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Abstract10

MUC1 belongs to the family of cell surface (cs-) mucins. Experimental ev-
idence indicates that its presence reduces in vivo influenza viral infection
severity. However, the mechanisms by which MUC1 influences viral dynam-
ics and the host immune response are not yet well understood, limiting our
ability to predict the efficacy of potential treatments that target MUC1.
To address this limitation, we utilize available in vivo kinetic data for both
virus and macrophage populations in wildtype and MUC1 knockout mice.
We apply two mathematical models of within-host influenza dynamics to
this data. The models differ in how they categorise the mechanisms of viral
control. Both models provide evidence that MUC1 reduces the susceptibility
of epithelial cells to influenza virus and regulates macrophage recruitment.
Furthermore, we predict and compare some key infection-related quantities
between the two mice groups. We find that MUC1 significantly reduces the
basic reproduction number of viral replication as well as the number of cu-
mulative macrophages but has little impact on the cumulative viral load.
Our analyses suggest that the viral replication rate in the early stages of
infection influences the kinetics of the host immune response, with conse-
quences for infection outcomes, such as severity. We also show that MUC1
plays a strong anti-inflammatory role in the regulation of the host immune
response. This study improves our understanding of the dynamic role of
MUC1 against influenza infection and may support the development of novel
antiviral treatments and immunomodulators that target MUC1.
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1. Introduction13

Influenza is a contagious respiratory disease. It remains as a major pub-14

lic health burden that affects and threatens millions of people each year [1].15

Influenza virus (IV) primarily attacks the epithelial cells that line the up-16

per respiratory tract (URT) of the host, causing an acute infection [2]. The17

host immune response has been shown to play an important role against in-18

fluenza infection [3, 4]. As part of the innate immune response, macrophages19

that reside in airways limit viral dissemination through phagocytosis of viral20

particles and prevent the virus from spreading to the lungs [5, 6]. Acti-21

vated macrophages produce inflammatory molecules, such as TNF-α, which22

stimulates recruitment of additional immune cells, such as monocyte-derived23

macrophages (MDMs) to the site of infection. These molecules also facilitate24

the activation of adaptive immune responses, such as maturation of B cells25

and effector CD8+ T cells [7]. Thus, macrophages play a critical role against26

influenza viral infection [8, 9, 10].27

However, recruited macrophages also amplify inflammation. Overstimu-28

lation of the host immune response can lead to pathology, indicating that29

there is a subtle balance between a protective and a destructive response30

[1, 11]. A dysregulated immune response, often marked by an excessive re-31

cruitment of macrophages to the site of infection and a high level of cytokine32

production, can lead to lung pathology, causing serious and sometimes fatal33

infection outcomes [12, 13, 14, 15].34

MUC1 belongs to the family of cell surface (cs-) mucin and is constitu-35

tively expressed at the surface of respiratory epithelial cells and macrophages,36

as reviewed in [16, 17, 18]. It has been shown to be capable of modulating37

cytokine production in vitro viral infection [19, 20, 21] and in vivo bacterial38

infection [22, 23]. More recently, McAuley and colleagues investigated the in39

vivo effects of MUC1 on influenza viral infection [24]. They first intranasally40

infected wildtype (WT) and MUC1-knockout (KO) mice with influenza A41

virus, then measured and compared the kinetic time-series data of viral load42

as well as different immune cells between the two groups. They found that the43

virus grows more quickly and reaches a peak earlier in MUC1-KO mice. Mice44

displayed a more enhanced inflammatory response, dominated by a higher45
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number of macrophages and a high level of cytokine production. Based on46

these observations, they hypothesised that MUC1 acts as physical barrier to47

prevent virus from infecting epithelial cells and contribute to regulation of48

the host immune response. However, the potential effects of MUC1 in vivo49

are poorly quantified, limiting our ability to predict the efficacy of potential50

treatments that target MUC1. To address this limitation, we incorporated51

the hypothesised effects of MUC1 into mathematical models of influenza viral52

dynamics and applied Bayesian inference to estimate key parameter values53

and provided new quantitative insight into the role of MUC1 in shaping54

influenza virus infection and the host immune response.55

Influenza viral dynamics models have been used to study many aspects56

of influenza infection and the host immune response, as reviewed in [25].57

Studies focusing on the immune system have used viral dynamics models to58

study various types of immunological data, sharpening to our understanding59

of the contribution of different immunological components to influenza viral60

infection [26, 27, 28].61

In this work, we utilize available in vivo kinetic data for both virus and62

macrophage populations in wildtype and MUC1 knockout mice. We analyse63

the data with two mathematical models of influenza viral dynamics under64

a Bayesian framework, quantifying the potential effects of cs-mucin MUC165

in influenza infection. The two models differ in how they categorise mech-66

anisms of viral control. We also use the data-calibrated models to evaluate67

and analyse the dependence of various infection-related quantities on MUC168

expression. Finally, we discuss the biological implications of our results.69

2. Results70

2.1. Model fitting71

In vivo viral load and macrophage data in WT and MUC1-KO mice72

were used in model fitting. We fitted a Target cell-Infected-cell-Virus (TIV)73

model (Eqs. 1–4 in Materials and Methods) and an Immune Response (IR)74

model (Eqs. 5–18) to the data, respectively. MUC1 has been suggested to75

prevent virus from infecting epithelial cells. It also has been implicated in the76

regulation of the host innate immune response, associated with macrophage77

recruitment [24]. As detailed in Materials and Methods, both models capture78

these effects. The reduction in susceptibility of target cells is captured by79

a parameter ε1, modulating viral infectivity to the target cells in dT/dt =80

(1−ε1)βTV (Eq. 1). The effect of the limitation of macrophage recruitment is81
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captured by a parameter ε2 and is modelled in dM/dt = s+(1−ε2)φI−δMM82

(Eq. 4). In the absence of MUC1 expression, e.g., in MUC1-KO mice, we set83

ε1 = ε2 = 0 to represent a complete knockout effect.84

The fitting results are shown in Fig. 1. The median of the posterior predic-85

tion (solid line) and a 95% predict interval (PI, shaded area) were computed86

from 4000 model simulation based upon 4000 samples from the posterior87

distribution of model parameters (provided in Supplementary Figures). The88

trend for both the viral kinetics (Figs. 1A and 1B) and macrophages dy-89

namics (Figs. 1C and 1D) is well captured by the median prediction in both90

models, suggesting that both models are able to explain the data. More-91

over, the narrow 95% PI indicates a relatively high certainty level for model92

predictions.93

2.2. Estimates of MUC1 parameters94

The marginal posterior densities for ε1 and ε2 provide insight into the95

role of MUC1. The median parameter estimates and their associated 95%96

credible intervals (CIs) are given in Table 1. The median estimate of the97

effect of MUC1 on reduction of viral infectivity (ε1) is 0.44 (95% CI: 0.2398

– 0.71) in the TIV model and 0.42 (95% CI: 0.22 – 0.58) in the IR model.99

Further, the estimated median values of MUC1 on regulation of macrophage100

recruitment (ε2) are 0.45 (95% CI: 0.18 – 0.64) and 0.38 (95% CI: 0.06 –101

0.63) in the TIV and IR models, respectively.102

The posterior-median estimates are qualitatively consistent between the103

two models. The results support the experimental hypothesis [24] and pro-104

vide quantitative evidence that the presence of MUC1 reduces viral infec-105

tivity to epithelial cells. They also provide evidence that MUC1 reduces106

macrophage recruitment and thus regulates the host innate immune response.107

Detailed posteriors of model parameters are provided in Supplementary108

Figures (SFigs. 1–10), and correlation maps of the estimated parameters for109

the TIV and IR models are given in SFigs. 11–12. There is a low correlation110

coefficient between ε1 and ε2 for the TIV (R = 0.08) and IR (R = −0.22)111

models, suggesting the two parameters have a weak relationship. In partic-112

ular, we found that the posterior-median estimate of the phagocytosis rate113

of virus by macrophages (κM) is approximately 10−8 for the TIV model, and114

the estimate is in agreement with the estimate for the IR model (SFig. 9).115

We used the median estimates of model parameters to compute the ratio of116

macrophage-mediated viral decay (κMM(t)) to overall viral decay rate in the117

TIV (κMM(t)+δV ) and IR (κMM(t)+δV +κASAS(t)+κALAL(t)) models as118
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Figure 1: Results of model fitting for WT and MUC1-KO mice. Data are presented
by solid circles. Panels A and B show the median of posterior predictions (solid line) and
a 95% prediction interval (shaded area) of viral load data for both TIV (red) and IR
(yellow) models for WT and MUC1-KO mice, respectively. Panels C and D show the
model predictions of macrophage data in the two models for WT and MUC1-KO mice,
respectively. The priors of model parameters are given in Supplementary Materials. The
posteriors of estimated model parameters are given in Supplementary Figures.

a time-series, respectively. We found that κMM(t) only has a minor contri-119

bution to viral clearance (SFig. 14). The result suggests that macrophages,120

although is important to maintain gas exchange in lungs and reduce infection121

severity, is not directly involved in limiting viral replication, as evidenced in122

[29, 30].123

2.3. Prediction of infection-related quantities124

Influenza pathogenesis is often associated with a high viral load and an125

overstimulated immune response [15]. In the absence of MUC1, mice showed126

a significantly high mortality rate [24]. Here, we use the 4000 joint posterior127
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Parameter Description Median (95% CI)
TIV IR

ε1

The effect of MUC1 on
reduction of target cell

susceptibility to infection
0.44 (0.23,0.71)

0.42 (0.22,
0.58)

ε2

The effect of MUC1 on
regulation of macrophage

recruitment
0.45 (0.18,0.64)

0.38 (0.06,
0.63)

Table 1: Estimates of MUC1 parameters and comparison between mod-
els. The estimates of the effects of MUC1 on reduction of target cell susceptibility
to influenza virus (ε1) and the effects of MUC1 on regulation of macrophage re-
cruitment (ε2). The lower and upper boundary of the 95% credible interval (CI) of
the parameter is given by calculating the 2.5% and 97.5% quantile of the marginal
posterior parameter distribution.

distributions to predict the impact of MUC1 on some key infection-related128

quantities that likely influence infection severity. We then compare these129

quantities between the two models.130

The basic reproduction number of viral replication (R0) is defined as the131

average number of secondary infected cells that are produced by an initially132

infected cell when the target cell population is not depleted and is fully133

susceptible [31]. An infection may be established only if R0 > 1. It is134

a critical indicator that quantifies how fast an infection is established and135

evolved.136

Fig. 2A and 2B show the R0 between WT and MUC1-KO groups in the137

TIV and IR models, respectively. Both models predict a significantly higher138

median value of R0 (dashed line) in the MUC1-KO group (20 in MUC1-KO139

group versus 11.1 in WT group for the TIV model, and 45.6 versus 26.4 for140

the IR model). The estimates of R0 are comparable to previous estimates141

from fitting viral dynamics models to viral kinetic data in humans [32] and142

mice [33].143

To assess the impact of MUC1 on viral dynamics, we compute the area un-144

der the viral load (without log-transformation) curve, which is often used as a145

marker for infectiousness (shown in Eq. 20 in Materials and Methods). Both146

the TIV (Fig. 2C) and IR (Fig. 2D) models predict very similar log10(AUCV )147

in WT and MUC1-KO mice. This implies that a paucity of MUC1 expres-148

sion has little, if any, effect on the cumulative viral load. This observation149
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Figure 2: Comparison of model predictions for selected key biological quan-
tities. Distributions are calculated using the 4000 joint posterior distributions. Panels
A and B show the distribution of the basic reproduction number of viral replication in
wildtype (purple) and MUC1-knockout (green) group in TIV (left panel) and IR models
(right panel), respectively. Panels C and D show the distribution of the cumulative viral
load in different mice groups in the two models. Panels E and F show the accumulative
macrophages in WT and MUC1-KO mice group in the two models.

is supported by data in [24] in which they found that MUC1-KO mice were150

still capable of clearing virus after day 7 post infection.151

An excessive accumulation of macrophages is considered as a hallmark for152
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severe infection, often observed in highly pathogenic influenza viral infection153

[14]. We use the area under the macrophage time-series curve (without log-154

transformation; Eq. 21 in Materials and Methods) as a surrogate for the155

strength of immune response stimulation and explore the dependence of the156

AUCM upon MUC1. As shown in Figs. 2E and 2F, both models predict a157

higher median value of log10(AUCM) in MUC1-KO mice compared to WT158

mice. This suggests that MUC1 reduces the accumulation of macrophages159

and thus contributes to the regulation of the host immune response.160

We also assessed the influence of MUC1 on peak viral load (SFigs. 13A161

and 13B in Supplementary Figures) and peak viral load time (SFigs. 13C and162

13D) for the two models. Both models predict that the presence of MUC1163

delays the time at which viral load peaks but only has a subtle influence on164

the magnitude of peak viral load, as evidenced in [24].165

In summary, both models predict a higher value of R0 (Figs. 2A and 2B)166

and increased macrophage accumulation (Figs. 2E and 2F) in the absence of167

MUC1 expression. The results emphasise the dual roles for MUC1 in reducing168

viral infectivity and limiting macrophage recruitment. Furthermore, they169

suggest that the absence of MUC1, while not driving a significant increase in170

cumulative viral load, facilitates viral replication and dissemination within171

the host in the early stages of infection. More epithelial cells are infected in a172

short time interval, heightening macrophage recruitment, likely contributing173

to lung pathology and providing an explanation for the heightened mortality174

rate in MUC1 KO mice.175

2.4. Delineation the effects of MUC1 on macrophage recruitment176

We have shown that the presence of MUC1 reduces AUCM (Fig. 2E and
2F), which may alleviate infection severity. The accumulation of macrophages
is not only directly impacted by the regulatory effect of MUC1, (i.e., ε2),
but is also indirectly affected by antigen levels, which are influenced by ε1
through modulating dynamics for infected cells (I). Here, we analyse the
relative contribution of the two effects of MUC1 on the AUCM . We use the
macrophage reduction efficiency, defined as the decrease in the area under
the macrophage curve in wild type mice (AUCM,WT ) relative to the AUC of
the macrophage curve in MUC1 knockout mice (AUCM,KO):

Macrophage Reduction Efficiency = 1 − AUCM,WT

AUCM,KO

,

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436891doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436891
http://creativecommons.org/licenses/by-nc-nd/4.0/


ε1

ε 2

0.2

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6 0.7

(0.44, 0.45)

0.1

0.2

0.3

0.4

0.5

0.6

0

1

2

3

0.00 0.25 0.50 0.75 1.00
ε1

de
ns

ity

0

1

2

3

0.00 0.25 0.50 0.75 1.00
ε2

de
ns

ity

Figure 3: Predicting the AUCM on the effects of MUC1 for the TIV model.The
upper panel shows the marginal posterior distribution of ε1 (left) and ε2 (right). Between
the two red-dashed lines indicates a 95% credible interval (CI) of the parameters, and
the red-solid line indicates parameters’ median value. The heatmap shows dependence of
macrophage reduction efficiency upon ε1 and ε2. The black circle indicates the pair of
median values of ε1 and ε2, and the arrow indicates the direction of the rate of change in
macrophage reduction efficiency at that point.

Fig. 3 shows the estimated marginal posterior density of ε1 and ε2 for the177

TIV model (top panel) and a heatmap of the dependence of macrophage178

reduction efficiency on ε1 and ε2 (bottom panel). The heatmap predicts the179

dependence of the macrophage reduction efficiency for various values of ε1180

and ε2 within the 95% CI. We observe that a higher ε1 or ε2 leads to a181

higher macrophage reduction level, suggesting that both effects contribute182

to reduce the accumulation of macrophages. However, the macrophage re-183

duction efficiency is notably more sensitive to changes in ε2. In particular,184

taking the median parameter values as a reasonable prediction point (black185

circle), the rate of change in the macrophage reduction efficiency is strongly186
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dependent on ε2 and only weakly dependent on ε1. (indicated by the ar-187

row line). This result suggests that the direct regulatory effect of MUC1 on188

macrophage recruitment has a dominant influence on the AUCM . We also189

assess the macrophage reduction efficiency as a function of ε1 and ε2 for the190

IR model. As shown in Fig. 4, the results are qualitatively consistent—the191

macrophage reduction efficiency is strongly influenced by ε2.192
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Figure 4: Predicting the AUCM on the effects of MUC1 for the IR model.The
upper panel shows the marginal posterior distribution of ε1 (left) and ε2 (right). Between
the two red-dashed lines indicates a 95% credible interval (CI) of the parameters, and
the red-solid line indicates parameters’ median value. The heatmap shows dependence of
macrophage reduction efficiency upon ε1 and ε2. The black circle indicates the pair of
median values of ε1 and ε2, and the arrow indicates the direction of the rate of change in
macrophage reduction efficiency at that point.

Both models predict a strong effect for ε2 and relatively small effect for193

ε1 on the AUCM . This is understood by recalling that the presence of MUC1194

does not significantly influence the cumulative viral load, as shown in Fig.195

2C and 2D. Thus, a change in the reduction of viral infectivity to target cells196
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(ε1) has only a minor effect on the AUCM . The results emphasise a strong197

regulatory effect of MUC1 on macrophage accumulation.198

3. Discussion199

In this work, we have studied the in vivo immunological effects of cs-mucin200

MUC1 in influenza viral infection. We incorporated the experimentally hy-201

pothesised roles of MUC1 into two mathematical models and fitted kinetic202

data of both virus and macrophage populations to the models in a Bayesian203

framework. Our estimation results (Table 1) provide evidence that MUC1204

reduces the susceptibility of epithelial cells to viral infection. They also pro-205

vided evidence that MUC1 limits the recruitment of macrophages and thus206

regulates the host immune response. Both models predict the influence of207

MUC1 on various infection-related quantities (Fig. 2). While the expression208

of MUC1 has little impact on the cumulative viral load (AUCV ), it delays209

viral infection by reducing the basic reproduction number of viral replication210

(Figs. 2A and 2B) and delaying viral load peak time (SFigs. 11C and 11D).211

More importantly, we found that the presence of MUC1 significantly reduces212

the accumulation of macrophages (Figs. 2E and 2F). The decreased level of213

macrophages is primarily driven by the direct regulatory effect (ε2) of MUC1214

on macrophage recruitment (Figs. 3 and 4).215

Our model-based analyses provide new insight into the mechanisms by216

which MUC1 influences viral dynamics and the host immune response. This217

is also the first study that we are aware of that provides quantitative estimates218

of the in vivo effects of cs-mucin MUC1 on influenza infection. Our analyses219

enhance our ability to predict the efficacy of potential treatments that target220

MUC1. Influenza pathogenesis is often marked by a high viral load, and221

infection of epithelial cells is a key determinant of the level of viral load222

[34, 15, 11]. MUC1 is rapidly stimulated at the surface of epithelial cells and223

macrophages upon infection, and is thought to act as a “releasable decoy”,224

preventing virus from attaching and infecting the cells, thereby reducing viral225

infectivity [17]. Regardless of the specific mechanism, our model predictions226

suggest that MUC1 only effectively reduce R0 (Fig. 2 and 2B) but not the227

AUCV (Fig. 2C and 2D). The biological implications of this are two-fold.228

Firstly, MUC1, as part of the innate immune response, has been shown to229

be rapidly upregulated within a few hours post in vitro infection [21]. The230

decreased R0 suggests that MUC1 expression contributes to limit and delay231

viral infection, and more importantly, to prevent viral dissemination within232

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436891doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436891
http://creativecommons.org/licenses/by-nc-nd/4.0/


the host. This provides strong protection to the host and reduce infection233

severity. Viral spread to the lower respiratory tract (LRT) is known to cause234

complications, leading to more severe infection outcomes [34]. Secondly, the235

comparable AUCV between WT and MUC1-KO group implies that a lack of236

cs-mucin MUC1 protection have a subtle influence on other immunological237

components that are responsible for viral clearance, such as the host adaptive238

immune response. This may be partially supported in [24], where MUC1-239

KO mice were shown to clear virus from the lungs at day 7 post infection.240

A more comprehensive dataset that captures the dynamics of antibodies or241

effector CD8+ T cells would greatly improve our understanding of the impact242

on MUC1 to the adaptive immune response.243

Beyond these virological indicator, viral pathogenesis is also associated244

with the strength of the host immune response induced by influenza infection.245

An excessive recruitment of macrophages to the site of infection is a hallmark246

of overstimulated immune responses [34, 14]. The anti-inflammatory role of247

MUC1 has been shown to inhibit activation of Toll-like receptors (TLRs) in248

macrophages and infected cells [24]. In MUC1-KO mice, our models pre-249

dicted a significantly enhanced level of AUCM (Fig. 2E and 2F), which may250

reflect the high mortality rate in the group. This finding emphasises the im-251

portance of quantities related to the immune response, which can be critical252

indicators for predicting the severity of infection and facilitating the assess-253

ment of antiviral therapies, as suggested in [34, 35]. Further, we have shown254

that the decreased AUCM is primarily due to the direct regulatory effect of255

MUC1 on macrophages (i.e., ε2), which highlights a strong anti-inflammatory256

effect for MUC1. This may support the development of novel immunomod-257

ulators that target cs-mucin MUC1.258

In conducting this study, we applied two mathematical models to the ki-259

netic data. The models models differ in how they model adaptive immunity.260

We compared the key estimation results of MUC1’s effects and model pre-261

dictions of infection-related quantities between the two models. We found262

that both models fit the in vivo viral load and macrophage data well (Fig.263

1), giving comparable parameter estimates and consistent biological insights.264

One of the most important applications of viral dynamic models is to es-265

timate key kinetic parameters, as reviewed in [25]. Model selection for data266

fitting is an important but unresolved challenge in influenza dynamics mod-267

elling due to limited time-series data on numerous quantities of interested.268

Parameter estimates vary substantially between different studies, and the269

predictive power of any given model is influenced by the selection of model270
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components, as showed in previous work by our group [27, 35] and others271

[36]. In our study, there are advantages and disadvantages in applying the272

TIV and IR models. Due to its simple model structure, the TIV model is273

more computationally efficient. But its lack of a detailed characterisation274

of adaptive immunity makes the model difficult to use to explore potential275

interactions between different immunological components, e.g., interactions276

between macrophages and CD8+ T cells. The IR model, on the other hand,277

is more computationally intensive and has far more parameters to either es-278

timate or determine from the literature. However, it is more suitable for279

explaining in vivo kinetic viral load data to which adaptive immunity has280

been shown to have an influence. It also provides a platform to study more281

complicated virus-immunity dynamics and interaction between different com-282

ponents of immune responses.283

Neither the TIV nor IR models consider the full spectrum of host im-284

mune response which are known to contribute to viral control and that have285

been included in other modelling works, e.g., interferon dynamics [27, 28].286

Regardless, we argue our two models are sufficient for this study in which we287

focus on the influence of MUC1 on viral dynamics and macrophage kinet-288

ics, which are both explicitly considered in the models. Furthermore, there289

is no evidence to suggest that MUC1 has an impact on the adaptive im-290

mune response. Combined with the observation that MUC1-KO mice clear291

virus after day 7 post infection [24], the effects of MUC1 may be minimally292

influenced by the detailed dynamics of adaptive immunity.293

Our study has some limitations. We only incorporated the two hypothe-294

sised effects of cs-mucin MUC1 on influenza viral infection into our mathe-295

matical models, but did not consider the detailed dynamics of MUC1 itself296

due to a lack of MUC1 kinetic data. As a result, the critical timing at which297

MUC1 starts to take effect has not been estimated. This could be an im-298

portant factor that influences disease severity [17]. In future work, explicitly299

modelling the time dependent MUC1 effects would be of interest given avail-300

ability of time-series data of MUC1 expression. Another limitation is that301

we assumed a fixed adaptive immune response, such that the adaptive im-302

mune responses dominate viral clearance at day 5 post infection regardless303

of MUC1 expression [27, 37]. Though there is no evidence so far that MUC1304

would affect the magnitude and/or timing of the adaptive immune response,305

extension of the IR model to allow for such an effect may be of interest.306
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4. Materials and Methods307

4.1. Mathematical Models308

In this study, we considered two mathematical models that are often309

used to study within-host influenza dynamics, but which differ in how they310

categorise the mechanisms of viral control.311

4.1.1. The TIV model312

The Target cell-Infected cell-Virus (TIV) model depicts a simple but fun-
damental interaction between target cells and influenza virus, as originally
presented in [32]. To estimate the in vivo impacts of MUC1, we incorpo-
rate the two hypothesised effects of MUC1 on viral infectivity and innate
immune responses into the TIV model. We also consider a component of
macrophage dynamics and critical interactions between macrophages and
virus. The model is described by a set of ordinary differential equations
(ODEs):

dT

dt
= gT

(
1 − T + I

Tmax

)
− (1 − ε1)βTV, (1)

dI

dt
= (1 − ε1)βTV − δII, (2)

dV

dt
= pI − δV V − κMMV, (3)

dM

dt
= s+ (1 − ε2)φI − δMM. (4)

Eqs. 1–3 describe the interaction between virus and epithelial cells. In313

detail, epithelial cells (T ), the target cells for influenza virus, are infected314

with virus (V ) and become infected cells (I) at an infectivity rate βV per315

day. Target cells are replenished at a rate gT (1− (T + I)/Tmax), where Tmax316

is the maximal number of epithelial cells that line the upper respiratory317

tract (URT). The infectivity rate is modified by MUC1, parameterised by ε1.318

Infected cells produce free virus at a rate p per day. Apoptosis occurs at a319

rate δI per day. The decrease of free virus is either due to natural decay at320

a constant rate δV per day, or internalisation by macrophages (M) at a rate321

κMM .322

Eq. 4 models the dynamics of macrophages. We assume a constant sup-323

plementary rate and a decay rate of macrophages at s and δM per day,324

respectively. Upon infection, monocytes are recruited from peripheral blood325
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to the site of infection and become monocyte-derived macrophages (MDMs)326

in the presence of cytokines. We assume the recruitment rate is proportional327

to the level of infected cells, φI, as infected cells contribute to cytokines pro-328

duction. The cs-mucin MUC1 regulates the recruitment rate of macrophages,329

parameterised by ε2.330

4.1.2. The IR model331

The immune response (IR) model is based on the TIV model and includes
a detailed adaptive immune response, which contributes to viral clearance
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over a distinct timescale [28]. The model is formulated by a system of ODEs:

dT

dt
= gT

(
1 − T + I

Tmax

)
− (1 − ε1)βTV, (5)

dI

dt
= (1 − ε1)βTV − δII − κEEI, (6)

dV

dt
= pI − δV V − κMMV − κASASV − κALALV, (7)

dM

dt
= s+ (1 − ε2)φI − δMM, (8)

dE0

dt
= −γE

V

V + E50

E0, (9)

dE1

dt
= γE

V

V + E50

E0 −
nE
τE
E1, (10)

dEi
dt

=
nE
τE

(Ei−1 − Ei), i = 2, ..., nE (11)

dE

dt
= φE

nE
τE
EnE

− δEE, (12)

dB0

dt
= −γB

V

V +B50

B0, (13)

dB1

dt
= γB

V

V +B50

B0 −
nB
τB
B1, (14)

dBi

dt
=
nB
τB

(Bi−1 −Bi), i = 2, ..., nB (15)

dP

dt
= φp

nB
τB
BnB

− δpP, (16)

dAS
dt

= µSP − δASAS, (17)

dAL
dt

= µLP − δALAL. (18)

Eqs. 5–8 retain the skeleton of the TIV model, describing the essential332

target cell-virus dynamics, except for additional components in dI/dt and333

dV/dt related to adaptive immune responses. κEE in Eq. 6 represents the334

rate of infected cells lysis by effector CD8+ T cells. The extra terms κASAS335

and κLSAL in Eq. 7 represent virus clearance mediated by a short-lived (AS,336

e.g., IgM) and a long-lasting antibody (AL, e.g., IgG), respectively.337

Eqs. 9–12 describe a major component of the cellular adaptive immune338
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response mediated by CD8+ T cells. Näıve CD8+ T cells (E0) initiate prolif-339

eration and differentiate into effector cells E1 upon stimulation via antigen-340

presentation at a rate γEV/(V + E50), where γE is the maximal stimulation341

rate, and E50 is a half saturation level at which half of the stimulation rate is342

obtained (as shown in Eq. 9). Effector cells E1 perform programmed prolif-343

eration to Ei where i denotes proliferation stages (Eqs. 10 – 11) for τE days,344

experience through nE stages [38], finally becoming mature effector cytotoxic345

T lymphocytes (E) at a rate φE at the final stage. The decay rate of E is346

δE, as shown in Eq. 12.347

Similarly, the dynamics of the humoral adaptive immune response are348

described by Eqs. 13–16. Näıve B cells (B0) start to proliferate and differen-349

tiate into plasma cells (B1) once stimulated by virus at a rate γBV/(V +B50),350

where γB is the maximal stimulation rate and B50 is a half-saturation level,351

as shown in Eq. 13. Eqs. 14–15 capture how plasma cells (B1) undergo352

programmed proliferation through nB stages into Bi, where i denotes prolif-353

eration stages, for τB days [38]. Finally, mature plasma cells P (Eq. 16) are354

produced at a rate φB and decay at a rate δp.355

Eqs. 17–18 describe the dynamics of a short-lived antibody (AS) and a356

long-lived antibody (AL). AS and AL are produced by plasma cells (P ) at357

rates µS and µL and decay at rates δAS and δAL, respectively.358

4.2. Statistical Inference359

We extracted the kinetic data of both virus and macrophage population in360

wild type (WT) and MUC1 knockout mice using WebPlotDigitizer (version361

4.4) from [24]. In the study, groups of wild type and MUC1-KO mice were362

intranasally infected with influenza A virus (PR8). There were 5 mice in each363

group. We assumed the variability of virus and macrophage data between364

different mice within the same group was due to measurement error, so that365

the data from different mice were pooled together for analysis.366

We took a Bayesian inference approach to fit the TIV and IR model (de-367

tailed in Model) to the log-transformed kinetic data. In detail, our model368

has 10 parameters to estimate, and the parameter space is denoted as Φ =369

(ε1, β, δI , p, δV , s, δM , ε2, κM , φ). Upon calibrating the IR model, we fixed all370

parameters of the adaptive immune responses (e.g., all parameters in Eqs.371

9–18) to previous estimated values in literature [27, 38]. We fixed the param-372

eters because estimating the immunological effects of adaptive immunity is373

not a focus of this study, [24] does not provide sufficient data for estimation374
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of these parameters. We chose parameter values such that the adaptive im-375

mune response became active five days post-infection. The fixed parameter376

values are given in Table 2 in Supplementary Materials.377

Further, we assumed WT and MUC1-KO mice only differ in ε1 and ε2,378

a reasonable assumption given inbred mice and use of the same virus for379

all experiment. We fitted log-transformed WT and MUC1-KO data simul-380

taneously to the models with the same parameter vector set, only differing381

except for ε1 and ε2, which were set to ε1 = ε2 = 0 for MUC1-KO mice. The382

prior distribution for model parameters (Φ) is given in Table 1 in Supplemen-383

tary Materials. The distribution of the observed log-transformed viral load384

and macrophage measurement is assumed to be a normal distribution with385

a mean value given by the model simulation results and standard deviation386

(SD) parameter with prior distribution of a normal distribution with a mean387

of 0 and a SD of 1.388

Model fitting was performed in R (version 4.0.2) and Stan (Rstan 2.21.0).389

Hamiltonian Monte Carlo (HMC) optimized by the No-U-Turn Sampler (NUTS)390

[39] was implemented to draw samples from the joint posterior distribution391

of the model parameters. A detailed theoretical foundation of HMC can be392

found in [40]. In particular, we used four chains with different starting points393

and ran 2000 iterations for each chain, discarding the first 1000 iterations as394

burn-in. We retained 4000 samples in total from 4 chains (1000 for each)395

after the burn-in iterations. The marginal posterior and prior density for396

all parameters are shown in Supplementary Materials. We calculated the397

median and quantiles of 2.5% and 97.5% of the 4000 model outputs at each398

time for posterior prediction and a 95% prediction interval (PI), respectively399

(e.g., Fig. 2).400

4.3. Infection-related quantities401

The basic reproduction number of viral replication (R0) is given by

R0 =
(1 − ε1)βT0V

δI(δV + κMM0)
, (19)

where T0 is the initial number of epithelial cells, and M0 is the number of
macrophages in a disease-free equilibrium, given by s/δM . Note that ε1 = 0
in MUC1-KO group. The area under the viral load time-series curve (AUCV )
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and under the macrophage time-series curve (AUCM) are given by

AUCV =

∫ τ

0

V (t)dt, (20)

AUCM =

∫ τ

0

M(t)dt, (21)

where τ is a cut-off day for calculation. We set τ = 14, which covers the402

duration of viral infection, macrophage dynamics and clinical dynamics in403

[24]. V (t) and M(t) are simulated time series of viral load and macrophages,404

respectively.405

The estimates of the infection-related quantities were computed using406

the 4000 posterior samples by solving the ode solver ode15s in MATLAB407

R2019b with a relative tolerance of 1 × 10−5 and an absolute tolerance of408

1 × 10−10. The initial values for different model components in the TIV409

model is (T, I, V,M) = (1 × 107, 0, 30, s/δM), where s and δM are esti-410

mated from fitting the macrophage data to the model. For the IR model,411

the initial values were (T, I, V,M,E0, E1. . . E,B0, B1. . . P, AS, AL) = (1 ×412

107, 0, 30, s/δM , 100, 0, . . . 0, 100, 0, . . . 0, 0, 0). The values of fixed parameters413

are given in Supplementary Materials (Table 2). All visualization was per-414

formed in R (version 4.0.2). Computer codes to produce all the figures in415

this study can be found at https://github.com/keli5734/MUC1.416
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Supplementary Figures
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Figure 1: The prior (green) and posterior distributions of ε1 in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 2: The prior (green) and posterior distributions of ε2 in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 3: The prior (green) and posterior distributions of log10(β) in TIV
(blue) and IR (red) models. Dashed lines indicate the posterior-median esti-
mates. A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 4: The prior (green) and posterior distributions of log10(p) in TIV
(blue) and IR (red) models. Dashed lines indicate the posterior-median esti-
mates. A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 5: The prior (green) and posterior distributions of δI in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 6: The prior (green) and posterior distributions of δV in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 7: The prior (green) and posterior distributions of log(s) in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 8: The prior (green) and posterior distributions of δM in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 9: The prior (green) and posterior distributions of log10(κM) in TIV
(blue) and IR (red) models. Dashed lines indicate the posterior-median esti-
mates. A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 10: The prior (green) and posterior distributions of φ in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 11: The correlation map of the estimated parameters for the TIV
model.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436891doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436891
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.1 0.3 0.5 0.7

0.
1

0.
4

0.
7

epsilon1

0e+00 6e−05

R = 0.17

beta

0.0 0.4 0.8

R = −0.19

R = −0.59

delta_I

0 5 15 25

R = −0.21

R = −0.16

R = 0.36

p

0 200 400

R = −0.18

R = 0.35

R = −0.06

R = 0.74

delta_V

0.0000 0.0010

R = 0.01

R = −0.03

R = 0.02

R = 0.2

R = 0.06

kappa_M

0.0 0.4 0.8

R = −0.22

R = 0.06

R = 0.01

R = 0.05

R = 0.09

R = −0.01

epsilon2

0.0 0.2 0.4

R = 0.02

R = −0.01

R = −0.01

R = 0

R = −0.01

R = 0

R = 0.05

delta_M

0.005 0.020 0.035

R = −0.21

R = −0.52

R = 0.77

R = 0.23

R = −0.12

R = 0

R = 0.29

R = 0.2

phi

0 5000 15000

0.
1

0.
4

0.
7

R = 0.03

0e
+

00
1e

−
04R = −0.03

0.
0

0.
6

R = 0.01

0
10

25R = −0.01

0
20

0

R = −0.04

0.
00

00
0.

00
15

R = 0

0.
0

0.
4

0.
8

R = 0.05

0.
0

0.
3

R = 0.98

0.
00

5
0.

03
0

R = 0.2

0 5000 15000

0
10

00
0

s

Figure 12: The correlation map of the estimated parameters for the IR model.
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Figure 13: Comparison of model predictions for key biological
quantities. The distribution of the quantities is calculated using 4000
joint posterior distributions through model calibration. Panels A and B
show the distribution of log10(peak viral load) in wildtype (purple) and
MUC1-knockout (green) group in TIV (left panel) and IR models (right
panel), respectively. Panels C and D show the distribution of peak vi-
ral load time in different mice groups in the two models. Panels E and
F show the the initial growth rate of viral replication in the two models.
The initial viral regrowth rate is given by r = (−(δI + δV + κMM0) +√

(δI + δV + κMM0)2 − 4(δI(δV + κMM0) − βpT0))/2, where M0 and T0 are
initial number of epithelial cells and macrophages, respectively.
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Figure 14: Relative contribution of macrophage-mediated viral
clearance in TIV and IR models. We used posterior-median estimates
of model parameters to compute the ratio shown in the legend in the TIV
(blue line) and IR (purple line) models, respectively. The value of fixed
model parameters used for simulation is given in Table 2 in Supplementary
Materials.
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