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10 Abstract

MUCT belongs to the family of cell surface (cs-) mucins. Experimental ev-
idence indicates that its presence reduces in wvivo influenza viral infection
severity. However, the mechanisms by which MUC1 influences viral dynam-
ics and the host immune response are not yet well understood, limiting our
ability to predict the efficacy of potential treatments that target MUCI.
To address this limitation, we utilize available in vivo kinetic data for both
virus and macrophage populations in wildtype and MUC1 knockout mice.
We apply two mathematical models of within-host influenza dynamics to
this data. The models differ in how they categorise the mechanisms of viral
control. Both models provide evidence that MUCI reduces the susceptibility
of epithelial cells to influenza virus and regulates macrophage recruitment.
Furthermore, we predict and compare some key infection-related quantities
between the two mice groups. We find that MUCI significantly reduces the
basic reproduction number of viral replication as well as the number of cu-
mulative macrophages but has little impact on the cumulative viral load.
Our analyses suggest that the viral replication rate in the early stages of
infection influences the kinetics of the host immune response, with conse-
quences for infection outcomes, such as severity. We also show that MUC1
plays a strong anti-inflammatory role in the regulation of the host immune
response. This study improves our understanding of the dynamic role of
MUCT1 against influenza infection and may support the development of novel
antiviral treatments and immunomodulators that target MUCT.
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13 1. Introduction

14 Influenza is a contagious respiratory disease. It remains as a major pub-
15 lic health burden that affects and threatens millions of people each year [1].
16 Influenza virus (IV) primarily attacks the epithelial cells that line the up-
17 per respiratory tract (URT) of the host, causing an acute infection [2]. The
18 host immune response has been shown to play an important role against in-
1o fluenza infection [3, 4]. As part of the innate immune response, macrophages
2 that reside in airways limit viral dissemination through phagocytosis of viral
2 particles and prevent the virus from spreading to the lungs [5, 6]. Acti-
2 vated macrophages produce inflammatory molecules, such as TNF-«, which
23 stimulates recruitment of additional immune cells, such as monocyte-derived
2« macrophages (MDMSs) to the site of infection. These molecules also facilitate
»s  the activation of adaptive immune responses, such as maturation of B cells
2 and effector CD8" T cells [7]. Thus, macrophages play a critical role against
z influenza viral infection [8, 9, 10].

28 However, recruited macrophages also amplify inflammation. Overstimu-
2 lation of the host immune response can lead to pathology, indicating that
s there is a subtle balance between a protective and a destructive response
a [1, 11]. A dysregulated immune response, often marked by an excessive re-
» cruitment of macrophages to the site of infection and a high level of cytokine
13 production, can lead to lung pathology, causing serious and sometimes fatal
s infection outcomes [12, 13, 14, 15].

35 MUCT1 belongs to the family of cell surface (cs-) mucin and is constitu-
s tively expressed at the surface of respiratory epithelial cells and macrophages,
w as reviewed in [16, 17, 18]. It has been shown to be capable of modulating
1 cytokine production in wvitro viral infection [19, 20, 21] and in vivo bacterial
» infection [22, 23]. More recently, McAuley and colleagues investigated the in
w0 vivo effects of MUCI on influenza viral infection [24]. They first intranasally
a infected wildtype (WT) and MUCI-knockout (KO) mice with influenza A
22 virus, then measured and compared the kinetic time-series data of viral load
i as well as different immune cells between the two groups. They found that the
s virus grows more quickly and reaches a peak earlier in MUC1-KO mice. Mice
s displayed a more enhanced inflammatory response, dominated by a higher
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s number of macrophages and a high level of cytokine production. Based on
s these observations, they hypothesised that MUC1 acts as physical barrier to
s prevent virus from infecting epithelial cells and contribute to regulation of
s the host immune response. However, the potential effects of MUC1 in vivo
so are poorly quantified, limiting our ability to predict the efficacy of potential
51 treatments that target MUC1. To address this limitation, we incorporated
s the hypothesised effects of MUC1 into mathematical models of influenza viral
53 dynamics and applied Bayesian inference to estimate key parameter values
s« and provided new quantitative insight into the role of MUCI in shaping
55 influenza virus infection and the host immune response.

56 Influenza viral dynamics models have been used to study many aspects
sv of influenza infection and the host immune response, as reviewed in [25].
ss  Studies focusing on the immune system have used viral dynamics models to
so study various types of immunological data, sharpening to our understanding
s of the contribution of different immunological components to influenza viral
s infection [26, 27, 28].

62 In this work, we utilize available in vivo kinetic data for both virus and
&3 macrophage populations in wildtype and MUC1 knockout mice. We analyse
o the data with two mathematical models of influenza viral dynamics under
s a Bayesian framework, quantifying the potential effects of cs-mucin MUC1
s in influenza infection. The two models differ in how they categorise mech-
ez anisms of viral control. We also use the data-calibrated models to evaluate
s¢ and analyse the dependence of various infection-related quantities on MUC1
o expression. Finally, we discuss the biological implications of our results.

o 2. Results

n 2.1. Model fitting

72 In wvivo viral load and macrophage data in WT and MUC1-KO mice
73 were used in model fitting. We fitted a Target cell-Infected-cell-Virus (TIV)
7« model (Egs. 1-4 in Materials and Methods) and an Immune Response (IR)
s model (Egs. 5-18) to the data, respectively. MUCI has been suggested to
7 prevent virus from infecting epithelial cells. It also has been implicated in the
77 regulation of the host innate immune response, associated with macrophage
7 recruitment [24]. As detailed in Materials and Methods, both models capture
7 these effects. The reduction in susceptibility of target cells is captured by
so a parameter €1, modulating viral infectivity to the target cells in dT'/dt =
s (1—e1)BTV (Eq. 1). The effect of the limitation of macrophage recruitment is

3
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2 captured by a parameter 5 and is modelled in dM /dt = s+ (1—¢e9)dI —p M
53 (Eq. 4). In the absence of MUCI expression, e.g., in MUCI1-KO mice, we set
s €1 = g9 = 0 to represent a complete knockout effect.

8 The fitting results are shown in Fig. 1. The median of the posterior predic-
ss tion (solid line) and a 95% predict interval (PI, shaded area) were computed
sz from 4000 model simulation based upon 4000 samples from the posterior
ss distribution of model parameters (provided in Supplementary Figures). The
o trend for both the viral kinetics (Figs. 1A and 1B) and macrophages dy-
o mnamics (Figs. 1C and 1D) is well captured by the median prediction in both
a1 models, suggesting that both models are able to explain the data. More-
» over, the narrow 95% PI indicates a relatively high certainty level for model
o3 predictions.

w 2.2. Estimates of MUC1 parameters

% The marginal posterior densities for €; and ¢y provide insight into the
o role of MUC1. The median parameter estimates and their associated 95%
o credible intervals (Cls) are given in Table 1. The median estimate of the
s effect of MUCI on reduction of viral infectivity (e1) is 0.44 (95% CI: 0.23
% — 0.71) in the TIV model and 0.42 (95% CI: 0.22 — 0.58) in the IR model.
w0 Further, the estimated median values of MUC1 on regulation of macrophage
101 recruitment (g9) are 0.45 (95% CI: 0.18 — 0.64) and 0.38 (95% CI: 0.06 —
102 0.63) in the TIV and IR models, respectively.

103 The posterior-median estimates are qualitatively consistent between the
s two models. The results support the experimental hypothesis [24] and pro-
s vide quantitative evidence that the presence of MUCI reduces viral infec-
ws tivity to epithelial cells. They also provide evidence that MUCI reduces
w7 macrophage recruitment and thus regulates the host innate immune response.
108 Detailed posteriors of model parameters are provided in Supplementary
s Figures (SFigs. 1-10), and correlation maps of the estimated parameters for
o the TIV and IR models are given in SFigs. 11-12. There is a low correlation
uw coefficient between e, and ey for the TIV (R = 0.08) and IR (R = —0.22)
n2  models, suggesting the two parameters have a weak relationship. In partic-
w3 ular, we found that the posterior-median estimate of the phagocytosis rate
s of virus by macrophages (/) is approximately 1078 for the TIV model, and
us  the estimate is in agreement with the estimate for the IR model (SFig. 9).
ue  We used the median estimates of model parameters to compute the ratio of
17 macrophage-mediated viral decay (kp; M (t)) to overall viral decay rate in the

us TIV (kpM(t)+6y) and IR (kayr M (t) 40y + kasAs(t) + karAL(t)) models as

4
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Figure 1: Results of model fitting for WT and MUC1-KO mice. Data are presented
by solid circles. Panels A and B show the median of posterior predictions (solid line) and
a 95% prediction interval (shaded area) of viral load data for both TIV (red) and IR
(yellow) models for WT and MUC1-KO mice, respectively. Panels C and D show the
model predictions of macrophage data in the two models for WT and MUC1-KO mice,
respectively. The priors of model parameters are given in Supplementary Materials. The
posteriors of estimated model parameters are given in Supplementary Figures.

ue  a time-series, respectively. We found that sy, M (¢) only has a minor contri-
120 bution to viral clearance (SFig. 14). The result suggests that macrophages,
21 although is important to maintain gas exchange in lungs and reduce infection

122 severity, is not directly involved in limiting viral replication, as evidenced in
s [29, 30].

124 2.83. Prediction of infection-related quantities

125 Influenza pathogenesis is often associated with a high viral load and an
1 overstimulated immune response [15]. In the absence of MUCI, mice showed
127 a significantly high mortality rate [24]. Here, we use the 4000 joint posterior
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Parameter Description Median (95% CI)
TIV IR
The effect of MUC1 on
€1 reduction of target cell 0.44 (0.23,0.71) 0'43 5(2’)22’
susceptibility to infection '
The effect of MUC1 on
€9 regulation of macrophage 0.45 (0.18,0.64) 0'33 égj%’
recruitment '

Table 1: Estimates of MUC1 parameters and comparison between mod-
els. The estimates of the effects of MUC1 on reduction of target cell susceptibility
to influenza virus (e1) and the effects of MUC1 on regulation of macrophage re-
cruitment (g2). The lower and upper boundary of the 95% credible interval (CI) of
the parameter is given by calculating the 2.5% and 97.5% quantile of the marginal
posterior parameter distribution.

s distributions to predict the impact of MUC1 on some key infection-related
120 quantities that likely influence infection severity. We then compare these
130 quantities between the two models.

131 The basic reproduction number of viral replication (Ry) is defined as the
12 average number of secondary infected cells that are produced by an initially
133 infected cell when the target cell population is not depleted and is fully
1 susceptible [31]. An infection may be established only if Ry > 1. It is
135 a critical indicator that quantifies how fast an infection is established and
136 evolved.

137 Fig. 2A and 2B show the Ry between WT and MUC1-KO groups in the
s TTV and IR models, respectively. Both models predict a significantly higher
10 median value of Ry (dashed line) in the MUC1-KO group (20 in MUC1-KO
o group versus 11.1 in WT group for the TIV model, and 45.6 versus 26.4 for
11 the IR model). The estimates of Ry are comparable to previous estimates
12 from fitting viral dynamics models to viral kinetic data in humans [32] and
143 Mice [33]

144 To assess the impact of MUCI1 on viral dynamics, we compute the area un-
s der the viral load (without log-transformation) curve, which is often used as a
us marker for infectiousness (shown in Eq. 20 in Materials and Methods). Both
w7 the TIV (Fig. 2C) and IR (Fig. 2D) models predict very similar log;,(AUCy)
us in WT and MUCI-KO mice. This implies that a paucity of MUC1 expres-
1o sion has little, if any, effect on the cumulative viral load. This observation


https://doi.org/10.1101/2021.03.25.436891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436891; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B
600 111 20,0 600 264 456
400 .40
2 2
S Group S Group
= Knockout = Knockout
) Wild Type o Wwild Type
[y [
200 200
0 0
0 25 50 75 100 0 25 50 75 100
Ro Ro
C D
400 739 4 L 400 737 | 141
300 300
> >
o o
f= =
S 200 g
= 3200
@ o
L <4
[y [y
100 100
0 0
6 7 8 9 6 7 8 9
10g10(AUCy) 10g10(AUCy)
E F
7.59 7.82
800 757 7.79 800
600 600
> >
o o
= c
E $ 400
3400 =3
@ 9]
L <4
[y [y
200 200
0 0
6.5 7.0 75 8.0 85 6.5 7.0 75 8.0 85
10g10(AUC) 10g10(AUC\)

Figure 2: Comparison of model predictions for selected key biological quan-
tities. Distributions are calculated using the 4000 joint posterior distributions. Panels
A and B show the distribution of the basic reproduction number of viral replication in
wildtype (purple) and MUC1-knockout (green) group in TIV (left panel) and IR models
(right panel), respectively. Panels C and D show the distribution of the cumulative viral
load in different mice groups in the two models. Panels E and F show the accumulative
macrophages in WT and MUC1-KO mice group in the two models.

150 is supported by data in [24] in which they found that MUC1-KO mice were
151 still capable of clearing virus after day 7 post infection.
152 An excessive accumulation of macrophages is considered as a hallmark for
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153 severe infection, often observed in highly pathogenic influenza viral infection
154 [14]. We use the area under the macrophage time-series curve (without log-
155 transformation; Eq. 21 in Materials and Methods) as a surrogate for the
156 strength of immune response stimulation and explore the dependence of the
157 AUC); upon MUC1. As shown in Figs. 2E and 2F, both models predict a
158 higher median value of log,,(AUC,,) in MUCI1-KO mice compared to WT
159 mice. This suggests that MUCI reduces the accumulation of macrophages
1o and thus contributes to the regulation of the host immune response.

161 We also assessed the influence of MUCI on peak viral load (SFigs. 13A
162 and 13B in Supplementary Figures) and peak viral load time (SFigs. 13C and
163 13D) for the two models. Both models predict that the presence of MUC1
14 delays the time at which viral load peaks but only has a subtle influence on
165 the magnitude of peak viral load, as evidenced in [24].

166 In summary, both models predict a higher value of Ry (Figs. 2A and 2B)
167 and increased macrophage accumulation (Figs. 2E and 2F) in the absence of
s MUCI expression. The results emphasise the dual roles for MUCT in reducing
1o viral infectivity and limiting macrophage recruitment. Furthermore, they
o suggest that the absence of MUCT1, while not driving a significant increase in
i cumulative viral load, facilitates viral replication and dissemination within
12 the host in the early stages of infection. More epithelial cells are infected in a
173 short time interval, heightening macrophage recruitment, likely contributing
s to lung pathology and providing an explanation for the heightened mortality
s rate in MUC1 KO mice.

we  2.4. Delineation the effects of MUCT on macrophage recruitment

We have shown that the presence of MUCI reduces AUC,, (Fig. 2E and
2F), which may alleviate infection severity. The accumulation of macrophages
is not only directly impacted by the regulatory effect of MUCI, (i.e., ),
but is also indirectly affected by antigen levels, which are influenced by &;
through modulating dynamics for infected cells (). Here, we analyse the
relative contribution of the two effects of MUC1 on the AUC;,;. We use the
macrophage reduction efficiency, defined as the decrease in the area under
the macrophage curve in wild type mice (AUCy; ) relative to the AUC of
the macrophage curve in MUC1 knockout mice (AUCy; k0):

AUCM,WT

Macrophage Reduction Efficiency = 1 — AUCy o’
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Figure 3: Predicting the AUC); on the effects of MUCI1 for the TIV model. The
upper panel shows the marginal posterior distribution of €1 (left) and eo (right). Between
the two red-dashed lines indicates a 95% credible interval (CI) of the parameters, and
the red-solid line indicates parameters’ median value. The heatmap shows dependence of
macrophage reduction efficiency upon €1 and 5. The black circle indicates the pair of
median values of €; and e5, and the arrow indicates the direction of the rate of change in
macrophage reduction efficiency at that point.

- Fig. 3 shows the estimated marginal posterior density of €; and &5 for the
s TIV model (top panel) and a heatmap of the dependence of macrophage
o reduction efficiency on €, and ey (bottom panel). The heatmap predicts the
1o dependence of the macrophage reduction efficiency for various values of &
11 and g9 within the 95% CI. We observe that a higher £; or g5 leads to a
122 higher macrophage reduction level, suggesting that both effects contribute
183 to reduce the accumulation of macrophages. However, the macrophage re-
1« duction efficiency is notably more sensitive to changes in 5. In particular,
155 taking the median parameter values as a reasonable prediction point (black
s circle), the rate of change in the macrophage reduction efficiency is strongly
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17 dependent on e9 and only weakly dependent on e;. (indicated by the ar-
s row line). This result suggests that the direct regulatory effect of MUCI on
189 macrophage recruitment has a dominant influence on the AUC,;. We also
w0 assess the macrophage reduction efficiency as a function of €; and g5 for the
1 IR model. As shown in Fig. 4, the results are qualitatively consistent—the
12 macrophage reduction efficiency is strongly influenced by es.
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Figure 4: Predicting the AUC,; on the effects of MUCI1 for the IR model.The
upper panel shows the marginal posterior distribution of £; (left) and €5 (right). Between
the two red-dashed lines indicates a 95% credible interval (CI) of the parameters, and
the red-solid line indicates parameters’ median value. The heatmap shows dependence of
macrophage reduction efficiency upon €7 and 5. The black circle indicates the pair of
median values of £; and &5, and the arrow indicates the direction of the rate of change in
macrophage reduction efficiency at that point.

193 Both models predict a strong effect for 9 and relatively small effect for
s €1 on the AUC),,. This is understood by recalling that the presence of MUC1
15 does not significantly influence the cumulative viral load, as shown in Fig.
w5 2C and 2D. Thus, a change in the reduction of viral infectivity to target cells

10
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w7 (1) has only a minor effect on the AUC,;. The results emphasise a strong
s regulatory effect of MUC1 on macrophage accumulation.

100 3. Discussion

200 In this work, we have studied the in vivo immunological effects of cs-mucin
20 MUCT in influenza viral infection. We incorporated the experimentally hy-
202 pothesised roles of MUCI1 into two mathematical models and fitted kinetic
203 data of both virus and macrophage populations to the models in a Bayesian
200 framework. Our estimation results (Table 1) provide evidence that MUC1
205 reduces the susceptibility of epithelial cells to viral infection. They also pro-
26 vided evidence that MUCI limits the recruitment of macrophages and thus
207 regulates the host immune response. Both models predict the influence of
20s  MUCI on various infection-related quantities (Fig. 2). While the expression
200 of MUCI has little impact on the cumulative viral load (AUCy), it delays
210 viral infection by reducing the basic reproduction number of viral replication
a1 (Figs. 2A and 2B) and delaying viral load peak time (SFigs. 11C and 11D).
212 More importantly, we found that the presence of MUC1 significantly reduces
23 the accumulation of macrophages (Figs. 2E and 2F). The decreased level of
24 macrophages is primarily driven by the direct regulatory effect (e2) of MUC1
25 on macrophage recruitment (Figs. 3 and 4).

216 Our model-based analyses provide new insight into the mechanisms by
217 which MUCT influences viral dynamics and the host immune response. This
218 18 also the first study that we are aware of that provides quantitative estimates
219 of the in vivo effects of cs-mucin MUCI on influenza infection. Our analyses
20 enhance our ability to predict the efficacy of potential treatments that target
21 MUCIL. Influenza pathogenesis is often marked by a high viral load, and
22 infection of epithelial cells is a key determinant of the level of viral load
23 [34, 15, 11]. MUCI is rapidly stimulated at the surface of epithelial cells and
24 macrophages upon infection, and is thought to act as a “releasable decoy”,
»s  preventing virus from attaching and infecting the cells, thereby reducing viral
26 infectivity [17]. Regardless of the specific mechanism, our model predictions
27 suggest that MUCI only effectively reduce Ry (Fig. 2 and 2B) but not the
»s AUCy (Fig. 2C and 2D). The biological implications of this are two-fold.
29 Firstly, MUCI, as part of the innate immune response, has been shown to
20 be rapidly upregulated within a few hours post in wvitro infection [21]. The
2 decreased Ry suggests that MUCT expression contributes to limit and delay
23 viral infection, and more importantly, to prevent viral dissemination within

11
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213 the host. This provides strong protection to the host and reduce infection
2 severity. Viral spread to the lower respiratory tract (LRT) is known to cause
25 complications, leading to more severe infection outcomes [34]. Secondly, the
26 comparable AUCy between WT and MUC1-KO group implies that a lack of
23 cs-mucin MUC]I protection have a subtle influence on other immunological
233 components that are responsible for viral clearance, such as the host adaptive
20 immune response. This may be partially supported in [24], where MUCI-
20 KO mice were shown to clear virus from the lungs at day 7 post infection.
2 A more comprehensive dataset that captures the dynamics of antibodies or
a2 effector CD8T T cells would greatly improve our understanding of the impact
23 on MUCI to the adaptive immune response.

244 Beyond these virological indicator, viral pathogenesis is also associated
25 with the strength of the host immune response induced by influenza infection.
a6 An excessive recruitment of macrophages to the site of infection is a hallmark
27 of overstimulated immune responses [34, 14]. The anti-inflammatory role of
2 MUCI has been shown to inhibit activation of Toll-like receptors (TLRs) in
20 macrophages and infected cells [24]. In MUCI-KO mice, our models pre-
20 dicted a significantly enhanced level of AUC), (Fig. 2E and 2F), which may
51 reflect the high mortality rate in the group. This finding emphasises the im-
»2  portance of quantities related to the immune response, which can be critical
3 indicators for predicting the severity of infection and facilitating the assess-
¢ ment of antiviral therapies, as suggested in [34, 35]. Further, we have shown
s that the decreased AUC), is primarily due to the direct regulatory effect of
6 MUCT on macrophages (i.e., £2), which highlights a strong anti-inflammatory
7 effect for MUC1. This may support the development of novel immunomod-
s ulators that target cs-mucin MUCI.

250 In conducting this study, we applied two mathematical models to the ki-
x%0 netic data. The models models differ in how they model adaptive immunity.
1 We compared the key estimation results of MUC1’s effects and model pre-
s dictions of infection-related quantities between the two models. We found
23 that both models fit the in vivo viral load and macrophage data well (Fig.
24 1), giving comparable parameter estimates and consistent biological insights.
265 One of the most important applications of viral dynamic models is to es-
%6 timate key kinetic parameters, as reviewed in [25]. Model selection for data
»7  fitting is an important but unresolved challenge in influenza dynamics mod-
x%s elling due to limited time-series data on numerous quantities of interested.
%0 Parameter estimates vary substantially between different studies, and the
a0 predictive power of any given model is influenced by the selection of model
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o1 components, as showed in previous work by our group [27, 35] and others
22 [36]. In our study, there are advantages and disadvantages in applying the
a3 TIV and IR models. Due to its simple model structure, the TIV model is
oz more computationally efficient. But its lack of a detailed characterisation
o5 of adaptive immunity makes the model difficult to use to explore potential
a6 interactions between different immunological components, e.g., interactions
o7 between macrophages and CD8" T cells. The IR model, on the other hand,
;s 1s more computationally intensive and has far more parameters to either es-
279 timate or determine from the literature. However, it is more suitable for
20 explaining n vivo kinetic viral load data to which adaptive immunity has
251 been shown to have an influence. It also provides a platform to study more
22 complicated virus-immunity dynamics and interaction between different com-
23 ponents of immune responses.

284 Neither the TIV nor IR models consider the full spectrum of host im-
255 mune response which are known to contribute to viral control and that have
26 been included in other modelling works, e.g., interferon dynamics [27, 28].
27 Regardless, we argue our two models are sufficient for this study in which we
s focus on the influence of MUCI on viral dynamics and macrophage kinet-
280 ics, which are both explicitly considered in the models. Furthermore, there
200 1S no evidence to suggest that MUC1 has an impact on the adaptive im-
21 mune response. Combined with the observation that MUC1-KO mice clear
202 virus after day 7 post infection [24], the effects of MUC1 may be minimally
203 influenced by the detailed dynamics of adaptive immunity.

204 Our study has some limitations. We only incorporated the two hypothe-
205 sised effects of cs-mucin MUC1 on influenza viral infection into our mathe-
206 matical models, but did not consider the detailed dynamics of MUCT itself
27 due to a lack of MUCI kinetic data. As a result, the critical timing at which
20s MUCI starts to take effect has not been estimated. This could be an im-
200 portant factor that influences disease severity [17]. In future work, explicitly
50 modelling the time dependent MUCT effects would be of interest given avail-
s ability of time-series data of MUC1 expression. Another limitation is that
;2 we assumed a fixed adaptive immune response, such that the adaptive im-
33 mune responses dominate viral clearance at day 5 post infection regardless
30 of MUCI expression [27, 37]. Though there is no evidence so far that MUC1
25 would affect the magnitude and/or timing of the adaptive immune response,
506 extension of the IR model to allow for such an effect may be of interest.
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s7 4. Materials and Methods

s 4.1. Mathematical Models

300 In this study, we considered two mathematical models that are often
s used to study within-host influenza dynamics, but which differ in how they
s categorise the mechanisms of viral control.

sie 4.1.1. The TIV model

The Target cell-Infected cell-Virus (TIV) model depicts a simple but fun-
damental interaction between target cells and influenza virus, as originally
presented in [32]. To estimate the in vivo impacts of MUCI, we incorpo-
rate the two hypothesised effects of MUC1 on viral infectivity and innate
immune responses into the TIV model. We also consider a component of
macrophage dynamics and critical interactions between macrophages and
virus. The model is described by a set of ordinary differential equations

(ODEs):
% = gT <1 — T:j) — (1 —=&1)BTV, (1)
% = (1—e1)BTV - &/, (2)
% =pl — vV — KMV, (3)
% = s+ (1 — ex)pl — oy M. (4)
313 Eqgs. 1-3 describe the interaction between virus and epithelial cells. In

se  detail, epithelial cells (7'), the target cells for influenza virus, are infected
us with virus (V') and become infected cells (1) at an infectivity rate SV per
ns  day. Target cells are replenished at a rate ¢g7'(1 — (T + 1) /T ez ), where Tap
a7 is the maximal number of epithelial cells that line the upper respiratory
as  tract (URT). The infectivity rate is modified by MUCI, parameterised by ;.
a9 Infected cells produce free virus at a rate p per day. Apoptosis occurs at a
»0 rate oy per day. The decrease of free virus is either due to natural decay at
= a constant rate dy per day, or internalisation by macrophages (M) at a rate
322 K MM .

323 Eq. 4 models the dynamics of macrophages. We assume a constant sup-
24 plementary rate and a decay rate of macrophages at s and d,; per day,
»s  respectively. Upon infection, monocytes are recruited from peripheral blood
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26 to the site of infection and become monocyte-derived macrophages (MDMs)
w7 in the presence of cytokines. We assume the recruitment rate is proportional
28 to the level of infected cells, ¢, as infected cells contribute to cytokines pro-
»9 duction. The cs-mucin MUCI regulates the recruitment rate of macrophages,
;30 parameterised by e,.

s 4.1.2. The IR model

The immune response (IR) model is based on the TIV model and includes
a detailed adaptive immune response, which contributes to viral clearance

15
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over a distinct timescale [28]. The model is formulated by a system of ODEs:

dT T+1
— =47 (1 — ) — (1 —&)pTV, (5)
dl
== (1 —)BTV —6;1 — kgEI, (6)
av
E :p[—(svv—/{MMV_/{ASASV_I{ALAL‘/v (7>
dM
= s+ (L—e)ol — M, (8)
dEy 14
— = —ypg—-—F 9
dt IYEV-J—EE)O o ¥
dE1 |4 ng

— _ -k 1
dt nyV_i_ESOEO TEE17 ( O)
dt T_];E(Ei-l —E), i=2,..,n5 (11)
dE ng
o~ 9p 7 Ene = 05E, (12)
dBy V
- Np—— R 13
dt 7BV-i-BE)o > )
dBl . \% np
it =PV By 0 -
it T_g(Bi_l —By), i=2,..,np (15)
dP n
It = Op j:BnB — 0P, (16)
dA
d_ts = psP — dasAs, (17)
dA
d_tL = MLP — 5ALAL' (18>

332 Eqgs. 5-8 retain the skeleton of the TTV model, describing the essential
;3 target cell-virus dynamics, except for additional components in dI/dt and
s dV/dt related to adaptive immune responses. kgkE in Eq. 6 represents the
135 rate of infected cells lysis by effector CD8T T cells. The extra terms xagAg
16 and kpgAyg in Eq. 7 represent virus clearance mediated by a short-lived (Ag,
s e.g., [gM) and a long-lasting antibody (Ayz, e.g., IgG), respectively.

338 Eqgs. 9-12 describe a major component of the cellular adaptive immune
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30 response mediated by CD8' T cells. Naive CD8" T cells (Ej) initiate prolif-
s eration and differentiate into effector cells £; upon stimulation via antigen-
a1 presentation at a rate ygV/(V + Eso), where vg is the maximal stimulation
w2 rate, and Exq is a half saturation level at which half of the stimulation rate is
.3 obtained (as shown in Eq. 9). Effector cells E; perform programmed prolif-
1 eration to E; where ¢ denotes proliferation stages (Eqs. 10 — 11) for 7z days,
1s experience through ng stages [38], finally becoming mature effector cytotoxic
1s T lymphocytes (E) at a rate ¢g at the final stage. The decay rate of E is
swr O0p, as shown in Eq. 12.

348 Similarly, the dynamics of the humoral adaptive immune response are
19 described by Eqs. 13—-16. Naive B cells (By) start to proliferate and differen-
30 tiate into plasma cells (B;) once stimulated by virus at a rate ygV/(V + Bs),
;51 where yp is the maximal stimulation rate and Bsg is a half-saturation level,
32 as shown in Eq. 13. Egs. 14-15 capture how plasma cells (B;) undergo
13 programmed proliferation through npg stages into B;, where ¢ denotes prolif-
3 eration stages, for 75 days [38]. Finally, mature plasma cells P (Eq. 16) are
355 produced at a rate ¢p and decay at a rate 9,,.

356 Eqgs. 17-18 describe the dynamics of a short-lived antibody (Ag) and a
37 long-lived antibody (Ap). Ags and Ay are produced by plasma cells (P) at
38 rates ug and g, and decay at rates d45 and d4y, respectively.

0 4.2. Statistical Inference

360 We extracted the kinetic data of both virus and macrophage population in
30 wild type (WT) and MUC1 knockout mice using WebPlotDigitizer (version
32 4.4) from [24]. In the study, groups of wild type and MUCI1-KO mice were
33 intranasally infected with influenza A virus (PRS8). There were 5 mice in each
s group. We assumed the variability of virus and macrophage data between
365 different mice within the same group was due to measurement error, so that
s the data from different mice were pooled together for analysis.

367 We took a Bayesian inference approach to fit the TIV and IR model (de-
s tailed in Model) to the log-transformed kinetic data. In detail, our model
0 has 10 parameters to estimate, and the parameter space is denoted as ¢ =
s (e1,05,01,p,0v,58,0n,E2, kar, @). Upon calibrating the IR model, we fixed all
s parameters of the adaptive immune responses (e.g., all parameters in Egs.
sz 9-18) to previous estimated values in literature [27, 38]. We fixed the param-
a3 eters because estimating the immunological effects of adaptive immunity is
s not a focus of this study, [24] does not provide sufficient data for estimation
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ss  of these parameters. We chose parameter values such that the adaptive im-
s mune response became active five days post-infection. The fixed parameter
sz values are given in Table 2 in Supplementary Materials.

378 Further, we assumed WT and MUC1-KO mice only differ in e; and &g,
;9 a reasonable assumption given inbred mice and use of the same virus for
s0  all experiment. We fitted log-transformed WT and MUC1-KO data simul-
;1 taneously to the models with the same parameter vector set, only differing
2 except for e and €5, which were set to e = €5 = 0 for MUC1-KO mice. The
se3 prior distribution for model parameters (®) is given in Table 1 in Supplemen-
s tary Materials. The distribution of the observed log-transformed viral load
s and macrophage measurement is assumed to be a normal distribution with
s a mean value given by the model simulation results and standard deviation
37 (SD) parameter with prior distribution of a normal distribution with a mean
;s of 0 and a SD of 1.

380 Model fitting was performed in R (version 4.0.2) and Stan (Rstan 2.21.0).
30 Hamiltonian Monte Carlo (HMC) optimized by the No-U-Turn Sampler (NUTS)
;1 [39] was implemented to draw samples from the joint posterior distribution
32 of the model parameters. A detailed theoretical foundation of HMC can be
23 found in [40]. In particular, we used four chains with different starting points
s+ and ran 2000 iterations for each chain, discarding the first 1000 iterations as
w5 burn-in. We retained 4000 samples in total from 4 chains (1000 for each)
w6 after the burn-in iterations. The marginal posterior and prior density for
s07  all parameters are shown in Supplementary Materials. We calculated the
59 median and quantiles of 2.5% and 97.5% of the 4000 model outputs at each
10 time for posterior prediction and a 95% prediction interval (PI), respectively
400 (e.g., Fig. 2).

w1 4.3. Infection-related quantities

The basic reproduction number of viral replication (Ry) is given by

RO . (1 — 51)BT0V

_ , 19
d1(0v + kM) (19)

where Tj is the initial number of epithelial cells, and M, is the number of
macrophages in a disease-free equilibrium, given by s/d,,. Note that e; =0
in MUC1-KO group. The area under the viral load time-series curve (AUCYy,)
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and under the macrophage time-series curve (AUCy,) are given by
AUCYy = / V(t)dt, (20)
0
AUCy = / M(t)dt, (21)
0

w2 where 7 is a cut-off day for calculation. We set 7 = 14, which covers the
w03 duration of viral infection, macrophage dynamics and clinical dynamics in
ws [24]. V(t) and M (t) are simulated time series of viral load and macrophages,
s respectively.

406 The estimates of the infection-related quantities were computed using
w7 the 4000 posterior samples by solving the ode solver odelbs in MATLAB
ws R2019b with a relative tolerance of 1 x 107° and an absolute tolerance of
wo 1 x 10719 The initial values for different model components in the TIV
a0 model is (T,1,V,M) = (1 x 107,0,30,s/d5), where s and d; are esti-
a1 mated from fitting the macrophage data to the model. For the IR model,
a2 the initial values were (T,1,V, M, Ey, E;...E, By, By...P,As, Ap) = (1 X
as 107,0,30,5/05,100,0,...0,100,0,...0,0,0). The values of fixed parameters
s are given in Supplementary Materials (Table 2). All visualization was per-
a5 formed in R (version 4.0.2). Computer codes to produce all the figures in
as  this study can be found at https://github.com/keli5734/MUC1.
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Figure 1: The prior (green) and posterior distributions of 1 in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 2: The prior (green) and posterior distributions of 5 in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.


https://doi.org/10.1101/2021.03.25.436891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436891; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1.5
= il type
@10 R
() (= prior
© =TIV

0.5 | I

I I T e ——

6 5 2 73 =2
log10(B)

Figure 3: The prior (green) and posterior distributions of log,,(5) in TIV
(blue) and IR (red) models. Dashed lines indicate the posterior-median esti-
mates. A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 4: The prior (green) and posterior distributions of log,,(p) in TIV
(blue) and IR (red) models. Dashed lines indicate the posterior-median esti-
mates. A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 5: The prior (green) and posterior distributions of §; in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 6: The prior (green) and posterior distributions of dy in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.


https://doi.org/10.1101/2021.03.25.436891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436891; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1.00 it

0.75 e
2 AT type
2 0.50 BV R
() A E L = prior
© 1! =TIV

0.25 ] it

o
=
N
w
IN
al

l0g10(S)

Figure 7: The prior (green) and posterior distributions of log(s) in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 8: The prior (green) and posterior distributions of d,; in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 9: The prior (green) and posterior distributions of log,,(kss) in TIV
(blue) and IR (red) models. Dashed lines indicate the posterior-median esti-
mates. A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 10: The prior (green) and posterior distributions of ¢ in TIV (blue)
and IR (red) models. Dashed lines indicate the posterior-median estimates.
A detailed prior distribution see Table 1 in Supplementary Materials.
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Figure 11: The correlation map of the estimated parameters for the TIV
model.
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Figure 12: The correlation map of the estimated parameters for the IR model.
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Figure 13: Comparison of model predictions for key biological
quantities. The distribution of the quantities is calculated using 4000
joint posterior distributions through model calibration. Panels A and B
show the distribution of log,,(peak viral load) in wildtype (purple) and
MUC1-knockout (green) group in TIV (left panel) and IR models (right
panel), respectively. Panels C and D show the distribution of peak vi-
ral load time in different mice groups in the two models. Panels E and
F show the the initial growth rate of viral replication in the two models.
The initial viral regrowth rate is given by r = (—(0; + oy + kn M) +
V(07 + v + karMp)? — 4(61(6v + K Mo) — BpTy))/2, where My and Ty are
initial number of epithelial cells and macrophages, respectively.
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Figure 14: Relative contribution of macrophage-mediated viral
clearance in TIV and IR models. We used posterior-median estimates
of model parameters to compute the ratio shown in the legend in the TTV
(blue line) and IR (purple line) models, respectively. The value of fixed
model parameters used for simulation is given in Table 2 in Supplementary
Materials.
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