

1 **Exploring *Leishmania*-Host Interaction with Reactome, a Database of Biological
2 Pathways and Processes**

3

4 Julieth Murillo^{1,2}, Bijay Jassal³, Maria Adelaida Gómez^{1,4#}, Henning Hermjakob^{5#}

5

6 ¹ CIDEIM - Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali,
7 Colombia

8 ² Pontificia Universidad Javeriana, Cali, Colombia

9 ³Ontario Institute for Cancer Research, Toronto, Canada.

10 ⁴ Universidad Icesi, Cali, Colombia

11 ⁵ European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-
12 EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.

13

14 Running title: *Leishmania* infection in Reactome

15

16 Keywords: *Leishmania*, Reactome, pathway, ORA, enrichment

17 # Address correspondence

18 Henning Hermjakob, hhe@ebi.ac.uk

19 Maria Adelaida Gómez, mgomez@cideim.org.co

20

21 **Abstract**

22 Leishmaniasis is a parasitic disease with a wide range of clinical manifestations. Multiple
23 aspects of the *Leishmania*-host interaction, such as genetic factors and modulation of
24 microbial functions in host cells, influence pathogenesis, disease severity and treatment
25 outcome. How do scientists contend with this complexity? Here, we work towards
26 representing detailed, contextual knowledge on *Leishmania*-host interactions in the
27 Reactome pathway database to facilitate the extraction of novel mechanistic insights from
28 existing datasets. The Reactome database uses a hierarchy of abstractions that allows for

29 the incorporation of detailed contextual knowledge on biological processes matched to
30 differentially expressed genes. It also includes tools for enhanced over-representation
31 analysis that exploits this extra information. We conducted a systematic curation of
32 published studies documenting different aspects of the *Leishmania*-host interaction. The
33 “*Leishmania* infection pathway” included four sub-pathways: phagocytosis, killing
34 mechanisms, cell recruitment, and *Leishmania* parasite growth and survival. As proof-of-
35 principle of the usefulness of the released pathway, we used it to analyze two previously
36 released transcriptomic datasets of human and murine macrophages infected with
37 *Leishmania*. Our results provide insights on the participation of ADORA2B signaling
38 pathway in the modulation of IL10 and IL6 in infected macrophages. This work opens the
39 way for other researchers to contribute to, and make use of, the Reactome database.

40 **Importance**

41 Leishmaniasis is a neglected disease infectious disease which affects more than 1.5 million
42 people annually. Many researchers in the field apply -omic technologies to dissect the basis
43 of clinical and therapeutic outcomes and access drug targetable features in the host-parasite
44 interaction, among others. However, getting mechanistic insights from -omics data to such
45 end is not an easy task. The most common approach is to use the -omics data to inquire
46 pathways databases. The retrieved list of pathways often contains vague names that lack the
47 biological context. In this study, we worked to create the *Leishmania* infection pathway in
48 the Reactome database. With two practical examples from transcriptomics and microarray
49 data, we demonstrated how this pathway facilitates the analysis of such data. In both
50 datasets, we found a common mechanism of IL10 and IL6 production that the authors did
51 not advert in their previous analysis, providing proof-of-principle of the tool’s enhanced
52 potential for knowledge extraction. *Leishmania* infection pathway is in its first version, and
53 must be expanded to cover the current knowledge base of the *Leishmania*-host interaction.
54 We strongly encourage contributions from domain experts for the completion of
55 *Leishmania* infection pathways.

56

57

58 **Introduction**

59 The interaction between a parasite and its host is a fight for dominance. Who wins? How
60 does disease progress? A multitude of factors determine the course of infection. These
61 depend upon both the status of the host and the parasite. Omics data shed light on the
62 multitude of activated mechanisms within the host-parasite interactome, by providing long
63 lists of differentially expressed (DE) molecules. However, such data is a means for
64 generating knowledge, not an end. The ultimate goal is to interpret this data to build a
65 mechanistic understanding of the interactions at hand. This exercise is made tractable by
66 the existence of pathway databases that curate and organize current knowledge (1–3).
67 Typically, the databases are used to find known biological processes that could underlie the
68 data. A common methodology is Over-Representation Analysis (ORA). This takes the set
69 of DE genes from the data, and iteratively compares them to the set of genes involved in
70 each separate pathway in the database. It uses the overlap between these two sets to predict
71 the statistical likelihood of the biological pathway being represented in the data (4).
72 Mechanistic hypotheses on the processes underlying the data are then proposed by the
73 researcher, based on the ORA results.

74 Biological process labels within a database often lack context (e.g. ‘immune system’). Does
75 the process occur within one particular cell type, or more? Across species? In a diseased
76 organism? In the context of a pathogen-host interaction? It is difficult to build detailed
77 hypotheses from such labels using ORA, or indeed other analytical approaches.

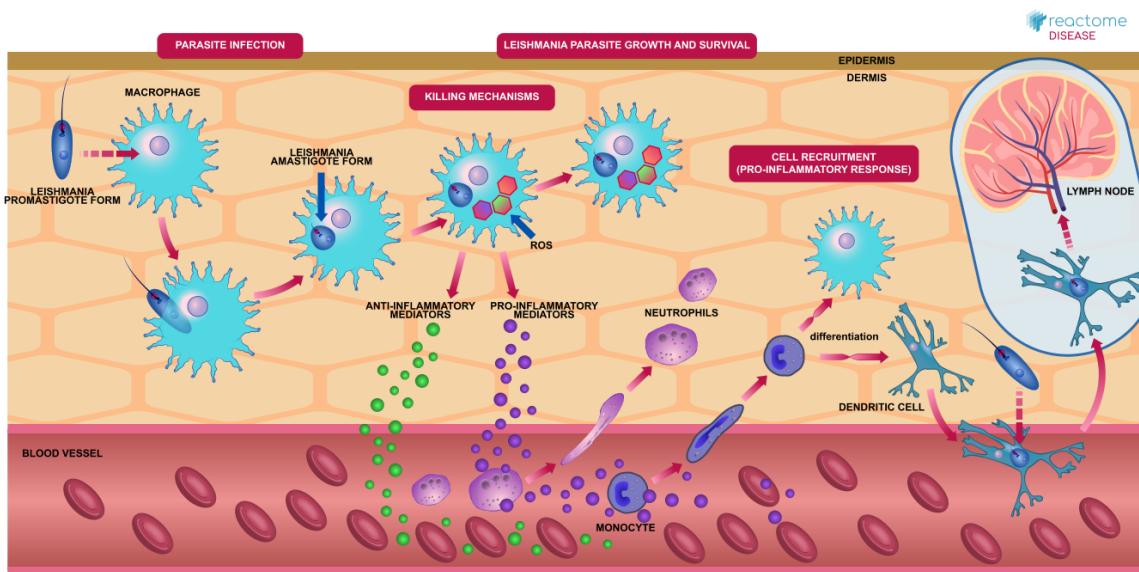
78 The Reactome database builds a hierarchy of abstractions into which the observed features
79 of any biological process can be incorporated. At the top level of the hierarchy, high level
80 characteristics are represented: Is it a disease? Is it infectious or metabolic? At lower levels,
81 features such as specific, temporally-ordered sequences of cellular processes are
82 represented (3). Choices such as how many levels of abstraction to include, and what each
83 should represent, depend to some extent upon the expertise of the curator. Therefore, it is
84 critical that the curator has expert domain knowledge or that they collaborate with an
85 appropriate expert in the field.

86 The purpose of this work was to add representative features and variability of the
87 *Leishmania* spp.-host interaction into the Reactome database. In the terminology of the
88 database, this representation is known as a ‘pathway’. Our pathway is sufficiently flexible

89 as to allow for expansion and revision as new results are published. It incorporates detailed
90 information on biological processes known to be activated during the *Leishmania*-host
91 interaction. In particular, we focused on those processes correlated with the outcome of
92 infection.

93 We explicitly demonstrate the utility of our database curation. We took two existing
94 datasets to which ORA or manual revision of the literature was previously applied. With
95 our expanded database, we uncover new mechanistic insights. In the long term, we hope
96 that the research community will be able to use our pathways as a source of primary
97 consultation, and as a curated database for functional and mechanistic interpretation of new
98 data derived from -omics technologies, functional tests, or *in-silico* experiments. We
99 believe that this pathway will enable fast and curated access to the integrative mechanisms
100 of importance in leishmaniasis.

101


102 **Results**

103 **Abstracting the top-level pathway: phagocytosis, killing mechanisms, cell recruitment 104 and responses favoring *Leishmania* parasites.**

105 The curation of a pathway in Reactome starts by structuring pathways into hierarchical
106 sections. The parent *Leishmania* infection pathway was structured into four subpathways
107 describing the major processes involved: phagocytosis, killing mechanisms, cell
108 recruitment and *Leishmania* parasite growth and survival. For each subpathway, there is
109 extensive literature on the specific host responses to *Leishmania* infection, and their
110 implication in the outcome of infection (5–7).

111 *Leishmania* parasites are transmitted to the host through the bite of a sand-fly that injects
112 the motile promastigote form into the dermis of humans and other warm-blooded animals.
113 Therein, the parasite interacts with the host cell(s) to establish the intracellular niche, where
114 it will adopt the amastigote form (8). Paradoxically, macrophages, professional
115 phagocytes of the innate immune system, are the main host cells for *Leishmania*. The first
116 interaction of the parasite with the host cell is crucial to the outcome of the infection (5).
117 The type of phagocytic receptor or pattern recognition receptor stimulated might influence

118 the signaling cascade(s) that will trigger or inhibit cellular mechanisms involved in parasite
119 killing or permissiveness for infection. Deregulated immune responses contribute to
120 pathology (9). Pro and anti-inflammatory mediators must be expressed at the “right” time
121 and in the “appropriate” magnitude, in order to have a healing response (9). This discussion
122 motivates our abstraction of existing knowledge into the categories of phagocytosis, killing
123 mechanisms, cell recruitment (pro-inflammatory response), and *Leishmania* parasite growth
124 and survival (figure 1).

126 **Figure 1: Textbook-style diagram representing the top-level pathway “*Leishmania***
127 **infection”**. The major steps occurring in the dermis were compartmentalized into four
128 categories: phagocytosis, killing mechanisms, cell recruitment, and *Leishmania* parasite
129 growth and survival. On the webpage (<https://reactome.org/PathwayBrowser/#/R-HSA-9658195>), the magenta rectangular labels are interactive and take the user to the content of
130 each subpathway.
131

132 ***Leishmania* infection pathways: From a sketch on paper to Reactome database.**

133 Reactome’s curation tool is a graphical user interface (GUI), that connects to its central
134 database with which new information can be added to existing or new pathways. We started
135 with a sketch of the overall pathways we wanted to curate for the first version of the
136 “*Leishmania* infection pathway”. Then, we identified what molecules/entities and reactions
137 already existed in the database and which ones needed to be added. Similarly, we accounted

138 for the molecular interactions that were already described in existing Reactome pathways.
139 If new reactions were required, they were created from scratch, supported by literature
140 references. Table 1 summarizes these metrics.

141 **Table 1: Curation and annotation metrics for the creation of *Leishmania* infection**
142 **pathways in Reactome.**

Pathway	Entities		Reactions/Catalysis/Regulation		New literature references
	New	Re-used	New	Re-used	
Phagocytosis	9	141	12	14	7
Killing mechanisms	5	18	9	0	8
Cell recruitment	3	28	3	24	9
<i>Leishmania</i> parasite growth and survival	15	51	19	12	17
Total	32	238	42	50	41

143

144 **Structuring the lowest-level pathways: signaling cascades traceable from a membrane**
145 **protein to the production of effector molecules.**

146 As part of the host response against *Leishmania*, many signaling cascades are modulated
147 (activated or inactivated). Once a cellular/membrane receptor is stimulated, the downstream
148 signal transduction can result in the activation of many molecules with different effects in
149 the system (e.g. interleukins inducing the polarization of several types of T-cells, or
150 chemokines mediating the recruitment of immune cells to different tissues, among others).
151 That is why general pathway labelling such as “TNF-signaling”, might not be informative
152 enough, and can allow for erroneous biological interpretations if the gene lists contained
153 within enriched pathways are not carefully analysed. There could be many regulatory
154 processes that favor one direction rather than another in a specific signaling pathway (as it
155 can be noticed in TNF-pathway in Reactome, R-HSA-75893
156 <https://reactome.org/PathwayBrowser/#/R-HSA-75893> and KEGG, hsa04668-
157 https://www.genome.jp/kegg-bin/show_pathway?hsa04668). Therefore, we structured the
158 lowest-level pathways in each of four subpathways, starting off from an activated
159 membrane protein (e.g., receptors, ion channels or enzymes). This was followed by
160 inclusion of signalling and accessory molecules and finished with synthesis of effector

161 molecules that are consistent with the overall biological processes underlying the
162 subpathway (e.g., reactive oxygen species –ROS- for “killing mechanisms”).

163 For this first version of the *Leishmania* infection pathway, we chose the membrane proteins
164 FCGR3A, FZD7, P2RX4, P2RX7, ADORA2B, and CD163 and their downstream signaling
165 cascades. Although additional membrane molecules are known to participate in the initial
166 macrophage-*Leishmania* interaction, such as complement receptors, toll-like receptors -
167 TLRs-, or chemokine receptors among others (10–12), we selected less “classical”
168 membrane molecules to increase the breath of mechanistic interpretation of host-
169 *Leishmania* –omic datasets. Shown in figure 2 are the structures of the four subpathways,
170 each of which contains a set of reactions. Supporting references evidencing their relevance
171 in the context of leishmaniasis will be discussed below.

- + Leishmania infection
- + Parasite infection
- + Leishmania phagocytosis
 - ⊕ + FCGR3A-mediated phagocytosis
- + Killing mechanisms
 - ⊕ + WNT5:FZD7-mediated leishmania damping
 - ⊕ + Cell recruitment (pro-inflammatory response)
 - ⊕ + Purinergic signaling in leishmaniasis infection
- + Leishmania parasite growth and survival
 - ⊕ + Anti-inflammatory response favouring Leishmania parasite infection
 - ⊕ + CD163 mediating an anti-inflammatory response
 - ⊕ + FCGR3A-mediated IL10 synthesis
 - ⊕ + ADORA2B mediated anti-inflammatory cytokines production
 - ⊕ + LTC4-CYSLTR mediated IL4 production

172

173 **Figure 2:** Hierarchical structure of the *Leishmania* infection pathway showing the four sub-
174 pathways and their contents. Each indentation introduces a new subpathway; as an
175 example, “parasite infection” is the parent pathway for the subpathway “*Leishmania*
176 phagocytosis”, which, to date only contains *FCGR3A*-mediated phagocytosis.

177

178 **I. Parasite Infection/Leishmania phagocytosis:** The phagocytosis subpathway
179 was built to account for the different types of phagocytic receptors that
180 *Leishmania* parasites can utilize for their entry into host cells. We started by

181 adding FCGR3A-mediated phagocytosis. To build it, we referenced the pre-
182 existing Reactome pathway “FcG receptor (FCGR) dependent phagocytosis”
183 (<https://reactome.org/content/detail/R-HSA-2029480>). Overall, 14 reactions
184 were re-used from this pathway while 12 new reactions were created to
185 represent phagocytosis in the context of *Leishmania* infection (table 1). The
186 starting point was the binding of immunoglobulin G antibodies (IgG) to either
187 an unknown *Leishmania* amastigote (abbreviate as: Lma) surface molecule or
188 the glycoinositol phospholipid - GIPL (13, 14), as shown in figure 3a. These
189 interactions correspond to binding reaction types in Reactome, with the product
190 of binding being a complex comprising the inputs. The complexes “IgG:Lma
191 surface” and “IgG:GIPL” represent the opsonization of the *Leishmania*
192 amastigote by the antibody IgG, during a “second round” of host-parasite
193 contact where the proliferative form and infective form in the host is the
194 amastigote. We assumed the same course when opsonization occurs via these
195 known, or other unknown molecules. Therefore, we collated the two complexes
196 into one entity, which in Reactome is represented by the defined set “IgG:Lma
197 antigens”. From here, downstream reactions continue towards the activation of
198 actin filaments that then continue to the formation of the phagocytic cup. The
199 overall diagram depicting each step of the pathway can be accessed through this
200 link <https://reactome.org/PathwayBrowser/#/R-HSA-9664422&PATH=R-HSA-1643685,R-HSA-5663205,R-HSA-9658195,R-HSA-9664407,R-HSA-9664417>. A
201 close-up depicting a portion of the pathway is found in figure 3A.
202

203
204 The route of entry into the macrophage can affect the fate of *Leishmania*
205 parasites (5). We expect to incorporate the internalization processes that are
206 mediated by other receptors into the *Leishmania* phagocytosis subpathway. This
207 includes complement receptors (CR3 and CR1), mannose receptor-MR, and
208 fibronectin receptors-FNRs (5). Similarly, the “Parasite infection” subpathway
209 will be populated with the steps that describe the maturation of the phagocytic
210 cup, and so on.

211 II. **Killing mechanisms:** this subpathway was designed to contain the signaling
212 cascades that converge in the production of antimicrobial molecules in the
213 context of leishmaniasis. We started by curating the activation of the receptor
214 Frizzled-7 (FZD7) by the ligand WNT5 and its downstream cascade. To build
215 this pathway we reviewed publications that contain the original experimental
216 data used to determine the reactions details (15–19). WNT5 is known for being
217 a highly specific regulated gene in response to microbial infection (20–22)
218 including leishmaniasis (23), where it seems to be involved in mechanisms that
219 dampen the parasite load within the macrophage. Complementary, FZD7 acts as
220 a receptor of WNT5 which, upon binding, is implicated in the initiation of the
221 non-canonical WNT pathway that leads to re-organization of the cytoskeleton to
222 allow a process called planar cell polarity (PCP) (22). The activation of the
223 WNT5:FZD7 non-canonical signaling cascade that drives PCP is being studied
224 for its involvement in inflammatory responses (24). Treatment of RAW264.7
225 macrophages with recombinant WNT5 induced NADPH oxidase-mediated ROS
226 production, which has been suggested to contribute to the macrophage control of
227 *L. donovani*. Consequently, detailed understanding of how the WNT signaling
228 network defines host responses to infection could be important to identify new
229 potential therapeutic targets (22).

230

231 We represented in 9 reactions, the activation of FZD7 by the WNT5 ligand,
232 resulting in the production of ROS (table 1). Unlike the phagocytosis pathway,
233 these reactions correspond to a host's response to the infection, even if no
234 parasite components are depicted in the diagram (found at
235 <https://reactome.org/PathwayBrowser/#/R-HSA-9673324&PATH=R-HSA-1643685,R-HSA-5663205,R-HSA-9658195,R-HSA-9664420>). In future versions we will
236 incorporate the cross talk with signaling cascades, like TLR-signaling, that
237 activate antimicrobial functions and synthesis of antimicrobial molecules.
238

239

240 III. **Cell recruitment:** this subpathway was aimed at bringing together signaling
241 pathways that converge in the induction of gene expression and synthesis of

242 chemokines and pro-inflammatory cytokines. It is known that a
243 proinflammatory response early in the infection enhances host cell microbicidal
244 mechanisms (25). However, the recruitment of inflammatory cells to the site of
245 infection, once the parasite load has been controlled, transforms the course of
246 infection and can lead to immunopathology (9). Therefore, it is important to
247 curate and represent specific pathways that have shown to be activated upon
248 *Leishmania* infection, resulting in the production of pro-inflammatory
249 mediators.

250

251 The first specific mechanism we curated was the activation of the purinergic
252 receptors P2RX4 and P2RX7. The liberation of ATP normally occurs in tissues
253 facing stressful stimuli such as infection (26). Binding of ATP to purinergic
254 receptor activates the inflammasome leading to subsequent activation of
255 interleukin 1 beta-IL1 β , which promotes the recruitment and activation of
256 macrophages (27). We represented this process in 27 reactions (table 1), that
257 included a regulatory step mediated by NTPDase1 and NTPDase5, which
258 reduces ATP to adenosine (28). The molecular diagram can be found at
259 <https://reactome.org/PathwayBrowser/#/R-HSA-9664424&SEL=R-HSA-9660826&PATH=R-HSA-1643685,R-HSA-5663205,R-HSA-9658195>.

260

261
262 There are many other pathways promoting cell recruitment as a response to
263 *Leishmania* infection with different consequences for the parasite and the host
264 (29). In future expansions of this subpathway, it would be possible to highlight
265 cross talk between different cascades that target the same effector molecules.

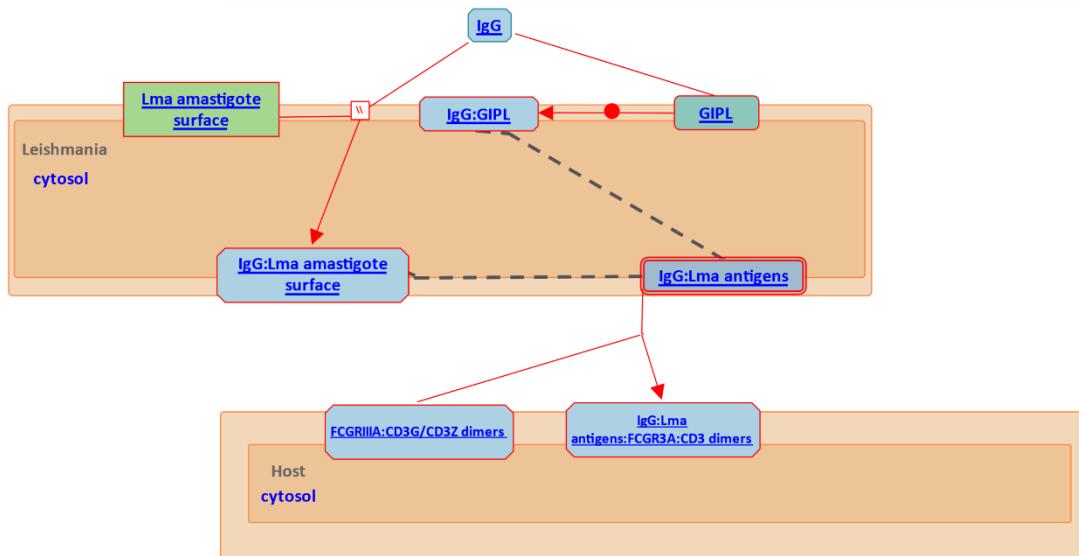
266

267 **IV. *Leishmania* parasite growth and survival:** this subpathway covers the host
268 responses that favor intracellular parasite survival, and the mechanisms used by
269 the parasite to hijack host cell functions. To survive as an intracellular parasite,
270 *Leishmania* evades the activation of host cell microbicidal machineries. Many
271 mechanisms facilitate this purpose. On the host side, the production of anti-
272 inflammatory mediators often occurs alongside the repression of expression of

273 antimicrobial molecules, together with the recruitment of regulatory immune
274 cells (e.g., regulatory T-cells). From the parasite side, inactivation of host
275 molecules through mechanisms such as cleavage or activation of phosphatases
276 are part of its repertoire (9). Induction of anti-inflammatory molecules was the
277 first mechanism that we curated, compiling the steps that describe the cleavage
278 of the membrane protein CD163, the activation of the receptors FCGR3A and
279 ADORA2B, and ending with the corresponding production of the known anti-
280 inflammatory molecules sCD163, IL4, and IL10, as well as the dual functioning
281 IL6.

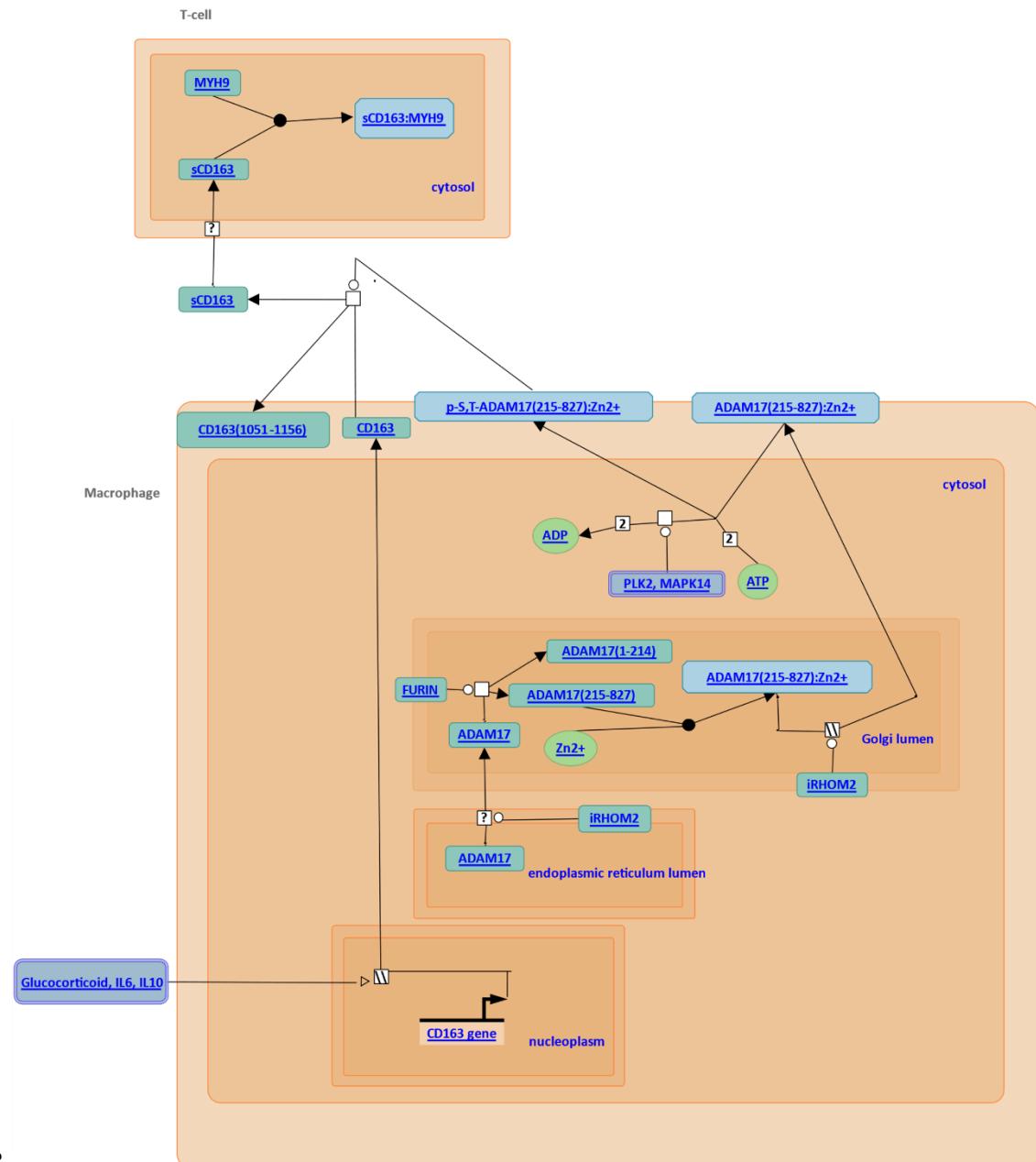
282

283 Macrophages infected with *L. amazonensis* or *L. donovani* strongly express the
284 membrane protein CD163 (30–32), and soluble CD163 (sCD163) has been
285 proposed as biomarker of visceral leishmaniasis. The hypothesis of the
286 association between sCD63 and an anti-inflammation status is that it interferes
287 with the proliferation of T-cells (33, 34). sCD163 is formed from the increased
288 shedding of CD163 mediated by the metalloprotease ADAM17 (35, 36).
289 Posteriorly, it might translocate to the cytoplasm of T-cells (through an
290 unknown mechanism) where it binds with a protein involved in the proliferation
291 process (33, 34). In “CD163 mediated anti-inflammatory responses” we
292 represented, in 9 reactions, the production of sCD163 including the steps that
293 precede the activation of ADAM17. Additionally, we included the positive
294 regulation of glucocorticoids, IL6 and IL10 on CD163 gene expression (37–40).
295 In figure 3B we show the molecular diagram depicting the pathway.


296

297 IL-10 is an important immunoregulatory cytokine produced by many cell
298 populations; in macrophages it is induced after the stimulation of TLRs, FCG
299 receptors or by TLR-FCGR crosstalk (41). Classically, its function is considered
300 to be the limitation and termination of inflammatory responses and the
301 regulation of differentiation of several immune cells (42). In the context of
302 leishmaniasis, IgG-opsonized amastigotes have been shown to induce IL10
303 production through FCGRs, which in turn suppresses the killing mechanisms in

304 phagocytic cells (14). We represented, in 21 steps, the activation of FCGR3A
305 that leads to the activation of the transcription factor CREB1, ending with the
306 production of IL10.


307

308 Finally, we curated ADORA2B-mediated anti-inflammatory responses.
309 ADORA2B is a receptor for the ribonucleoside adenosine. Its activation leads to
310 the production of anti-inflammatory cytokines which have been shown to favor
311 *Leishmania* infection and survival (43–45). Apparently, this pathway exerts an
312 opposing/regulatory response to the purinergic signaling pathway. The blockade
313 in the production of pro-inflammatory cytokines may come with the inhibition
314 of killing mechanisms (46). We represented this pathway with 6 reactions,
315 starting with the binding of adenosine to ADORA2B, and ending with synthesis
316 of IL6. Both FCGR3A and ADORA2B signaling pathways activate
317 transcription factors, generating a positive feedback loop for transcription of
318 more anti-inflammatory cytokines (47, 48). In future versions, these reactions
319 might be incorporated, as well as other pathways leading to the synthesis of
320 other anti-inflammatory mediators known to be induced during the *Leishmania*-
321 host interactions. Moreover, other mechanisms that favor the persistence of
322 *Leishmania* parasites must be added into new subpathways (e.g., Polyamine
323 synthesis). The representation of these pathways in Reactome is available in the
324 following link: <https://reactome.org/PathwayBrowser/#/R-HSA-9662851&PATH=R-HSA-1643685,R-HSA-5663205,R-HSA-9658195,R-HSA-9664433>.
325

326

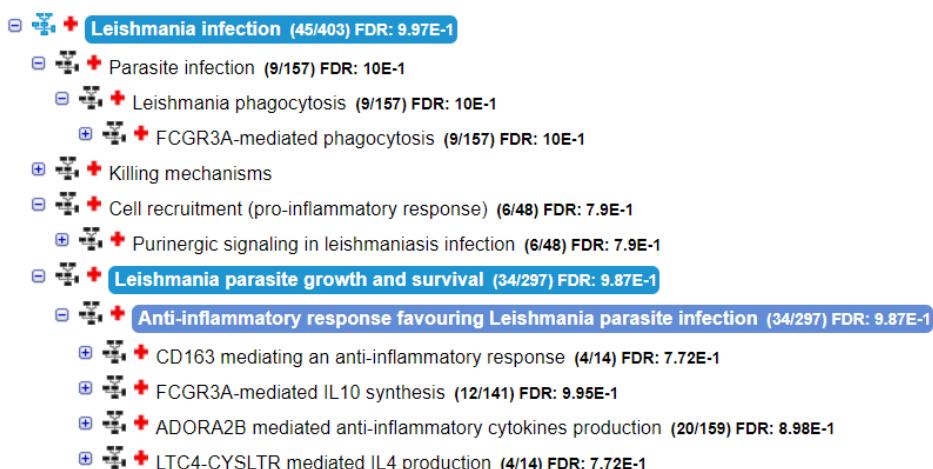
A.

327 B.

328 **Figure 3:** Standard graphical representation of pathways in Reactome. **A.** Fragment of the
329 diagram for FCGR3A-mediated phagocytosis. Shown are the reactions corresponding to the
330 parasite opsonization process by IgG. Parasitic components are highlighted in red. **B.**
331 CD163 mediating an anti-inflammatory response. Each diagram shows the participating
332 entities in the granularity of chemical compounds (green ovals), proteins (green rectangles),
333 complexes (blue rectangles) and sets (blue rectangles with a double border). The

334 arrangement of the entities in the reactions can be easily followed on the web page, by
335 clicking on the arrows that connect adjacent steps.

336

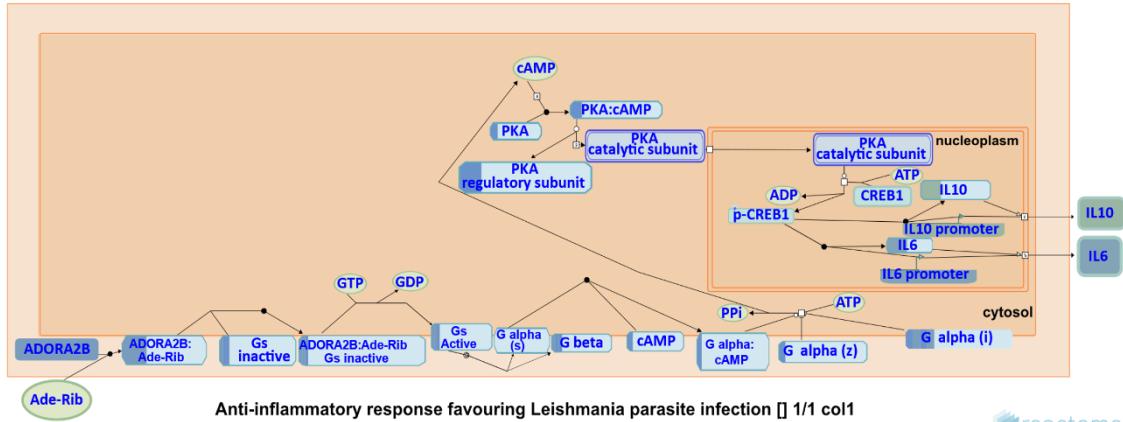

337 ***Leishmania* infection pathways enhancing transcriptome data analysis**

338 The first version of *Leishmania* infection pathways was released in March 2020. All
339 released data can make use of Reactome pathway analysis tools. We used the ORA tool to
340 test the impact of context-dependent labels on published datasets (prior march-2020) that
341 explored the *Leishmania*-host interaction.

342 In 2015, Dillon *et al.* (49) explored the early response of macrophages to infection with *L.*
343 *major*, using RNA-seq. With the differentially expressed (DE) gene list (>|2|-fold,
344 uninfected macrophages versus infected macrophages at 4 hours post-infection), they
345 performed ORA against the curated pathways in the KEGG database. For the up-regulated
346 genes, the results included cytokine-cytokine receptor interactions, TNF-signaling pathway
347 and NFkappa B-signaling pathway, among other pathways. An overall interpretation of
348 these enriched pathways may suggest that the early infection of macrophages by *L. major*
349 leads to induction of pro-inflammatory responses; as an example, TNF-signalling as
350 represented in KEGG (PATHWAY: hsa04668), classically leads to the recruitment of
351 inflammatory cells. However, transduction of the signal may induce the activation of
352 factors that contribute to opposite responses, such as tissue regeneration (with VEGF and
353 EDN1) (50, 51). Interestingly, among their gene-specific analyses, Dillon *et al.* identified a
354 set of genes involved in anti-inflammatory responses (*Csf1*, *Csf3*, *Il10*, *Il11r*, *Il1rn*, *Socs3*,
355 *Hmox1*, *Egfr* and, *Vegf*). However, the mechanisms that lead to production of these effector
356 molecules, or how they contribute to achieve or maintain the underlying immune status
357 couldn't be inferred from the KEGG pathway analysis. To overcome this gap, we
358 implemented ORA from the same DE gene list (supplementary table S1) in Reactome.
359 Among enriched pathways (table S1), were some of the *Leishmania* infection subpathways.
360 As reported by Dillon and colleagues, FCGR3A subpathway (figure 4A) was found
361 downregulated. Interestingly, the most over-represented pathway was the ADORA2B
362 mediated anti-inflammatory cytokine production (Fold change-FC = 3.25). This pathway
363 contributes to the expression of IL6 (FC = 7.68) and IL10 (FC = 17.05), through the

364 activation of the transcription factor CREB (FC = 2.75) (figure 4B). This pathway,
365 simultaneously, leads to the activation of killing mechanisms, as well as to the production
366 of IL10. Neither authors nor we found pathways involved in the former. Therefore, this
367 suggests an alternative mechanism mediated by ADORA2B, that leads to production of
368 IL10, and does not induce parallel pro-inflammatory consequences or the activation of
369 antimicrobial molecules.

370 Complementary, we analyzed the microarray data from Gregory *et al.* (52) which
371 represents the transcriptomic response of murine macrophages to infection with *L. major*
372 and *L. donovani*. The authors stated that there were few differences in the number of genes
373 and the magnitude of the expression with both species. Like Dillon's dataset, the
374 ADORA2B subpathway was enriched among upregulated genes (figure 4C and
375 supplementary table S2). These results highlight the identification of ADORA2B-pathway
376 driving anti-inflammatory cytokine production, consistently activated in macrophages
377 infected with different *Leishmania* species. These results substantiate the usefulness of the
378 *Leishmania* infection pathways for gaining mechanistic insights from new and previously
379 published data. In expanded versions of this pathway, secondary analyses like the one we
380 performed, would shed light on response patterns against the infection with different
381 *Leishmania* species, as well as species-dependent responses.



382 A. **CD163 mediating an anti-inflammatory response (4/14) FDR: 7.72E-1**

383

384

385

386 B. [Anti-inflammatory response favouring Leishmania parasite infection](#) [1/1 col1]

- + Leishmania infection (18/403) FDR: 8.97E-1
- + Parasite infection (6/157) FDR: 8.93E-1
- + Leishmania phagocytosis (6/157) FDR: 8.93E-1
- + + FCGR3A-mediated phagocytosis (6/157) FDR: 8.93E-1
- + + Killing mechanisms (1/20) FDR: 6.88E-1
- + Cell recruitment (pro-inflammatory response) (3/48) FDR: 6.34E-1
- + + Purinergic signaling in leishmaniasis infection (3/48) FDR: 6.34E-1
- + Leishmania parasite growth and survival (8/297) FDR: 9.96E-1
- + Anti-inflammatory response favouring Leishmania parasite infection (8/297) FDR: 9.96E-1
- + + CD163 mediating an anti-inflammatory response
- + + FCGR3A-mediated IL10 synthesis (4/141) FDR: 9.64E-1
- + + ADORA2B mediated anti-inflammatory cytokines production (6/159) FDR: 9E-1
- + + LTC4-CYSLTR mediated IL4 production

387 C.

388 Figure 4: Results of applying ORA in Reactome, on the datasets generated by Dillon *et al.*
389 and Gregory *et al.* A. Number of genes found in each subpathway from Dillon's dataset,
390 with the associated false discovery rate (FDR) B. ADORA2B pathway enriched in Dillon's
391 dataset shows upregulated genes involved in ADORA2B signaling cascade leading to the
392 production of IL6 and IL10. C. Number of genes found in each subpathway from Gregory's
393 dataset, and associated FDR.

394 Discussion

395 Over-representation analysis (ORA) has become one of the standard methods for extracting
396 mechanistic information from -omics datasets. As part of the workflow, ORA matches the
397 omics data with molecular data curated in pathway databases. As a result, it gives a list of
398 pathway names in which the genes are known to be involved. Mechanistic insight must
399 then be built from a list of labels, a problem made much harder when labels lack biological

400 context. There are several specific cases in the literature, relating to *Leishmania*-host
401 interaction, where this has proven to be an issue (49, 53, 54). In this work, we addressed
402 this by creating leishmaniasis-context pathways in the Reactome database. We created four
403 subpathways, labelled as: *Leishmania* phagocytosis, killing mechanisms, cell recruitment
404 (pro-inflammatory response), and *Leishmania* parasite growth and survival. Inside each, we
405 labeled the pathways according to the receptor or membrane protein directing the signaling
406 cascade. This structure facilitates the generation of high-level mechanistic insights from
407 low-level processes highlighted by ORA, which are sensitive to particular experimental
408 contexts (e.g. the source of the biological sample the data was derived from).

409 Manual literature search is often required for in depth interpretation of the outcome of ORA
410 for extracting biological/functional insights. However, this strategy is time consuming,
411 prone to omissions, and certainly incompatible with unbiased exploration of novel
412 mechanisms/functions in the data, which is the goal of –omic approaches. This is because
413 the search is necessarily constrained to cover a small number of topics within the
414 researcher's area of expertise, and it is unachievable to manually trawl the entirety of
415 biological literature relating to a particular gene, microorganism or disease.

416 We have re-analyzed two previously published transcriptomic datasets (from *Leishmania*-
417 infected macrophages), to provide proof-of-concept of the usefulness of context-dependent
418 databases such as the one described in this study. Results from this secondary analysis
419 revealed the putative participation of a signaling pathway (ADORA2B mediated anti-
420 inflammatory cytokines production) in the parasite-mediated induction of anti-
421 inflammatory molecules.

422 Although *Leishmania* infection pathways in its first version is far from representing the full
423 current knowledge about the interaction between the parasite and the host, we have shown
424 that our database curation has led to new mechanistic insights from existing datasets.
425 Moreover, these findings are generated from the use of a workflow that skips particular
426 time-consuming, problematic manual curation steps, aligning the available data
427 interpretation tools to the nature of unbiased hypothesis generation from –omics datasets.

428 **Materials and Methods**

429 ***Leishmania* Infection Curation Process**

430 The abstraction of *Leishmania* infection into a structure of pathways and reactions fulfilling
431 the Reactome paradigm was accomplished by the Reactome working group. This consisted
432 of a consortium of biocurators, software developers and leishmaniasis researchers. The
433 latter selected the mechanisms of interest. The selection was based on biological pathways
434 known to be associated with the infectious outcome, directly or indirectly. From here,
435 domain experts and Reactome curators worked side by side to translate the selected
436 pathways into the Reactome data structure using the curator tool version 3.3.

437 Reactome represents, categorizes, and annotates all known entities/molecules in each
438 reaction. Different components can interact with each other only in ways prescribed by the
439 Reactome data-model. For instance, the representation of an individual protein in the
440 database requires several steps. In an example, for the protein ADAM17, the UniProt ID
441 (P78536) is retrieved, as well as the GO cellular compartment it functions, and which
442 species this protein belongs to (e.g., *Homo sapiens*). Note that if the represented process
443 implies the transition of the same protein from one compartment to another, different
444 instances of this protein must be created (e.g ADAM17 [endoplasmic reticulum], ADAM17
445 [golgi apparatus] and ADAM17 [plasma membrane]). However, all these instances still
446 point to the same UniProt ID. On the other hand, if several proteins individually fulfil the
447 same role in a reaction (e.g., phosphorylation), these are grouped together into a single
448 entity called “*defined set*” (PKL2 [cytosol] and MAPK14 [cytosol] in the *defined set* PKL2,
449 MAP14 [cytosol] that phosphorylates ADAM17 [plasma membrane]). The *defined set*
450 entity is also specific to each cellular compartment. Therefore, each individual molecule
451 within the *defined set* must have a compartment-specific representation. Otherwise, in the
452 quality assurance procedure, this will come out as an error. Molecules of the same or
453 different types can form complexes, for example ADAM17:Zn²⁺ which represents the
454 functional form of ADAM17. Once these entities are created, the reactions in which they
455 take part, are created. Binding is a common type of reaction in Reactome. Here, the output
456 is a complex type entity (e.g., the interaction between sCD163 and MYH9 is represented as
457 a binding that ends in the formation of the sCD163:MYH9 complex). If we are not at the
458 final point of the pathway or dealing with a secondary product, the complex can participate

459 in subsequent reactions. In that case, the reaction from which this complex came from is
460 indicated as the “preceding event” of the subsequent reaction.

461 Overall, we curated *Leishmania* infection pathways following the general structure of a
462 signaling pathway. Namely, a ligand binding to a receptor, then the stimulated receptor
463 effecting a downstream signaling cascade, up to the activation of effector molecules (eg.
464 cytokines, nitric oxide, etc.). However, other pathways were conceived with different
465 starting points. For instance, the first step of the CD163 example pathway consisted of
466 ADAM17 activation. This begins in the endoplasmic reticulum, and its maturation process
467 follows through the Golgi apparatus until its translocation to the plasma membrane, where
468 its phosphorylation by kinases (either PLK2 or MAPK14), activates the cleavage reaction
469 of CD163. It is the soluble portion of CD163, sCD163, that has been found as a regulator of
470 the inflammatory responses in *Leishmania* infection, through the inhibition of the
471 proliferation of T lymphocytes.

472 Reactome’s criteria for the acceptance of a particular molecular interaction and its
473 supporting reference have been previously explained (3, 55). Once the reactions were
474 successfully integrated into Reactome’s central database, we reached out to an experienced
475 researcher in leishmaniasis, Dr. David Gregory (ORCID: 0000-0001-6534-7150) (52, 56,
476 57) to review the curated material on the basis of his expertise in the field (52, 57–59).
477 Only material reviewed by an independent domain expert is allowed to be published in a
478 Reactome release. The contributions of authors and reviewers can be directly accessed
479 through Reactome’s search interface, for example
480 <https://reactome.org/content/query?q=David+Gregory> shows a detailed description of credit
481 attribution in Reactome (60). We are highly interested in further contributions from domain
482 experts for the completion of *Leishmania* infection pathways.

483 Once an orderly list of reactions was created, these were transformed according to the
484 Reactome paradigm by using the curator tool. Some reactions were created from scratch to
485 populate a low-level pathway, while others that were present within other pathways were
486 duplicated (or reused) in the context of *Leishmania* infection (table 1). Within a reaction,
487 each component was re-used if it already existed as part of a different process in the

488 database, otherwise it was created. Reuse of existing components and reactions ensures no
489 redundancy in the database.

490 Reaction details, such as input/catalyst/output molecules, reaction type, preceding reactions
491 and experimental species, were captured during the curation process. Reactions were linked
492 together based on preceding-following relationships to generate pathways.

493

494 **Funding**

495 This work was supported by the UK Global Challenges Research Fund CABANA grant
496 BB/P027849/1, Wellcome Trust grant 107595/Z/15/Z to MAG, and US National Institutes
497 of Health grant U41HG003751 (Reactome). JM was also funded by the Colombian
498 National “Departamento Administrativo de Ciencia, Tecnología e Innovación”
499 (COLCIENCIAS), Ph.D program, number 756-2016.

500 **Reference**

- 501 1. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Lomax J, Mungall C,
502 Hitz B, Balakrishnan R, Dolan M, Wood V, Hong E, Gaudet P. 2009. AmiGO:
503 Online access to ontology and annotation data. *Bioinformatics* 25:288–289.
- 504 2. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: New
505 perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res*
506 45:D353–D361.
- 507 3. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K,
508 Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C,
509 Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H,
510 D’Eustachio P. 2020. The reactome pathway knowledgebase. *Nucleic Acids Res*
511 48:D498–D503.
- 512 4. Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V,
513 D’Eustachio P, Stein L, Hermjakob H. 2017. Reactome pathway analysis: A high-
514 performance in-memory approach. *BMC Bioinformatics* 18.
- 515 5. Ueno N, Wilson ME. 2012. Receptor-mediated phagocytosis of Leishmania:

516 implications for intracellular survival. *Trends Parasitol* 28:335–344.

517 6. Martínez-López M, Soto M, Iborra S, Sancho D. 2018. *Leishmania* Hijacks myeloid
518 cells for immune escape. *Front Microbiol*. Frontiers Media S.A.

519 7. Rossi M, Fasel N. 2018. How to master the host immune system? *Leishmania*
520 parasites have the solutions! *Int Immunol* 30:103–111.

521 8. Nylén S, Gautam S. 2010. Immunological perspectives of leishmaniasis. *J Glob*
522 Infect Dis 2:135.

523 9. Scott P, Novais FO. 2016. Cutaneous leishmaniasis: immune responses in protection
524 and pathogenesis. *Nat Publ Gr*.

525 10. Chauhan P, Shukla D, Chattopadhyay D, Saha B. 2017. Redundant and regulatory
526 roles for Toll-like receptors in *Leishmania* infection. *Clin Exp Immunol* 190:167–
527 186.

528 11. Polando R, Dixit UG, Carter CR, Jones B, Whitcomb JP, Ballhorn W, Harintho M,
529 Jerde CL, Wilson ME, McDowell MA. 2013. The roles of complement receptor 3
530 and Fc γ receptors during *Leishmania* phagosome maturation. *J Leukoc Biol* 93:921–
531 932.

532 12. Oghumu S, Lezama-Dávila CM, Isaac-Márquez AP, Satoskar AR. 2010. Role of
533 chemokines in regulation of immunity against leishmaniasis. *Exp Parasitol* 126:389–
534 396.

535 13. Buxbaum LU. 2013. *Leishmania mexicana* Infection Induces IgG to Parasite Surface
536 Glycoinositol Phospholipids that Can Induce IL-10 in Mice and Humans. *PLoS Negl*
537 Trop Dis 7.

538 14. Chu N, Thomas BN, Patel SR, Buxbaum LU. 2010. IgG1 is pathogenic in
539 *Leishmania mexicana* infection. *J Immunol* 185:6939–46.

540 15. Boutros M, Paricio N, Strutt DI, Mlodzik M. 1998. Dishevelled activates JNK and
541 discriminates between JNK pathways in planar polarity and wingless signaling. *Cell*
542 94:109–118.

543 16. Axelrod JD. 2001. Unipolar membrane association of Dishevelled mediates Frizzled
544 planar cell polarity signaling. *Genes Dev* 15:1182–1187.

545 17. Rothbächer U, Laurent MN, Deardorff MA, Klein PS, Cho KWY, Fraser SE. 2000. Dishevelled phosphorylation, subcellular localization and multimerization regulate
546 its role in early embryogenesis. *EMBO J* 19:1010–1022.

547 18. Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J.
549 2000. Structural basis of the recognition of the Dishevelled DEP domain in the Wnt
550 signaling pathway. *Nat Struct Biol* 7:1178–1184.

551 19. Witzel S, Zimyanin V, Carreira-Barbosa F, Tada M, Heisenberg CP. 2006. Wnt11
552 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma
553 membrane. *J Cell Biol* 175:791–802.

554 20. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt
555 E, Reiling N. 2006. The Wingless homolog WNT5A and its receptor Frizzled-5
556 regulate inflammatory responses of human mononuclear cells induced by microbial
557 stimulation. *Blood* 108:965–973.

558 21. Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G. 2008. Wnt5A/CaMKII
559 signaling contributes to the inflammatory response of macrophages and is a target for
560 the antiinflammatory action of activated protein C and interleukin-10. *Arterioscler
561 Thromb Vasc Biol* 28:504–510.

562 22. Ljungberg JK, Kling JC, Tran TT, Blumenthal A. 2019. Functions of the WNT
563 Signaling Network in Shaping Host Responses to Infection. *Front Immunol* 10:2521.

564 23. Chakraborty A, Kurati SP, Mahata SK, Sundar S, Roy S, Sen M. 2017. Wnt5a
565 Signaling Promotes Host Defense against *Leishmania donovani* Infection. *J
566 Immunol* 199:992–1002.

567 24. Shao Y, Zheng Q, Wang W, Xin N, Song X, Zhao C. 2016. Biological functions of
568 macrophage-derived Wnt5a, and its roles in human diseases. *Oncotarget. Impact
569 Journals LLC*.

570 25. Atri C, Guerfali FZ, Laouini D. 2018. Role of human macrophage polarization in

571 inflammation during infectious diseases. *Int J Mol Sci.* MDPI AG.

572 26. Coutinho-Silva R, Ojcius DM. 2012. Role of extracellular nucleotides in the immune
573 response against intracellular bacteria and protozoan parasites. *Microbes Infect*
574 14:1271–1277.

575 27. Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR,
576 Dinarello CA, Apte RN. 2011. IL-1 α and IL-1 β Recruit Different Myeloid Cells and
577 Promote Different Stages of Sterile Inflammation. *J Immunol* 187:4835–4843.

578 28. Cekic C, Linden J. 2016. Purinergic regulation of the immune system. *Nat Rev
579 Immunol* 16:177–92.

580 29. Maspi N, Abdoli A, Ghaffarifar F. 2016. Pro- and anti-inflammatory cytokines in
581 cutaneous leishmaniasis: a review. *Pathog Glob Health.* Taylor and Francis Ltd.

582 30. Silva RLL, Santos MB, Almeida PLS, Barros TS, Magalhães L, Cazzaniga RA,
583 Souza PRM, Luz NF, França-Costa J, Borges VM, Lima-Junior DS, Lipscomb MW,
584 Duthie MS, Reed SG, Almeida RP, Jesus AR. 2017. sCD163 levels as a biomarker
585 of disease severity in leprosy and visceral leishmaniasis. *PLoS Negl Trop Dis*
586 11:e0005486.

587 31. Roy S, Mukhopadhyay D, Mukherjee S, Moulik S, Chatterji S, Brahme N, Pramanik
588 N, Goswami RP, Saha B, Chatterjee M. 2018. An IL-10 dominant polarization of
589 monocytes is a feature of Indian Visceral Leishmaniasis. *Parasite Immunol*
590 40:e12535.

591 32. Moreira PRR, Fernando FS, Montassier HJ, André MR, de Oliveira Vasconcelos R.
592 2016. Polarized M2 macrophages in dogs with visceral leishmaniasis. *Vet Parasitol*
593 226:69–73.

594 33. Högger P, Sorg C. 2001. Soluble CD163 inhibits phorbol ester-induced lymphocyte
595 proliferation. *Biochem Biophys Res Commun* 288:841–3.

596 34. Timmermann M, Buck F, Sorg C, Högger P. 2004. Interaction of soluble CD163
597 with activated T lymphocytes involves its association with non-muscle myosin
598 heavy chain type A. *Immunol Cell Biol* 82:479–487.

599 35. Etzerodt A, Moestrup SK. 2013. CD163 and inflammation: biological, diagnostic,
600 and therapeutic aspects. *Antioxid Redox Signal* 18:2352–63.

601 36. Etzerodt A, Rasmussen MR, Svendsen P, Chalaris A, Schwarz J, Galea I, Møller HJ,
602 Moestrup SK. 2014. Structural basis for inflammation-driven shedding of CD163
603 ectodomain and tumor necrosis factor- α in macrophages. *J Biol Chem* 289:778–788.

604 37. Sulahian TH, Högger P, Wahner AE, Wardwell K, Goulding NJ, Sorg C, Droste A,
605 Stehling M, Wallace PK, Morganelli PM, Guyre PM. 2000. Human monocytes
606 express CD163, which is upregulated by IL-10 and identical to p155. *Cytokine*
607 12:1312–21.

608 38. Högger P, Erpenstein U, Rohdewald P, Sorg C. 1998. Biochemical characterization
609 of a glucocorticoid-induced membrane protein (RM3/1) in human monocytes and its
610 application as model system for ranking glucocorticoid potency. *Pharm Res* 15:296–
611 302.

612 39. Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. 2000. Regulation
613 of scavenger receptor CD163 expression in human monocytes and macrophages by
614 pro- and antiinflammatory stimuli. *J Leukoc Biol* 67:97–103.

615 40. Wenzel I, Roth J, Sorg C. 1996. Identification of a novel surface molecule, RM3/1,
616 that contributes to the adhesion of glucocorticoid-induced human monocytes to
617 endothelial cells. *Eur J Immunol* 26:2758–2763.

618 41. Vogelpoel LTC, Hansen IS, Rispens T, Muller FJM, Van Capel TMM, Turina MC,
619 Vos JB, Baeten DLP, Kapsenberg ML, De Jong EC, Den Dunnen J. 2014. Fc gamma
620 receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2
621 macrophages. *Nat Commun* 5.

622 42. Asadullah K, Sterry W, Volk HD. 2003. Interleukin-10 therapy - Review of a new
623 approach. *Pharmacol Rev. American Society for Pharmacology and Experimental*
624 *Therapy.*

625 43. Vijayamahantesh, Amit A, Kumar S, Dikhit MR, Jha PK, Singh AK, Sinha KK,
626 Pandey K, Das VNR, Das P, Bimal S. 2016. Up regulation of A2B adenosine

627 receptor on monocytes are crucially required for immune pathogenicity in Indian
628 patients exposed to *Leishmania donovani*. *Cytokine* 79:38–44.

629 44. de Almeida Marques-da-Silva E, de Oliveira JC, Figueiredo AB, de Souza Lima
630 Júnior D, Carneiro CM, Rangel Fietto JL, Crocco Afonso LC. 2008. Extracellular
631 nucleotide metabolism in *Leishmania*: influence of adenosine in the establishment of
632 infection. *Microbes Infect* 10:850–857.

633 45. Lima MHF, Sacramento LA, Quirino GFS, Ferreira MD, Benevides L, Santana
634 AKM, Cunha FQ, Almeida RP, Silva JS, Carregaro V. 2017. *Leishmania infantum*
635 parasites subvert the host inflammatory response through the adenosine A2A
636 receptor to promote the establishment of infection. *Front Immunol* 8:815.

637 46. Figueiredo AB de, Souza-Testasicca MC, Afonso LCC. 2016. Purinergic signaling
638 and infection by *Leishmania*: A new approach to evasion of the immune response
639 [figure presented]. *Biomed J*. Elsevier B.V.

640 47. Sun WC, Moore JN, Hurley DJ, Vandenplas ML, Linden J, Cao Z, Murray TF.
641 2008. Adenosine A2A receptor agonists inhibit lipopolysaccharide-induced
642 production of tumor necrosis factor- α by equine monocytes. *Vet Immunol
643 Immunopathol* 121:91–100.

644 48. Lucas M, Zhang X, Prasanna V, Mosser DM. 2005. ERK Activation Following
645 Macrophage Fc γ R Ligation Leads to Chromatin Modifications at the IL-10 Locus. *J
646 Immunol* 175:469–477.

647 49. Dillon LAL, Suresh R, Okrah K, Corrada Bravo H, Mosser DM, El-Sayed NM.
648 2015. Simultaneous transcriptional profiling of *Leishmania major* and its murine
649 macrophage host cell reveals insights into host-pathogen interactions. *BMC
650 Genomics* 16:1108.

651 50. Camera M, Giesen PLA, Fallon J, Aufiero BM, Taubman M, Tremoli E, Nemerson
652 Y. 1999. Cooperation Between VEGF and TNF- α Is Necessary for Exposure of
653 Active Tissue Factor on the Surface of Human Endothelial Cells. *Arterioscler
654 Thromb Vasc Biol* 19:531–537.

655 51. Mechtcheriakova D, Schabbauer, 1. Mechtcheriakova D, Schabbauer G, Lucerna M,
656 Clauss M, Martin R De, Binder, R. B, HOFER E. 2001. Specificity, diversity and
657 convergence in V and T signaling events leading to tissue factor up regulation via E
658 in endothelial cells. *FJ* 15:230–242. G, Lucerna M, Clauss M, Martin R De, Binder,
659 R. B, HOFER E. 2001. Specificity, diversity, and convergence in VEGF and TNF- α
660 signaling events leading to tissue factor up regulation via EGR-1 in endothelial cells.
661 *FASEB J* 15:230–242.

662 52. Gregory DJ, Sladek R, Olivier M, Matlashewski G. 2008. Comparison of the effects
663 of Leishmania major or Leishmania donovani infection on macrophage gene
664 expression. *Infect Immun* 76:1186–1192.

665 53. Fernandes MC, Dillon LAL, Belew AT, Bravo HC, Mosser DM, El-Sayed NM.
666 2016. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages
667 Reveals Distinct Reprogramming Signatures. *MBio* 7:e00027-16.

668 54. Maretti-Mira AC, Bittner J, Oliveira-Neto MP, Liu M, Kang D, Li H, Pirmez C,
669 Craft N. 2012. Transcriptome Patterns from Primary Cutaneous Leishmania
670 braziliensis Infections Associate with Eventual Development of Mucosal Disease in
671 Humans. *PLoS Negl Trop Dis* 6:e1816.

672 55. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R,
673 Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C,
674 Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob
675 H, D'Eustachio P. 2018. The Reactome Pathway Knowledgebase. *Nucleic Acids Res*
676 46:D649–D655.

677 56. Olivier M, Gregory DJ, Forget G. 2005. Subversion mechanisms by which
678 Leishmania parasites can escape the host immune response: A signaling point of
679 view. *Clin Microbiol Rev*.

680 57. Gregory DJ, Godbout M, Contreras I, Forget G, Olivier M. 2008. A novel form of
681 NF- κ B is induced by Leishmania infection: Involvement in macrophage gene
682 expression. *Eur J Immunol* 38:1071–1081.

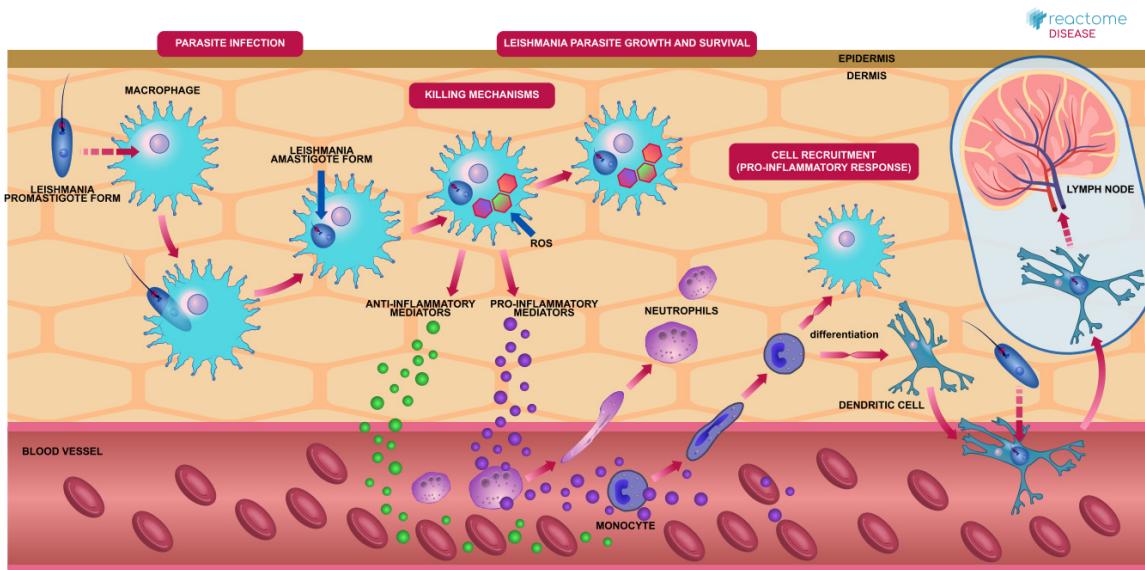
683 58. Contreras I, Gómez MA, Nguyen O, Shio MT, McMaster RW, Olivier M. 2010.

684 Leishmania-induced inactivation of the macrophage transcription factor AP-1 is
685 mediated by the parasite metalloprotease GP63. PLoS Pathog 6:e1001148.

686 59. DA V, DJ G, RN K, D Z, AT B, NM E-S, MA G. 2020. Macrophage
687 metallothioneins participate in the antileishmanial activity of antimonials.

688 60. Viteri G, Matthews L, Varusai T, Gillespie M, Milacic M, Cook J, Weiser J, Shorser
689 S, Sidiropoulos K, Fabregat A, Haw R, Wu G, Stein L, D'Eustachio P, Hermjakob
690 H. 2019. Reactome and ORCID-fine-grained credit attribution for community
691 curation. Database (Oxford) 2019.

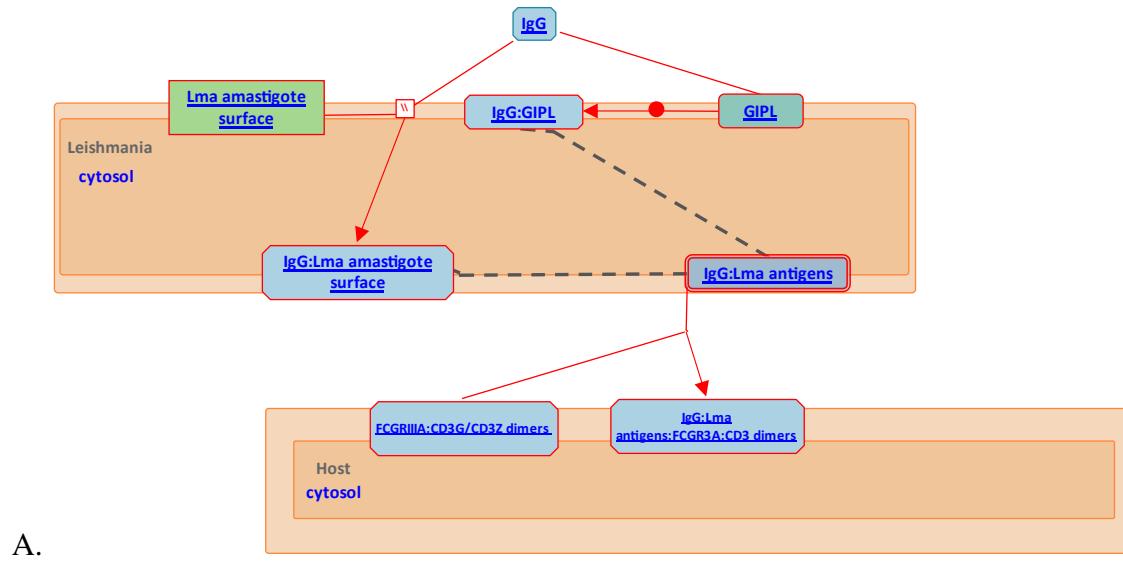
692

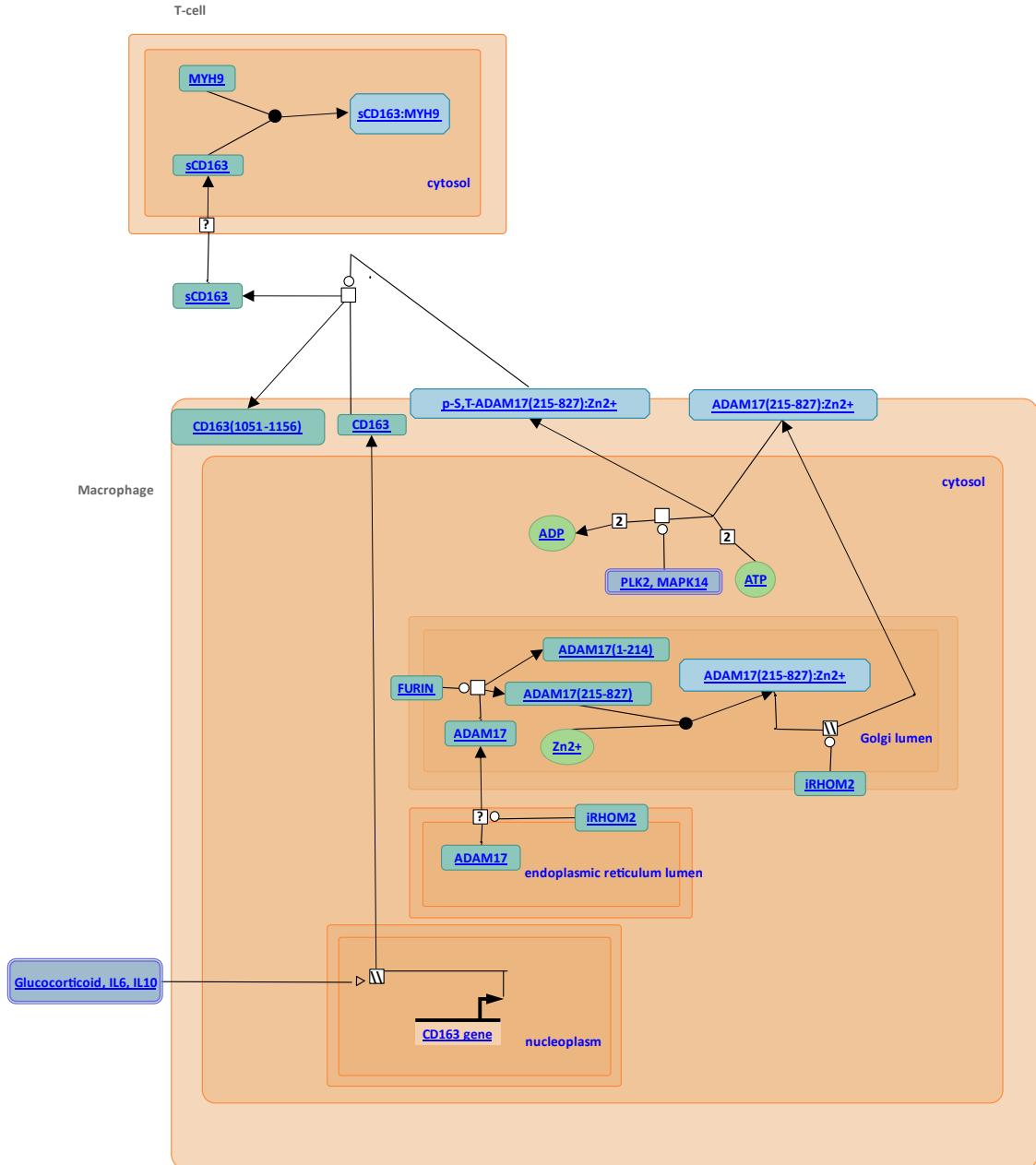

693 **Supplementary material description**

694 S1: It is an excel file with two tabs. The first one contains the gene input from the paper by
695 Dillon *et al.* (49). The second one contains the output of applying ORA to that gene list.

696 S2: It is an excel file with two tabs. The first one contains the gene input from the paper by
697 Gregory *et al.* (52). The second one contains the output of applying ORA to that gene list.

698


699


Figure 1: Textbook-style diagram representing the top-level pathway “*Leishmania* infection”. The major steps occurring in the dermis were compartmentalized into four categories: phagocytosis, killing mechanisms, cell recruitment, and *Leishmania* parasite growth and survival. On the webpage (<https://reactome.org/PathwayBrowser/#/R-HSA-9658195>), the magenta rectangular labels are interactive and take the user to the content of each subpathway.

- ☒ **Leishmania infection**
- ☒ **Parasite infection**
 - ☒ **Leishmania phagocytosis**
 - ⊕ **FCGR3A-mediated phagocytosis**
- ☒ **Killing mechanisms**
 - ⊕ **WNT5:FZD7-mediated leishmania damping**
 - ⊕ **Cell recruitment (pro-inflammatory response)**
 - ⊕ **Purinergic signaling in leishmaniasis infection**
- ☒ **Leishmania parasite growth and survival**
 - ⊕ **Anti-inflammatory response favouring Leishmania parasite infection**
 - ⊕ **CD163 mediating an anti-inflammatory response**
 - ⊕ **FCGR3A-mediated IL10 synthesis**
 - ⊕ **ADORA2B mediated anti-inflammatory cytokines production**
 - ⊕ **LTC4-CYSLTR mediated IL4 production**

Figure 2: Hierarchical structure of the *Leishmania* infection pathway showing the four sub-pathways and their contents. Each indentation introduces a new subpathway; as an example, “parasite infection” is the parent pathway for the subpathway “*Leishmania* phagocytosis”, which, to date only contains FCGR3A-mediated phagocytosis.

A.

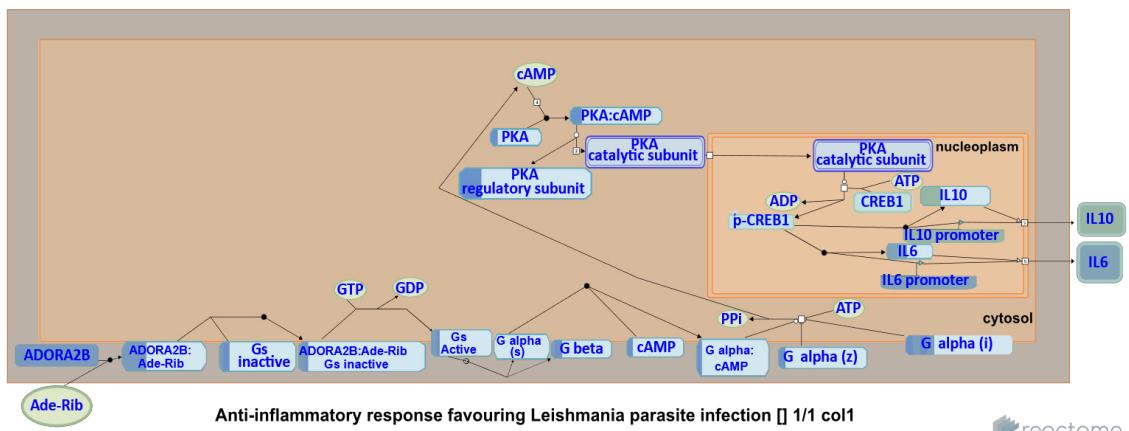


Figure 3: Standard graphical representation of pathways in Reactome. **A.** Fragment of the diagram for FCGR3A-mediated phagocytosis. It shows the reactions corresponding to the parasite opsonization process by the IgG. Parasitic components are highlighted in red. **B.** CD163 mediating an anti-inflammatory response. Each diagram shows the participating entities in the granularity of chemical compounds (green ovals), proteins (green rectangles), complexes (blue rectangles) and sets (blue rectangles with a double border). The arrangement

of the entities in the reactions can be easily followed on the web page, by clicking on the arrows that connect adjacent steps.

- **Leishmania infection (45/403) FDR: 9.97E-1**
 - **Parasite infection (9/157) FDR: 10E-1**
 - **Leishmania phagocytosis (9/157) FDR: 10E-1**
 - ⊕ **FCGR3A-mediated phagocytosis (9/157) FDR: 10E-1**
 - ⊕ **Killing mechanisms**
 - **Cell recruitment (pro-inflammatory response) (6/48) FDR: 7.9E-1**
 - ⊕ **Purinergic signaling in leishmaniasis infection (6/48) FDR: 7.9E-1**
 - **Leishmania parasite growth and survival (34/297) FDR: 9.87E-1**
 - ⊕ **Anti-inflammatory response favouring Leishmania parasite infection (34/297) FDR: 9.87E-1**
 - ⊕ **CD163 mediating an anti-inflammatory response (4/14) FDR: 7.72E-1**
 - ⊕ **FCGR3A-mediated IL10 synthesis (12/141) FDR: 9.95E-1**
 - ⊕ **ADORA2B mediated anti-inflammatory cytokines production (20/159) FDR: 8.98E-1**
 - ⊕ **LTC4-CYSLTR mediated IL4 production (4/14) FDR: 7.72E-1**

A.

B.

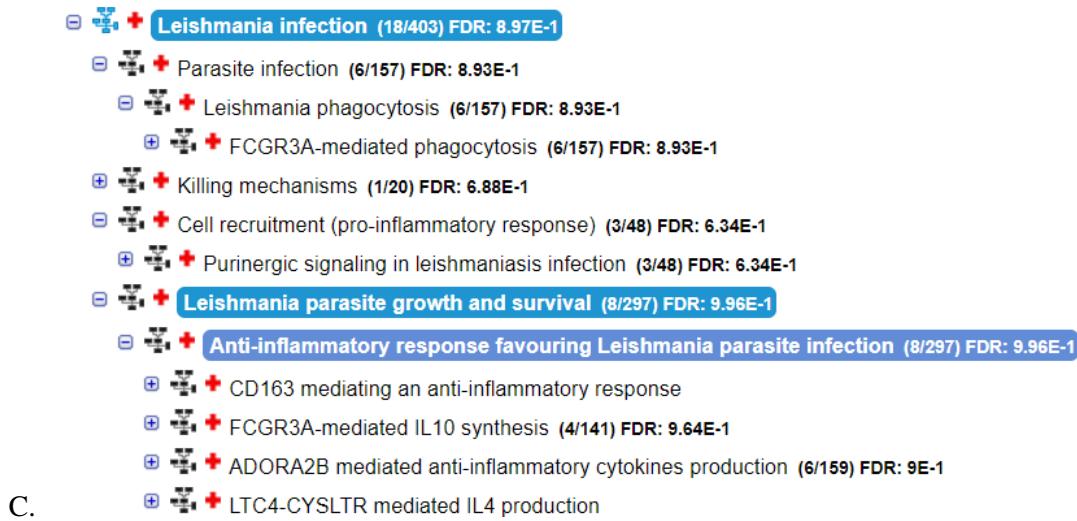


Figure 4: Results of applying ORA in Reactome, on the datasets generated by Dillon *et al.* and Gregory *et al.* A. Number of genes found in each subpathway from Dillon's dataset, with the associated false discovery rate (FDR) B. ADORA2B pathway enriched in Dillon's dataset shows upregulated genes involved in ADORA2B signaling cascade leading to the production of IL6 and IL10. C. Number of genes found in each subpathway from Gregory's dataset, and associated FDR.