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SUMMARY

Owing to their morphological complexity and dense network connections,
neurons modify their proteomes locally, using mRNAs and ribosomes present
in the neuropil (tissue enriched for dendrites and axons). Although ribosome
biogenesis largely takes place in the nucleus and perinuclear region, neuronal
ribosomal protein (RP) mRNAs have been frequently detected remotely, in
dendrites and axons. Here, using imaging and ribosome profiling, we directly
detected the RP mRNAs and their translation in the neuropil. Combining brief
metabolic labeling with mass spectrometry, we found that a group of RPs
quickly associated with translating ribosomes in the cytoplasm and that this
incorporation is independent of canonical ribosome biogenesis. Moreover, the
incorporation probability of some RPs was regulated by location (neurites vs.
cell bodies) and changes in the cellular environment (in response to oxidative
stress). Our results suggest new mechanisms for the local activation, repair
and/or specialization of the translational machinery within neuronal processes,
potentially allowing remote neuronal synapses a rapid solution to the relatively

slow and energy-demanding requirement of nuclear ribosome biogenesis.
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INTRODUCTION

Neurons use the translation of distally localized mRNAs for synapse formation,
axon growth and synaptic plasticity (Holt et al., 2019). Although ribosomes have
been detected in dendrites (Bodian, 1965) and axons (Hafner et al., 2019;
Shigeoka et al., 2019; Tennyson, 1970), little is known about ribosome
biogenesis and homeostasis in neurons. Thus far, studies from yeast to human
have revealed a striking conservation of the basic ribosome structure (Anger et
al., 2013). Eukaryotic ribosomes are composed of a small and a large subunit
comprising ~79 proteins (ribosomal proteins, RPs) and 4 rRNA species. In
eukaryotes, ribosomal components (including most RPs and rRNA) are initially
co-assembled in the nucleolus. The nearly mature ribosome is then exported
to the cytoplasm where a few RPs associate to complete the maturation
process (la Cruz et al., 2015). RPs are thought to exhibit a stable, “life-long”
incorporation with their associated subunits, and, at the end of their life-cycle,

to undergo concerted degradation (An and Harper, 2019).

Recent data, however, have suggested that ribosomes may be less static than
the above picture suggests (Emmott et al., 2018; Genuth and Barna, 2018).
Proteomic data, for example, have reported ribosomes containing individual
ribosomal proteins at different stoichiometries with unique translational
properties (Shi et al., 2017; Slavov et al., 2015). As ribosome biogenesis is
believed to require the step-wise incorporation of all ribosomal proteins, it
remains unclear how heterogeneous ribosomes are formed. Additionally, many
transcriptomics studies have detected RP mRNAs remote from the site of
ribosome biogenesis, including in distal neuronal processes, potentially
challenging our common understanding of assembled ribosome as a static
structure (Andreassi et al., 2010; Biever et al., 2020; Briese et al., 2016; Cajigas
et al., 2012; Gioio et al., 2004; Hafner et al., 2019; Mardakheh et al., 2015;
Mazaré et al., 2020; Middleton et al., 2019; Misra et al., 2016; Moccia et al.,
2003a; Moor et al., 2017; Perez et al., 2021; Poulopoulos et al., 2019; Saal et
al., 2014; Shigeoka et al., 2016; Taylor et al., 2009; Tushev et al., 2018; Zivraj
et al., 2010). Indeed, the cytosolic incorporation of some RPs in developing

Xenopus retinal ganglion cell axons was recently observed (Shigeoka et al.,


https://doi.org/10.1101/2021.03.25.437026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437026; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

2019). Altogether, the above data suggest that the protein composition of
ribosomes might not be fixed after biogenesis, but rather be subject to dynamic

association or exchange of nascent RPs with mature ribosomes.

To address this possibility in neurons, we first used high-resolution
fluorescence in situ hybridization (FISH) to directly detect a large population of
RP mRNAs in rodent neuronal cell bodies and dendrites. Using ribosome
footprinting and metabolic-labeling approaches we observed the active
translation of RP mRNAs in the neuropil. The dendritic synthesis of RPs, remote
from the peri-nuclear region, prompted us to investigate the dynamics of RP
association with mature neuronal ribosomes. We used very brief metabolic
labeling (pSILAC) combined with parallel-reaction monitoring mass
spectrometry to evaluate selectively the abundance of individual “new” and
“old” RP peptides within ribosomes. We identified a population of 12 nascent
RPs (“exchangers”) that rapidly incorporate into mature pre-existing ribosomes.
Using compartmentalized chambers, we observed the biogenesis-independent
incorporation of RPs in both somata and isolated neuronal processes.
Moreover, we found that the incorporation probability of some RPs was
regulated by the subcellular compartment (neurites vs. cell bodies) and by
changes in the physiological state (e.g. during oxidative stress). Taken
together, these data suggest that neurons can dynamically regulate RPs

incorporation into ribosomes in space and time.

RESULTS
RP mRNA localization and translation in dendrites

Advances in transcriptome-wide profiling methods have led to the elucidation
of thousands of mMRNAs localized to neuronal processes. In addition to many
neuronal/synaptic transcripts, the RP mRNAs have been surprisingly detected
in many preparations enriched for axons and dendrites (Figure 1A and Table
S1; see also (Andreassi et al., 2010; Biever et al., 2020; Briese et al., 2016;
Cajigas et al., 2012; Gioio et al., 2004; Gumy et al., 2011; Hafner et al., 2019;
Middleton et al., 2019; Moccia et al., 2003b; Perez et al., 2021; Poulopoulos et
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al.,, 2019; Saal et al., 2014; Shigeoka et al., 2016; Taylor et al., 2009; Tushev
et al.,, 2018; Zivraj et al., 2010). To evaluate whether the mRNAs for the
ribosome are specifically enriched in dendrites and axons, we compared the
dendritic enrichment of RP mRNAs to mRNAs that code for proteins in other
ubiquitous macromolecular complexes. We used total RNA-seq data (Biever et
al., 2020), comparing somata-enriched or neuropil fractions of rat hippocampal
slices (Figure 1B) and quantified the neuropil enrichment of mRNAs coding
proteins of the ribosome (RPs), proteasome, nuclear pore complex and RNA
polymerase I-lll (Figure 1C). We found that only the RP mRNAs exhibited a
consistent enrichment in the neuropil, while the mRNAs of all other complexes
were mostly enriched in somata. This suggests that the neuropil localization of
RP mRNAs is not owing to “background” detection of abundant mRNAs or the

presence of contaminants in the sequenced material.

To assess directly whether the RP mRNAs are localized in dendrites, we
performed single molecule fluorescence in situ hybridization (smFISH) for 29
different endogenous RP transcripts in both rat hippocampal slices (Figure 1D
and Figure S1A) and cultured rat hippocampal neurons (Figure 1E and Figure
S2). In hippocampal slices, for each RP transcript evaluated, we detected
signal in the somata (s. pyramidale) and in the neuropil (s. radiatum) at levels
similar to those measured by RNAseq (Figure S1B-C). Likewise, in cultured
hippocampal neurons, we detected abundant RP mRNAs both in the cell body
as well as in the dendrites. To normalize for potential differences in expression
level, we quantified the fraction of the total mRNA signal detected in the
dendrites of individual neurons. Amongst the 29 RP mRNAs we evaluated, 15%
(e.g. Rpl7a) to 40% (e.g. Rps21) of the total mMRNA was localized in dendrites
(Figure 1F). For comparison we analyzed the dendritic abundance of a well-
studied and abundant dendritic mMRNA Ca?+-calmodulin-dependent protein
kinase, CamKlla (Burgin et al., 1990; Cajigas et al., 2012; Miller et al., 2002),
and a somatic-enriched mRNA encoding the nuclear protein histone H3-3B
(Cajigas et al., 2012). As expected, a high fraction (60%) of CamKlla mRNAs

and a very low fraction (6%) of Histone 3 mRNAs were detected in dendrites.
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Each of the 29 tested RP mRNAs exhibited a distribution in the dendrites
greater than that observed for the nuclear protein encoding mRNA Histone H3
(Fig.1F). Taken together, these data demonstrate that RP mRNAs are localized

to the neuropil and dendrites of hippocampal slices and cultured neurons.

We next asked whether the dendritically localized RP mRNAs are locally
translated into protein. We investigated via ribosome profiling whether RP
MRNAs are associated with translating ribosomes in the cell bodies and/or
neuropil of the hippocampus. Using our dataset (Biever et al., 2020), we
detected ribosome footprints across the entire coding sequence of each RP
transcript measured in the neuropil, a region enriched for axons and dendrites
(Figure 2A and Figure S3). Analysis of the footprint abundance revealed that
all RP mRNAs were either equally translated within the two compartments
(somata or neuropil) or exhibited significantly enhanced translation in the
neuropil (Figure S4A). We note that the translation of RPs has also been
recently reported in mouse retinal ganglion cell axons (Cagnetta et al., 2018;
Shigeoka et al., 2016). Furthermore, using puromycin proximity ligation assay
(Puro-PLA) to visualize newly synthesized proteins-of-interest (tom Dieck et al.,
2015), we observed nascent signal within the dendrites for all 17 RPs examined
with just 5 min of metabolic labeling (Figure 2B and Figure S5). For example,
almost half of the total RPL19 signal was observed in the dendrites (Figure
S4C). As expected, the addition of a protein synthesis inhibitor significantly
inhibited the dendritic nascent protein signal of all RPs (Figures 2B-C, S4B and
S5). Moreover, the nascent dendritic protein signal did not increase when a 5
min “chase” followed the metabolic label (Figure S4D-E), suggesting that, over
short time scales, there was no significant contribution of somatically
synthesized RPs to the measured dendritic nascent protein signal. Taken
together, these data indicate that RP mRNAs are locally translated in the

neuropil and dendrites of hippocampal neurons.


https://doi.org/10.1101/2021.03.25.437026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437026; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Dynamic association of nascent RPs with mature ribosomes

The dendritic synthesis of RPs, remote from the peri-nuclear region, prompted
us to investigate the dynamics of RP association with mature neuronal
ribosomes. We followed the incorporation kinetics of individual RPs into
assembled ribosomes, asking whether all individual RPs are incorporated at an
equal rate or whether there is a sub-population that is incorporated with different
kinetics. To do so, we metabolically labeled newly synthesized proteins by
incubating neurons for 1 or 2 hours with heavy amino acids (pSILAC,
(Bogenhagen et al., 2018; Ross et al., 2021; Schwanh&usser et al., 2009)). We
then purified translating ribosomes using a sucrose cushion (modified from
(McGlincy and Ingolia, 2017)) and used mass spectrometry to quantify the
fraction of new RPs present in assembled ribosomes (Figure 3A). A sample
without heavy amino acids served as negative control. We verified the
translating status of the ribosomes by confirming the sensitivity of our
preparation to conditions that disassemble monosomes and polysomes into
free small and large subunits (in the absence of magnesium or in the presence
of the chelating agent EDTA, Figure S6A-B). Note that as the average half-life
of a brain RP is ~8 days (Dérrbaum et al., 2018; Fornasiero et al., 2018;
Stoykova et al.,, 1983), only ~0.4% of each protein is expected to be
synthesized after 1 hour of labeling (Figure S6C). Using a targeted mass
spectrometry method (Parallel Reaction Monitoring (Peterson et al., 2012)) to
maximize our sensitivity, we reliably quantified 70 new RPs after 1 or 2 hrs of
labeling (Figure 3B and S6D). For all RPs, we observed an increase in nascent
RP incorporation into assembled ribosomes with increased labeling time (1 vs
2 hrs) and the labeling level of individual RPs was significantly correlated
between the 2 timepoints (r? = 0.84, p < 0.0001; Figure 3C). Importantly, the
omission of the heavy amino acids led to a complete loss of the heavy peptide
peak at the expected position (Figure S6D). In addition, there was no significant
difference in the ribosome association between nascent RPs that comprise
large and small ribosome subunits (Figure S6E-G). Interestingly, however,
individual nascent RPs exhibited distinct kinetics of accumulation in mature

ribosomes, with the labeling fraction varying by >3.5-fold (Figure 3B-C-E). To
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identify RPs that share similar kinetics we performed an unsupervised
hierarchical clustering and detected 6 RP groups (Figure 3B). Three groups
(comprising a total of 12 proteins) exhibited a higher association level with
assembled ribosomes (“rapidly incorporating”, clusters A-B-C in Figure 3B-F)
than the other 3 groups of RPs (comprising 58 proteins) (clusters D-E-F in
Figure 3B-F). This higher association rate of the rapidly incorporating group
was detected following both 1 and 2 hrs of labeling (Figure 3B-D). Within this
group, we noted the presence of several RPs known to associate late during
ribosome biogenesis, like RACK1 and RPL10 (la Cruz et al., 2015; Larburu et
al., 2016) validating the sensitivity of our measurements to established

temporal dynamics of ribosome assembly (Figure S6H-I).

To measure the potential time-lag between an individual RP’s synthesis and its
association with mature ribosomes we performed a pulse-chase experiment.
We labeled nascent RPs for 1 hr and imposed a 3 hrs (label-free) chase before
the purification of assembled ribosomes (Figure 3A). Consistent with a time
delay between synthesis and incorporation, the addition of the chase period led
to a selective increase in mature ribosome association for the nascent RPs that
showed slower incorporation kinetics (clusters D-E-F) in the previous 1 and 2
hrs labeling experiments (Figure 3B-D-F). Interestingly, the remaining clusters
(A-C) exhibited lower levels of incorporation after the chase. RPL27, RPL10
and RPL24 (cluster A), which showed the highest incorporation after 1 hr
labeling (no-chase, Figure 3D), actually decreased their association with
mature ribosomes when the chase was imposed (Figure 3F). This indicates that
either they rapidly and persistently associate with mature ribosomes or that they
are replaced (exchanged) by nascent (but un-labeled) proteins synthesized
during the chase. Supporting the idea of RP exchange, we noted the presence
of RPLP1 and 2 among the proteins with the lowest fold change after the chase;
these proteins are the only two known RPs to transiently associate and
dissociate from mature ribosomes (Tsurugi and Ogata, 1985; Zinker, 2014).
Taken together, these data reveal that the binding kinetics of RPs to neuronal
ribosomes are not homogeneous, and that a subset of RPs can rapidly and

dynamically incorporate into neuronal ribosomes. Importantly, we note that the
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12/12 mRNAs of the rapidly incorporating RPs were detected in the neuropil
RNA-seq dataset (Figure 1C), and 11/12 were detected in the ribosome
footprints dataset (Figure 2A and S3). Additionally, we visualized the dendritic
localization of both the mRNA (Figure 1E and Figure S2) and the nascent

protein (Figure 2B and Figure S5), for all tested members of this group.

Biogenesis-independent incorporation of nascent RPs

To test whether the above observed dynamic incorporation might represent the
exchange of some nascent RPs on mature ribosomes, we determined the
sensitivity of the rapid RP association to inhibition of ribosome biogenesis. We
used leptomycin B (LMB) to block nuclear export (Thomas and Kutay, 2003);
resulting in an inhibition of ribosome biogenesis. The inhibition of nuclear export
(ribosome biogenesis) by LMB was confirmed by the following: i) the inhibition
of CMR1-mediated nuclear transport (Figure S7A-B), resulting in a
sequestration of RPs (Figure S7C-D) and rRNA (Figure S7E-F) in the nucleus,

ii) the depletion of nascent rRNA in assembled ribosomes (Figure 4B).

With LMB as a validated tool to interfere with ribosome biogenesis, we
addressed the spatial location of the RP-ribosome dynamics. To do so, we used
compartmentalized chambers (Alvarez-Castelao et al., 2020; Poon et al.,
2006), which separate and enrich a population of dendrites/axons that can be
compared to a mixed cell-body + neurites population that resides above a
porous membrane (Figures 4A and S7G-J). We labeled newly synthesized
proteins by pSILAC for 48 hrs in the presence or absence of LMB and then
purified translating ribosomes from both compartments and measured the
fraction of new proteins by mass spectrometry (Figure 4A). LMB treatment did
not affect global protein levels in the whole cell lysate (Figure S8A-C), but
resulted in a small decrease in total protein synthesis (Figure S8B-D),
reproduced also by polysome profiling (Figure S8E-F). Consistent with the
average half-life for neuronal ribosomes of ~8 days (Ddérrbaum et al., 2018;
Fornasiero et al., 2018; Stoykova et al., 1983), 48 hrs of LMB treatment

resulted only in a small decrease of the total assembled ribosomes level
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(Figure S9A-C), but in a strong and specific reduction of new ribosomes
(Figures 4 and S9B-D). In particular, we noted that the large subunit was more
affected than the small subunit (Figure S9E). Taken together these data
confirmed the successful inhibition of ribosome biogenesis via LMB treatment,
prompting us to examine the association of nascent RPs with mature
translating ribosomes. We found that while the association of most new RPs
was equally reduced by LMB treatment, there was a subset of (~12) nascent
RPs (putative exchangers) that again exhibited a significantly elevated
association with translating ribosomes obtained from mixed somata + neurites
(dark green data in Figure 4d). As expected, within this group we again
identified RPLP1 and 2, which are known to associate with the ribosome in the
cytoplasm (Warner and Udem, 1972) and RACK1, which has been recently
shown to transiently interact with the ribosome in vitro (Johnson et al., 2019).
The remainder of the exchanging RPs included RPLPO, RPL10, RPL22,
RPL24, RPL38, RPS26, the same RPs that exhibited rapid incorporation in our
previous experiment (Figure S10a and Table S2). When we examined the
neurite fraction, we found that a largely overlapping group of RPs also showed
evidence for nucleus-independent exchange (light green data in Figure 4D).
Interestingly, 3 RPs were significantly different in either the mixed (somata +
neurites; RPL27) or neurite-enriched compartment (RPL36 and RPL36a)
(Figure 4D), suggesting differential exchange of RPs could depend on specific
subcellular environments. Additionally, among the common exchangers,
several RPs showed a higher incorporation in the neurite compartment, where
the contribution of neurites is not diluted by the cell bodies. Taken together,
these observations are consistent with the idea that neurite-synthesized RPs

can be locally incorporated into pre-existing ribosomes.

The above described exchange of RPs could endow neurons (and other cells)
with the ability to repair or remodel ribosomes in situ (e.g. (Pulk et al., 2010))
while avoiding the long time delays and the high energetic costs of degrading
and producing a whole new ribosome (Granneman and Tollervey, 2007;

Warner, 1999). In this regard, we noted a significant negative correlation

10
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between the level of incorporation of an RP and its half-life in both cultured
neurons and intact brain, with exchanging RPs showing both the shortest and
decidedly extreme half-lives when compared to other RPs (Figure S10B-C,
(Dérrbaum et al., 2018; Fornasiero et al., 2018)). In addition, the exchanging
RPs identified here were present at sub-stoichiometric levels in individual
ribosomal subunits quantified in heterologous cells using MS (Imami et al.,
2018) (Figure S10D). Furthermore, we evaluated the position of exchanging
RPs in the small and large subunits and noted that exchanging RPs were more
surface exposed (Figure 5A-B). These data indicate that most of the
exchanging RPs detected here differ from other RPs in their half-lives,
occupancy levels, and position in the mature ribosome. Finally, among the
putative exchangers, 7 RPs (RACK1, RPS30, RPS26, RPLPO, RPL10, RPL24
and RPL36A) were reported in other systems to associate with immature
ribosomes during the cytosolic phase of biogenesis, and 5 (RPL38, RPL22,
RPL12, RPL27 and RPL36) during the nuclear steps (la Cruz et al., 2015).
These data indicate that neurons can exploit the spatial and functional domains

of ribosome assembly to dynamically incorporate RPs.

Physiological modulation of RPs incorporation

The observation that RP exchange differs in subcellular compartments led us
to investigate whether exchange is also regulated by different cellular states. In
particular, we examined RP incorporation after a short induction of oxidative
stress, via H20:2 incubation. As ribosomal proteins can be highly oxidized
(Mirzaei and Regnier, 2007) and oxidative stress changes neuronal function
(Massaad and Klann, 2011), we reasoned that oxidative stress could stimulate
ribosome repair. Additionally, oxidative stress rapidly leads to a translation
reprogramming, where the synthesis of most proteins is transiently inhibited
concomitant with the enhanced translation of specific stress-response
transcripts (Kang and Lee, 2001; Shenton et al., 2006; Wu et al., 2019). To
rapidly induce oxidative stress, we incubated neurons with H202 for 10 min,

during a 3 hrs pSILAC incubation to label newly synthesized proteins (Figure

11
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6A). Consistent with the general inhibition of translation, we found that the
overall fraction of new RPs in assembled ribosomes was reduced during stress
(Figure S11A). However, the association of a small subset (~4) of exchanging
RPs was relatively enhanced after oxidative stress (Figure 6B-C and Figure
S11B-C) while the incorporation of the other exchangers (e.g. RPL24 and
RPL22, Figure 6C) was not differentially regulated. Altogether our data indicate
that the incorporation probability of different RPs can change according to

subcellular environments and physiological conditions.

DISCUSSION

We describe here the localization and translation of ribosomal protein mRNAs
in the dendrites and/or axons of neurons. Using pulsed SILAC and a targeted
mass spec approach, we measured the incorporation rate of individual nascent
RPs into mature ribosomes and identified a subset of ~12 RPs that exhibited
an atypical rapid association with the ribosome. The rapid incorporation of
these 12 RPs persisted when ribosome biogenesis was inhibited, providing
strong evidence for the exchange of these of RPs on pre-assembled mature
ribosomes. Some of the exchanging RPs exhibited an enhanced association
with ribosomes in dendrites and axons. Consistent with this, a recent study in
Xenopus retinal ganglion cells also identified a subset of nascent RPs that
associate with ribosomes within axons and the local synthesis of at least one
RP was required for axon branching (Shigeoka et al., 2019) (Figure S10E).
Interestingly, although we (and others) have observed a large (~ 50-70)
population of RP mRNAs in neuronal processes, under the conditions explored
here we detected the dynamic exchange of 12 individual RPs. We note that
infrequent incorporation events of new RPs with slower kinetics might be
undetectable by our method which involves extremely brief metabolic labeling
and labor-intensive manual curation of individual RP nascent peptides.
Additionally, under different physiological conditions (e.g. development, stress
or synaptic plasticity), some latent localized RP mRNAs could be translated and

associate with mature ribosomes. In this case, the large number of distally
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localized RP mRNAs represents a huge potential for differential RPs

incorporation.

Our discovery of dynamic non-canonical incorporation of RPs into mature
ribosomes suggests new regulatory scenarios for local translational control. In
neurons, the capacity for remote remodeling or repair of ribosomes could be
particularly advantageous considering the enormous cell volume, most of which
arises from dendrites and axons. In addition, as ribosomes are the most heavily
oxidized class of proteins (Mirzaei and Regnier, 2007) and dendrites are
particularly sensitive to oxidative insults (Grimm et al., 2018), ribosomes in
neuronal processes may be prone to higher proteotoxic damage, creating
demand for the local repair of ribosomes. Indeed, our data indicate that

oxidative stress promotes the exchange of some RPs on mature ribosomes.

The dynamic incorporation of RPs could also alter ribosome composition
resulting in potentially “specialized” ribosomes. The rather long life of the
ribosome as a macromolecular protein-RNA machine as well as its nucleo-
centric biogenesis represent challenges for rapid remodeling. In other systems,
ribosomes with altered stoichiometries of RACK1, RPL38 or RPS26
preferentially translate different subsets of mMRNAs (Ferretti et al., 2017;
Majzoub et al., 2014; Xue et al., 2015). Such specialization could be rapidly
achieved through the dynamic exchange of these proteins. This property could
be particularly exploited by ribosomes in dendrites and axons which are
optimally positioned to respond to synaptic signals that could, in principle,

remodel local ribosomes as well as the local translatome.
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Figure 1. RP mRNAs are present in hippocampal dendrites

(A) Overlap of RP mRNAs detected in neuronal processes from three different
studies: dendritic arbors ((Perez et al., 2021), in purple), purified synaptosomes
((Hafner et al., 2019), in green), developing axons ((Poulopoulos et al., 2019),
in yellow) of rodent neurons. See also Table S1 for additional studies and data.

(B) Schematic representation of a hippocampal slice. Three layers in area CA1
are shown: somata (stratum pyramidale, rich in cell bodies) and neuropil (strata
radiatum et lacunosum-moleculare, rich in axons and dendrites (Mishchenko et
al., 2010).

(C) MA plot depicting the expression of mMRNAs from the somata and neuropil
of hippocampal slices (Biever et al., 2020). Each mRNA is represented by a
single data point. The y-axis depicts the relative expression in the neuropil or
somata and the x-axis depicts the mean expression of each mRNA. Unlike
mRNAs for other macro-molecular complexes (e.g. the proteasome, nuclear
pore complex and RNA polymerase I-Ill), mMBRNAs coding for ribosomal proteins
are consistently enriched in the neuropil.

(D) FISH detection of indicated RP mRNAs in dendrites (magenta MAP2, white
FISH, blue DAPI) in hippocampal slices. Images are oriented with the somata
layer at the top and the dendrites extending below. Scale bar = 50 ym. See
Figure S1a-b for additional RPs and analysis.

(E) FISH detection of indicated RP mRNAs as well as Camklla and His3 mRNA
(magenta MAP2, white FISH) in cultured hippocampal neurons Scale bar = 50
um. See Figure S2 for additional RPs.

(F) Analysis of FISH data shown in E and Figure S2. Percentage of indicated
mRNA signal in dendrites over the total detected in single neurons. Transcripts
are ranked according to average value. The distribution of each mRNA was
compared to the largely somatically-localized transcript His3. ANOVA
(p<0.0001) followed by a Dunnett's multiple comparison test, ** p<0.01, ***
p<0.001, **** p<0.0001.
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Figure 2. RP mRNAs are translated in hippocampal dendrites

(A) Ribosome footprint coverage of RP mRNAs from the somata and neuropil
of hippocampal slices (Biever et al., 2020). Shown are the number of reads
throughout the open reading frame (grey box) from the somata-enriched
fraction (green) or the neuropil-enriched fraction (purple). Ribosome footprint
coverage for additional RPs is shown in Figure S3.

(B) Detection of nascent RPs (green) in dendrites (magenta for MAP2
immunostaining) of cultured hippocampal neurons using Puro-PLA (tom Dieck
et al.,, 2015). Nascent proteins were labeled with puromycin (5 min), in the
absence or presence (as indicated) of the protein synthesis inhibitor anisomycin
(see methods). Scale bar = 50 ym. Data for additional nascent RP detection
are shown in Figures S4B and 5.

(C) Analysis of nascent RP detection shown in Figures 2B, S4B and 5.
Analyzed are the newly synthesized RP punctae per 10pym? of dendrite, in
control (green) or in the presence of protein synthesis inhibitor (grey). Each dot
is the quantification from the whole dendritic arbor of one single neuron. Wilcox
test, ** p<0.01, *** p<0.001, **** p<0.0001.

18


https://doi.org/10.1101/2021.03.25.437026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437026; this version posted March 25, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who ha

anted bioRxiv

. nittosoavailabl SpcC-BY-N D 4.0 Inte
pSILAC labeling maturg_ ] blaas
purification of new RP
|
1
— U —
——— . —
+3h
N Rpl24‘* Apl10
< 0.015
o %
Rack1 ¢
[ - %
I} Rpl27
E 0
[e) 4
(%] /’
8 + Rps10 S
8 0010
re] %
£ 4 {
@ , 4
é Rglm
£ /
» Clusters
o
OC 00051 A
3 B
= I C
© rd D
: : g
© F
il
= 0000~ ]
1 1 1 1
0.000 0.005 0.010 0.015
fraction of new RPs in assembled ribosomes 1 hr
& 00100
< %
o ’,'
+
=
S 0.0075 1 4 Rol10 [
2 ﬁ'
§ S _.,_Rpl24
3 : ’ & H
o i o 2 p
2 0.0050 T :
€ 7‘!‘—
o ?
a Rplp2
< Rplp1' p S Clusters
nu_) % A
o 0.0025 T B
= c
2 D
5 £
c S F
S
g 0.0000 q .
—-— 1 1 T 1 T
0.0000 0.0025 0.0050 0.0075 0.0100 1
fraction of new RPs in assembled ribosomes 1 hr
0.015 4 0.015
n o
» = C
o £ 22
oo ‘g Qo
& 0010 0.010 - =2 ®
2 9 O o
O =
c 5 =
G o
5t
B @ 0.005 1 0.005 1
® 0
s ®
£
0.000 0.000

1 hour

T
2 hours

1 hour

1 hour + chase

a license to display the pr
license.

rint in perpetuity. It is

Rpl37a—-ps1
Rpl38
Rpl37a
Rack1

Rpl27
Rpl24
Rpl10

Rpl12
Rps28
Rpsi12
Rps2
Rpsa
Rpl23
Rpl11
Rpl30
Rps13
Rps21
Rpl6
Rpl18
Rps8
Rpl34
Rpl36
Rps14
Rps4x
Rps9
Rps11
Rps3a
Rpl10a

Rpl21
Rplp2
Rplp1
Rps15a
Rpl14
Rpl23a
Rpl26
Rpl32
Rpl7
Rps23
Rpl3
Rps24
Rpl13
Rps6
Rps20
Rps18
Rpl17
Rps16
Rpl7a
Rpl13a
Rpl15
Rpl18a
Rps27a
Rpl4
Rps19
Rpl35

Rpl27a
Rps27
Rpl28
Rpl8
Rpl19
Rps26
Rps3
Rps7
Rpl9
Rps25
Rpl31

Rplp0
Rps10
Rpl29
Rpl22
Rpl36a

1h
1h
1h

1h + chase
1h + chase
1h + chase

fraction of new RPs in assembled ribosomes

N %) N »
S 3 N
o © Q¥

Figure 3


https://doi.org/10.1101/2021.03.25.437026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437026; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 3. Some RPs rapidly incorporate into neuronal ribosome

(A) Schematic of the experimental design for measuring new RPs in assembled
ribosomes from cultured neurons. Normal medium was replaced by medium
containing heavy amino acids (pSILAC) as indicated (grey boxes). Mature
ribosomes were purified by sucrose cushion. New ribosomal proteins were
quantified by mass spectrometry, measuring the heavy and light peak of each
peptide.

(B) Heatmap showing for each RP the fraction of new proteins (H/(H+L))
incorporated into assembled ribosomes. Pseudocells (median of peptides
obtained per individual protein) are ordered according to unsupervised
clustering, both for columns (biological replicate of each condition) and rows
(individual ribosomal protein). Experimental conditions of the labeling are
indicated at the bottom.

(C-D) Scatterplots showing the fraction of new RPs (H/(H+L)) in assembled
ribosomes after the different labeling conditions, as indicated by x- and y- axes.
Points represent average +/- standard deviation of three biological replicates.
Proteins are colored according to clusters identified in Figure 3B. Some RPs of
interest are indicated by name. Dashed line represents x=y.

(E-F) Average +/- standard deviation of the fraction of new proteins in
assembled ribosomes of RPs of the same cluster, as identified in Figure 3B.
The different labeling conditions are indicated on the x-axis.
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Figure 4. Some nascent RPs can incorporate into neuronal ribosomes
independent of the canonical ribosome biogenesis pathway

(A) Schematic of the experimental design. Neurons were cultured on porous
membranes where neurites can grow through the pores and be separately
harvested. Normal medium was replaced by medium containing heavy amino
acids for 2 days (filled boxes) in the presence (treated) or absence (control) of
Leptomycin B (LMB) to prevent the export of nascent ribosomes from the
nucleus and thus inhibit ribosome biogenesis. Mature ribosomes were purified
from either compartment (top: cell bodies + neurites; bottom: neurites only) and
new RPs were quantified by mass spectrometry as before.

(B) Quantification by RT-PCR of new 18S rRNA in assembled ribosomes,
relative to a non-labeled control (y=1, dashed line). 2 days of Leptomycin B
(LMB) treatment significantly reduced the nascent rRNA levels in purified
ribosomes (5 paired biological replicates, paired ttest, * p<0.05).

(C) Scatterplots showing fraction of new proteins (log= of the H/L ratio) purified
with assembled ribosomes from the cell bodies+neurites (left panel) or neurite-
enriched (right panel) compartments of control or LMB-treated neurons.
Ribosomal proteins are colored in green, all other proteins are indicated in grey.
Dashed lines represent x = y.

(D) Fold change of the fraction of new RPs (H/(H+L)) detected in assembled
ribosomes between control and LMB-treated samples, normalized to the
median value obtained for each subunit (40S or 60S) (see methods).
Ribosomes were purified from the cell bodies+neurites (dark green) or neurite-
enriched (light green) compartments. Each point represents the mean +/-
standard deviation of four biological replicates. Exchanging RPs were identified
as significant outliers by ROUT Method (* FDR<0.5%). Insert: Venn diagram of
exchanging RPs in the two compartments.
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Figure 5

Figure 5. Exchanging RPs tend to be surface-exposed on the assembled
ribosome.

(A) Structure of human ribosome showing two views each for the large (top)
and small (bottom) subunit (PDB: 4v6x). rRNAs in black, tRNA in yellow, stable
RPs in grey, exchanging RPs in purple. Names are indicated for the exchanging
RPs, as identified in Figure 4D.

(B) Fraction of Solvent Accessible Surface Area for stable and exchanging RPs,
calculated for individual proteins within the structure of individual subunits of
the human ribosome (PDB: 4v6x). Median +/- interquartile range. Mann-
Whitney test, *** p<0.001.
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Figure 6. The association of a subset of exchanging RPs is enhanced after
oxidative stress

(A) Schematic of the experimental design for measuring new RPs in assembled
ribosomes after oxidative stress. Normal medium was replaced by medium
containing heavy amino acids (pSILAC) for a total of 3 hr. To induce stress,
H202 was added for 10 min to a final concentration of 0.1mM (light green) or
1mM (dark green) to the heavy medium, 2 hrs after the beginning of labeling.
Mature ribosomes were purified and new RPs were quantified by mass
spectrometry as before.

(B) Volcano plots of significantly regulated ribosomal proteins (green,
FDR<0.01) in assembled ribosomes, comparing control and H202-treated
neurons (see methods).

(C) Normalized fold-change in incorporation levels (see methods) for
representative ribosomal proteins, which are significantly regulated (RPS30,
RACK1, RPLP2, RPLPO and RPL10) or not (RPL24, RPL22 and RPS14) with
H20:2treatment. Three biological replicates.
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Figure S1: Detection of RP mRNAs in dendrites of rat hippocampal slices

(A) FISH detection of indicated RP mRNAs in dendrites (magenta MAP2, white
FISH, blue DAPI) in hippocampal slices. Images are oriented with the somata
layer at the top and the dendrites extending below. Scale bar = 50 ym.

(B) Quantification of the FISH signal between the neuropil and somata layers
in hippocampal slices (relative to the His3 levels, Wilcox test, * p<0.05, **
p=<0.01, ** p<0.001, **** p<0.0001).

(C) Pearson correlation plot of the logz2 expression of the neuropil : somata
ratios of mMRNA levels measured by FISH and by RNAseq (data sourced from
(Biever et al., 2020)).
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Figure S2: Detection of RP mRNAs in the dendrites of cultured
hippocampal neurons

FISH detection of indicated RP mRNAs (magenta MAP2, white FISH) in
cultured hippocampal neurons Scale bar = 50 ym. Analysis for these data is
shown in Figure 1F.
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Figure S3: Ribosome footprint coverage of RP mRNAs in rat
hippocampal slices

(A-B) Ribosome footprint coverage of RP mRNAs from the somata and neuropil
of hippocampal slices (Biever et al., 2020). Shown are the number of reads
throughout the open reading frame (black box) from the somata-enriched
fraction (green) or the neuropil-enriched fraction (purple). Regions of overlap
appear as grey.
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Figure S4: Quantification of dendritic RP mRNA translation

(A) Log2 expression of the neuropil : somata ratios of RP footprints (data
sourced from (Biever et al., 2020)). RP mRNAs with a significant (adjusted p-
value < 0.05) translation increase between the two compartments are
highlighted in green. No transcript exhibited a somata-enhanced translation
whereas 15 RP mRNAs showed a neuropil-enhanced translation.

(B) Puro-PLA detection of nascent RPs in dendrites (magenta MAP2, green
newly synthesized RP) in the presence of protein synthesis inhibitor anisomycin
(compare to the images shown in Figure 2B). Scale bar = 50 ym.

(C) Percentage of nascent RP signal in dendrites over total detected in
individual neurons. Proteins are ranked according to their mean values.

(D-E) Total levels of nascent RACK1 in a neuron (D) or percentage of the signal
in dendrites (E) immediately (no chase) or 5 min after (chase) labeling.
Unpaired ttest, n.s. p>0.5.
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Figure S5: Detection of nascent RPs in dendrites of cultured
hippocampal neurons

Detection of nascent RPs (green) in dendrites (magenta for MAP2
immunostaining) of cultured hippocampal neurons using Puro-PLA (tom Dieck
et al.,, 2015). Nascent proteins were labeled with puromycin (5 min), in the
absence or presence (as indicated) of the protein synthesis inhibitor anisomycin
(see methods). Scale bar = 50 ym.
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Figure S6: Quality controls for ribosome purification and mass spec
detection of newly synthesized RPs

(A) Total protein and Western blot analysis of total lysates (left panel) or cushion
samples (right panel) from three biological replicates. Cushion was performed
under control conditions or in the absence of magnesium or in the presence of
the chelating agent EDTA, as indicated. First lane contains molecular weight
ladder. The same percentage of volumes was loaded for lysates and for
cushion samples. Total protein (top panel) or RPs of interest (bottom panel)
were visualized.

(B) Quantification of Figure S6A. The presence of individual RPs was
significantly impaired when the cushion was performed under conditions that
disassemble monosomes and polysomes into free small and large subunits.
Three biological replicates. One-way ANOVA, with Dunnett’s multiple
comparisons test.

(C) Fraction of labeled peptides (H/(H+L)) for ribosomal proteins, after 1 hr of
labeling with heavy amino acids, estimated based on the half-life quantified by
Doérrbaum et al. (D6rrbaum et al., 2018) or measured in our data set.

(D) Examples of the traces for heavy or light peptides measured by Mass
Spectrometry with Parallel Reaction Monitoring (see methods), after 1 hr of
labeling or not, as indicated. Representative peptides from the indicated RPs
of high (top panel), medium (middle panel) or low (bottom panel) abundance
were chosen.

(E-F) Related to Figure 3C-D. Scatterplots showing fraction of new RPs
(H/(H+L)) in assembled ribosomes after different labeling conditions, as
indicated in x- and y- axes. Points represent average +/- standard deviation of
three biological replicates. Proteins are colored according to which ribosomal
subunit they belong to (small subunit in light gray, large subunit in dark gray).
Dashed line represents x = y.

(G) Related to Figure 3E-F. Mean +/- standard deviation of the fraction of new
proteins (H/(H+L)) in assembled ribosomes for RPs of the same subunit (small
subunit in light gray, large subunit in dark gray). Different labeling conditions
are indicated on the x-axis. Wilcox test, n.s. p>0.05

(H-1) Related to Figure 3C-D. Scatterplots showing fraction of new RPs
(H/(H+L)) in assembled ribosomes after different labeling conditions, as
indicated by the x- and y- axes. Points represent average +/- standard deviation
of three biological replicates. Proteins are colored according to which step they
are known to incorporate into immature ribosomes during biogenesis (as
reviewed in (la Cruz et al., 2015)). The darkest green color represents RPLP1
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and RPLP2, whose incorporation is not linked to ribosome biogenesis. Dashed
line represents x =y.
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Figure S7: Leptomycin B (LMB) rapidly blocks CMR1-mediated nuclear
export, and thus sequesters nascent ribosomes in the nucleus.
Compartmentalized chambers allow for the enrichment of neurites

(A) Immunolabeling of RanBP1 in neuronal cell bodies at different durations of
LMB incubation. RanBP1 is an accessory protein involved in the CRM1-
mediated transport, known for its rapid shuffling between nucleus and
cytoplasm. Scale bar = 10um.

(B) The fraction of RanBP1 signal within the nucleus significantly increases
during LMB incubation at all time points tested (Wilcox test, p <0.001).

(C) Representative images of neurons transfected with GFP (grey) and
RPL10a-photo-activatable (PA)-RFP (fire color look-up), before and after
photoactivation, under control conditions (first row) or in the presence of LMB
to block nuclear export (second row), or MG132 to block proteasome-mediated
degradation (third row), or both LMB and MG132 (fourth row). Scale bar = 10

ym.

(D) Percentage of RPL10a-PARFP fluorescence inside the nucleus, normalized
to the maximum nuclear intensity reached after photo-activation. Both the
individual and combined inhibition of nuclear export and proteasomal
degradation significantly slowed down the decay of RPL10a-PARFP signal in
the nucleus (mean +/- SEM, repeated measures ANOVA, p < 0.01, Tukey’s
multiple comparisons test, p <0.05).

(E) Immunolabeling of rRNA (Y10b antibody) in neuronal cell bodies under
control condition or after 2 days of LMB treatment. Scale bar = 10um.

(F) The intensity of Y10b signal inside nucleoli significantly increases after 2
days of LMB incubation (unpaired t test, p<0.001)

(G) Representative images indicating the presence of dendrites (MAP2) and
nuclei (DAPI) in the compartmentalized chamber. Top or bottom view of the
filter, as indicated (scale bar 50 ym).

(H) Analysis of nuclear de-enrichment in the compartmentalized chambers. The
number of nuclei per Field Of View was dramatically decreased in neurite
compartment (bottom). Five biological replicates, for a total of > 45 Fields of
View per compartment. Unpaired ttest, **** p<0.0001.

(I) Total protein and Western blot analysis of lysates or cushion samples from
somata + neurites (top) or neurites (bottom) compartments, as indicated. Last
lane contains molecular weight ladder. Total protein (bottom panel) or proteins
of interest (bottom panel) were visualized: Nucleolin as a nuclear marker,
GAPDH as a cytosolic marker, RPS3 as a ribosome marker.
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(J) Quantification of protein analysis. The level of Nucleolin detected in the
somata + neurites (top) fraction was significantly higher than that observed in
the neurite (bottom) fraction. Three biological replicates. Unpaired t test, ****

p<0.0001.
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Figure S8: LMB treatment does not affect the total cellular protein levels

but does reduce a population of new proteins

(A-B) Hierarchical clustering of biological replicates (see methods) according to
the similarity of total (logz= of H+L, (A) or new (logz of the H/L ratio, (B) protein
levels in lysates from control, LMB-treated or unlabeled neurons. Cells are color
coded according to pairwise Pearson correlations. Biological replicates of the
same labeling condition cluster together only when comparing the fraction of
newly synthesized proteins.

(C-D) Volcano plots of significantly regulated proteins (blue, FDR<0.01) in total
lysates, comparing control and LMB-treated neurons. Nuclear export inhibition
via LMB does not affect total protein levels (logz of H+L, (C) but results in a
general decrease in newly synthesized proteins (D). Dashed line represents
Fold Change = 0.

(E) Representative polysome profiles from control (black) or LMB-treated (blue)
neurons.

(F) Quantification of the polysome fraction from control and LMB-treated
neurons. Ribosome biogenesis inhibition via LMB resulted in a decrease in
protein synthesis. Paired f test, p<0.05.
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Figure S9: LMB treatment results in less new ribosomes

(A-B) Hierarchical clustering of biological replicates (see methods) according to
similarity of total (log2 of H+L, (A) or new (logz of the H/L ratio, (B) levels of
proteins co-purified with assembled ribosomes from cell bodies or neurites of
control, LMB-treated or unlabeled neurons. Cells are color coded according to
pairwise Pearson correlations. When comparing total protein levels, the
unsupervised clustering segregates samples according to compartment but not
according to labeling condition (A). When comparing the fraction of newly
synthesized proteins instead, biological replicates of the same labeling
condition and from the same compartment are successfully clustered together

(B).

(C) Scatterplots showing total levels of protein (log2 of H+L) co-purified with
assembled ribosomes from cell bodies (left panel) or neurites (right panel) of
control or LMB-treated neurons. Ribosomal proteins are indicated in green.
Average of four biological replicates. Dashed line represents x =y.

(D) PCA analysis showing similarities across new protein levels co-purified with
assembled ribosomes from cell bodies or neurites of control, LMB-treated or
unlabeled neurons.

(E) Levels of new proteins (logz of the H/L ratio) co-purified with assembled
ribosomes from cell bodies (left panel) or neurites (right panel) of control (grey)
or LMB-treated (green) neurons. Ribosomal proteins from either small (40S) or
large (60S) subunit are grouped as indicated in the x-axis. Average of four
biological replicates.
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Figure S10: Exchanging RPs tend to be short-lived and sub-
stoichiometric in single subunits

(A) Scatterplot showing the fold change of RP incorporation after a chase (x-
axis, relative to Figure 3d) and the incorporation levels after LMB treatment (y-
axis, average between compartments from Figure 4d). Ribosomal proteins are
colored according to the clusters identified in Figure 3b. Exchanging RPs are
indicated by name.

(B-C) Scatterplots showing the incorporation of new RPs after 2 hrs of labeling
(x-axis, as in Figure 3) and their half-life (y-axis) as measured in intact cortical
tissue (Fornasiero et al.,, 2018), (B) or in cultured hippocampal neurons
(Dérrbaum et al., 2018), (C) Proteins are colored according to the clusters
identified in Figure 3b. Exchanging RPs are indicated by name. Dashed line
represents the regression line and the confidence interval is shown in grey.

(D) Heatmap showing RP expression levels across different ribosomal
conformations (selected fractions within polysome profiling gradients) in HEK
and Hela cells, as measured using MS by (Imami et al., 2018). Pseudocells
(protein levels normalized to the median of the corresponding ribosomal
subunit) are ordered using unsupervised clustering, both for columns (biological
replicate of each condition) and rows (individual ribosomal protein). The
exchanging RPs in both compartments are shown in black, those exchanging
only in the compartment with cell bodies are shown in dark grey, and those
exchanging only in neurites are shown in light grey (as identified in Figure 4d).
SingleSub = single ribosomal subunits (large or small). Mono = monosome.
Poly = polysome.

(E) Venn diagram showing the overlap between the exchanging RPs identified
in the current study (purple) and the nascent RPs detected in axonal ribosomes
after removal of the cell body in a recent study ((Shigeoka et al., 2019), green).
Curiously, the two known positive controls of exchange, RPLP1 and P2, were
not detected in (Shigeoka et al., 2019).
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Figure S11: Effect of oxidative stress on RPs incorporation into
assembled ribosomes

(A) Heatmap showing for each RP the fraction of new proteins (H/(H+L))
incorporated into assembled ribosomes. Pseudocells (median of peptides
obtained per individual protein) are ordered according to unsupervised
clustering, both for columns (biological replicate of each condition) and rows
(individual ribosomal protein). Experimental conditions of the labeling are
indicated at the bottom.

(B-C) Scatterplots showing the fraction of new RPs (H/(H+L)) in assembled
ribosomes after the different labeling conditions, as indicated by x- and y- axes.
To correct for the general decrease in protein synthesis with stress, the values
in the H202 samples were normalized over the mean fold change. Points
represent average +/- standard deviation of three biological replicates. Proteins
are colored according to the significance (green, FDR<0.01) calculated as in
Figure 5B. Dashed line represents x=y.
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Table S1: Detection of Ribosomal Proteins mRNAs in previously reported
studies (related to Figure 1).

Table S2: Incorporation levels of nascent Ribosomal Proteins into assembled
ribosomes after short labeling (related to Figure 3) and after LMB treatment
(related to Figure 4).

Table S3: Incorporation levels of nascent Ribosomal Proteins into assembled
ribosomes after oxidative stress (related to Figure 5).

Table S4: Results of the statistical analysis for the differential incorporation of
Ribosomal Proteins between control and high concentration of H202 (related to
Figure 5).

Table S5: Results of the statistical analysis for the differential incorporation of
Ribosomal Proteins between control and low concentration of H202 (related to
Figure 5).

Table S6: detailed summary of the parameters used for LC+MS.

Table S7: detailed summary of the settings used for MaxQuant.
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STAR METHODS

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Preparation of primary cultured neurons

Dissociated rat hippocampal or cortical neuron cultures were prepared and
maintained as described previously (Aakalu et al., 2001). Briefly, we dissected
hippocampi or cortices from postnatal day 0 to 1 rat pups of either sex
(Sprague-Dawley strain; Charles River Laboratories) and dissociated the
samples with papain (Sigma). For imaging experiments, hippocampal neurons
were plated at a density of 30 x 103 cells/cm? on poly-Dlysine—coated glass-
bottom petri dishes (MatTek). For biochemical experiments, cortical neurons
were plated at a density of 4 x 108 cells/cm? on poly-Dlysine—coated 10 cm
dishes, at a density of 1 x 108 cells/cm? on poly-Dlysine—coated 6 cm dishes or
at a density of 9 x 106 cells/cm? on poly-Dlysine—coated 75 mm inserts (3.0 ym
pore size, Corning 3420). One day after plating on the inserts, cells were
incubated with 5 yM AraC (Sigma C1768) for two days, then the AraC was
removed by changing the media. Neurons were maintained in a humidified
atmosphere at 37°C and 5% CO2 in growth medium [Neurobasal-A
supplemented with B27 and GlutaMAX-I (Life Technologies)] for 14-16 DIV for
biochemical experiments or for 25-27 DIV for imaging experiments. All
experiments complied with national animal care guidelines and the guidelines

issued by the Max Planck Society and were approved by local authorities.
Pharmacological treatments

To inhibit ribosome biogenesis, cells were treated with 20 pyg/uL Leptomycin B
(Merck, 431050) for 2 days, unless otherwise specified. To inhibit proteasome
degradation, cells were treated with 10 yM MG 132 (Sigma, M8699) for at least
2 hr. To induce oxidative stress, cells were incubated with TmM or 0.1mM H20:2
(AlfaAesar L13235) for 10 min.

Metabolic labeling of newly synthesized proteins by pSILAC
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Heavy medium was prepared by adding 84 mg/L of Arg10 (ThermoFisher
88434) and 146 mg/L of Lys8 (ThermoFisher 88432) into a Arg- and Lys-free
Neurobasal-A medium (ThermoFisher, customized). To condition the medium,
extra plates from each prep were incubated with the same medium starting from
DIV 0. On the day of the pulsed-SILAC experiment (DIV 13-16), the conditioned
heavy medium was collected from the extra plates. The original “light” medium
was then replaced by the conditioned heavy medium for the indicated amount
of time (1 hr, 2 hrs, 3 hrs or 2 days). To reduce the likelihood of purifying
polypeptide chains still emerging from the ribosome, a 5 min wash with light
medium was used to allow termination of translation after the 1 hr, 2 hrs or 3

hrs labeling.

METHOD DETAILS
Ribosome purification by sucrose cushioning

Cells were washed three times and scraped in ice-cold DPBS (ThermoFisher,
14040-091) supplemented with 100 yg/mL of CHX (Sigma, C7698). An aliquot
was saved to prepare a whole cell lysate. Cells were pelleted by 5 min
centrifugation at 500 x g. For ribosome purification, cells were lysed in 400 pL
of ribosome lysis buffer (20 mM Tris pH 7.4, 150 mM NaCl, 5 mM MgCI2, 24
U/mL TurboDNase, 100 pyg/mL cycloheximide, 1% TritonX-100, 1 mM DTT,
RNasin(R) Plus RNase inhibitor 200U/mL and 1x cOmplete EDTA-free
protease inhibitor). For the compartmentalized chambers, first the top
compartment (cell bodies + neurites) was scraped in DPBS+CHX and then the
bottom (neurites only) was scraped directly in 200 pL of ribosome lysis buffer.
To guarantee sufficient yield from the neurite compartment, each biological
replicate consisted of the content of two inserts pooled together. Lysates were
pipetted up and down until homogenization was clear with a 0.4x20mm syringe
needle (HSW FINE-JECT) on ice. Samples were then centrifuged at 10,000 x
g for 10 min at 4°C. Supernatants were loaded on 1 mL sucrose solution (34%
sucrose, 20 mM Tris pH 7.4, 150 mM NaCl, 5 mM MgCI2, 1 mM DTT, 100
pg/mL cycloheximide) in a thickwall polycarbonate tube (Beckman, 349622)
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and centrifuged for 30 min at 4°C at 55000 rpm with a SW55Ti rotor
(acceleration 0, deceleration 7). Ribosome pellet was resuspended in 20 yL of
10 mM HEPES, 120 mM NaCl, 3 mM KCI, 10 mM D-Glucose, 2mM MgSO4
and 2 mM MgSO4, and submitted to Mass Spectrometry or Western Blot
Analysis. For the experiment shown in Figure S6a-b, ribosome lysis buffers and
cushion solutions were modified to either contain 0 mM MgCI2 or 5mM MgCI2
+ 15 mM EDTA.

Ribosome purification by polysome profiling

Cells were processed as for sucrose cushioning, except the ribosome lysis
buffer was supplemented with 8% glycerol and the supernatant were loaded on
a 10-50% sucrose gradient. For the gradients, all solutions were prepared in
gradient buffer (20 mM Tris pH 7.5, 8% glycerol, 150 mM NaCl, 5 mM MgCI2,
100 pg/mL cycloheximide, 1 mM DTT). Gradients were prepared by
sequentially adding solutions with different sucrose concentrations (in order
from first added to last, 8 mL of 55%, 0.5 mL of 50%, 0.5 mL of 40%, 0.5 mL of
30%, 0.5 mL of 20%, 0.5 mL of 10%) into the same Thinwall polypropylene tube
(Beckman, 331372). Tubes were placed at —-80°C to freeze the content before
adding the next sucrose solution, and finally stored at -80°C. The day prior to
experiments, gradients were left for equilibration at 4°C overnight. Then 1 to 2
OD (measured with NanoDrop at 260 nm) of the lysates were loaded on top of
the gradients and spun at 36,000 rpm at 4°C for 2 hrs with a SW41-Ti rotor
(Beckman). Gradients were then run at 850 pL/min in a density gradient
fractionation system (Teledyne Isco), chased by 60% sucrose 10% glycerol in
water. RNA absorbance at 254 nm was continuously measured using a UA-6
detector. The area under the curve corresponding to the monosome and
polysomes was measured. To compare across different runs, the polysome
fraction was calculated as area under polysomes over the sum of the areas

under monosome and polysomes.

Total cell lysates
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Cell were scraped as described above for sucrose cushioning. Cell pellets were
lysed in 200 pL of 8 M urea, 200 mM Tris/HCI [pH 8.4], 4% CHAPS, 1 M NaCl,
cOmplete EDTA-free protease inhibitor (Roche, 11873580001), using a pestle.
Lysates were sonicated at 4°C for 4 rounds of 30 sec each, and incubated for
10 min with 1 pyL of Benzonase (Sigma E1014). After centrifugation for 5 min at
10,000 x g, the supernatant was submitted to Mass Spectrometry or Western

Blot validation.

FISH in hippocampal slices

3-5 weeks-old Sprague Dawley SPF rats were housed on a 12/12-hour
light/dark cycle with food and water ad libitum until euthanasia. Animals were
anesthetized by Isoflurane inhalation (Abbott, USA). The rat head was removed
and immediately frozen in liquid nitrogen for 30 s. The brain was extracted and
sliced into 500-600 ym slices in ice-cold oxygenated sucrose-ACSF using a
vibratome (VT1200S, Leica, Germany). The slices were fixed in a fixation buffer
(4 % PFA, 4 % sucrose in PBS) for 1 hr at 4 °C and then 1 hr at room
temperature. After washing with PBS, slices were dehydrated with ice-cold 15
% sucrose in PBS for 2-3 hrs at 4 °C and then ice-cold 30 % sucrose in PBS
overnight at 4 °C. Slices were blocked in O.C.T. (SAKURA Finetek USA Inc.,
USA) and sliced again at 30 ym thickness using a sliding microtome (Microm
HM450, ThermoFisher), followed by thorough washing with PBS and fixation
for 20 min at room temperature using a fixation buffer (4 % paraformaldehyde,
5.4 % glucose, 0.01 M sodium metaperiodate in lysine-phosphate buffer). In
situ hybridization was performed using the ViewRNA ISH Cell Assay Kit
(ThermoFisher) according to the manufacturer's instructions with some
modifications. Briefly, slices were permeabilized at room temperature using the
detergent solution for 20 min. After washing with PBS and 5 min incubation with
the hybridization buffer, the respective probes (see table below for details) were
diluted 1:100 in the pre-warmed working hybridization buffer and added to the
slices. After incubation at 40 °C overnight and washing with the wash buffer,

1:100 PreAmplifier Mix was diluted in pre-warmed working amplifier diluent and
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incubated with the slices for 1 hr at 40 °C, followed by 1 hr incubation with 1:100
Amplifier mix in pre-warmed working amplifier diluent and then 1 hr with 1:100
Label probe mix in pre-warmed working label probe diluent. After washing, the
slices were permeabilized with 0.5 % Triton X-100 in blocking buffer (4 % goat
serum in PBS) for 20 min and blocked in blocking buffer for 1 hr.
Immunostaining was then performed using antibodies against Map2 (see table
below for details) overnight at 4 °C, followed by secondary antibody donkey
anti-gp Cy5 (1:500, 706-175-148, Dianova, Germany) and 1:1000 DAPI for 2
hrs at room temperature. Mounting of slices was performed using Aqua
Poly/mount (18606, Polysciences, USA).

FISH in hippocampal cultures

Cultured rat hippocampal neurons (DIV 21-28) were fixed for 20 min at room
temperature using a fixation solution (4 % paraformaldehyde, 5.4 % glucose,
0.01 M sodium metaperiodate in lysine-phosphate buffer). In situ hybridization
was performed using the ViewRNA ISH Cell Assay Kit (ThermoFisher)
according to the manufacturer's instructions with some modifications. Briefly,
neurons were permeabilized at room temperature by treating with detergent
solution for 5 min, followed by pepsin digestion (0.01 mg/ml of enzyme in 10
mM HCI) for 45 sec. After washing with PBS, the respective probes (see table
below for details) were diluted 1:100 in pre-warmed hybridization buffer and
added to neurons. After incubation at 40 °C for 3 hr, neurons were washed with
wash buffer and stored in storage buffer overnight at 4 °C. After several
washes, neurons were incubated for 30 min at 40 °C with PreAmplifier Mix
(diluted 1:25 in pre-warmed working amplifier diluent), followed by 30 min
incubation with 1:25 Amplifier mix in pre-warmed working amplifier diluent and
then 30 min with 1:25 Label probe mix in pre-warmed working label probe
diluent. After washes, neurons were immunostained with antibodies against
Map2 (see table below for details) overnight at 4 °C, followed by secondary
antibody donkey anti-gp Cy5 (1:500, 706-175-148, Dianova, Germany) for 1 hr

at room temperature and DAPI for 5 min.
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Puro-PLA

Detection of newly synthesized proteins by puromycin labeling and proximity
ligation was performed as previously described (tom Dieck et al.,, 2015).
Neurons were metabolically labeled for 5 min with 1 yM puromycin (Sigma,
P8833). For the chase experiment (shown in Figure S3d-e), after the 5 min
labeling cells were washed three times and incubated for 5 more minutes with
the original medium. All samples were washed twice with DPBS
(ThermoFisher, 14040-091) prior to fixation (20min in 4% PFA in 4% sucrose
in PBS). Cells were permeabilized (15 min in blocking buffer + 0.5% Triton-X
100) and blocked (>30 min in blocking buffer, PBS + 4% goat serum). Neurons
were incubated overnight at 4°C in PBS + 4% goat serum containing primary
antibodies against puromycin, the protein-of-interest and MAP2 to label
dendrites (see table below for details). After washing, Proximity Ligation Assay
(PLA) was performed using the Duolink In Situ PLA kit (Sigma). In particular,
PLA probes anti-rabbit PLUS (DUO92002) and anti-mouse MINUS
(DUO92004) and the Duolink Detection reagents Red (Sigma DUO92008) were
used according to the manufacturer's recommendations. Briefly, probes (1:10
dilution) and a secondary antibody for MAP2 were applied in PBS with 4% goat
serum for 1 h at 37 °C, washed three times with wash buffer A (0.01 M Tris,
0.15 M NaCl, 0.05% Tween 20) and incubated for 30 min at 37°C with the
ligation reaction. Samples were then washed three times with wash buffer A
and incubated at 37 °C for 100 min with the amplification reaction mixture.
Amplification was stopped by three washes in wash buffer B (0.2 M Tris, 0.1 M
NaCl, pH 7.5). Nuclei were stained with DAPI (1:1000 for 2 min) and cells were
kept in wash buffer B at 4°C until imaging.

Image acquisition and analysis for Puro-PLA and FISH

Within a week after labeling, samples were imaged using a LSM780 confocal
microscopy (Zeiss) and a Plan-Apochromat 40x/1.4 Oil DIC M27 objective. Z-
stack was set to cover the entire volume of a neuron, with optical slice thickness

set to optimal. Laser power and detector gain were adjusted to avoid saturated
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pixels. Imaging conditions were held constant within experiments. Maximum
intensity projections of image z-stacks were used for image analysis. For
visualization purposes (but not for analysis), the punctae size was dilated and
brightness and contrast adjusted. Image analysis was performed in ImageJ/FIJI
with an in-house script. For cell culture, the dendritic arbor and the cell body of
individual neurons were manually traced using the MAP2 immunolabeling. For
hippocampal slices, the somatic compartment was defined by a 5 ym dilation
of the DAPI signal. After thresholding, the intensity and number of punctae were

quantified and normalized over the annotated neuronal area.

Immunofluorescence

Cells were fixed for 20min in 4% PFA in 4% sucrose in PBS, permeabilized for
15 min in 0.5% Triton-X 100 + blocking buffer and blocked for at least 30 min
in blocking buffer (PBS + 4% goat serum). Neurons were incubated for 2 hrs
with primary antibodies and, after three washes, for 1 hr with secondary
antibodies, all in blocking buffer (see table below for antibodies information).
After two washes in PBS, cells were stained with DAPI (1:1000 for 2 min) and
kept in PBS at 4°C until imaging. For validation of the compartmentalized
chambers, pieces of the filter were processed as described above, and
mounted on a glass slide (ThermoFisher 10417002) with Aqua Poly/mount
(Polysciences, 18606). Samples were imaged using a LSM780 confocal
microscopy (Zeiss) using a Plan-Apochromat 40x/1.4 Qil DIC M27 or Plan-
Apochromat 20x/0.8 M27 objectives. A Z-stack was set to cover the entire
volume of neurons, with optical slice thickness set to optimal. Laser power and
detector gain were adjusted to avoid saturated pixels. Imaging conditions were
held constant within experiments. Maximum intensity projections of z-stacks
were used for image analysis. For visualization purposes (but not analyses)

brightness and contrast were adjusted.

All image analyses were performed in Imaged/FIJI with a fully automated script
built in-house. In Figure S6a-b, the intensity of RanBP1 signal was quantified

within two masks, containing the whole nucleus with or without the outer edge
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(representing the nuclear envelope). The fraction of RanBP1 within the nucleus
was calculated as the signal in the inner mask, over the signal in the outer
mask. In Figure S6e-f, the intensity of the Y10b signal was quantified within a
mask based on the Nucleolin channel, which was co-stained to label nucleoli.
In Figure S6g-h, the number of nuclei was quantified based on the DAPI

channel.

Mass spectrometry
Sample preparation for MS analysis.

Proteins were digested according to the ‘Filter-Aided Sample Preparation’
(FASP) protocol (Wisniewski et al., 2009) or using S-Traps according to an
adapted version of the suspension trapping protocol described by the
manufacturer (ProtiFi, Huntington, NY). Peptides were desalted using C18
StageTips (Rappsilber et al., 2007), dried by vacuum centrifugation and stored
at -20°C until LC-MS analysis.

LC-MS/MS Analysis.

The peptide samples were reconstituted in 5% acetonitrile (ACN) and 0.1%
formic acid (FA) supplemented with an iRT peptide standard (1:10 dilution; Ref.:
Ki-3002-2; Biognosys). Peptides were separated by nano-HPLC (U3000
RSLCnano, Dionex). The samples were loaded and washed with loading buffer
(2% ACN, 0.05% trifluoroacetic acid (TFA) in water; 6 min; 6 yL/min) on a
PepMap100 loading column (C18, L = 20 mm, 3 uym particle size, Thermo
Scientific) and subsequently separated on a PepMap RSLC analytical column
(C18, L =50 cm, <2 um particle size, Thermo Scientific) by a gradient of phase
A (0.1% FA in water) and phase B (80% ACN, 0.1% FA in water). The gradient
was ramped from 4% B to 48% B in 90 min at a flow rate of 300 nL/min. All
solvents were purchased from Fluka in LC-MS grade. Eluting peptides were
ionized online using a Nanospray Flex ion source (Thermo Scientific) and
analyzed in a Q-Exactive Plus mass spectrometer (Thermo Scientific) (see

Table S6 for method details). In brief, for DDA mode, precursor ion spectra
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were acquired over the mass range 350-1400 m/z (mass resolution (R)= 70 k,
AGC target 3x108, maximum injection time (IT) = 60 ms). The top-10 precursor
ions were selected for fragmentation (HCD; normalized collision energy = 30)
and analyzed in MS2 mode (R = 17.5 k, isolation window = 1.7 Da, AGC target
= 2x10%, maximum IT = 50 ms). In a parallel reaction monitoring (PRM)
approach (Peterson et al.,, 2012), MS2 scans were acquired (R = 17.5 K,
isolation window = 1.7 Da, AGC target = 1x10°, maximum IT = 64 ms) according

to the scheduled inclusion lists.
MS-data processing.

For protein identification and relative quantification of the DDA data, MS raw
data were analyzed with MaxQuant (version 1.6.2.3 and 1.6.0.1;
RRID:SCR_015753) (Cox and Mann, 2008; Tyanova et al., 2016) using
customized Andromeda parameters (see Table S6 for LC+MS parameters and
Table 7 for MaxQuant settings). For all searches, spectra were matched to a
Rattus norvegicus database (reviewed and unreviewed; downloaded from
uniprot.org (RRID:SCR_004426)) considering tryptic peptides with up to 2
missed cleavages and to contaminant and decoy databases. Precursor mass
tolerance was set to 4.5 ppm and fragment ion tolerance to 20 ppm.
Carbamidomethylation of cysteine residues was set as fixed modification and
protein-N-terminal acetylation as well as methionine oxidation were set as
variable modifications. A false discovery rate (FDR) of 1% was applied at the
peptide-spectrum-match (PSM) and protein level. Only proteins identified by at
least one unique peptide were retained for downstream analysis. For relative
protein quantification, the data was searched with a multiplicity of 2 (light (LysO,
Arg0) and heavy (Lys8, Arg10)) and the LFQ values were computed without

normalization.

For the targeted analysis of ribosomal proteins by PRM, raw data was analyzed
in Skyline (version 20.1.0.155; RRID: SCR_014080) (MacLean et al., 2010). To
obtain information on target peptides, a series of DDA scout runs was
measured. Targeted peptides were selected based on uniqueness, no missed

cleavages, recurrent occurrence and signal intensity. Given a high degree of
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sequence similarity amongst RPs, some ribosomal proteins could not be
represented by more than one unique peptide. Peptide identity was confirmed
using a spectral library generated in Skyline using the results of a MaxQuant
search (msmes.txt) with a multiplicity of 1 (only light) of the DDA data. In Skyline,
a scheduled method was generated using target detection windows of 3 min
which was split into three inclusion lists to analyze separate injections
measured with PRM methods 1-3. For final data curation, PRM raw data were
imported as multiple-injection replicates in Skyline and peak picking was
confirmed manually in accordance to retention time, mass accuracy and library

matches.

All MS data associated with this manuscript have been uploaded to the PRIDE
repository and are available with the dataset identifier PXD024678
(RRID:SCR_003411; (Pérez-Riverol et al.,, 2019)). Anonymous reviewer

access is available upon request.
Protein quantification and statistical analyses.

For targeted analysis of nascent ribosomal proteins after 1 hr, 2 hrs or 3 hrs of
SILAC labeling, heavy and light peptide signals were curated in Skyline, peak
areas were exported and heavy peptide fractions (%H=H/(H+L)) were
calculated in R. Protein heavy fractions were determined by combining the
peptide-specific heavy fractions by their median value. Protein fold changes
were calculated as median of the corresponding peptide fold changes. For
unsupervised clustering, protein heavy fractions were hierarchically clustered
using Euclidean distance. Visualization of the cluster data was done using the
pheatmap R-package (RRID: SCR_016418, https://CRAN.R-

project.org/package=pheatmap).

For analysis of nascent ribosomal proteins after 2 days of SILAC labeling with
or without LMB treatment, peptide signals of ribosomal proteins were manually
curated in Skyline to ensure accurate quantification, especially for low abundant
heavy peptides. Subsequently heavy peptide fractions were calculated in R.
Technical replicates were merged (mean) and only peptides with a heavy

fraction that was 3x greater in the SILAC samples (both the LMB treated and
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untreated condition) compared to the “no labeling” samples were used for
down-stream analysis. LMB-treated versus control fold changes of the heavy
fractions were calculated on the peptide level and protein fold changes were
determined as the median of the corresponding peptide fold changes. To
correct for different size effect of LMB-treatment on the two ribosome subunits,
the fold change of each ribosomal protein was normalized over the median

change of the corresponding subunit.

To analyze the effect after 2 days of SILAC labeling with or without LMB
treatment on all proteins in the total lysate- or cushion-samples, MaxQuant
results of the protein groups (proteinGroups.txt) were further processed in R.
Protein groups were filtered to remove contaminant or decoy database hits and
proteins only identified by a modified peptide (“identified only by site”). Total
intensity (H+L) and heavy over light ratios (H/L) were log2-transformed and
values of the technical duplicates were merged by their means. Subsequent
principal component and Pearson correlation analyses were conducted in R
using its base functions. Differential regulation comparing LMB-treated and
control samples was investigated using unpaired, two-sided t-tests. To correct
for multiple testing, Benjamini-Hochberg correction was applied with an FDR
cut-off < 0.01.

For the analysis on the oxidative stress (low or high H202), we corrected for the
general decrease in protein synthesis by normalizing the heavy fraction of each
peptide in treated samples over the average fold-change between the treated
and control samples of all peptides. Subsequently, we used the linear mixed
effect model implemented in MSqRob (Goeminne et al., 2018) to calculate the
statistical significance of the differential incorporation between H20:-treated
and control samples. The treatment was set as fixed effect of interest, the
different peptides of the same protein as random effects, and protein name as
grouping factor. Half of the interquantile range of the average difference
between the normalized treated samples and the controls was used as minimal
difference for a comparison to be accepted as significant. To correct for multiple
testing, Benjamini-Hochberg correction was applied with an FDR cut-off < 0.01

(Table S4 and 5). Protein heavy fractions were determined by combining the
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peptide-specific heavy fractions by their median value and are reported in Table
S3. To visualize the fold change relative to control (in Figure 5c), each protein
heavy fraction was normalized over the median of the average observed values

in the control samples.

To analyze the protein composition of ribosomes across different translational
states, an available polysome proteome profiling dataset was downloaded
((lmami et al., 2018), PRIDE: PXD009292). The abundance of ribosomal
proteins in selected fractions (40S, 60S, 80S and polysome) were extracted
and the value of each ribosomal protein was normalized over the median
abundance of all proteins of the corresponding subunit within each fraction
(when considering proteins of the small subunit, the fraction corresponding to
the 60S was excluded, and vice versa for the large subunit and the 40S
fraction). For unsupervised clustering, the normalized levels of ribosomal
proteins across fractions were hierarchically clustered using Euclidean
distance, and clusters were visualized using the pheatmap R-package (RRID:
SCR_016418, https://CRAN.R-project.org/package=pheatmap).

Structural analysis

The surface accessible areas of ribosomal proteins were calculated using the
PDBePISA web service of the EBI (PDBe PISA v1.52 [20/10/2014],
https://www.ebi.ac.uk/pdbe/pisa/pistart.ntml, Krissinel et Henrick, 2007) using

the structure of small and large subunits of the human ribosome (PDB entry:
4V6X, https://www.rcsb.org/sequence/4VEX, (Anger et al., 2013)). In brief, PDB

data were imported using the biological assembly CIF file, and total surface and
interface areas were calculated for each chain using standard parameters in
PISA. The solvent-accessible surface areas (calculated from the total surface
area and all interface areas including RPs and rRNAs) values were extracted

and summed up for every chain in the dataset.

Detection of newly synthesized rRNA in assembled ribosomes
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New RNA was labeled by incubating cells for 3 hrs with 5 mM EU (5-Ethynyl
Uridine) (ThermoFisher, E10345). Assembled ribosomes were purified by
sucrose cushioning (see above) and the ribosome pellet was resuspended in 1
mL of TRIzol (ThermoFisher, 15596018). New RNA was purified by Click-iT
Nascent RNA Capture Kit (ThermoFisher, C10365), according to the
manufacturer's recommendations. Briefly, 500 ng of RNA were clicked with 0.5
mM Biotin-Azide and EU-labeled RNA was purified by Dnyabeads MyOne
Streaptavidin T1 beads. After washes, 1 yL of pre-diluted 1:200 ERCC RNA
spike-in control mixes (ThermoFisher, 4456740) was added to all samples and
reverse transcription was performed on the beads. The cDNA was then
quantified by gPCR using TagMan assay for the 18S rRNA (Thermo-fisher,
MmO04277571_s1) and the ERCC-130 (5-
/SHEX/CGGAACAGG/ZEN/GCTGACGCCGC/3IANKFQ/-3’). To correct for
differences in reverse transcription efficiency, each sample was internally
normalized over ERCC-130 values. Finally, each experiment was normalized

to a non-EU-labeled control.

Live cell imaging of RPL10a-PA-RFP

Cultured neurons were transfected at DIV 11-14, using the Magnetofectamine
O2tm system, to express RPL10a tagged with a photoactivatable RFP (p323-
L10A-PATagRFP, addgene plasmid #74172) and GFP as cell fill (pAcGFP1-
C1, Clontech 632470). One or two days after transfection, neurons were
imaged in supplemented E4 buffer (10 mM HEPES, 120 mM NaCl, 3 mM KClI,
10 mM D-Glucose, 2mM MgS04 and 2 mM MgS04, 1x B27, 1x GlutaMax, 1x
MEM amino acids) with an inverted spinning disk confocal microscope (Zeiss
3i imaging systems; model CSU-X1). Images were acquired with Plan-
Apochromat 63x/1.4 Qil DIC objective, at 488 nm (5 mW laser power and 50
ms exposure) and 561 nm (20 to 30 mW laser power and 100 ms exposure),
using the Slidebook 5.5 software. Transfected cells were identified as GFP-
positive. Z-stack (with 0.63 ym increments) was set to cover the whole cell

body, and time-lapse was set with 30 min intervals. Photoactivation of a circular
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region around the nucleolus (identified by the lack of GFP signal) was
performed using the 445 nm laser at 100 mW (two repetitions of 5 ms, at the
center of the z plane). The sum intensity projection was used for image
analysis. After background noise removal, the intensity inside the whole
nucleus was quantified at each time point, and normalized over the maximum

intensity reached after photoactivation.

Western blot

Samples (total cell lysates or sucrose cushion) were prepared as described
above. After addition of NuPAGE LDS Sample Buffer (ThermoFisher, NP0O07)
and NuPAGe Sample Reducing Agent (ThermoFisher, NP004) to a final
concentration of 1x, samples were loaded onto 4% to 12% Bis-Tris NUPAGE
gels (ThermoFisher). Gels were transferred using the Trans-Blot Turbo
Transfer Pack (Biorad, 1704157) on a PVDF membrane (Immobilon-FL,
IPFLO0010 0.45 um pore size). Membranes were stained using Revert 700
Total Protein Stain (LI-COR, 926-11015) for loading normalization.
Immunoblotting was performed with primary antibodies as indicated (see table
below for antibodies information) and secondary antibodies IRDye 680 and 800
(1:5000, LI-COR 926-68071, 926-68020, 926-32210, 926-32211). Images were
acquired using LI-COR Image Studio Lite (RRID:SCR_013715) and analyzed
using ImageJ/FIJI.
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Protein name

Gene symbol

ViewRNA ISH Cell Assay Probes
set (ThermoFisher, QVC0001)

CamKlla CaMK2a VC1-14332
Histone3 H3f3b VC6-11342
RACK1 Gnbl2I1 VC1-3061703
RPL10/uL16 Rpl10 VC1-20759
RPL13a/uL13 Rpl13a VC6-3229187
RPL18a/elL.20 Rpl18a VC6-3234577
RPL19/eL19 Rpl19 VC1-17134
RPL22/el22 Rpl22 VC1-3061648
RPL26/uL24 Rpl26 VC1-20756
RPL29/el29 Rpl29 VC1-20757
RPL36/eL.36 Rpl36 VC1-3060810
RPL36A/eL42 Rpl36a VC1-3065218
RPL38/eL.38 Rpl38 VC1-3077564
RPL4/uL4 Rpl4 VC1-20758
RPL5/uL18 Rpl5 VC6-3231617
RPL7a/elL8 Rpl7a VC6-3236240
RPLPO/uL10 Rplp0 VC1-10192
RPLP1/P1 Rplp1 VC1-3062658
RPLP2/P2 Rplp2 VC1-3062659
RPS11/uS17 Rps11 VC1-3061654
RPS13/uS15 Rps13 VC1-20760
RPS15a/uS8 Rps15a VC1-3062503
RPS17/eS17 Rps17 VC1-3060264
RPS21/eS21 Rps21 VC1-3061655
RPS25/eS25 Rps25 VC1-3062623
RPS26/eS26 Rps26 VC1-3060146
RPS27/eS27 Rps27 VC1-3062104
RPS29/uS14 Rps29 VC1-10529
RPS30/eS30 Fau VC1-3060571
RPS6/eS6 Rps6 VC1-3060274
RPS7/eS7 Rps7 VC6-3060244
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Antibody list:
Target Company Identifier Dilution
GAPDH abcam ab8245 1:2500 (WB)
1:2000 or
MAP2 SYSY 188004 1:1000 (IF)
. 1:10000 (IF)
Nucleolin abcam ab31163 1:2000 (WB)
puromycin Kerafast EQO0001 1:3500 (IF)
puromycin CRB-cambridge RANV10RbE76 1:200 (IF)
RACK1 abcam ab62735 1:200 (IF)
RanBP1 abcam ab97659 1:200 (IF)
RPL19/eL19 abcam ab224592 1:200 (IF)
RPL23/uL14 Proteintech 16086-1-AP 1:200 (IF)
RPL26/uL24 SIGMA R0655 1:1000 (IF)
RPL36A/eL42 Santa Cruz sc-100831 1:200 (IF)
RPL38/eL38 Bethyl A305-412A 1:2000 (IF)
RPL5/uL18 abcam ab186857 1:1000 (WB)
i 1:1000 (IF)
RPS11/uS17 Bethyl A303-936A 1:1000 (WB)
RPS15/uS19 abcam ab154936 1:500 (IF)
RPS25/eS25 ThermoFisher PA5-56865 1:1000 (IF)
RPS26/eS26 abcam ab229571 1:50 (IF)
RPS28/eS28 abcam ab133963 1:50 (IF)
i ) 1:1000 (WB)
RPS3/uS3 Bethyl A303-840A-M 1:100 (IF)
RPS30/eS30 abcam ab239073 1:500 (IF)
RPS3A/eS1 Bethyl A305-001A 1:1000 (IF)
RPS5/uS7 Bethyl A304-010A-M 1:250 (IF)
RPS9/uS4 Bethyl A303-946A-M 1:400 (IF)
Y10b abcam ab171119 1:1000 (IF)
Goat anti-guinea pig Jackson . 1:1000 (IF)
Dylight405 ImmunoResearch 106-475-003
Goat anti-guinea pig- ThermoFisher A11073 1:1000 (IF)
Alexa488
Goat anti-mouse- ThermoFisher A11005 1:1000 (IF)
Alexa594
Goat anti-mouse- ThermoFisher A11001 1:1000 (IF)
Alexa488
Goat anti-rabbit- ThermoFisher A11037 1:1000 (IF)
Alexa594
Goat anti- rabbit- ThermoFisher _
Alexad88 A11008 1:1000 (IF)
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