

1

2 **Tissue-specific versus pleiotropic enhancers within the *bric-a-brac* tandem gene duplicates**
3 **display differential regulatory activity and evolutionary conservation**

4

5 Henri-Marc G. Bourbon^{1#}, Mikhail H. Benetah^{1#}, Emmanuelle Guillou¹, Luis Humberto
6 Mojica-Vazquez^{1, 3}, Aissette Baanannou^{1, 4}, Sandra Bernat-Fabre¹, Vincent Loubiere^{2, 5},
7 Frédéric Bantignies², Giacomo Cavalli², and Muriel Boube^{1*}

8

9 ¹Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit,
10 Federal University of Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France; ²Institute
11 of Human Genetics, UMR9002 CNRS/University of Montpellier, 141 Rue de la Cardonille, F-
12 34396 Montpellier, France; ³Genotoxicología Ambiental, Departamento de Ciencias
13 Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México,
14 Circuito Exterior s/n, Ciudad Universitaria Coyoacán, 04510, México, México; ⁴Laboratory of
15 Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia;
16 ⁵Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria;
17 Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.

18

19 [#] Authors having contributed equally to this work.

20 *Corresponding author: muriel.boube-trey@univ-tlse3.fr

21

22

23 Running title: Differential enhancer conservation and activity within the *bric-a-brac* locus

24

25 **Abstract**

26 During animal evolution, *de novo* emergence and modifications of pre-existing transcriptional
27 enhancers have contributed to biological innovations, by implementing gene regulatory
28 networks. The *Drosophila melanogaster* *bric-a-brac* (*bab*) complex, comprising the tandem
29 paralogous genes *bab1-2*, provides a paradigm to address how enhancers contribute and co-
30 evolve to regulate jointly or differentially duplicated genes. We previously characterized an
31 intergenic enhancer (named LAE) governing *bab2* expression in leg and antennal tissues. We
32 show here that LAE activity also regulates *bab1*. CRISPR/Cas9-mediated LAE excision reveals
33 its critical role for *bab2*-specific expression along the proximo-distal leg axis, likely through
34 paralog-specific interaction with the *bab2* gene promoter. Furthermore, LAE appears involved
35 but not strictly required for *bab1-2* co-expression in leg tissues. Phenotypic rescue experiments,
36 chromatin features and a gene reporter assay reveal a large “pleiotropic” *bab1* enhancer (termed
37 BER) including a series of *cis*-regulatory elements active in the leg, antennal, wing, haltere and
38 gonadal tissues. Phylogenomics analyses indicate that (i) *bab2* originates from *bab1* duplication
39 within the Muscomorpha sublineage, (ii) LAE and *bab1* promoter sequences have been
40 evolutionarily-fixed early on within the Brachycera lineage, while (iii) BER elements have been
41 conserved more recently among muscomorphans. Lastly, we identified conserved binding sites
42 for transcription factors known or prone to regulate directly the paralogous *bab* genes in diverse
43 developmental contexts. This work provides new insights on enhancers, particularly about their
44 emergence, maintenance and functional diversification during evolution.

45 **Author summary**

46 Gene duplications and transcriptional enhancer emergence/modifications are thought having
47 greatly contributed to phenotypic innovations during animal evolution. However, how
48 enhancers regulate distinctly gene duplicates and are evolutionary-fixed remain largely
49 unknown. The *Drosophila* *bric-a-brac* locus, comprising the tandemly-duplicated genes *bab1*-
50 2, provides a good paradigm to address these issues. The twin *bab* genes are co-expressed in
51 many tissues. In this study, genetic analyses show a partial co-regulation of both genes in the
52 developing legs depending on tissue-specific transcription factors known to bind a single
53 enhancer. Genome editing and gene reporter assays further show that this shared enhancer is
54 also required for *bab2*-specific expression. Our results also reveal the existence of partly-
55 redundant regulatory functions of a large pleiotropic enhancer which contributes to co-regulate
56 the *bab* genes in distal leg tissues. Phylogenomics analyses indicate that the *Drosophila* *bab*
57 locus originates from duplication of a dipteran *bab1*-related gene, which occurred within the
58 Brachycera (true flies) lineage. *bab* enhancer and promoter sequences have been differentially-
59 conserved among Diptera suborders. This work illuminates how transcriptional enhancers from
60 tandem gene duplicates (i) differentially interact with distinct cognate promoters and (ii)
61 undergo distinct evolutionary changes to diversifying their respective tissue-specific gene
62 expression pattern.

63

64 **Introduction**

65 Gene duplications have largely contributed to create genetic novelties during evolution (1, 2).
66 Intra-species gene duplicates are referred to as “paralogs”, which eventually diverged
67 functionally during evolution in a phylogenetic manner. Gene family expansion has facilitated
68 phenotypic innovation through (i) acquisition of new molecular functions or (ii) the subdivision
69 of the parental gene function between the duplicate copies (3-5). Phenotypic novelties are
70 thought having originated mainly from evolutionary emergence or modifications of genomic
71 Cis-Regulatory Elements (CREs) or modules, most often dubbed as “enhancer” regions, which
72 regulate gene transcription in a stage-, tissue- and/or cell-type-specific manner (6-10). How
73 CRE (enhancers) within gene complexes (i) are distinctly interacting with their cognate
74 promoters and (ii) are differentially (co-)evolving remain largely unknown.

75 The *Drosophila melanogaster* *bric-a-brac* (*bab*) locus comprises two tandemly-duplicated
76 genes (Fig 1A), *bab1-2*, which encode paralogous transcription factors sharing two conserved
77 domains: (i) a Bric-a-brac/Tramtrack/Broad-complex (BTB) domain involved in protein-
78 protein interactions, and (ii) a specific DNA-binding domain (referred to as BabCD, for Bab
79 Conserved Domain), in their amino(N)- and carboxyl(C)-terminal moieties, respectively (11).
80 *Bab1-2* proteins are co-expressed in many tissues (11, 12). In the developing abdominal
81 epidermal cells, within so-called histoblast nests, they jointly regulate directly *yellow*
82 expression in a sexually-dimorphic manner, thus controlling adult male versus female body
83 pigmentation traits (13-16). *bab1-2* co-expression in the developing epidermal histoblast nests
84 is partially governed by two CREs which drive reporter gene expression (i) in a monomorphic
85 pattern in the abdominal segments A2-A5 of both sexes (termed AE, for “Anterior Element”),
86 and (ii) in a female-specific pattern in the A5-A7 segments (DE, for “Dimorphic Element”) (Fig
87 1A) (14, 17). In addition to controlling male-specific abdominal pigmentation traits, *bab1-2* are
88 required, singly, jointly or in a partially-redundant manner, for embryonic cardiac development,

89 sexually-dimorphic larval somatic gonad formation, salivary glue gene repression, female
90 oogenesis, wing development as well as distal leg (tarsal) and antennal segmentation (11, 13,
91 17-24). In addition to abdominal AE and DE, two other *bab* enhancers, termed CE and LAE
92 (see Fig 1A), have been characterized, which recapitulate *bab2* expression in embryonic cardiac
93 cells and developing tarsal as well as distal antennal cells, respectively (17, 21, 25).

94 Adult T1-3 legs, on the pro-, meso- and meta-thoraces, respectively, are derived from distinct
95 mono-layered epithelial cell sheets, organized as sac-like structures, called leg imaginal discs
96 (hereafter simply referred to as leg discs) (26-28). Upon completion of the third-instar larval
97 stage (L3), each leg disc is already patterned along the proximo-distal (P-D) axis through
98 regionalized expression of the Distal-less (Dll), Dachshund (Dac) and Homothorax (Hth)
99 transcriptional regulators in the distal (center of the disc), medial and proximal (peripheral)
100 regions, respectively (26). The five (ts1-5) tarsal and the single pretarsal (distalmost) segments
101 are patterned through genetic cascades mobilizing transcription factors, notably the distal
102 selector protein Dll and the tarsal Rotund protein as well as nuclear effectors of Notch and
103 Epidermal Growth Factor Receptor (EGFR) signaling, i.e., Bowl and C15, respectively (26,
104 27).

105 While both *bab* genes are required for dimorphic abdominal pigmentation traits and somatic
106 gonad specification (13, 22), only *bab2* is critical for tarsal segmentation (11). While *bab1* loss-
107 of-function legs are apparently wild-type, a null allele (*bab*^{AR07}) removing *bab2* (and *bab1*)
108 activities causes segmental transformation along the P-D leg axis, notably sex comb teeth in
109 tarsal segments ts2-3 of male forelegs, normally only found in ts1, as well as ts2-5 tarsal fusions
110 in both genders (11). While the two *bab* genes are co-expressed within ts1-4 cells, *bab2* is
111 expressed more proximally than *bab1* in ts1, and in a graded manner along the P-D leg axis in
112 ts5 (11, 29). We previously showed that *bab2* expression in distal leg (and antennal) tissues is
113 governed by a 567-bp-long CRE/enhancer (termed LAE for “Leg and Antennal Enhancer”)

114 which is situated between the *bab1*-2 transcription units (Fig 1A) (17, 25). However, LAE
115 enhancer contribution to *bab1*-2 co-regulation in the developing distal legs remains to be
116 investigated in tarsal segments ts3-4 where expression levels of both paralogous BTB-BabCD
117 proteins are the highest (see Fig 1B) (11).

118 Here, we show that *bab1* expression in the developing distal leg also depends on the Rotund,
119 Bowl and C15 proteins, three transcription factors known to regulate directly *bab2* expression,
120 by binding to dedicated LAE sequences (17, 25). LAE excision by CRISPR/Cas9-mediated
121 genome editing indicates that this enhancer is partly involved in *bab1*-2 co-regulation and, more
122 unexpectedly, is also required for their differential expression along the P-D leg axis.
123 Additionally, we show that LAE acts redundantly with a large enhancer signature region
124 (termed BER), located within the *bab1* transcription unit, which is bound by dedicated
125 transcription factors involved in diverse developmental processes and thus BER is prone to act
126 as a “pleiotropic” enhancer region. Our phylogenomics analyses indicate that LAE and *bab1*
127 promoter sequences have been fixed early on during dipteran evolution, well before *bab1*
128 duplication. Conversely, BER and *bab2* promoter sequences have been fixed much later. Lastly,
129 within *D. melanogaster* BER, we identified conserved binding sites for many transcriptional
130 regulators known or prone to regulate *bab1* and/or *bab2* expression in the developing leg and
131 antenna, but also in wing, haltere, mesodermal and gonadal tissues. This work illuminates how
132 transcriptional enhancers from tandem gene duplicates (i) differentially interact with distinct
133 cognate promoters and (ii) undergo distinct evolutionary changes to diversifying their
134 respective tissue-specific gene expression pattern.

135

136 **Results**

137 **The tandem *bab1*-2 gene paralogs are co-regulated in the developing distal leg**

138 In addition to the distal selector homeodomain (HD) protein Distal-less, we and others have
139 previously shown that the C15 HD protein (homeoprotein) as well as Rotund and Bowl Zinc
140 Finger (ZF) transcription factors (TFs) bind dedicated sequences within LAE to ensure precise
141 *bab2* expression in four concentric tarsal rings within the leg discs (Fig 1B) (17, 25). *bab1-2*
142 are co-expressed in ts2-4 tarsal segments, while *bab2* is specifically expressed in ts5 and more
143 proximally than *bab1* in ts1, both in a graded manner along the P-D leg axis (Fig 1C and S1A
144 Fig) (11). Given *bab1-2* co-expression in ts1-4, we first asked whether *C15*, *rotund* and *bowl*
145 activities are also controlling *bab1* expression in the developing distal leg. To this end, we
146 compared Bab1 expression with that of a X-linked *LAE-GFP* (or *LAE-RFP*) reporter gene
147 faithfully reproducing the *bab2* expression pattern there (17, 25), in homozygous mutant leg
148 discs for a null *C15* allele or in genetically-mosaic leg discs harboring *rotund* or *bowl* loss-of-
149 function mutant cells (Fig 1D-F).

150 *C15* is specifically activated in the distalmost (center) part of the leg disc giving rise to the
151 pretarsal (pt) segment (see Fig 1B) (30, 31). We have previously shown that the C15
152 homeoprotein down-regulates directly *bab2* to restrict its initially broad distal expression to the
153 tarsal segments (25). Bab1 expression analysis in a homozygous *C15* mutant leg disc revealed
154 that both *bab1* and *LAE-RFP* (*bab2*) are similarly de-repressed in the pretarsus (Fig 1, compare
155 panels C-D).

156 In contrast to *C15*, *rotund* expression is restricted to the developing tarsal segments (32) and
157 the transiently-expressed Rotund ZF protein contributes directly to *bab2* up-regulation in
158 proximal (ts1-2) but has no functional implication in distal (ts3-5) tarsal cells (17).
159 Immunostaining of genetically-mosaic leg discs at the L3 stage revealed that *bab1* is cell-
160 autonomously down-regulated in large *rotund* mutant clones in ts1-2, but not in ts3-4 segments
161 (Fig 1E), as it is the case for *LAE-GFP* reflecting *bab2* expression. Lastly, we examined whether
162 the Bowl ZF protein, a repressive TF active in pretarsal but not in most tarsal cells, is down-

163 regulating *bab1* expression there (33), like *bab2* (25). Both *bab1* and *LAE-RFP (bab2)* appeared
164 cell-autonomously de-repressed in *bowl* loss-of-function pretarsal clones (Fig 1F).

165 In addition to loss-of-function, we also conducted gain-of-function experiments for *bowl* and
166 *rotund*. *Bowl* TF gain-of-function was achieved by down-regulating *lines* which encodes a
167 related but antagonistic ZF protein (i) destabilizing nuclear *Bowl* and is specifically expressed
168 in the tarsal territory (33). As previously shown for *LAE-GFP* (and *bab2*) expression, nuclear
169 *Bowl* stabilization in the developing tarsal region appears sufficient to down-regulate cell-
170 autonomously *bab1* (S1C Fig). Prolonged expression of the *Rotund* protein in the entire distal
171 part of the developing leg disc, i.e., tarsal in addition to pretarsal primordia, induces ectopic
172 *bab1* expression in the presumptive pretarsal territory, albeit with some differences with *bab2*
173 expression (S1B Fig, differentially-expressing cells are indicated with arrows), thus suggesting
174 differential sensitivity of the two gene duplicates to *Rotund* TF levels (see discussion).

175 Taken together, these data indicate that the C15, *Bowl* and *Rotund* transcription factors,
176 previously shown to interact physically with specific LAE sequences and thus to regulate
177 directly *bab2* expression in the developing distal leg, are also regulating *bab1* expression there.
178 These results suggest that the limb-specific intergenic LAE enhancer activity regulates directly
179 both *bab* genes.

180

181 **LAE activity regulates both *bab1* and *bab2* gene paralogs along the proximo-distal leg axis**

182 To test the role of LAE in regulating *bab1-2*, we deleted precisely the LAE sequence through
183 CRISPR/Cas9 genome editing (see Materials and Methods) (Fig 2A). Two independent
184 deletion events (termed *ΔLAE-M1* and *-M2*; see S2 Fig for deleted DNA sequences) were
185 selected for phenotypic analysis. Both are homozygous viable and give rise to fertile adults with
186 identical fully-penetrant distal leg phenotypes, namely ectopic sex-comb teeth on ts2 (normally

187 only found on ts1) tarsal segment in the male prothoracic (T1) legs (Fig 2B), which are typical
188 of *bab2* hypomorphic alleles (11). The *ΔLAE-M1* allele was selected for detailed phenotypic
189 analyses and is below referred to as *bab^{ΔLAE}*.

190 First, we quantified *bab1* and *bab2* mRNAs prepared from dissected wild-type and homozygous
191 *bab^{ΔLAE}* mutant leg discs. As shown in Fig 2C, both mRNAs were detected in mutant discs,
192 although *bab1* levels were two times lower than wild-type. Second, Bab1-2 expression patterns
193 were analyzed in homozygous *bab^{ΔLAE}* leg discs (Fig 3). To identify leg cells that should
194 normally express *bab2*, we used the X-linked *LAE-GFP* reporter. In homozygous *bab^{ΔLAE}*
195 mutant leg discs, *bab2* specific expression (see Fig. 1B) is no longer observed (Fig 3B-C), while
196 Bab1-2 shared expression is very low in ts3-4 to undetectable in ts1-2. Nevertheless, residual
197 *bab1*-2 co-expression in homozygous *bab^{ΔLAE}* mutant discs indicates that additional *cis*-
198 regulatory region(s) within the *bab* locus act(s), at least partly, redundantly with the LAE
199 enhancer.

200 Taken together, our data indicate that LAE enhancer activity is (i) required for *bab1*-2 co-
201 expression in the two proximal-most tarsal segments, particularly ts1, (ii) dispensable for their
202 co-expression in ts3-4, suggesting the presence of redundant *cis*-regulatory information and (iii)
203 critically required for *bab2*-specific tarsal expression both proximally and distally. Thus, LAE
204 activity governs both shared and paralog-specific expression of the *bab1*-2 gene duplicates.

205

206 **LAE paralog-specific activity requires the *bab2* core promoter**

207 Whereas enhancer emergence has been proposed to account for acquisition of novel tissue- or
208 paralog-specific functions for gene duplicates (34-36), LAE regulatory function provides an
209 example of a single enhancer responsible both for shared and differential expression of two
210 tandemly-repeated gene paralogs. Previously tested LAE reporter constructs fused *bab2* core

211 promoter sequences to the minimal *Hsp70* promoter region (*pHsp70*) (17, 25). To examine the
212 contribution of the *bab2* promoter to LAE activity we compared the expression of two LAE
213 reporters containing (*LAE-RFP*) or not (*LAE-pHsp70only-GFP*) the *bab2* promoter sequence
214 (Fig 3D). Strikingly, the *LAE-pHsp70only-GFP* reporter was no longer activated in *RFP* +
215 (*bab2*-expressing) ts1 and ts5 cells (Fig 3E; see white brackets and arrows). These data indicate
216 that *bab2*-specific regulation by LAE activity requires the *bab2* core promoter sequences.

217

218 **In addition to the intergenic LAE, other leg-specific enhancer elements are present within
219 the *bab1* first intron**

220 Since LAE appeared dispensable for *bab1-2* co-expression in ts3-4 cells, our data suggested the
221 existence of other redundant *cis*-regulatory elements, presumably located also within the *bab*
222 locus. On one side, a X-linked Bacterial Artificial Chromosome (BAC) construct,
223 *BAC26B15^{ZH2A}*, encompassing the *bab2* gene and downstream intergenic sequence including
224 LAE (see Fig 4A), could rescue (i) Bab2 expression in the tarsal primordium and (ii), distal leg
225 phenotypes detected in homozygous animals for the null allele *bab^{AR07}* (17). On the other side,
226 a *BAC26B15* construct (*BAC26B15ΔLAE^{ZH2A}*) inserted at the same genomic landing site and
227 specifically lacking LAE sequence did not (Fig 4B-D). These results confirmed that (i) in
228 absence of redundant *cis*-regulatory information, LAE is essential for *bab1-2* expression in the
229 tarsal segments and (ii) the *cis*-information redundant with LAE is located outside the genomic
230 region covered by *BAC26B15*.

231 To identify limb-specific redundant *cis*-regulatory information within the *bab* complex, we first
232 tested the capacity of another BAC, *BAC69B22*, which overlaps *bab1* and lacks LAE (see Fig
233 4A), to restore Bab1 expression in *bab^{AR07}* mutant leg discs. As shown in Fig 4E-F, the X-linked
234 *BAC69B22^{ZH2A}* could restore *bab1* expression in ts2-4, indicating that it contains *cis*-regulatory

235 information redundant with LAE activity in these segments. To test the capacity of *BAC69B22*
236 sequences to also regulate *bab2* expression in ts2-4, we placed *BAC69B22^{ZH2A}* across
237 *BAC26B15ΔLAE^{ZH2A}*, to allow pairing-dependent *trans*-interactions (i.e., transvection) between
238 the two X chromosomes in females. This configuration partially restored Bab2 expression in
239 ts2-4 cells from *bab^{AR07}* mutant L3 leg discs, albeit in salt and pepper patterns (Fig 4G),
240 diagnostic of transvection effects (37).

241 From these data, we predicted the existence of *cis*-regulatory information within the 69B22
242 chromosomal interval capable to drive some *bab1-2* expression in distal leg tissues and acting
243 redundantly with the LAE enhancer.

244

245 **Chromatin features predict limb-specific *cis*-regulatory elements within *bab1***

246 Next, we sought to identify *cis*-regulatory information acting redundantly with LAE by taking
247 advantage of available genome-wide chromatin features and High-throughput chromosome
248 conformation Capture (Hi-C) experiments performed from L3 eye-antennal and/or leg discs
249 (Fig 5). *bab1-2* are indeed co-expressed in distal antennal cells within the composite eye-
250 antennal imaginal disc (11). A topologically-associating domain covering the entire *bab* locus
251 was detected in Hi-C data from eye-antennal discs (Fig 5A and S3A Fig) (38), revealing
252 particularly strong interactions between *bab1-2* promoter regions.

253 We then used published genome-wide data from Chromatin Immuno-Precipitation (ChIP-Seq),
254 Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-Seq) and Assay for
255 Transposase-Accessible Chromatin (ATAC-Seq) experiments (38-41), looking for active
256 enhancer marks (H3K4me1 and H3K27Ac) and nucleosome-depleted chromatin regions (thus
257 accessible to transcription factors). Active enhancer signatures are mainly associated with a
258 ~15-kb-long genomic region that we termed BER, for “*bab1* Enhancer Region”, encompassing

259 the *bab1* promoter, first exon and part of its first intron (Fig 5B, lanes 1-2 and 5-6, respectively;
260 see also S3B Fig for peak calling data). Note that LAE is also accessible to transcription factors
261 and carries H3K4me1 marks, consistently with enhancer activity in distal antennal cells (17).
262 To more precisely locate putative enhancer element(s) within BER, we analyzed previously-
263 published ChIP-Seq data from L3 leg discs (42) for binding sites for Dll, Sp1 and Hth proteins,
264 known to regulate *bab1* and/or *bab2* expression in the developing legs (17, 42-44). Strong Dll
265 binding is detected throughout BER, including over the *bab1* promoter (Fig 5B, lane 10; see
266 also S3B Fig). In leg discs, Dll binding is detected over 8 out of 10 Open Chromatin Subregions
267 (OCS) within BER (Fig 6C and S3B Fig) and six of those eight are also bound by Sp1 ZF
268 protein. Of note, all nucleosome-depleted (i.e., OCS) BER subregions in the leg are also
269 accessible in the eye-antennal discs (40) (Fig 5B, compare lanes 2 and 9, and Fig 6C, two upper
270 lanes). Lastly, of six OCS sequences co-bound by Dll and Sp1, four are also bound by Hth
271 protein (Fig 5B, lane 8, and Fig 6C, bottom lane). FAIRE-Seq data indicate that, in addition to
272 LAE, only OCS7 is nucleosome-depleted in the leg and eye-antennal discs but not the wing
273 and/or haltere discs (Fig 5B, lanes 13, 16, 18, and Fig 6C, four upper lines; see also S3B Fig).
274 Importantly, ventral limb-specific OCS7 is co-bound by Dll, Sp1 and Hth transcription factors
275 (Fig 6C). Thus, within the entire *bab* locus, only LAE and BER OCS7 are specifically bound
276 by transcriptional regulators in the developing leg and antenna.
277 In summary, data mining indicates that BER includes a cluster of enhancer elements bound by
278 Dll and Sp1 in leg discs and thus are good candidates for acting redundantly with LAE in
279 regulating *bab* genes in a ventral limb-specific manner.
280

281 **BER includes multiple *cis*-regulatory elements active in diverse developmental contexts**

282 To further ascribe regulatory roles to BER subregions, we took advantage of a systematic
283 analysis of Gal4 reporter lines (45). Out of six lines containing BER fragments (Fig 6B), only
284 two, 73C11 and 73C05, overlapping OCS1-3, are active in the leg and eye-antennal discs
285 (FlyLight database; (<http://flweb.janelia.org/cgi-bin/flew.cgi>; S4B Fig). Nevertheless, none
286 reproduce the *bab1/2* leg or antennal expression patterns in four or two concentric distal rings,
287 respectively. These and other published data from reporter constructs including *bab1* first intron
288 sequences (14) indicate that OCS1-7 (see Fig 6B) are not sufficient to properly drive *bab1/2*
289 expression in the developing legs and suggest the requirement of additional BER elements,
290 particularly the *bab1* promoter region (i.e., OCS9). This hypothesis is consistent with binding
291 of the known *bab1-2* leg regulators Dll and Sp1 throughout BER, in addition to LAE (Fig 5,
292 lane 10; and S3B Fig).

293 The 73C05 BER fragment also drives reporter gene expression in the wing, haltere and genital
294 discs (S4 Fig, panels E and H-J) in patterns strikingly similar to those described for *bab2* (11,
295 44). Consistently, FAIRE- and ChIP-Seq data from haltere discs indicate respectively that
296 OCS1-3 are nucleosome-free and bind the Ultrabithorax (Ubx) Hox-type homeoprotein known
297 to activate directly *bab2* expression in haltere tissues (Fig 5B, lanes 16-17, and Fig 6C) (46,
298 47). Furthermore, ChIP-Seq data from whole L3 larvae (modENCODE), showed binding over
299 the entire BER region of the Hox Abd-B genital selector (Fig5B, lane 20) (48). Lastly, BER
300 includes (i) nucleosome-depleted sequences governing expression in adult muscles and bound
301 by the mesodermal transcription factors Mef2, Slp1 and Tinman in late embryos (14, 49) as
302 well as (ii) a sequence element (overlapping OCS5) which confers enhancer activity in ovarian
303 somatic cells (50) (see Fig 6D).

304 Taken together, our data indicate that BER sequences drive *bab1-2* expression in developing
305 limbs but also in other tissues such as wing, haltere, genitalia and mesoderm. Moreover, owing
306 to the presence of binding sites for transcription factors known to regulate *bab* gene expression

307 in these respective tissues, spread out over the whole BER sequence, the latter is thus proposed
308 to act as a pleiotropic enhancer region.

309

310 **Cross- and auto-regulations among the *bab* genes**

311 Bab proteins interact with A/T-rich DNA sequences through their BabCD DNA-binding
312 domain, including binding sites within their own locus (51). We therefore tested whether the
313 Bab1-2 proteins autoregulate and/or cross-regulate their own expression. Previous data
314 indicated that Bab2 protein expression is unaffected in *bab1* loss-of-function mutants (11).
315 Given that protein null *bab2* alleles are not available, we used RNA interference coupled to
316 flip-out (FO) Gal4 expression to down-regulate clonally *bab2* expression within developing
317 legs, and examine *LAE-RFP* and *bab1* expression in mosaic L3 leg discs (Fig 7). Strikingly,
318 both *LAE-RFP* and *bab1* were up-regulated cell-autonomously in most tarsal mitotic clones
319 (n=17/20) (Fig 7, panels A-A’). Moreover, *bab2* down-regulation in proximal-most RFP+ ts1
320 cells (expressing only *bab2*) activated cell-autonomously *bab1*, in addition to up-regulating
321 *LAE-RFP* expression (Fig 7, white arrows in panels B-B’). These results suggested to us that
322 the *bab2* paralog specifically down-regulates its own expression through partial repression of
323 LAE enhancer activity. To confirm these observations, we generated mutant clones for the
324 *bab^{AR07}* null allele, lacking both *bab2* and *bab1* activities. A slight cell-autonomous *LAE-GFP*
325 reporter up-regulation could be observed in all examined *bab^{AR07}* clones (detected with anti-
326 Bab2 antibodies; n>20) (Fig 7, panels C-C’), independently of their size and position within
327 *bab2*-expressing tarsal cells (see white arrows and arrowheads).

328 Altogether, we conclude that *bab2* down-regulates its own expression, likely via partial
329 repression of LAE activity, thus ensuring appropriate levels of both paralogous BTB-BabCD
330 transcription factors in distal leg tissues, and most likely in other appendages as well.

331

332 **The *bab* gene complex arose from *bab1* duplication in the Muscomorpha infraorder**

333 The different levels of *cis*-regulatory element redundancy within the *bab* locus led us to trace
334 back the evolutionary origin of the *bab* duplication found in *D. melanogaster* (*Dmel*). To start,
335 we identified proteins orthologous to *Dmel* Bab1 or Bab2, i.e., displaying an N-terminal BTB
336 associated to a C-terminal BabCD domain (collectively referred to as BTB-BabCD proteins)
337 (11) within highly diverse dipteran species (see Fig 8A). Two distinct BTB-BabCD proteins
338 strongly related to *Dmel* Bab1 and Bab2, respectively, were identified in the Muscomorpha
339 (higher flies, also known as Cyclorrhapha) superfamily, both within the Schizophora (in
340 Calyptratae, such as *Musca domestica* and *Glossina morsitans*, and in Acalyptratae, particularly
341 among Drosophilidae) and Aschiza subsections (Fig 8A-B and Supplementary data). In
342 contrast, a single BTB-BabCD protein could be identified in evolutionarily-distant dipteran
343 species within (i) the brachyceran Asilomorpha and Stratiomyomorpha superfamilies (such as
344 *Proctacanthus coquillettii* and *Hermetia illucens*, respectively), collectively referred to as
345 Orthorrhapha; (ii) the Nematocera suborder families (with rare exceptions, in Psychodomorpha
346 and Bibionomorpha, see below); (iii) other Insecta orders (e.g., Coleoptera, Hymenoptera and
347 Lepidoptera), and in crustaceans (e.g., *Daphnia pulex*) (see Supplementary data).

348 To analyze the phylogenetic relationships between these different Bab-related proteins, their
349 primary sequences were aligned and their degree of structural relatedness examined through a
350 maximum likelihood analysis. As expected from an ancient duplication, muscomorphan Bab1-
351 2 paralogs cluster separately, while singleton asilomorphan BTB-BabCD proteins are more
352 related to muscomorphan Bab1 than Bab2 (Fig 8B and S5 Fig), indicating that muscomorphan
353 *bab2* originated from *bab1* duplication.

354 Interestingly, contrary to most nematocerans, two or even three *bab1* paralogs are present in
355 the fungus gnat *Coboldia fuscipes* (Psychodomorpha) and the gall midge *Mayetiola destructor*
356 (Bibionomorpha), respectively. Significantly, *M. destructor* and *C. fuscipes* *bab1* paralogs (i)
357 cluster separately in our phylogenetic analysis (Fig 8B and S5 Fig) and (ii) two are arrayed in
358 the same chromosomal contexts for both species (S6 Fig), indicating that they have likely been
359 generated through independent gene duplication processes in the Bibionomorpha and
360 Psychodomorpha, respectively.

361 Taken together, and updating a previous work (13), our phylogenomics analysis (summarized
362 in Fig 9B-C) indicates that a single ancestral *bab* gene related to *bab1* has been duplicated to
363 give rise to *bab2* within the Muscomorpha (Cyclorrhapha) infraorder.

364

365 **LAE sequences have been fixed in the Brachycera, thus predating *bab1* duplication**

366 Having traced back the *bab* gene duplication raised the question of the evolutionary origin of
367 the LAE enhancer, which regulates both *bab1* and *bab2* expression (17) (this work). We have
368 previously shown that LAE includes three subsequences highly-conserved among twelve
369 reference Drosophilidae genomes (52), termed CR1-3 (for Conserved Regions 1 to 3; see S7A
370 Fig and Supplementary data), of which only two, CR1 and 2, are critical for tissue-specificity
371 (17, 25). The 68 bp CR1 includes contiguous binding sites for Dll and C15 homeoproteins,
372 while the 41 bp CR2 comprises contiguous binding sites for Dll as well as the ZF protein Bowl
373 (S7 Fig, panels B and C, respectively) (17, 25).

374 To trace back the LAE evolutionary origin, we then systematically searched for homologous
375 CR1-3 sequences (>50% identity) in dipteran genomes. Importantly, conserved LAE sequences
376 have not been yet reported outside drosophilids. Small genomic regions with partial or extensive
377 homologies to the CR1 (encompassing the C15 and Dll binding sites) and CR2 (particularly the

378 Dll and Bowl binding sites) could be detected in all examined Brachycera families but not in
379 any nematoceran (Fig 9B and S7B-C Fig). Contrary to closely-associated CR1-2 homologous
380 sequences, no CR3-related sequence could be identified nearby, in any non-Drosophilidae
381 species. Significantly, homologous LAE sequences are situated (i) in between the tandemly-
382 duplicated paralogs in muscomorphan species for which the entire *bab* locus sequence was
383 available to us, suggesting an evolutionarily-conserved enhancer role, or (ii) 20 kb upstream of
384 the *bab1*-related singleton in the asilomorphan *P. coquilletti* (see Fig 9C).

385 Taken together, as summarized in Fig 9A-C, these data suggest that a LAE-like enhancer with
386 CR1- and CR2-related elements emerged early on in the Brachycera suborder, 180-200 million
387 years ago, and has been since fixed within or upstream the *bab* locus in the Muscomorpha and
388 Asilomorpha infraorders, respectively.

389

390 **Like LAE elements, *bab1* promoter sequences have been fixed early on in the Brachycera**
391 Given their differential interplay with the long-lasting LAE enhancer, we next analyzed the
392 evolutionary conservation of *Dmel* *bab1*-2 promoter core sequences (Fig 9B and S8 Fig). Both
393 *bab* promoters are TATA-less. Whereas *bab1* has a single transcriptional initiator (Inr) element
394 (TTCAGTC), its *bab2* paralog displays tandemly-duplicated Inr sequences (ATTCAGTTCGT)
395 (53, 54) (S8 Fig). Both promoters display 64% sequence identity over 28 base pairs, including
396 Inr (TTCAGT) and downstream putative Pause Button (PB; consensus CGNNCG) sequences
397 (55) (see S8A Fig). These data suggested that (i) the duplication process having yielded *bab2*
398 included the ancestral *bab1* promoter and (ii) PolII pausing ability previously shown for *bab2*
399 promoter (56-58) probably also occurs for *bab1* promoter.

400 Homology searches revealed that *bab1* promoter sequences have been strongly conserved in
401 the three extant Muscomorpha families and even partially in some asilomorphans (e.g., *P.*

402 *coquellitti*), for which a *bab1*-related singleton gene is present (Fig 9B and S8B Fig). In striking
403 contrast to *bab1*, sequence conservation of the *bab2* promoter could only be detected among
404 some Acalyptratae drosophilids (Fig 9B and S8C Fig). In agreement with a fast-evolutionary
405 drift for *bab2* promoter sequences, the duplicated Inr is even only detected in Drosophila group
406 species.

407 Taken together, these evolutionary data (summarized in Fig 9B) indicate that, likewise for the
408 LAE enhancer, *bab1* promoter sequences have been under strong selective pressure among the
409 Brachycera, both in the Muscomorpha and Asilomorpha infraorders, while paralogous *bab2*
410 promoter sequences diverged rapidly among muscomorphans.

411

412 **Unlike LAE, other *bab* CRE sequences have not been conserved beyond the**
413 **Muscomorpha**

414 The broad LAE sequence conservation led us to also trace back the evolutionary origins of the
415 pleiotropic BER enhancer region as well as the cardiac CE, abdominal anterior AE and
416 sexually-dimorphic DE *cis*-regulatory elements (see Fig 9). Sequences homologous to half of
417 the BER OCS subregions could be detected among the 12 reference Drosophilidae genomes
418 (52), in Calyptratae schizophorans and even in the Muscomorpha Aschiza subsection (e.g.,
419 OCS3) (S10-18 Fig). Unlike the LAE enhancer, homologous BER sequence elements (except
420 the *bab1* promoter) could not be detected in non-muscomorphan families. Cardiac CE and
421 abdominal DE are even less conserved given that related sequences could be only detected
422 within schizophoran (excepted in Calyptratae) (Fig 9B and S9 Fig, panels B and C,
423 respectively), whereas abdominal AE sequences could be only identified among drosophilids
424 (Supplementary data) but not in aschizan, asilomorphan and nematoceran *bab* loci.

425 In conclusion, contrary to the LAE enhancer which among the Diptera emerged early on in the
426 Brachycera suborder, other so-far identified *bab* *cis*-regulatory sequences have not been
427 conserved beyond the Muscomorpha infraorder. Thus, as summarized in Fig 9B, and unlike the
428 long-lasting brachyceran LAE (CR1-2) sequences, these data suggest that other enhancer
429 sequences have been fixed within the Muscomorpha concomitantly (BER) or even after (CE,
430 DE and AE) the *bab2* paralog emergence. Moreover, as expected for a pleiotropic enhancer
431 region, BER sequence conservation allowed us to predict binding sites for transcription factors
432 known, or so far unsuspected, prone to regulate directly the two *bab* genes in many distinct
433 developmental contexts, and which are presented hereafter.

434

435 **Predictive TF combinatorial code governing *bab* gene expression in diverse tissues**

436 We gathered our data from TF binding site evolutive conservation (described in Supplementary
437 data and S10-19 Fig) with ChIP-Seq experiments from the literature (GEO datasets; see
438 Materials and Methods) (Fig 5B and S3B Fig). Associated with our precise knowledge of *bab*
439 locus enhancer sequences and with previous genetic data also gained from the literature, our
440 compilation presented in Fig. 10 allows to propose new models for the TF code involved in
441 *Dmel* *bab* locus regulation: (i) It provides new insights into limb-specific *bab1/2* regulation
442 proposing additional direct regulators such as Sp1 in the legs, Hth in the antenna, Scalloped
443 (Sd) in the wing and Ubx in the haltere (ChIP-Seq data shown in S3 Fig); (ii) It suggests that
444 BER also acts as an enhancer region for *bab* gene regulation in other developmental contexts
445 and that common TF sets (notably Abd-B together with Dsx) are acting through distinct *cis*-
446 regulatory elements within BER to drive *bab* gene expression in distinct tissues (e.g., in
447 abdominal histoblast nests versus genitalia); (iii) It proposes a direct Bab2 binding on LAE for
448 *bab* gene auto- and cross regulation (tested above); (iv) Finally, analysis of sequences conserved

449 among brachyceran *bab* loci identified predicted binding sites for more broadly-expressed
450 transcriptional regulators, i.e., GAF, Pho and CTCF (directly interacting with BER OCS; see
451 Fig 5B, lanes 3, 14 and 19, respectively, as well as S3 Fig for GAF), as well as Eip93F,
452 Eip74EF, Chinmo, all related to chromatin organization whose putative roles in *bab* locus
453 regulation are discussed hereafter.

454

455 **Discussion**

456 In this work, we have addressed the issue of the emergence and functional diversification of
457 enhancers and promoters from two tandem gene duplicates. Using the *Drosophila bab* locus as
458 a model, we showed that the paralogous genes *bab1-2* originate from an ancient *bab1*
459 duplication in the Muscomorpha/Cyclorrhapha. The early-fixed brachyceran *bab1* LAE has
460 been co-opted lately to regulate also *bab2* expression. Furthermore, this unique enhancer is also
461 responsible for paralog-specific *bab2* expression along the P-D leg axis presumably through
462 privileged interactions with the *bab2* promoter. Finally, LAE regulates only some aspects of
463 *bab1-2* expression in the developing limbs because redundant information has emerged within
464 a large pleiotropic enhancer driving *bab1* and/or *bab2* expression in highly-diverse tissues, by
465 binding common sets of developmental transcription factors. This work brings some cues about
466 (i) how a single enhancer can drive specificity among tandem gene duplicates, (ii) how
467 enhancers evolutionary adapt with distinct cognate gene promoters, and (iii) which functional
468 links can be predicted between dedicated transcription factors and chromatin dynamics during
469 development.

470

471 **A shared enhancer differentially regulating two tandem gene paralogs through distinct**
472 **promoter targeting specificities**

473 Here, we have shown that a single enhancer, LAE, regulates two tandem gene paralogs at the
474 same stage and in the same expression pattern. How can this work? It has been proposed that
475 enhancers and their cognate promoters are physically associated within phase-separated nuclear
476 foci composed of high concentrations of TFs and proteins from the basal RNA polymerase II
477 (PolII) initiation machinery inducing strong transcriptional responses (59, 60). Our Hi-C data
478 from eye-antennal discs show a strong interaction between *bab1-2* promoter regions (Fig 5),
479 suggesting that both *bab* promoters could be in close proximity within such phase separated
480 droplets, thus taking advantage of shared transcriptional regulators and allowing concerted gene
481 regulation. In contrast, no strong chromosome contacts could be detected between LAE and
482 any of the two *bab* promoter regions, indicating that this enhancer is not stably associated to
483 the *bab2* or *bab1* promoter in the eye-antennal disc (where only the antennal distal part
484 expresses both genes). It would be interesting to gain Hi-C data from leg discs, in which the
485 *bab1-2* genes are much more broadly expressed.

486 In addition to be required for *bab1-2* co-expression in proximal tarsal segments, we showed
487 here that the LAE enhancer is also responsible for paralog-specific *bab2* expression along the
488 proximo-distal leg axis. While it has been proposed that expression pattern modifications occur
489 through enhancer emergence, our present work indicates that differential expression of two
490 tandem gene paralogs can depend on a shared pre-existing enhancer (i.e., LAE). How this may
491 work? Relative to its *bab1* paralog, *bab2* expression extends more proximally within the Dac-
492 expressing ts1 cells (44) and more distally in the ts5 segment expressing nuclear Bowl protein,
493 whereas both Dac and Bowl proteins have been proposed to act as *bab2* (and presumably *bab1*)
494 repressors (25, 33, 61). CRISPR/Cas9-mediated LAE excision allowed us to establish that this
495 enhancer is critically required for paralog-specific *bab2* leg expression proximally and distally,
496 in ts1 and ts5 cells, respectively. In this context, we and others have previously proposed that
497 transiently-expressed Rotund activating TF may antagonize Bowl (and eventually Dac)

498 repressive activity to precisely delimit *bab2* expression among ts1 cells (17, 61). Given that
499 *bab1-2* are distinctly expressed despite being both regulated by Bowl and Rotund, we propose
500 that paralog-specific LAE activity depends on privileged interactions with *bab2* promoter
501 sequences (discussed below). Thus, we speculate that the *bab2* promoter responds to Rotund
502 transcriptional activity differently from its *bab1* counterpart. Consistent with this view, ectopic
503 Rotund expression reveals differential regulatory impacts on the two *bab* gene promoters (S1B
504 Fig). Genetic together with Hi-C experiments indicate that this could occur through specific
505 interactions between LAE-bound TFs (e.g., Rotund) and dedicated proteins within the PolII
506 pre-initiation complex stably-associated to the *bab2* core promoter. We envision that the LAE-
507 bound ZF protein Rotund, the chromatin-remodeling ZF protein GAF (for GAGA-associated
508 Factor) and the PolII-associated TFIID subunit TAF3, the latter known to interact physically
509 with GAF and Bab2 BTB proteins (62, 63), are parts of the underlying promoter targeting
510 molecular mechanism.

511 In this context, despite that sequence homologies between both promoters (consistent with an
512 ancient duplication event mobilizing the ancestral *bab1* promoter) are still detectable, it is
513 significant that the *bab2* promoter evolves much faster than its *bab1* counterpart. While the
514 *bab1* promoter sequence has been strongly conserved among brachycerans, predating *bab2*
515 gene emergence in the Muscomorpha, the *bab2* promoter sequence has only been fixed recently
516 among Drosophilidae, notably through the Initiator (Inr) sequence duplication, indicating very
517 fast evolutionary drift after the gene duplication process which yielded the *bab2* paralog. We
518 envision that this evolutionary ability has largely contributed to allow novel expression patterns
519 for *bab2*, presumably through differential enhancer-promoter pairwise interplay.

520

521 **Differential evolutionary conservation of tissue-specific versus pleiotropic enhancers**

522 Our comprehensive phylogenomics analyses from highly diverse Diptera families indicate that
523 the *bab* gene complex has been generated through tandem duplication from an ancestral *bab1*-
524 related gene singleton within the Muscomorpha (Cyclorrhapha), about 100-140 years ago. This
525 result contrasts with published data reporting that the duplication process having yielded the
526 tandem *bab* genes occurred much earlier in the Diptera lineage leading to both the Brachycera
527 (true flies; i.e., with short antenna) and Nematocera (long horned “flies”, including mosquitos)
528 suborders (13). In fact, tandem duplication events implicating the *bab* locus did occur in the
529 Bibionomorpha, as reported (13)), and even in the Psychodomorpha with three *bab1*-related
530 gene copies (Figure 8 and S6 Fig), but our phylogenetic analysis supports independent events.
531 Thus, within the Diptera, the ancestral *bab1* singleton had a high propensity to duplicate locally.

532 In this study, we have shown a strong evolutionary conservation of LAE subsequences among
533 brachycerans, notably its CR2 element containing Dll and Bowl binding sites (S7C Fig). This
534 conservation suggests a long-lasting enhancer function in distal limb-specific regulation of
535 ancestral singleton *bab1* genes. In striking contrast, BER sequence conservation could only be
536 detected among extant muscomorphan *bab* loci. We assume that during evolution large
537 pleiotropic enhancers may better assimilate binding sites for gene-specific transcription factors,
538 thus generating regulatory novelties in distinct imaginal discs.

539 Gene duplication is a major source to generate phenotypic innovations during evolution,
540 through diverging expression and molecular functions, and eventually from single gene copy
541 translocation to another chromosomal site. Emergence of tissue-specific enhancers not shared
542 between the two gene duplicates, as well as of “shadow” enhancers, have been proposed to be
543 evolutionary novelty sources (64) (6). Our work indicates that the presumably long-lasting
544 brachyceran LAE enhancer has recently been co-opted in drosophilids to allow differential *bab*
545 gene expression. Conversely, the large BER region has apparently accumulated regulatory

546 sequence elements bound by diverse tissue-specific transcription factors (e.g., Dll, Hth, Abd-B
547 and Dsx) acting in different cellular contexts.

548

549 **A pleiotropic enhancer region overlapping with a PcG-response element**

550 ChIP-Seq analysis for histone H3 modifications (H3K4me3, H3K27Ac and H3K4me1
551 enhancer/promoter marks; H3K27me3 chromatin repressive mark) from eye-antennal discs has
552 revealed the pleiotropic BER enhancer region but also an overlapping repressive PcG
553 (Polycomb Group family) domain, indicating that BER encompasses a bivalent chromatin
554 domain, while another one is detected over the *bab2* promoter region. A dual enhancer/silencing
555 function for PcG-Response Element (PRE) during embryogenesis has recently been established
556 genome-wide (65), and the authors have proposed that reuse of enhancer regulatory elements
557 by PcG proteins may help fine-tune gene expression and ensure the timely maintenance of cell
558 identities throughout development. More recently, we have shown widespread enhancer-PcG
559 domain interplay during developmental gene activation through chromatin looping in eye-
560 antennal discs (38). Altogether these data suggest that the *bab1-2* genes might be poised for
561 activation throughout the eye-antennal disc, and possibly other imaginal discs as well.

562 The Pleiohomeotic (Pho) protein is a DNA-binding PcG complex recruiter, critical for gene
563 silencing maintenance during development (66). Pho interaction with several BER subregions,
564 as detected in ChIP-Seq experiments from L3 tissues, as well as the presence of many
565 evolutionarily-conserved predicted Pho binding sites, support a role for Pho in PcG repression
566 throughout BER. We thus propose that Pho-containing PcG repressive complex bound at PREs
567 within the *bab* bivalent locus is counteracted by one or several tissue-specific transcriptional
568 activators identified in this work, which remain(s) to be characterized.

569 In this context, it is significant that in the eye-antennal disc, the ZF protein CTCF, acting
570 redundantly with other chromatin insulator proteins, strongly interacts directly with the two
571 flanking regions of the TAD covering the *bab* locus and also with several BER OCSs (Fig 5B).
572 Significantly, two of these predicted CTCF interacting sites overlap with putative optimal
573 binding sites for the PcG-recruiter Pho (S18-19 Fig). These data suggest that the CTCF
574 architectural protein and the PcG-recruiter Pho may functionally interact to regulate the *bab*
575 locus chromosome topology. Interestingly, the human Pho homolog (YY1) is a structural
576 enhancer-promoter looping regulator (67) and orchestrates, together with the CTCF protein, a
577 3D chromatin looping switch during early neural lineage commitment (68). To our knowledge,
578 functional relationships between CTCF and Pho proteins have not been investigated genome-
579 wide in *Drosophila*.

580

581 **Dynamic *bric-a-brac* locus chromatin accessibility during development**

582 Recent data indicate that chromatin accessibility is dynamic during *Drosophila* larval
583 development, being triggered by the ecdysone hormone (69). Dynamic enhancer activity and
584 chromatin accessibility have been proposed to be regulated by the ecdysone-induced Eip93F
585 (Ecdysone-induced protein 93F, also called E93) transcriptional regulator (70). ChIP data from
586 early pupal wings indicate that Eip93F binds many BER OCS as well as the *bab1* promoter
587 region (70). Consistently, many putative Eip93F binding sites are present in these BER
588 subregions and several have been conserved beyond Drosophilidae (Fig 10C). Interestingly, the
589 human Eip93F homolog interacts with CtBP through a conserved motif (71), and *Drosophila*
590 CtBP is known to recruit diverse chromatin-modifying complexes, notably to participate in
591 Pho-mediated PcG recruitment to PREs (72). Thus, Eip93F binding to BER *cis*-regulatory
592 elements may impact the proposed dual PcG activity at the *bab* locus. In addition to Eip93F,

593 BER regulatory sequences include many evolutionarily-conserved putative binding sites for the
594 Eip74EF protein (Fig 10C), another ecdysone-induced TF, including one which overlaps with
595 a conserved putative Pho binding site, suggesting again functional correlation between
596 Ecdysone regulation and PcG activity.

597 Lastly, the *cis*-regulatory landscape within the *bab* locus (i.e., AE, DE, CE, LAE and BER)
598 includes one or several evolutionarily-conserved predicted binding sites for the Chinmo BTB-
599 ZF protein participating to developmental timing, notably through interplay with ecdysone
600 signaling (73, 74). Consistently, ChIP-Seq experiments from embryos (ModENCODE data;
601 <http://www.modencode.org/>) indicate Chinmo binding to BER sequences (75). Intriguingly, the
602 Chinmo ZF protein is an additional BTB-containing TF prone to regulate directly the *bab* genes,
603 possibly through molecular partnerships with the chromatin organizer GAF (another BTB-ZF
604 protein interacting directly with both *bab* promoter regions; Fig 5B and S3 Fig) and the twin
605 Bab BTB-BabCD proteins themselves. Thus, Chinmo implication in chromatin organization
606 and enhancer activity within the *bab* locus undoubtedly deserves to be investigated.

607 In summary, the *bab* locus offers a good paradigm to investigate molecularly in great details
608 how chromatin structure, particularly higher-order chromosome organization, impacts on
609 transcriptional memory during development and selective enhancer-promoter interplay in
610 diverse tissular contexts. Indeed, our comprehensive predictive combinatorial code for tissue-
611 specific, as well as broadly-expressed architectural transcription factors (e.g., CTCF, Pho and
612 GAF) regulating two tandem gene paralogs, offers the opportunity to dissect underlying
613 molecular mechanisms, which are prone to be conserved during animal evolution and thus to
614 be of broad biological significance.

615

616 **Material sand Methods**

617 **Fly stocks, culture and genetic manipulations**

618 *D. melanogaster* stocks were grown on standard yeast extract-sucrose medium. The *vasa*-
619 PhiC31 ZH2A *attP* stock (kindly provided by F. Karch) was used to generate the *LAEpHsp70-GFP*
620 reporter lines and the *BAC69B22* construct as previously described (17). *LAE-GFP* and
621 *LAE-RFP* constructs (including both *Hsp70* and *bab2* core promoters) inserted on the ZH2A
622 (X chromosome) or ZH86Fb (third chromosome) *attP* landing platforms, and displaying
623 identical expression patterns, have been previously described (17, 25). *C15²/TM6B*, *Tb¹* stock
624 was kindly obtained from G. Campbell. Mutant mitotic clones for null alleles of *bowl* and
625 *rotund* were generated with the following genotypes: *y w LAE-GFP*; *DllGal4^{EM2012}*, *UAS-*
626 *Flp*+/; *FRT82B*, *Ub-RFP/FRT82B rn¹²* (i.e., *rn* mutant clones are RFP negative; Fig 1E) and *y*
627 *w LAE-RFP*; *DllGal4^{EM2012}*, *UAS-Flp*+/; *Ub-GFP*, *FRT40A/bowl¹ FRT40A* (i.e., *bowl* mutant
628 clones are GFP negative; Fig 1F), respectively. Rotund protein gain-of-function within the *Dll*-
629 expressing domain was obtained with the following genotype: *y w LAE-GFP*; *DllGal4^{EM2012}*,
630 *UAS-Rn¹*+. The *Dll^{EM2012}-Gal4* line was provided by M. Suzanne, while the *UAS-Rn¹* line was
631 obtained from the Bloomington stock center. “Flip-out” (FO) mitotic clones over-expressing
632 dsRNA against *lines* were generated by 40 mn heat shocks at 38°C, in mid-late L2 to early-mid
633 L3 larvae of genotypes: *y w LAE-RFP hsFlp*; *UAS-dsRNA lines/pAct>y+>Gal4*, *UAS-GFP* (i.e.,
634 FO clones express GFP in S1C Fig). Mutant mitotic clones for the null *bab^{AR07}* allele were
635 generated by 30 mn heat shocks at 38°C, in early first to late second-instar larvae of genotypes:
636 *y w LAE-GFP*, *hsFlp*; *FRT80B/bab^{AR07}*, *FRT80B*. FO mitotic clones over-expressing dsRNA
637 against *bab1* or *bab2* were generated by 40 mn heat shocks at 38°C, in early to early-mid L3
638 larvae of genotypes: *y w LAE-RFP hsFlp*; *UAS-dsbab2 /Pact>y+>Gal4*, *UAS-GFP* and *y w*
639 *LAE-RFP*, *hsFlp*; *Pact>y+>Gal4*, *UAS-GFP*+/; *UAS-dsbab1*+/ (i.e., FO clones express GFP
640 in Fig 7). *UAS-dsRNA* stocks used to obtain interfering RNA against *lines* (#40939), *bab1*
641 (#35707) and *bab2* (#37260) were obtained from the Bloomington stock Center.

642

643 **Immuno-histochemistry and microscopy**

644 Leg discs were dissected from wandering (late third instar stage) larvae (L3). Indirect immuno-
645 fluorescence was carried out as previously described (17) using a LEICA TCS SP5 or SPE
646 confocal microscope. Rat anti-Bab2 (11), rabbit anti-Bab1 (14), rabbit anti-Dll (76), rabbit anti-
647 Bowl (61), and rabbit anti-C15 (31) antibodies were used at 1/2000, 1/500, 1/200, 1/1000 and
648 1/200, respectively.

649

650 **CRISPR/Cas9-mediated chromosomal deletion**

651 Guide RNAs (gRNAs) were designed with CHOPCHOP at the Harvard University website
652 (<https://chopchop.cbu.uib.no/>). Four gRNA couples were selected that cover two distinct
653 upstream and downstream LAE positions: TGCGTGGAGCCTTCTTCGCCAGG or
654 TGGAGCCTTCTTCGCCAGGCCGG; and TATACTGTTGAGATCCCATGCGG or
655 TTAGGCGCACATAAGGAGGCAGG (the PAM protospacer adjacent motif sequences are
656 underlined), respectively. Targeting tandem chimeric RNAs were produced from annealed
657 oligonucleotides inserted into the pCFD4 plasmid, as described in
658 (<http://www.crisprflydesign.org/>). Each pCFD4-LAE-KO construct was injected into 50 *Vasa-*
659 *Cas9* embryos (of note the *vasa* promoter sequence is weakly expressed in somatic cells). F0
660 fertile adults and their F1 progeny, with possible somatic LAE-deletion events and candidate
661 mutant chromosomes (balanced with *TM6B*, *Tb*), respectively, were tested by polymerase chain
662 reactions (PCR) with the following oligonucleotides: AGTTTTCATCCCCCTTCCA and
663 GTATTCTTGCCCTGCCATCG (predicted wild-type amplified DNA: 2167 base pairs).

664

665 **Quantitative RT-PCR analysis**

666 T1-3 leg imaginal discs were dissected from homozygous *white*¹¹¹⁸ and *bab*^{ALAE-M1} late L3
667 larvae in PBS 0.1% Tween. 50 discs of each genotype were collected and frozen in nitrogen.
668 Total messenger RNAs were purified using RNeasy kit (Qiagen) and reverse transcribed by
669 SuperScript II (ThermoFisher). *bab1*, *bab2* or *rp49* cDNA levels were monitored by
670 quantitative PCR using the following oligonucleotides: Bab1Fw:
671 CGCCCAAGAGTAACAGAAGC; Bab1Rev: TCTCCTTGTCCCTCGTCCTTG; Bab2Fw:
672 CTGCAGGATCCAAGTGAGGT; Bab2Rev: GACTTCACCAGCTCCGTTTC; RP49Fw:
673 GACGCTTCAAGGGACAGTATCTG; RP49Rev: AACCGCGTTCTGCATGAG. A
674 Wilcoxon test was performed to evaluate the difference between samples.

675

676 **Homology searches, sequence alignments and phylogenetic analyses**

677 Homology searches were done at the NCBI Blast site (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).
678 Protein or nucleotide sequence alignments were done using MAFFT (Multiple Alignment using
679 Fast Fourier Transform) (<https://mafft.cbrc.jp/alignment/server/>). Phylogenetic relationships
680 were inferred through a maximum likelihood analysis with W-IQ-Tree
681 (<http://iqtree.cibiv.univie.ac.at/>) and visualized with the ETE toolkit
682 (<http://etetoolkit.org/treeview/>).

683

684 **Transcription factor binding prediction**

685 DNA binding predictions were done using the motif-based sequence analysis tool TomTom
686 from the MEME suite (<http://meme-suite.org/tools/tomtom>) and the Fly Factor Survey database
687 (<http://mccb.umassmed.edu/ffs/>).

688

689 **Gene expression omnibus datasets**

690 The following gene expression omnibus (GEO) datasets were extracted from the NCBI website
691 (<https://www.ncbi.nlm.nih.gov/gds/>): GSE59078; GSM1261348; GSM1426265; GSE126985;
692 GSM3139658; GSM948715; GSE113574; GSM948718; GSM948717; GSE38594;
693 GSM948720; GSM948716; GSM659162; GSM948719; GSE102339; GSE50363.

694

695 **Hi-C and histone tail mark analyses from L3 eye-antennal imaginal discs**

696 Hi-C and histone mark ChIP-Seq analyses from L3 eye-antennal discs have been recently
697 published in (38).

698

699 **Acknowledgments**

700 We thank F. Karch, M. Suzanne, T.M. Williams, G. Boekhoff-Falk, S. Bray, G. Campbell, T.
701 Kojima, F. Laski, J.L. Couderc and the Bloomington Stock Center for fly stocks and reagents.
702 We are grateful to Alain Vincent for his proofreading of the manuscript. We thank Julien Favier
703 for technical assistance, particularly in managing the transgenic facility. Lastly, we
704 acknowledge Brice Ronsin and the Toulouse RIO Imaging platform.

705

706

707 **References**

708 1. Ohno S. **Evolution by Gene Duplication**. Springer-Verlag; 1970.

709 2. Zhang J. Evolution by gene duplication - an update. *Trends Ecol. Evol.*; 2003. p. 292-8.

710 3. Lundin LG. Gene duplications in early metazoan evolution. *Semin Cell Dev Biol.* 1999;10(5):523-

711 30.

712 4. He X, Zhang J. Rapid subfunctionalization accompanied by prolonged and substantial

713 neofunctionalization in duplicate gene evolution. *Genetics.* 2005;169(2):1157-64.

714 5. Sundström G, Larsson TA, Larhammar D. Phylogenetic and chromosomal analyses of multiple

715 gene families syntenic with vertebrate Hox clusters. *BMC Evol Biol.* 2008;8:254.

716 6. Long HK, Prescott SL, Wysocka J. Ever-Changing Landscapes: Transcriptional Enhancers in

717 Development and Evolution. *Cell.* 2016;167(5):1170-87.

718 7. Rubinstein M, de Souza FS. Evolution of transcriptional enhancers and animal diversity. *Philos*

719 *Trans R Soc Lond B Biol Sci.* 2013;368(1632):20130017.

720 8. Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of

721 morphological evolution. *Cell.* 2008;134(1):25-36.

722 9. Levine M. Transcriptional enhancers in animal development and evolution. *Curr Biol.*

723 2010;20(17):R754-63.

724 10. Vlad D, Kierzkowski D, Rast MI, Vuolo F, Dello Iorio R, Galinha C, et al. Leaf shape evolution

725 through duplication, regulatory diversification, and loss of a homeobox gene. *Science.*

726 2014;343(6172):780-3.

727 11. Couderc JL, Godt D, Zollman S, Chen J, Li M, Tiong S, et al. The *bric à brac* locus consists of two

728 paralogous genes encoding BTB/POZ domain proteins and acts as a homeotic and morphogenetic

729 regulator of imaginal development in *Drosophila*. *Development.* 2002;129(10):2419-33.

730 12. Salomone JR, Rogers WA, Rebeiz M, Williams TM. The evolution of Bab paralog expression and

731 abdominal pigmentation among *Sophophora* fruit fly species. *Evol Dev.* 2013;15(6):442-57.

732 13. Roeske MJ, Camino EM, Grover S, Rebeiz M, Williams TM. Cis-regulatory evolution integrated
733 the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network. *Elife*. 2018;7.

734 14. Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB. The regulation and evolution
735 of a genetic switch controlling sexually dimorphic traits in *Drosophila*. *Cell*. 2008;134(4):610-23.

736 15. Gompel N, Carroll SB. Genetic mechanisms and constraints governing the evolution of
737 correlated traits in drosophilid flies. *Nature*. 2003;424(6951):931-5.

738 16. Kopp A, Duncan I, Carroll SB. Genetic control and evolution of sexually dimorphic characters in
739 *Drosophila*. *Nature*. 2000;408(6812):553-9.

740 17. Baanannou A, Mojica-Vazquez LH, Darras G, Couderc JL, Cribbs DL, Boube M, et al. *Drosophila*
741 distal-less and Rotund bind a single enhancer ensuring reliable and robust bric-a-brac2 expression in
742 distinct limb morphogenetic fields. *PLoS Genet*. 2013;9(6):e1003581.

743 18. Godt D, Couderc JL, Cramton SE, Laski FA. Pattern formation in the limbs of *Drosophila*: bric a
744 brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper
745 segmentation of the tarsus. *Development*. 1993;119(3):799-812.

746 19. Godt D, Laski FA. Mechanisms of cell rearrangement and cell recruitment in *Drosophila* ovary
747 morphogenesis and the requirement of bric à brac. *Development*. 1995;121(1):173-87.

748 20. Sahut-Barnola I, Godt D, Laski FA, Couderc JL. *Drosophila* ovary morphogenesis: analysis of
749 terminal filament formation and identification of a gene required for this process. *Dev Biol*.
750 1995;170(1):127-35.

751 21. Junion G, Bataillé L, Jagla T, Da Ponte JP, Tapin R, Jagla K. Genome-wide view of cell fate
752 specification: ladybird acts at multiple levels during diversification of muscle and heart precursors.
753 *Genes Dev*. 2007;21(23):3163-80.

754 22. Camara N, Whitworth C, Dove A, Van Doren M. Doublesex controls specification and
755 maintenance of the gonad stem cell niches in. *Development*. 2019;146(11).

756 23. Duan J, Zhao Y, Li H, Habernig L, Gordon MD, Miao X, et al. Bab2 Functions as an Ecdysone-
757 Responsive Transcriptional Repressor during *Drosophila* Development. *Cell Rep*. 2020;32(4):107972.

758 24. Zhao Y, Duan J, Dziedziech A, Büttner S, Engström Y. Bab2 activates JNK signaling to
759 reprogram *Drosophila* wing disc development. 2021.

760 25. Mojica-Vázquez LH, Benetah MH, Baanannou A, Bernat-Fabre S, Deplancke B, Cribbs DL, et al.
761 Tissue-specific enhancer repression through molecular integration of cell signaling inputs. PLoS Genet.
762 2017;13(4):e1006718.

763 26. Kojima T. The mechanism of *Drosophila* leg development along the proximodistal axis. Dev
764 Growth Differ. 2004;46(2):115-29.

765 27. Kojima T. Developmental mechanism of the tarsus in insect legs. Curr Opin Insect Sci.
766 2017;19:36-42.

767 28. Estella C, Voutev R, Mann RS. A dynamic network of morphogens and transcription factors
768 patterns the fly leg. Curr Top Dev Biol. 2012;98:173-98.

769 29. Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, et al. A Functionally Conserved
770 Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet.
771 2016;12(1):e1005780.

772 30. Campbell G. Regulation of gene expression in the distal region of the *Drosophila* leg by the
773 Hox11 homolog, C15. Dev Biol. 2005;278(2):607-18.

774 31. Kojima T, Tsuji T, Saigo K. A concerted action of a paired-type homeobox gene, aristaless, and
775 a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the
776 *Drosophila* leg. Dev Biol. 2005;279(2):434-45.

777 32. Natori K, Tajiri R, Furukawa S, Kojima T. Progressive tarsal patterning in the *Drosophila* by
778 temporally dynamic regulation of transcription factor genes. Dev Biol. 2012;361(2):450-62.

779 33. Greenberg L, Hatini V. Essential roles for lines in mediating leg and antennal proximodistal
780 patterning and generating a stable Notch signaling interface at segment borders. Dev Biol.
781 2009;330(1):93-104.

782 34. Prud'homme B, Gompel N, Carroll SB. Emerging principles of regulatory evolution. Proc Natl
783 Acad Sci U S A. 2007;104 Suppl 1:8605-12.

784 35. Hittinger CT, Carroll SB. Gene duplication and the adaptive evolution of a classic genetic switch.
785 *Nature*. 2007;449(7163):677-81.

786 36. Carroll SB. From pattern to gene, from gene to pattern. *Int J Dev Biol*. 1998;42(3 Spec No):305-
787 9.

788 37. Lim B, Heist T, Levine M, Fukaya T. Visualization of Transvection in Living *Drosophila* Embryos.
789 *Mol Cell*. 2018;70(2):287-96.e6.

790 38. Loubiere V, Papadopoulos GL, Szabo Q, Martinez AM, Cavalli G. Widespread activation of
791 developmental gene expression characterized by PRC1-dependent chromatin looping. *Sci Adv*.
792 2020;6(2):eaax4001.

793 39. Yeung K, Wang F, Li Y, Wang K, Mardon G, Chen R. Integrative genomic analysis reveals novel
794 regulatory mechanisms of *eyeless* during *Drosophila* eye development. *Nucleic Acids Res*.
795 2018;46(22):11743-58.

796 40. McKay DJ, Lieb JD. A common set of DNA regulatory elements shapes *Drosophila* appendages.
797 *Dev Cell*. 2013;27(3):306-18.

798 41. Davie K, Jacobs J, Atkins M, Potier D, Christiaens V, Halder G, et al. Discovery of transcription
799 factors and regulatory regions driving *in vivo* tumor development by ATAC-seq and FAIRE-seq open
800 chromatin profiling. *PLoS Genet*. 2015;11(2):e1004994.

801 42. Newcomb S, Voutev R, Jory A, Delker RK, Slattery M, Mann RS. *cis*-regulatory architecture of a
802 short-range EGFR organizing center in the *Drosophila melanogaster* leg. *PLoS Genet*.
803 2018;14(8):e1007568.

804 43. Córdoba S, Requena D, Jory A, Saiz A, Estella C. The evolutionarily conserved transcription
805 factor Sp1 controls appendage growth through Notch signaling. *Development*. 2016;143(19):3623-31.

806 44. Chu J, Dong PD, Panganiban G. Limb type-specific regulation of *bric a brac* contributes to
807 morphological diversity. *Development*. 2002;129(3):695-704.

808 45. Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, et al. A GAL4-driver line resource
809 for *Drosophila* neurobiology. *Cell Rep*. 2012;2(4):991-1001.

810 46. Slattery M, Ma L, Négre N, White KP, Mann RS. Genome-wide tissue-specific occupancy of the
811 Hox protein Ultrabithorax and Hox cofactor Homothorax in *Drosophila*. *PLoS One*. 2011;6(4):e14686.

812 47. Boube M, Hudry B, Immarigeon C, Carrier Y, Bernat-Fabre S, Merabet S, et al. *Drosophila*
813 melanogaster Hox Transcription Factors Access the RNA Polymerase II Machinery through Direct
814 Homeodomain Binding to a Conserved Motif of Mediator Subunit Med19. *PLoS Genet*.
815 2014;10(5):e1004303.

816 48. Estrada B, Sanchez-Herrero E. The Hox gene Abdominal-B antagonizes appendage
817 development in the genital disc of *Drosophila*. *Development*. 2001;128(3):331-9.

818 49. Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EE. Combinatorial binding predicts spatio-
819 temporal cis-regulatory activity. *Nature*. 2009;462(7269):65-70.

820 50. Arnold CD, Gerlach D, Stelzer C, Boryń Ł, Rath M, Stark A. Genome-wide quantitative enhancer
821 activity maps identified by STARR-seq. *Science*. 2013;339(6123):1074-7.

822 51. Lours C, Bardot O, Godt D, Laski FA, Couderc JL. The *Drosophila melanogaster* BTB proteins bric
823 a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook
824 motif. *Nucleic Acids Res*. 2003;31(18):5389-98.

825 52. Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, et al. Evolution of genes and
826 genomes on the *Drosophila* phylogeny. *Nature*. 2007;450(7167):203-18.

827 53. Ohler U, Liao GC, Niemann H, Rubin GM. Computational analysis of core promoters in the
828 *Drosophila* genome. *Genome Biol*. 2002;3(12):RESEARCH0087.

829 54. Meers MP, Adelman K, Duronio RJ, Strahl BD, McKay DJ, Matera AG. Transcription start site
830 profiling uncovers divergent transcription and enhancer-associated RNAs in *Drosophila melanogaster*.
831 *BMC Genomics*. 2018;19(1):157.

832 55. Gilchrist DA, Dos Santos G, Fargo DC, Xie B, Gao Y, Li L, et al. Pausing of RNA polymerase II
833 disrupts DNA-specified nucleosome organization to enable precise gene regulation. *Cell*.
834 2010;143(4):540-51.

835 56. Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, et al. RNA polymerase is
836 poised for activation across the genome. *Nat Genet.* 2007;39(12):1507-11. Epub 2007 Nov 11.

837 57. Lee C, Li X, Hechmer A, Eisen M, Biggin MD, Venter BJ, et al. NELF and GAGA factor are linked
838 to promoter-proximal pausing at many genes in *Drosophila*. *Mol Cell Biol.* 2008;28(10):3290-300.

839 58. Kwak H, Fuda NJ, Core LJ, Lis JT. Precise maps of RNA polymerase reveal how promoters direct
840 initiation and pausing. *Science.* 2013;339(6122):950-3.

841 59. Kim S, Shendure J. Mechanisms of Interplay between Transcription Factors and the 3D
842 Genome. *Mol Cell.* 2019;76(2):306-19.

843 60. Sabari BR, Dall'Agnese A, Young RA. Biomolecular Condensates in the Nucleus. *Trends Biochem
844 Sci.* 2020.

845 61. de Celis Ibeas JM, Bray SJ. Bowl is required downstream of Notch for elaboration of distal limb
846 patterning. *Development.* 2003;130(24):5943-52.

847 62. Pointud JC, Larsson J, Dastugue B, Couderc JL. The BTB/POZ domain of the regulatory proteins
848 Bric à brac 1 (BAB1) and Bric à brac 2 (BAB2) interacts with the novel *Drosophila* TAF(II) factor
849 BIP2/dTAF(II)155. *Dev Biol.* 2001;237(2):368-80.

850 63. Chopra VS, Srinivasan A, Kumar RP, Mishra K, Basquin D, Docquier M, et al. Transcriptional
851 activation by GAGA factor is through its direct interaction with dmTAF3. *Dev Biol.* 2008;317(2):660-70.

852 64. Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty.
853 *Science.* 2008;321(5894):1314.

854 65. Erceg J, Pakozdi T, Marco-Ferreres R, Ghavi-Helm Y, Girardot C, Bracken AP, et al. Dual
855 functionality of. *Genes Dev.* 2017;31(6):590-602.

856 66. Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome Regulation by Polycomb and
857 Trithorax: 70 Years and Counting. *Cell.* 2017;171(1):34-57.

858 67. Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, et al. YY1 Is a Structural
859 Regulator of Enhancer-Promoter Loops. *Cell.* 2017;171(7):1573-88.e28.

860 68. Beagan JA, Duong MT, Titus KR, Zhou L, Cao Z, Ma J, et al. YY1 and CTCF orchestrate a 3D
861 chromatin looping switch during early neural lineage commitment. *Genome Res.* 2017;27(7):1139-52.

862 69. Uyehara CM, Nystrom SL, Niederhuber MJ, Leatham-Jensen M, Ma Y, Buttitta LA, et al.
863 Hormone-dependent control of developmental timing through regulation of chromatin accessibility.
864 *Genes Dev.* 2017;31(9):862-75.

865 70. Nystrom SL, Niederhuber MJ, McKay DJ. Expression of E93 provides an instructive cue to
866 control dynamic enhancer activity and chromatin accessibility during development. *Development.*
867 2020;147(6).

868 71. Quinlan KG, Verger A, Kwok A, Lee SH, Perdomo J, Nardini M, et al. Role of the C-terminal
869 binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. *Mol*
870 *Cell Biol.* 2006;26(21):8202-13.

871 72. Basu A, Atchison ML. CtBP levels control intergenic transcripts, PHO/YY1 DNA binding, and Pcg
872 recruitment to DNA. *J Cell Biochem.* 2010;110(1):62-9.

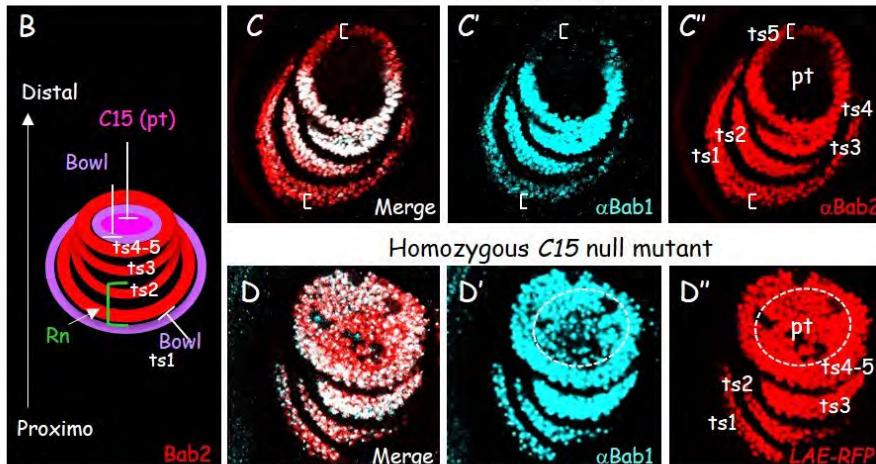
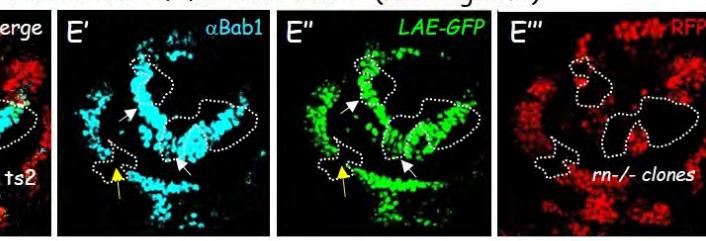
873 73. Marchetti G, Tavosanis G. Steroid Hormone Ecdysone Signaling Specifies Mushroom Body
874 Neuron Sequential Fate via Chinmo. *Curr Biol.* 2017;27(19):3017-24.e4.

875 74. Narbonne-Reveau K, Maurange C. Developmental regulation of regenerative potential in
876 *Drosophila* by ecdysone through a bistable loop of ZBTB transcription factors. *PLoS Biol.*
877 2019;17(2):e3000149.

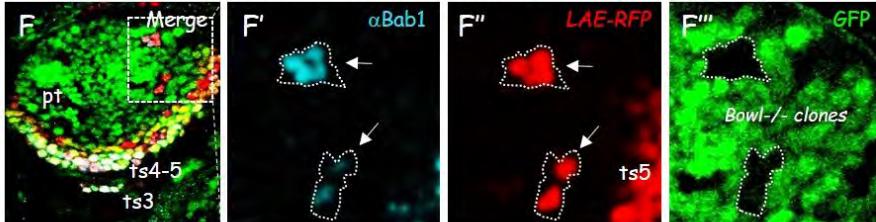
878 75. Nègre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, et al. A cis-regulatory map of the
879 *Drosophila* genome. *Nature.* 2011;471(7339):527-31.

880 76. Panganiban G, Sebring A, Nagy L, Carroll S. The development of crustacean limbs and the
881 evolution of arthropods. *Science.* 1995;270(5240):1363-6.

882 77. Jory A, Estella C, Giorgianni MW, Slattery M, Laverty TR, Rubin GM, et al. A survey of 6,300
883 genomic fragments for cis-regulatory activity in the imaginal discs of *Drosophila melanogaster*. *Cell*
884 *Rep.* 2012;2(4):1014-24.



885 78. Slattery M, Voutev R, Ma L, Nègre N, White KP, Mann RS. Divergent transcriptional regulatory
886 logic at the intersection of tissue growth and developmental patterning. PLoS Genet.
887 2013;9(9):e1003753.

888

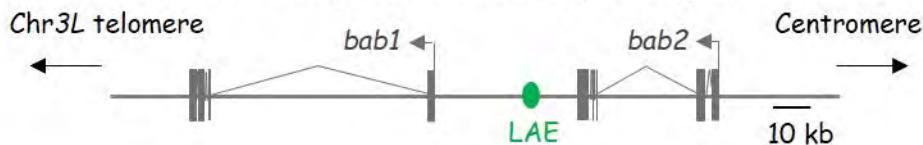

A

Drosophila melanogaster *bric-a-brac* (*bab*) gene complex

Wild-type leg disc

Homozygous *C15* null mutant

rotund loss-of-function clones (RFP negative)



bowl loss-of-function clones (GFP negative)

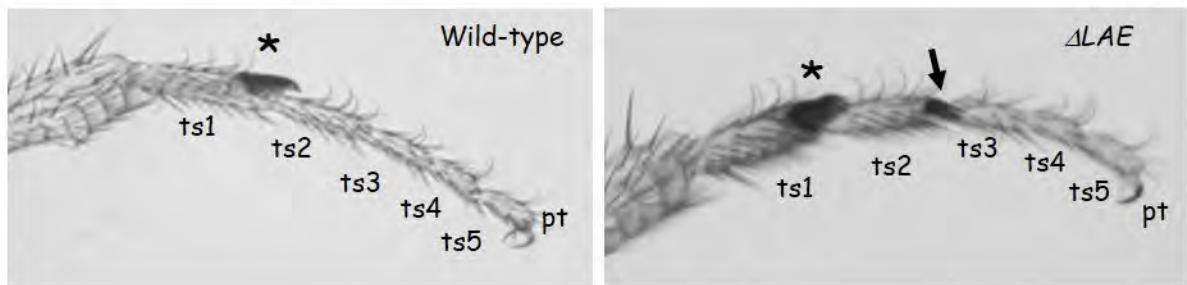
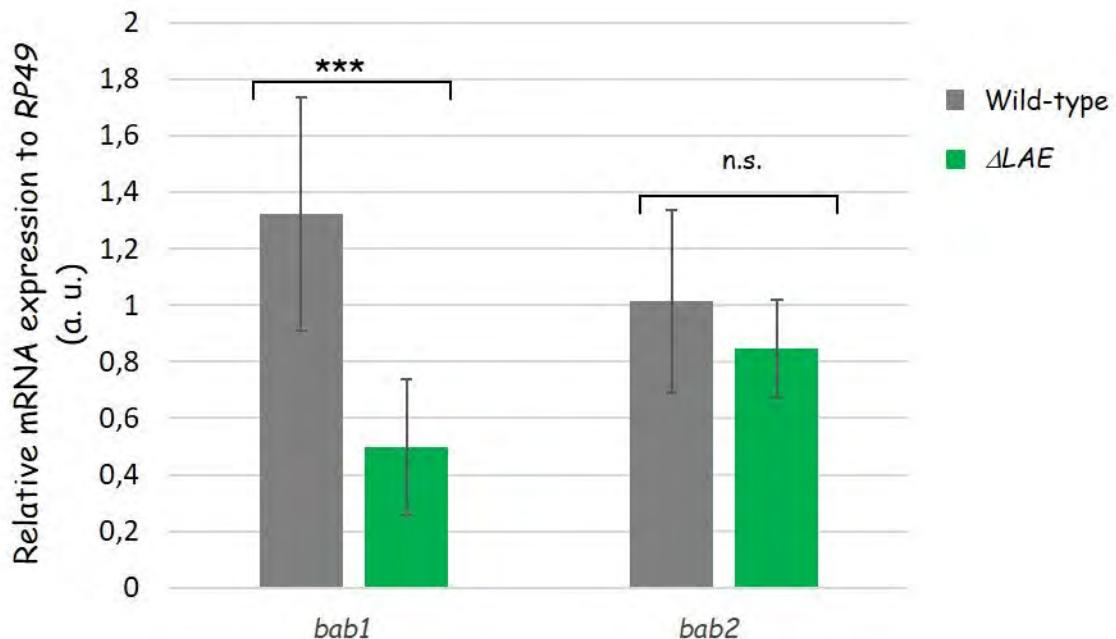
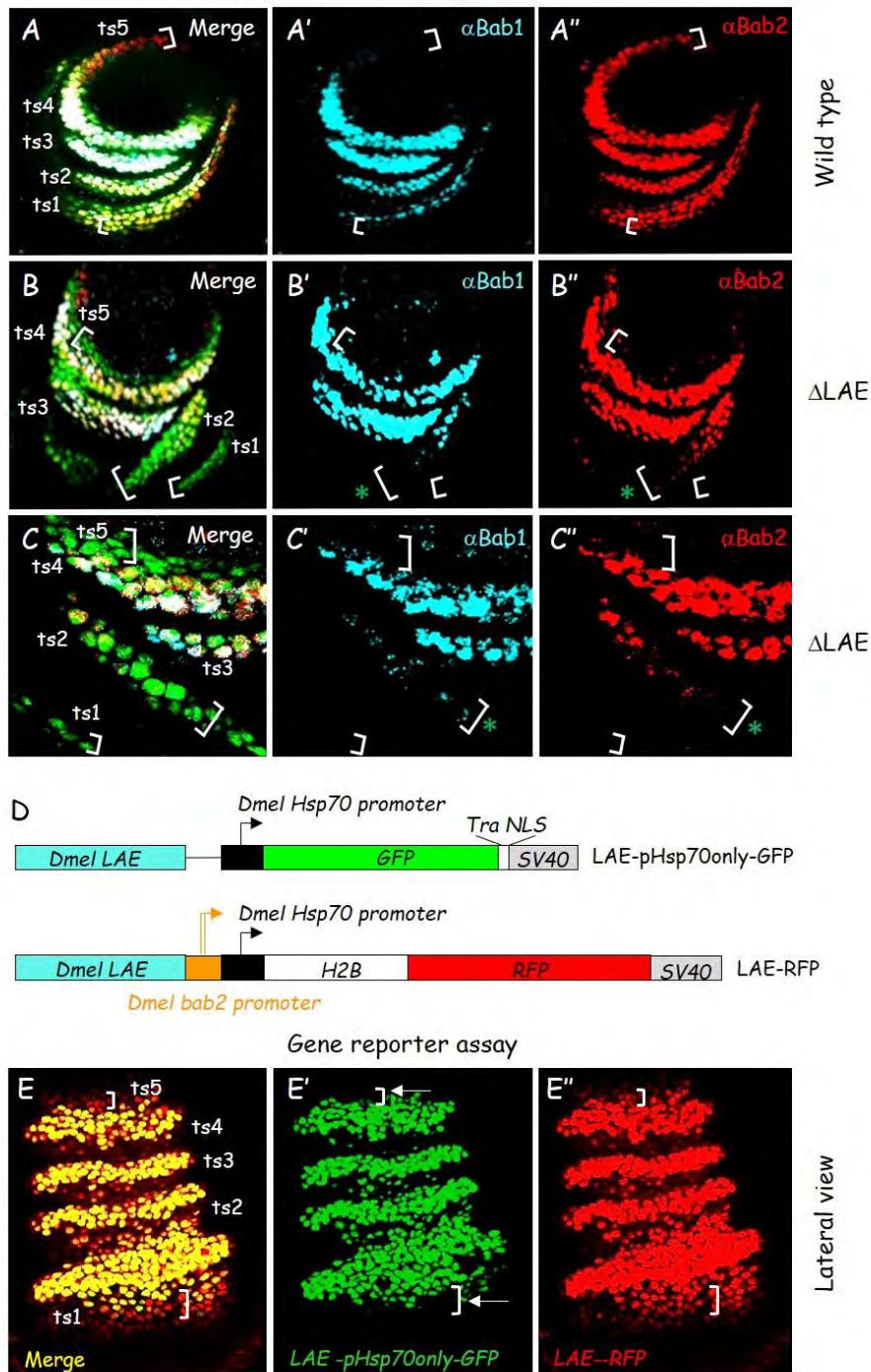


Fig 1. *C15*, *rotund* and *bowl* all regulate both *bab1* and *bab2*. (A) Schematic view of the *Dmel* *bab* locus on the 3L chromosomal arm (Chr3L). The tandem *bab1* (blue) and *bab2* (red) transcription units (filled boxes and broken lines represent exons and introns, respectively), the previously known CRE/enhancers are depicted by filled dots (abdominal DE and AE in dark and light orange, respectively; leg/antennal LAE in dark green and cardiac CE in purple), and the telomere and centromere directions are indicated by arrows. (B) A scheme depicted *C15*, *Bowl* and *Rn* TF activities in regulating *bab2* expression as a four-ring pattern within the developing distal leg, is shown. (C) Medial confocal view of a wild-type L3 leg disc. Merged Bab1 (blue) and Bab2 (red) immunostainings, as well as each marker in isolation in (C') and (C''), respectively, are shown. Positions of *bab2*-expressing ts1-5 cells and the pretarsal (pt) field are indicated in (C''). Brackets indicate paralog-specific expression in proximalmost and distalmost *bab2*-expressing cells. (D) Distal confocal view of a homozygous *C15*² mutant L3 leg disc expressing LAE-RFP. Merged Bab1 immunostaining (in blue) and RFP fluorescence (red), and each marker in isolation in (D') and (D''), are shown. Bab2-expressing mutant pt cells are circled with a dashed line in (D') and (D''). (E) Medial confocal view of a mosaic L3 leg disc expressing LAE-GFP and harboring *rotund* mutant clones. Merged Bab1 (blue) immunostaining, GFP (green) and RFP (red) fluorescence, as well as each marker in isolation in (E'), (E'') and (E'''), respectively, are shown. Mutant clones are detected as black areas, owing to the loss of RFP. The respective ts1-5 fields are indicated in (E). White and yellow arrows indicate *bab1* (*bab2*) still- and non-expressing *rotund*-/- clones, respectively. (F) Distal confocal view of a mosaic L3 leg disc expressing LAE-RFP and harboring *bowl* mutant clones. Merged Bab1 (blue) immunostaining, RFP (red) and GFP (green) fluorescence, as well as a higher magnification of the boxed area for each marker in isolation in (F'), (F'') and (F'''), respectively, are shown. Mutant clones are detected as black areas, owing to the loss of GFP. White arrows indicate pretarsal *bowl*-/- clones ectopically expressing both *bab1* and LAE-RFP (*bab2*).


A

D. melanogaster *bric-a-brac* gene complex

B



C

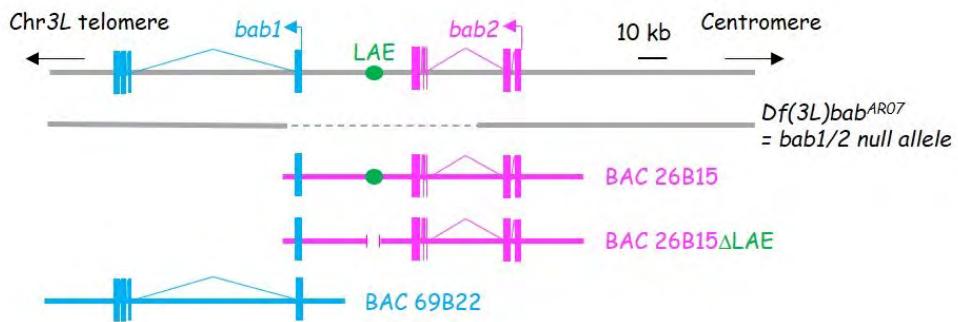
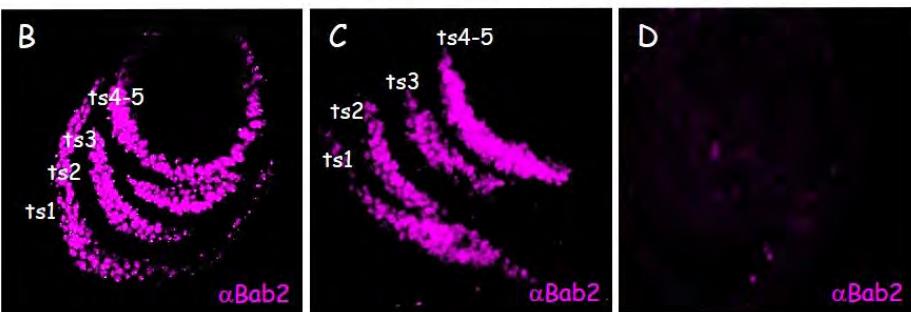
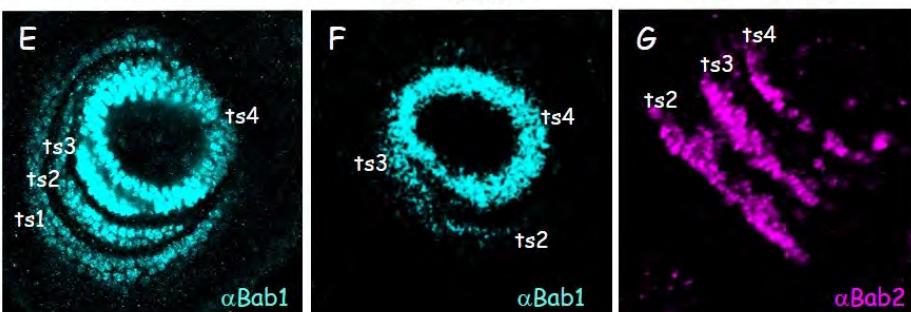


Fig 2. LAE is not critically required for tarsal segmentation and for overall *bab2* expression in the leg disc. (A) Schematic view of the *Dmel* *bab* locus on the 3L chromosomal arm (Chr3L). The tandem *bab1* and *bab2* transcription units (filled boxes and broken lines represent exons and introns, respectively), the intergenic LAE enhancer (in green), as well as the telomere and centromere directions, are depicted as in Fig 1A, except that both genes are depicted in grey. The small CRISPR/Cas9-mediated chromosomal deficiency (*bab*^{ΔLAE}) is shown in beneath (deleted LAE is depicted as a broken line). (B) Photographs of wild-type and homozygous *bab*^{ΔLAE} T1 distal legs from adult males. The regular sex-comb (an array of about 10 specialized bristles on the male forelegs) on distal ts1 is indicated with asterisks, while ectopic sex-comb bristles on distal ts2 from the mutant leg (right) is indicated by an arrow. Note that the five tarsal segments remain individualized in homozygous *bab*^{ΔLAE} mutant legs. (C) Overall *bab1-2* expression from reverse transcription quantitative PCR analyses. The *bab1-2* expression levels were quantified relative to *rp49* mRNA abundance.


Leg discs expressing *LAE-GFP*


Fig 3. LAE is mostly critically required for paralog-specific *bab2* expression in the developing distal legs. (A-C) Medial (A-B) and distal (C) confocal views of wild-type (A) and homozygous *bab^{DLAE}* mutant (B and C) L3 leg discs expressing *LAE-GFP*. Merged GFP fluorescence (green), Bab1 (blue) and Bab2 (red) immunostainings, as well as the two latter in isolation in (A'-C') and (A''-C''), respectively, are shown. Brackets indicate positions of paralog-specific expression in proximalmost (ts1) and distalmost (ts5) *bab2*-expressing (GFP+) cells. Green asterisks in (B'-B'') and (C'-C'') indicate weaker expression of both *bab* paralogs in GFP+ ts2 cells. **(D)** Modular structures of the *LAE-pHsp70onlyGFP* and *LAE-RFP* reporter constructs. GFP (green box) and RFP (red box) open-reading frames (ORFs) have been fused with ORFs for the Transformer (Tra) nuclear localization signal (NLS) and the histone H2B, respectively (see white boxes). The SV40 polyadenylation signal region is boxed in grey. The *Dmel* LAE sequence is boxed in blue. The classical non-heat-inducible basal *Hsp70* promoter sequence is boxed in black, while the *bab2* core promoter sequence is depicted in orange. Note that both promoters are juxtaposed in the *LAE-RFP* construct. **(E)** LAE activity requires functionally the *bab2* promoter to ensure paralog-specific expression in the developing legs. A lateral confocal view of merged GFP (green) and RFP (red) fluorescence, as well as each marker in isolation in (E') and (E''), respectively, of the distal part of an early pupal leg expressing both the *LAE-pHsp70onlyGFP^{ZH2A}* and *LAE-RFP^{ZH86Fb}* reporter constructs (depicted in (D)), are shown. Brackets indicate tarsal RFP+ cells expressing *bab2* in a paralog-specific manner, which never express the *LAE-pHsp70onlyGFP^{ZH2A}* reporter which lacks *bab2* core promoter sequences (see white arrows).

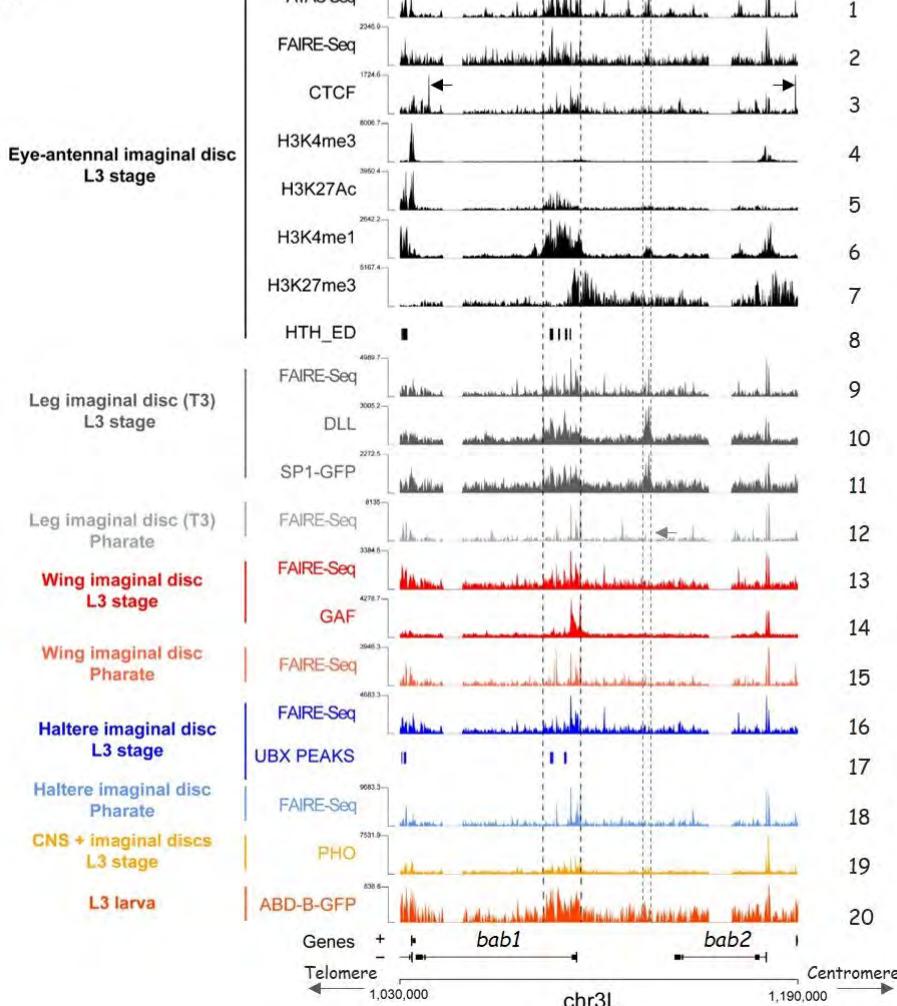
A*D. melanogaster* *bric-a-brac* gene complex

Wild-type

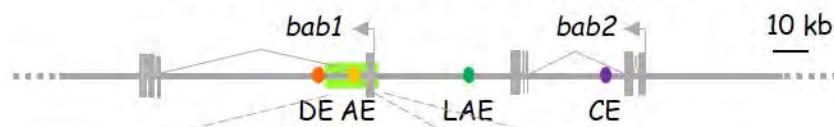

BAC^{26B15},
*bab^{AR07}/bab^{AR07}**BAC^{26B15ΔLAE}*,
bab^{AR07}/bab^{AR07}

Wild-type

BAC^{69B22},
*bab^{AR07}/bab^{AR07}**BAC^{26B15ΔLAE/BAC^{69B22}}*,
bab^{AR07}/bab^{AR07}


Fig 4. *bab1* includes partially-redundant limb-specific *cis*-regulatory information. (A) Chromosomal deficiency and BAC constructs covering the *bab* locus. The tandem gene paralogs and intergenic LAE are depicted as shown in Fig. 1A, except that *bab2* is depicted in pink instead of red. The *bab^{AR07}* 3L chromosomal deficiency is shown in beneath, with known deleted portion indicated by a dashed line. Note that the breakpoints have not been precisely mapped. The two overlapping BAC constructs 69B22 and 26B15, as well as a mutant derivative of the latter specifically-deleted for LAE, are shown further in beneath. (B-G) Medial confocal views of wild-type (B-E) and homozygous *bab^{AR07}* mutant (C-D and F-G) L3 leg discs, harboring singly or combined X-linked BAC construct(s) shown in (A), as indicated above each panel. Bab2 (pink) and Bab1 (blue) immunostainings are shown. Positions of *bab1*- and *bab2*-expressing ts1-4 cells are indicated. Note stochastic *bab2* expression in (G).

A


Lanes

B

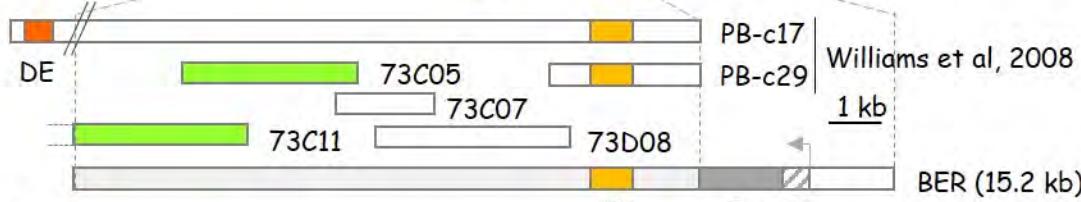
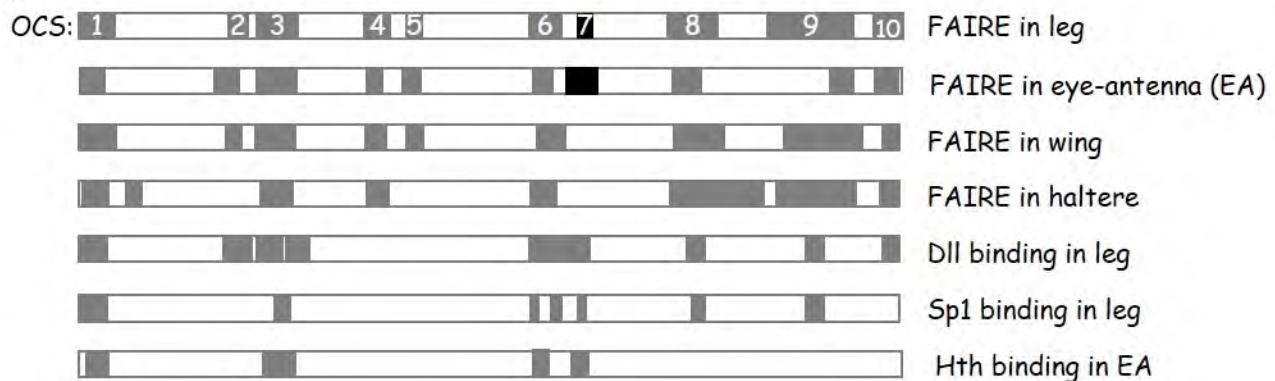
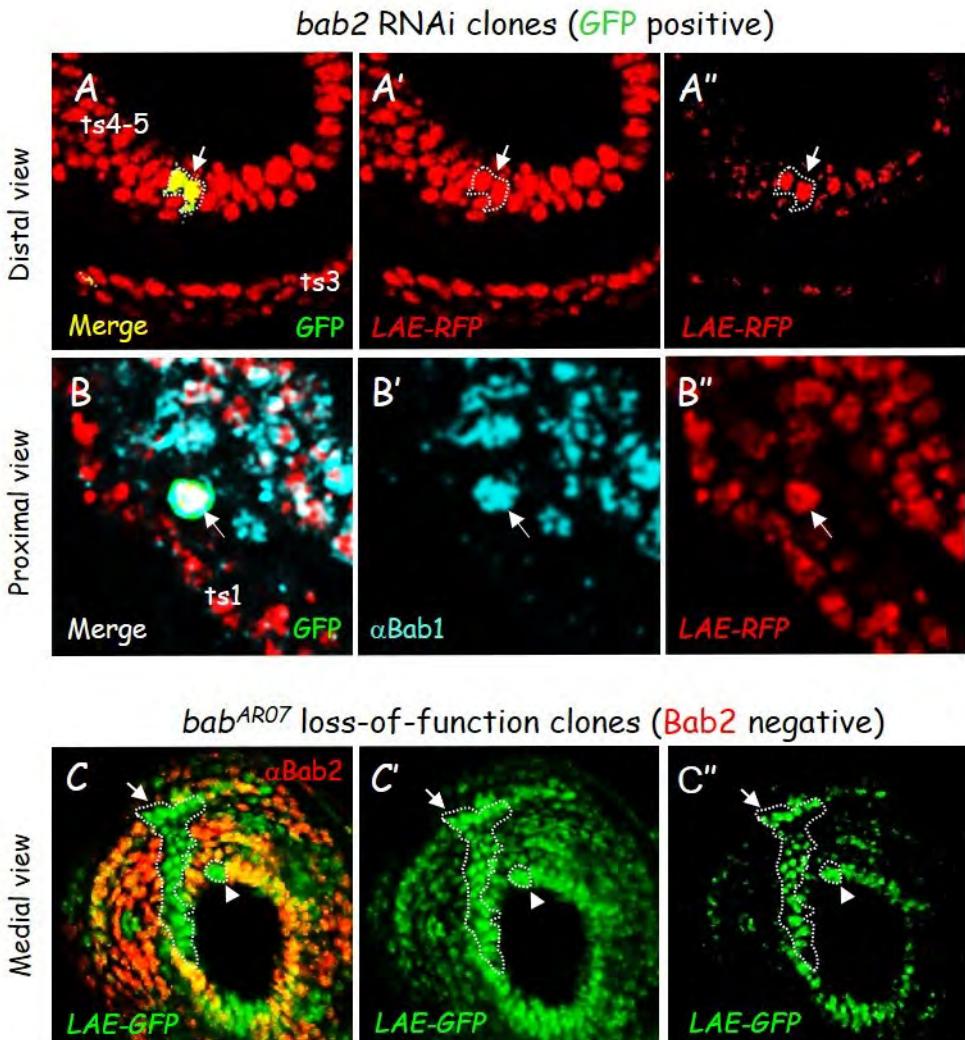


Fig 5. A topologically-associating domain encompasses the *bab* locus in the eye-antennal disc and genome-wide chromatin features identify an enhancer signature region (BER) within *bab1*. (A) Hi-C screenshot of a 160 kb region covering the *Dmel* *bab* gene complex. Score scale is indicated on the right (yellow to dark blue from positive to negative). (B) ATAC-, FAIRE- and/or ChIP-Seq profiles from L3 eye-antennal (ED), leg, wing and haltere discs as well as from adult pharate appendages (leg, wing and haltere) and from whole larval tissues, as indicated on the left side. As referred in the main text, lanes are numbered on the right side. ChIP-Seq peak calling data are shown in lanes 8, 17-18. Otherwise, normalized open chromatin, histone H3 post-translational modifications and TF binding profiles are shown. Positions of the tandem *bab1-2* genes are indicated on the bottom. The respective locations of the BER and LAE sequences are highlighted with vertical dashed lines. Of note, according to normalized FAIRE-Seq signals, LAE is not fully accessible in the pharate T3 leg (see grey arrow in lane 12). Strongest CTCF ChIP-Seq signals are indicated by horizontal black arrows (lane 3).


A

D. melanogaster bric-a-brac gene complex

B


C

D

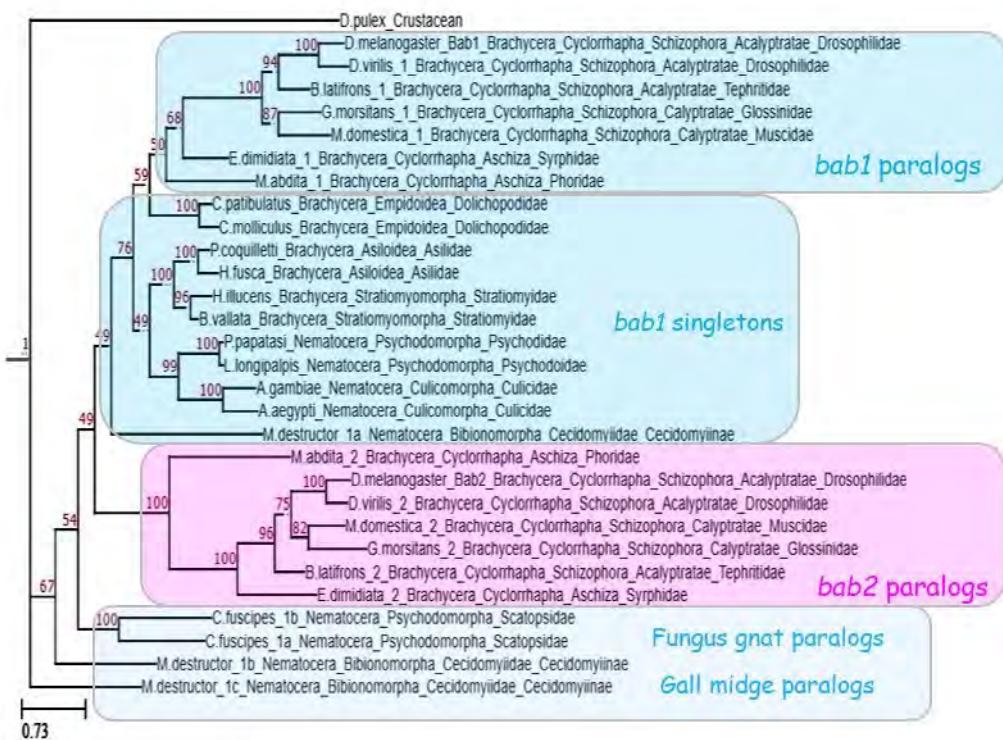
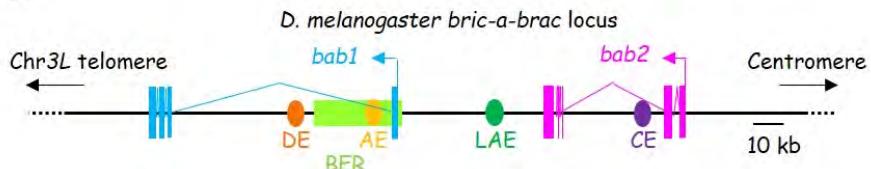

Fig 6. BER behaves as a composite pleiotropic enhancer. (A) The BER enhancer signature region includes the abdominal AE enhancer. Organization of the *Dmel* *bab* locus, with the tandem gene paralogs as depicted as in Fig. 2A. The characterized enhancers are depicted by filled dots (abdominal DE and AE in dark and light orange, respectively; leg/antennal LAE in dark green and cardiac CE in purple). BER is boxed in light green. The genomic portions of the overlapping 69B22 and 26B15 BAC constructs are shown in beneath. (B) Transgenic lines covering BER identify *cis*-regulatory elements driving reporter gene expression in diverse larval imaginal tissues. Genomic fragments covered by relevant Janelia Farm FlyLight reporter lines [77] and the DE- and/or AE-containing PB-c17 and PB-c29 genomic constructs, described in [14], are shown above a scheme of the BER region. *bab1* protein coding and 5'-untranslated sequences within the first exon are filled or hatched in dark grey, respectively, while the intronic region is in light gray. The AE sequence is in orange, as depicted in (A). FlyLight reporter lines driving reporter expression in diverse imaginal discs (see S4 Fig) are filled in light green. (C) BER includes open chromatin sequences (OCS) and is bound by Dll, Sp1, Hth TFs in diverse developing appendages (leg, eye-antenna, wing and haltere). OCS and TF-bound sequences are depicted by filled grey/black boxes. Numbers refer to OCSs detected in the leg discs (see main text). The black boxes represent OCSs detected in the eye-antennal (EA) and leg but not in wing and haltere discs. OCS and Dll or Sp1-bound regions, as determined from peak calling (FAIRE-Seq GSE38727 and ChIP-Seq GSE113574 GEO dataset series, respectively), are from [40] and [42], respectively. ChIP-Seq data for Hth are from [78]. (D) BER includes pleiotropic *cis*-regulatory elements (CREs). Locations of predicted CREs (see text) are indicated by light green boxes. The hatched part of the predicted leg/antennal CRE is inferred from data obtained with the PB-c17 construct reported in [14].

Fig 7. Auto- and cross-regulation among the two *bab* paralogs in the developing legs. (A) Distal confocal view of a L3 leg disc expressing *LAE-RFP* and harboring flip-out (FO) clones expressing interfering RNA against *bab2*. Merged RFP (red) and GFP (green) fluorescence, as well as the former in isolation and under two distinct signal magnification (A' and A''), are shown. A FO clone (GFP+) within *LAE-RFP* (*bab2*)-expressing ts4 cells is circled with a dashed line (see arrow). (B) Proximal confocal view of a L3 leg disc expressing *LAE-RFP* and harboring FO clones expressing interfering RNA against *bab2*. Merged Bab1 (blue) immunostaining, RFP (red) and GFP (green) fluorescence, as well as the two formers in isolation, in (B') and (B''), respectively, are shown. Note that a single-cell FO clone (GFP+), within *LAE-RFP* (*bab2*)-expressing ts1 cells, is sufficient to upregulate *bab1* (see arrows). (C-D) L3 leg (C) and eye-antennal (D) discs expressing *LAE-GFP* and harboring mutant clones for the protein null allele *bab^{AR07}*. Merged Bab2 (red) immunostaining and GFP (green) fluorescence as well as the latter in isolation under two distinct signal magnifications (C'-C'' and D'-D''), are shown. Tiny and larger clones (Bab2 negative) are circled with dashed lines (arrowheads and arrows, respectively).


A

Nematocera	<i>Culicomorpha</i> (Agam, Aaeg)	
	<i>Psychodomorpha</i> (Cfus, Ppat, Llon)	
	<i>Bibionomorpha</i> (Mdes)	
	<i>Stratiomyomorpha</i> (Hill, Bval)	
Brachycera	Orthorrhapha	Asiloidea (Pcoq, Hfus, Ddia)
		Empidoidea (Cpat, Cmol)
	Muscomorpha (Cyclorrhapha)	Aschiza (Mabd, Edim)
		Schizophora Acalyptratae (Dmel, Blat, Ccap, Tdal, Tmin) Calyptatae (Gmor, Gbre, Mdom, Scal, Lcup)

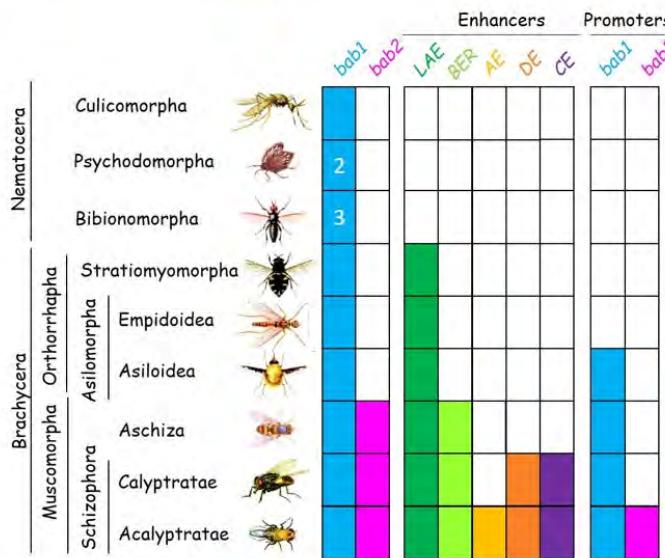
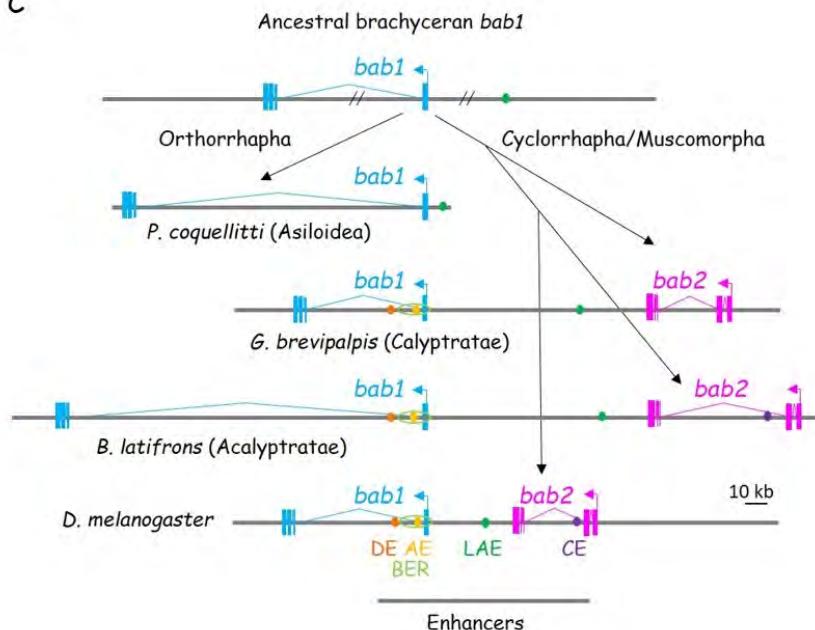
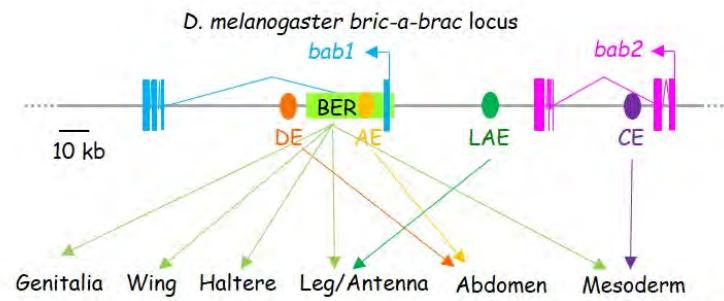

B

Fig 8. Phylogenetic relationships among dipteran *bab* paralogs and orthologs. (A) Dipteran families studied in this work. Species abbreviations are described in Supplementary data. (B) Phylogenetic relationships of the *bab* paralogs and orthologs inferred from a maximum likelihood consensus tree constructed from 1000 bootstrap replicates. Support values (percentage of replicate trees) are shown in red. Scale bar represents substitution per site. Clustered positions of *bab2* paralogs and *bab1* paralogs/orthologs are shown in pink and light blue, respectively.


A

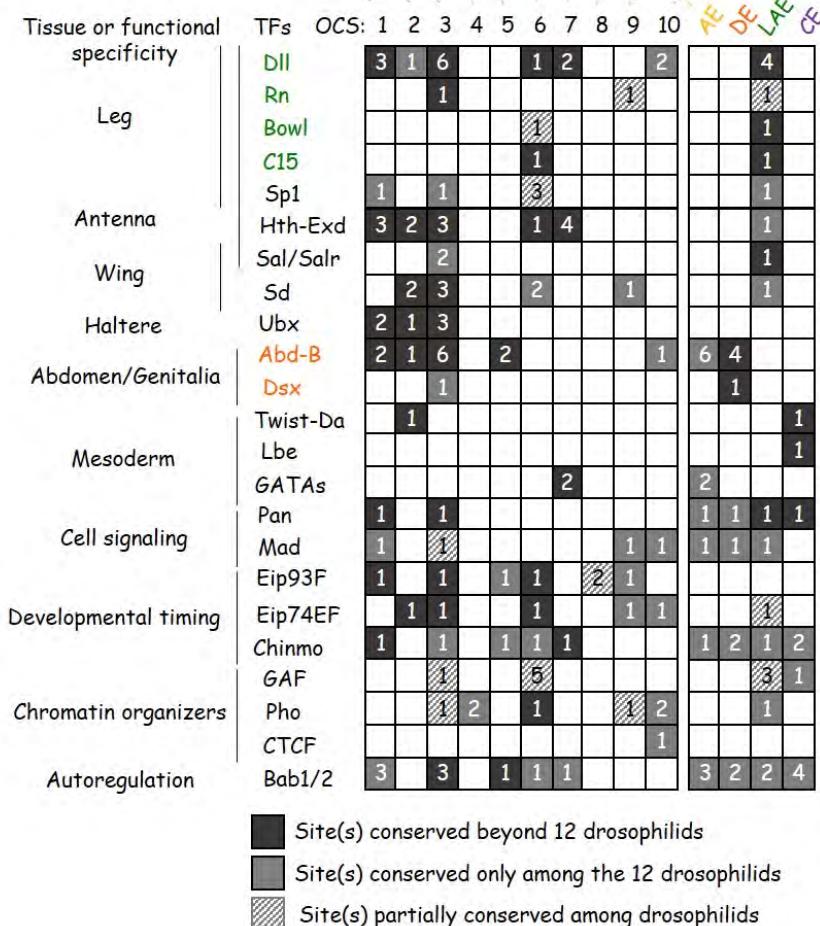
B



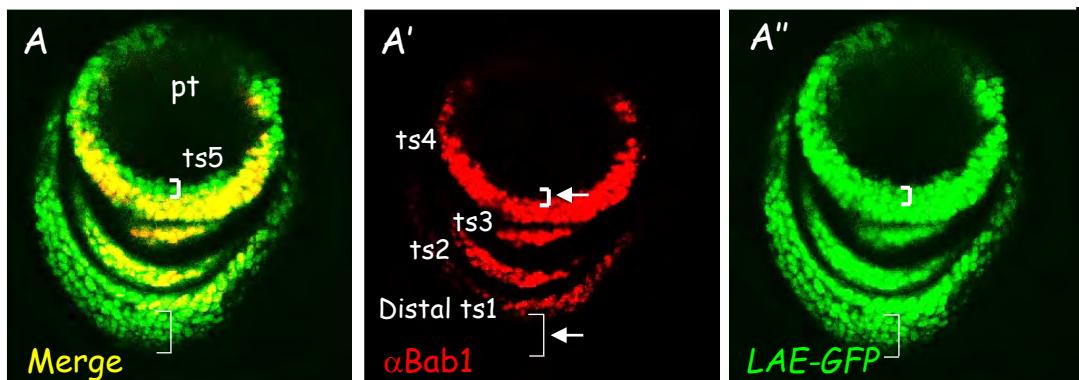
C



Fig 9. Conservation of enhancer/promoter sequences and evolutionary history of the *bab* locus among the Brachycera. (A) Organization of the *Dmel* *bab* gene paralogs and enhancers. The locus is depicted as in Fig 1A, except that *bab2* is represented in pink instead of red. (B) Evolutionary conservation of the *bab* gene paralogs, enhancers and promoters among diverse dipterans. Infraorders, sections, subsections and superfamilies are indicated on the left, arranged in a phylogenetic series from the “lower” Nematocera to the “higher” Brachycera suborders. Presence of *bab1* and/or *bab2* paralogs and conservation of enhancer and promoter sequences are indicated by filled or hatched boxes colored as depicted in (A). (C) Evolutionary scenario for the *bab* locus within the Brachycera suborders. A scheme depicting chromosomal fate of an ancestral *bab1*-like gene which gives rise to derived orthorrhaphan singletons (Asilomorpha) and Muscomorpha-specific paralogous (Calyptatae and Acalyptratae) genes. Locations of conserved enhancer sequences are shown, as depicted in (A).


A

B



C

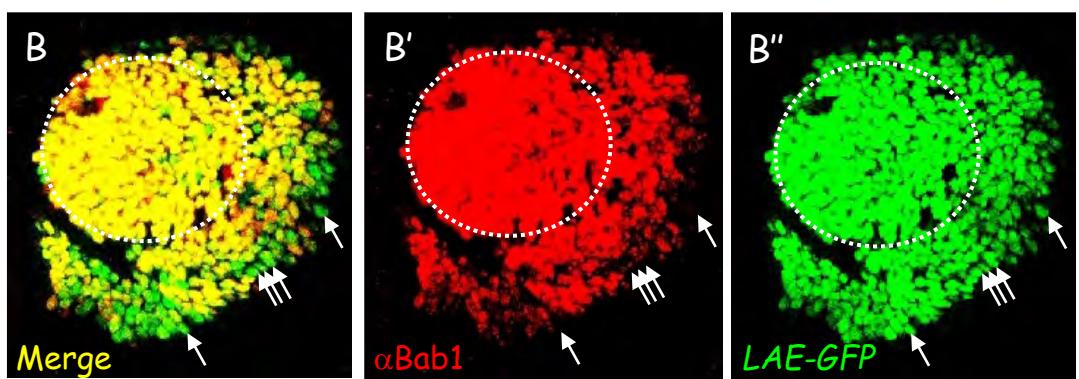
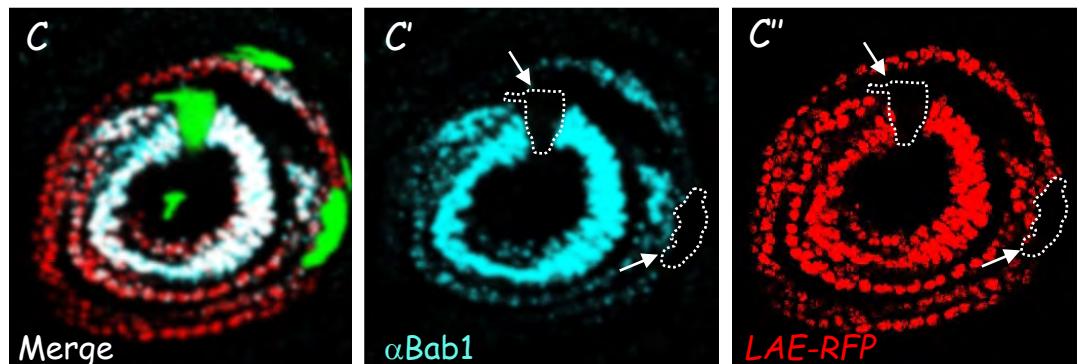
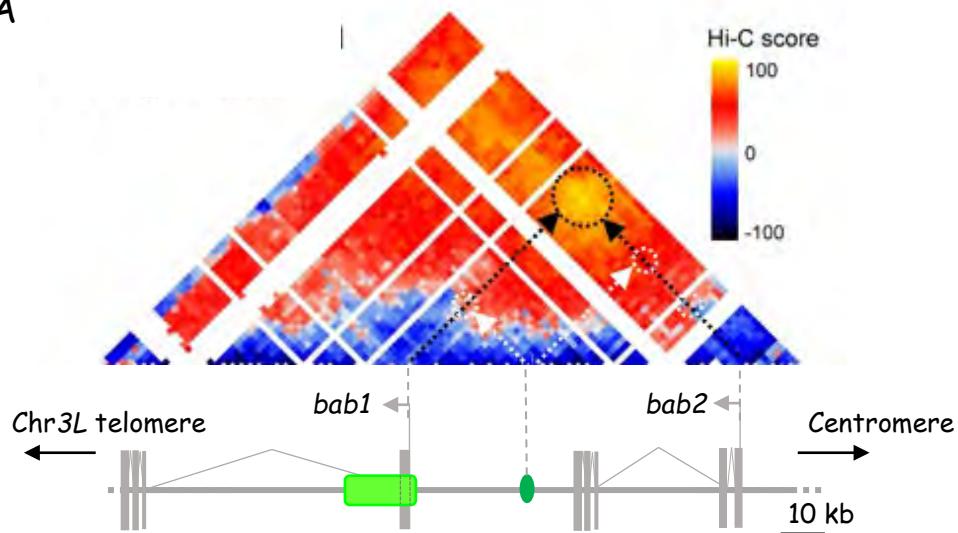


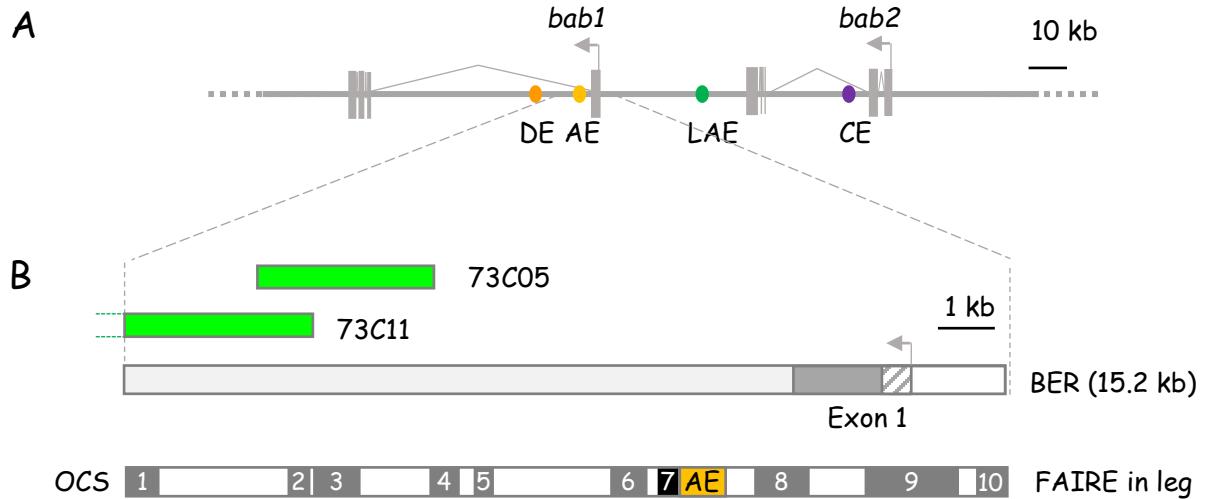
Fig 10. A comprehensive predictive tissue-specific TF code governing *bab* paralog expression. (A) Organization of the *Dmel bab* gene paralogs and enhancers, as depicted in Fig 9A. Expression tissue specificities conferred by each enhancer are shown in beneath. (B) BER structural and chromatin state organizations. The *bab1* first exon is hatched. OCS regions (see Fig 6C), as defined in leg tissues; are represented by light green boxes. The abdominal AE CRE (not detected in FAIRE-Seq data from leg and eye-antennal discs) is depicted as a light orange box. (C) Evolutive conservation of predicted TF binding sites within *Dmel bab* cis-regulatory sequences. Site conservation among and beyond drosophilids of transcriptional regulators involved in tissue-specific morphogenetic processes, cell signaling, developmental timing and chromatin organization. Predicted/validated TF site numbers are indicated within colored or hatched boxes reflecting their relative conservation are indicated in beneath. Experimentally-validated direct *bab* regulators are colored according to their well characterized bound-enhancer sequences (see A).


Wild-type leg disc

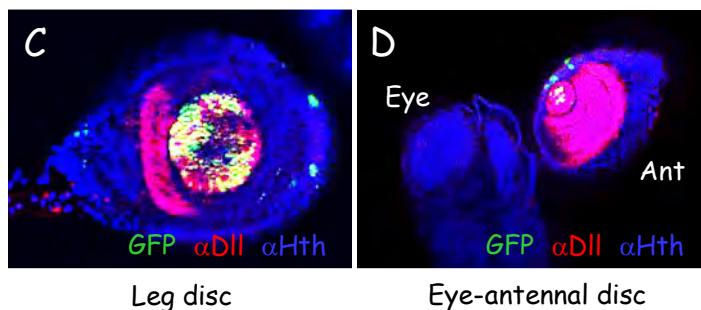
rotund gain-of-function (DII domain)



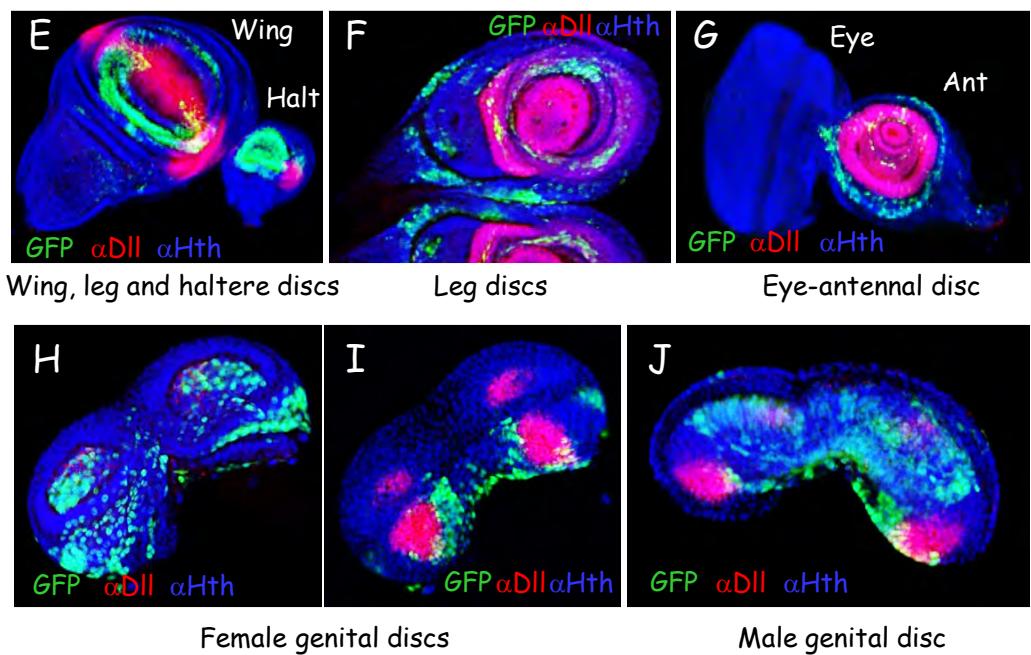
bowl gain-of-function clones (FO lines RNAi; *GFP+*)

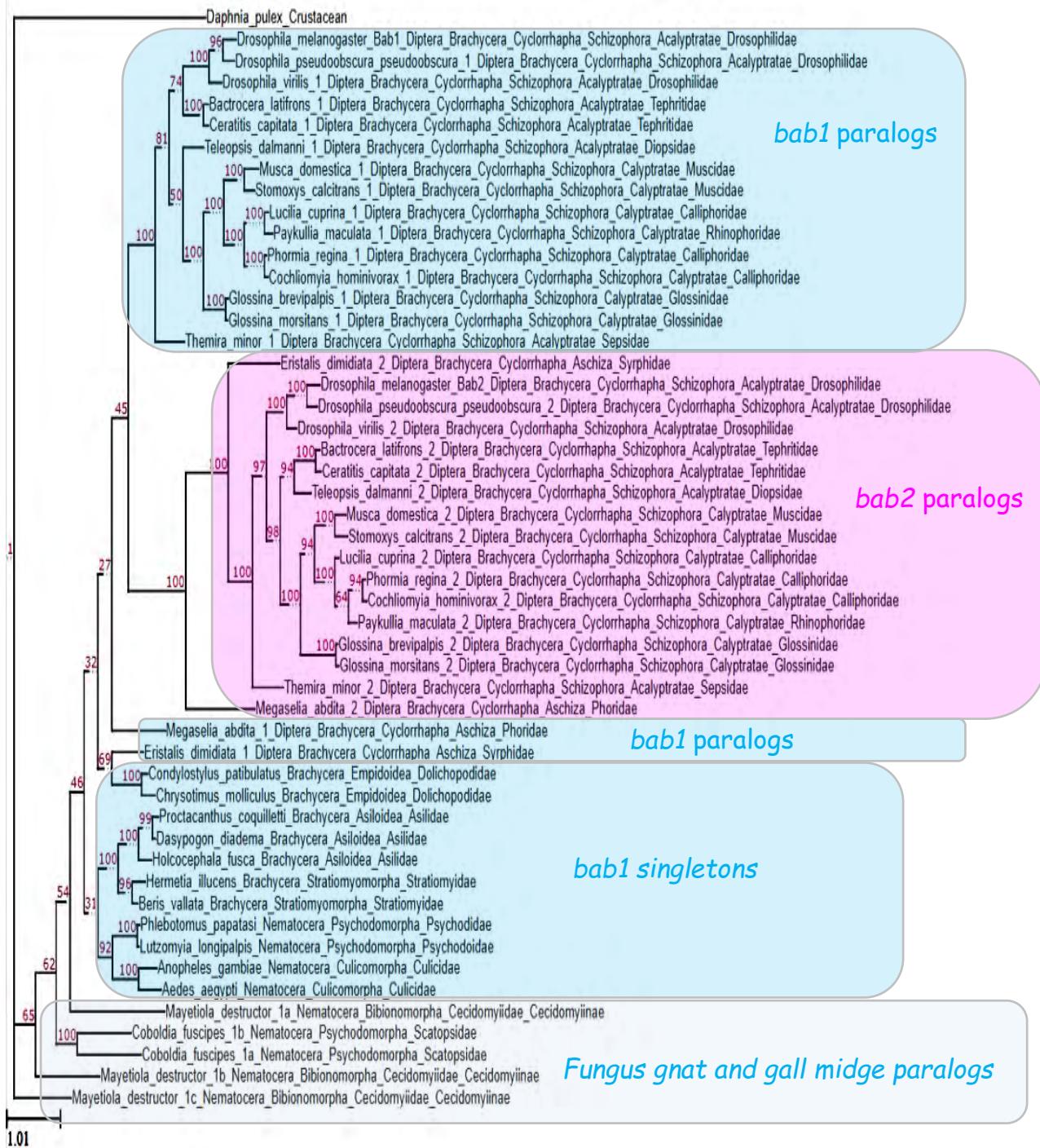

	Up targeted site	LAE -	Down targeted site
Wt	TAGGGTATTGCGTGGAGCCTCTTCCAGGCCCTTGTAACTC//CCGGTTGTTCTAAATGTTGGCTAGTTAGGCACATAAGGAGGCAGGCTCTGAACCC		
M1	TAGGGTATTGCGT-----	//	caaaagagtc GTCTCTGAACCC
M2	TAGGGTATTGCGTGGAGCaaat-----	//	agaga CTGAACCC
M3	TAGGGTATTGCGTGGAGCCTC-----	//	ttcg AGGTCTCTGAACCC
M4	TAGGGTATTGCGTGGAGCCTC-----	//	tagaccgc GCAGGGTCTCTGAACCC
M5	TAGGGTATTGCGTGGAGCCTCTTgcgaaat-----	//	
M6	TAGGGTATTGCGTGGAGCCTCTTCCG-----	//	ggGCAGGTCTCTGAACCC

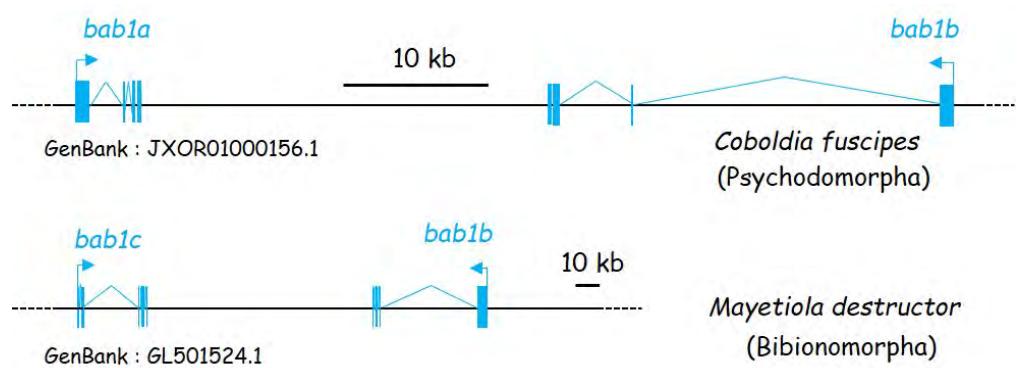
A

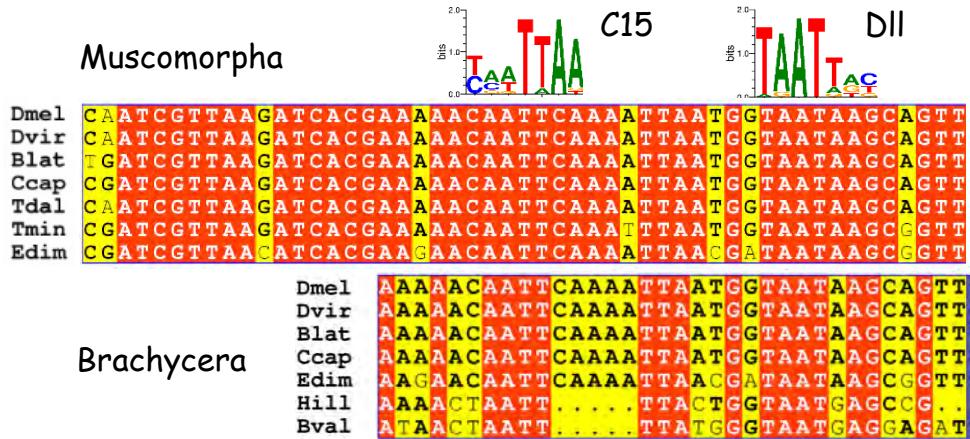


B

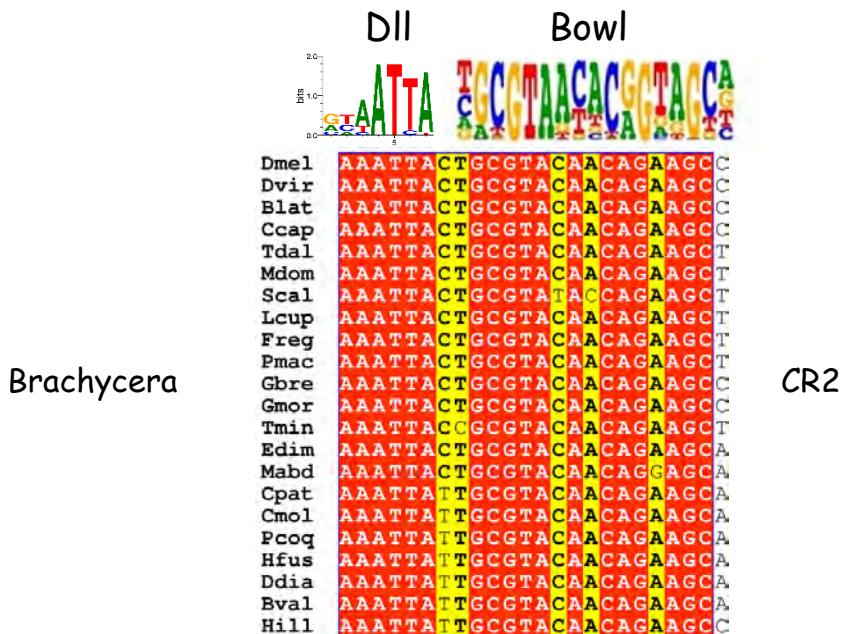




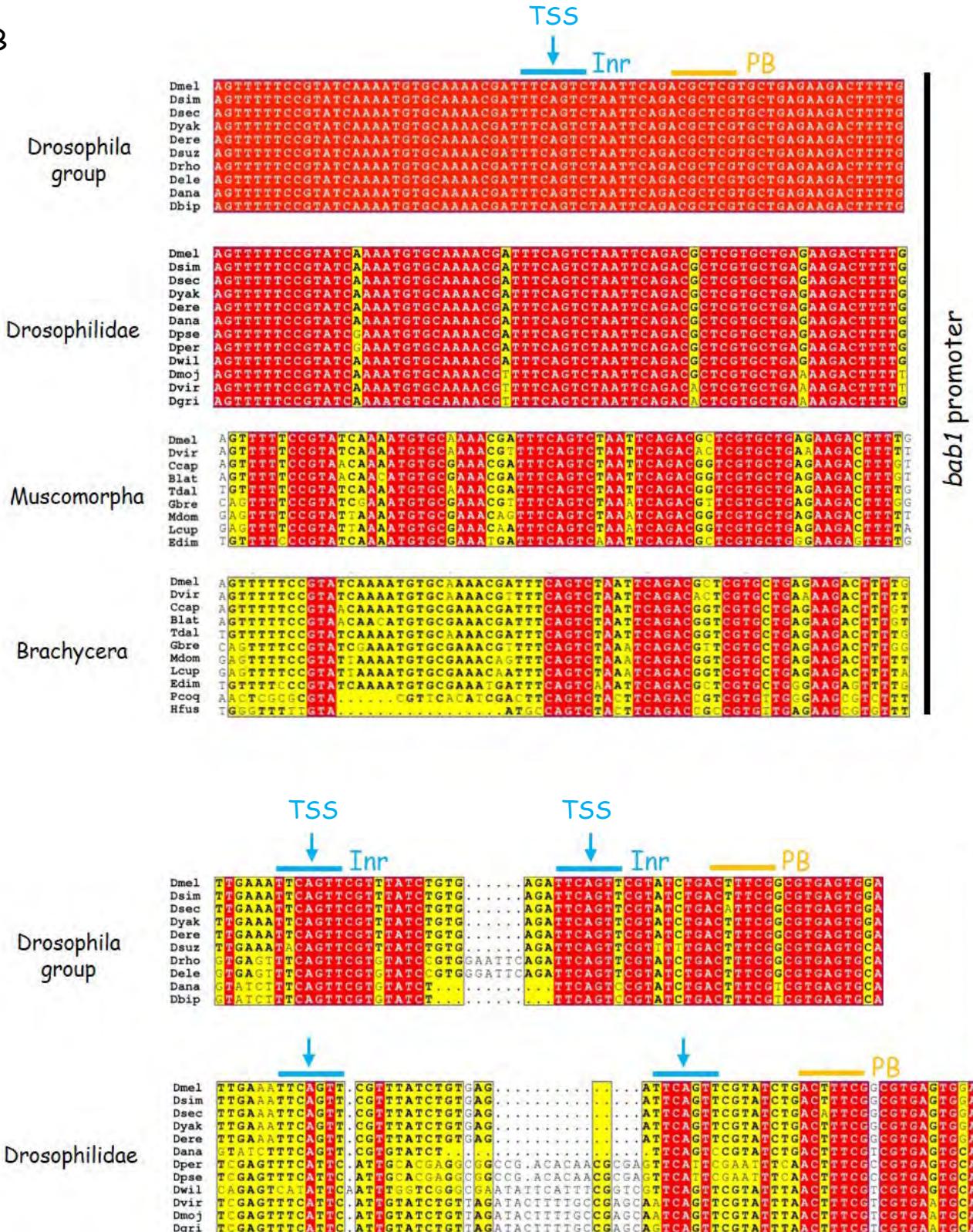

73C11-Gal4 + UAS-GFP



73C05-Gal4 + UAS-GFP

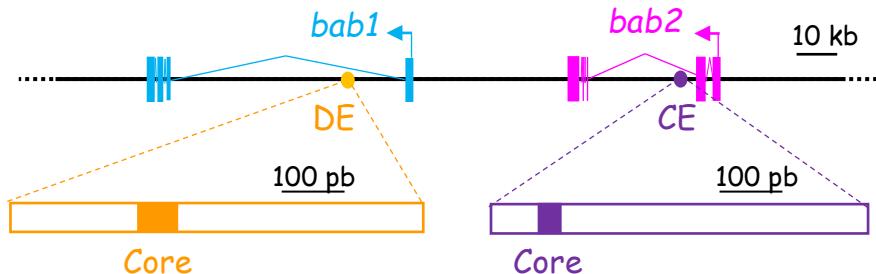


A**B**

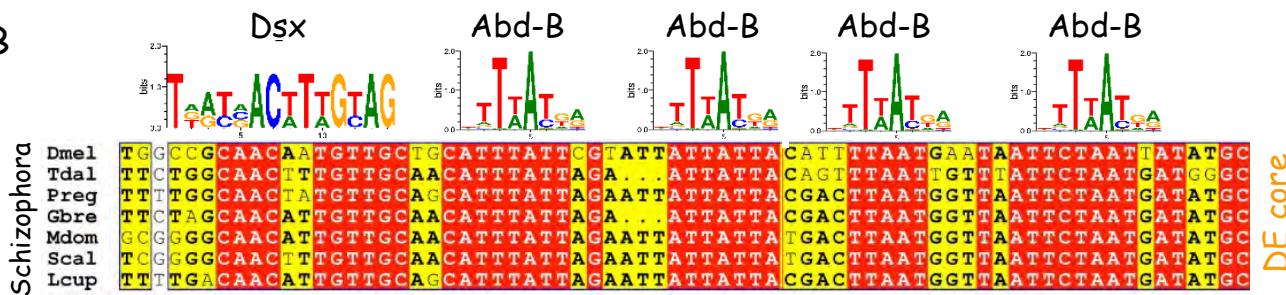

CR1

C

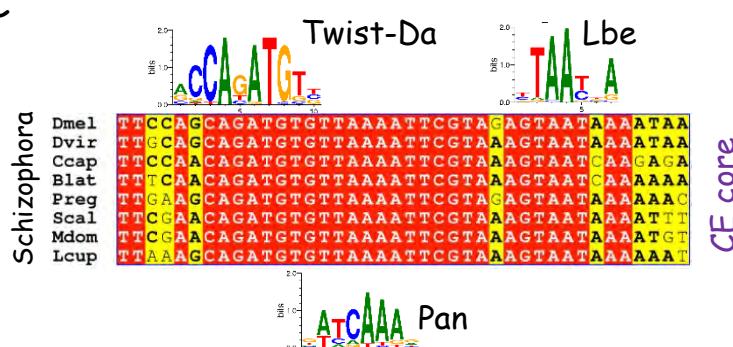
A

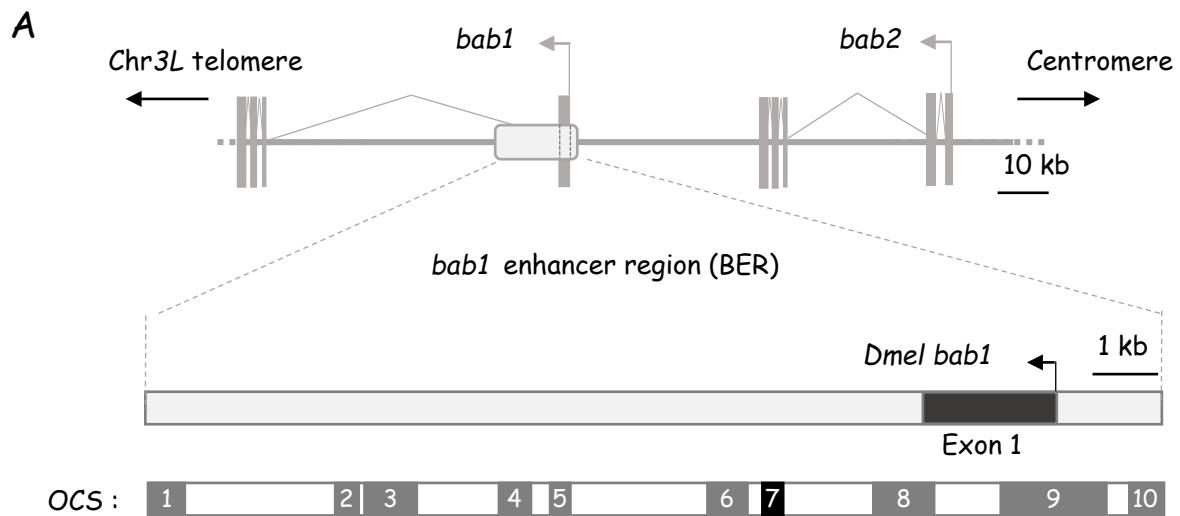


B



A

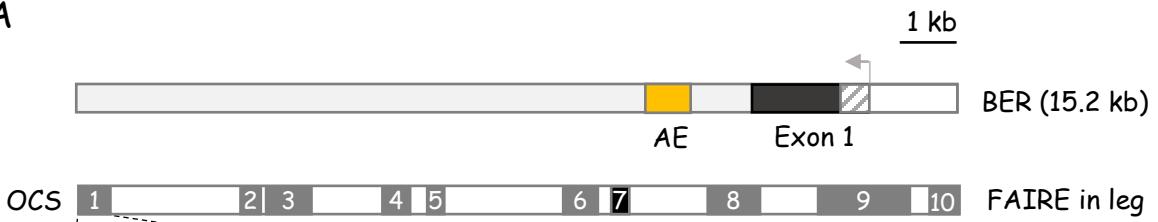

D. melanogaster (Dmel) *bric-a-brac* enhancers

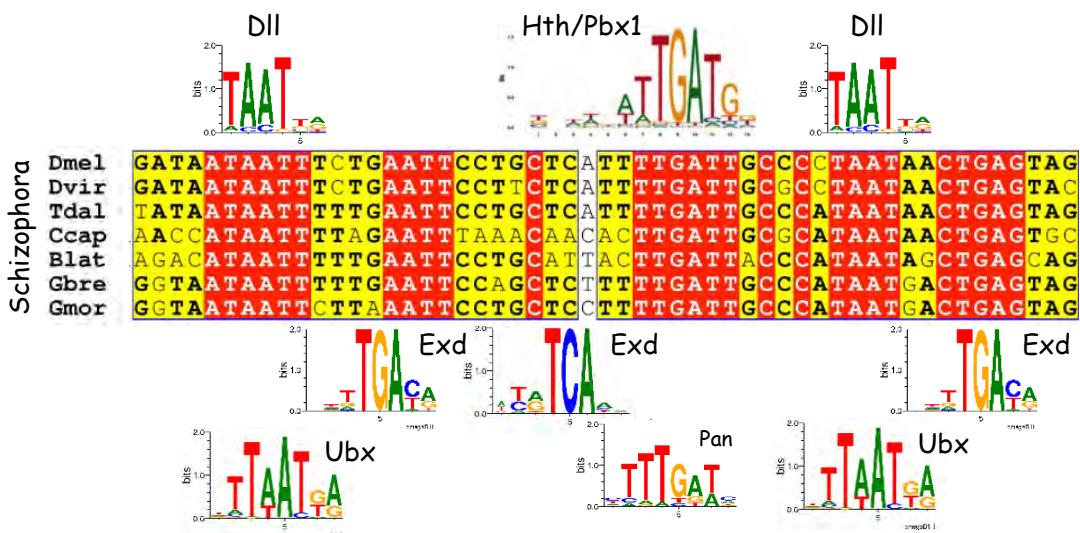


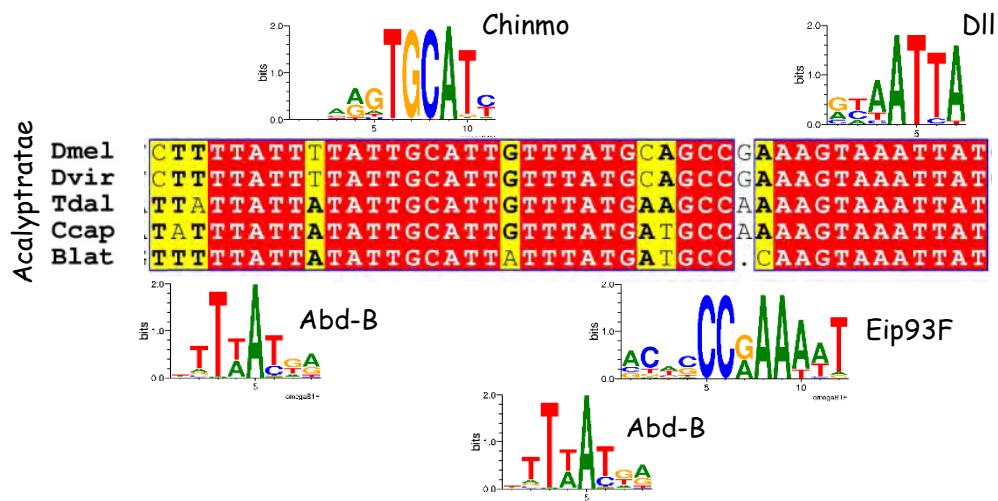
B

C

B Muscomorphan families OCS : 1 2 3 4 5 6 7 8 9 10

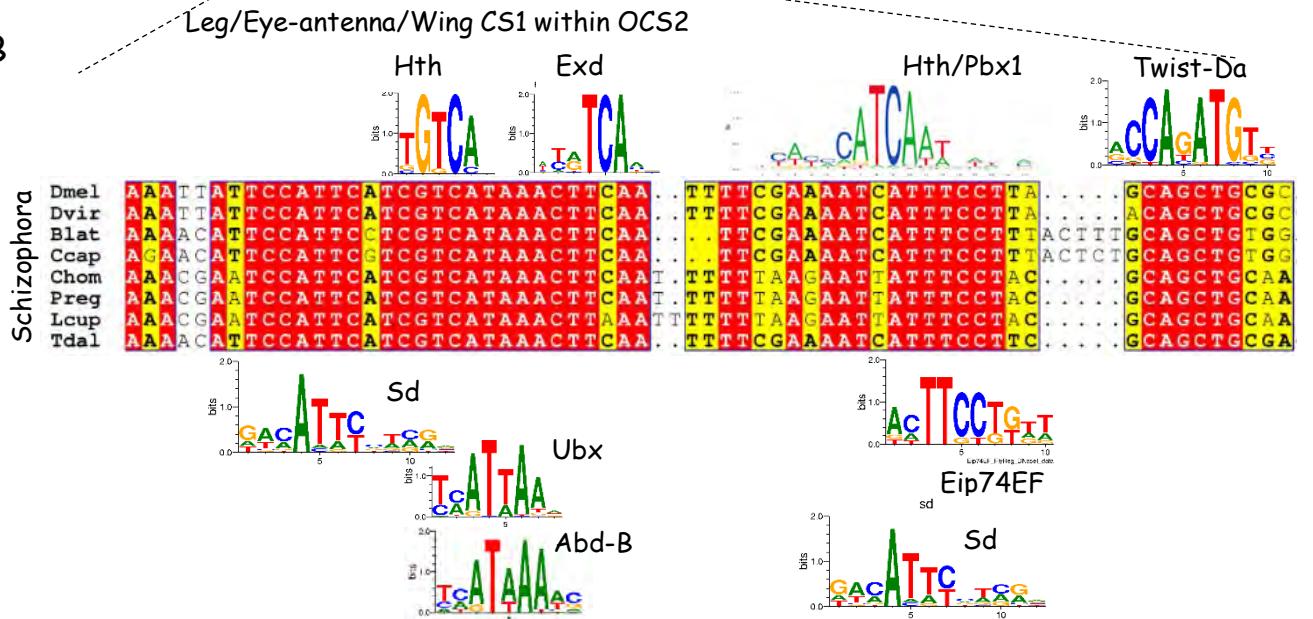

Schizophora	Acalyptratae	Drosophilidae	4	2	8	1	4	3	6	2	4	3
		Tephritidae (Blat, Ccap)	2	1	5		1	1	5		1	
		Diopsidae (Tdal)	2	1	5		1	1	5		1	
		Sepsidae (Tmin)	1		2			1	1		1	
		Glossinidae (Gbrev, Gmor)	1		3			1	3		1	
		Muscidae (Mdom, Scal)		1	1			1	1		1	
		Calliphoridae (Lcup, Preg)		1	2			1	3		1	
		Rhinophoridae (Pmac)		1	2			1	2		1	
		Syrphidae (Edim)			1						1	
		Phoridae (Mabd)			1						1	


Sequence element(s) conserved among 12 Drosophilids (dubbed CS)


CS element(s) conserved beyond Drosophilidae

A**B**

Leg/Eye-antenna/Wing/Haltere CS2 within OCS1


Leg-specific CS4 within OCS1

A

B

A

OCS 1 2|3 4 5 6 7 8 9 10 FAIRE in leg

B

Leg/Eye-antenna/Wing/Haltere CS6 within OCS3

Drosophilidae

Dmel Dsim Dsec Dyak Dere Dana

Pho

BabCD

Sp1

sd

Sd

Mad

Leg/Eye-antenna/Wing/Haltere CS8 5'-half within OCS3

Schizophrora

Dmel Dvir Blat Ccap Tdal Gbre Gmor Tmin

Ubx

Pan

DII

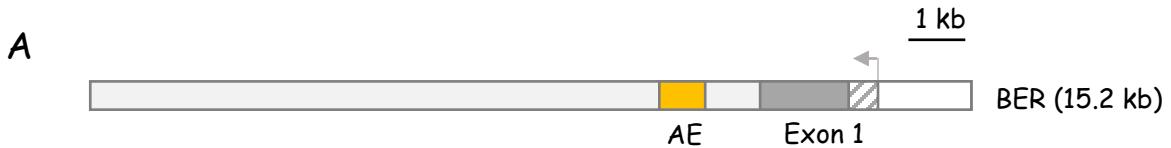
Leg/Eye-antenna/Wing/Haltere CS8 3'-half within OCS3

Cyclorrhapha

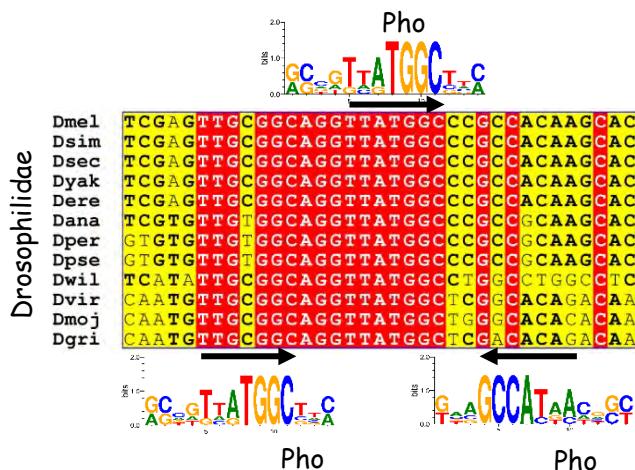
Dmel Dvir Blat Ccap Tdal Tmin Edim Mabd

DII

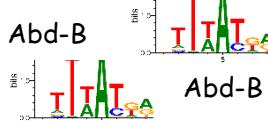
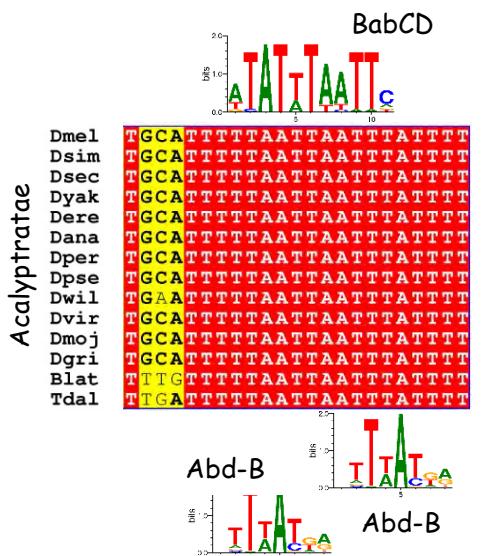
Ubx


Exd

DII

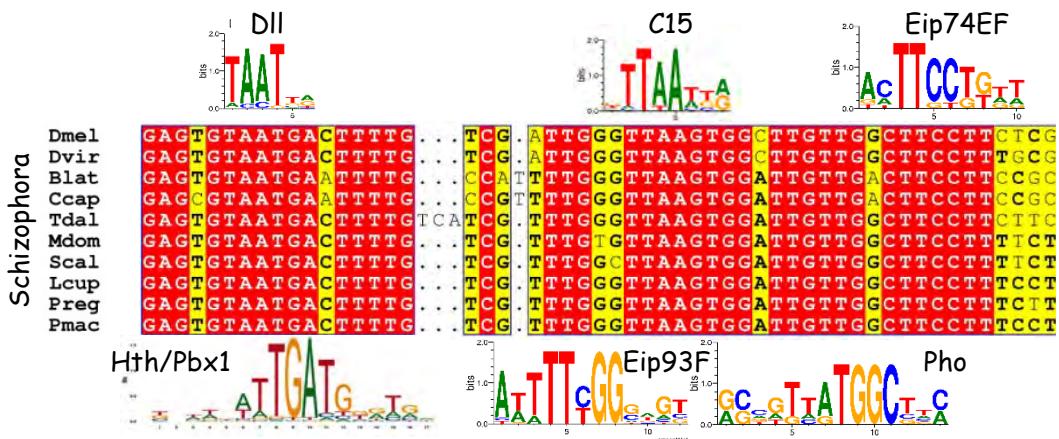

Abd-B

Sd

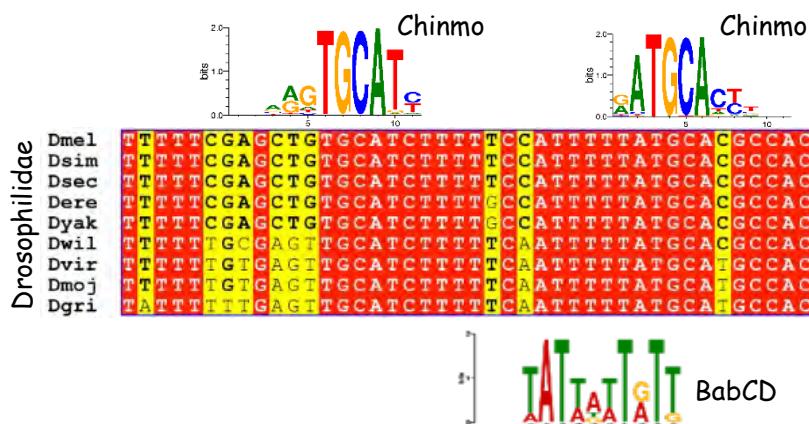


Abd-B

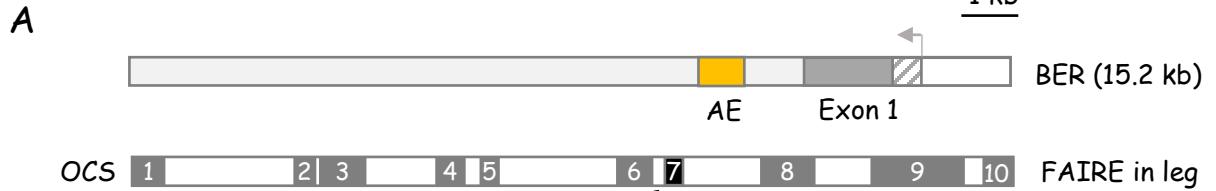


B Leg/Eye-antenna/Wing/Haltere CS1 within OCS4

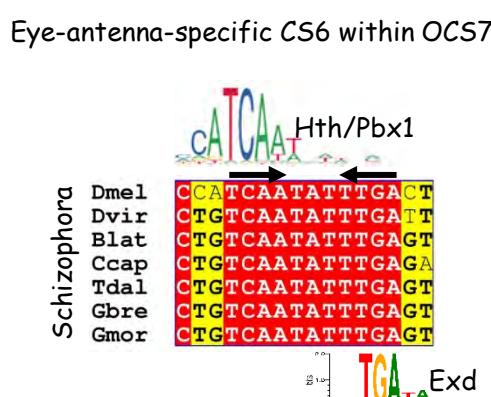
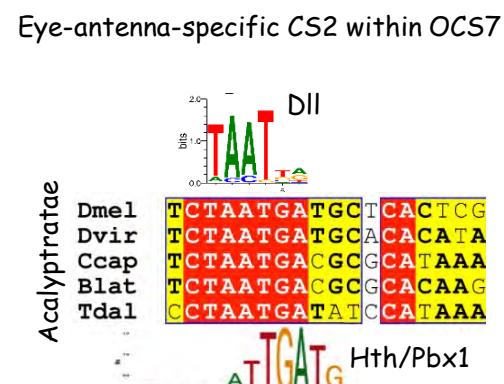
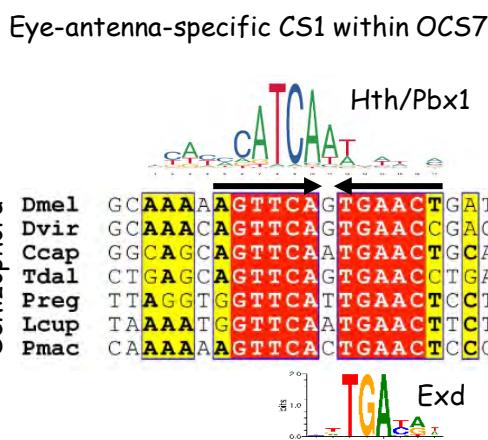
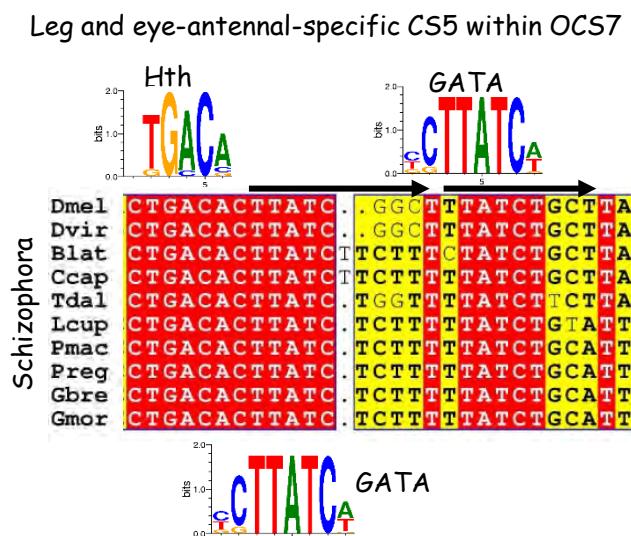
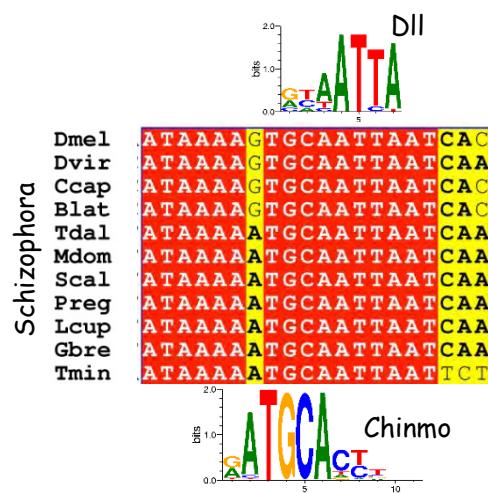


Leg/Eye-antenna/Wing CS1 within OCS5

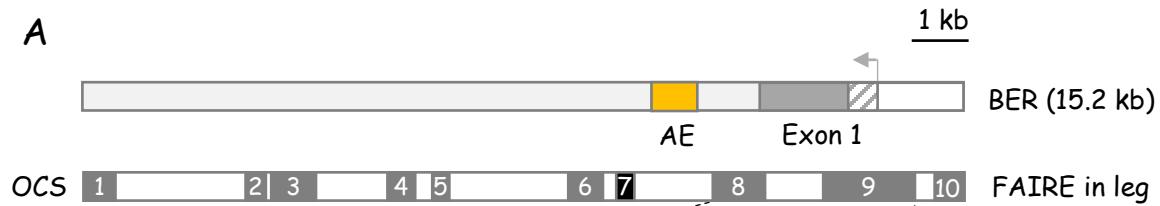



A**B**

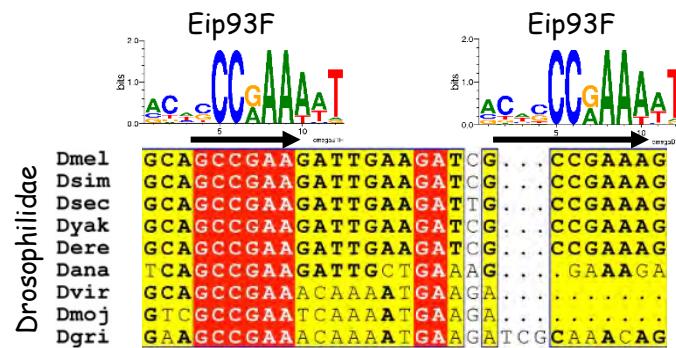
Leg/Eye-antenna/Wing/Haltere CS1 within OCS6

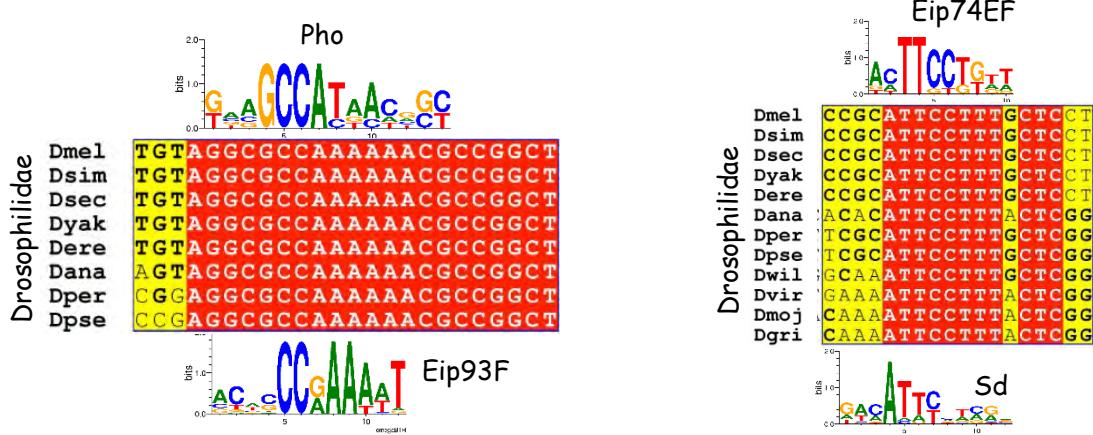
Leg/Eye-antenna/Wing/Haltere 3' next-to-CS1 within OCS6



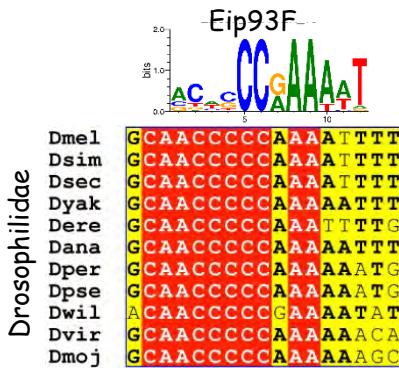
B Leg and eye-antennal-specific CS4 within OCS7



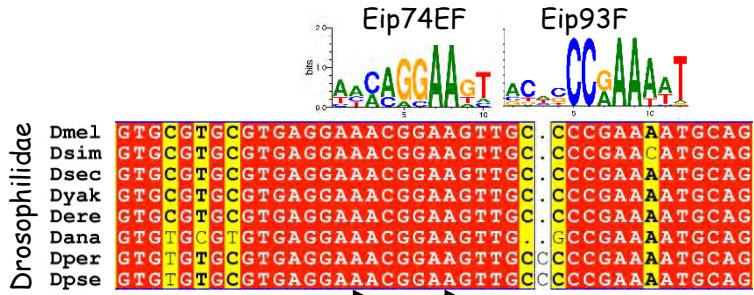
A


B

Leg/Eye-antenna/Wing/Haltere 5'-next-to-CS2 within OCS8

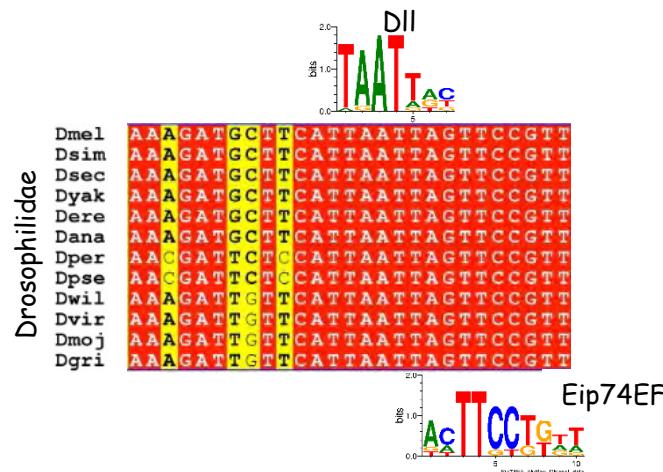


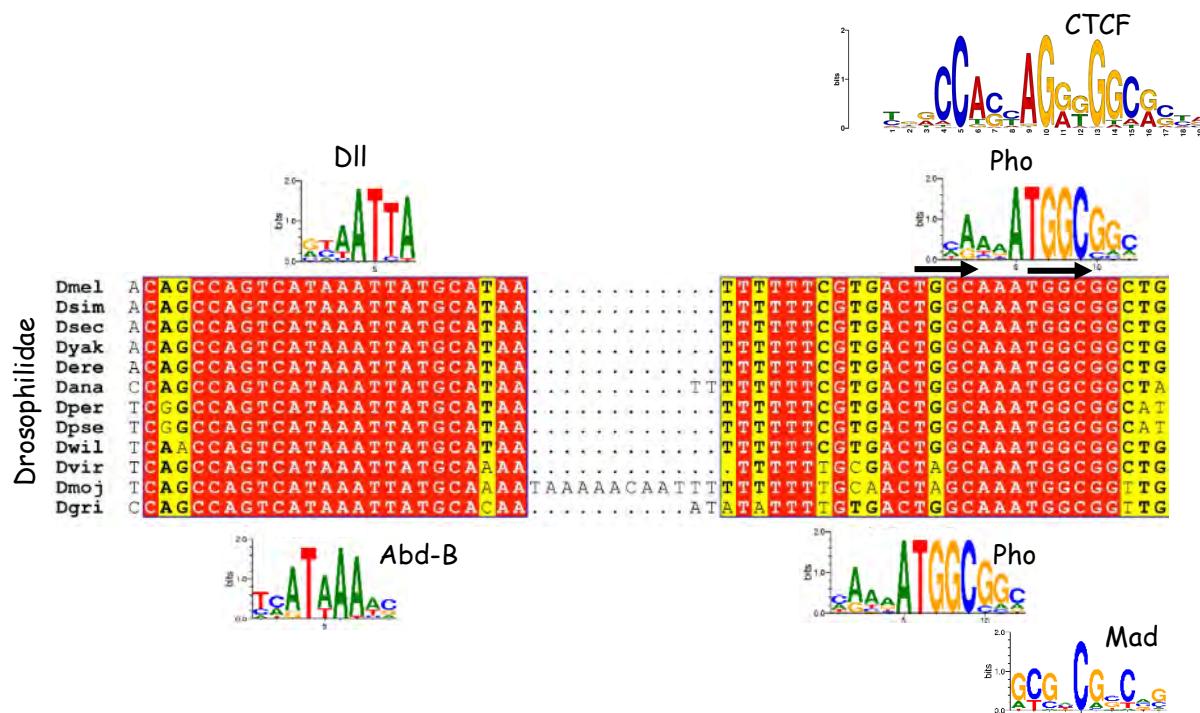
Leg/Eye-antenna/Wing/Haltere CS3 within OCS9

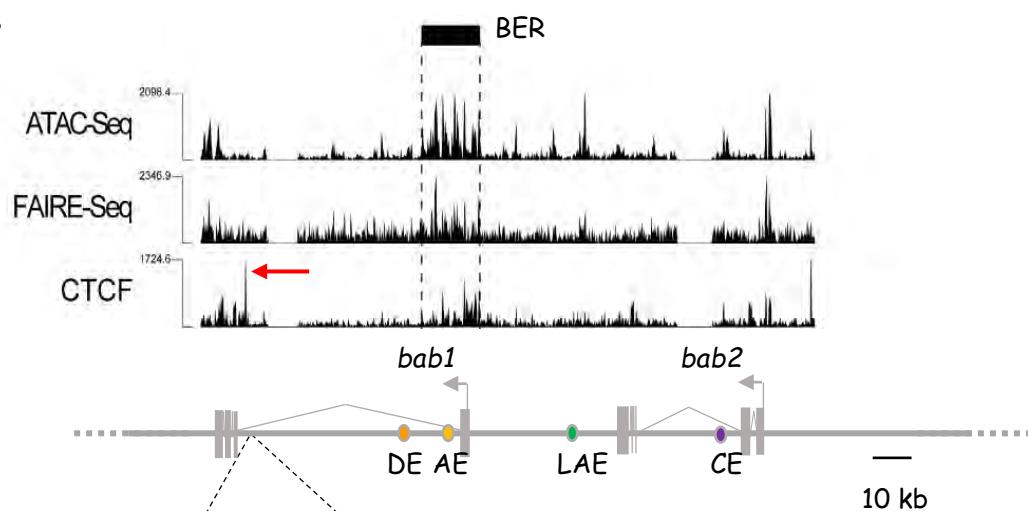
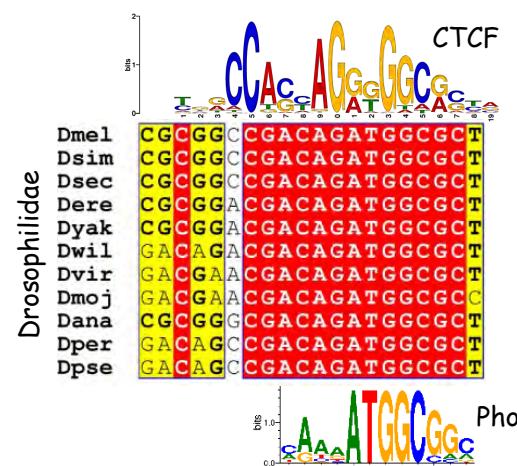

Leg/Eye-antenna/Wing/Haltere CS2 within OCS9

Leg/Eye-antenna/Wing/Haltere CS4 within OCS9

Leg/Eye-antenna/Wing/Haltere CS5 within OCS9


A


OCS 1 2|3 4|5 6 7 8 9 |10 FAIRE in leg



B

Leg/Eye-antenna/Wing/Haltere CS1 within OCS10

Leg/Eye-antenna/Wing/Haltere CS3 within OCS10

A**B****C**

Supplementary data

Four letter abbreviations for investigated species	page 2
Predicted sequences for BTB-BabCD proteins	pages 3-20
Bab1 sequence conservation among muscomorphans	pages 21-22
Bab2 sequence conservation among muscomorphans	pages 23-24
Sequence conservation between Bab1/2 paralogs	pages 25-29
Sequence conservation between paralogous Bab1/2 proteins among muscomorphans. The four-letter species abbreviations are as listed below (page 2). Strictly conserved amino-acid residues are indicated by white characters on a red background while partially conserved ones are in black characters on a yellow background. Locations of the strongly-conserved BTB and BabCD domains are indicated along the right side (see black lines).	
BPE ^{OCS1} sequence conservation among Drosophilidae	pages 30-31
BPE ^{OCS2} sequence conservation among Drosophilidae	page 32
BPE ^{OCS3} sequence conservation among Drosophilidae	pages 33-34
BPE ^{OCS4} sequence conservation among Drosophilidae	page 35
BPE ^{OCS5} sequence conservation among Drosophilidae	page 36
BPE ^{OCS6} sequence conservation among Drosophilidae	pages 37-38
BPE ^{OCS7} sequence conservation among Drosophilidae	pages 39-40
BPE ^{OCS8} sequence conservation among Drosophilidae	pages 41-42
BPE ^{OCS9} sequence conservation among Drosophilidae	pages 43-45
BPE ^{OCS10} sequence conservation among Drosophilidae	pages 46-47
Enhancer sequence conservation among Drosophilidae	pages 48-57

Conservation among twelve reference drosophilids of *D. melanogaster* BER OCS1-10 as well as LAE, CE, AE and DE sequences. The four-letter Drosophilidae species abbreviations are as listed below (page 2). Locations of conserved sequence elements (CS) are indicated by underneath black bars. Sequence LOGOs of predicted binding sites for the Dll, Bowl, C15, Sp1, Rn, Sal/Salr, BabCD, GAF, Pho, Eip74EF, Dsx, Abd-B, Sd, Chinmo, Pan, Mad, GATA factors, Twist-Da and Lbe transcription factors are depicted above or below the alignments.

Four letter abbreviations for investigated species

<i>Dmel</i> : <i>Drosophila melanogaster</i>	Drosophilidae	Acalyptratae	Schizophora	Muscomorpha/Cyclorrhapha	Brachycera
<i>Dsim</i> : <i>Drosophila simulans</i>					
<i>Dsec</i> : <i>Drosophila sechellia</i>					
<i>Dyak</i> : <i>Drosophila yakuba</i>					
<i>Dere</i> : <i>Drosophila erecta</i>					
<i>Dsuz</i> : <i>Drosophila suzukii</i>					
<i>Drho</i> : <i>Drosophila rhopaloea</i>					
<i>Dele</i> : <i>Drosophila elegans</i>					
<i>Dbip</i> : <i>Drosophila bipectinata</i>					
<i>Dana</i> : <i>Drosophila ananassae</i>					
<i>Dper</i> : <i>Drosophila persimilis</i>	Calyptatae	Aschiza	Orthorrhapha	Nematocera	
<i>Dpse</i> : <i>Drosophila pseudoobscura</i>					
<i>Dwil</i> : <i>Drosophila willistoni</i>					
<i>Dvir</i> : <i>Drosophila virilis</i>					
<i>Dmoj</i> : <i>Drosophila mojavensis</i>					
<i>Dgri</i> : <i>Drosophila grimshawi</i>					
<i>Tmin</i> : <i>Themira minor</i>					
<i>Tdal</i> : <i>Teleopsis dalmanni</i>					
<i>Blat</i> : <i>Bactrocera latifrons</i>					
<i>Ccap</i> : <i>Ceratitis capitata</i>					
<i>Mdom</i> : <i>Musca domestica</i>	Culicomorpha	Asilomorpha	Stratiomyomorpha	Binionomorpha	Psychodomorpha
<i>Scal</i> : <i>Stomoxys calcitrans</i>					
<i>Lcup</i> : <i>Lucilia cuprina</i>					
<i>Preg</i> : <i>Phormia regina</i>					
<i>Chom</i> : <i>Cochliomyia hominivorax</i>					
<i>Pmac</i> : <i>Paykullia maculata</i>					
<i>Gbre</i> : <i>Glossina brevipalpis</i>					
<i>Gmor</i> : <i>Glossina morsitans</i>					
<i>Edim</i> : <i>Eristalis dimidiata</i>					
<i>Mabd</i> : <i>Megaselia abdita</i>					
<i>Cpat</i> : <i>Condylostylus patibulatus</i>	Crustacea	Stratiomyomorpha	Binionomorpha	Psychodomorpha	Nematocera
<i>Cmol</i> : <i>Chrysotimus molliculus</i>					
<i>Pcoq</i> : <i>Proctacanthus coquilletti</i>					
<i>Ddia</i> : <i>Dasypogon diadema</i>					
<i>Hfus</i> : <i>Holcocephala fusca</i>					
<i>Hill</i> : <i>Hermetia illucens</i>					
<i>Bval</i> : <i>Beris vallata</i>					
<i>Mdes</i> : <i>Mayetiola destructor</i>					
<i>Cfus</i> : <i>Coboldia fuscipes</i>					
<i>Ppat</i> : <i>Phlebotomus papatasi</i>					
<i>Llon</i> : <i>Lutzomyia longipalpis</i>					
<i>Agam</i> : <i>Anopheles gambiae</i>					
<i>Aaeg</i> : <i>Aedes aegypti</i>					
<i>Dpul</i> : <i>Daphnia pulex</i>					

Bab1 sequence conservation among muscomorphans (Part1)

三

Bab1 sequence conservation among muscomorphans (Part2)

BabCD

Bab2 sequence conservation among muscomorphans (Part1)

四

Bab2 sequence conservation among muscomorphans (Part2)

BabCD

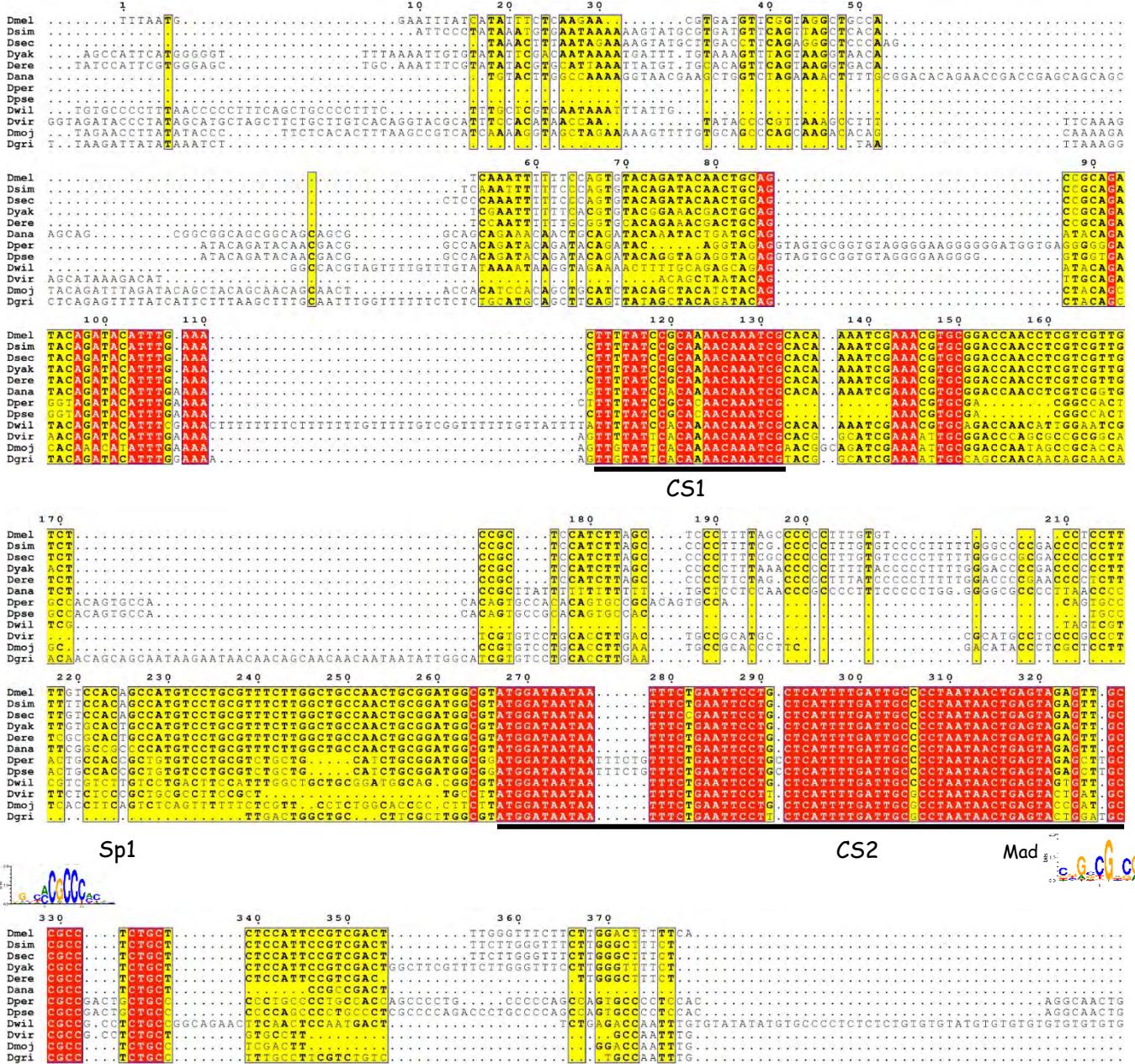
Sequence conservation between Bab1/2 paralogs (Part1)

三
一

Sequence conservation between Bab1/2 paralogs (Part2)

Sequence conservation between Bab1/2 paralogs (Part3)

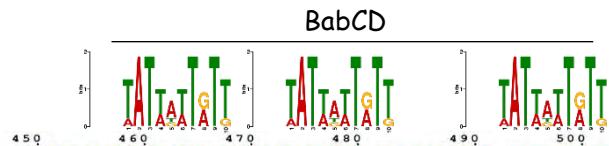
Dmell	401	LHP	H	HASAPLHPQSITAGS	AHHF	ASPAF	
Dpsel	436	PVFP	H	HISHAHLQLESEVS	SQHGCVSSAGI	ASAFAG	
	440	QHQA	H	HISHAHLQLESEVS	SQHGCVSSAGI	ASAFAG	
Blat1	537	A
Ccap1	537	
Tmnl1	531	
Tdall	494	HSQHTHHQ	
Mdml1	504	HQQQQQQQQACQHQQQQSAAQ	HSSSSTSAGIGGGGG	HMMHRSRSP	PTHESSILS	LTATVGGGSSGS	
Scall	489	QQQQQQQQQSOTHSSHQ	HSSAHGGAGGSSGSSAGQH	GLOSHSRSSPASVTS	PTHESSILS	LTPTSVTSVGPGS	GGGV
Lcup1	479	QQQQQQQQQSOTHSSHQ	SLOSHRSSPASVTS	THESSILS	LTPTSVASVGVS	
Preg1	472	PHOSHRSSPASVTS	THESSILS	LTPTSVASVHTGF	SSRL
Chom2	474	THOCHRSRSPASVTS	THESSILS	LTPTSVASVHTGF	SSRL
Percl	472	THESSILS	LTPTSVASVHTGF	SSRL
Gbre1	458	GHHSQRASRSPASVTS	THESSILS	LTPTSVASVHTGF	SSRL
Gmcr1	458	GHHSQRASRSPASVTS	THESSILS	LTPTSVASVHTGF	SSRL
Edml1	480	GHHSQRASRSPASVTS	THESSILS	LTPTSVASVHTGF	SSRL
Mabd1	245	IAHESNA	LTPTASAAAAFS	
Dmell2	461	QF	
Dpsel2	508	NSGAAMHSPFGGVAV	QSALEPF	HM AAIV	PPFFPS
Dvir2	504	SAGALLHSPFGVGS	GGCSQSLFP	HM AAIV	AMH
Blac2	504	GAQAQQLPFP	HM AAIV	AMH
Ccap2	604	SLRGANSR	AAVAAAARHSAASASV	QVQFAPP	SSRL
Tmnl2	629	PFPPFLFAQSQTQFNMPSA	AAVAAAARHSAASASV	QVQFAPP	SSRL
Tdall2	522	AAVAAAARHSAASASV	QVQFAPP	SSRL
Mdml2	567	AAVAAAARHSAASASV	QVQFAPP	SSRL
Scal2	550	AAVAAAARHSAASASV	QVQFAPP	SSRL
Lcup2	494	AAVAAAARHSAASASV	QVQFAPP	SSRL
Preg2	501	AAVAAAARHSAASASV	QVQFAPP	SSRL
Chom2	503	AAVAAAARHSAASASV	QVQFAPP	SSRL
PNac2	504	AAVAAAARHSAASASV	QVQFAPP	SSRL
Gbre2	489	AAVAAAARHSAASASV	QVQFAPP	SSRL
Edml2	488	AAVAAAARHSAASASV	QVQFAPP	SSRL
Mequ2	365	AAVAAAARHSAASASV	QVQFAPP	SSRL
Edml2	347	AAVAAAARHSAASASV	QVQFAPP	SSRL
Mabd2	353	AAVAAAARHSAASASV	QVQFAPP	SSRL
Dmell	429	DSRFPLGP	AAAM	AAAREMLS	PGPSA
Dpsel	468	ESRYPLGP	AAAM	AAAREMLS	PPPA
Dvir1	460	AAAM	GL	VAAAR
	516	GRSEOD	AAAM	GL	PHGSA
Ccap1	589	GRSEFQGANDSPALGS	QAAM	AAARQMDL	AAAM	AAVAAAARHSAASASV	ATP
Tmnl1	564	AAAM	AAVAAAARHSAASASV	ATP
Tdall	543	RCVESSMHDASRFPLGP	QAAM	AAAHMDL	AAAM	AAVAAAARHSAASASV	ATP
Mdml1	579	AAAHMDL	AAVAAAARHSAASASV	ATP
Scal1	580	GVGVGSRGLGDSRFPLGP	QAAM	AAASQMLS	AAASANGMR	AAVAAAARHSAASASV	ATP
Lcup1	522	GEQQQMGAD	SHRFPLGP	QAAM	AAARQMDL	AAVAAAARHSAASASV	ATP
Preg1	514	EGSSMTGDSHFRSMGP	QAAM	AAARQMDL	AAVAAAARHSAASASV	ATP	
Chom1	507	EGNSMGDSHFRSMGP	QAAM	AAARQMDL	AAVAAAARHSAASASV	ATP	
PNac1	514	EGSQITGSHFRSMGP	QAAM	AAARQMDL	AAVAAAARHSAASASV	ATP	
Gbre1	495	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	HOA
Gmcr1	495	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	HOA
Edml1	498	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	HOA
Mabd1	247	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	HOA
Dmell2	498	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	EVLAVALSPTEQDTS	HOA
Dpsel2	563	AAAQQQIAAQ	HQI	AAAHSH	AAASALAAA	AAAGAGAGA	GGAG
Dvir2	563	AAAQQQIAAQ	HQI	AAAHSH	AAASALAAA	AAAGAGAGA	GGAG
Blac2	642	AAAQQQIAAQ	HQI	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Ccap2	660	AAAQQQIAAQ	HQI	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Tmnl2	648	SS	SHH	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Tdall2	571	AAAQQQIAAQ	HQI	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Mdml2	615	AAAQQQIAAQ	HQI	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Scal2	599	AAAQQQIAAQ	HQI	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Lcup2	537	AAAQQQIAAQ	HQI	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Preg2	543	AAAQQQFAAQ	QOL	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Chom2	545	AAAQQQFAAQ	QOL	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
PNac2	544	AAAQQQFAAQ	QOL	AAAHSH	AAASALAGS	AAAGAGAGA	GGAG
Gbre2	525	VAAAQQQIAAQ	HQFHTAAQ	AAASALOV	AAASALOV	AAAGAGAGA	GGAG
Mequ2	392	AAASALOV	AAASALOV	AAAGAGAGA	GGAG
Edml2	371	AAASALOV	AAASALOV	AAAGAGAGA	GGAG
Mabd2	383	AAASALOV	AAASALOV	AAAGAGAGA	GGAG
		SGRDGVS			VGGNGGTG		GGAG
Dmell	457	PRLLPFFPHHGGGGVGGGGVGGGGVGGGG	SGLADDL	I	IAEMIREERERAKMEN	S	STLA
Dpsel	495	PRLLPFFPHHGGGGVGGGGVGGGG	SGLADDL	I	IAEMIREERERAKMEN	S	ADSYQYQLOD
Dvir1	492	PRLLPFFPHHGGGGVGGGG	SGLADDL	I	IAEMIREERERAKMEN	S	SMWQKCNW
	640	PTTHAHLH	SGLADDL	I	IAEMIREERERAKMEN	S	ONLMBH
Blat1	649	SGLADDL	I	IAEMIREERERAKMEN	STLA
Ccap1	653	SGLADDL	I	IAEMIREERERAKMEN	STLA
Tmnl1	674	SEPFPSAAGH	SGLADDL	I	IAEMIREERERAKMEN	S	SSLA
Tdall	587	PRFFPFFPHH	SGLADDL	I	IAEMIREERERAKMEN	S	SSLA
Mdml1	616	ANTIEGGRLL	SGSADDL	I	IAEMIREERERAKMEN	S	SSLA
Scal1	631	OTIQGQFSHH	SGSADDL	I	IAEMIREERERAKMEN	S	SSLA
Lcup1	570	PMPSAGBGGH	TSLSVDDL	I	IAEMIREERERAKMEN	S	SSLA
Preg1	561	PFPTGPGHHH	TSLSVDDL	I	IAEMIREERERAKMEN	S	SSLA
Chom1	554	PFPTSTGSGHHH	TSLSVDDL	I	IAEMIREERERAKMEN	S	SSLA
PNac1	560	PTFPTSSSGHHH	TSLSVDDL	I	IAEMIREERERAKMEN	S	SSLA
Gbre1	519	PTIVVSFGFAAH	TSLSVDDL	I	IAEMIREERERAKMEN	S	SSLA
Gmcr1	539	MPZIGSGETH	TSLSVDDL	I	IAEMIREERERAKMEN	S	SSLA
Edml1	522	SHYDML	I	IAEMIREERERAKMEN	S	SSLA
Mabd1	258	PTPDEM	SHYDML	I	IAEMIREERERAKMEN	S	SSLA
Dmell2	541	SAPIGG	IGVAGSG	I	IAEMIREERERAKMEN	S	SSLA
Dpsel2	609	SVS	ASSVGSG	I	IAEMIREERERAKMEN	S	ASVA
Dvir2	605	NS	ASSVGSG	I	IAEMIREERERAKMEN	S	ADSYQYQLOD
Blac2	689	AN	ASSVGSG	I	IAEMIREERERAKMEN	S	SMWQKCNW
Ccap2	724	PN	ASSVGSG	I	IAEMIREERERAKMEN	S	ONLVCQ
Tmnl2	726	SD	ASSVGSG	I	IAEMIREERERAKMEN	S	SSV
Tdall2	612	SD	ASSVGSG	I	IAEMIREERERAKMEN	S	SSV
Mdml2	657	SNP	ASSVGSG	I	IAEMIREERERAKMEN	S	SSV
Scal2	633	TNE	ASSVGSG	I	IAEMIREERERAKMEN	S	SSV
Lcup2	581	TS	ASSVGSG	I	IAEMIREERERAKMEN	S	SSV
Preg2	587	TS	SAGSSSH	I	IAEMIREERERAKMIES	S	SSV
Chom2	589	TS	SAGSSSH	I	IAEMIREERERAKMIES	S	SSV
PNac2	588	TS	SAGSSSH	I	IAEMIREERERAKMIES	S	SSV
Gbre2	570	NNTGK	ITAGFEE	I	IAEMIREERERAKMIES	S	SSV
Mequ2	510	NNTGK	ITAGFEE	I	IAEMIREERERAKMIES	S	SSV
Edml2	412	DSL	MSAGI	I	IAEMIREERERAKMIES	S	SSV
Mabd2	511	DALS	MSAGI	I	IAEMIREERERAKMIES	S	SSV
			EDFMRGGRRGN	I	IAEMIREERERAKLLE	S	SSV
Dmell	555	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	AE
Dpsel	595	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Dvir1	581	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Blat1	713	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Ccap1	753	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Tmnl1	666	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Tdall	666	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Mdml1	696	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Scal1	710	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Lcup1	650	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Preg1	641	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Chom1	634	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
PNac1	639	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Gbre1	647	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Mequ1	617	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Edml1	588	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Mabd1	325	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Dmell2	635	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Dpsel2	692	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Dvir2	684	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Blac2	764	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Ccap2	781	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Tmnl2	801	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Tdall2	598	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Mdml2	734	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Scal1	716	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Lcup2	656	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Preg2	662	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Chom2	664	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
PNac2	663	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Gbre2	649	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Mequ2	493	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Edml2	469	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED
Mabd2	484	FERGRLPLKSWRP	MAA1IFSVL	I	FERGRLPLKSWRP	EDFMRGGRRGN	ED


BabCD

Sequence conservation between Bab1/2 paralogs (Part4)

Sequence conservation between Bab1/2 paralogs (Part5)

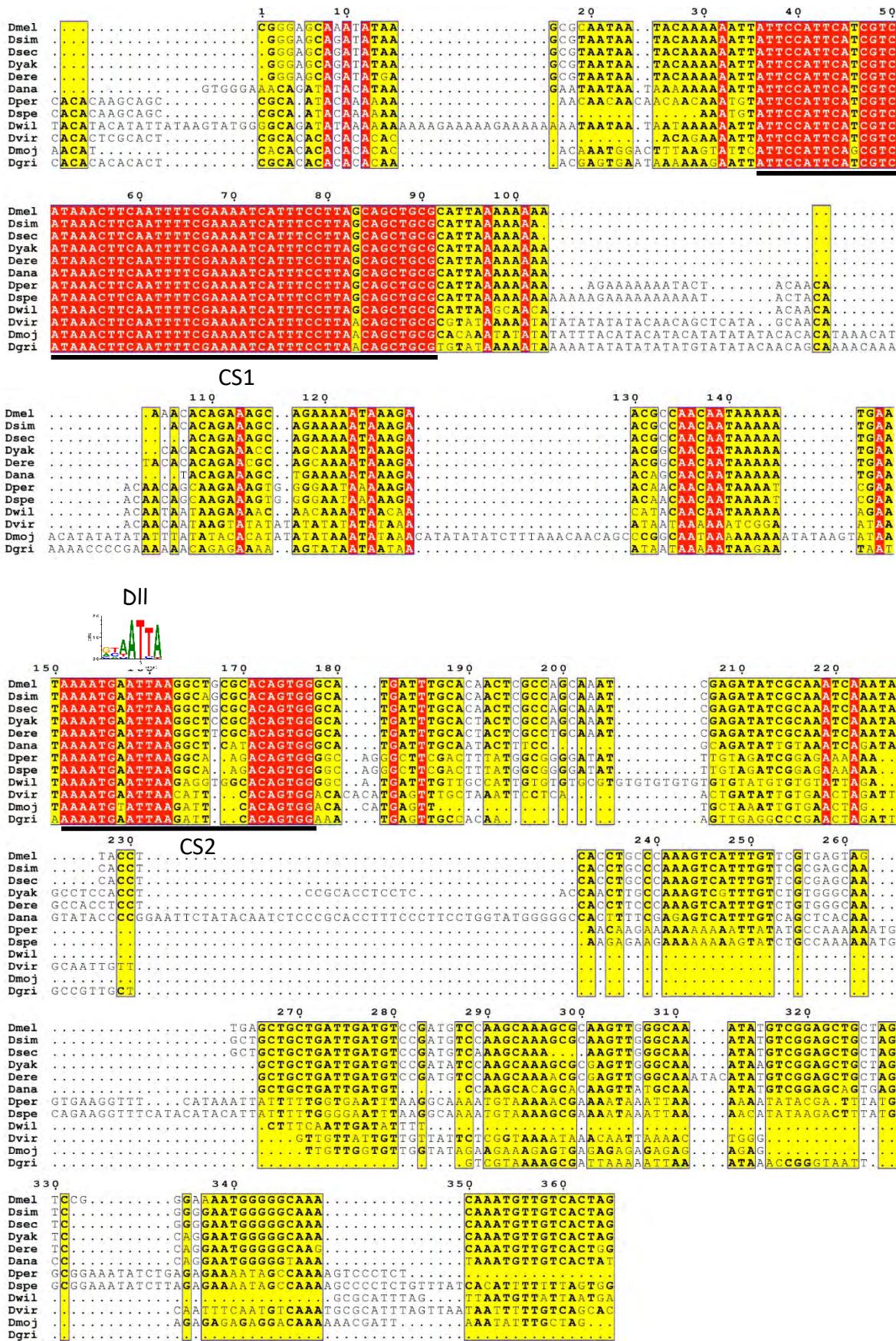
Dpel1	877		HSHSHPSHSHSHSG..	HAPKPKS	SEL..	SESETR..	L..HSP LGD LGD DMA..
Dpel1	938		..QQQQQL..	EKQPKKG	SEL..	SESETR..	..L..HSP LGD LGD EMS..
Dvir1	941		..QQQQQL..	EKQPKKG	SEL..	SESETR..	..L..HSP LAE LCE ELGY..
Blat1	1083	H	..QHHQISASVSVATAKA..	KCPSP	SELLE..	RSRSPFS..	..GNSHL HSTLTELQD DMCGY..
Ccap1	1082	H	..HQQHQHQQHOKHQHQQHVSNLGGITASRM..	KCPSP	SELLE..	DRPFS..	..VDSHL HSTLTELQD DMGF..
Tmin1	1122	H	..HLQHQHQSMTGASTS..	KAPOS..	SEL..	DRPTGNSSSHTAPFL	..HDMVY..
Tdalu1	1026	H	..QHTTISATISSLSSIIIA..	KEKPKVKD..	SEL..	DRPTFPF..	..RETPL HSPFTELEI EIGY..
Mdom1	1026	H	..HHTTATIITASST..	KSSSE..	SEL..	SPVSPFTE..	..S..SPVSPFTELEI EMAF..
Dpel1	1076		..LTTAATG..	KEKPKVKD..	SEL..	SPVSPFTE..	..S..SPVSPFTELEI EMAF..
Lcpl1	979		..VVFHPSLKSITAT..	KPHSPSTS..	SEL..	DRPFS..	..HANSH..
Preg1	972		..IVHQSOMKTTTASSI..	KPLSSTS..	SEL..	DRPTSFH..	..SLTPL HSPFTELEI EMSF..
Chom1	963		..MIHOTMKSSASASST..	KPLSSTS..	SEL..	DRNSEH..	..SLTPL HSPFTELEI EMSF..
Pmac1	968		..IVHSSKLKPTTASST..	KPFPSSTS..	SEL..	DRRSHF..	..SVTFL HSPFTELEI EMSF..
Gbre1	951		..OHSIATIISAPOT..	KFSSS..	SEL..	DRQSTP..	..GNTTLL SSSSLTDIA DFGYS..
Gmrcl	953		..QHSIATIISAPOT..	KFSSS..	SEL..	DRQSTP..	..GNTTLL SSSSLTDIA DFGYS..
Edim1	936		..QHSIATIISAPOT..	KFSSS..	SEL..	DRQSTP..	..GNTTLL SSSSLTDIA DFGYS..
Mabd1	931		..RLHSS..	RSQSH..	SEL..	DRMNSF..	..ERL..NQEL..QMA..EP SVNLLAVGVGVS GMA..
Dpel2	933		..LTTAATG..	RSQSH..	SEL..	DRMNSF..	..DTP..SSP..EMT..P..
Dvir2	1003		..AGSN..	RGFAA..	SEL..	DRMNSF..	..P..
Dvir2	1007		..AGSE..	RGFAA..	SEL..	DRMNSF..	..P..
Blac2	1057		..OKMPATATAA..	ADSAA..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Ccap2	1095		..OKMPGTTAAAAAAATCSEA..	DSGA..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Tmin1	1120		..OKOSLGPNNN..	IISSGG..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Tdalu2	993		..DMOK..	SAGGS..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Mdom2	1075		..DMOK..	SAGGS..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Scal2	1058		..DMOK..	PSKPS..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Dpel2	1053		..PSKPS..	PSKPS..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Preg2	956		..OK..	SAGSA..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Chom2	963		..OK..	SAGSA..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Pmac2	957		..OK..	SAGSA..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Gbre2	936		..DGOK..	QVFPS..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Gmrcl	936		..DGOK..	QAPPS..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Mequ2	777		..PYCQQQRGGNHQ..	KSSSE..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Edim2	757		..SYNQQRNGSOT..	SNSNSH..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Mabd2	752		..RTGS..	RTGS..	SEL..	DRYSH..	..BNYAY..NKRFLD..
Dpel1	906	S	YK..	FSFSPRLFAEELD..	EVGAEVS..	SSSSAARI..	..APPERS..
Dpel1	981	S	YK..	FSFSPRLFAEELD..	EVGAEVS..	SSSSVCGAA..	..
Dvir1	977	K	YK..	FSFSPRLFAEELD..	EVGAEVS..	STS..	STSATTPTST..
Blat1	1135	KTT	..S..	SAYSFTRFLSEELA..	LVGASEDSSPPGTI..	ASSIN..VS..	..GOF..
Ccap1	1150	KTS	..S..	SAYSFTRFLSEELA..	LVGASEDSSPPGTI..	ASSIN..VS..	..GOF..
Tmin1	1178	KSA	..S..	FSFSPRLPFD..	DLVSTIPTPPPPOTF..	AVHTS..QPVSA..	..RTS..
Tdalu1	1078	KHV	..S..	FSFSPRLPFD..	DLVSTIPTPPPPOTF..	AVHTS..QPVSA..	..RTS..
Mdom1	1051	KPS	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Dpel1	1052	KPA..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Dpel1	1052	KPA..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Lcpl1	1028	KPS..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Preg1	1021	KPS..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Chom1	1012	KPS..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Pmac1	1018	KPS..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Gbre1	1002	KTA..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Gmrcl	1004	KSI..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Edim1	983	KPS..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Mabd1	880	KPS..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Dpel2	1025	KPS..	..S..	FSFSPRLPFD..	DLVGTGAA..	TSATTTISIGSMRITGTTSAM..	..TS..
Dpel2	1069	SVQ..	..S..	AQSPFSEDFPFP..	GQMSM..	TSATTTISIGSMRITGTTSAM..	..TS..
Dvir2	1063	KSV..	..S..	NK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Blac2	1112	KSV..	..S..	NK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Ccap2	1154	KSV..	..S..	NK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Tmin1	1165	KSV..	..S..	VNK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Tdalu2	1048	KSV..	..S..	VNK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Mdom2	1128	KSS..	..S..	SSAAAAAAAAASSTA..	ANK..	TSATTTISIGSMRITGTTSAM..	..TS..
Scal2	1109	KTA..	..S..	SSAAAAAAAAASSTA..	ANK..	TSATTTISIGSMRITGTTSAM..	..TS..
Dpel1	1099	KSI..	..S..	SSAAAAAAAAASSTA..	ANK..	TSATTTISIGSMRITGTTSAM..	..TS..
Preg2	1002	KSI..	..S..	SSAAAAAAAAASSTA..	ANK..	TSATTTISIGSMRITGTTSAM..	..TS..
Chom2	1009	KSI..	..S..	SSAAAAAAAAASSTA..	ANK..	TSATTTISIGSMRITGTTSAM..	..TS..
Pmac2	1003	KSI..	..S..	SSAAAAAAAAASSTA..	ANK..	TSATTTISIGSMRITGTTSAM..	..TS..
Gbre2	992	KSA..	..S..	VK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Gmrcl	992	KSA..	..S..	VK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Mequ2	835	KSH..	..S..	VK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Edim2	823	KSH..	..S..	VK..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Mabd2	776	KSG..	..S..	LSSV..	SFREDFDFG..	TSATTTISIGSMRITGTTSAM..	..TS..
Dpel1	947		AGAASAAATGAD..	AFPSSESS..	GG..WV..PIT..TTS..	SSSSAARI..	..APPERS..
Dpel1	1016		GGGSSSAAGE..	AFPSSESS..	GG..WV..PIT..TTS..	SSSSVCGAA..	..
Dvir1	1013		TAGVSGATT..	AFPSSESS..	GG..WV..PIT..TTS..	STS..	STSATTPTST..
Blat1	1185		..SGSHADVISITSSA..	AGSNII..	GG..WV..PIT..TTS..	..GOF..	..
Ccap1	1200		..TSGSHADVISITSSA..	AGSNII..	GG..WV..PIT..TTS..	..GOF..	..
Tmin1	1245		..SSTGDTGEE..	LFAMTSS..	GG..WV..PIT..TTS..	..GOF..	..
Tdalu1	1121		..LSSLTSAGNTAVATA..	TSKISS..	GG..WV..PIT..TTS..	..GOF..	..
Mdom1	1130		..SIIASSAGISSSHSS..	TSKISS..	GG..WV..PIT..TTS..	..GOF..	..
Scal1	1101		..SVAIASSADAGGG..	TSKISS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel1	1097		..ATSSATIATSSAGIDSTAS..	ASNSII..	GG..WV..PIT..TTS..	..GOF..	..
Preg1	1086		..ATSSATIASSA..	ASNSII..	GG..WV..PIT..TTS..	..GOF..	..
Chom1	1081		..ATAVATSTATA..	ASNSII..	GG..WV..PIT..TTS..	..GOF..	..
Pmac1	1084		..ATSSQASATARA..	ASNSII..	GG..WV..PIT..TTS..	..GOF..	..
Gbre1	1055		..LTISAACTITTT..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gmrcl	1057		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Edim1	1025		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mabd1	607		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel2	1042		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dvir2	1117		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Blac2	1114		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Ccap2	1187		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tmin1	1207		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tdalu2	1083		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mdom2	1180		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Scal2	1138		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel2	1049		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Preg2	1037		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Chom2	1044		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Pmac2	1038		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gbre2	1027		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gmrcl	1027		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mequ2	870		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Edim2	858		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mabd2	813		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel1	877		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel1	938		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dvir1	941		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Blat1	1083		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Ccap1	1082		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tmin1	1122		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tdalu1	1026		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mdom1	1026		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel2	1076		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dvir2	1097		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Blac2	972		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Chom1	963		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Pmac1	968		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gbre1	951		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gmrcl	953		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Edim1	936		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mabd1	919		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel1	931		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dvir2	1003		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Blac2	1007		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Ccap2	1095		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tmin1	1178		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tdalu2	1083		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mdom2	1180		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Scal2	1138		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel2	1049		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Preg2	1037		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Chom2	1044		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Pmac2	1038		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gbre2	1027		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gmrcl	1027		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mequ2	870		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Edim2	858		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mabd2	813		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel1	877		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel1	938		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dvir1	941		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Blat1	1083		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Ccap1	1082		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tmin1	1122		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Tdalu1	1026		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Mdom1	1026		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dpel2	1076		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Dvir2	1097		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Blac2	972		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Chom1	963		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Pmac1	968		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gbre1	951		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Gmrcl	953		..LTISVACTSITST..	TSNKSS..	GG..WV..PIT..TTS..	..GOF..	..
Edim1	936						


BER^{OCS1} sequence conservation among Drosophilidae (Part1)

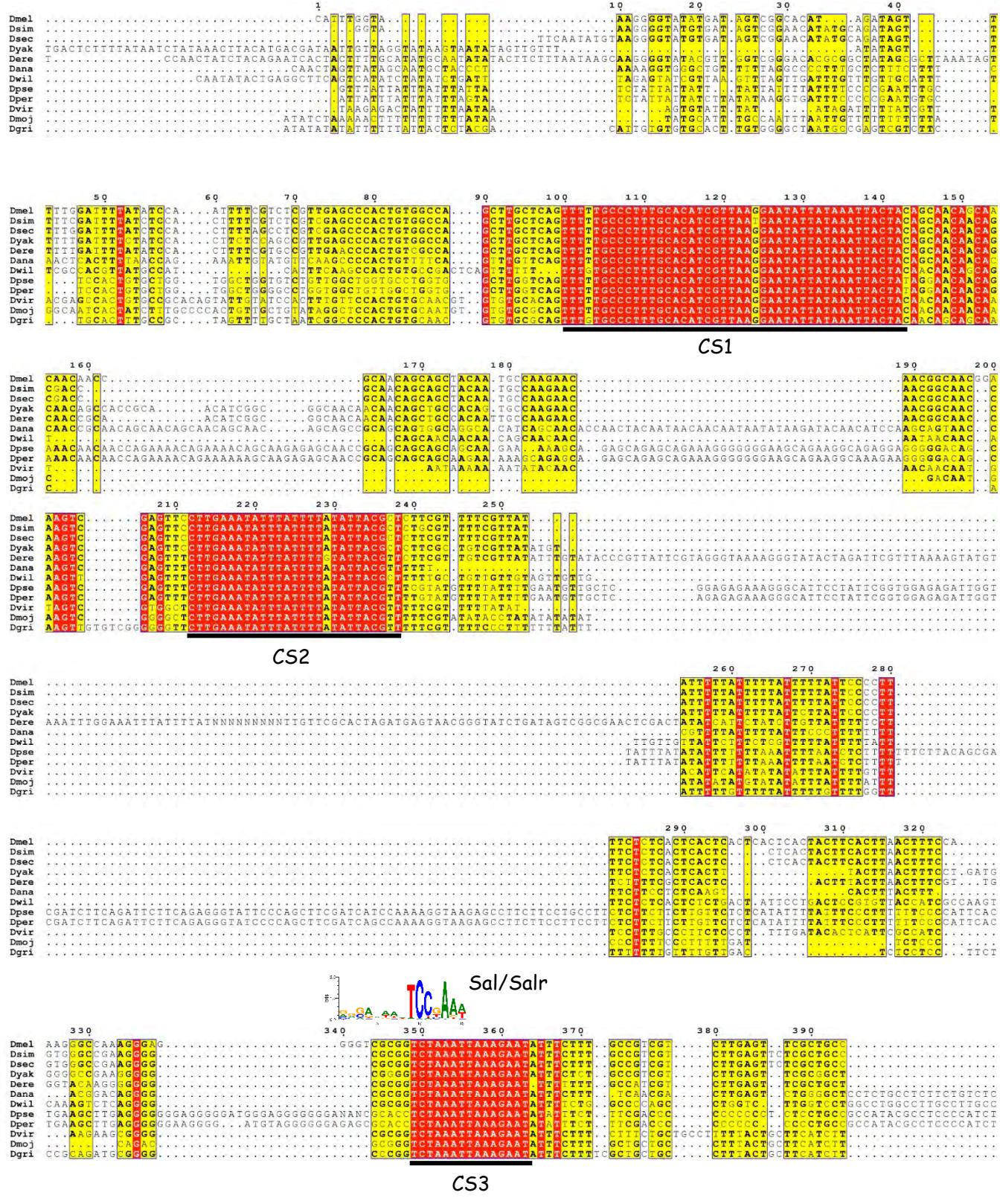
BER^{OCS1} sequence conservation among Drosophilidae (Part2)

	380	390	400	410	420	430			
Dmel	TGGGG	TCAAAGTCCCGG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dsim	TGGGG	TCAAAGTCCCGG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dsec	TGGGG	TCAAAGTCCCGG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dyak	TGGGG	TCAAAGTCCCGG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dere	TGGGG	TCAAAGTCCCGG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dana	TGGGG	TCAGAGCGCG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dper	TGGGG	TCAGAGCGCG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dpse	TGGGG	TCAGAGCGCG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dw11	AGAGAGAGCAGACA	TAAGA	TTACATCCGGCA	TTGG	TTTTGAAAGGAA	TTTCTCTCTCTCTC	TCCTGCTGCTGCT	CT	AAATCTCT
Dvir	TGCA	TCAGAGCGCG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dmj	TGCA	TCAGAGCGCG	CCAA	TTG	TTTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	
Dgri	TGCA	TCAAATCG	CCAG	TGG	TTGAGTGTG	CGTGTCTCTGT	CTT	AGATGCC	

	4	4	0
Dmel	AC	TCGTT	TC
Dsim	AC	TCGTC	TC
Dsec	AC	TCGTC	TC
Dyak	AA	TCGTC	TC
Dere	AA	TCGTC	TC
Dana	AA	TCGTC	TC
Dper	GG	AAAGCCA	TC
Dpse	GG	AAAGGCA	TC
Dw1	AG	CAAAACT	TC
Dvir	AA	GC	TC
Dmoj	AA	GC	TC
Dgri	AA	GC	TC

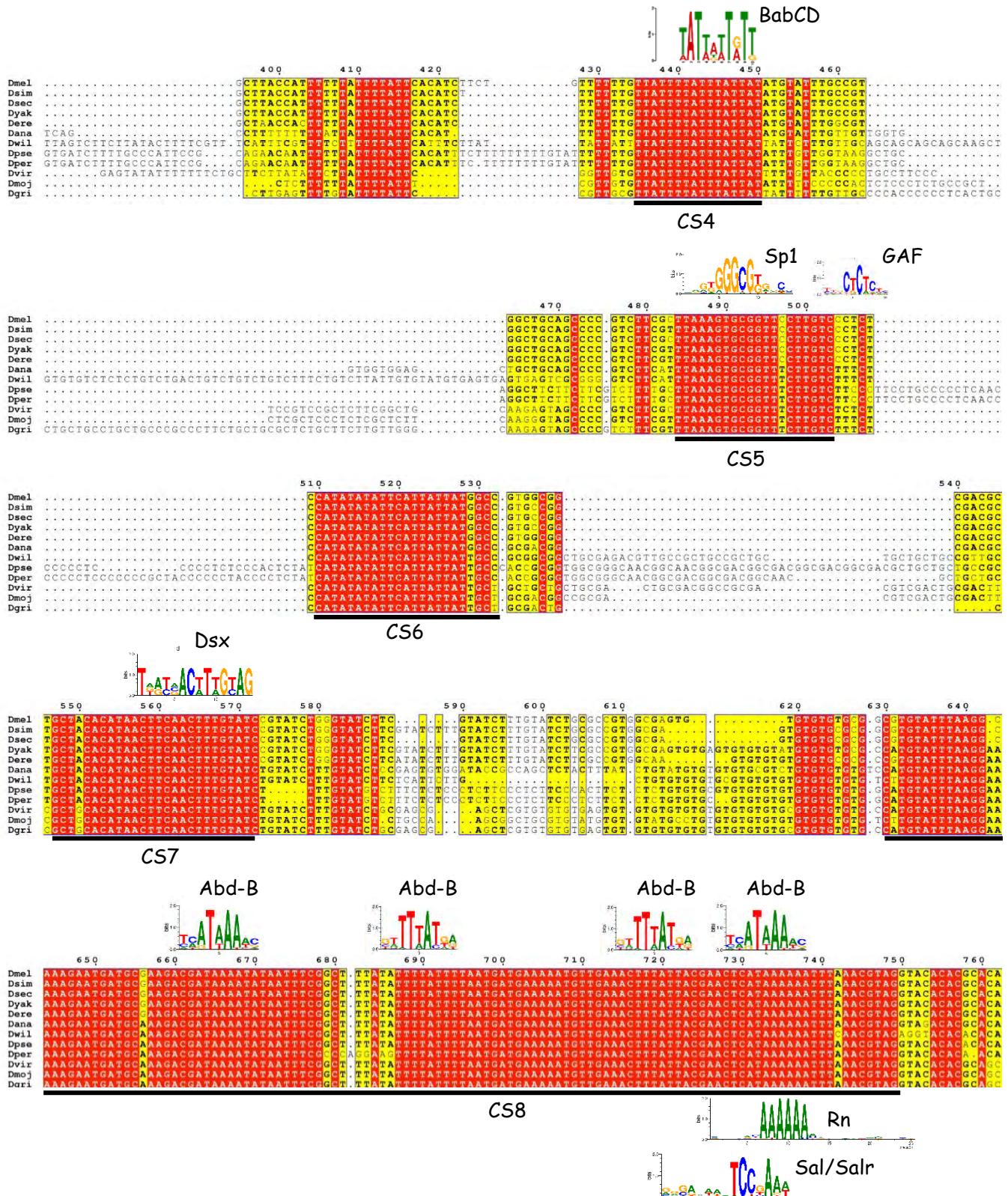

Leg-specific CS3

	510	520	
Dmel	GTCCG	CCCCGGTTC	GCG
Dsim	GTCCG	CCCCGGTTC	TC
Dsec	GTCCG	CCCCGGTTC	TC
Dyak	GGCC	CCCCGGTTC	TC
Dere	GGCC	CCCCGGTTC	TC
Dana	TG	TCGTAGTGC	TC
Dper	GGTC	TCGTAGTGC	TC
Dpse	GGAC	TCGTAGTGC	TC
Dwil	GGCT	TCGTAGTGC	TC
Dvir	GAC	TCGTAGTGC	TC
Dmoj	CGT	TCGTAGTGC	TC
Dgri	CTT	TCGTAGTGC	TC


Leg-specific CS4

Dmel	GT ₄ TTT
Dsim	GT ₄ TTT
Dsec	GT ₄ TTT
Dyak	GT ₄ TTT
Dere	GT ₄ TTT
Dana	GT ₄ TTT
Dper	GT ₄ TTT
Dpse	GT ₄ TTT
Dwil	GT ₄ TTT
Dvir	GT ₄ TTT
Dmoj	GT ₄ TTT
Dgri	GT ₄ TTT

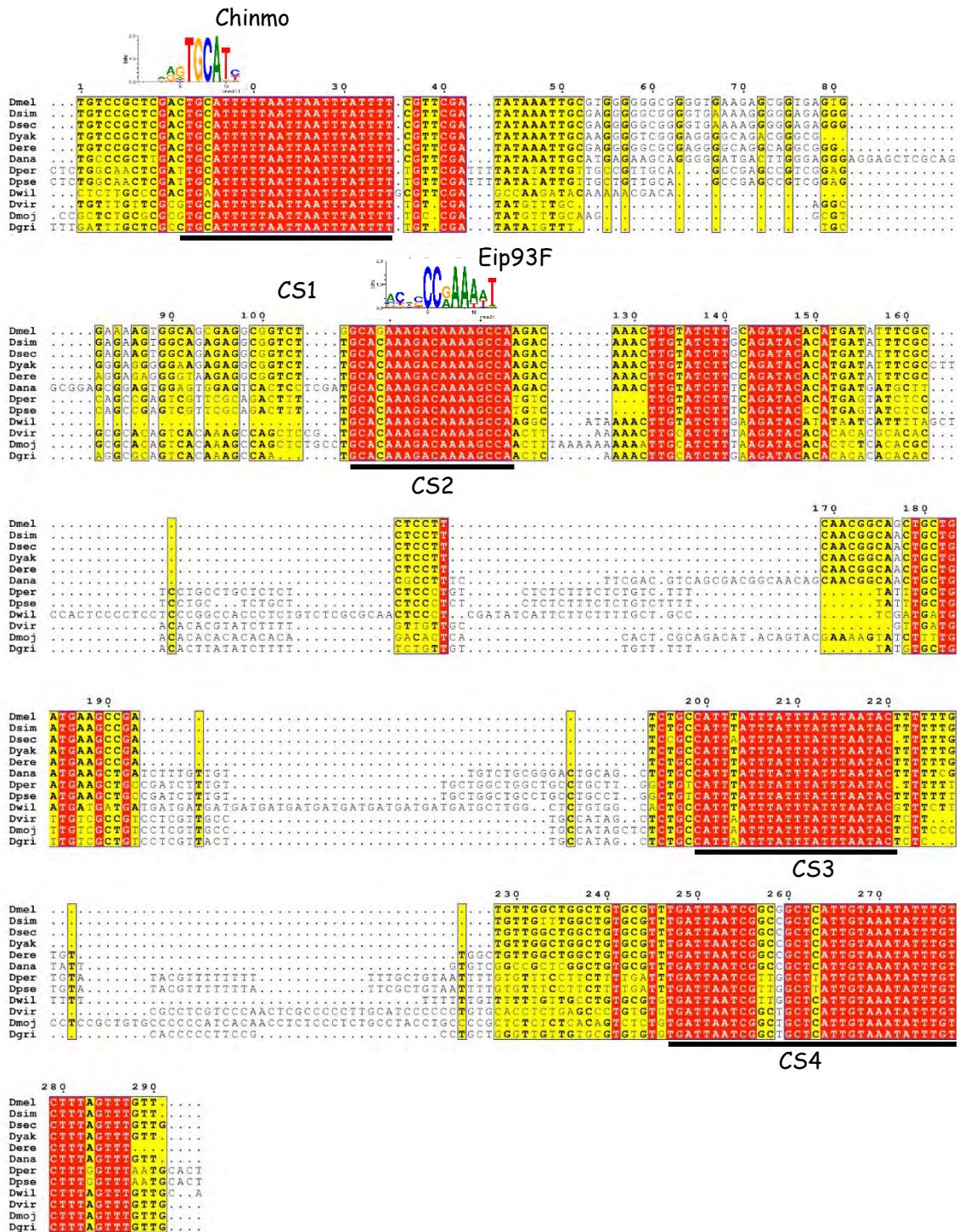
BER^{OCS2} sequence conservation among Drosophilidae



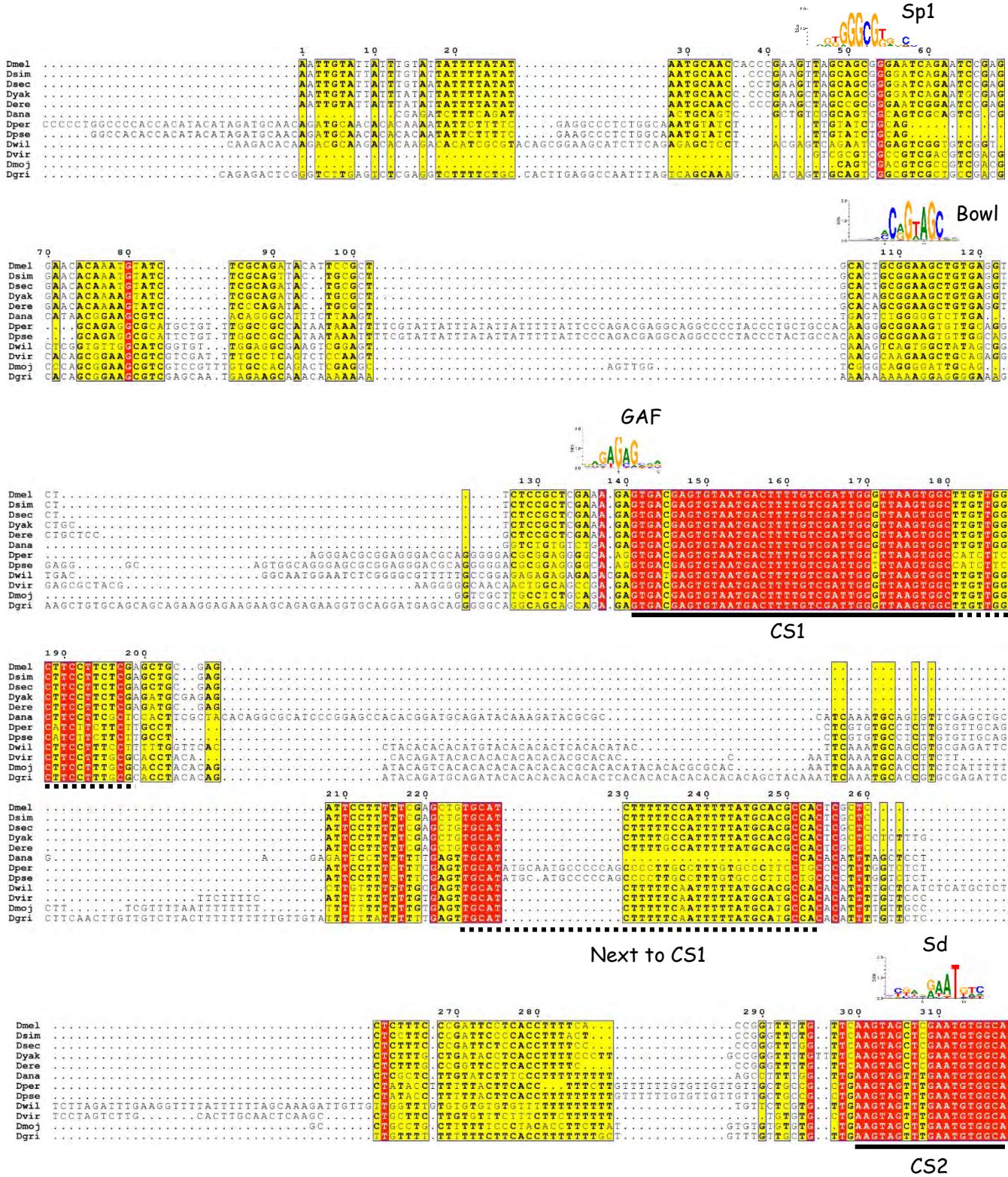
BER^{OCS3} sequence conservation among Drosophilidae (Part1)

CS3

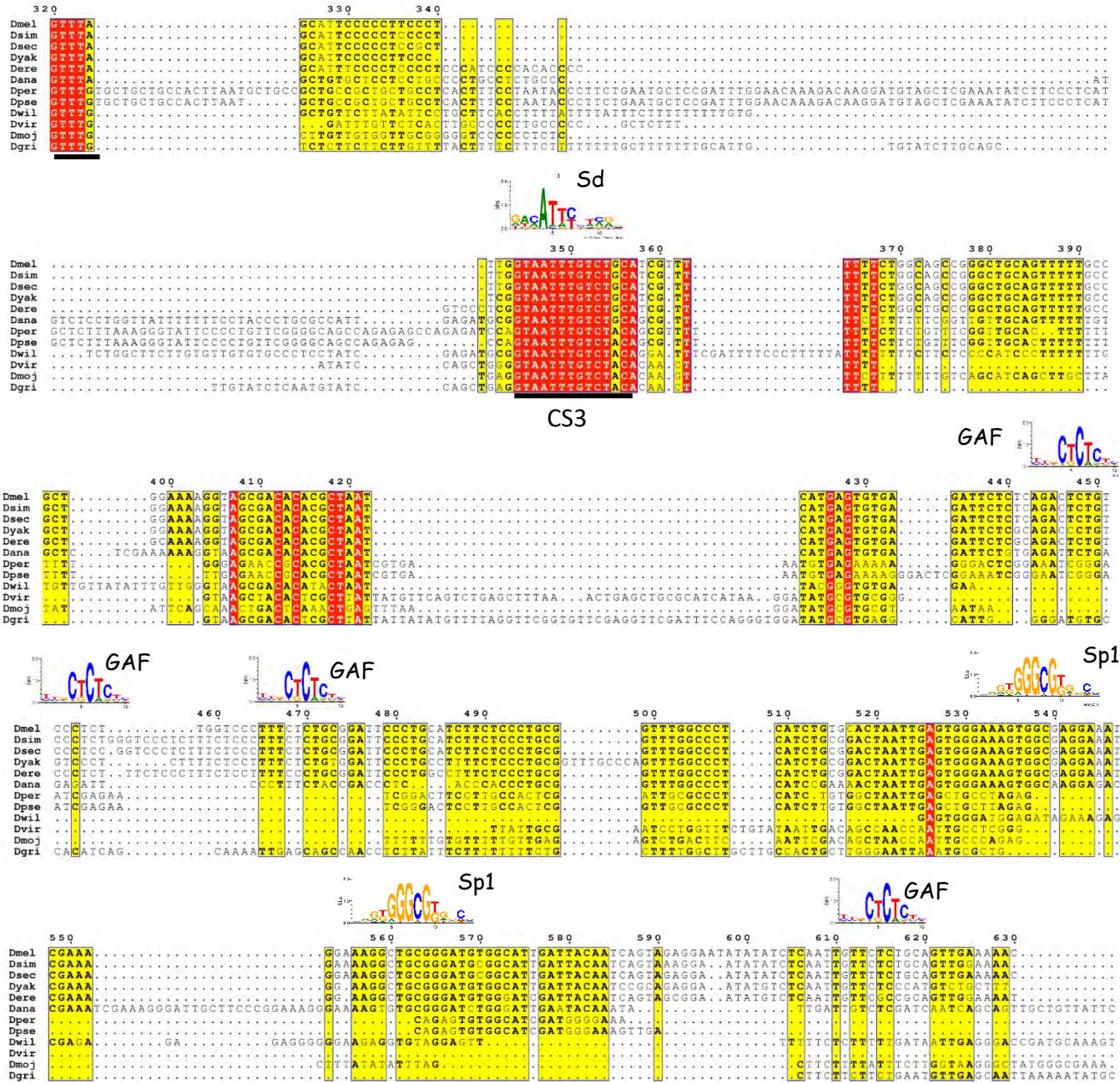
BER^{0CS3} sequence conservation among Drosophilidae (Part2)

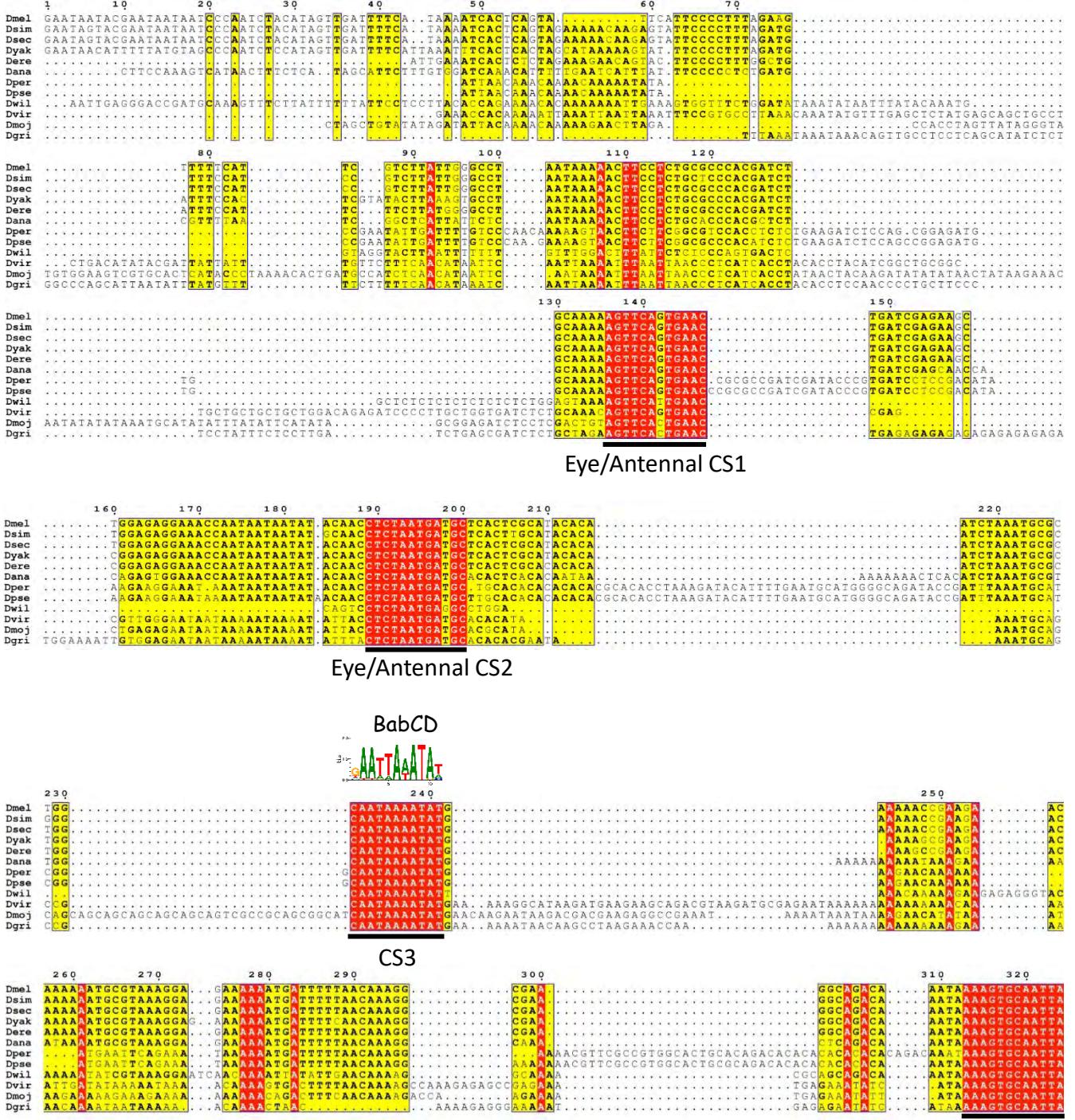


BER^{OCS4} sequence conservation among Drosophilidae


CS1

	230	240	250	260					
Dmel	CAAGCCCGACATAC	AA	AA	AA					
Dsim	CAAGCCCGACATAC	AA	AA	AA					
Dsec	CAAGCCCGACATAC	AA	AA	AA					
Dyak	CAAGCCCGACATAC	AA	AA	AA					
Dere	CAAGCCCGACATAC	AA	AA	AA					
Dana	CAAGCCCGACATAC	AA	AA	AA					
Dper	GGTACAGACACCCGAA	AA	AA	AA					
Dpse	GGTACAGACACCCGAA	AA	AA	AA					
Dwil	CATACRAGAACACAA	AA	AA	AA					
Dvir		AA	AA	AA					
Dmoj		AA	AA	AA					
Dgri	AAACAAAGAAA	AA	AA	AA					
	270	280	290	300					
Dmel	GGCG	CGCAACACGCTTT	AGT	GGT					
Dsim	GGCG	CGCAACACGCTTT	AGT	GGT					
Dsec	GGCG	CGCAACACGCTTT	AGT	GGT					
Dyak	GGCG	CGCAACACGCTTT	AGT	GGT					
Dere	GGCG	CGCAACACGCTTT	AGT	GGT					
Dana	GGCG	CGCAACACGCTTT	AGT	GGT					
Dper	GAGGTGCTCGGTGAGAGAGACCG	GG	GG	GG					
Dpse	GAGGTGCTCGGTGAGAGAGACCG	GG	GG	GG					
Dwil		GG	GG	GG					
Dvir		GG	GG	GG					
Dmoj		GG	GG	GG					
Dgri	GGCAACACGACGTT	GG	GG	GG					
	310	320	330						
Dmel				GGCACCGCAAGT					
Dsim				GGCACCGCAAGT					
Dsec				GGCACCGCAAGT					
Dyak				GGCACCGCAAGT					
Dere				GGCACCGCAAGT					
Dana				GGCACCGCAAGT					
Dper				GGCACCGCAAGT					
Dpse				GGCACCGCAAGT					
Dwil				GGCACCGCAAGT					
Dvir				GGCACCGCAAGT					
Dmoj				GGCACCGCAAGT					
Dgri				GGCACCGCAAGT					
	340	350	360	370	380				
Dmel	ATCTGAGTAT	CTGAGTGT	CT	GGGGTT	GTG				
Dsim	AT	CTGAGTAT	CT	GGGGTT	GTG				
Dsec	ATCTGAGTAT	CTGAGTAT	CT	GGGGTT	GTG				
Dyak	ATCTGAGTAT	CTGAGTAT	CT	GGGGTT	GTG				
Dere	ATCTGAGTAT	CTGAGTAT	CT	GGGGTT	GTG				
Dana	ATCTGAGTAT	CTGAGTAT	CT	GGGGTT	GTG				
Dper		CTGAGTAT	CT	GGGGTT	GTG				
Dpse		CTGAGTAT	CT	GGGGTT	GTG				
Dwil	ACACCGGAT	CTGAGTAT	CT	GGGGTT	GTG				
Dvir	ATCTGAGTAT	CTTGGCTGTTGG	CT	GGGGTT	GTG				
Dmoj	ATCTGAGTAT	CTACATGTTGG	CT	GGGGTT	GTG				
Dgri	ATCTGAGTAT	CTAACCTGAG	CT	GGGGTT	GTG				
	390	400	410	420	430	440	450	460	470
Dmel	ATCTGATAT	GGAA	TC	TC	AAAGTGGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dsim	CAACATGAT	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dsec	CAACATGAT	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dyak	CAACATGAT	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dere	CAACATGAT	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dana	CAACATGAT	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dper	TTCC	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dpse	TTCC	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dwil		GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dvir	CTGTCGGCTGTC	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dmoj	CTGTCGGCTGTC	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC
Dgri	CTGTCGGCTGTC	GGAA	TC	TC	GGGCTAATC	GGAAAG	CCACACCTGAA	CT	CCCCGCAC


BER^{OCS5} sequence conservation among Drosophilidae


BER^{OC56} sequence conservation among Drosophilidae (Part1)

BER^{OC56} sequence conservation among Drosophilidae (Part2)

BER^{OC57} sequence conservation among Drosophilidae (Part1)

BER^{OC57} sequence conservation among Drosophilidae (Part2)

CS5

Dmel	AG	TGCA	T	C	CACAAAC	ATA	TTAA
Dsim	AG	TGCA	T	C	CACAAAC	ATA	TTAA
Dsec	AG	TGCA	T	C	CACAAAC	ATA	TTAA
Dyak	AG	TGCA	T	C	CACAAAC	ATA	TTAA
Dere	AG	TGCA	T	C	CACAAAC	ATA	TTAA
Dana	AG	TGCA	T	C	CACAAAC	ATATAAA	ATAAA
Dper	AG	TGCA	T	C	CACAAAC	ATA	TTAA
Dpse	ATT	ATAGAAAAATT	TTAGAAGTT	TTAGAAATT	TTAGAAATT	AGAAAAATT	TTA
Dw1l	ATT	ATATAAA	TTAGAAGTT	TTAGAAATT	TTAGAAATT	AGAAAAATT	TTA
Dvir	ACACACCT	TATGCA	ACACATACCC	TACTGACACAT	TTTGAAT	GGTTTCAGGGTC	GGTTTCAGGGTC
Dmj	A	AAA	TTA	TTA	TTA	AAA	TTA
Dgr1	A	AAA	TTA	TTA	TTA	AAA	TTA

470

Dmel	GGAA AGA TATTA AAA	TATTA AAA AGAAGG
Dsim	GGAA AGA TATTA AAA	TATTA AAA AGAAGG
Dsec	GGAA AGA TATTA AAA	TATTA AAA AGAAGG
Dyak	GGAA AGA TATTA AAA	TATTA AAA AGAAGG
Dere	GGAA AGA TATTA AAA	TATTA AAA AGAAGG
Dana	GGC AGA TATTA AAA	TATTA AAA AGAAGG
Dper	ATTTC AGA A AA T TT AAA	TAT GG AAA AG T CT GGAAATTC CA
Dste	ATTTC AGA A AA T TT AAA	TAT GG AAA AG T CT GGAAATTC CA
Dw16	GA A AGAAGT CT AAA	TAT TC GGGCT CT GT CT TTAGGCC TC ATTTAAAGGG
Dvir	AA T AT AA AG AA	TAT TC CAAT AG GC
Dmoj	GG A GT AA AA AA	TAT TC AA AG AT
Dgri	..AGA TT AA AA	TAT TC AA AG AG

50

Gene	Sequence
Dmel
Dsim
Dsec
Dsek
Dere
Dana
Dper	GTAGATTTCGGAGTAAATCATTAAAAATGCATAGAAATAIAATIA
Dpsa	GTATATTTTCGGAGTAAATCATTGAAAATGCATAGAAATAATATAT
Dw1l
Dvir
Dm0j
Dgri

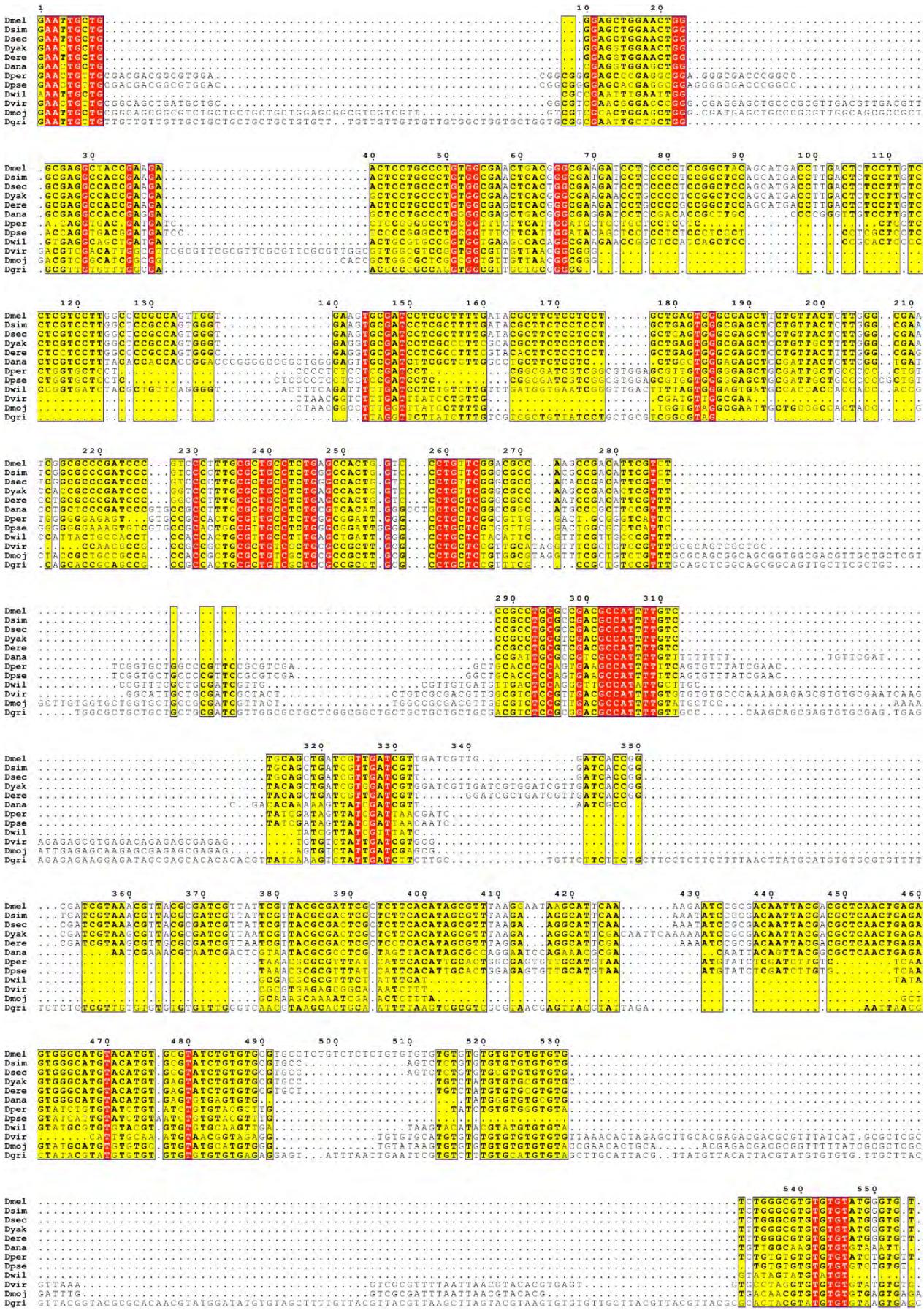
卷之三

	510	520	530	540	550	560
Dmel	TGGCGAAGCAAGC
Dsim	TGGCGAAGCAAGC
Dsec	TGGCGAAGCAAGC
Dyak	TGGCGAAGCAAGC
Dere	CGGCGGAGCAAGC
Dana	CGGCGGAGCAAGC
Dper	GAAAGAGGCAAA	CGAGATAGAAGAGAAGGGA
Dpsp	GGAGGCAAA	CGAGATAGAAGAGAAGGGA
Dw1l	ACGGATCTTGTAA
Dvir	CGAGGAGCAAGC
Dmoj	CGAGGAGCAAGC

Eye/Antennal-specific CS6

	570	580	590	600	610	620	630	
Dmel	AICGAAT	AACTGTCAT	ATCATGTCGTC	ATCATGTCGTC	ATCATGTCGTC	ATCATGTCGTC	ATCATGTCGTC
Dsim	AATGCAATG	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC
Dsec	AATGCAATG	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC
Dyak	AATGCAATG	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC
Dere	AIGTACCTAAATG	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC
Dana	GCTGTGATGCTGAT	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC	ATGCAACTTGC
Dper
Dpse
Dwil	AATGAAATGTCG	ATAAAGGCG	GGGGAA	ACAGAGATAGAG	ACAGAGATAGAG	ACAGAGATAGAG	ACAGAGATAGAG	ACAGAGATAGAG
Dvir	CGCAGCGCTG	GGGGAA
Dmoj	ATGCAATG	AAAGGGA	ATATGGTGTACG	ATATGGTGTACG	ATATGGTGTACG	ATATGGTGTACG	ATATGGTGTACG
Dgri	ACAGAGTGGTAAAG	GGGGAA	CAGGTG	CGCAGGGTGGCG	CGCAGGGTGGCG	CGCAGGGTGGCG	CGCAGGGTGGCG	CGCAGGGTGGCG

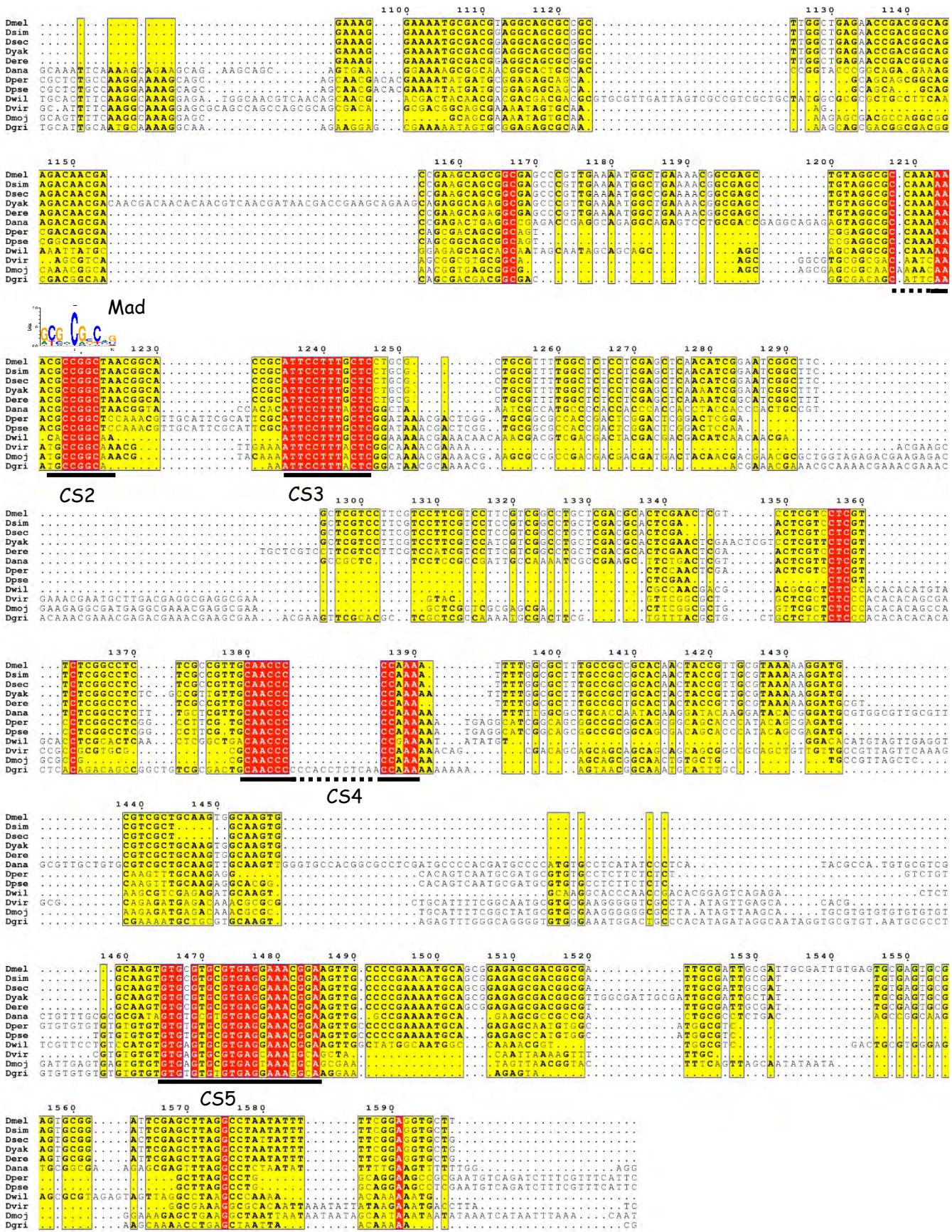
BER^{OCS8} sequence conservation among Drosophilidae (Part1)



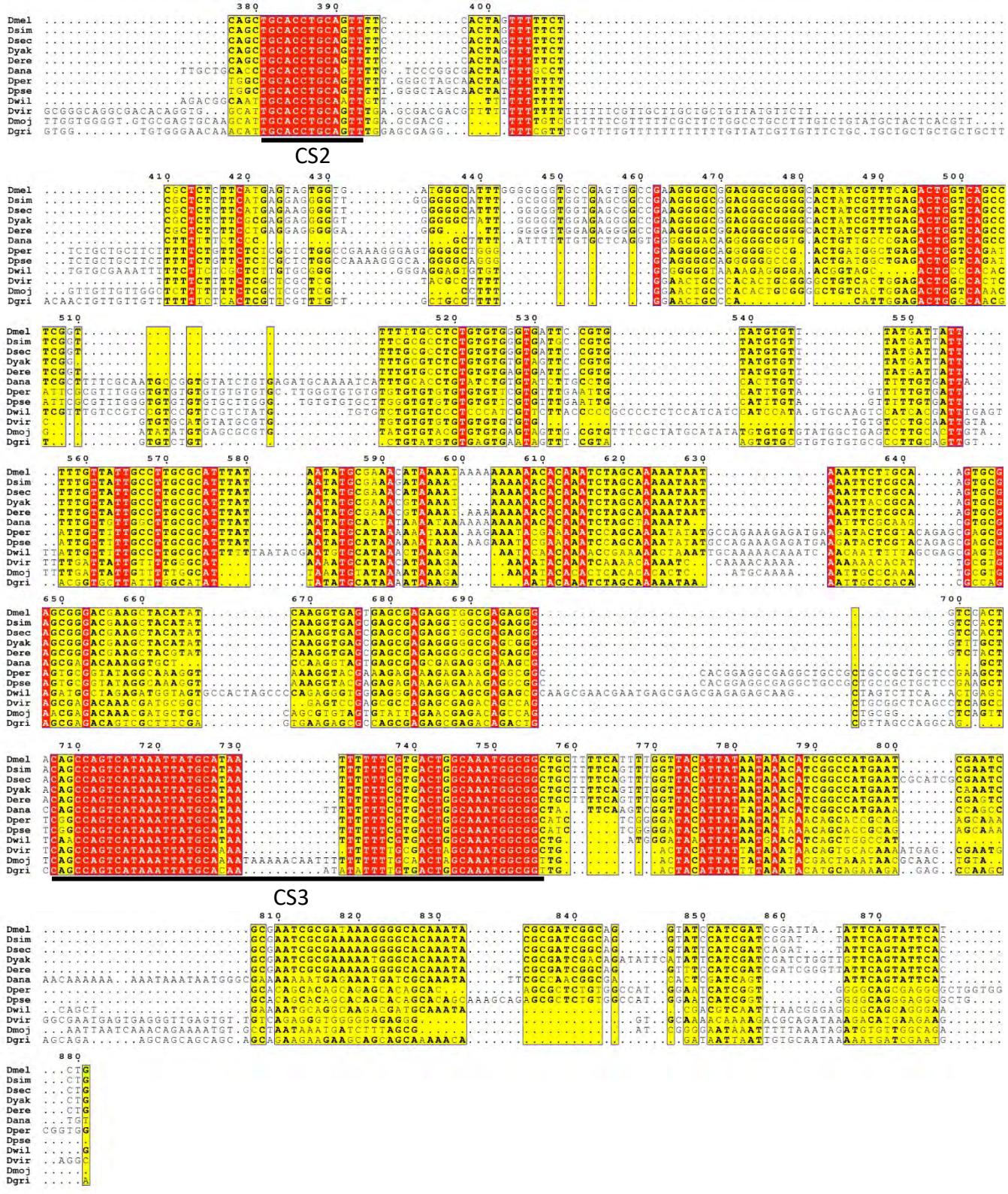
CS2

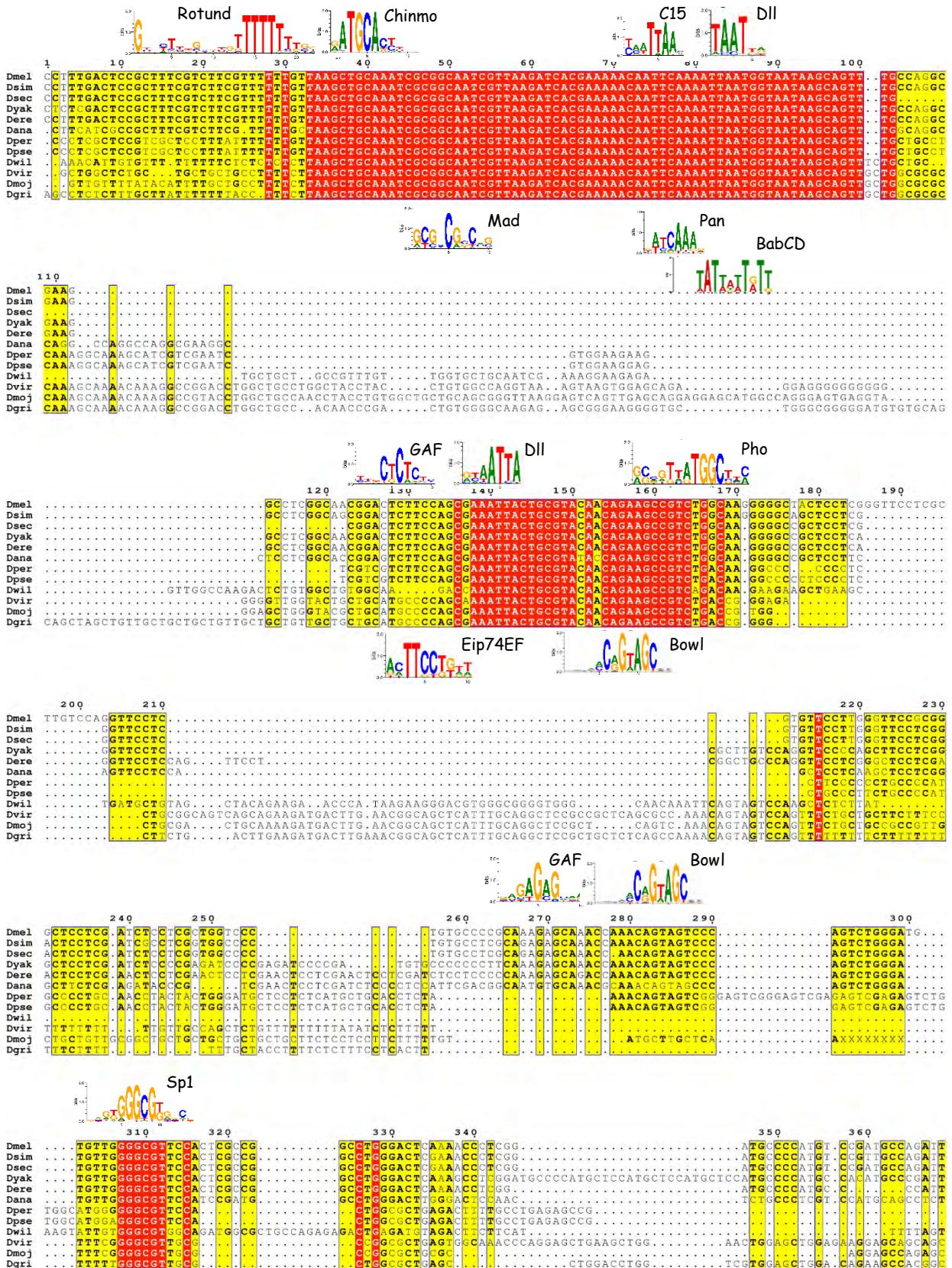
BER^{OCS8} sequence conservation among Drosophilidae (Part2)

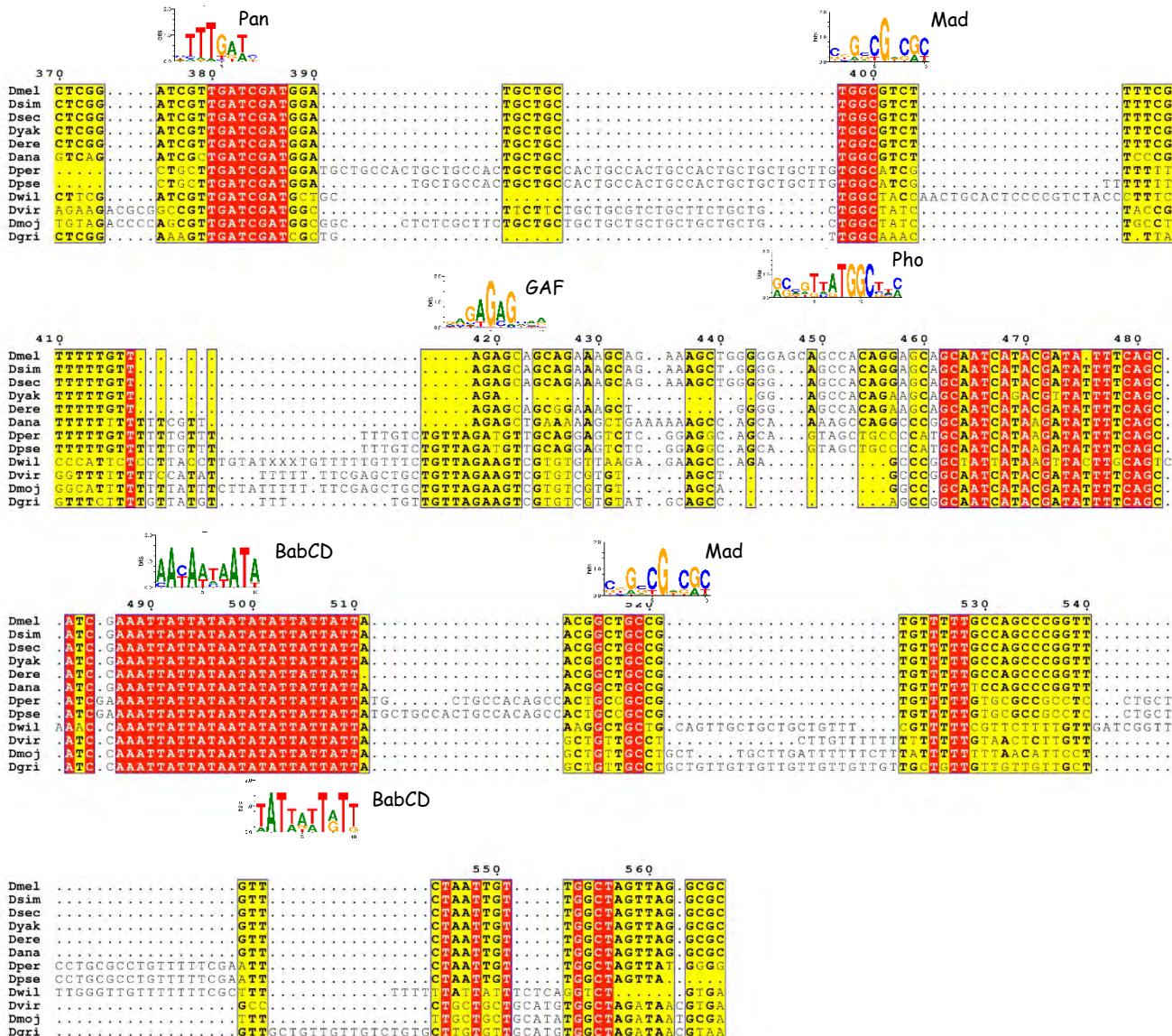
Exon1

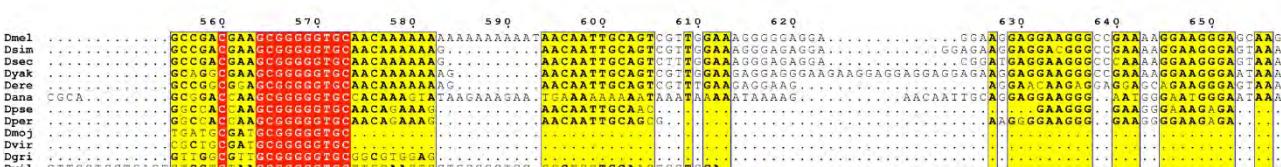
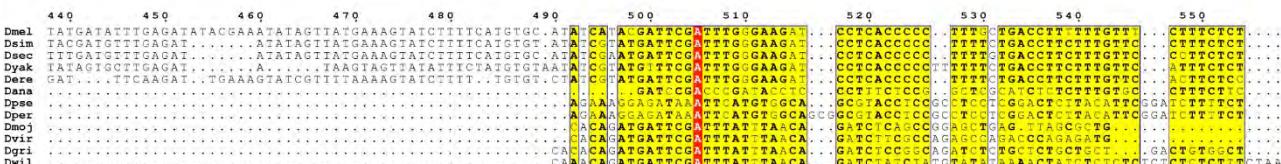
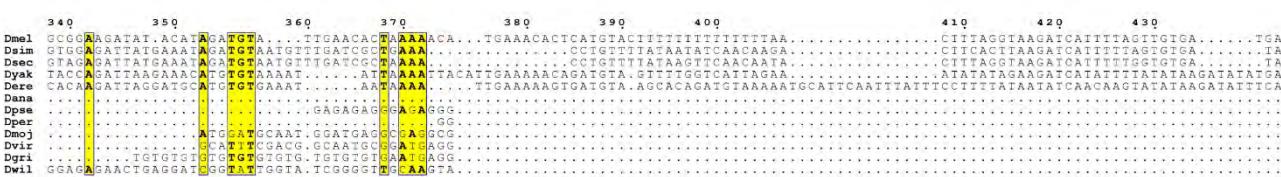
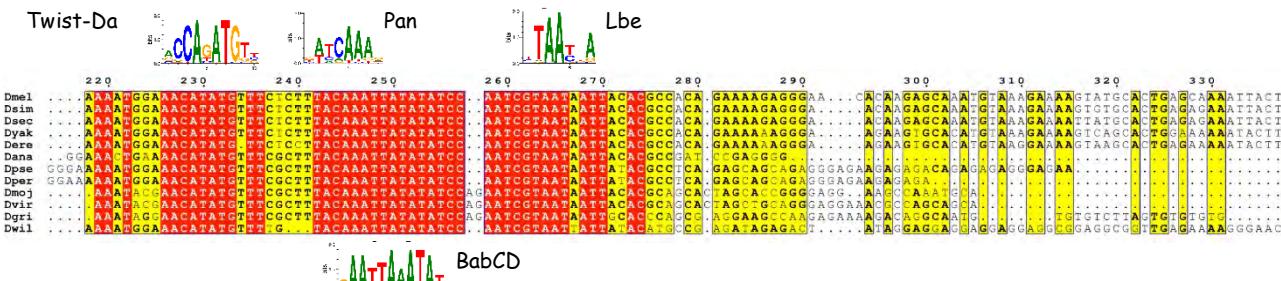
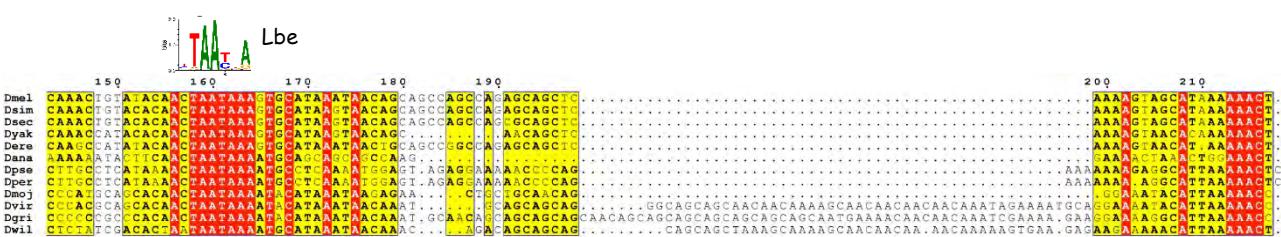
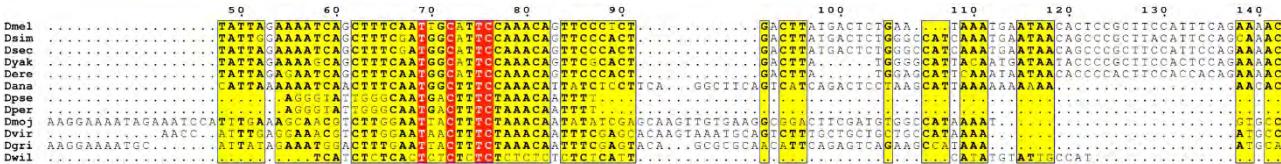
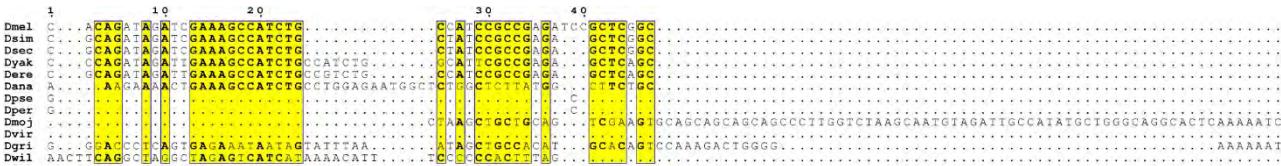

BER^{OC59} sequence conservation among Drosophilidae (Part1)

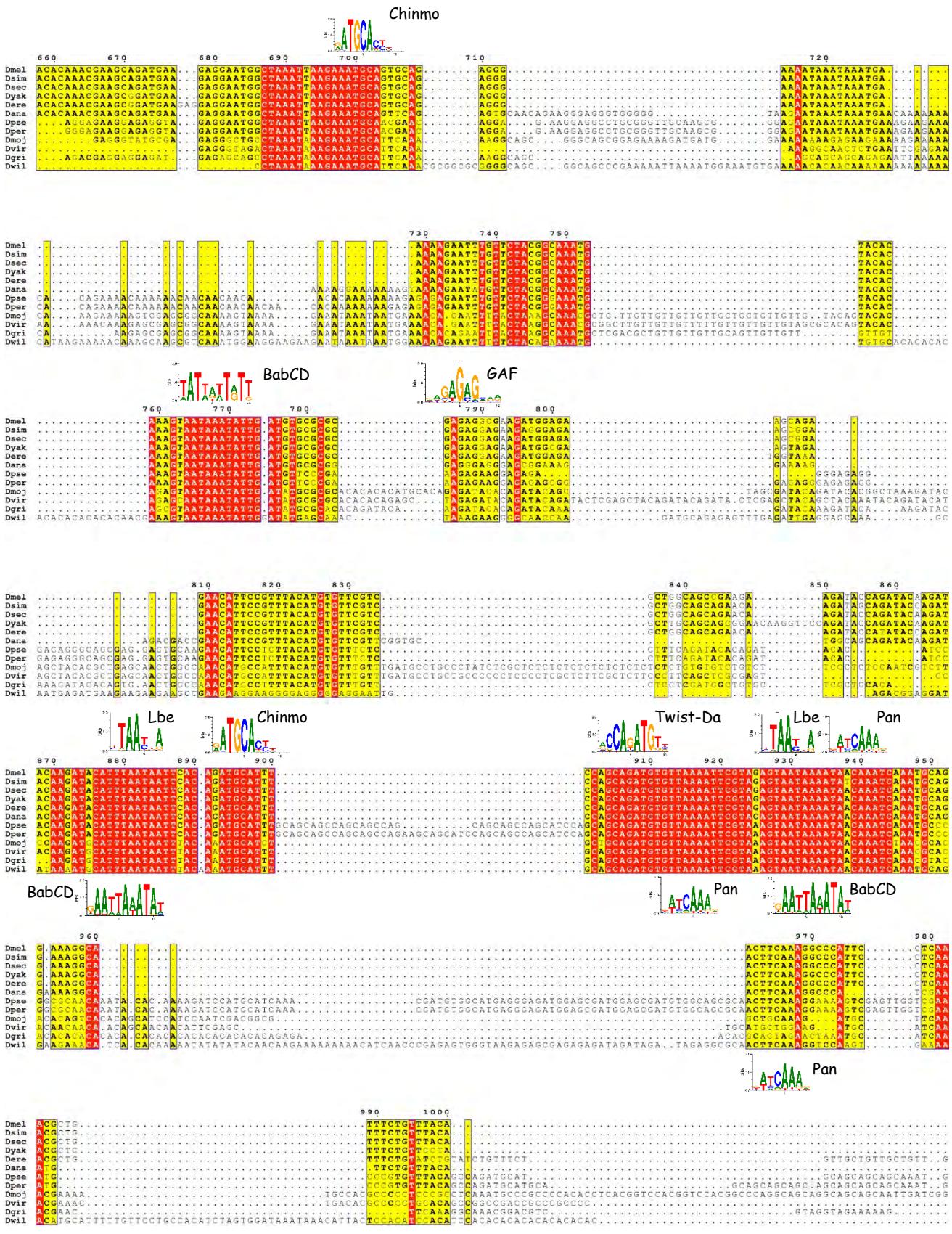
BER^{OC59} sequence conservation among Drosophilidae (Part2)

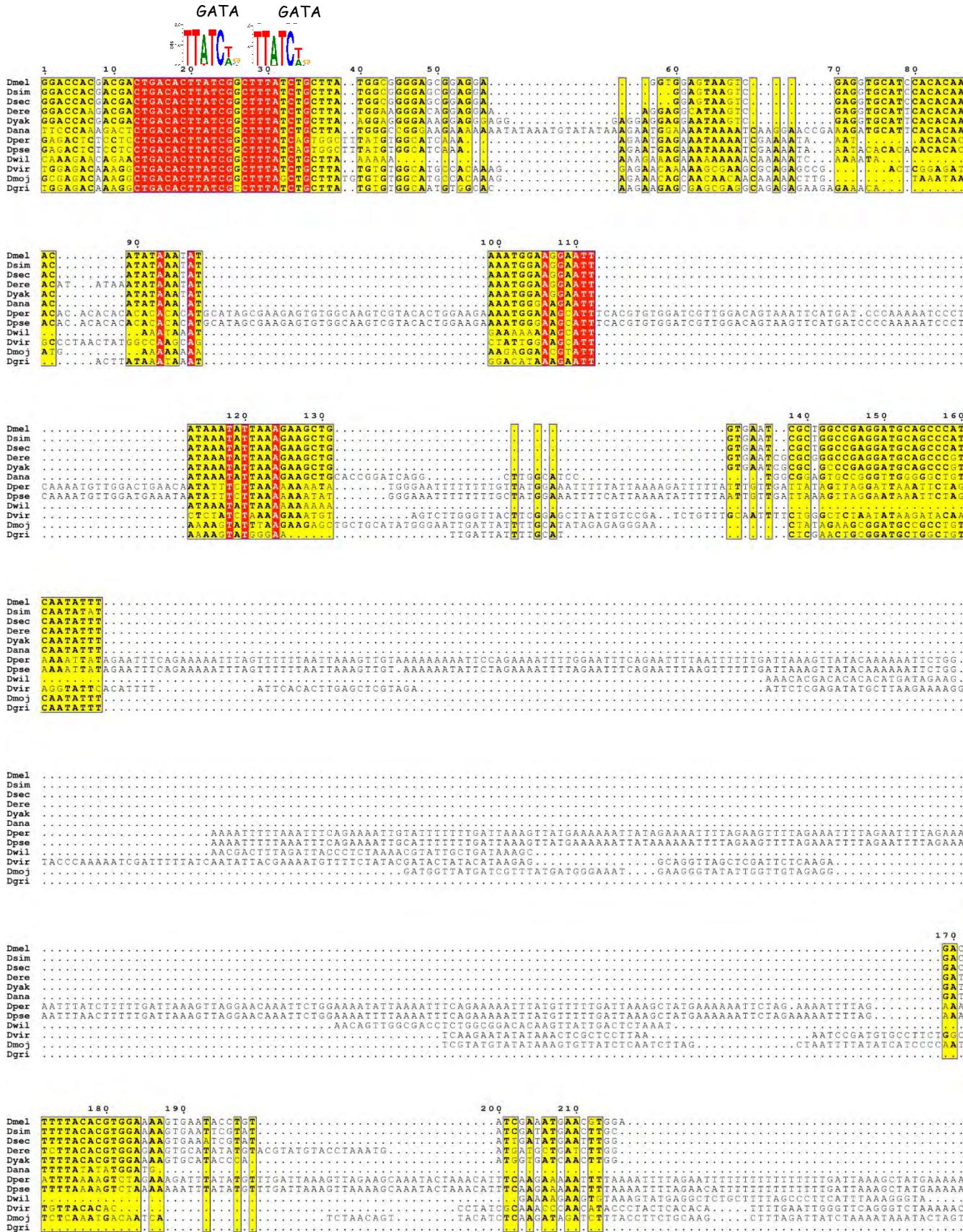

BER^{OC59} sequence conservation among Drosophilidae (Part3)

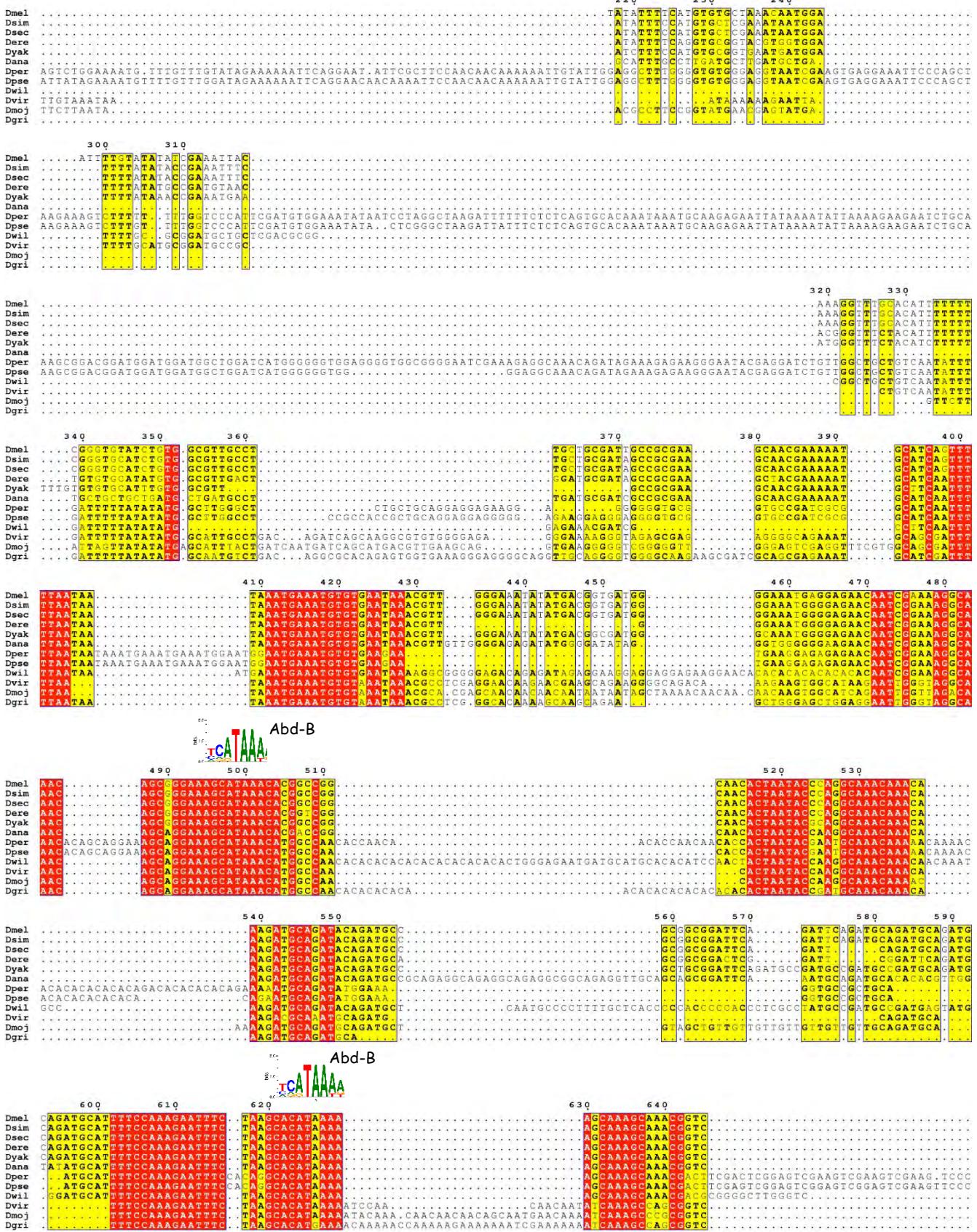

BER^{OCS10} sequence conservation among Drosophilidae (Part1)


BER_{OCS10} sequence conservation among Drosophilidae (Part2)








LAE sequence conservation among Drosophilidae (Part1)

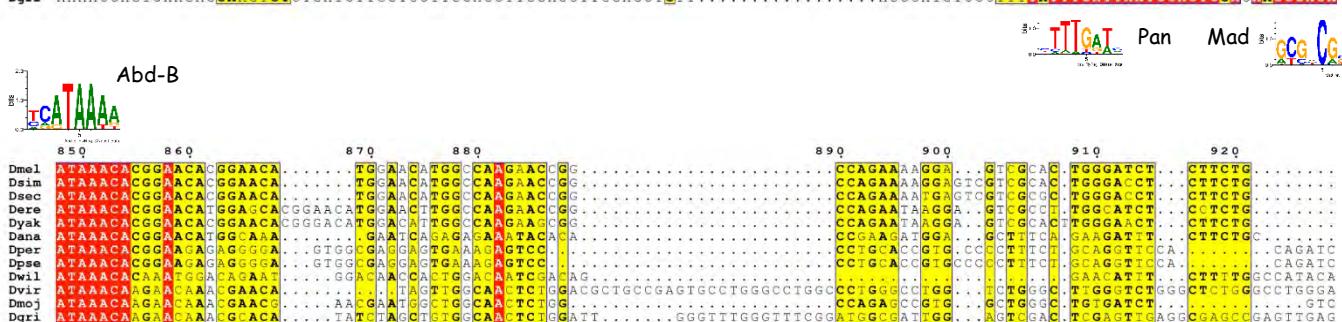
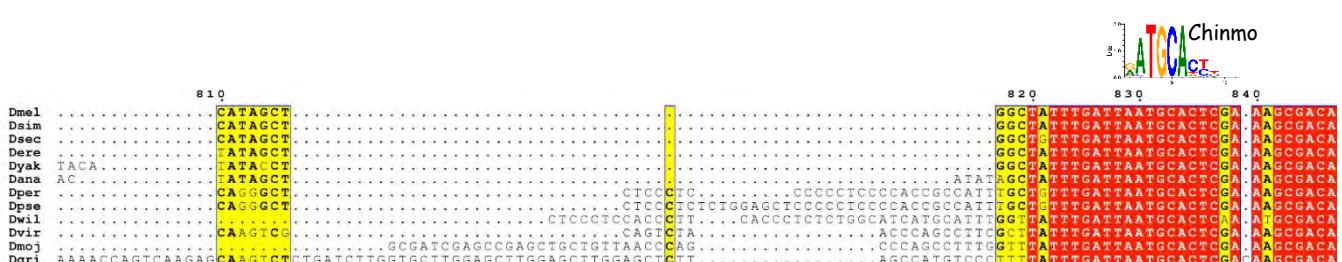
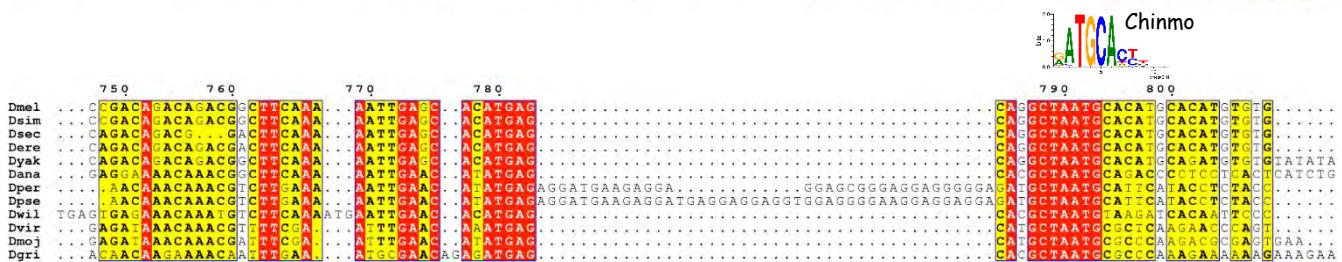
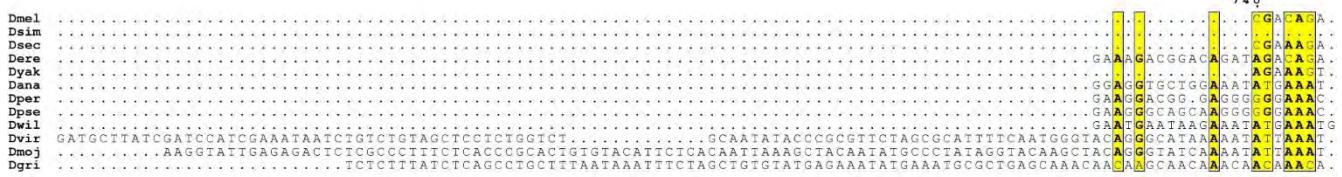
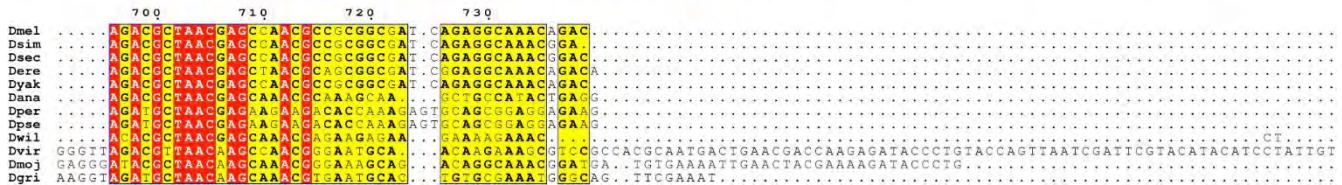
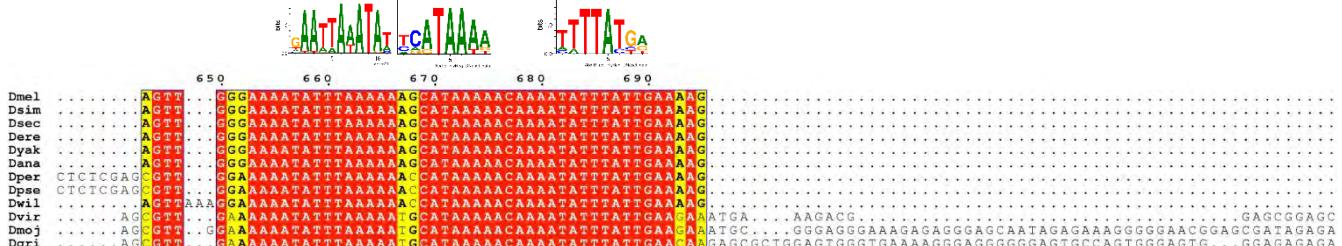

LAE sequence conservation among Drosophilidae (Part2)


Cardiac CE sequence conservation among Drosophilidae (Part1)

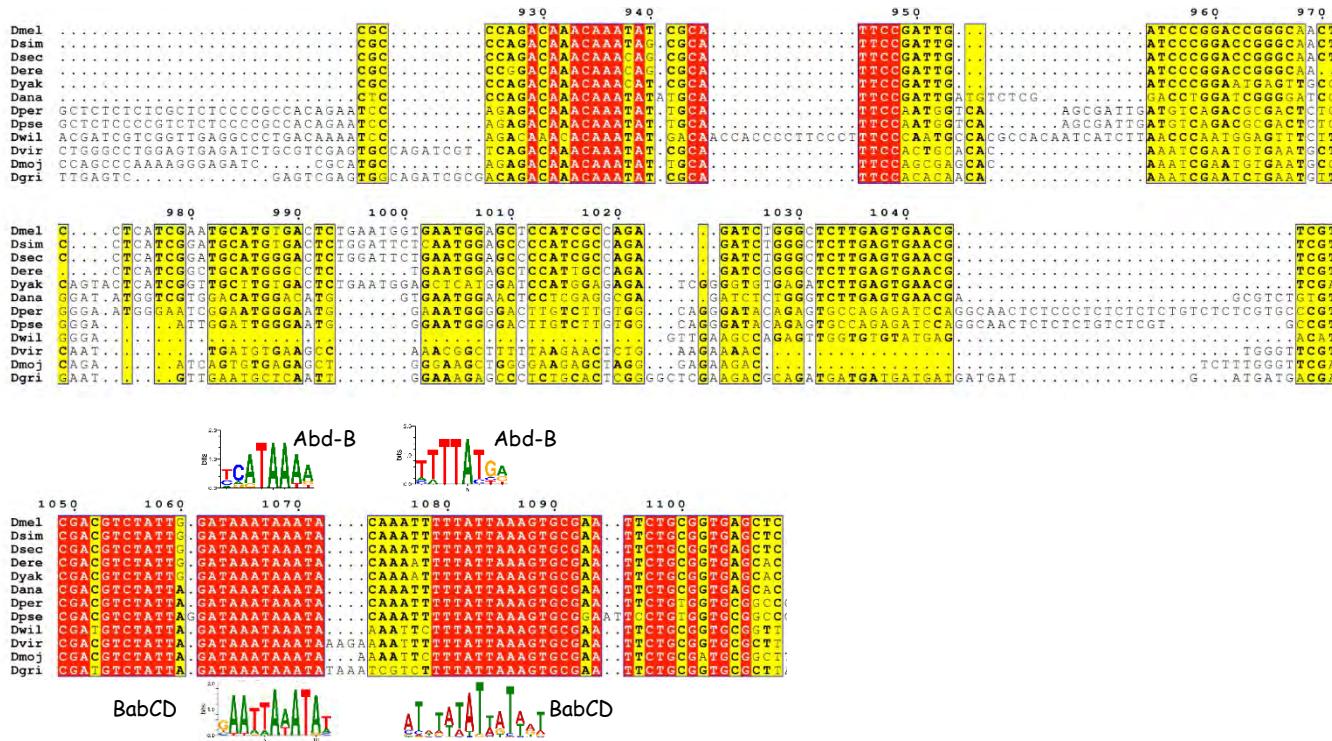

Cardiac CE sequence conservation among Drosophilidae (Part2)

Abdominal AE sequence conservation among Drosophilidae (Part1)

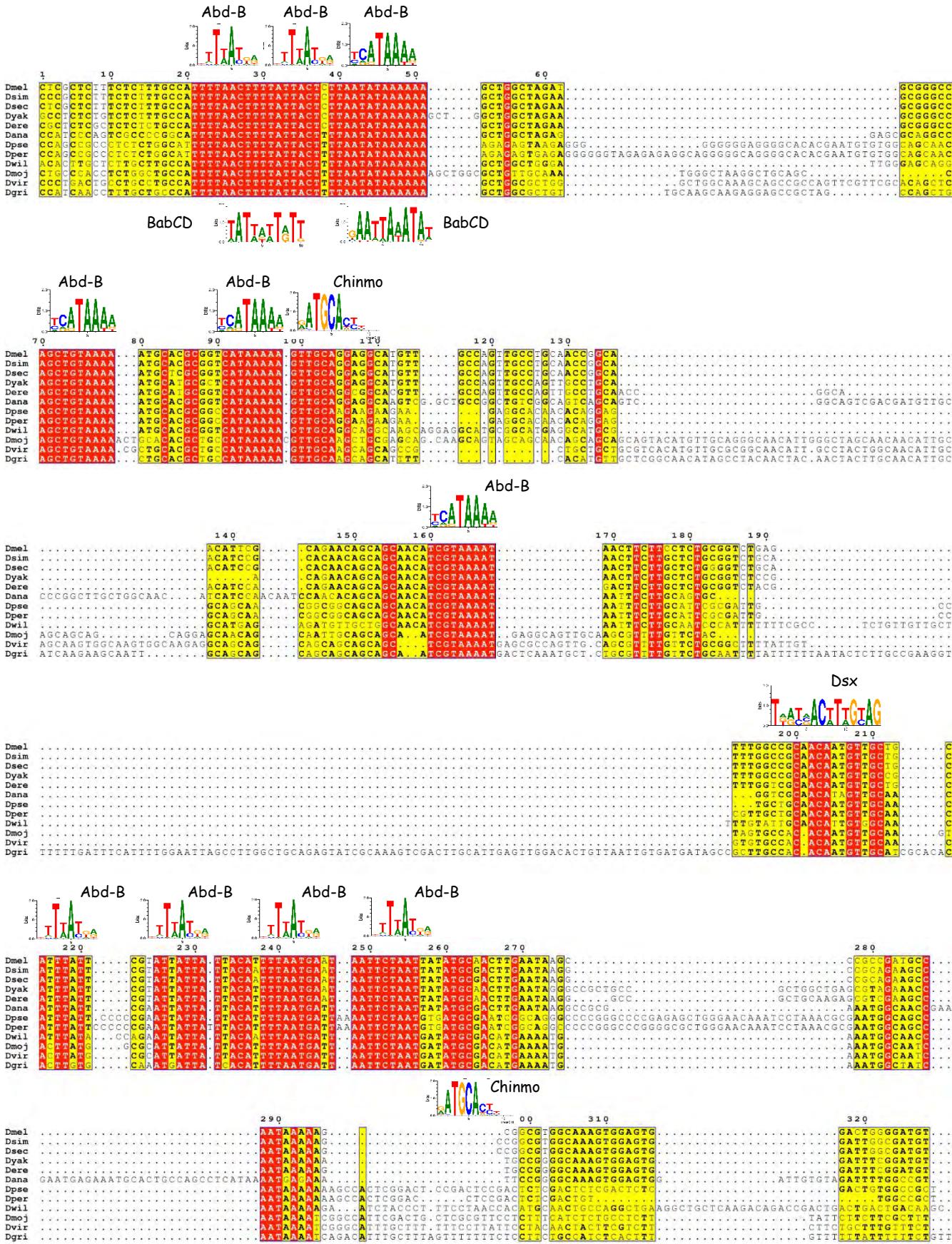
Abdominal AE sequence conservation among Drosophilidae (Part2)

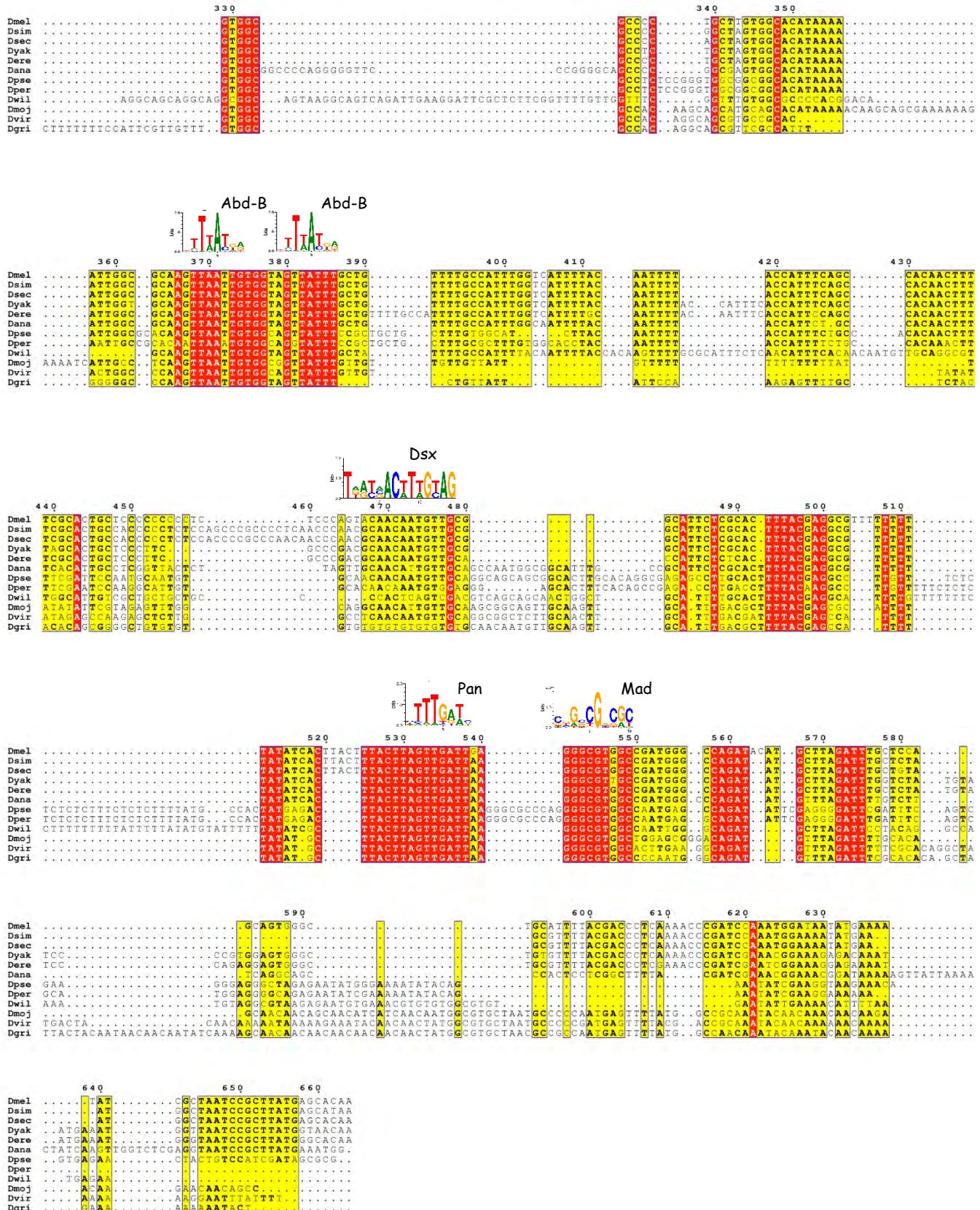







Abdominal AE sequence conservation among Drosophilidae (Part3)


BabCD

Abd-B


Abd-B


Abdominal AE sequence conservation among Drosophilidae (Part4)

Abdominal DE sequence conservation among Drosophilidae (Part1)

Abdominal DE sequence conservation among Drosophilidae (Part2)

