricultural contexts, but in their own home environments, landraces
69 can and often do out-perform commercial hybrids (Bellon et al., 2018; Perales, 2016; Bellon et al.,
70 2003; Mercer and Perales, 2018).

71 Maize landraces exhibit diverse morphological, physiological, and phenological characteristics,
72 many of which covary with climate, soil type and quality, and geography (Wellhausen EJ, 1952).
73 While farmers consciously select primarily for ear characteristics that are indirectly related to
74 survival and reproduction (kernel filling, ear size, varietal consistency (Louette and Smale, 2000;
75 Prasanna et al., 2010)), the environment selects for plant survival and reproduction (Cleveland
76 and Soleri, 2007). The combination of these selective factors comprise the agroecosystem to which
77 landraces adapt (Villa et al., 2005; Bracco et al., 2012).

78 Some of the most striking adaptations in maize landraces are in response to elevation (Eagles
79 and Lothrop, 1994). Highland conditions present challenges for maize survival and productivity. At
80 higher elevation, the atmosphere is thinner, leading to colder temperatures and less filtering of solar
81 radiation. Marked phenotypic variation and genetic structure are correlated with elevation, though
82 elevation itself may not be the causal agent (Dyer and López-Feldman, 2013). In at least some
83 high-elevation regions in Mexico, adaptations are hypothesized to be imparted via introgression
84 from the maize wild relative *Zea mays* subsp. *mexicana* (hereafter “*mexicana*”), which is adapted
85 to cool, dry highland conditions (Lauter et al., 2004; Hufford et al., 2012; Janzen et al., 2018;
86 Rodríguez-Zapata et al., 2021). Notable similarities between highland maize and *mexicana* include
87 highly pigmented and pilose leaf sheaths (Doebley, 1984). Hufford et al. (2013) found that *mexicana*
88 introgression into sympatric maize in Mexico overlapped chromosomal regions identified as QTL
89 by Lauter et al. (2004) for pilosity and pigmentation (though other loci influence variance in these
90 traits, e.g. *b1*, Selinger and Chandler (2001)). Dark red pigments absorb solar radiation, warming
91 the plant. Pilosity increases surface friction, which decreases wind speed across the surface of the
92 plant. This boundary layer around the plant reduces both heat loss and transpiration which can
93 be advantageous in cool, dry regions (Schuepp, 1993; Chalker-Scott, 1999).

94 There are multiple reasons to suspect that the nature of highland adaptations may differ sig-
95 nificantly between landrace populations and between highland regions. First, highland adaptation
96 seems to have evolved mostly independently in Mesoamerica and South America. Takuno et al.
97 (2015) found that highland landraces in Mexico and South America were independently derived
98 from lowland germplasm through selection on standing variation and *de novo* mutations, with little
99 genomic evidence of convergent evolution. This hypothesis is supported by the absence of *mexicana*
100 haplotypes (which are common in highland Mexican landraces and lacking in lowland Mexican lan-
101 draces) in Andean highland landraces (Wang et al., 2017). Though more recent research (Wang
102 et al., 2020) since Takuno et al. (2015) has found low but significant parallel highland adapta-
103 tion between Mesoamerican and South American highland populations, which may be conferred
104 through bi-directional human-mediated migration (Kistler et al., 2020), the predominant pattern of
105 highland adaptation remains independent. Second, selective pressures imparted by highland (and
106 lowland) environments in Mesoamerica and South America are not identical. The strength and
107 direction of correlations between elevation and climatic conditions can vary from one highland re-
108 gion to another. Precipitation and temperature correlate with elevation differently between Mexico

109 and South America, and between lowland habitats west and east of highland ranges. In general,
110 across Mexico, lowland conditions range from tropical to temperate, whereas highland conditions
111 are cooler and drier (Medina et al., 1998). In South America, eastern lowlands neighbor the Ama-
112 son Basin, western coastal regions are arid, and southern highlands and lowlands become drier with
113 increasing distance from the equatorial tropics (Sarmiento, 1975). The Andean rain shadow pro-
114 duces geographic regions with elevational gradients of cooler, moister highlands and hotter, dryer
115 lowlands, across which indigenous farmers continue to cultivate maize and other crops (Brush,
116 1976). Because precipitation and temperature do not uniformly correlate with elevation, landraces
117 that have evolved adaptations to high-elevation bioclimatic conditions in South America may be
118 ill-suited for conditions found at the same elevation in Mexico.

119 A better assessment of maize landrace local adaptation may prove valuable for modern maize
120 breeders. The intense breeding programs that have developed modern inbred lines have drawn from
121 limited germplasm and, through selection, have further reduced genetic diversity and capacity for
122 adaptive plasticity (Gage et al., 2017). Reincorporation of landrace germplasm can restore key
123 genetic variants that impart adaptations to challenging environments. Despite this potential, and
124 despite a number of studies that report that local adaptation is pervasive among maize landraces
125 (Harlan, 1975; Villa et al., 2005; Navarro et al., 2017; Bracco et al., 2012), research has not fully
126 addressed whether maize landraces broadly do, in fact, exhibit reciprocal home-site advantage, the
127 definition of local adaptation. Landrace geographical extents have been shown to correspond to
128 elevational and climatic factors (Ruìz Corral et al., 2008; Arteaga et al., 2016; Aguirre-Liguori et al.,
129 2019), supporting (but not demonstrating) local adaptation. Reciprocal transplant experiments
130 set along an elevational gradient in the Mexican state of Chiapas (Mercer et al., 2008; Mercer and
131 Perales, 2018) have shown that landraces local to that area exhibit local adaptation. Taking a
132 different approach, a recent study by Gates et al. (2019) found that landrace F1 hybrids (landrace
133 individuals crossed with locally-adapted testers) exhibit higher fitness and yield when grown at
134 common garden sites closer to the native elevation of the landrace parent. This research identified
135 promising candidate local adaptation loci among landraces and provides strong evidence of local
136 adaptation. However, as this study utilized hybrids from landraces with only limited sampling
137 outside Mexico, it does not necessarily demonstrate landrace local adaptation in a larger context.
138 The extent of local adaptation among maize landraces, therefore, has not been fully established.

139 To investigate the extent and degree of local adaptation between highland and lowland maize
140 landraces, we conducted an elevational reciprocal transplant experiment. We compared fitness met-
141 rics and reportedly highland-adaptive traits (macrohair and anthocyanin pigmentation) from high-
142 land and lowland Mexican and South American maize landrace populations grown in highland and
143 lowland Mexican sites to investigate differential plastic responses to highland conditions. We also
144 compared quantitative trait differentiation (Q_{ST}) to neutral genetic variance between populations
145 (F_{ST}) to find traits under divergent directional selection, and correlated values of highland-adaptive
146 traits with fitness traits to investigate their elevation-specific relationship with fitness.

147 2 Methods

148 2.1 Field Experiment Design

149 Landrace accessions from CIMMYT that met the following criteria were considered for inclusion
150 in this experiment:

- 151 1) Accessions are present in the Seeds of Discovery (SeeDs) dataset (Pixley et al., 2017).
- 152 2) Accessions had latitude and longitude data from North or South America.
- 153 3) The elevation of the accession was from below 1000 m or above 2000 m.

154 From eligible accessions, 30 pairs of highland and lowland accessions were chosen from both
155 Mexico and South America (120 accessions total) such that both landraces of a pair were collected
156 from the same 1-degree of latitude bin, and all pairwise distances between accessions were greater
157 than 50 km. These 120 samples were split into four populations (Mexican Highland, Mexican
158 Lowland, South American Highland, South American Lowland, hereafter “Mex High,” “Mex Low,”
159 “SA High,” and “SA Low”) with 30 accessions per population. We note that our provisional
160 population designations are designed to reflect continental and elevational distinctions and not
161 necessarily population genetic structure, and that we use the word “Mexican” to refer the North
162 American populations despite the fact that two of the accessions are from Guatemala.

163 The two common garden sites that comprise this reciprocal transplant are the Winter Services
164 nursery site near Puerto Vallarta in the Pacific coastal lowlands (elevation 54 m) of Mexico (here-
165 after “Low Site”), and a CIMMYT field site near the town of Metepec in the highlands (elevation
166 2852 m) of the Mexican Central Plateau (hereafter “High Site”). Seed lines were regenerated at
167 the field site for one generation prior to the experiment to reduce seed storage and maternal effects.
168 Best local practices for irrigation, fertilizer, and pest/weed control were used at both sites. The
169 High Site field experiment was conducted in the summer of 2016. The Low Site field experiment
170 was conducted in the winter of 2016, but virus damage led us to repeat the field experiment at
171 the same site in the winter of 2017. Certain traits were collected from both years of the Low Site.
172 A map of the field sites and geographical origin of each accession and boxplots summarizing the
173 elevational and annual precipitation distributions of these four populations are presented in Figure
174 1.

175 Each field was arranged in a complete block design with two blocks of 120 rows of 15 seeds of
176 a landrace accession. Landraces from latitudinal pairs were planted in adjacent rows.

177 2.2 Phenotypic and Genotypic Data Collection

178 Phenotypes (Table 1) were collected from the High Site and both years of the Low Site common
179 gardens. Ear traits from the Low Site were collected from the 2016 season, but all other traits
180 were taken from the 2017 growing season. Two healthy, representative plants from the interior of
181 each row were selected and tagged. Individual plant phenotype data (plant height, ear height, ear
182 number, tassel length, and tassel branch number) were collected from tagged plants. Other traits
183 (stand count, ear-producing stand count, barrenness, and flowering time) were collected at the row
184 level. Days to anthesis and days to silking were recorded as the number of days until 50% of the row
185 exhibited silk emergence or anther exertion on more than half of the main tassel spike, respectively.
186 Anthesis-silking interval is calculated as the difference in these two values.

187 Primary ears from tagged plants from the High Site and the 2016 Low Site were returned to
188 the lab to be photographed and processed for analysis. Total ear weight, ear length, ear diameter,
189 and number of kernels per ear row were measured.

190 Methods for field visual assessment of anthocyanin pigmentation and macrohair were derived
191 with modification from Lauter et al. (2004). Pigment was scored for pattern, intensity, and extent.
192 The extent of leaf sheath anthocyanin pigmentation was visually scored as a percentage of the
193 plant from ground level up (at 25% intervals). The intensity of leaf sheath pigmentation across the
194 plant was visually scored on a scale of 0-4. Though all pigmentation patterns share some degree of
195 genetic and environmental control, spots and banded/streaked patterns frequently co-occur as an
196 induced response to pathogenic stress (Selinger and Chandler, 1999), whereas uniform pigmentation
197 (and leaf sheath macrohair expression) is shown to be inducible by highland conditions in some
198 landraces (particularly those harboring introgressed QTL from *mexicana*). For these reasons, the
199 “solid” pattern may have a stronger association with highland adaptation, and other patterns may

200 represent stress responses to other biotic and/or abiotic factors. Plants were given the categorical
201 qualitative label of either “banded,” “spotted,” “uniform,” or “no pattern” (either no pigment
202 present, or irregular pigment pattern). Plants with patterns of “banded” or “spotted” were binned
203 into a “spot” group. Plants with pigment patterns “solid” and “no pattern” were binned into the
204 group “solid.” When a plant exhibited multiple patterns, the highest-priority category was selected
205 (uniform, then banded, then spotted, then no pattern). Macrohair density on the second leaf sheath
206 from the top of the plant was visually scored on a scale of 0-4. Pubescence along the leaf sheath and
207 pubescence restricted to the sheath margin may be under different genetic control, and may play
208 different roles in highland adaptation. Therefore, plants were grouped by macrohair trait pattern
209 (leaf sheath vs. leaf sheath margin).

210 Two adjusted fitness metrics were computed from the combination of several fitness traits
211 (adapted from Mercer et al. (2008)). Agronomic plant fitness (FITplant) incorporates the count of
212 ear-producing plants in the row (PE), the number of ears produced per plant (EN), and primary ear
213 weight (EW). Ear-producing stand count is divided by the number of seeds planted per row (15) to
214 produce percent survival to sexual maturity, and ear number is square-root transformed to account
215 for diminishing yield returns of secondary, tertiary, and subsequent ears. To calculate adjusted
216 fitness for plants that either did not produce ears by the time of harvest or were not harvested for
217 collection of ear traits, a second plant fitness trait, vegetative plant fitness (FITplantveg), disregards
218 ear weight from the equation. We calculate these adjusted fitness metrics thusly:

$$219 \quad FIT_{plant} = PE/15 * \sqrt{EN} * EW$$
$$220 \quad FIT_{plantveg} = PE/15 * \sqrt{EN}$$

221 Flag leaves from tagged plants from High and 2016 Low sites were collected for Carbon isotope
222 discrimination analysis, which was carried out at the University of Illinois (Twohey III et al., 2019).
223 Carbon isotopic composition $\delta^{13}\text{C}$ was calculated in reference to the international standard, Vienna
224 Pee Dee Belemnite. The equation for $\delta^{13}\text{C}$ (Schwarcz and Schoeninger, 1991) is as follows:

$$225 \quad \delta^{13}\text{C} = \{[(^{13}\text{C}_{sample} : ^{12}\text{C}_{sample}) / (^{13}\text{C}_{standard} : ^{12}\text{C}_{standard})] - 1\} * 1000$$

226 Leaf tissue samples were collected from a subset of 92 landraces in both High and Low Sites.
227 DNA was extracted and sent to CIMMYT for DArTseq genotyping (Wenzl et al., 2004). Over
228 67,000 DArTseq SNP markers were generated.

229 2.3 Statistical Analyses

230 2.3.1 $G \times E$ Interactions

231 We used a linear mixed-effects model (R package `lme4` (Bates et al., 2014a)) to test for pheno-
232 typic differences between landraces from each of the four populations in each trait, and how these
233 differences changed between the two common gardens. The full model was specified as:

$$234 \quad TRAIT \sim GARDEN * CONTINENT * ELEVATION +$$
$$235 \quad BLOCK : GARDEN + (1|LATITUDE) + (1|LATITUDE : GARDEN)$$

236 The formula calls as fixed effects GARDEN (Low Site or High Site), CONTINENT (Mexico or
237 South America), ELEVATION (High or Low), all interaction combinations therein, BLOCK nested
238 in GARDEN, and calls as random effects with random intercept accession LATITUDE (continuous
239 variable) and LATITUDE/GARDEN interaction. The significance of specific treatment effects was
240 evaluated using the `lmerTest` (Kuznetsova et al., 2017) and `lsmeans` (Lenth, 2012) R packages.

241 We compared each population's phenotypes between field sites (to quantify $G \times E$ interactions),
242 highland and lowland populations from the same continent within each field site (to quantify
243 highland-lowland adaptation), and Mexican and South American populations from the same
244 elevation within each field site (to quantify adaptation to continent-specific factors).

245 2.3.2 Phenotype:Phenotype Correlations

246 Principal Components Analysis (function `prcomp`, R package `stats` (R Core Team, 2019)) was
247 used to study the relatedness between phenotypic patterns. Data were normalized via centering
248 and scaling. Yield traits and $\delta^{13}\text{C}$ were available only from the second year of the Low Site, and
249 so were excluded from PCA.

250 To determine the elevation-dependent fitness consequences of putatively highland-adaptive
251 traits, we calculated Pearson correlations between fitness (FITplantveg) and traits previously iden-
252 tified and frequently reported as highland adaptive (Doebley, 1984; Eagles and Lothrop, 1994).
253 FITplantveg was used rather than FITplant because FITplantveg had more complete data. These
254 correlations were determined independently for each population in each common garden site. Ad-
255 ditionally, the magnitude and direction of differences in fitness/highland-adaptive trait correlation
256 coefficients between sites are taken as evidence of the trait's adaptive role at high or low elevation.
257 Two classes of pigment and macrohair patterns (either "solid"/"spotted" or "solid"/"margin") were
258 also considered separately.

259 2.3.3 Population Genetic Relatedness

260 Axes of population structure were estimated from SNP data with Principal Components Analysis
261 (R package `KRIS` (Chaichoompu et al., 2018)).

262 To better understand the evolutionary history between and within these four pre-defined pop-
263 ulations, each was further sub-divided into northern and southern sub-populations ($n =$ eight
264 continent/elevation/latitude subpopulations). Pairwise Euclidean allele frequency distances be-
265 tween the four original populations and between the eight subpopulations were calculated (func-
266 tion `gl.dist.pop`, R package `dartR` (Gruber et al., 2018)). Population graphs (Dyer and Nason,
267 2004) were used to provide a graph theoretic interpretation of genetic structure between these eight
268 subpopulations (R package `popgraph` (Dyer, 2014)).

269 2.3.4 Q_{ST}/F_{ST} Comparison

270 Quantitative trait divergence (Q_{ST}) was contrasted to the distribution of F_{ST} for neutral genetic
271 markers (Whitlock, 2008). For traits in which $Q_{ST} > F_{ST}$, trait divergence is greater than neutral
272 expectations, which may be caused by directional selection (Leinonen et al., 2013).

273 A linear mixed effects model was used to partition phenotypic variance between population,
274 landrace accession line, and garden/block.

275 $TRAIT \sim 1 + (1|POPULATION) + (1|LINE) + (1|GARDEN/BLOCK)$

276 Pairwise F_{ST} was calculated with the R function `fst.each.snp.hudson` (R package `dartR` (Gruber
277 et al., 2018)). Within-population and between-population variances were calculated with the R
278 function `VarCorr` (R package `lme4` (Bates et al., 2014b)), and were used to calculate Q_{ST} following
279 the equation below:

280
$$Q_{ST} = \sigma_{GB}^2 / (\sigma_{GB}^2 + 2\sigma_{GW}^2)$$

281 in which σ_{GB}^2 and σ_{GW}^2 are the between- and within-population genetic variance components,
282 respectively (Leinonen et al., 2013). Population contrasts of interest were all highland vs. all
283 lowland, all Mexican vs. all South American, Mexican Highland vs. Mexican Lowland, and South
284 American Highland vs. South American Lowland. Q_{ST} values were considered significantly high if
285 they were greater than two standard deviations from the mean F_{ST} .

286 3 Results

287 3.1 Population Mean Reaction Norms

288 Reaction norms describe phenotypic trait values of genotypes (in this case, landrace populations)
289 at different environments (common garden sites). Nonparallel reaction norms indicate that popu-
290 lations respond to environments differently, a pattern known as genotype-by-environment ($G \times E$)
291 interaction. When local populations have fitness trait values higher than the fitness trait values of
292 non-local populations, resulting in crossed reaction norms, this is known as local adaptation.

293 A full report of the statistical significance of each contrast is provided in Table 2. Bonferroni
294 correction (Bonferroni, 1936) is used to account for multiple comparisons (for tests of each trait
295 within each contrast).

296 3.1.1 Adjusted Fitness (FITplant, FITplantveg)

297 Both agronomic fitness (FITplant, Figure 2a) and vegetative fitness (FITplantveg, Figure 2b)
298 showed strong patterns of home-site advantage. Though FITplant was highest in the High Site for
299 all populations, both traits showed crossing reaction norms indicative of local adaptation.

300 Population values of FITplant in the Low Site were not significantly different from one another,
301 though Low populations showed a modest advantage over High populations and Mex populations
302 had an advantage over SA populations. In the High Site, these patterns crossed the significance
303 threshold. In general, we would expect to see greater yield (and therefore greater FITplant) in the
304 Low Site due to more tropical growth conditions, but these data showed the opposite trend. This
305 was likely due to generally poor field conditions in the Low Site during the year that yield data
306 were collected. For comparison, see ear weight (EW, Figure 2n).

307 FITplantveg values were largely reflective of ear-producing stand count (PE, Figure 2d). In the
308 Low Site, Low populations had higher FITplantveg than High populations (though this difference
309 was not statistically significant between Mex Low and Mex High), and Mex populations had higher
310 fitness than SA populations. In the High Site, High populations had higher FITplantveg than Low
311 populations, though Mex/SA differences were not significant.

312 3.1.2 Row-Level Traits (STD, PE, BRN, DTA, DTS, ASI)

313 All four populations had significantly lower stand count (STD, Figure 2c) in the High Site than in
314 the Low Site, though a weak pattern of home-site advantage emerged. Ear-producing stand count
315 (PE, Figure 2d) showed stronger home-site advantage. SA populations crossed reaction norms, and
316 all four populations had higher PE at their native elevation (though this trend was insignificant for
317 Mex High). Notably, at the Low Site, PE values from Mex High and Mex Low nearly converged,
318 whereas SA High and SA Low values diverged widely.

319 Barrenness (BRN, Figure 2e) is the percent of plants that survive but do not produce ears,
320 whereas PE is the number of plants that germinate and survive to produce ears. BRN was negatively
321 correlated with PE and therefore showed patterns similar but opposite to PE (lower BRN at native
322 elevation).

323 Flowering time traits days to anthesis (DTA, Figure 2f) and days to silking (DTS, Figure
324 2g) showed that flowering took longer in the High Site. Though all populations showed similar
325 patterns, South American populations took longer to flower than Mexican populations, and lowland
326 populations took longer than highland populations. Anthesis/Silking Interval (ASI, Figure 2h) was
327 generally lower in the High Site. The only significant ASI contrast was SA High between the Low
328 and High Sites.

329 **3.1.3 Plant Size Traits (PH, EH, TL, TBN, EN)**

330 Plant height (PH, Figure 2i) and ear height (EH, Figure 2j) were lower in the High Site than in the
331 Low Site. Mex High was the only population that did not significantly vary between sites. Mex
332 Low had higher PH and EH than Mex High in both sites. Lowland populations had much greater
333 tassel length (TL, Figure 2k) in the Low Site than the High Site, but neither highland population
334 varied substantially. Only SA Low varied between sites for tassel branch number (TBN, Figure 2l),
335 but there was a strong genetic effect between populations in both sites. SA and Low populations
336 had greater TBN than Mex and High populations. Ear number (EN, Figure 2m) was largely static
337 between sites and between populations, except for SA High, which had a lower value in the Low
338 Site and a higher value in the High Site.

339 **3.1.4 Yield Traits (EW, EL, ED, KPR)**

340 Ear weight (EW, Figure 2n), ear length (EL, Figure 2o), and ear diameter (ED, Figure 2p) were all
341 greater in the High Site than the Low Site. These depressed Low Site data trends may have been
342 due in part to virus damage in the Low Site in 2016. EW and ED showed crossing reaction norms
343 indicative of home-site advantage, and Mex populations had greater EW than SA populations from
344 the same elevation. Low had greater EL than High populations in the Low Site, but values nearly
345 converged in the High Site. Kernels per row (KPR, Figure 2q) did not exhibit the same depression
346 at the Low Site as EW, EL, and ED. SA and Mex Low had lower KPR in the High Site, though
347 Mex High had a strong opposite reaction norm.

348 **3.1.5 Water Use Efficiency ($\delta^{13}\text{C}$)**

349 SA Low, SA High, and Mex High did not vary greatly for $\delta^{13}\text{C}$ ($\delta^{13}\text{C}$, Figure 2r). Mex High had
350 lower $\delta^{13}\text{C}$ than both lowland populations in both sites. SA High showed a peculiar pattern of high
351 $\delta^{13}\text{C}$ in the Low Site, similar to both lowland populations, and low $\delta^{13}\text{C}$ in the High Site, similar
352 to Mex High.

353 **3.1.6 Anthocyanin Pigmentation and Macrohair Density (P_INTsolid, P_INTspot,
354 P_EXTsolid, P_EXTspot, M_DENsolid, M_DENmarg)**

355 Solid-pattern anthocyanin intensity (P_INTsolid, Figure 2s) and spot-pattern anthocyanin intensity
356 (P_INTspot, Figure 2t) increased in the High Site relative to the Low Site. All four populations
357 showed similar rates of increase between sites for both traits, but the increase in P_INTspot was
358 statistically significant for all populations, and the increase in P_INTsolid was significant only for
359 Mex High. In all cases, SA High had the highest intensity of both patterns of pigmentation, and
360 in all cases, High populations had higher intensity than Low populations.

361 Solid-pattern anthocyanin extent (P_EXTsolid, Figure 2u) and spot-pattern anthocyanin extent
362 (P_EXTspot, Figure 2v) increased in the High Site relative to the Low Site. The increase of
363 P_EXTspot was significant for all populations, and the increase in P_EXTsolid was significant for

364 High. In all cases, SA High had the highest pigmentation extent of both patterns of pigmentation,
365 and in all cases, High had higher extents than Low.

366 Leaf sheath macrohair density (M_DENsolid, Figure 2w) and leaf sheath margin macrohair
367 density (M_DENmarg, Figure 2x) demonstrated distinct patterns. None of the populations varied
368 significantly in M_DENsolid between sites. Mex High had greater M_DENsolid than Mex Low and
369 SA High in both sites, but otherwise, no significant differences were found. The only population
370 that varied significantly in M_DENmarg between garden sites was SA High. No other significant
371 differences were found for this trait.

372 3.2 Garden-Level Phenotypic Differences

373 Traits with low missing data between the three gardens (the High Site and both years of the Low
374 Site) were used to perform Principal Components Analysis (Figure 3). The first two components
375 distinguish individuals from the High Site from both plantings of the Low Site. The two years of
376 the Low Site share a higher degree of feature space overlap than either shares with the High Site.
377 High values of P_INTsolid, P_EXTsolid, DTA, and DTS characterize plants from the High Site.
378 High values of several fitness-related traits and low values of M_DENsolid distinguish the Low Site
379 2017 from the Low Site 2016 and the High Site.

380 3.3 Pearson Correlation of Highland-Adaptive Traits

381 Pearson correlation values between fitness, pigment traits, and macrohair traits vary between all
382 four populations and between both gardens. In all cases, P_INTsolid is positively correlated with
383 P_EXTsolid (Figure 4), and P_INTspot is positively correlated with P_EXTspot (Figure 5). Like-
384 wise, in all cases, the strength of the correlation between P_INTsolid and P_EXTsolid is the same
385 or greater in the High Site than in the Low Site (Figure 4). Conversely, the correlation between
386 P_INTspot and P_EXTspot is weaker in the High Site than in the Low Site (Figure 5).

387 3.3.1 P_INTsolid, P_EXTsolid, and M_DENsolid

388 The correlations between M_DENsolid and either P_INTsolid or P_EXTsolid varies between popu-
389 lations and gardens, but is generally either weak (positive or negative) or strongly positive. In Mex
390 High, these correlations are strongly positive in both gardens, though stronger in the Low Site. In
391 Mex Low, these correlations are only strongly positive in the High Site. In SA Low, these corre-
392 lations are only strong in the Low Site. In SA High, these correlations are weak in both gardens,
393 but may be marginally positive in the Low Site and negative in the High Site.

394 In the Low Site, for all four populations, FITplantveg was either uncorrelated or negatively
395 correlated with P_INTsolid, P_EXTsolid, and M_DENsolid, with the exception of a very weak
396 positive correlation between FITplantveg and P_INTsolid within Mex High (Figure 4a, panel 1).
397 Most of these negative correlations are weak, with the exception of a strong negative correlation
398 between FITplantveg and M_DENsolid within Mex Low, Figure 4b, panel 1).

399 In contrast, in the High Site, for all four populations, FITplantveg was positively correlated with
400 P_INTsolid, positively correlated with P_EXTsolid (except for Mex Low), and either uncorrelated
401 or negatively correlated with M_DENsolid. However, the only significant correlations listed above
402 were found in the SA High population.

403 Panel 3 in each subfigure of Figure 4 demonstrates difference in correlation between the Low and
404 High sites. For all populations, the correlation between FITplantveg and P_INTsolid is stronger in
405 the High Site than in the Low Site. The same is true of P_EXTsolid, except for Mex High, in which
406 there is no change in correlation between garden sites. On the other hand, Mexican populations

407 show an increase in correlation between FITplantveg and M_DENsolid in the High Site relative to
408 the Low Site, and South American populations show the opposite trend. Also, all four popula-
409 tions except for Mex Low show weaker correlation between M_DENsolid and either P_INTsolid or
410 P_EXTsolid in the High Site relative to the Low Site (though the Mex High correlation coefficients
411 are still both significantly positive in both sites).

412 3.3.2 P_INTspot, P_EXTspot, and M_DENmarg

413 In both gardens, M_DENmarg is negatively correlated with P_INTspot and P_EXTspot in South
414 American populations, and weakly or positively correlated in Mexican populations. In the Low Site,
415 P_INTspot, P_EXTspot, and M_DENmarg are weakly or negatively correlated with FITplantveg
416 in all populations. This correlation becomes positive for the Low populations in the High Site, but
417 patterns in the High populations are mixed.

418 3.4 Population Genetic Relatedness

419 Genetic similarity between genotyped individuals based on SNP data is estimated with Principal
420 Components Analysis (Figure 6a). Component 1 (24.7%) primarily separates Mexican from South
421 American populations, and Component 2 (14.4%) primarily separates highland from lowland pop-
422 ulations.

423 The population graph (Figure 6b) likewise separates the eight subpopulations into Mexican
424 and South American groups. Greater edge saturation amongst Mexican subpopulations illustrates
425 greater genetic similarity amongst Mexican subpopulations than amongst South American sub-
426 populations. Differential node sizes reflect the degree of genetic variability within subpopulations.
427 The subpopulations with the greatest genetic variability are MexHighSouth, MexLowSouth, and
428 SALowSouth.

429 3.5 Q_{ST}/F_{ST} Comparison

430 Q_{ST} values for quantitative traits were plotted against the distribution of F_{ST} values (Figure 7).
431 Four sets of comparisons were carried out; High vs. Low (Figure 7a), Mex vs. SA (Figure 7b),
432 Mex High vs. Mex Low (Figure 7c), and SA High vs. SA Low (Figure 7d). Q_{ST} values more
433 than two standard deviations above the mean F_{ST} were considered significantly high. In all three
434 elevational comparisons, PH, EH, DTS, DTA, and $\delta^{13}\text{C}$ had significantly high Q_{ST} . Q_{ST} values
435 for TL, TBN, P_INTsolid, M_DENsolid also meet this threshold of significance in one or two of the
436 elevational contrasts. In the Mex vs. SA contrast, only three traits (TBN, M_DENsolid, and DTS)
437 have significantly high Q_{ST} values.

438 4 Discussion

439 4.1 Local Adaptation and Plasticity

440 Landraces may respond to environmental changes (including climate change and dispersal to new
441 environments) in up to four ways: plasticity, evolution, gene flow, or extinction (Mercer and Perales,
442 2010). The failure of an organism to plastically adapt to all available environments promotes the
443 evolution of adaptations to a particular environment at the expense of others, a compromise known
444 as an adaptive trade-off. When a population evolves traits that give it a home-site advantage over
445 non-native populations, that population exhibits local adaptation (Kawecki and Ebert, 2004).

446 All four of our elevational/continental landrace populations differ in fitness component values
447 between our highland and lowland Mexican field sites. We observe that populations exhibit recip-
448 rocal home-site advantage in several ways. Populations grown at sites near their native elevation
449 have higher agronomic and vegetative fitness, stand count, ear-producing stand count, ear weight,
450 ear diameter, and lower barrenness than populations foreign to that site's elevation, as indicated
451 by crossing reaction norms between populations from the same continent. Other traits show evi-
452 dence of home-site advantage for populations from one continent, but not the other, indicating that
453 highland and lowland populations from different continents have different adaptive strategies.

454 In several cases, populations also fit the "Home vs. Away" model of local adaptation, in which
455 a population has greater fitness in the site corresponding to its native home environment than in
456 the away site, regardless of the fitness of other populations. The Mexican Highland and Lowland
457 populations demonstrate this pattern most clearly with ear-producing stand count (Figure 2d).
458 Though their reaction norms do not cross, both populations have higher fitness in their home
459 sites. We might consider that, when populations meet the requirements for both models of local
460 adaptation, there is a particularly strong case for local adaptation.

461 Several traits showed strong environmental effects but minimal $G \times E$. All populations respond
462 similarly to site effects for several traits, including days to anthesis, days to silking, plant height, and
463 to lesser extents, spot-pattern pigment intensity and extent. These results are in alignment with
464 expectations of depressed maize plant height and prolonged maturation process due to highland
465 conditions (Mercer and Perales, 2018; Hufford et al., 2013).

466 We note that our reciprocal transplant design is not fully reciprocal in that common garden
467 sites in South American locales were not utilized. Though we may expect to see South American
468 populations exhibiting higher fitness than Mexican populations in such locales, this is currently
469 speculative.

470 4.2 Highland Adaptation Traits

471 4.2.1 Anthocyanin Pigmentation and Macrohair Density

472 Leaf sheath anthocyanin pigmentation and pilosity have long been reported to help plants ac-
473 quire and retain heat in cold environments (Doebley, 1984; Schuepp, 1993; Lauter et al., 2004).
474 Anthocyanin pigmentation is plastically up-regulated in response to increased light exposure (Van-
475 derauwera et al., 2005) and cold temperatures (Christie et al., 1994; Hufford et al., 2013). We
476 find that the intensity and extent of anthocyanin pigmentation on leaf sheaths is elevated in the
477 highland garden site. In general, highland populations have greater overall pigmentation intensity
478 and extent, though all populations demonstrate similar plastic effects in response to environment.
479 Q_{ST} of solid-pattern anthocyanin intensity is significantly high between South American Highland
480 and South American Lowland, signifying differential directional selection for this trait between
481 these two populations (Merilä and Crnokrak, 2001), but Mexican Highland and Mexican Lowland
482 have low Q_{ST} for this trait. Also, a difference in pattern emerges between Lowland populations,
483 wherein Mexican Lowland has greater intensity and extent of solid-pattern anthocyanin, and South
484 American Lowland has greater intensity and extent of anthocyanin spots. The correlations between
485 both patterns of anthocyanin and fitness appear to become more positive with increasing elevation,
486 though solid anthocyanin pigmentation has a somewhat more positive correlation with fitness than
487 does anthocyanin spots.

488 Macrohair density is a plastic trait, associated with survival in cold temperatures (Hufford
489 et al., 2013) and with maize grain yield in cold environments (Kaur et al., 1985). Unexpectedly,
490 leaf sheath macrohair density was largely non-plastic to the environmental variation present in

491 this study. Leaf sheath macrohair density is much greater in Mexican Highland maize than in
492 the other populations, and this difference is greater than expected given neutral genetic loci. The
493 introgression of macrohair density QTLs from *mexicana* exclusively into Highland Mexican maize
494 (Lauter et al., 2004), followed by selection for that phenotype in the highland environment, would
495 account for this pattern.

496 The fitness correlations with macrohair density are different in Mexican and South American
497 maize landraces. The correlation between plant fitness and leaf sheath macrohair density becomes
498 stronger at the highland site for Mexican landrace populations, but becomes more negative for
499 South American landrace populations. This may suggest that leaf sheath macrohairs are adaptive
500 for Mexican landraces in the Mexican Central Plateau highlands, but are not adaptive for
501 South American landraces in this environment. The marginally higher density of sheath margin
502 macrohairs among Mexican populations relative to South American populations adds support
503 to this conclusion. Because leaf sheath macrohair density is (weakly) negatively correlated with
504 anthocyanin pigmentation in the highland site for South American populations, and positively cor-
505 related with anthocyanin pigmentation intensity for Mexican populations in the highland site, this
506 macrohair/fitness correlation may simply be a reflection of the fitness consequences of anthocyanin
507 pigmentation. On the other hand, macrohair's negative correlation with fitness is stronger than
508 its negative correlation with anthocyanin intensity, suggesting some relationship between macro-
509 hair density and fitness beyond conflation with anthocyanin pigment. Furthermore, as variation
510 in macrohair density is mainly captured by landrace population, this trait's correlation with other
511 traits will capture other population-level patterns in trait/trait correlations.

512 The only population in which (solid) anthocyanin pigmentation and leaf sheath macrohair
513 density are strongly correlated regardless of environment is Mexican Highland. Whereas the other
514 three populations show weaker or environmentally conditional correlation between anthocyanin
515 and leaf sheath macrohair density, Mexican Highland maize shows the expression of these traits
516 to be linked. Linkage mapping experiments would reveal whether the QTLs for these traits are
517 truly under linkage disequilibrium, perhaps within the well-known inversion polymorphism, *inv4m*
518 (Hufford et al., 2013; Pyhäjärvi et al., 2013), that overlaps with QTL for these traits (Lauter et al.,
519 2004).

520 4.2.2 Flowering Time/Plant Maturation

521 Flowering time is a complex, multigenic trait that plays a crucial role in elevation adaptation
522 (Buckler et al., 2009; Navarro et al., 2017; Wang et al., 2020). Fast flowering time is a critical
523 component of adaptation to cold highland conditions, as plants must complete their life cycle in a
524 narrower window of hospitable weather. In accordance with these expectations, highland popula-
525 tions matured more quickly than lowland populations, and this difference was more pronounced in
526 the highland site. At the same time, maize plants from all four populations had longer flowering
527 time in the highland site, due to the slower accumulation of growing degree days. Strong signals
528 of $QST > FST$ support strong divergent selection between highland and lowland population for
529 flowering time.

530 Positive values of ASI indicate pollen release before silks are developed and receptive, which
531 can lead to incomplete pollination and reduced yield. Positive values of ASI negatively correlate
532 with yield (Mercer and Perales, 2018), but low or slightly negative values of ASI are likely less
533 detrimental, as silks can remain receptive for several days, and a single plant that is shedding
534 pollen early can pollinate many plants. For this reason, high values of ASI are generally regarded
535 as an indicator of stress (Mercer et al., 2014). All four populations showed slightly higher ASI in
536 the lowland site (though only South American Highland varied significantly). ASI reaction norms

537 for Mexican populations are roughly parallel, while the South American reaction norms cross.
538 This may be because ASI is more associated with local adaptation strategies of South American
539 populations, or it may be that ASI is sensitive to the compounding stress of trans-elevational
540 and trans-continental transplantation (Mittler, 2006). Both South American populations have ASI
541 values resembling Mexican populations of the same elevation when grown at their native elevation,
542 and then deviate more strongly when grown at the alternative elevation.

543 4.2.3 Plant Morphology and Architecture

544 In maize, height is a polygenic trait with broad-ranging fitness consequences (Lin et al., 1995).
545 Lowland populations are taller than Highland populations, and this difference is greater than
546 expected given neutral genetic markers. Maize plant height is both highly heritable (Peiffer et al.,
547 2014) and highly plastic to environment: All populations were shorter when grown in the highland
548 site, reflecting the environmental effect of the shorter growing season at the highland site.

549 Optimal tassel size requires a tassel small enough for minimization of shading effects on the
550 upper leaves yet large enough for sufficient pollen production (Mickelson et al., 2002), though the
551 adaptive significance of tassel morphology is not well-known. Our QST/FST comparisons reveal
552 that Lowland populations have more branches than Highland populations (as observed by Eagles
553 and Lothrop (1994)) and that South American populations have more branches than Mexican
554 populations. Though tassel lengths of Highland populations were largely non-plastic, Lowland
555 populations experienced a significant reduction in tassel length when transplanted to the lowland
556 garden. Only the South American Lowland population was plastic between garden sites.

557 4.2.4 Water Use Efficiency and $\delta^{13}\text{C}$

558 In C₄ plants like maize, there is a negative correlation between WUE and $\delta^{13}\text{C}$ (Ellsworth and
559 Cousins, 2016). Individuals with higher/less negative $\delta^{13}\text{C}$ scores have higher ratios of ¹³C:¹²C,
560 meaning that they discriminate less effectively against ¹³C. Though the precise mechanism un-
561 derlying this relationship is unclear, Avramova et al. (2019) found a region on Chromosome 7
562 which influences $\delta^{13}\text{C}$, WUE, and sensitivity to drought through reduced abscisic acid and mod-
563 ified stomatal behavior. Because precipitation decreases with increasing elevation in Mexico and
564 South America, higher WUE may play a role in highland adaptation.

565 Both Lowland populations show consistently high $\delta^{13}\text{C}$, indicating low WUE. The Mexican
566 Highland population had consistently lower $\delta^{13}\text{C}$ at both sites, indicating higher WUE. This finding
567 is in accord with other published studies that detail the various drought-adapted landraces of the
568 Mexican highlands (Eagles and Lothrop, 1994; Hayano-Kanashiro et al., 2009). In both Mexican
569 Highland/Mexican Lowland and South American Highland/South American Lowland comparisons,
570 $QST > FST$, indicating differential selection on WUE between highland and lowland populations
571 on both continents. Only the South American Highland population differed for $\delta^{13}\text{C}$ significantly
572 between sites. South American Highland maize, like Mexican Highland maize, had high WUE
573 in the highland site, but WUE dropped significantly in the lowland site. This unexpected drop
574 in WUE seen in South American Highland maize may be the result of accumulated stress from
575 being outside its native elevation and continent, though similar extreme drops in values of other
576 fitness-relevant traits in the South American Highland population are not observed.

577 4.3 Population Structure

578 For our provisional formulation of four maize landrace populations divided by continent and el-
579 evation, populations are more genetically similar to the corresponding population from the same

580 continent. This is demonstrated by the genetic PCA, in which PC1 most clearly distinguishes
581 Mexican from South American landraces. The patterns observed in this PCA are congruent with
582 those found by Kistler et al. (2018) in a diverse array of maize landrace and teosinte accessions
583 from across the Americas, though their study divided accessions into population groups with a
584 model-based clustering algorithm.

585 Dissecting our four landrace populations latitudinally, the population graph clusters the four
586 Mexican subpopulations into one group and the four South American subpopulations into another,
587 with a single edge between the two groups. This cluster pattern conforms to expectations, given
588 the geographic proximity of these subpopulations and historical range expansion of maize from the
589 center of domestication in southern lowland Mexico (MexLowSouth) to the north (MexLowNorth)
590 and to the south (all South American subpopulations) and to higher elevations (MexHighSouth).
591 Within either continent, subpopulations are most related to the subpopulation of the same elevation,
592 rather than latitude, demonstrating that elevation structures genetic covariance more strongly
593 than latitude. The two southern Mexican subpopulations have slightly higher within-subpopulation
594 genetic variance than the two northern Mexican subpopulations, which reflects their closer proximity
595 to the center of domestication and diversity (Wang et al., 2017). On the other hand, this pattern
596 is not shown within the South American subpopulations; SALowSouth has greater genetic variance
597 than does SALowNorth. This result is in alignment with the hypothesis that the southwestern
598 Amazon (present-day Bolivia, Peru, and southwestern Brazil), which roughly corresponds to the
599 geographical region of SALowSouth, was a plant domestication and production hotspot (Watling
600 et al., 2018) and secondary improvement center for maize (Kistler et al., 2018). According to
601 this theory, this region was the destination of the first of two waves of maize dispersal to South
602 America, and from this region, maize dispersed across the rest of the continent, including to the
603 northern South American lowlands. Given this hypothesis, we would expect MexLowSouth to have
604 a stronger edge to SALowSouth than to SALowNorth. There are two possible reasons why we
605 do not find this to be the case. First, this genetic covariance may be preserved from the original
606 southward dispersal of maize from the center of domestication to the secondary improvement center
607 through the northern lowlands. The second and more likely scenario is that this stronger covariance
608 reflects gene flow from Mesoamerica (MexLowSouth) to South America (SALowNorth) across
609 Central America sometime after the first wave of dispersal of maize into South America, either at
610 low consistent levels or as part of a second wave of dispersal (Kistler et al., 2018, 2020).

611 Though populations are more genetically similar to the corresponding population from the same
612 continent, they are phenotypically more similar to the populations from the same elevation. While
613 genetic population structure is largely shaped by demographic effects of drift during dispersal,
614 phenotypes and phenotypic plasticity show evidence of being shaped by elevational adaptation.
615 This is apparent for the majority of traits' reaction norms between common garden sites, as well as
616 the generally higher Q_{ST} between highland and lowland populations than that between Mexican
617 and South American populations.

618 4.4 Asymmetrical Patterns of Local Adaptation

619 Mercer et al. (2008) found that highland populations suffer a greater reduction in fitness in lowland
620 conditions than lowland populations do in highland conditions. They describe this pattern as
621 asymmetrical local adaptation. Our data do not fully replicate this finding. Our agronomic fitness
622 data approach this pattern, with relatively stable lowland fitness and more variable highland fitness,
623 but vegetative fitness shows an opposite asymmetry with more variable lowland populations and
624 more stable highland populations. As Mercer and colleagues focused on agronomic fitness, these
625 results are in alignment. Any asymmetry of local adaptation found here may be sensitive to yearly

626 fluctuations in $G \times E$ interactions at a site (Mercer and Perales, 2018). Further studies would be
627 required (and are recommended) to see whether patterns of asymmetry break down or are retained
628 over time.

629 4.5 Selective Forces in Maize Evolution

630 Agroecosystems exert multiple and at times conflicting selective pressures on maize populations.
631 Fitness is defined as (or approximated by, Savolainen et al. (2013)) an organism's ability to survive
632 and reproduce successfully in a particular environment. Fit maize plants must survive the myriad
633 forces at work in the field (due to climate, elevation, soil type and quality, pest and weed pressure,
634 as well as farmer-mediated modifications to the land, such as tilling, irrigation, fertilizer, and crop
635 rotation) to germinate, mature, develop numerous healthy seeds, and resist post-harvest spoilage
636 and loss. Furthermore, fit maize plants must also satisfy the desires of farmers to such a degree that
637 the farmers will be convinced to replant the seed line in subsequent seasons. In fact, farmers more
638 commonly report consciously selecting for culinary traits than for yield or environmental adaptations
639 (Bellon et al., 2003). While maize populations continually evolve in response to competing
640 selective pressures, agronomic practices and consumption patterns also evolve to maximize yield,
641 minimize required inputs, and produce seed with desired grain type.

642 Though highland-adapted landraces in Mexico and South America share phenotypic similarities,
643 their adaptive strategies are not identical. This is evinced by highly divergent reaction norms
644 between Mexico and South America for a few traits, notably $\delta^{13}\text{C}$. Differences in highland adaptation
645 between Mexican and South American maize may be due to drift incurred during the dispersal
646 of landraces into and across South America, the unique selective challenges imparted by specific
647 local highland regions, or likely a combination of both.

648 The diversity and complexity of selective forces at work in the maize landrace agroecosystem may
649 impede detection of patterns of adaptation to abiotic clines like elevation, which may explain why
650 the common garden experiment by Orozco-Ramírez et al. (2014) failed to identify environmental
651 adaptation as a leading factor in landrace distribution, and why the analyses of Dyer and López-
652 Feldman (2013) found that altitude did not cleanly explain seed management practices. The clear
653 patterns of adaptation to elevation found in this reciprocal transplant experiment are perhaps more
654 striking when considering the complicating and significant force of anthropogenic (or "artificial")
655 selection.

656 Additionally, the common garden sites were maintained at similar modern agronomic conditions
657 (irrigation and pesticide/insecticide/fungicide inputs). This is in contrast to the diverse traditional
658 agronomic practices utilized at smallholder farms across Mexico in which landrace diversity is
659 maintained. This disparity between native habitat conditions and common garden conditions may
660 have further reduced the observable signal of local adaptation to mitigated selection pressures (e.g.,
661 drought and biotic pressures), but others environmental pressures (temperature, ultraviolet solar
662 radiation, atmospheric pressure, etc.) are less likely to have been affected.

663 5 Conclusions

664 These results demonstrate that maize landraces from across the Americas are locally adapted to
665 elevation. Landraces adapted to diverse environmental conditions are an invaluable resource for
666 breeding efforts that rely on fewer costly and ecologically harmful inputs (Dwivedi et al., 2016). The
667 myriad forces that influence the *in situ* conservation status of landraces are complex and dynamic,
668 though locally adapted and evolving populations are more resilient and less likely to be supplanted
669 by modern varieties (Perales et al., 2003). The importance of landraces as an agronomic resource is

670 likely to increase due to growing global food demands, the proliferation of modern inbred lines, and
671 the effects of global climate change, which will likely alter the conditions of many corn-producing
672 regions substantially (Bassu et al., 2014; Xu et al., 2016).

673

674 **Data Archiving Statement**

675 Data for this study are available at: *to be completed after manuscript is accepted for publication.*

676 **References**

677 Jonás A Aguirre-Liguori, Santiago Ramírez-Barahona, Peter Tiffin, and Luis E Eguiarte. Climate
678 change is predicted to disrupt patterns of local adaptation in wild and cultivated maize.
679 *Proceedings of the Royal Society B*, 286(1906):20190486, 2019.

680 María Clara Arteaga, Alejandra Moreno-Letelier, Alicia Mastretta-Yanes, Alejandra Vázquez-Lobo,
681 Alejandra Breña-Ochoa, Andrés Moreno-Estrada, Luis E Eguiarte, and Daniel Piñero. Genomic
682 variation in recently collected maize landraces from mexico. *Genomics data*, 7:38–45, 2016.

683 Viktoriya Avramova, Adel Meziane, Eva Bauer, Sonja Blankenagel, Stella Eggels, Sebastian Gres-
684 set, Erwin Grill, Claudiu Niculaes, Milena Ouzunova, Brigitte Poppenberger, et al. Carbon
685 isotope composition, water use efficiency, and drought sensitivity are controlled by a common
686 genomic segment in maize. *Theoretical and Applied Genetics*, 132(1):53–63, 2019.

687 Simona Bassu, Nadine Brisson, Jean-Louis Durand, Kenneth Boote, Jon Lizaso, James W Jones,
688 Cynthia Rosenzweig, Alex C Ruane, Myriam Adam, Christian Baron, et al. How do various
689 maize crop models vary in their responses to climate change factors? *Global change biology*, 20
690 (7):2301–2320, 2014.

691 Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-effects models
692 using lme4. *arXiv preprint arXiv:1406.5823*, 2014a.

693 Douglas Bates, Martin Maechler, Ben Bolker, and Steven Walker. lme4: Linear mixed-effects
694 models using eigen and s4. r package version 1.1-7, 2014b.

695 Mauricio R Bellon, Julien Berthaud, Melinda Smale, José Alfonso Aguirre, Suketoshi Taba, Flavio
696 Aragón, Jaime Díaz, and Humberto Castro. Participatory landrace selection for on-farm con-
697 servation: An example from the central valleys of oaxaca, mexico. *Genetic Resources and Crop
698 Evolution*, 50(4):401–416, 2003.

699 Mauricio R Bellon, Alicia Mastretta-Yanes, Alejandro Ponce-Mendoza, Daniel Ortiz-Santamaría,
700 Oswaldo Oliveros-Galindo, Hugo Perales, Francisca Acevedo, and José Sarukhán. Evolutionary
701 and food supply implications of ongoing maize domestication by mexican campesinos. *Proc. R.
702 Soc. B*, 285(1885):20181049, 2018.

703 Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. *Pubblicazioni del R Istituto
704 Superiore di Scienze Economiche e Commerciali di Firenze*, 8:3–62, 1936.

705 Mariana Bracco, Veronica Viviana Lia, J CÁMARA Hernández, Lidia Poggio, and Alexandra Ma-
706 rina Gottlieb. Genetic diversity of maize landraces from lowland and highland agro-ecosystems of
707 southern south america: implications for the conservation of native resources. *Annals of Applied
708 Biology*, 160(3):308–321, 2012.

709 Stephen B Brush. Man's use of an andean ecosystem. *Human Ecology*, 4(2):147–166, 1976.

710 Edward S Buckler, James B Holland, Peter J Bradbury, Charlotte B Acharya, Patrick J Brown,
711 Chris Browne, Elhan Ersoz, Sherry Flint-Garcia, Arturo Garcia, Jeffrey C Glaubitz, et al. The
712 genetic architecture of maize flowering time. *Science*, 325(5941):714–718, 2009.

713 Mark B Bush, R Piperno Dolores, and Paul A Colinvaux. A 6,000 year history of amazonian maize
714 cultivation. *Nature*, 340(6231):303, 1989.

715 Kridsadakorn Chaichoompu, Fentaw Abegaz, Sissades Tongsima, Philip James Shaw, Anavaj
716 Sakuntabhai, Luisa Pereira, and Kristel Van Steen. *KRIS: Keen and Reliable Interface Sub-*
717 *routines for Bioinformatic Analysis*, 2018. URL <https://CRAN.R-project.org/package=KRIS>.
718 R package version 1.1.1.

719 Linda Chalker-Scott. Environmental significance of anthocyanins in plant stress responses. *Photo-*
720 *chemistry and photobiology*, 70(1):1–9, 1999.

721 Peter J Christie, Mark R Alfenito, and Virginia Walbot. Impact of low-temperature stress on
722 general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and
723 anthocyanin pigmentation in maize seedlings. *Planta*, 194(4):541–549, 1994.

724 Jens Clausen, David D Keck, William M Hiesey, et al. Experimental studies on the nature of
725 species. i. effect of varied environments on western north american plants. *Experimental studies*
726 *on the nature of species. I. Effect of varied environments on western North American plants.*,
727 (520), 1940.

728 David A Cleveland and Daniela Soleri. Extending darwins analogy: bridging differences in concepts
729 of selection between farmers, biologists, and plant breeders. *Economic botany*, 61(2):121, 2007.

730 John F Doebley. Maize introgression into teosinte-a reappraisal. *Annals of the Missouri Botanical*
731 *Garden*, pages 1100–1113, 1984.

732 Christian Dumas and H Lloyd Mogensen. Gametes and fertilization: Maize as a model system for
733 experimental embryogenesis in flowering plants. *The Plant Cell*, 5(10):1337, 1993.

734 Sangam L Dwivedi, Salvatore Ceccarelli, Matthew W Blair, Hari D Upadhyaya, Ashok K Are, and
735 Rodomiro Ortiz. Landrace germplasm for improving yield and abiotic stress adaptation. *Trends*
736 *in plant science*, 21(1):31–42, 2016.

737 George A Dyer and Alejandro López-Feldman. Inexplicable or simply unexplained? the manage-
738 ment of maize seed in mexico. *PLoS One*, 8(6):e68320, 2013.

739 RJ Dyer. popgraph: This is an r package that constructs and manipulates population graphs. *R*
740 *package version*, 1, 2014.

741 Rodney J Dyer and John D Nason. Population graphs: the graph theoretic shape of genetic
742 structure. *Molecular ecology*, 13(7):1713–1727, 2004.

743 HA Eagles and JE Lothrop. Highland maize from central mexicoits origin, characteristics, and use
744 in breeding programs. *Crop Science*, 34(1):11–19, 1994.

745 Patrick Z Ellsworth and Asaph B Cousins. Carbon isotopes and water use efficiency in c4 plants.
746 *Current Opinion in Plant Biology*, 31:155–161, 2016.

747 748 Nina Fedoroff. How jumping genes were discovered. *Nature Structural & Molecular Biology*, 8(4):
300, 2001.

749 750 751 Rocio Fernandez Suarez, Luis A Morales Chavez, and Amanda Galvez Mariscal. Importance of
mexican maize landraces in the national diet. an essential review. *Revista Fitotecnia Mexicana*,
36:275–283, 2013.

752 753 754 Dylan J Fraser, Laura K Weir, Louis Bernatchez, Michael Møller Hansen, and Eric B Taylor. Extent
and scale of local adaptation in salmonid fishes: review and meta-analysis. *Heredity*, 106(3):404,
2011.

755 756 757 Joseph L Gage, Diego Jarquin, Cinta Romay, Aaron Lorenz, Edward S Buckler, Shawn Kaeppler,
Naser Alkhalifah, Martin Bohn, Darwin A Campbell, Jode Edwards, et al. The effect of artificial
selection on phenotypic plasticity in maize. *Nature communications*, 8(1):1348, 2017.

758 759 760 761 Daniel J Gates, Dan Runcie, Garret M Janzen, Alberto Romero Navarro, Martha Willcox, Kai
Sonder, Samantha Snodgrass, Fausto Rodríguez-Zapata, Ruairidh JH Sawers, Rubén Rellán-
Álvarez, et al. Single-gene resolution of locally adaptive genetic variation in mexican maize.
bioRxiv, page 706739, 2019.

762 763 764 Alexis L Gibson, Erin K Espeland, Viktoria Wagner, and Cara R Nelson. Can local adaptation
research in plants inform selection of native plant materials? an analysis of experimental method-
ologies. *Evolutionary Applications*, 9(10):1219–1228, 2016.

765 766 767 Alexander Grobman, Duccio Bonavia, Tom D Dillehay, Dolores R Piperno, José Iriarte, and Irene
Holst. Preceramic maize from paredones and huaca prieta, peru. *Proceedings of the National
Academy of Sciences*, 109(5):1755–1759, 2012.

768 769 770 Bernd Gruber, Peter J Unmack, Oliver F Berry, and Arthur Georges. dartr: an r package to facil-
itate analysis of snp data generated from reduced representation genome sequencing. *Molecular
ecology resources*, 18(3):691–699, 2018.

771 Jack R Harlan. Our vanishing genetic resources. *Science*, 188(4188):618–621, 1975.

772 773 774 775 Corina Hayano-Kanashiro, Carlos Calderón-Vázquez, Enrique Ibarra-Laclette, Luis Herrera-
Estrella, and June Simpson. Analysis of gene expression and physiological responses in three
mexican maize landraces under drought stress and recovery irrigation. *PLoS one*, 4(10):e7531,
2009.

776 777 778 Matthew B Hufford, Enrique Martínez-Meyer, Brandon S Gaut, Luis E Eguiarte, and Maud I
Tenaillon. Inferences from the historical distribution of wild and domesticated maize provide
ecological and evolutionary insight. *PLoS One*, 7(11):e47659, 2012.

779 780 781 Matthew B Hufford, Pesach Lubinksy, Tanja Pyhäjärvi, Michael T Devengenzo, Norman C Ell-
strand, and Jeffrey Ross-Ibarra. The genomic signature of crop-wild introgression in maize. *PLoS
Genetics*, 9(5):e1003477, 2013.

782 783 Garrett M Janzen, Li Wang, and Matthew B Hufford. The extent of adaptive wild introgression in
crops. *New Phytologist*, 2018.

784 785 786 GP Kaur, M Dhillon, and BS Dhillon. Agronomic and anatomical characters in relation to cold-
tolerance and grain-yield in maize composite. *Proceedings Indian National Sciences Academy
and Biological Sciences*, 51(4):490–495, 1985.

787 Tadeusz J Kawecki and Dieter Ebert. Conceptual issues in local adaptation. *Ecology letters*, 7(12):
788 1225–1241, 2004.

789 Logan Kistler, S Yoshi Maezumi, Jonas Gregorio De Souza, Natalia AS Przelomska, Fla-
790 viane Malaquias Costa, Oliver Smith, Hope Loiselle, Jazmín Ramos-Madrigal, Nathan Wales,
791 Eduardo Rivail Ribeiro, et al. Multiproxy evidence highlights a complex evolutionary legacy of
792 maize in south america. *Science*, 362(6420):1309–1313, 2018.

793 Logan Kistler, Heather B Thakar, Amber M VanDerwarker, Alejandra Domic, Anders Bergström,
794 Richard J George, Thomas K Harper, Robin G Allaby, Kenneth Hirth, and Douglas J Kennett.
795 Archaeological central american maize genomes suggest ancient gene flow from south america.
796 *Proceedings of the National Academy of Sciences*, 117(52):33124–33129, 2020.

797 Alexandra Kuznetsova, Per B Brockhoff, and Rune Haubo Bojesen Christensen. lmertest package:
798 tests in linear mixed effects models. *Journal of statistical software*, 82(13), 2017.

799 Nick Lauter, Charles Gustus, Anna Westerbergh, and John Doebley. The inheritance and evolution
800 of leaf pigmentation and pubescence in teosinte. *Genetics*, 167(4):1949–1959, 2004.

801 Roosa Leimu and Markus Fischer. A meta-analysis of local adaptation in plants. *PLoS one*, 3(12):
802 e4010, 2008.

803 Tuomas Leinonen, RJ Scott McCairns, Robert B O'hara, and Juha Merilä. Q st–f st comparisons:
804 evolutionary and ecological insights from genomic heterogeneity. *Nature Reviews Genetics*, 14
805 (3):179–190, 2013.

806 Russell V Lenth. Using the lsmeans package. *psn*, 50(60):70, 2012.

807 Juul Limpens, Gustaf Granath, Rien Aerts, Monique MPD Heijmans, Lucy J Sheppard, Luca
808 Bragazza, Berwyn L Williams, Håkan Rydin, Jill Bubier, Tim Moore, et al. Glasshouse vs field
809 experiments: do they yield ecologically similar results for assessing n impacts on peat mosses?
810 *New Phytologist*, 195(2):408–418, 2012.

811 Yann-Rong Lin, Keith F Schertz, and Andrew H Paterson. Comparative analysis of qtls affecting
812 plant height and maturity across the poaceae, in reference to an interspecific sorghum population.
813 *Genetics*, 141(1):391–411, 1995.

814 Dominique Louette and Melinda Smale. Farmers' seed selection practices and traditional maize
815 varieties in cuzalapa, mexico. *Euphytica*, 113(1):25–41, 2000.

816 Yoshihiro Matsuoka, Yves Vigouroux, Major M Goodman, Jesus Sanchez, Edward Buckler, and
817 John Doebley. A single domestication for maize shown by multilocus microsatellite genotyping.
818 *Proceedings of the National Academy of Sciences*, 99(9):6080–6084, 2002.

819 GG Medina, CJA Ruiz, and PRA Martínez. Los climas de méxico: una estratificación ambiental
820 basada en el componente climático. *Libro técnico*, (1), 1998.

821 Kristin Mercer, Lesley Campbell, and Jing Luo. Effect of water availability and genetic diversity on
822 flowering phenology, synchrony, and reproductive investment in maize. *Maydica*, 59(3):283–289,
823 2014.

824 Kristin L Mercer and Hugo Perales. Structure of local adaptation across the landscape: flowering
825 time and fitness in mexican maize (*zea mays l. subsp. mays*) landraces. *Genetic Resources and
826 Crop Evolution*, pages 1–19, 2018.

827 Kristin L Mercer and Hugo R Perales. Evolutionary response of landraces to climate change in
828 centers of crop diversity. *Evolutionary Applications*, 3(5-6):480–493, 2010.

829 Kristin L Mercer, Ángel Martínez-Vásquez, and Hugo R Perales. Asymmetrical local adaptation
830 of maize landraces along an altitudinal gradient. *Evolutionary Applications*, 1(3):489–500, 2008.

831 J Merilä and P Crnokrak. Comparison of genetic differentiation at marker loci and quantitative
832 traits. *Journal of Evolutionary Biology*, 14(6):892–903, 2001.

833 William L Merrill, Robert J Hard, Jonathan B Mabry, Gayle J Fritz, Karen R Adams, John R
834 Roney, and Art C MacWilliams. The diffusion of maize to the southwestern united states and
835 its impact. *Proceedings of the National Academy of Sciences*, pages pnas–0906075106, 2009.

836 SM Mickelson, CS Stuber, L Senior, and SM Kaeppeler. Quantitative trait loci controlling leaf and
837 tassel traits in a b73× mo17 population of maize. *Crop Science*, 42(6):1902–1909, 2002.

838 Javier O Mijangos-Cortes, T Corona-Torres, D Espinosa-Victoria, A Muñoz-Orozco, J Romero-
839 Peñaloza, and A Santacruz-Varela. Differentiation among maize (*zea mays l.*) landraces from the
840 tarasca mountain chain, michoacan, mexico and the chalqueño complex. *Genetic Resources and*
841 *Crop Evolution*, 54(2):309–325, 2007.

842 Ron Mittler. Abiotic stress, the field environment and stress combination. *Trends in plant science*,
843 11(1):15–19, 2006.

844 J Alberto Romero Navarro, Martha Willcox, Juan Burgueño, Cinta Romay, Kelly Swarts, Samuel
845 Trachsel, Ernesto Preciado, Arturo Terron, Humberto Vallejo Delgado, Victor Vidal, et al. A
846 study of allelic diversity underlying flowering-time adaptation in maize landraces. *Nature genetics*,
847 49(3):476, 2017.

848 Quetzalcóatl Orozco-Ramírez, Stephen B Brush, Mark N Grote, and Hugo Perales. A minor role
849 for environmental adaptation in local-scale maize landrace distribution: results from a common
850 garden experiment in oaxaca, mexico. *Economic botany*, 68(4):383–396, 2014.

851 R Ortega. Origen de la agricultura e importancia de los valles centrales de oaxaca. *La Tecnología
852 Agrícola Tradicional. Instituto Indigenista Interamericano/Consejo Nacional de Ciencia y Tec-
853 nología, Oaxaca, México*, pages 189–200, 1995.

854 Jason A Peiffer, Maria C Romay, Michael A Gore, Sherry A Flint-Garcia, Zhiwu Zhang, Mark J
855 Millard, Candice AC Gardner, Michael D McMullen, James B Holland, Peter J Bradbury, et al.
856 The genetic architecture of maize height. *Genetics*, 196(4):1337–1356, 2014.

857 H Perales. 23 landrace conservation of maize in mexico: an evolutionary breeding interpretation.
858 *Enhancing Crop Genepool Use: Capturing Wild Relative and Landrace Diversity for Crop Im-
859 provement*, page 271, 2016.

860 R Hugo Perales, Stephen B Brush, and Calvin O Qualset. Landraces of maize in central mexico:
861 an altitudinal transect. *Economic Botany*, 57(1):7–20, 2003.

862 Kevin V Pixley, Gilberto E Salinas-Garcia, Anthony Hall, Martin Kropff, Cynthia Ortiz,
863 Ankita Suhalia Bouvet, Prashant Vikram, and Sukhwinder Singh. Cimmyts seeds of discov-
864 ery initiative: Harnessing biodiversity for food security and sustainable development. *Indian J.
865 Plant Genet. Resour*, 30(3):231–240, 2017.

866 BM Prasanna et al. Phenotypic and molecular diversity of maize landraces: characterization and
867 utilization. *Indian J. Genet*, 70(4):315–327, 2010.

868 Tanja Pyhäjärvi, Matthew B. Hufford, Sofiane Mezmouk, and Jeffrey Ross-Ibarra. Complex pat-
869 terns of local adaptation in teosinte. *Genome Biology and Evolution*, 5(9):1594–1609, 07 2013.

870 R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for
871 Statistical Computing, Vienna, Austria, 2019. URL <https://www.R-project.org/>.

872 Peter Ranum, Juan Pablo Peña-Rosas, and Maria Nieves Garcia-Casal. Global maize production,
873 utilization, and consumption. *Annals of the New York Academy of Sciences*, 1312(1):105–112,
874 2014.

875 Fausto Rodríguez-Zapata, Allison C Barnes, Karla A Blöcher-Juárez, Dan Gates, Andi Kur,
876 Li Wang, Garrett M Janzen, Sarah Jensen, Juan M Estévez-Palmas, Taylor Crow, Rocío
877 Aguilar-Rangel, Edgar Demesa-Arevalo, Tara Skopelitis, Sergio Pérez-Limón, Whitney L
878 Stutts, Peter Thompson, Yu-Chun Chiu, David Jackson, Oliver Fiehn, Daniel Runcie,
879 Edward S Buckler, Jeffrey Ross-Ibarra, Matthew B. Hufford, Ruairidh JH Sawers, and
880 Rubén Rellán-Álvarez. Teosinte introgression modulates phosphatidylcholine levels and in-
881 duces early maize flowering time. *bioRxiv*, 2021. doi: 10.1101/2021.01.25.426574. URL
882 <https://www.biorxiv.org/content/early/2021/01/26/2021.01.25.426574>.

883 José Ariel Ruìz Corral, Noé Durán Puga, Jose de Jesus Sanchez Gonzalez, José Ron Parra,
884 Diego Raymundo Gonzalez Eguiarte, JB Holland, and Guillermo Medina García. Climatic adap-
885 tation and ecological descriptors of 42 mexican maize races. *Crop Science*, 48(4):1502–1512,
886 2008.

887 Guillermo Sarmiento. The dry plant formations of south america and their floristic connections.
888 *Journal of Biogeography*, pages 233–251, 1975.

889 Outi Savolainen, Martin Lascoux, and Juha Merilä. Ecological genomics of local adaptation. *Nature*
890 *Reviews Genetics*, 14(11):807, 2013.

891 PH Schuepp. Tansley review no. 59. leaf boundary layers. *New Phytologist*, pages 477–507, 1993.

892 Henry P Schwarcz and Margaret J Schoeninger. Stable isotope analyses in human nutritional
893 ecology. *American Journal of Physical Anthropology*, 34(S13):283–321, 1991.

894 David A Selinger and Vicki L Chandler. Major recent and independent changes in levels and
895 patterns of expression have occurred at the b gene, a regulatory locus in maize. *Proceedings of*
896 *the National Academy of Sciences*, 96(26):15007–15012, 1999.

897 David A Selinger and Vicki L Chandler. B-bolivia, an allele of the maize b1 gene with variable
898 expression, contains a high copy retrotransposon-related sequence immediately upstream. *Plant*
899 *Physiology*, 125(3):1363–1379, 2001.

900 Bekele Shiferaw, Boddupalli M Prasanna, Jonathan Hellin, and Marianne Bänziger. Crops that
901 feed the world 6. past successes and future challenges to the role played by maize in global food
902 security. *Food Security*, 3(3):307, 2011.

903 David B Stern, Maureen R Hanson, and Alice Barkan. Genetics and genomics of chloroplast
904 biogenesis: maize as a model system. *Trends in plant science*, 9(6):293–301, 2004.

905 Shohei Takuno, Peter Ralph, Kelly Swarts, Rob J Elshire, Jeffrey C Glaubitz, Edward S Buckler,
906 Matthew B Hufford, and Jeffrey Ross-Ibarra. Independent molecular basis of convergent highland
907 adaptation in maize. *Genetics*, pages genetics–115, 2015.

908 Maud Irène Tenaillon and Alain Charcosset. A european perspective on maize history. *Comptes
909 rendus biologies*, 334(3):221–228, 2011.

910 Göte Turesson. The genotypical response of the plant species to the habitat. *Hereditas*, 3(3):
911 211–350, 1922.

912 Robert J Twohey III, Lucas M Roberts, and Anthony J Studer. Leaf stable carbon isotope com-
913 position reflects transpiration efficiency in zea mays. *The Plant Journal*, 97(3):475–484, 2019.

914 Joost Van Heerwaarden, John Doebley, William H Briggs, Jeffrey C Glaubitz, Major M Goodman,
915 Jose de Jesus Sanchez Gonzalez, and Jeffrey Ross-Ibarra. Genetic signals of origin, spread,
916 and introgression in a large sample of maize landraces. *Proceedings of the National Academy of
917 Sciences*, 108(3):1088–1092, 2011.

918 Sandy Vanderauwera, Philip Zimmermann, Stéphane Rombauts, Steven Vandenabeele, Christian
919 Langebartels, Wilhelm Gruissem, Dirk Inzé, and Frank Van Breusegem. Genome-wide analy-
920 sis of hydrogen peroxide-regulated gene expression in arabidopsis reveals a high light-induced
921 transcriptional cluster involved in anthocyanin biosynthesis. *Plant Physiology*, 139(2):806–821,
922 2005.

923 Tania Carolina Camacho Villa, Nigel Maxted, Maria Scholten, and Brian Ford-Lloyd. Defining and
924 identifying crop landraces. *Plant Genetic Resources*, 3(3):373–384, 2005.

925 Li Wang, Timothy M Beissinger, Anne Lorant, Claudia Ross-Ibarra, Jeffrey Ross-Ibarra, and
926 Matthew B Hufford. The interplay of demography and selection during maize domestication
927 and expansion. *Genome biology*, 18(1):215, 2017.

928 Li Wang, Emily B Josephs, Kristin M Lee, Lucas M Roberts, Rubén Rellán-Álvarez, Jeffrey Ross-
929 Ibarra, and Matthew B Hufford. Molecular parallelism underlies convergent highland adaptation
930 of maize landraces. *bioRxiv*, 2020.

931 Jennifer Watling, Myrtle P Shock, Guilherme Z Mongeló, Fernando O Almeida, Thiago Kater,
932 Paulo E De Oliveira, and Eduardo G Neves. Direct archaeological evidence for southwestern
933 amazonia as an early plant domestication and food production centre. *PLoS One*, 13(7):e0199868,
934 2018.

935 Hernandez E Wellhausen EJ, Roberts LM. *Races of Maize in Mexico*. The Bussey Institution,
936 Harvard University Press, Cambridge, MA, 1952.

937 Peter Wenzl, Jason Carling, David Kudrna, Damian Jaccoud, Eric Huttner, Andris Kleinhofs,
938 and Andrzej Kilian. Diversity arrays technology (dart) for whole-genome profiling of barley.
939 *Proceedings of the National Academy of Sciences*, 101(26):9915–9920, 2004.

940 Michael C Whitlock. Evolutionary inference from qst. *Molecular ecology*, 17(8):1885–1896, 2008.

941 Hong Xu, Tracy E Twine, and Evan Girvetz. Climate change and maize yield in iowa. *PLoS One*,
942 11(5):e0156083, 2016.

Table 1: Names and descriptions of all collected phenotypes

Code	Trait Name	Unit of Measurement	Trait Description	Level
STD	Stand Count	count	Number of plants surviving to sexual maturity	Row
PE	Ear-Producing Stand Count	count	Number of plants surviving to produce ears	Row
BRN	Barrenness	1-(PE/STD)	Percent of plants in family that produce no ears	Row
DTA	Days to Anthesis	count	Number of days between planting and 50% of plants exhibiting anthesis	Row
DTS	Days to Silking	count	Number of days between planting and 50% of plants in the row silking	Row
ASI	Anthesis/Silking Interval	DTS-DTA	Number of days between 50% silking and 50% anthesis	Row
PH	Plant Height	cm	Distance between the ground and the ligule of the flag leaf	Plant
EH	Ear Height	cm	Distance between the ground and the primary (top) ear-bearing node	Plant
TL	Tassel Length	cm	Distance from top tip of the main spike to the attachment point of the bottom branch	Plant
TBN	Tassel Branch Number	count	Number of tassel branches that attach to main spike	Plant
EN	Ear Number	count	Number of seed-producing ears produced	Plant
EW	Ear Weight	g	Mass of the primary ear	Plant
EL	Ear Length	cm	Length of the primary ear	Plant
KPR	Kernels per Row	count	Number of kernels in a row on the primary ear	Plant
ED	Ear Diameter	cm	Diameter of the primary ear	Plant
$\delta^{13}\text{C}$	$\delta^{13}\text{C}$	$[(R_{\text{Sample}}/R_{\text{Standard}}) - 1] * 1000$	Degree of inclusion of ^{13}C in flag leaf tissue	Plant
FITplant	Agronomic Plant Fitness	$PE/15 * \sqrt{EN} * EW$	Adjusted plant fitness	Plant
FITplantveg	Vegetative Plant Fitness	$PE/15 * \sqrt{EN}$	Adjusted plant fitness	Plant
P_INTsolid	Pigment Intensity (Solid Pattern)	visual 0-4 code scale	Visual assessment of the intensity of anthocyanin pigmentation	Plant
P_INTspot	Pigment Intensity (Spot Pattern)	visual 0-4 code scale	Visual assessment of the intensity of anthocyanin pigmentation	Plant
P_EXTsolid	Pigment Extent (Solid Pattern)	visual % code scale	Visual assessment of the extent of anthocyanin pigmentation from the ground up	Plant
P_EXTspot	Pigment Extent (Spot Pattern)	visual % code scale	Visual assessment of the extent of anthocyanin pigmentation from the ground up	Plant
M_DENsolid	Macrohairs Density (Sheath)	visual 0-4 code scale	Visual assessment of the density of sheath macrohairs of the second leaf from top	Plant
M_DENmarg	Macrohairs Density (Sheath Margin)	visual 0-4 code scale	Visual assessment of the density of sheath margin macrohairs of the second leaf from top	Plant

Table 2: Reaction norm *p*-values

Garden	H/L Site Mex	H/L Site Low Pop	H/L Site SA	H/L Site High Pop	Low Site Mex/SA	Low Site High Pop	High Site Mex/SA	High Site Low Pop	Low Site Mex	Low Site SA	High Site Mex	High Site SA	H/L Pop
Continent													
Elevation													
FITplant	0.0000	0.0012	0.0003	0.0092	0.6834	0.8147	0.0000	0.6836	0.1858	0.2170	0.0000	0.0000	
FITplantveg	0.0158	0.3303	0.0000	0.0000	0.0000	0.0000	0.0014	0.6440	0.2988	0.6281	0.0000	0.0000	
STD	0.0000	0.0000	0.0000	0.0000	0.9203	0.0063	0.0001	0.1162	0.5425	0.7638	0.0003	0.0205	0.1570
PE	0.4416	0.0672	0.0058	0.0001	0.0161	0.0001	0.1506	0.1880	0.8198	0.3734	0.0009	0.0051	0.0700
BRN	0.2470	0.0001	0.0000	0.0000	0.0174	0.3991	0.6000	0.4101	0.1966	0.0000	0.0001	0.0083	
DTA	0.0000	0.0000	0.0000	0.0000	0.4397	0.0006	0.1256	0.0035	0.1722	0.0000	0.1722	0.0000	0.0000
DTS	0.0000	0.0000	0.0000	0.0000	0.0034	0.3204	0.0001	0.0344	0.0076	0.4577	0.0000	0.0000	
ASI	0.1219	0.0301	0.0058	0.7396	0.3176	0.7303	0.9498	0.0274	0.7049	0.2775	0.3067	0.1983	
PH	0.0169	0.0000	0.0188	0.0000	0.3359	0.3354	0.2752	0.6125	0.0009	0.1261	0.1672	0.8451	
EH	0.7384	0.0086	0.0023	0.0048	0.0103	0.8070	0.2595	0.8382	0.0009	0.2899	0.0301	0.1847	
TL	0.7086	0.0000	0.3132	0.0001	0.2027	0.7567	0.3417	0.6544	0.0024	0.1017	0.8533	0.7480	
TBN	0.2665	0.4233	0.0968	0.0000	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0364	
EN	0.3347	0.1004	0.0000	0.0908	0.0264	0.9572	0.0891	0.9498	0.3836	0.1466	0.7601	0.0443	
EW	0.0000	0.0000	0.0001	0.0000	0.8059	0.5541	0.0000	0.2616	0.0904	0.2520	0.0000	0.0001	
EL	0.0000	0.0007	0.0000	0.0001	0.1772	0.7866	0.0520	0.6074	0.0000	0.0032	0.1602	0.2968	
KPR	0.0003	0.0000	0.6068	0.0081	0.2317	0.0000	0.0000	0.3476	0.0000	0.0470	0.0470	0.0006	
ED	0.0000	0.0000	0.0000	0.0000	0.0132	0.6861	0.0016	0.0217	0.0001	0.0000	0.0000	0.0000	
$\delta^{13}\text{C}$	0.2064	0.8041	0.0000	0.9505	0.0038	0.9202	0.5886	0.9262	0.0068	0.9578	0.0000	0.0000	
P.INTsolid	0.0036	0.0279	0.0257	0.0245	0.0439	0.3699	0.1292	0.3228	0.5501	0.0003	0.1722	0.0001	
P.INTspot	0.0000	0.0000	0.0010	0.0004	0.0003	0.1783	0.0145	0.5354	0.8654	0.0148	0.4793	0.0067	
P.EXTsolid	0.0056	0.0317	0.0105	0.0226	0.3408	0.3981	0.4552	0.3838	0.2458	0.0024	0.0579	0.0004	
P.EXTspot	0.0000	0.0000	0.0000	0.0000	0.0764	0.9898	0.2556	0.1330	0.3313	0.0039	0.0243	0.0364	
M.DENsolid	0.4075	0.2311	0.1016	0.4109	0.0000	0.3389	0.0000	0.2424	0.0000	0.4847	0.0000	0.2620	
M.DENmarg	0.0630	0.2555	0.0052	0.1073	0.1892	0.2307	0.1698	0.0803	0.3113	0.4326	0.7582	0.6461	

Each *p*-value denotes the significance of the difference in phenotype mean between two populations that differ in level of Garden, Continent, or Population. The levels being contrasted are denoted in bold. Bold *p*-values meet statistical significance after Bonferroni correction for multiple comparisons ($\alpha = 0.05/4 = 0.0125$).

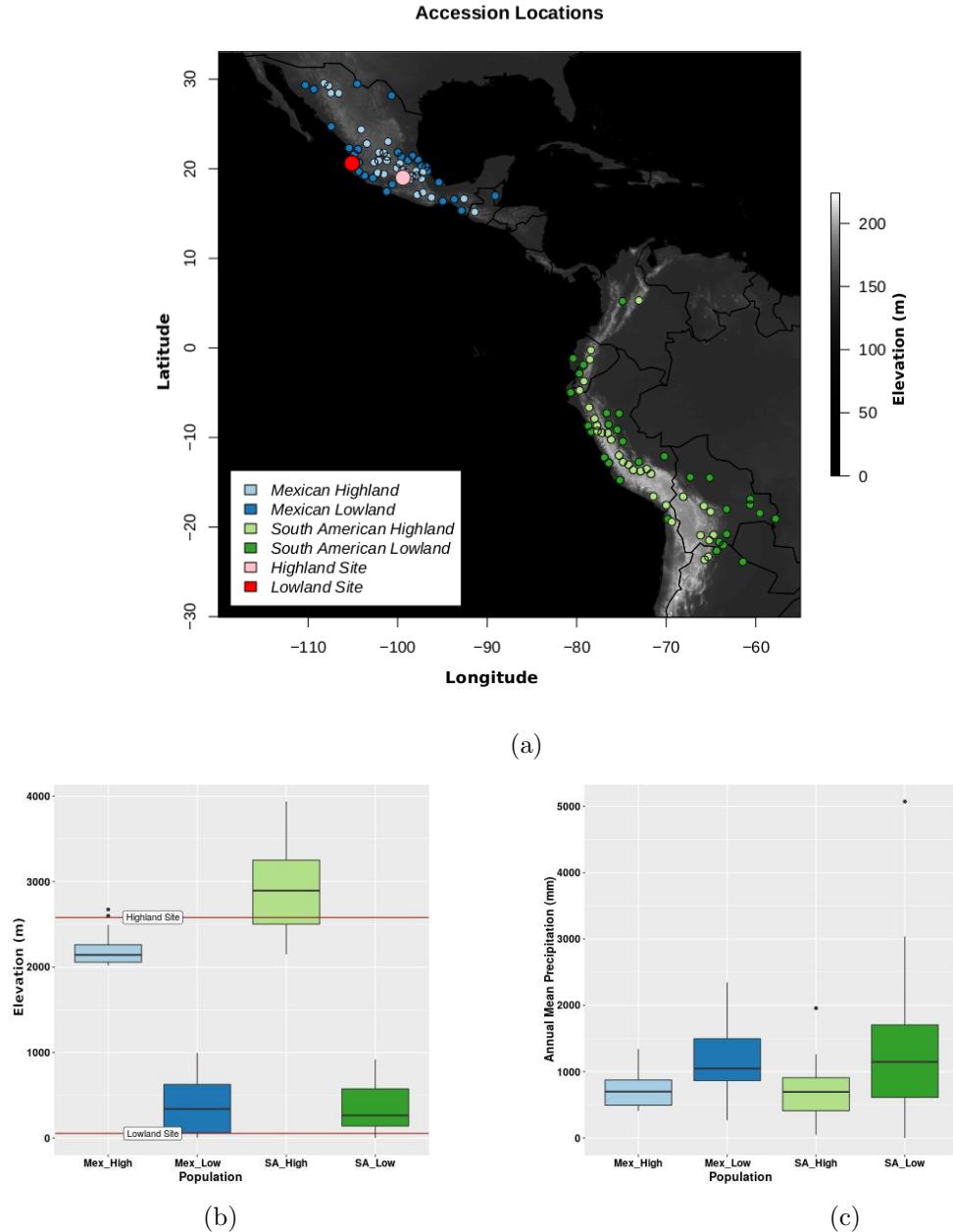


Figure 1: Geography and climate of 120 landraces and common garden sites. (1a) Location of collection sites of landraces and common garden sites. (1b) Elevation of collection sites of landraces. Red lines indicate the elevations of the highland and lowland common garden sites. (1c) Annual mean precipitation of collection sites of landraces.

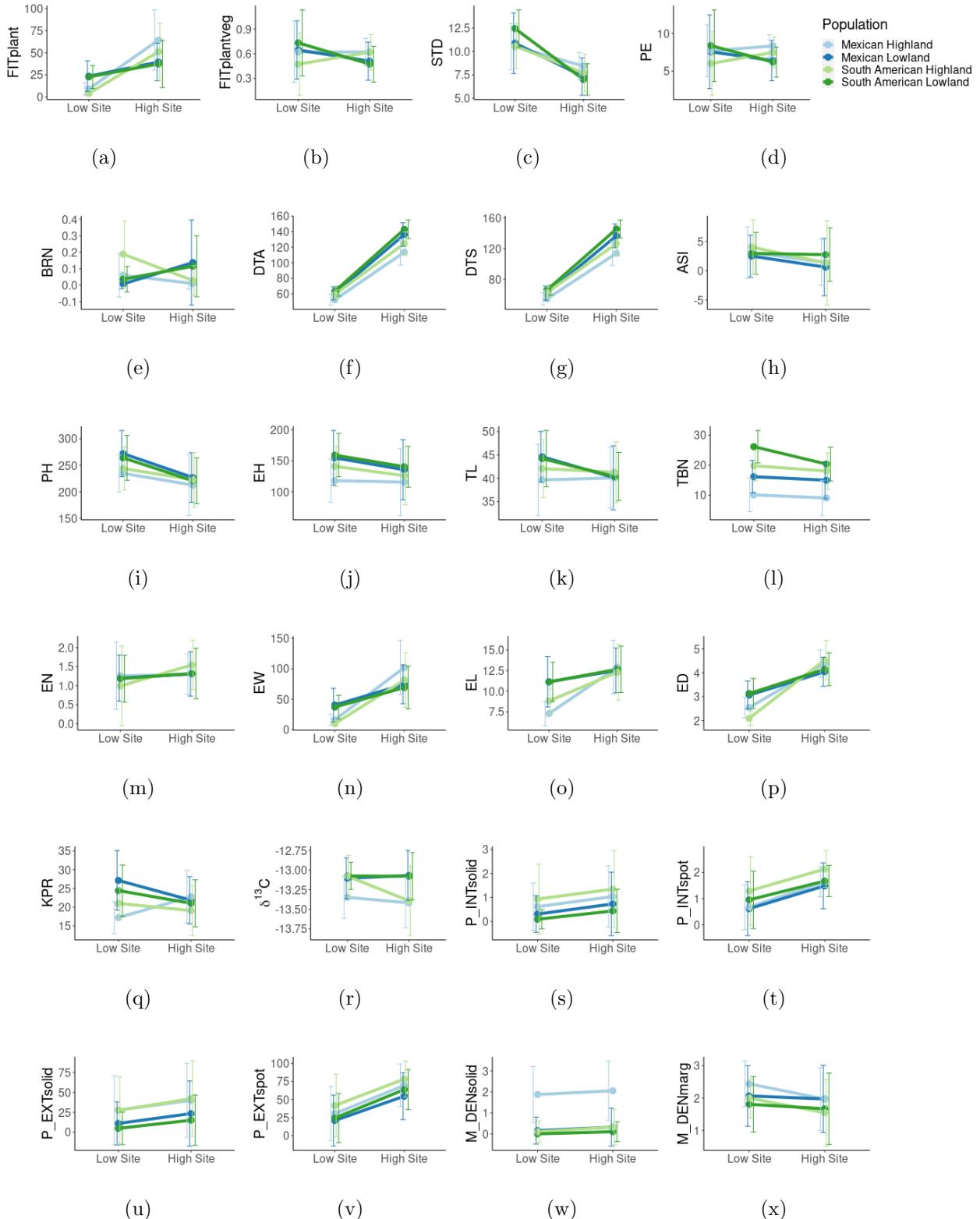


Figure 2: Reaction norms for all measured phenotypic traits.

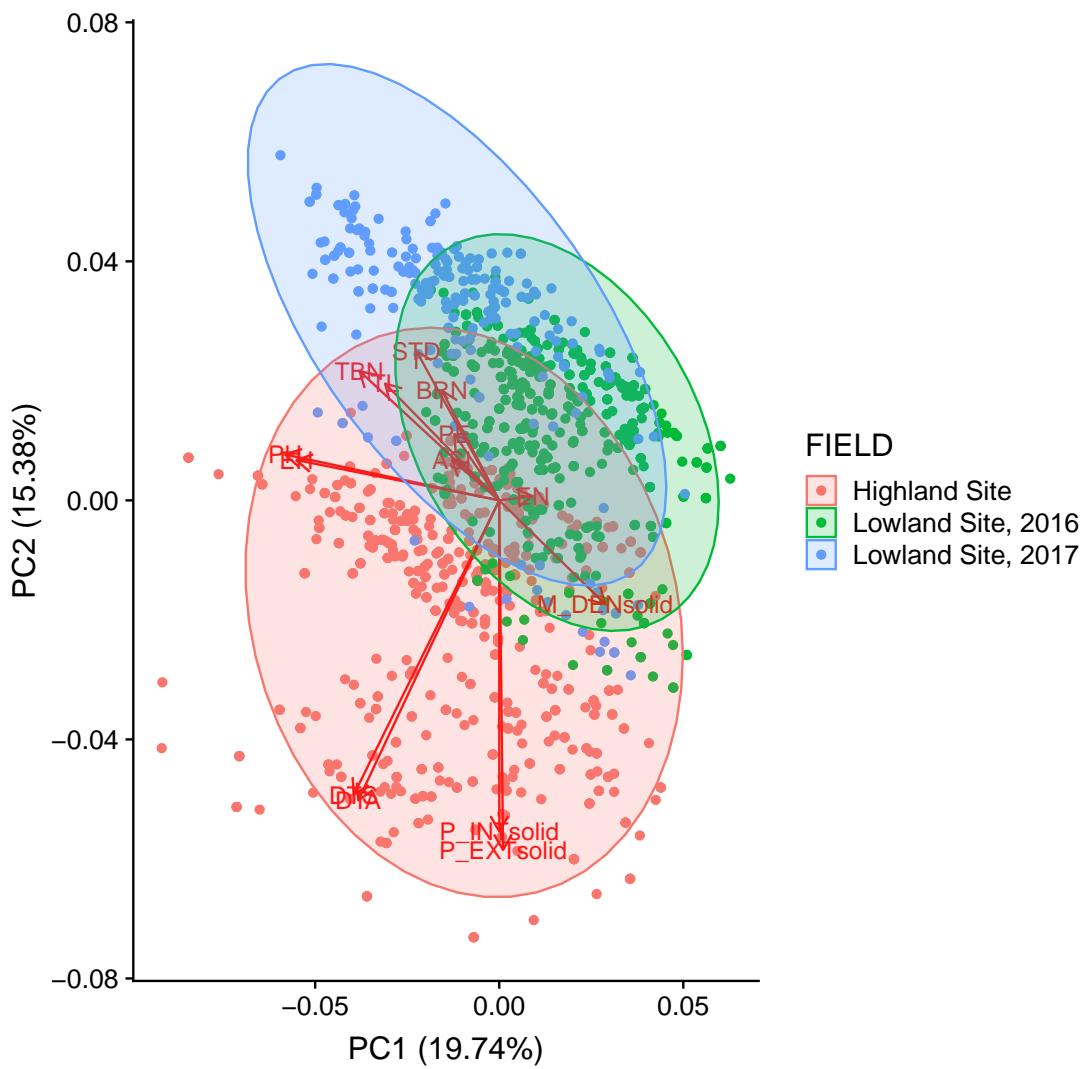


Figure 3: PCA of family and plant trait values between common garden plantings.

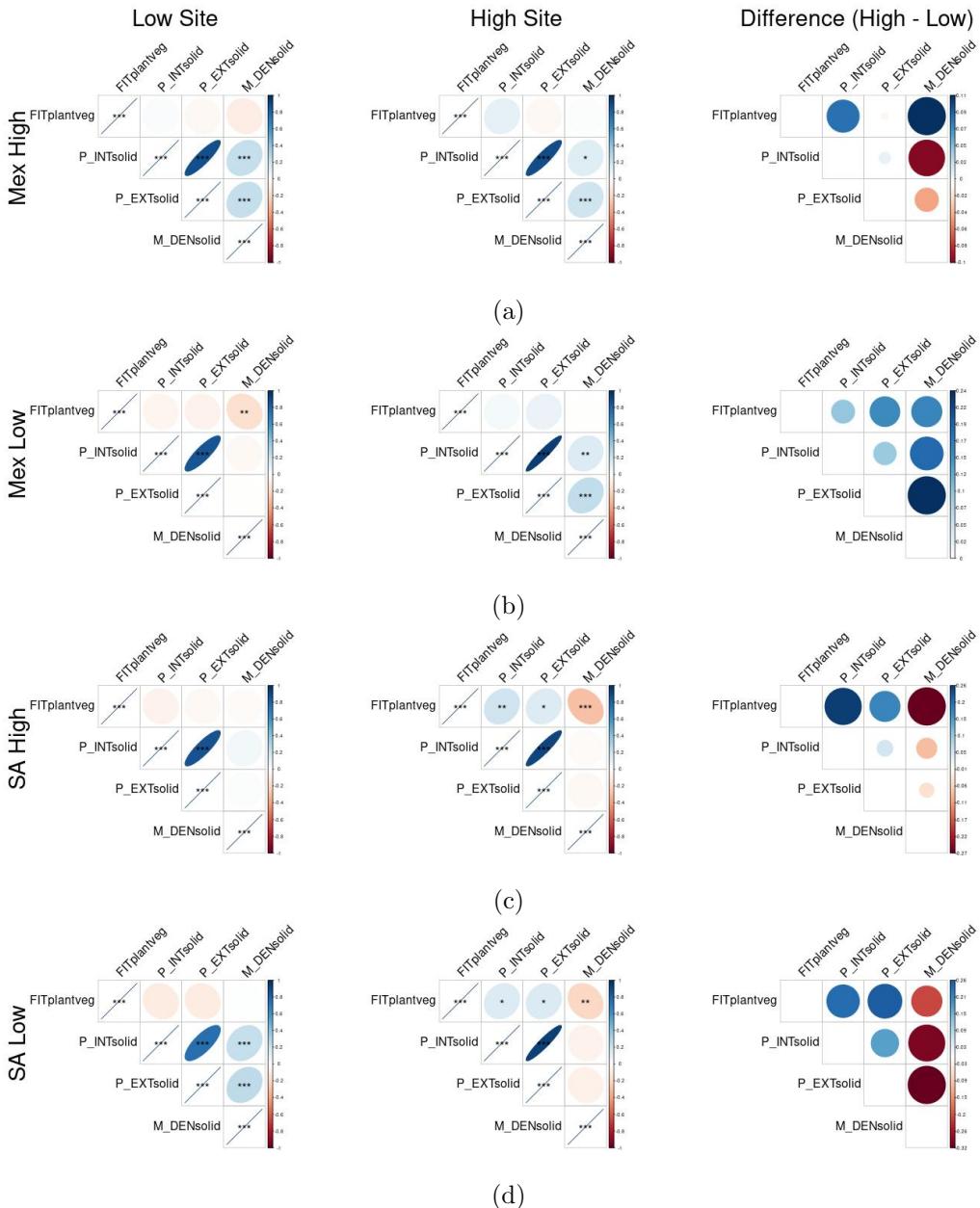


Figure 4: Pearson correlation between plant vegetative fitness, P_INTsolid, P_EXTsolid, and M_DENsolid in Mexican Highland (a), Mexican Lowland (b), South American Highland (c), and South American Lowland (d) populations. For each subfigure, panels 1 and 2 show correlations within the Low Site and the High Site. In panels 1 and 2, blue shapes indicate positive correlation, red shapes indicate negative correlation, color intensity and shape size indicate strength of correlation, and asterisks indicate statistical significance (p -value thresholds = 0.05, 0.01, 0.001). Panel 3 shows the between-garden difference in correlation value for each pairwise correlation (positive/blue values indicate more positive correlations in the highland site than in the lowland site).

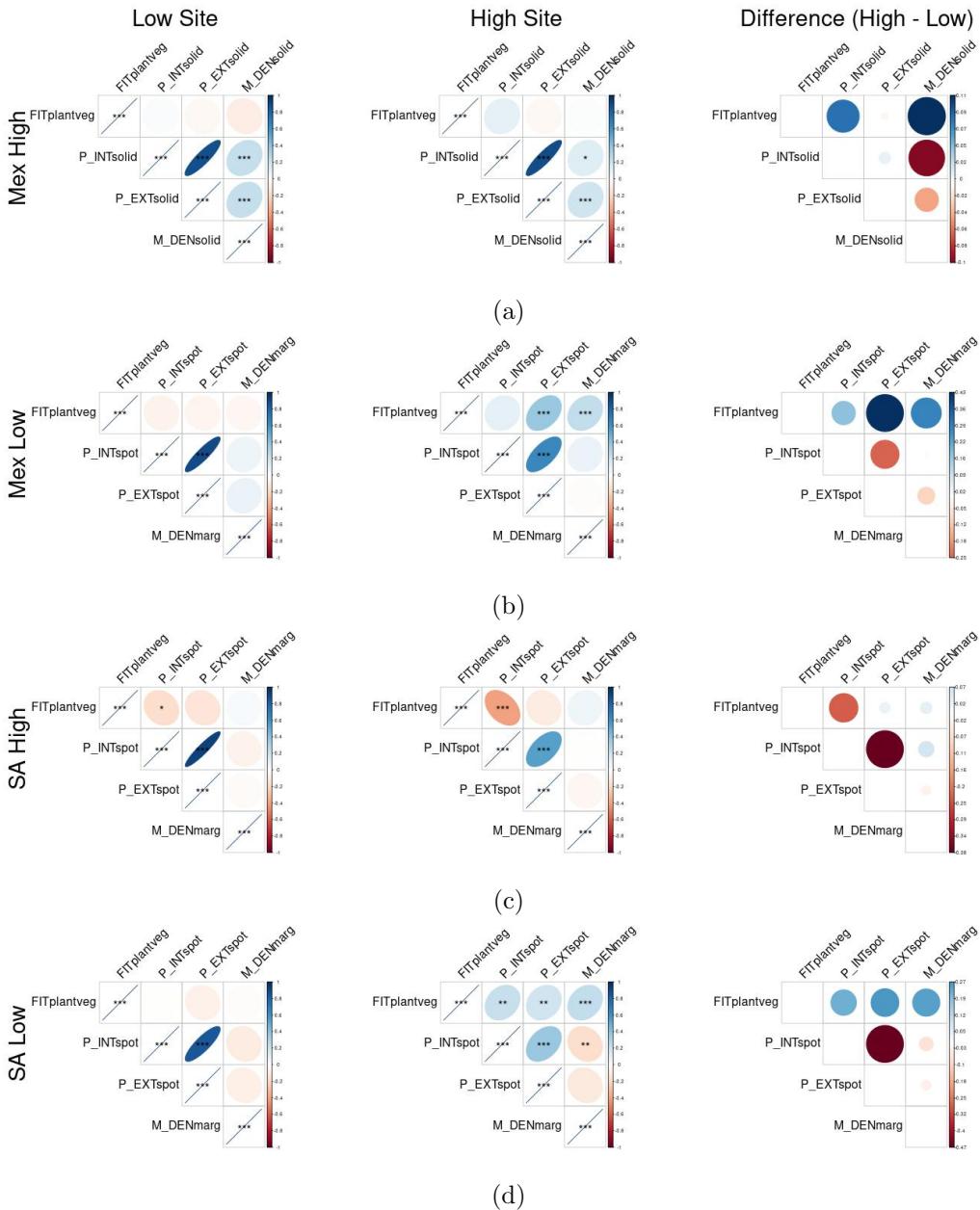


Figure 5: Pearson correlation between plant vegetative fitness, P_INTspot, P_EXTspot, and M_DENmarg in Mexican Highland (a), Mexican Lowland (b), South American Highland (c), and South American Lowland (d) populations. For each subfigure, panels 1 and 2 show correlations within the Low Site and the High Site. In panels 1 and 2, blue shapes indicate positive correlation, red shapes indicate negative correlation, color intensity and shape size indicate strength of correlation, and asterisks indicate statistical significance (p -value thresholds = 0.05, 0.01, 0.001). Panel 3 shows the between-garden difference in correlation value for each pairwise correlation (positive/blue values indicate more positive correlations in the highland site than in the lowland site).

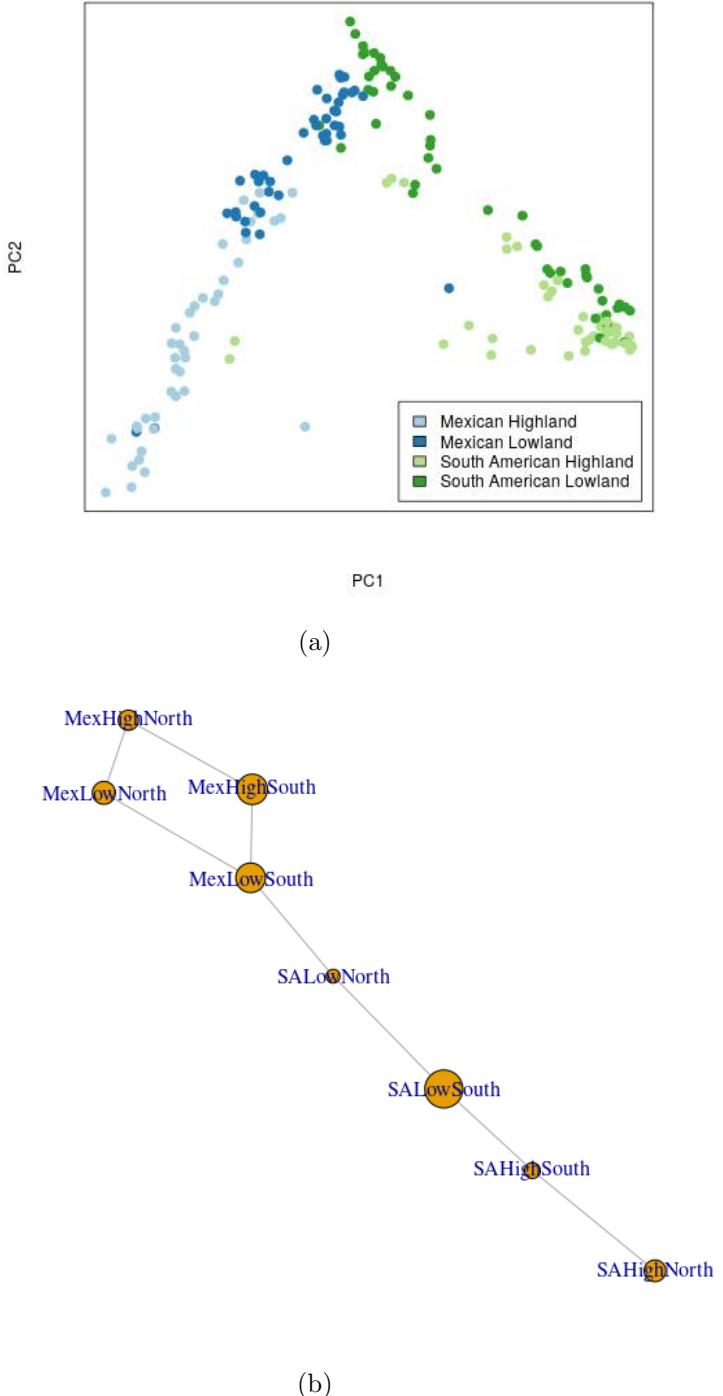


Figure 6: Population genetic structure among maize landrace populations. (6a) Principal Components Analysis of SNPs (Component 1 = 24.7%, Component 2 = 14.4%). (6b) Population graph of eight continent/elevation/latitude subpopulations derived from four continent/elevation populations. Node size reflects degree of genetic variability within a subpopulation, and edge length reflects among-subpopulation genetic variance.

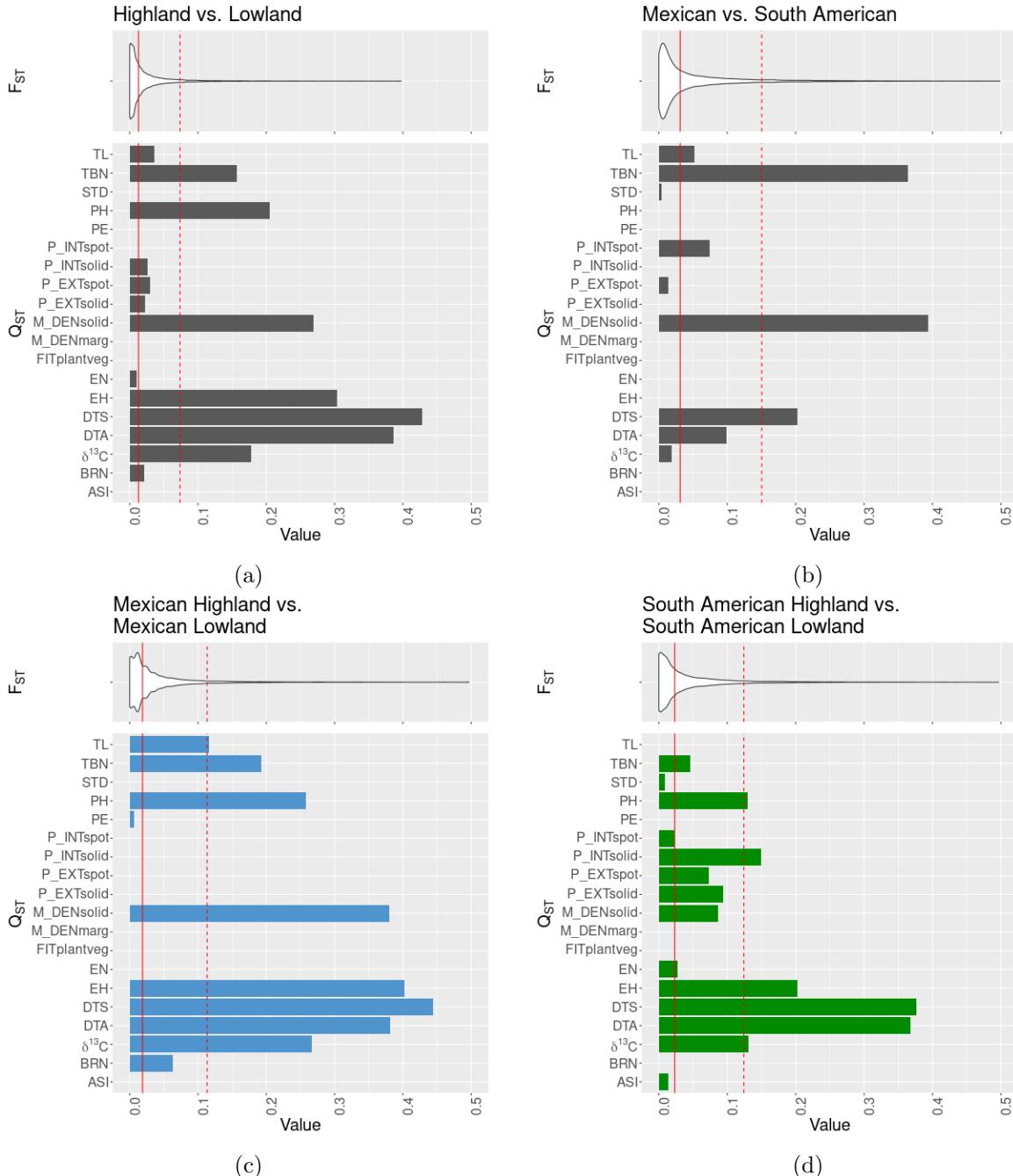


Figure 7: F_{ST} and Q_{ST} values between four sets of populations. Solid red lines indicate mean F_{ST} and dashed red lines indicate two standard deviations from the mean. (7a) Highland vs. Lowland. (7b) Mexican vs. South American. (7c) Mexican Highland vs. Mexican Lowland. (7d) South American Highland vs. South American Lowland.