

1 Modelling The Effect of MUC1 on Influenza Virus
2 Infection Kinetics and Macrophage Dynamics

3 Ke Li^a, Pengxing Cao^a, James M. McCaw^{a,b,c}

4 ^a*School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC
5 3010, Australia*

6 ^b*Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and
7 The University of Melbourne, Parkville, VIC 3010, Australia*

8 ^c*Melbourne School of Population and Global Health, The University of Melbourne,
9 Parkville, VIC 3010, Australia*

10 **Abstract**

MUC1 belongs to the family of cell surface (cs-) mucins. Experimental evidence indicates that its presence reduces *in vivo* influenza viral infection severity. However, the mechanisms by which MUC1 influences viral dynamics and the host immune response are not yet well understood, limiting our ability to predict the efficacy of potential treatments that target MUC1. To address this limitation, we utilize available *in vivo* kinetic data for both virus and macrophage populations in wildtype and MUC1 knockout mice. We apply two mathematical models of within-host influenza dynamics to this data. The models differ in how they categorise the mechanisms of viral control. Both models provide evidence that MUC1 reduces the susceptibility of epithelial cells to influenza virus and regulates macrophage recruitment. Furthermore, we predict and compare some key infection-related quantities between the two mice groups. We find that MUC1 significantly reduces the basic reproduction number of viral replication as well as the number of cumulative macrophages but has little impact on the cumulative viral load. Our analyses suggest that the viral replication rate in the early stages of infection influences the kinetics of the host immune response, with consequences for infection outcomes, such as severity. We also show that MUC1 plays a strong anti-inflammatory role in the regulation of the host immune response. This study improves our understanding of the dynamic role of MUC1 against influenza infection and may support the development of novel antiviral treatments and immunomodulators that target MUC1.

11 *Keywords:* influenza viral dynamics, cell-surface mucin MUC1, immune
12 response, mathematical models

13 **1. Introduction**

14 Influenza is a contagious respiratory disease. It remains as a major pub-
15 lic health burden that affects and threatens millions of people each year [1].
16 Influenza virus (IV) primarily attacks the epithelial cells that line the up-
17 per respiratory tract (URT) of the host, causing an acute infection [2]. The
18 host immune response has been shown to play an important role against in-
19 fluenza infection [3, 4]. As part of the innate immune response, macrophages
20 that reside in airways limit viral dissemination through phagocytosis of viral
21 particles and prevent the virus from spreading to the lungs [5, 6]. Acti-
22 vated macrophages produce inflammatory molecules, such as TNF- α , which
23 stimulates recruitment of additional immune cells, such as monocyte-derived
24 macrophages (MDMs) to the site of infection. These molecules also facilitate
25 the activation of adaptive immune responses, such as maturation of B cells
26 and effector CD8 $^{+}$ T cells [7]. Thus, macrophages play a critical role against
27 influenza viral infection [8, 9, 10].

28 However, recruited macrophages also amplify inflammation. Overstimu-
29 lation of the host immune response can lead to pathology, indicating that
30 there is a subtle balance between a protective and a destructive response
31 [1, 11]. A dysregulated immune response, often marked by an excessive re-
32 cruitment of macrophages to the site of infection and a high level of cytokine
33 production, can lead to lung pathology, causing serious and sometimes fatal
34 infection outcomes [12, 13, 14, 15].

35 MUC1 belongs to the family of cell surface (cs-) mucin and is constitu-
36 tively expressed at the surface of respiratory epithelial cells and macrophages,
37 as reviewed in [16, 17, 18]. It has been shown to be capable of modulating
38 cytokine production *in vitro* viral infection [19, 20, 21] and *in vivo* bacterial
39 infection [22, 23]. More recently, McAuley and colleagues investigated the *in*
40 *vivo* effects of MUC1 on influenza viral infection [24]. They first intranasally
41 infected wildtype (WT) and MUC1-knockout (KO) mice with influenza A
42 virus, then measured and compared the kinetic time-series data of viral load
43 as well as different immune cells between the two groups. They found that the
44 virus grows more quickly and reaches a peak earlier in MUC1-KO mice. Mice
45 displayed a more enhanced inflammatory response, dominated by a higher

46 number of macrophages and a high level of cytokine production. Based on
47 these observations, they hypothesised that MUC1 acts as physical barrier to
48 prevent virus from infecting epithelial cells and contribute to regulation of
49 the host immune response. However, the potential effects of MUC1 *in vivo*
50 are poorly quantified, limiting our ability to predict the efficacy of potential
51 treatments that target MUC1. To address this limitation, we incorporated
52 the hypothesised effects of MUC1 into mathematical models of influenza viral
53 dynamics and applied Bayesian inference to estimate key parameter values
54 and provided new quantitative insight into the role of MUC1 in shaping
55 influenza virus infection and the host immune response.

56 Influenza viral dynamics models have been used to study many aspects
57 of influenza infection and the host immune response, as reviewed in [25].
58 Studies focusing on the immune system have used viral dynamics models to
59 study various types of immunological data, sharpening to our understanding
60 of the contribution of different immunological components to influenza viral
61 infection [26, 27, 28].

62 In this work, we utilize available *in vivo* kinetic data for both virus and
63 macrophage populations in wildtype and MUC1 knockout mice. We analyse
64 the data with two mathematical models of influenza viral dynamics under
65 a Bayesian framework, quantifying the potential effects of cs-mucin MUC1
66 in influenza infection. The two models differ in how they categorise mech-
67 anisms of viral control. We also use the data-calibrated models to evaluate
68 and analyse the dependence of various infection-related quantities on MUC1
69 expression. Finally, we discuss the biological implications of our results.

70 2. Results

71 2.1. Model fitting

72 *In vivo* viral load and macrophage data in WT and MUC1-KO mice
73 were used in model fitting. We fitted a Target cell-Infected-cell-Virus (TIV)
74 model (Eqs. 1–4 in Materials and Methods) and an Immune Response (IR)
75 model (Eqs. 5–18) to the data, respectively. MUC1 has been suggested to
76 prevent virus from infecting epithelial cells. It also has been implicated in the
77 regulation of the host innate immune response, associated with macrophage
78 recruitment [24]. As detailed in Materials and Methods, both models capture
79 these effects. The reduction in susceptibility of target cells is captured by
80 a parameter ε_1 , modulating viral infectivity to the target cells in $dT/dt =$
81 $(1-\varepsilon_1)\beta TV$ (Eq. 1). The effect of the limitation of macrophage recruitment is

82 captured by a parameter ε_2 and is modelled in $dM/dt = s + (1 - \varepsilon_2)\phi I - \delta_M M$
83 (Eq. 4). In the absence of MUC1 expression, e.g., in MUC1-KO mice, we set
84 $\varepsilon_1 = \varepsilon_2 = 0$ to represent a complete knockout effect.

85 The fitting results are shown in Fig. 1. The median of the posterior prediction
86 (solid line) and a 95% predict interval (PI, shaded area) were computed
87 from 4000 model simulation based upon 4000 samples from the posterior
88 distribution of model parameters (provided in Supplementary Figures). The
89 trend for both the viral kinetics (Figs. 1A and 1B) and macrophages dy-
90 namics (Figs. 1C and 1D) is well captured by the median prediction in both
91 models, suggesting that both models are able to explain the data. More-
92 over, the narrow 95% PI indicates a relatively high certainty level for model
93 predictions.

94 *2.2. Estimates of MUC1 parameters*

95 The marginal posterior densities for ε_1 and ε_2 provide insight into the
96 role of MUC1. The median parameter estimates and their associated 95%
97 credible intervals (CIs) are given in Table 1. The median estimate of the
98 effect of MUC1 on reduction of viral infectivity (ε_1) is 0.44 (95% CI: 0.23
99 – 0.71) in the TIV model and 0.42 (95% CI: 0.22 – 0.58) in the IR model.
100 Further, the estimated median values of MUC1 on regulation of macrophage
101 recruitment (ε_2) are 0.45 (95% CI: 0.18 – 0.64) and 0.38 (95% CI: 0.06 –
102 0.63) in the TIV and IR models, respectively.

103 The posterior-median estimates are qualitatively consistent between the
104 two models. The results support the experimental hypothesis [24] and pro-
105 vide quantitative evidence that the presence of MUC1 reduces viral infec-
106 tivity to epithelial cells. They also provide evidence that MUC1 reduces
107 macrophage recruitment and thus regulates the host innate immune response.

108 Detailed posteriors of model parameters are provided in Supplementary
109 Figures (SFigs. 1–10), and correlation maps of the estimated parameters for
110 the TIV and IR models are given in SFigs. 11–12. There is a low correlation
111 coefficient between ε_1 and ε_2 for the TIV ($R = 0.08$) and IR ($R = -0.22$)
112 models, suggesting the two parameters have a weak relationship. In partic-
113 ular, we found that the posterior-median estimate of the phagocytosis rate
114 of virus by macrophages (κ_M) is approximately 10^{-8} for the TIV model, and
115 the estimate is in agreement with the estimate for the IR model (SFig. 9).
116 We used the median estimates of model parameters to compute the ratio of
117 macrophage-mediated viral decay ($\kappa_M M(t)$) to overall viral decay rate in the
118 TIV ($\kappa_M M(t) + \delta_V$) and IR ($\kappa_M M(t) + \delta_V + \kappa_{AS} A_S(t) + \kappa_{AL} A_L(t)$) models as

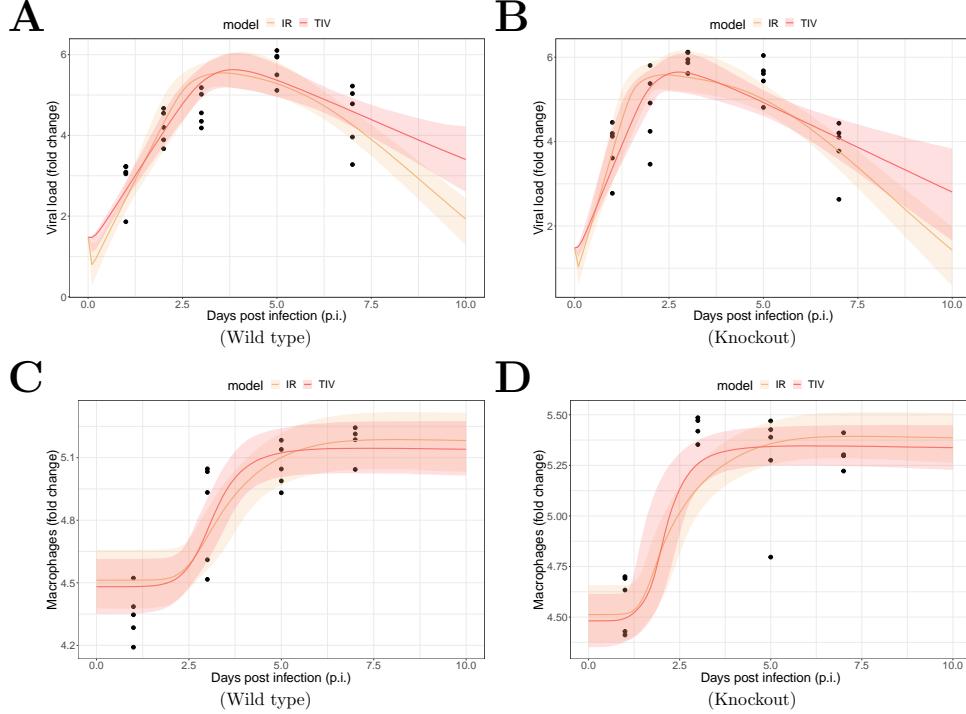


Figure 1: Results of model fitting for WT and MUC1-KO mice. Data are presented by solid circles. Panels A and B show the median of posterior predictions (solid line) and a 95% prediction interval (shaded area) of viral load data for both TIV (red) and IR (yellow) models for WT and MUC1-KO mice, respectively. Panels C and D show the model predictions of macrophage data in the two models for WT and MUC1-KO mice, respectively. The priors of model parameters are given in Supplementary Materials. The posteriors of estimated model parameters are given in Supplementary Figures.

119 a time-series, respectively. We found that $\kappa_M M(t)$ only has a minor contribution
 120 to viral clearance (SFig. 14). The result suggests that macrophages,
 121 although is important to maintain gas exchange in lungs and reduce infection
 122 severity, is not directly involved in limiting viral replication, as evidenced in
 123 [29, 30].

124 *2.3. Prediction of infection-related quantities*

125 Influenza pathogenesis is often associated with a high viral load and an
 126 overstimulated immune response [15]. In the absence of MUC1, mice showed
 127 a significantly high mortality rate [24]. Here, we use the 4000 joint posterior

Parameter	Description	Median (95% CI)	
		TIV	IR
ε_1	The effect of MUC1 on reduction of target cell susceptibility to infection	0.44 (0.23,0.71)	0.42 (0.22, 0.58)
ε_2	The effect of MUC1 on regulation of macrophage recruitment	0.45 (0.18,0.64)	0.38 (0.06, 0.63)

Table 1: **Estimates of MUC1 parameters and comparison between models.** The estimates of the effects of MUC1 on reduction of target cell susceptibility to influenza virus (ε_1) and the effects of MUC1 on regulation of macrophage recruitment (ε_2). The lower and upper boundary of the 95% credible interval (CI) of the parameter is given by calculating the 2.5% and 97.5% quantile of the marginal posterior parameter distribution.

128 distributions to predict the impact of MUC1 on some key infection-related
129 quantities that likely influence infection severity. We then compare these
130 quantities between the two models.

131 The basic reproduction number of viral replication (R_0) is defined as the
132 average number of secondary infected cells that are produced by an initially
133 infected cell when the target cell population is not depleted and is fully
134 susceptible [31]. An infection may be established only if $R_0 > 1$. It is
135 a critical indicator that quantifies how fast an infection is established and
136 evolved.

137 Fig. 2A and 2B show the R_0 between WT and MUC1-KO groups in the
138 TIV and IR models, respectively. Both models predict a significantly higher
139 median value of R_0 (dashed line) in the MUC1-KO group (20 in MUC1-KO
140 group versus 11.1 in WT group for the TIV model, and 45.6 versus 26.4 for
141 the IR model). The estimates of R_0 are comparable to previous estimates
142 from fitting viral dynamics models to viral kinetic data in humans [32] and
143 mice [33].

144 To assess the impact of MUC1 on viral dynamics, we compute the area un-
145 der the viral load (without log-transformation) curve, which is often used as a
146 marker for infectiousness (shown in Eq. 20 in Materials and Methods). Both
147 the TIV (Fig. 2C) and IR (Fig. 2D) models predict very similar $\log_{10}(\text{AUC}_V)$
148 in WT and MUC1-KO mice. This implies that a paucity of MUC1 expres-
149 sion has little, if any, effect on the cumulative viral load. This observation

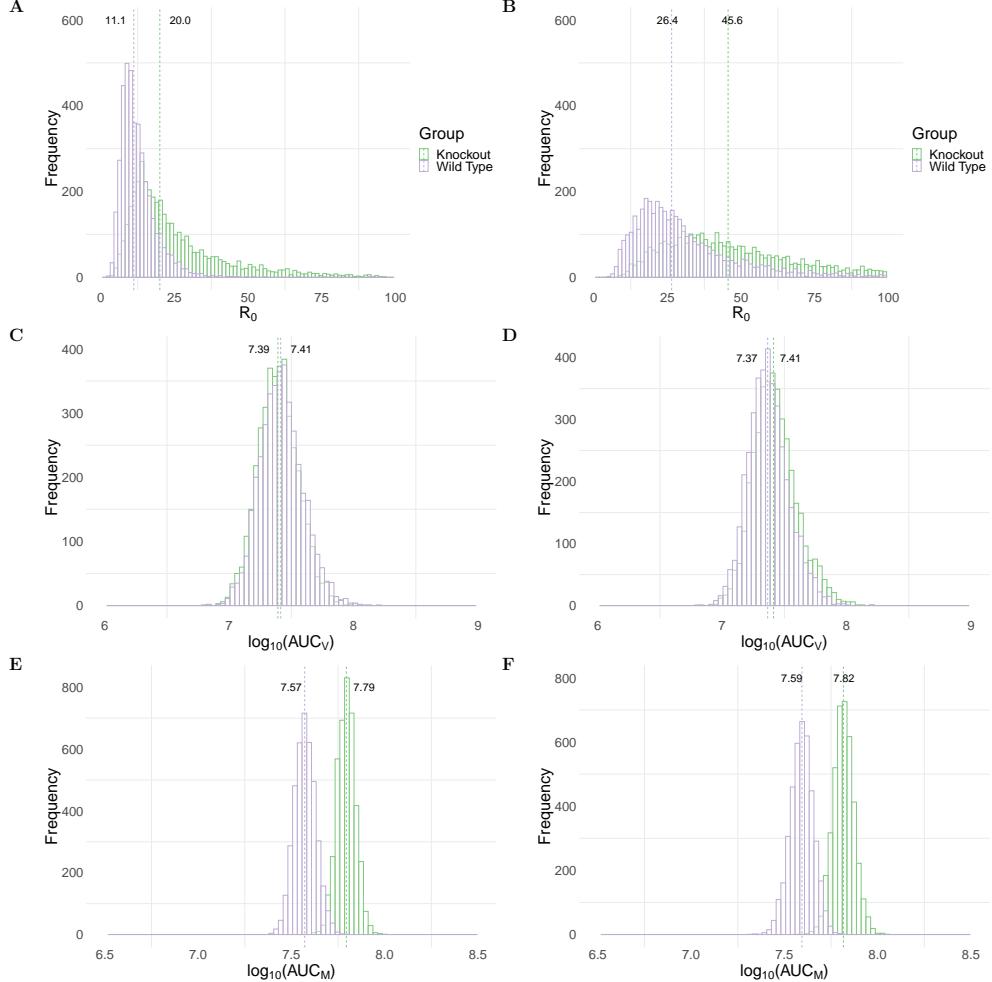


Figure 2: Comparison of model predictions for selected key biological quantities. Distributions are calculated using the 4000 joint posterior distributions. Panels A and B show the distribution of the basic reproduction number of viral replication in wildtype (purple) and MUC1-knockout (green) group in TIV (left panel) and IR models (right panel), respectively. Panels C and D show the distribution of the cumulative viral load in different mice groups in the two models. Panels E and F show the accumulative macrophages in WT and MUC1-KO mice group in the two models.

150 is supported by data in [24] in which they found that MUC1-KO mice were
 151 still capable of clearing virus after day 7 post infection.

152 An excessive accumulation of macrophages is considered as a hallmark for

153 severe infection, often observed in highly pathogenic influenza viral infection
154 [14]. We use the area under the macrophage time-series curve (without log-
155 transformation; Eq. 21 in Materials and Methods) as a surrogate for the
156 strength of immune response stimulation and explore the dependence of the
157 AUC_M upon MUC1. As shown in Figs. 2E and 2F, both models predict a
158 higher median value of $\log_{10}(AUC_M)$ in MUC1-KO mice compared to WT
159 mice. This suggests that MUC1 reduces the accumulation of macrophages
160 and thus contributes to the regulation of the host immune response.

161 We also assessed the influence of MUC1 on peak viral load (SFigs. 13A
162 and 13B in Supplementary Figures) and peak viral load time (SFigs. 13C and
163 13D) for the two models. Both models predict that the presence of MUC1
164 delays the time at which viral load peaks but only has a subtle influence on
165 the magnitude of peak viral load, as evidenced in [24].

166 In summary, both models predict a higher value of R_0 (Figs. 2A and 2B)
167 and increased macrophage accumulation (Figs. 2E and 2F) in the absence of
168 MUC1 expression. The results emphasise the dual roles for MUC1 in reducing
169 viral infectivity and limiting macrophage recruitment. Furthermore, they
170 suggest that the absence of MUC1, while not driving a significant increase in
171 cumulative viral load, facilitates viral replication and dissemination within
172 the host in the early stages of infection. More epithelial cells are infected in a
173 short time interval, heightening macrophage recruitment, likely contributing
174 to lung pathology and providing an explanation for the heightened mortality
175 rate in MUC1 KO mice.

176 *2.4. Delineation the effects of MUC1 on macrophage recruitment*

We have shown that the presence of MUC1 reduces AUC_M (Fig. 2E and 2F), which may alleviate infection severity. The accumulation of macrophages is not only directly impacted by the regulatory effect of MUC1, (i.e., ε_2), but is also indirectly affected by antigen levels, which are influenced by ε_1 through modulating dynamics for infected cells (I). Here, we analyse the relative contribution of the two effects of MUC1 on the AUC_M . We use the macrophage reduction efficiency, defined as the decrease in the area under the macrophage curve in wild type mice ($AUC_{M,WT}$) relative to the AUC of the macrophage curve in MUC1 knockout mice ($AUC_{M,KO}$):

$$\text{Macrophage Reduction Efficiency} = 1 - \frac{AUC_{M,WT}}{AUC_{M,KO}},$$

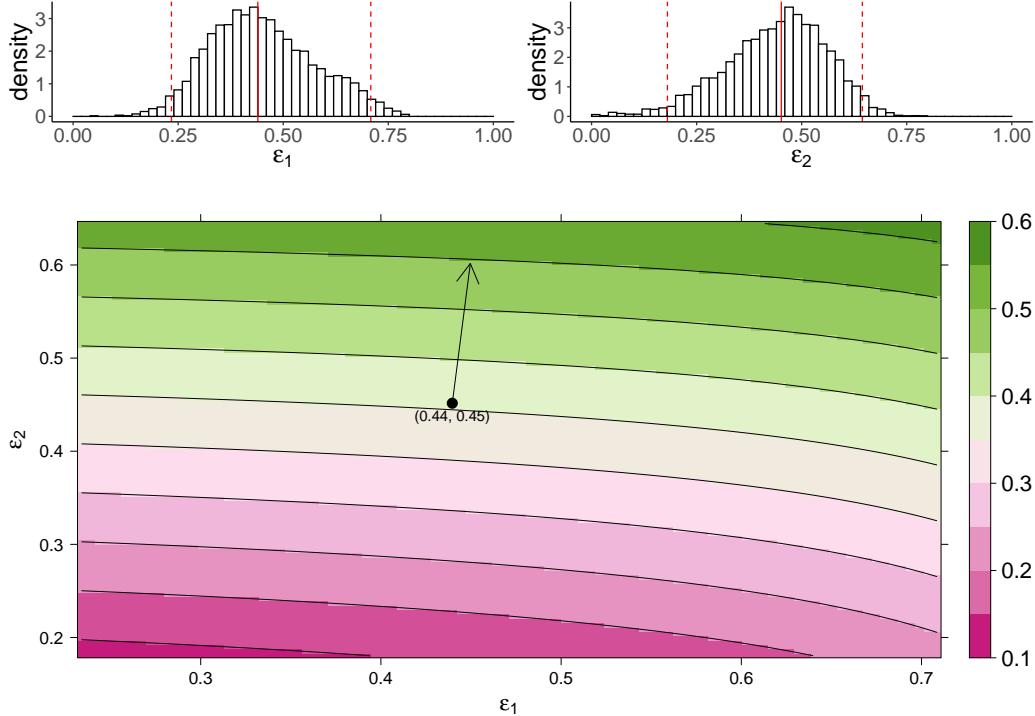


Figure 3: **Predicting the AUC_M on the effects of MUC1 for the TIV model.** The upper panel shows the marginal posterior distribution of ε_1 (left) and ε_2 (right). Between the two red-dashed lines indicates a 95% credible interval (CI) of the parameters, and the red-solid line indicates parameters' median value. The heatmap shows dependence of macrophage reduction efficiency upon ε_1 and ε_2 . The black circle indicates the pair of median values of ε_1 and ε_2 , and the arrow indicates the direction of the rate of change in macrophage reduction efficiency at that point.

177 Fig. 3 shows the estimated marginal posterior density of ε_1 and ε_2 for the
 178 TIV model (top panel) and a heatmap of the dependence of macrophage
 179 reduction efficiency on ε_1 and ε_2 (bottom panel). The heatmap predicts the
 180 dependence of the macrophage reduction efficiency for various values of ε_1
 181 and ε_2 within the 95% CI. We observe that a higher ε_1 or ε_2 leads to a
 182 higher macrophage reduction level, suggesting that both effects contribute
 183 to reduce the accumulation of macrophages. However, the macrophage re-
 184 duction efficiency is notably more sensitive to changes in ε_2 . In particular,
 185 taking the median parameter values as a reasonable prediction point (black
 186 circle), the rate of change in the macrophage reduction efficiency is strongly

187 dependent on ε_2 and only weakly dependent on ε_1 . (indicated by the arrow line). This result suggests that the direct regulatory effect of MUC1 on
 188 macrophage recruitment has a dominant influence on the AUC_M . We also
 189 assess the macrophage reduction efficiency as a function of ε_1 and ε_2 for the
 190 IR model. As shown in Fig. 4, the results are qualitatively consistent—the
 191 macrophage reduction efficiency is strongly influenced by ε_2 .
 192

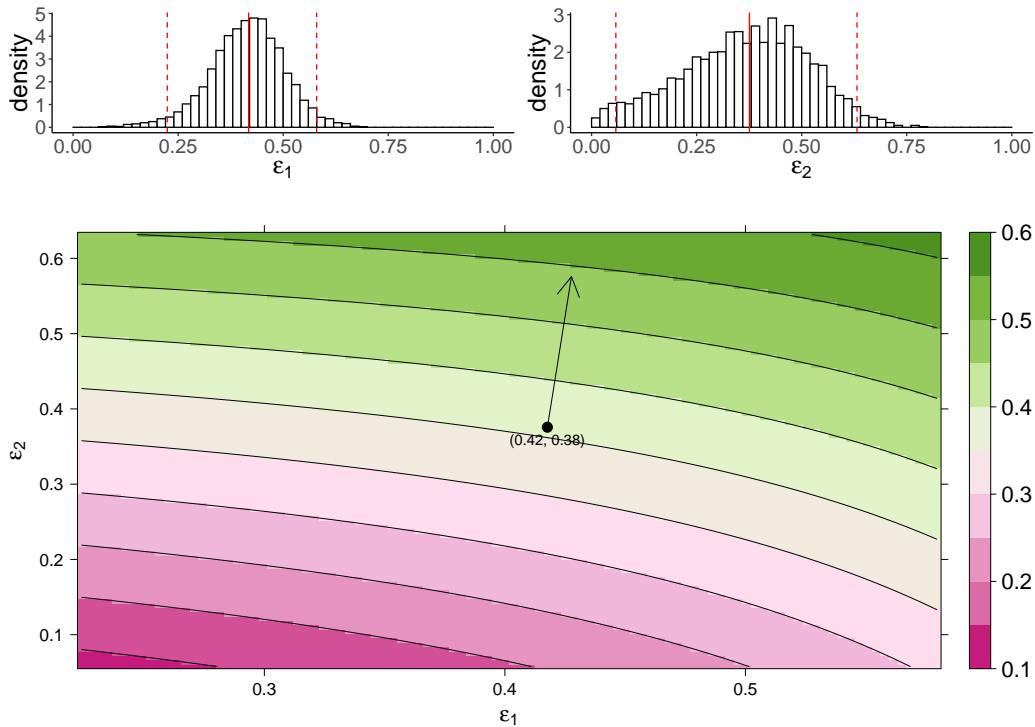


Figure 4: **Predicting the AUC_M on the effects of MUC1 for the IR model.** The upper panel shows the marginal posterior distribution of ε_1 (left) and ε_2 (right). Between the two red-dashed lines indicates a 95% credible interval (CI) of the parameters, and the red-solid line indicates parameters' median value. The heatmap shows dependence of macrophage reduction efficiency upon ε_1 and ε_2 . The black circle indicates the pair of median values of ε_1 and ε_2 , and the arrow indicates the direction of the rate of change in macrophage reduction efficiency at that point.

193 Both models predict a strong effect for ε_2 and relatively small effect for
 194 ε_1 on the AUC_M . This is understood by recalling that the presence of MUC1
 195 does not significantly influence the cumulative viral load, as shown in Fig.
 196 2C and 2D. Thus, a change in the reduction of viral infectivity to target cells

197 (ε_1) has only a minor effect on the AUC_M . The results emphasise a strong
198 regulatory effect of MUC1 on macrophage accumulation.

199 **3. Discussion**

200 In this work, we have studied the *in vivo* immunological effects of cs-mucin
201 MUC1 in influenza viral infection. We incorporated the experimentally hy-
202 pothesised roles of MUC1 into two mathematical models and fitted kinetic
203 data of both virus and macrophage populations to the models in a Bayesian
204 framework. Our estimation results (Table 1) provide evidence that MUC1
205 reduces the susceptibility of epithelial cells to viral infection. They also pro-
206 vided evidence that MUC1 limits the recruitment of macrophages and thus
207 regulates the host immune response. Both models predict the influence of
208 MUC1 on various infection-related quantities (Fig. 2). While the expression
209 of MUC1 has little impact on the cumulative viral load (AUC_V), it delays
210 viral infection by reducing the basic reproduction number of viral replication
211 (Figs. 2A and 2B) and delaying viral load peak time (SFigs. 11C and 11D).
212 More importantly, we found that the presence of MUC1 significantly reduces
213 the accumulation of macrophages (Figs. 2E and 2F). The decreased level of
214 macrophages is primarily driven by the direct regulatory effect (ε_2) of MUC1
215 on macrophage recruitment (Figs. 3 and 4).

216 Our model-based analyses provide new insight into the mechanisms by
217 which MUC1 influences viral dynamics and the host immune response. This
218 is also the first study that we are aware of that provides quantitative estimates
219 of the *in vivo* effects of cs-mucin MUC1 on influenza infection. Our analyses
220 enhance our ability to predict the efficacy of potential treatments that target
221 MUC1. Influenza pathogenesis is often marked by a high viral load, and
222 infection of epithelial cells is a key determinant of the level of viral load
223 [34, 15, 11]. MUC1 is rapidly stimulated at the surface of epithelial cells and
224 macrophages upon infection, and is thought to act as a “releasable decoy”,
225 preventing virus from attaching and infecting the cells, thereby reducing viral
226 infectivity [17]. Regardless of the specific mechanism, our model predictions
227 suggest that MUC1 only effectively reduce R_0 (Fig. 2 and 2B) but not the
228 AUC_V (Fig. 2C and 2D). The biological implications of this are two-fold.
229 Firstly, MUC1, as part of the innate immune response, has been shown to
230 be rapidly upregulated within a few hours post *in vitro* infection [21]. The
231 decreased R_0 suggests that MUC1 expression contributes to limit and delay
232 viral infection, and more importantly, to prevent viral dissemination within

233 the host. This provides strong protection to the host and reduce infection
234 severity. Viral spread to the lower respiratory tract (LRT) is known to cause
235 complications, leading to more severe infection outcomes [34]. Secondly, the
236 comparable AUC_V between WT and MUC1-KO group implies that a lack of
237 cs-mucin MUC1 protection have a subtle influence on other immunological
238 components that are responsible for viral clearance, such as the host adaptive
239 immune response. This may be partially supported in [24], where MUC1-
240 KO mice were shown to clear virus from the lungs at day 7 post infection.
241 A more comprehensive dataset that captures the dynamics of antibodies or
242 effector $CD8^+$ T cells would greatly improve our understanding of the impact
243 on MUC1 to the adaptive immune response.

244 Beyond these virological indicator, viral pathogenesis is also associated
245 with the strength of the host immune response induced by influenza infection.
246 An excessive recruitment of macrophages to the site of infection is a hallmark
247 of overstimulated immune responses [34, 14]. The anti-inflammatory role of
248 MUC1 has been shown to inhibit activation of Toll-like receptors (TLRs) in
249 macrophages and infected cells [24]. In MUC1-KO mice, our models pre-
250 dicted a significantly enhanced level of AUC_M (Fig. 2E and 2F), which may
251 reflect the high mortality rate in the group. This finding emphasises the im-
252 portance of quantities related to the immune response, which can be critical
253 indicators for predicting the severity of infection and facilitating the assess-
254 ment of antiviral therapies, as suggested in [34, 35]. Further, we have shown
255 that the decreased AUC_M is primarily due to the direct regulatory effect of
256 MUC1 on macrophages (i.e., ε_2), which highlights a strong anti-inflammatory
257 effect for MUC1. This may support the development of novel immunomod-
258 ulators that target cs-mucin MUC1.

259 In conducting this study, we applied two mathematical models to the ki-
260 netic data. The models models differ in how they model adaptive immunity.
261 We compared the key estimation results of MUC1's effects and model pre-
262 dictions of infection-related quantities between the two models. We found
263 that both models fit the *in vivo* viral load and macrophage data well (Fig.
264 1), giving comparable parameter estimates and consistent biological insights.

265 One of the most important applications of viral dynamic models is to es-
266 timate key kinetic parameters, as reviewed in [25]. Model selection for data
267 fitting is an important but unresolved challenge in influenza dynamics mod-
268 elling due to limited time-series data on numerous quantities of interested.
269 Parameter estimates vary substantially between different studies, and the
270 predictive power of any given model is influenced by the selection of model

271 components, as showed in previous work by our group [27, 35] and others
272 [36]. In our study, there are advantages and disadvantages in applying the
273 TIV and IR models. Due to its simple model structure, the TIV model is
274 more computationally efficient. But its lack of a detailed characterisation
275 of adaptive immunity makes the model difficult to use to explore potential
276 interactions between different immunological components, e.g., interactions
277 between macrophages and CD8⁺ T cells. The IR model, on the other hand,
278 is more computationally intensive and has far more parameters to either es-
279 timate or determine from the literature. However, it is more suitable for
280 explaining *in vivo* kinetic viral load data to which adaptive immunity has
281 been shown to have an influence. It also provides a platform to study more
282 complicated virus-immunity dynamics and interaction between different com-
283 ponents of immune responses.

284 Neither the TIV nor IR models consider the full spectrum of host im-
285 mune response which are known to contribute to viral control and that have
286 been included in other modelling works, e.g., interferon dynamics [27, 28].
287 Regardless, we argue our two models are sufficient for this study in which we
288 focus on the influence of MUC1 on viral dynamics and macrophage kinet-
289 ics, which are both explicitly considered in the models. Furthermore, there
290 is no evidence to suggest that MUC1 has an impact on the adaptive im-
291 mune response. Combined with the observation that MUC1-KO mice clear
292 virus after day 7 post infection [24], the effects of MUC1 may be minimally
293 influenced by the detailed dynamics of adaptive immunity.

294 Our study has some limitations. We only incorporated the two hypothe-
295 sised effects of cs-mucin MUC1 on influenza viral infection into our mathe-
296 matical models, but did not consider the detailed dynamics of MUC1 itself
297 due to a lack of MUC1 kinetic data. As a result, the critical timing at which
298 MUC1 starts to take effect has not been estimated. This could be an im-
299 portant factor that influences disease severity [17]. In future work, explicitly
300 modelling the time dependent MUC1 effects would be of interest given avail-
301 ability of time-series data of MUC1 expression. Another limitation is that
302 we assumed a fixed adaptive immune response, such that the adaptive im-
303 mune responses dominate viral clearance at day 5 post infection regardless
304 of MUC1 expression [27, 37]. Though there is no evidence so far that MUC1
305 would affect the magnitude and/or timing of the adaptive immune response,
306 extension of the IR model to allow for such an effect may be of interest.

307 **4. Materials and Methods**

308 *4.1. Mathematical Models*

309 In this study, we considered two mathematical models that are often
310 used to study within-host influenza dynamics, but which differ in how they
311 categorise the mechanisms of viral control.

312 *4.1.1. The TIV model*

The Target cell-Infected cell-Virus (TIV) model depicts a simple but fundamental interaction between target cells and influenza virus, as originally presented in [32]. To estimate the *in vivo* impacts of MUC1, we incorporate the two hypothesised effects of MUC1 on viral infectivity and innate immune responses into the TIV model. We also consider a component of macrophage dynamics and critical interactions between macrophages and virus. The model is described by a set of ordinary differential equations (ODEs):

$$\frac{dT}{dt} = gT \left(1 - \frac{T+I}{T_{max}}\right) - (1 - \varepsilon_1)\beta TV, \quad (1)$$

$$\frac{dI}{dt} = (1 - \varepsilon_1)\beta TV - \delta_I I, \quad (2)$$

$$\frac{dV}{dt} = pI - \delta_V V - \kappa_M MV, \quad (3)$$

$$\frac{dM}{dt} = s + (1 - \varepsilon_2)\phi I - \delta_M M. \quad (4)$$

313 Eqs. 1–3 describe the interaction between virus and epithelial cells. In
314 detail, epithelial cells (T), the target cells for influenza virus, are infected
315 with virus (V) and become infected cells (I) at an infectivity rate βV per
316 day. Target cells are replenished at a rate $gT(1 - (T+I)/T_{max})$, where T_{max}
317 is the maximal number of epithelial cells that line the upper respiratory
318 tract (URT). The infectivity rate is modified by MUC1, parameterised by ε_1 .
319 Infected cells produce free virus at a rate p per day. Apoptosis occurs at a
320 rate δ_I per day. The decrease of free virus is either due to natural decay at
321 a constant rate δ_V per day, or internalisation by macrophages (M) at a rate
322 $\kappa_M M$.

323 Eq. 4 models the dynamics of macrophages. We assume a constant sup-
324 plementary rate and a decay rate of macrophages at s and δ_M per day,
325 respectively. Upon infection, monocytes are recruited from peripheral blood

326 to the site of infection and become monocyte-derived macrophages (MDMs)
327 in the presence of cytokines. We assume the recruitment rate is proportional
328 to the level of infected cells, ϕI , as infected cells contribute to cytokines pro-
329 duction. The cs-mucin MUC1 regulates the recruitment rate of macrophages,
330 parameterised by ε_2 .

331 *4.1.2. The IR model*

The immune response (IR) model is based on the TIV model and includes a detailed adaptive immune response, which contributes to viral clearance

over a distinct timescale [28]. The model is formulated by a system of ODEs:

$$\frac{dT}{dt} = gT \left(1 - \frac{T+I}{T_{max}} \right) - (1 - \varepsilon_1)\beta TV, \quad (5)$$

$$\frac{dI}{dt} = (1 - \varepsilon_1)\beta TV - \delta_I I - \kappa_E EI, \quad (6)$$

$$\frac{dV}{dt} = pI - \delta_V V - \kappa_M MV - \kappa_{AS} ASV - \kappa_{AL} ALV, \quad (7)$$

$$\frac{dM}{dt} = s + (1 - \varepsilon_2)\phi I - \delta_M M, \quad (8)$$

$$\frac{dE_0}{dt} = -\gamma_E \frac{V}{V + E_{50}} E_0, \quad (9)$$

$$\frac{dE_1}{dt} = \gamma_E \frac{V}{V + E_{50}} E_0 - \frac{n_E}{\tau_E} E_1, \quad (10)$$

$$\frac{dE_i}{dt} = \frac{n_E}{\tau_E} (E_{i-1} - E_i), \quad i = 2, \dots, n_E \quad (11)$$

$$\frac{dE}{dt} = \phi_E \frac{n_E}{\tau_E} E_{n_E} - \delta_E E, \quad (12)$$

$$\frac{dB_0}{dt} = -\gamma_B \frac{V}{V + B_{50}} B_0, \quad (13)$$

$$\frac{dB_1}{dt} = \gamma_B \frac{V}{V + B_{50}} B_0 - \frac{n_B}{\tau_B} B_1, \quad (14)$$

$$\frac{dB_i}{dt} = \frac{n_B}{\tau_B} (B_{i-1} - B_i), \quad i = 2, \dots, n_B \quad (15)$$

$$\frac{dP}{dt} = \phi_p \frac{n_B}{\tau_B} B_{n_B} - \delta_p P, \quad (16)$$

$$\frac{dA_S}{dt} = \mu_S P - \delta_{AS} A_S, \quad (17)$$

$$\frac{dA_L}{dt} = \mu_L P - \delta_{AL} A_L. \quad (18)$$

332 Eqs. 5–8 retain the skeleton of the TIV model, describing the essential
 333 target cell-virus dynamics, except for additional components in dI/dt and
 334 dV/dt related to adaptive immune responses. $\kappa_E E$ in Eq. 6 represents the
 335 rate of infected cells lysis by effector CD8⁺ T cells. The extra terms $\kappa_{AS} AS$
 336 and $\kappa_{LS} AL$ in Eq. 7 represent virus clearance mediated by a short-lived (A_S ,
 337 e.g., IgM) and a long-lasting antibody (A_L , e.g., IgG), respectively.

338 Eqs. 9–12 describe a major component of the cellular adaptive immune

339 response mediated by CD8⁺ T cells. Naïve CD8⁺ T cells (E_0) initiate prolif-
340 eration and differentiate into effector cells E_1 upon stimulation via antigen-
341 presentation at a rate $\gamma_E V/(V + E_{50})$, where γ_E is the maximal stimulation
342 rate, and E_{50} is a half saturation level at which half of the stimulation rate is
343 obtained (as shown in Eq. 9). Effector cells E_1 perform programmed prolif-
344 eration to E_i where i denotes proliferation stages (Eqs. 10 – 11) for τ_E days,
345 experience through n_E stages [38], finally becoming mature effector cytotoxic
346 T lymphocytes (E) at a rate ϕ_E at the final stage. The decay rate of E is
347 δ_E , as shown in Eq. 12.

348 Similarly, the dynamics of the humoral adaptive immune response are
349 described by Eqs. 13–16. Naïve B cells (B_0) start to proliferate and differen-
350 tiate into plasma cells (B_1) once stimulated by virus at a rate $\gamma_B V/(V + B_{50})$,
351 where γ_B is the maximal stimulation rate and B_{50} is a half-saturation level,
352 as shown in Eq. 13. Eqs. 14–15 capture how plasma cells (B_1) undergo
353 programmed proliferation through n_B stages into B_i , where i denotes prolif-
354 eration stages, for τ_B days [38]. Finally, mature plasma cells P (Eq. 16) are
355 produced at a rate ϕ_B and decay at a rate δ_p .

356 Eqs. 17–18 describe the dynamics of a short-lived antibody (A_S) and a
357 long-lived antibody (A_L). A_S and A_L are produced by plasma cells (P) at
358 rates μ_S and μ_L and decay at rates δ_{AS} and δ_{AL} , respectively.

359 4.2. Statistical Inference

360 We extracted the kinetic data of both virus and macrophage population in
361 wild type (WT) and MUC1 knockout mice using WebPlotDigitizer (version
362 4.4) from [24]. In the study, groups of wild type and MUC1-KO mice were
363 intranasally infected with influenza A virus (PR8). There were 5 mice in each
364 group. We assumed the variability of virus and macrophage data between
365 different mice within the same group was due to measurement error, so that
366 the data from different mice were pooled together for analysis.

367 We took a Bayesian inference approach to fit the TIV and IR model (de-
368 tailed in Model) to the log-transformed kinetic data. In detail, our model
369 has 10 parameters to estimate, and the parameter space is denoted as $\Phi =$
370 $(\varepsilon_1, \beta, \delta_I, p, \delta_V, s, \delta_M, \varepsilon_2, \kappa_M, \phi)$. Upon calibrating the IR model, we fixed all
371 parameters of the adaptive immune responses (e.g., all parameters in Eqs.
372 9–18) to previous estimated values in literature [27, 38]. We fixed the param-
373 eters because estimating the immunological effects of adaptive immunity is
374 not a focus of this study, [24] does not provide sufficient data for estimation

375 of these parameters. We chose parameter values such that the adaptive im-
376 mune response became active five days post-infection. The fixed parameter
377 values are given in Table 2 in Supplementary Materials.

378 Further, we assumed WT and MUC1-KO mice only differ in ε_1 and ε_2 ,
379 a reasonable assumption given inbred mice and use of the same virus for
380 all experiment. We fitted log-transformed WT and MUC1-KO data sim-
381 taneously to the models with the same parameter vector set, only differing
382 except for ε_1 and ε_2 , which were set to $\varepsilon_1 = \varepsilon_2 = 0$ for MUC1-KO mice. The
383 prior distribution for model parameters (Φ) is given in Table 1 in Supple-
384 mentary Materials. The distribution of the observed log-transformed viral load
385 and macrophage measurement is assumed to be a normal distribution with
386 a mean value given by the model simulation results and standard deviation
387 (SD) parameter with prior distribution of a normal distribution with a mean
388 of 0 and a SD of 1.

389 Model fitting was performed in R (version 4.0.2) and Stan (Rstan 2.21.0).
390 Hamiltonian Monte Carlo (HMC) optimized by the No-U-Turn Sampler (NUTS)
391 [39] was implemented to draw samples from the joint posterior distribution
392 of the model parameters. A detailed theoretical foundation of HMC can be
393 found in [40]. In particular, we used four chains with different starting points
394 and ran 2000 iterations for each chain, discarding the first 1000 iterations as
395 burn-in. We retained 4000 samples in total from 4 chains (1000 for each)
396 after the burn-in iterations. The marginal posterior and prior density for
397 all parameters are shown in Supplementary Materials. We calculated the
398 median and quantiles of 2.5% and 97.5% of the 4000 model outputs at each
399 time for posterior prediction and a 95% prediction interval (PI), respectively
400 (e.g., Fig. 2).

401 *4.3. Infection-related quantities*

The basic reproduction number of viral replication (R_0) is given by

$$R_0 = \frac{(1 - \varepsilon_1)\beta T_0 V}{\delta_I(\delta_V + \kappa_M M_0)}, \quad (19)$$

where T_0 is the initial number of epithelial cells, and M_0 is the number of
macrophages in a disease-free equilibrium, given by s/δ_M . Note that $\varepsilon_1 = 0$
in MUC1-KO group. The area under the viral load time-series curve (AUC_V)

and under the macrophage time-series curve (AUC_M) are given by

$$AUC_V = \int_0^\tau V(t)dt, \quad (20)$$

$$AUC_M = \int_0^\tau M(t)dt, \quad (21)$$

402 where τ is a cut-off day for calculation. We set $\tau = 14$, which covers the
403 duration of viral infection, macrophage dynamics and clinical dynamics in
404 [24]. $V(t)$ and $M(t)$ are simulated time series of viral load and macrophages,
405 respectively.

406 The estimates of the infection-related quantities were computed using
407 the 4000 posterior samples by solving the ode solver `ode15s` in MATLAB
408 R2019b with a relative tolerance of 1×10^{-5} and an absolute tolerance of
409 1×10^{-10} . The initial values for different model components in the TIV
410 model is $(T, I, V, M) = (1 \times 10^7, 0, 30, s/\delta_M)$, where s and δ_M are esti-
411 mated from fitting the macrophage data to the model. For the IR model,
412 the initial values were $(T, I, V, M, E_0, E_1 \dots E, B_0, B_1 \dots P, A_S, A_L) = (1 \times$
413 $10^7, 0, 30, s/\delta_M, 100, 0, \dots 0, 100, 0, \dots 0, 0, 0)$. The values of fixed parameters
414 are given in Supplementary Materials (Table 2). All visualization was per-
415 formed in R (version 4.0.2). Computer codes to produce all the figures in
416 this study can be found at <https://github.com/keli5734/MUC1>.

417 Author contributions

418 Conceptualization, Ke Li, Pengxing Cao and James McCaw; Formal anal-
419 ysis, Ke Li, Pengxing Cao and James McCaw; Methodology, Ke Li, Pengxing
420 Cao and James McCaw; Supervision, Pengxing Cao and James McCaw; Vali-
421 dation, Ke Li, Pengxing Cao and James McCaw; Visualization, Ke Li, Pengx-
422 ing Cao and James McCaw; Writing–original draft, Ke Li; Writing–review &
423 editing, Ke Li, Pengxing Cao and James McCaw.

424 Fundings

425 Ke Li is supported by a Melbourne Research Scholarship. This work
426 was supported by an Australian Research Council (ARC) Discovery Project
427 (DP170103076) and a National Health and Medical Research Council (NHMRC)
428 funded Centre for Research Excellence in Infectious Diseases Modelling to In-
429 form Public Health Policy (1078068).

430 **Acknowledgements**

431 We would like to thank Julie McAuley and Lorena Brown for helpful
432 conversations. This research was supported by use of the Nectar Research
433 Cloud, a collaborative Australian research platform supported by the Na-
434 tional Collaborative Research Infrastructure Strategy (NCRIS).

435 **Declarations of interest**

436 None.

437 **References**

438 [1] J. K. Taubenberger, D. M. Morens, The pathology of influenza virus
439 infections, *Annu. Rev. Pathol. Mech. Dis.* 3 (2008) 499–522.

440 [2] D. G. Rosen, A. E. Lopez, M. L. Anzalone, D. A. Wolf, S. M. Derrick,
441 L. F. Florez, M. L. Gonsoulin, M. O. Hines, R. A. Mitchell, D. R. Phatak,
442 et al., Postmortem findings in eight cases of influenza A/H1N1, *Modern*
443 *Pathology* 23 (11) (2010) 1449–1457.

444 [3] A. Iwasaki, P. S. Pillai, Innate immunity to influenza virus infection,
445 *Nature Reviews Immunology* 14 (5) (2014) 315–328.

446 [4] M. Koutsakos, K. Kedzierska, K. Subbarao, Immune responses to avian
447 influenza viruses, *The Journal of Immunology* 202 (2) (2019) 382–391.

448 [5] H. Fujisawa, S. Tsuru, M. Taniguchi, Y. Zinnaka, K. Nomoto, Protective
449 mechanisms against pulmonary infection with influenza virus.
450 i. relative contribution of polymorphonuclear leukocytes and of alveolar
451 macrophages to protection during the early phase of intranasal infection,
452 *Journal of general virology* 68 (2) (1987) 425–432.

453 [6] Y. Hashimoto, T. Moki, T. Takizawa, A. Shiratsuchi, Y. Nakanishi, Evi-
454 dence for phagocytosis of influenza virus-infected, apoptotic cells by neu-
455 trophils and macrophages in mice, *The Journal of Immunology* 178 (4)
456 (2007) 2448–2457.

457 [7] S. L. Swain, K. K. McKinstry, T. M. Strutt, Expanding roles for CD4+ T
458 cells in immunity to viruses, *Nature Reviews Immunology* 12 (2) (2012)
459 136–148.

460 [8] L. C. Davies, S. J. Jenkins, J. E. Allen, P. R. Taylor, Tissue-resident
461 macrophages, *Nature immunology* 14 (10) (2013) 986.

462 [9] T. Hussell, T. J. Bell, Alveolar macrophages: plasticity in a tissue-
463 specific context, *Nature reviews immunology* 14 (2) (2014) 81–93.

464 [10] H. M. Kim, Y.-W. Lee, K.-J. Lee, H. S. Kim, S. W. Cho, N. Van Rooijen,
465 Y. Guan, S. H. Seo, Alveolar macrophages are indispensable for
466 controlling influenza viruses in lungs of pigs, *Journal of virology* 82 (9)
467 (2008) 4265–4274.

468 [11] N. L. La Gruta, K. Kedzierska, J. Stambas, P. C. Doherty, A ques-
469 tion of self-preservation: immunopathology in influenza virus infection,
470 *Immunology and cell biology* 85 (2) (2007) 85–92.

471 [12] C. Wendy, R. W. Chan, J. Wang, E. A. Travanty, J. M. Nicholls,
472 J. M. Peiris, R. J. Mason, M. C. Chan, Viral replication and innate
473 host responses in primary human alveolar epithelial cells and alveolar
474 macrophages infected with influenza H5N1 and H1N1 viruses, *Journal
475 of virology* 85 (14) (2011) 6844–6855.

476 [13] C. Cheung, L. Poon, A. Lau, W. Luk, Y. Lau, K. Shortridge, S. Gordon,
477 Y. Guan, J. Peiris, Induction of proinflammatory cytokines in human
478 macrophages by influenza A (H5N1) viruses: a mechanism for the un-
479 usual severity of human disease?, *The Lancet* 360 (9348) (2002) 1831–
480 1837.

481 [14] L. A. Perrone, J. K. Plowden, A. García-Sastre, J. M. Katz, T. M.
482 Tumpey, H5N1 and 1918 pandemic influenza virus infection results in
483 early and excessive infiltration of macrophages and neutrophils in the
484 lungs of mice, *PLoS Pathog* 4 (8) (2008) e1000115.

485 [15] M. D. De Jong, C. P. Simmons, T. T. Thanh, V. M. Hien, G. J. Smith,
486 T. N. B. Chau, D. M. Hoang, N. V. V. Chau, T. H. Khanh, V. C. Dong,
487 et al., Fatal outcome of human influenza a (h5n1) is associated with
488 high viral load and hypercytokinemia, *Nature medicine* 12 (10) (2006)
489 1203–1207.

490 [16] V. Apostolopoulos, L. Stojanovska, S. E. Gargosky, MUC1 (CD227): a
491 multi-tasked molecule, *Cellular and molecular life sciences* 72 (23) (2015)
492 4475–4500.

493 [17] P. Dhar, J. McAuley, The role of the cell surface mucin MUC1 as a
494 barrier to infection and regulator of inflammation, *Frontiers in cellular
495 and infection microbiology* 9 (2019) 117.

496 [18] K. C. Kim, E. P. Lillehoj, Muc1 mucin: a peacemaker in the lung,
497 *American journal of respiratory cell and molecular biology* 39 (6) (2008)
498 644–647.

499 [19] M. Baños-Lara, D. Rocío, B. Piao, A. Guerrero-Plata, Differential mucin
500 expression by respiratory syncytial virus and human metapneumovirus

501 infection in human epithelial cells, *Mediators of inflammation* 2015
502 (2015).

503 [20] K. Kato, E. P. Lillehoj, K. C. Kim, MUC1 regulates epithelial inflammation
504 and apoptosis by PolyI: C through Inhibition of Toll/IL-1 receptor-
505 domain-containing adapter-inducing IFN- β (TRIF) recruitment to toll-
506 like receptor 3, *American journal of respiratory cell and molecular biology* 51 (3) (2014) 446–454.

508 [21] Y. Li, D. L. Dinwiddie, K. S. Harrod, Y. Jiang, K. C. Kim, Anti-
509 inflammatory effect of muc1 during respiratory syncytial virus infection
510 of lung epithelial cells in vitro, *American Journal of Physiology-Lung*
511 *Cellular and Molecular Physiology* 298 (4) (2010) L558–L563.

512 [22] P. Dhar, G. Z. Ng, E. M. Dunne, P. Sutton, Mucin 1 protects against
513 severe streptococcus pneumoniae infection, *Virulence* 8 (8) (2017) 1631–
514 1642.

515 [23] W. Lu, A. Hisatsune, T. Koga, K. Kato, I. Kuwahara, E. P. Lillehoj,
516 W. Chen, A. S. Cross, S. J. Gendler, A. T. Gewirtz, et al., Cutting
517 edge: enhanced pulmonary clearance of pseudomonas aeruginosa by
518 muc1 knockout mice, *The Journal of Immunology* 176 (7) (2006) 3890–
519 3894.

520 [24] J. McAuley, L. Corcilius, H. Tan, R. Payne, M. McGuckin, L. Brown,
521 The cell surface mucin muc1 limits the severity of influenza A virus
522 infection, *Mucosal immunology* 10 (6) (2017) 1581–1593.

523 [25] A. Handel, L. E. Liao, C. A. Beauchemin, Progress and trends in mathematical
524 modelling of influenza A virus infections, *Current Opinion in Systems Biology* 12 (2018) 30–36.

526 [26] H. Miao, J. A. Hollenbaugh, M. S. Zand, J. Holden-Wiltse, T. R. Mos-
527 mann, A. S. Perelson, H. Wu, D. J. Topham, Quantifying the early im-
528 mune response and adaptive immune response kinetics in mice infected
529 with influenza a virus, *Journal of virology* 84 (13) (2010) 6687–6698.

530 [27] P. Cao, A. W. Yan, J. M. Heffernan, S. Petrie, R. G. Moss, L. A. Car-
531 olan, T. A. Guarnaccia, A. Kelso, I. G. Barr, J. McVernon, et al., Innate

532 immunity and the inter-exposure interval determine the dynamics of sec-
533 ondary influenza virus infection and explain observed viral hierarchies,
534 PLoS Comput Biol 11 (8) (2015) e1004334.

535 [28] P. Cao, Z. Wang, A. W. Yan, J. McVernon, J. Xu, J. M. Heffernan,
536 K. Kedzierska, J. M. McCaw, On the role of cd8+ t cells in determining
537 recovery time from influenza virus infection, Frontiers in immunology 7
538 (2016) 611.

539 [29] H. M. Kim, Y. M. Kang, K. B. Ku, E. H. Park, J. Yum, J. C. Kim,
540 S. Y. Jin, J. S. Lee, H. S. Kim, S. H. Seo, The severe pathogenicity of
541 alveolar macrophage-depleted ferrets infected with 2009 pandemic H1N1
542 influenza virus, Virology 444 (1-2) (2013) 394–403.

543 [30] C. Schneider, S. P. Nobs, A. K. Heer, M. Kurrer, G. Klinke, N. Van Rooijen,
544 J. Vogel, M. Kopf, Alveolar macrophages are essential for protec-
545 tion from respiratory failure and associated morbidity following influenza
546 virus infection, PLoS Pathog 10 (4) (2014) e1004053.

547 [31] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the
548 computation of the basic reproduction ratio r_0 in models for infectious
549 diseases in heterogeneous populations, Journal of mathematical biology
550 28 (4) (1990) 365–382.

551 [32] P. Baccam, C. Beauchemin, C. A. Macken, F. G. Hayden, A. S. Perelson,
552 Kinetics of influenza A virus infection in humans, Journal of virology
553 80 (15) (2006) 7590–7599.

554 [33] A. M. Smith, F. R. Adler, J. L. McAuley, R. N. Gutenkunst, R. M.
555 Ribeiro, J. A. McCullers, A. S. Perelson, Effect of 1918 PB1-F2 expres-
556 sion on influenza A virus infection kinetics, PLoS Comput Biol 7 (2)
557 (2011) e1001081.

558 [34] F. G. Hayden, R. Fritz, M. C. Lobo, W. Alvord, W. Strober, S. E. Straus,
559 et al., Local and systemic cytokine responses during experimental human
560 influenza A virus infection. relation to symptom formation and host
561 defense., The Journal of clinical investigation 101 (3) (1998) 643–649.

562 [35] P. Cao, J. M. McCaw, The mechanisms for within-host influenza virus
563 control affect model-based assessment and prediction of antiviral treat-
564 ment, Viruses 9 (8) (2017) 197.

565 [36] K. A. Pawelek, G. T. Huynh, M. Quinlivan, A. Cullinane, L. Rong, A. S.
566 Perelson, Modeling within-host dynamics of influenza virus infection
567 including immune responses, *PLoS Comput Biol* 8 (6) (2012) e1002588.

568 [37] A. W. Yan, S. G. Zaloumis, J. A. Simpson, J. M. McCaw, Sequential
569 infection experiments for quantifying innate and adaptive immunity
570 during influenza infection, *PLoS computational biology* 15 (1) (2019)
571 e1006568.

572 [38] A. W. Yan, P. Cao, J. M. Heffernan, J. McVernon, K. M. Quinn, N. L.
573 La Gruta, K. L. Laurie, J. M. McCaw, Modelling cross-reactivity and
574 memory in the cellular adaptive immune response to influenza infection
575 in the host, *Journal of Theoretical Biology* 413 (2017) 34–49.

576 [39] M. D. Hoffman, A. Gelman, The no-u-turn sampler: adaptively setting
577 path lengths in hamiltonian monte carlo., *J. Mach. Learn. Res.* 15 (1)
578 (2014) 1593–1623.

579 [40] A. Chatzilena, E. van Leeuwen, O. Ratmann, M. Baguelin, N. Demiris,
580 Contemporary statistical inference for infectious disease models using
581 stan, *Epidemics* 29 (2019) 100367.

Supplementary Figures

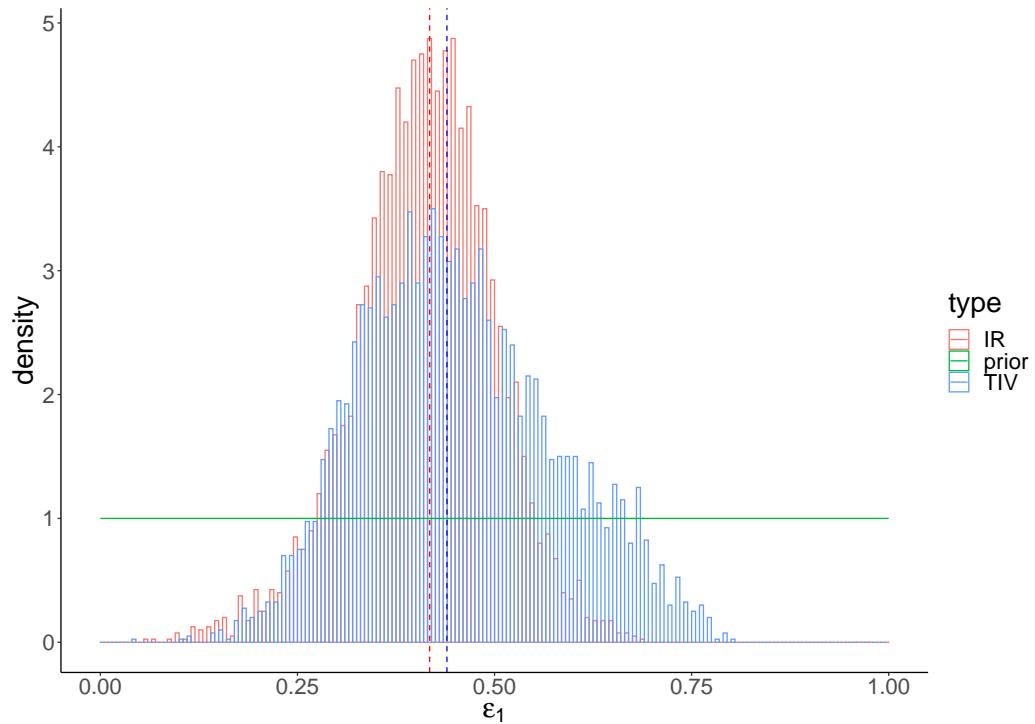


Figure 1: The prior (green) and posterior distributions of ε_1 in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

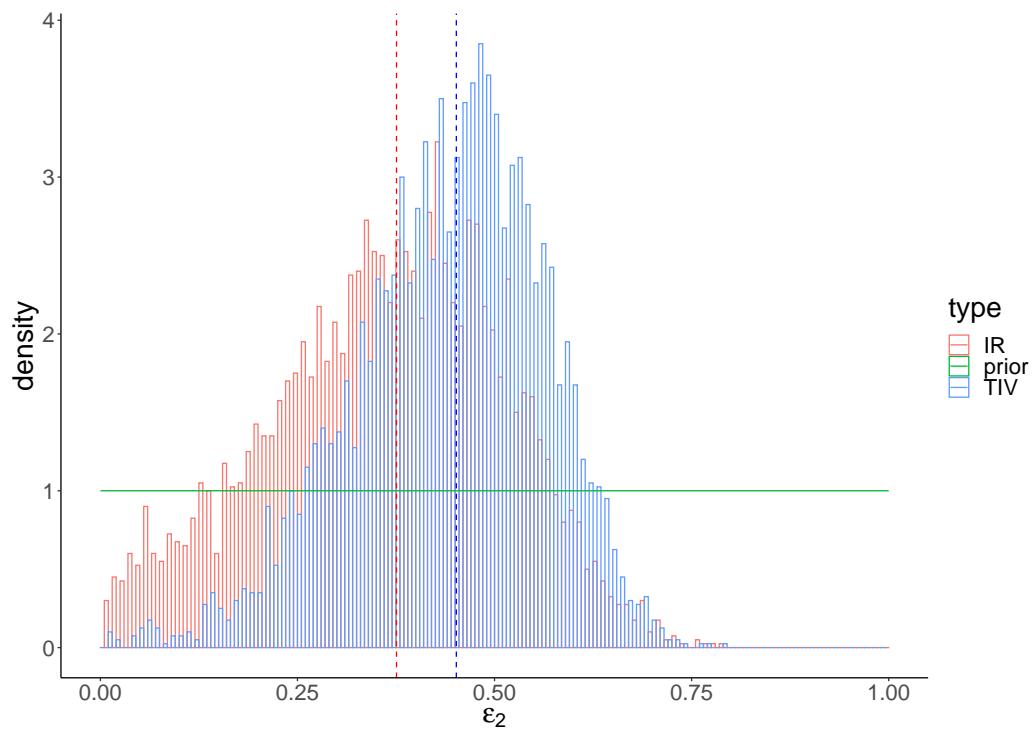


Figure 2: The prior (green) and posterior distributions of ε_2 in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

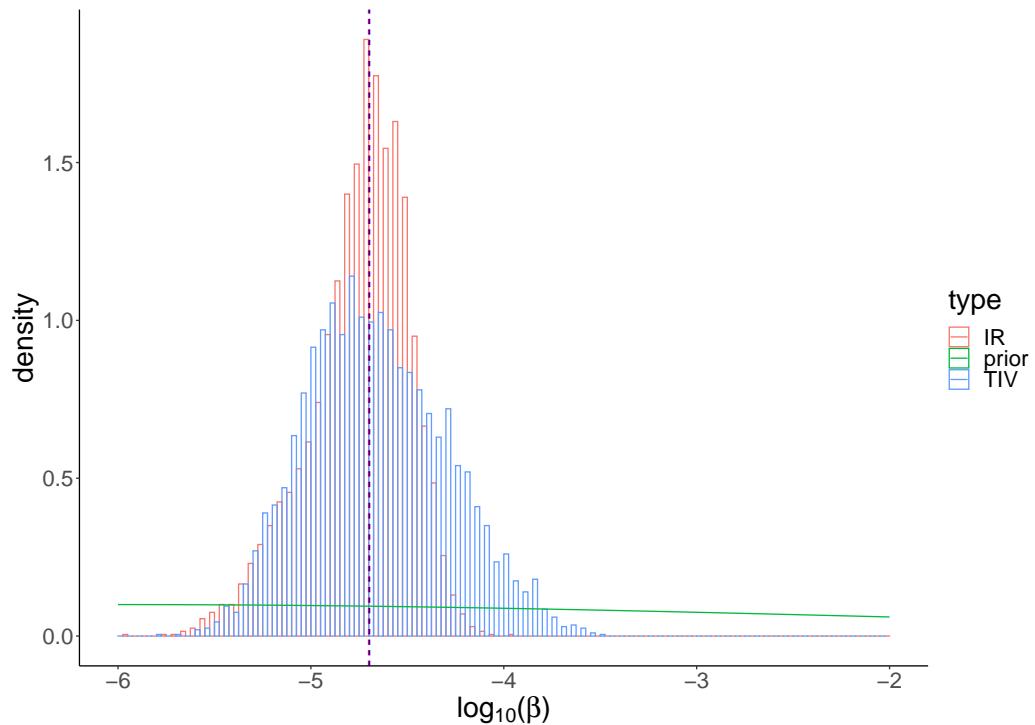


Figure 3: The prior (green) and posterior distributions of $\log_{10}(\beta)$ in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

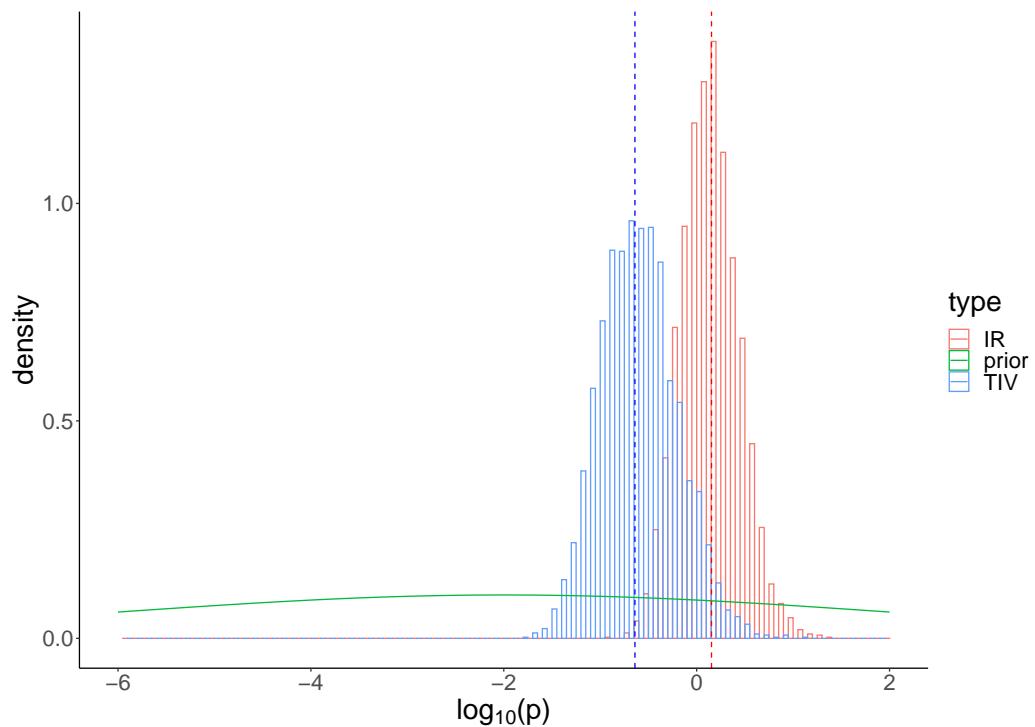


Figure 4: The prior (green) and posterior distributions of $\log_{10}(p)$ in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

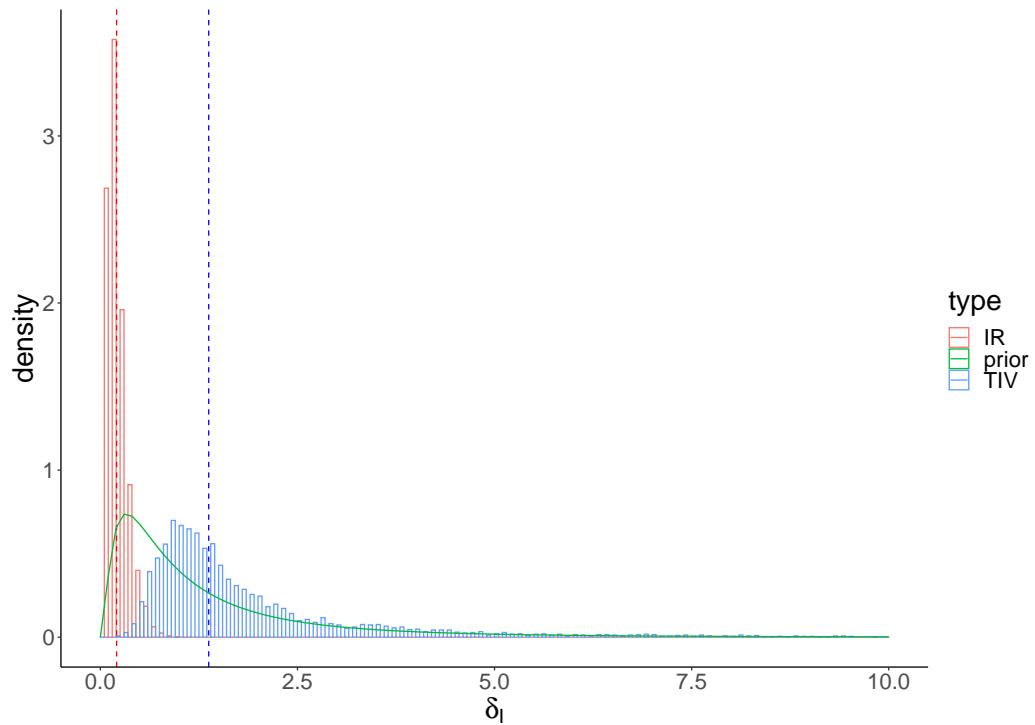


Figure 5: The prior (green) and posterior distributions of δ_I in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

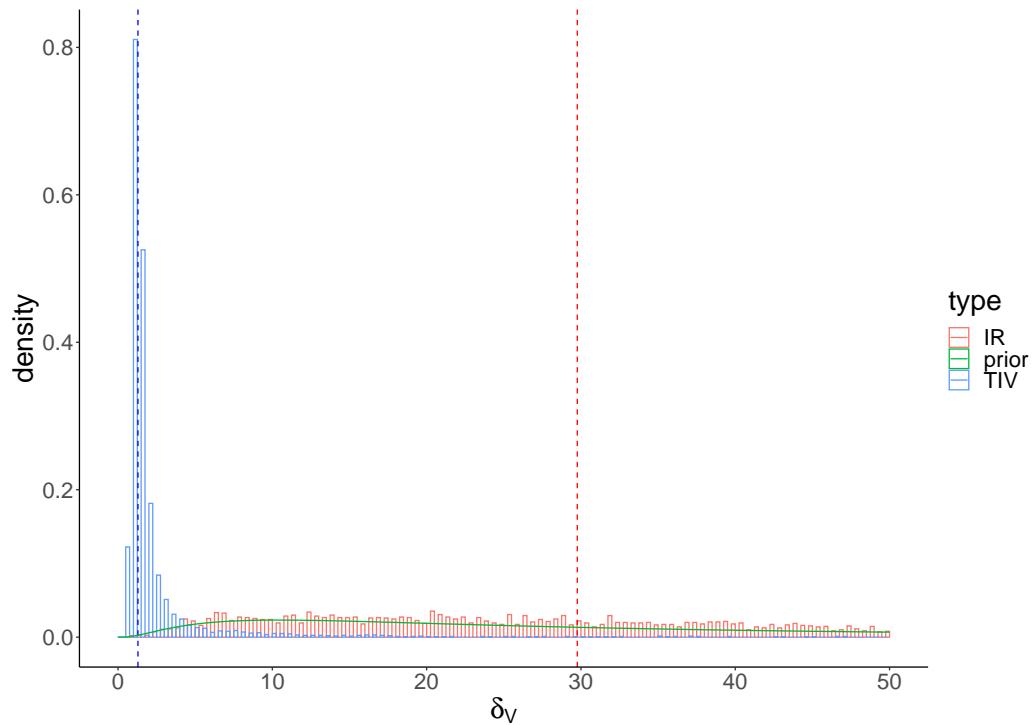


Figure 6: The prior (green) and posterior distributions of δ_V in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.



Figure 7: The prior (green) and posterior distributions of $\log(s)$ in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

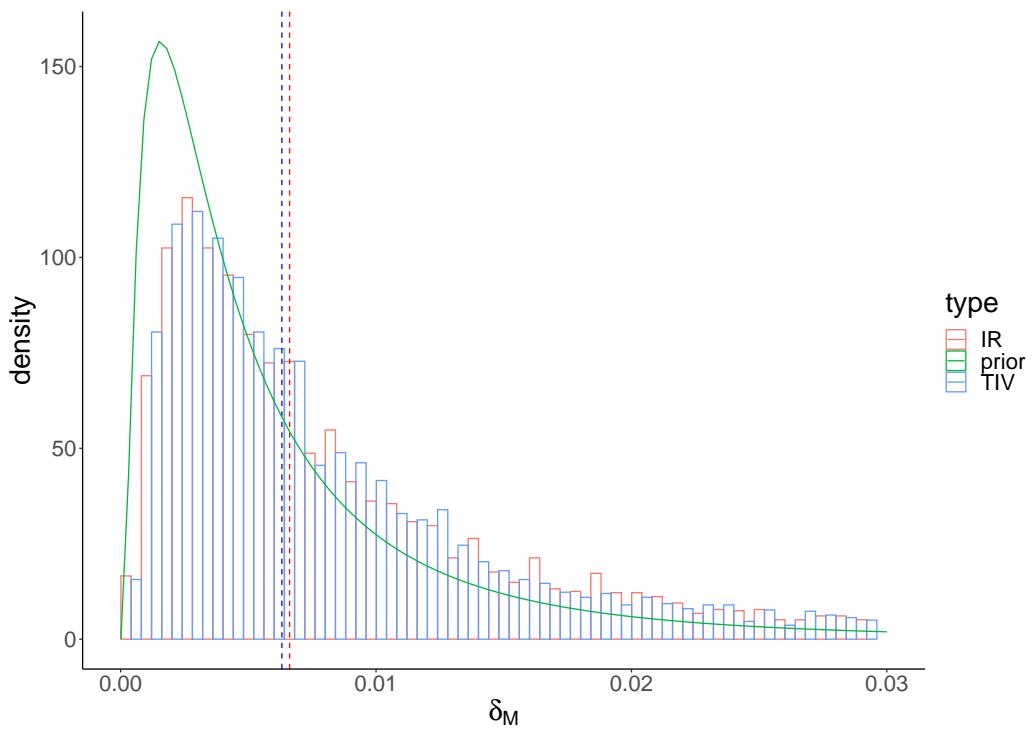


Figure 8: The prior (green) and posterior distributions of δ_M in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

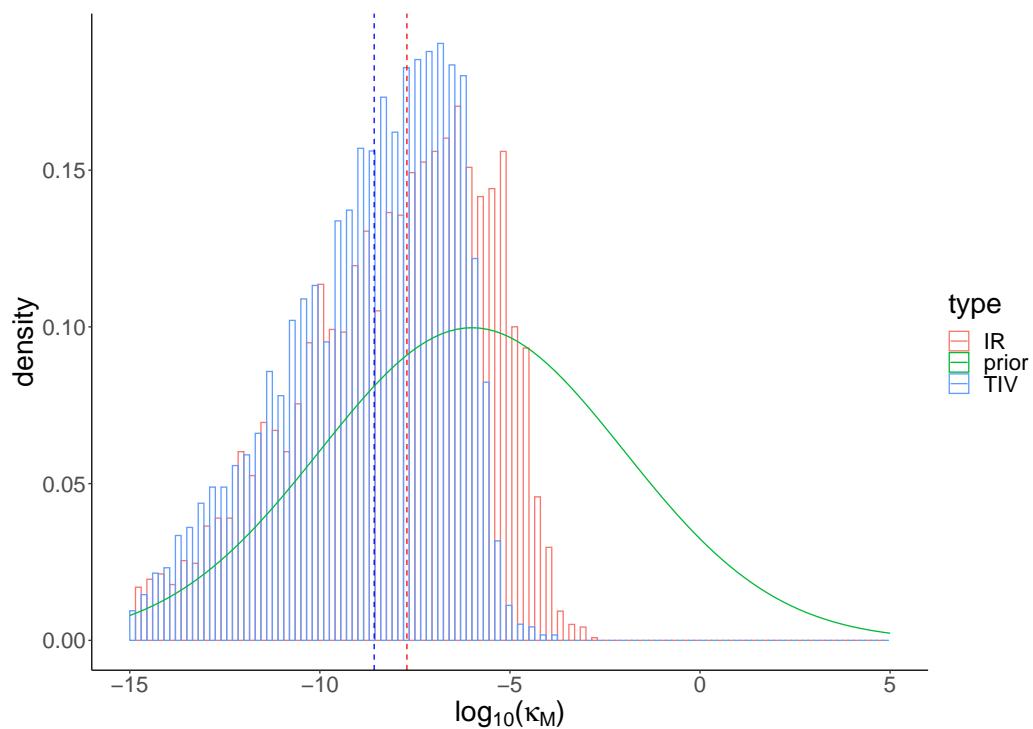


Figure 9: The prior (green) and posterior distributions of $\log_{10}(\kappa_M)$ in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.



Figure 10: The prior (green) and posterior distributions of ϕ in TIV (blue) and IR (red) models. Dashed lines indicate the posterior-median estimates. A detailed prior distribution see Table 1 in Supplementary Materials.

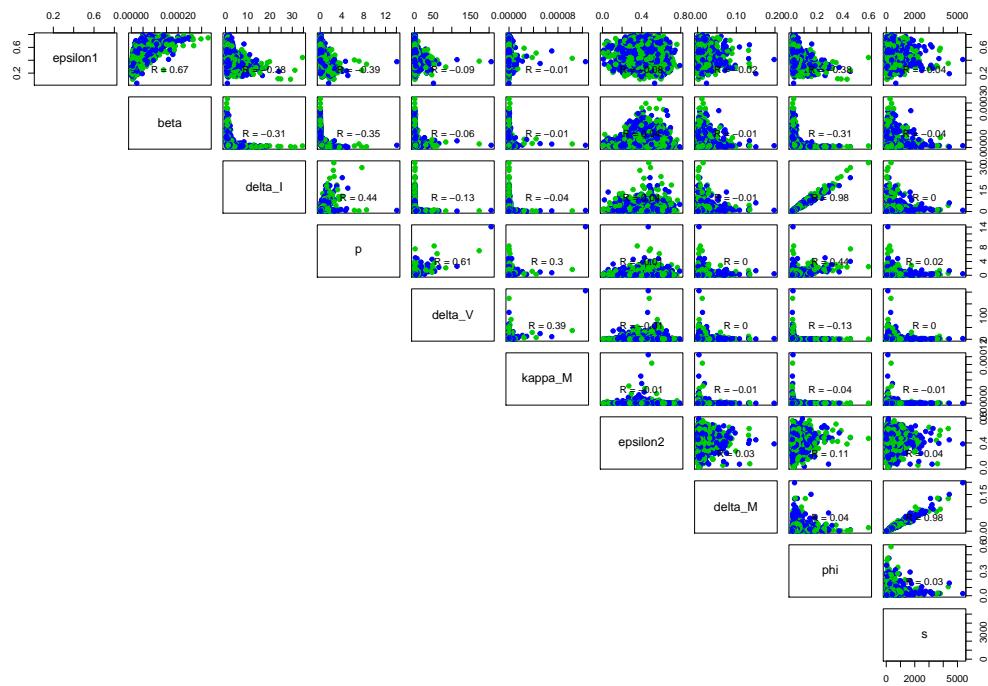


Figure 11: The correlation map of the estimated parameters for the TIV model.

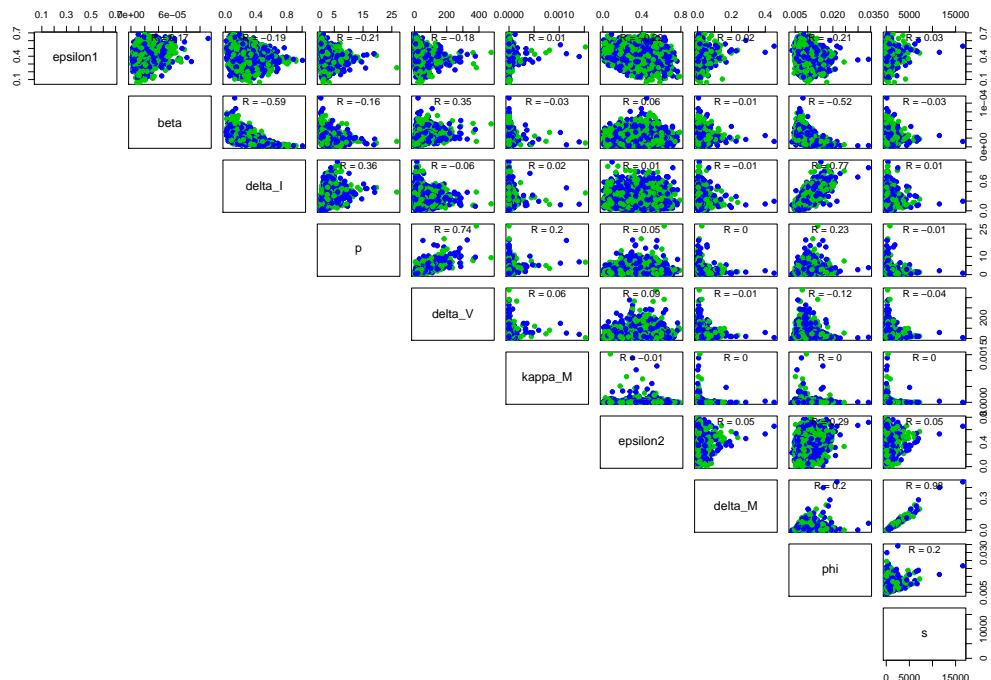


Figure 12: The correlation map of the estimated parameters for the IR model.

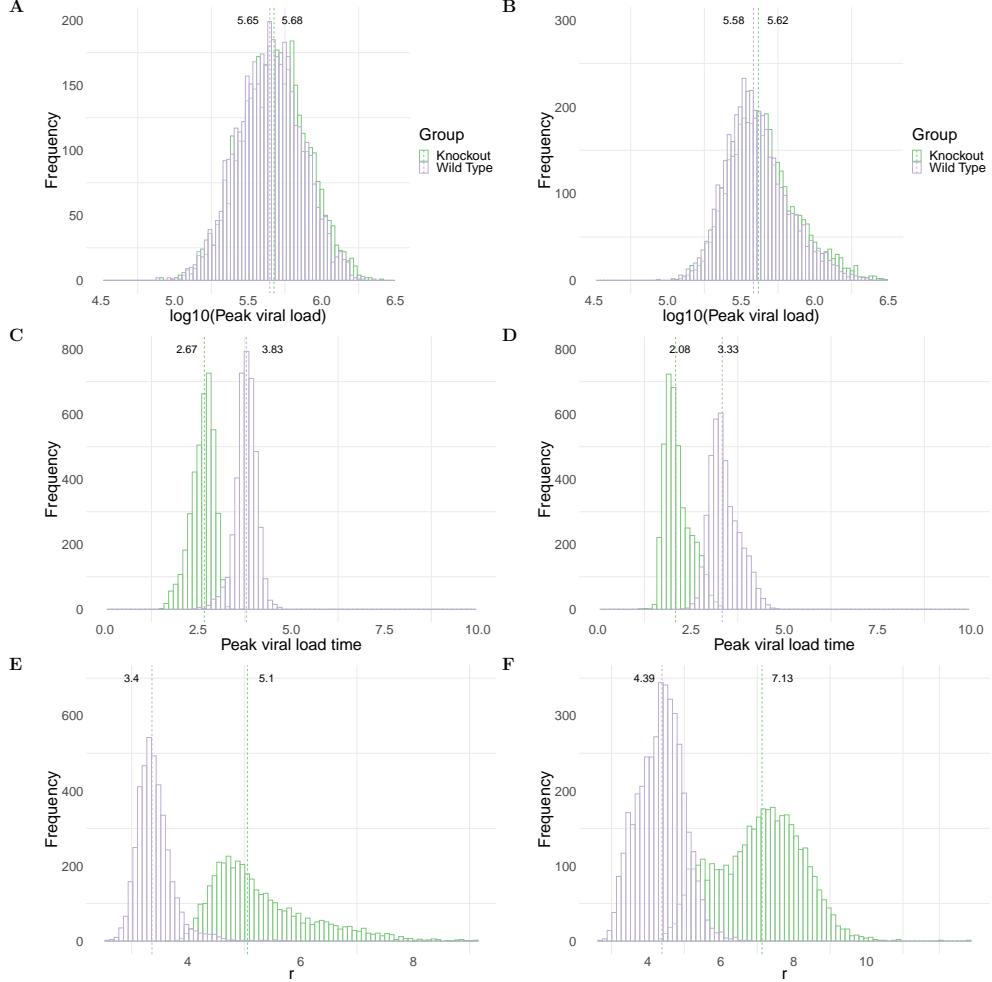


Figure 13: Comparison of model predictions for key biological quantities. The distribution of the quantities is calculated using 4000 joint posterior distributions through model calibration. Panels A and B show the distribution of $\log_{10}(\text{peak viral load})$ in wildtype (purple) and MUC1-knockout (green) group in TIV (left panel) and IR models (right panel), respectively. Panels C and D show the distribution of peak viral load time in different mice groups in the two models. Panels E and F show the the initial growth rate of viral replication in the two models. The initial viral regrowth rate is given by $r = \frac{(-(\delta_I + \delta_V + \kappa_M M_0) + \sqrt{(\delta_I + \delta_V + \kappa_M M_0)^2 - 4(\delta_I(\delta_V + \kappa_M M_0) - \beta p T_0)})}{2}$, where M_0 and T_0 are initial number of epithelial cells and macrophages, respectively.

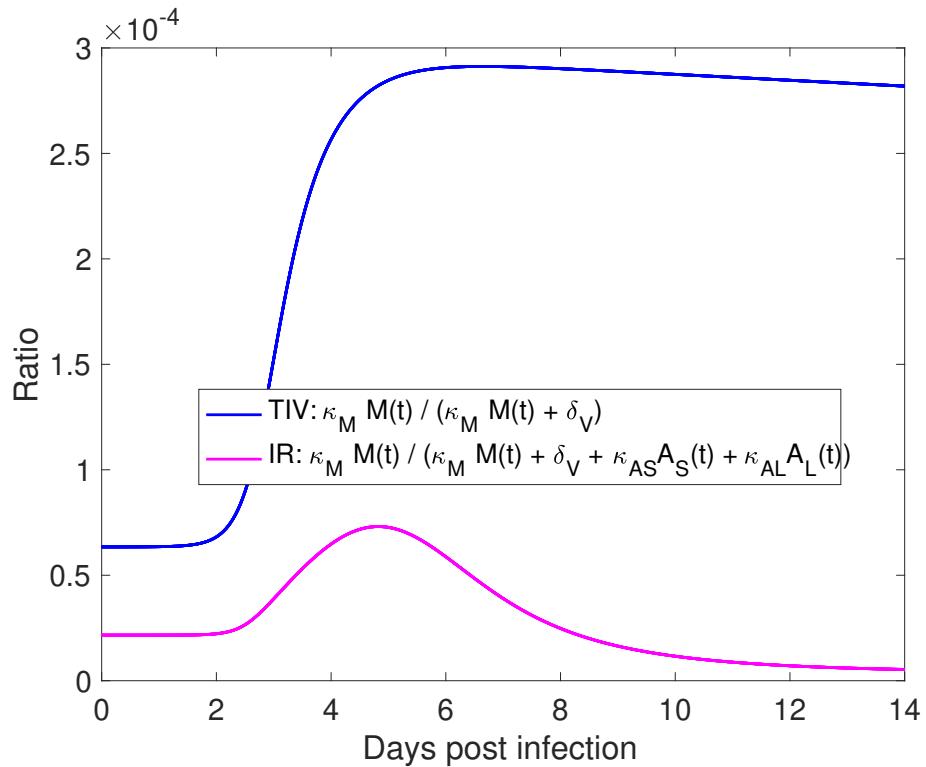


Figure 14: **Relative contribution of macrophage-mediated viral clearance in TIV and IR models.** We used posterior-median estimates of model parameters to compute the ratio shown in the legend in the TIV (blue line) and IR (purple line) models, respectively. The value of fixed model parameters used for simulation is given in Table 2 in Supplementary Materials.