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Abstract 1 

Understanding the principles of colonization resistance of the gut microbiome to the pathogen 2 
Clostridioides difficile will enable the design of next generation defined bacterial therapeutics. We 3 
investigate the ecological principles of community resistance to C. difficile invasion using a diverse 4 
synthetic human gut microbiome. Our results show that species richness is a key determinant of 5 
C. difficile growth across a wide range of ecological contexts. Using a dynamic computational 6 
model, we demonstrate that C. difficile receives the largest number and magnitude of incoming 7 
negative interactions. We identify molecular mechanisms of inhibition including acidification of the 8 
environment and competition over glucose. We demonstrate that C. difficile's close relative 9 
Clostridium hiranonis strongly inhibits C. difficile via a pH-independent mechanism. While 10 
increasing the initial density of C. difficile can increase its abundance in the assembled 11 
community, the community context determines the maximum achievable C. difficile abundance. 12 
Our work suggests that the C. difficile inhibitory potential of defined bacterial therapeutics can be 13 
optimized by designing communities that feature a combination of mechanisms including species 14 
richness, environment acidification, and resource competition. 15 

Introduction 16 

Interaction with native members of human gut microbiota inhibits the ability of gastrointestinal 17 
pathogenic strains of Clostridioides difficile, Salmonella enterica and Escherichia coli to secure an 18 
ecological niche and cause infection1. The importance of colonization resistance by gut microbiota 19 
has been particularly highlighted in C. difficile infections, where treatment with fecal microbiota 20 
transplants (FMT) from healthy donors has proven astonishingly effective in eliminating the 21 
symptoms of C. difficile2. Because FMT has notable risks including the transfer of antibiotic 22 
resistant organisms, potential associations with flares of inflammatory bowel disease, and in rare 23 
cases death3–5, defined bacterial therapeutics that have been well-characterized and 24 
standardized are needed to improve the safety and reproducibility of living bacterial therapeutic 25 
treatments. However, a key challenge to the design of effective and safe bacterial therapeutics is 26 
the vast design space of presence and absence of hundreds to thousands of potential organisms. 27 
Improving our understanding of the ecological principles of community resistance to C. difficile 28 
invasion could guide the design of maximally effective and safe therapeutics.  29 

Multiple synthetic communities that inhibit C. difficile either in vitro or in vivo using murine models 30 
have been identified6–11. The majority of the defined communities are found by screening reduced 31 
complexity communities composed of isolates from a stool sample. The isolates are combined 32 
either randomly or selected based on phylogenetic diversity6,7,10. Other C. difficile inhibiting 33 
communities have been more rationally designed based on predicted mechanisms of resource 34 
competition8 or statistical analyses of human and murine gut microbiome data that identify taxa 35 
that correlate with infection resistance9. However, the design process for therapeutic synthetic 36 
microbial communities frequently does not exploit quantitative information of inter-species 37 
interactions or molecular mechanisms. A deeper understanding of the ecological principles of 38 
communities that inhibit C. difficile could inform the rational design of therapeutic consortia.  39 

In macroecology, there is a long history investigating principles of invasion that has been more 40 
recently applied to microbial systems12. Invasion theory has identified four fundamental processes 41 
that determine the outcome of an invasion: dispersal, selection, drift, and diversification13. Biotic 42 
selection has been shown to be a key determinant of the outcome of an invasion, wherein higher 43 
diversity communities can competitively exclude an invader by reducing the availability of 44 
ecological niches and efficiently utilizing resources14–16. However, community biodiversity does 45 
not always correlate with invasion outcome, as other biotic interactions (e.g., production of 46 
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antimicrobial molecules), abiotic selection factors (e.g., environmental pH, resource availability) 47 
and factors from dispersal, drift, and diversification processes each contribute to the outcome of 48 
invasion. For instance, in the case of a plant pathogen, the structure of the resource competition 49 
network was a better predictor of invasion outcome than biodiversity17. In multiple invasions of 50 
microbial communities, the dispersal factor of the initial invader abundance (i.e. propagule 51 
pressure), was found to be the key determinant of the outcome of invasion16,18,19.   52 

Synthetic communities composed of known organisms can be used to investigate the driving 53 
factors of invasion outcome16,17. Synthetic communities enable control of initial inoculum (i.e., 54 
organism presence/absence and initial abundance), which can be manipulated to understand the 55 
ecological and molecular mechanisms influencing invader growth. Dynamic computational 56 
models informed by the experimental measurements such as the generalized Lotka-Volterra 57 
(gLV) model can be used to decipher microbial interactions and predict community assembly20–58 
22. Previous modeling efforts with synthetic communities have revealed that pairwise interactions 59 
are informative of community assembly, making this approach a powerful way to understand 60 
multi-species communities with a reduced number of experiments23.  61 

In this work, we use a defined synthetic gut community that represents the phylogenetic diversity 62 
of natural gut microbiota to study how principles of invasion theory apply to C. difficile invasion of 63 
gut microbiomes. To decipher microbial interactions and make predictions of community 64 
assembly and invasion, we use our data to construct a gLV model of our system and demonstrate 65 
that our model can accurately predict community assembly. Based on the inferred gLV interaction 66 
network, we demonstrate that negative interactions dominate the growth of C. difficile, which is a 67 
unique feature compared to all other species in our system. To investigate the ecological factors 68 
influencing invasion, we study the effect of propagule pressure and species richness on C. difficile 69 
growth. Our results show that species richness and C. difficile abundance exhibit a strong 70 
negative relationship across a wide range of community contexts. While increasing the propagule 71 
pressure of C. difficile can increase its abundance up to a maximum threshold, this threshold is 72 
dictated by the microbial community context and the ecological network. By characterizing a set 73 
of low richness communities that exhibit a range of C. difficile abundances, we identify multiple 74 
mechanisms that contribute to the inhibition of C. difficile growth including resource competition 75 
and external pH modification, highlighting that the mechanisms of inhibition of C. difficile vary 76 
across community contexts.  Lastly, we identify a key closely related species, Clostridium 77 
hiranonis, that inhibits C. difficile growth in different synthetic communities. Our data show that 78 
microbial communities feature a wide range of resistances to C. difficile and multiple mechanisms 79 
of C. difficile inhibition, which motivates exploiting information about ecological and molecular 80 
mechanisms to design bacterial therapeutics to inhibit C. difficile. 81 

Results 82 

C. difficile coexists in co-culture with a majority of a selected set of gut microbes  83 

We sought to understand the ecological principles of C. difficile invasion using synthetic gut 84 
communities (Fig.  1a). As a representative community, we chose a consortium of 13 prevalent 85 
gut microbes spanning the major human gut phyla Bacteroidetes, Firmicutes, Actinobacteria, and 86 
Proteobacteria24. The community features Clostridium scindens, a species previously shown to 87 
inhibit growth of C. difficile in gnotobiotic mice9, and a well-characterized set of 12 diverse species 88 
whose interactions on community assembly have been previously studied and computationally 89 
modeled23 (Fig. 1b). 90 
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We used this synthetic gut community to investigate inter-species interactions influencing C. 91 
difficile growth. To decipher inter-species interactions driving C. difficile growth, we assembled 92 
combinations of species in microtiter plates in an anaerobic chamber and measured cell density 93 
by absorbance at 600 nm (OD600) and community composition by 16S rRNA gene sequencing 94 
at timepoints of interest (Methods). Time series measurements of species absolute abundance 95 
were used to infer the parameters of the gLV model to analyze and predict the growth dynamics 96 
of communities and deduce inter-species interactions (Fig. 1c). The gLV model is a system of 97 
coupled ordinary differential equations that captures the growth rate and intra-species interactions 98 
of single species and inter-species interactions that modify the growth dynamics of each species. 99 
The gLV model can be used to decipher inter-species interactions and predict the dynamics of all 100 
possible sub-communities within a larger system23,25 and thus can be used to study the inter-101 
species interactions between C. difficile and the resident gut community (i.e. all species excluding 102 
C. difficile).  103 

We first characterized the temporal behavior of pairwise communities of C. difficile with each 104 
resident gut bacteria since we hypothesized that these direct interactions would have the largest 105 
impact on C. difficile growth compared to the interactions between resident gut bacteria. To this 106 
end, each resident species was grown alone and in co-culture with C. difficile, specifically the 107 
R20291 reference strain of the epidemic ribotype 027 (Fig. 1d,e). Since variation in initial species 108 
proportions have been shown to influence community assembly23,26, we inoculated the pairs at 109 
1:1 and 1:9 ratios of C. difficile to resident species based on OD600 values (Fig. 1e, Fig. S1). 110 
The communities were serially transferred every 26 hours to observe community assembly over 111 
multiple batch culture growth cycles to understand the longer-term behavior of the consortia. 112 

C. difficile and the resident species coexisted (both species present at greater than 0.05 OD600 113 
after 24 hours) in 25 of 33 (76%) conditions of 1:1 initial ratio, and 23 of 33 (70%) conditions of 114 
1:9 initial ratio (Fig. 1e, Fig. S1). This frequency of coexistence in pairwise consortia was similar 115 
to a previous study that characterized the 12 member resident community, wherein 1:1 initial 116 
ratios resulted in 72% coexistence and 5:95 initial ratio resulted in 60% of pairs coexisting23. In 117 
both cases, equal initial ratios yielded higher rates of coexistence, consistent with the 118 
observations that initial conditions are important determinants of community assembly. 119 

Although C. difficile and Bacteroides species co-existed in co-culture, the growth of C. difficile 120 
was reduced compared to its monospecies growth. Bacteroides thetaiotaomicron and 121 
Bacteroides ovatus strongly inhibited C. difficile growth, reducing C. difficile’s maximum carrying 122 
capacity in the first growth passage to 8% and 23% of its monospecies carrying capacity, while 123 
Bacteroides uniformis and Bacteroides vulgatus moderately inhibited C. difficile’s carrying 124 
capacity to 50% and 64% of its monospecies carrying capacity (Fig. 1d,e). Bacteroides species 125 
have been shown to inhibit C. difficile growth8,10,27 via suggested mechanisms of competition for 126 
mucosal carbohydrates or toxicity due to secondary bile acids8,27. Because our media does not 127 
contain mucins or bile acids, the observed inhibition indicates a separate inhibition mechanism of 128 
C. difficile by Bacteroides species. We also identified closely related species that inhibit C. difficile 129 
including C. hiranonis, the closest relative to C. difficile in the system (Fig. 1b), which reduced C. 130 
difficile maximum carrying capacity in the first growth passage to 78% of its monospecies carrying 131 
capacity, and the next closest relative Eubacterium rectale, which reduced C. difficile’s carrying 132 
capacity to 40% of its monospecies carrying capacity (Fig. 1d,e).  133 

C. difficile abundance in multispecies communities depends on species richness 134 

We next sought to understand if the growth inhibitions of C. difficile observed in the majority of 135 
pairwise communities persisted in multispecies communities and to investigate the ecological 136 
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principles governing C. difficile’s growth in multispecies communities. We designed a set of 2-13 137 
member resident communities to experimentally characterize based on a model trained on our 138 
monospecies data (Fig. 1d), pairs data (Fig. 1e), and previously published data of resident 139 
species pairs23. We inferred an initial set of parameters of the gLV model (“Preliminary Model”, 140 
Fig. S2a, Table S3) based on these data (Table 1) and used the model to predict the abundance 141 
of C. difficile at 48 hours in all possible 2-13 member resident communities (8,178 total 142 
communities, Fig. S2b). Using the predictions from the Preliminary Model, we selected a set of 143 
94 communities whose C. difficile abundance at 48 hours spanned the full range of predicted C. 144 
difficile abundances and featured approximately equal representation of species at various initial 145 
species richness (number of species in the resident community). We experimentally assembled 146 
these communities with an initial equal abundance of all species and measured the composition 147 
of communities after 48 hours, the time by which the majority of communities had reached a 148 
steady-state according to the Preliminary Model predictions. 149 

We first looked at the relationship between initial species richness and C. difficile abundance. The 150 
biodiversity-invasibility hypothesis holds that species-rich communities have a higher fraction of 151 
ecological niches occupied, which reduces the availability of niches for invader species and thus 152 
enhances resistance to invasion relative to low-richness communities28. In agreement with the 153 
ecological theory, the final abundance of C. difficile decreased as a function of species richness 154 
(Fig. 2a). The negative relationship between species richness and C. difficile abundance 155 
remained the same whether richness was evaluated at the initial or final time point (Fig.  2a, S3a). 156 
Notably, C. difficile did not establish in any communities with richness greater than eight. The full 157 
community (13 resident members) excluded C. difficile from the community by 48 hours. This 158 
resistance of the full community was observed not only with the ribotype 027 strain, but also to 159 
three individual clinical isolates of C. difficile that originated from patients within 72 hours of their 160 
Clostridioides difficile Infection (CDI) diagnosis29 (Fig. S3b, Methods).  161 

We wanted to understand whether the strong inverse relationship between species richness and 162 
abundance was unique to C. difficile or also present for other species in our community. To 163 
investigate this question, we inferred a new set of gLV model parameters (“Full Model”, Fig. 2b, 164 
Table S4) using measurements of monospecies, pairwise and multi-species consortia (Table 1) 165 
and found that the Full Model had a high goodness of fit to the training data (Fig. S4a, Pearson 166 
r=0.89, p<0.001, model fits for monospecies and pairwise data shown in Fig. 1d,e). To validate 167 
the predictive capability of the Full Model, we held out 24 randomly sampled communities from 168 
the training data set that spanned a broad range of species richness and C. difficile abundance 169 
(Fig. S4b) and found that the model predicted the community composition of the held-out dataset 170 
with high accuracy (Fig. 2c, Pearson r=0.84, p<0.001). In contrast, the Preliminary Model trained 171 
on monospecies and pairs was substantially less predictive of these 24 multispecies communities, 172 
indicating that the model required information from the multi-species experiments (Fig. S4c, 173 
Pearson r=0.52, p<0.001). We performed parameter uncertainty analysis to determine if the 174 
parameters were sufficiently constrained by the data using the Metropolis–Hastings Markov chain 175 
Monte Carlo (MCMC) method (Methods). The coefficient of variation (CV) of the parameters 176 
ranged from 0.006 to 0.06 and 82% of parameters had a CV less than 0.05 (Fig. S4d), indicating 177 
that the parameters were sufficiently constrained by the data.  178 

The Full Model’s accurate prediction of the held-out dataset indicates that the Full Model could 179 
be used to understand our system and to reliably predict multi-species community composition. 180 
Therefore, we used the Full Model to simulate the abundance of each species in all possible 181 
communities (16,383 total communities) to analyze the relationship between initial species 182 
richness and species abundance at 48 hours for all species (Fig. 2e). In the simulations, the 48  183 
hour abundance of C. difficile displays a stronger dependence on species richness than any other 184 
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species in our system (Fig. 2e, gray points), as evidenced by an abrupt decrease in C. difficile 185 
abundance for communities with greater than six species. This strong inhibition of C. difficile as a 186 
function of species richness can be explained by the inferred inter-species interaction network, 187 
wherein C. difficile displayed the largest number and magnitude of incoming negative interactions 188 
in the system (Fig. 2d). In addition, C. difficile positively impacted the growth of the majority of 189 
species in the community, which combine with the negative incoming interactions to generate a 190 
negative feedback loop on the growth of C. difficile. While the abundance of C. hiranonis and 191 
Prevotella copri in the subset of experimentally measured communities also exhibited a strong 192 
negative relationship with species richness (Fig. 2e, colored points), this trend was not observed 193 
in the model predictions of all possible communities (Fig. 2e, gray points). The experimentally 194 
measured communities were biased in that all communities contained C. difficile, such that 195 
stronger inhibition observed in the experimental set suggests C. difficile inhibited the growth of C. 196 
hiranonis and P. copri. This hypothesis is supported by the Full Model which features negative 197 
interactions from C. difficile to C. hiranonis and P. copri (Fig. 2b). Overall, our model analysis 198 
shows that in this system, the abundance of C. difficile is uniquely dependent on species richness 199 
due to a disproportionate number of negative incoming and outgoing positive inter-species 200 
interactions, leading to multiple negative feedback loops on the growth of the C. difficile.   201 

Initial abundance is a key determinant of C. difficile growth in synthetic communities  202 

The propagule-pressure hypothesis dictates that increasing propagule pressure, or the amount 203 
of invader (a product of its dispersal frequency and abundance), increases the chance of a 204 
successful invasion30. Therefore, we next looked at the relationship between the propagule 205 
pressure of C. difficile and its abundance at 48 hours. In our system, we add C. difficile to the 206 
system a single timepoint, so the propagule pressure of C. difficile is equal to its initial abundance. 207 
In agreement with the theory, we found that the final abundance of C. difficile correlates with the 208 
initial fraction of C. difficile in the community (Fig. 3a, Pearson r=0.75, p<0.001). We analyzed 209 
the 2-13 member resident communities from our richness experiment (gray data points, Fig. 3a) 210 
in addition to measurements of 15, 3-4 member resident communities (Table S2) that we 211 
inoculated at multiple species ratios (colored data points, Fig. 3a). We focused on 3-4 member 212 
communities because communities in this richness range feature a wide range of C. difficile 213 
abundance at 48 hours (Fig. 2a). The 15 communities were selected to span a wide range of 214 
predicted C. difficile abundances and to contain communities with inferred interaction networks 215 
dominated by negative interactions, positive interactions, or approximately equal positive and 216 
negative interactions as predicted by the Preliminary Model. In all 15 communities, the abundance 217 
of C. difficile at 48 hours was higher in communities inoculated with a high initial density of C. 218 
difficile (approximately 65% of total community biomass) compared to a low initial density of C. 219 
difficile (approximately 10% of total community biomass) (Fig. 3a, inset). For five of these 220 
communities, we tested eight initial C. difficile densities and observed an increasing saturating 221 
function of C. difficile absolute abundance at 48 hours with increasing propagule pressure (Fig. 222 
3b). These results demonstrate that increasing the propagule pressure of C. difficile can lead to 223 
higher C. difficile abundance in the assembled community within a given range, but beyond a 224 
threshold of initial abundance, the maximum abundance of C. difficile was dictated by the 225 
community context.  226 

In the experiments and simulations, the total initial OD600 was held constant, resulting in lower 227 
initial OD600 of each species with increasing richness (Methods). Therefore, in light of C. 228 
difficile’s dependence on propagule pressure, we considered the possibility that C. difficile’s 229 
dependence on species richness (Fig. 2a) could be a result of lower initial abundance in higher 230 
richness communities. To test this possibility, we introduced a range of initial densities of C. 231 
difficile into the full community (richness of 13). We observed that C. difficile grew to a higher 232 
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abundance in the full community when propagule pressure was increased, although the maximum 233 
abundance was lower than in the majority of 2-4 member communities (Fig. 2a, 3b). This result 234 
indicates that while increasing propagule pressure of C. difficile can partially overcome the 235 
inhibiting effect of species richness, richness still decreases the maximum saturating C. difficile 236 
abundance. 237 

To quantify the differential responses of the communities to varying initial C. difficile abundance, 238 
we defined the sensitivity to propagule pressure as the initial invader fraction that resulted in the 239 
half-maximal abundance of the invader at 48 hours, analogous to the EC50 of a dose response 240 
curve (Fig. 3c). The communities displayed different sensitivities to initial C. difficile abundance, 241 
with the EC50 ranging from 0.1 to 0.2 initial fraction of C. difficile. Community N (Table S2) was 242 
the most sensitive to invasion by C. difficile while the full community displayed the lowest 243 
sensitivity.  244 

We next wanted to learn if the relationship between C. difficile abundance and propagule pressure 245 
changed over time. To do so, we used the Full Model to simulate C. difficile’s abundance in the 246 
full community from 0 to 96 hours at various propagule pressures. The simulations demonstrate 247 
that C. difficile’s abundance exhibits a strong dependence on propagule pressure at early times 248 
(10-20 hours), but by steady state (>48 hours) the effect of propagule pressure on C. difficile 249 
abundance is reduced (Fig. S5). The insights from the model suggest that while propagule 250 
pressure may have a significant effect on C. difficile’s abundance in the short term, the abundance 251 
of C. difficile at steady-state is dominated by other factors such as species richness and inter-252 
species interactions.  253 

While species richness and community composition influence C. difficile’s growth, we also 254 
observed that C. difficile had an impact on the resident community. When adding increasing 255 
amounts of C. difficile to six resident communities (Fig. 3b), we found that the composition of the 256 
resident communities at 48 hours varied as a function of the initial C. difficile abundance. To 257 
quantify this variation, we computed the normalized Euclidean distance between the community 258 
composition in the presence and absence of C. difficile (Methods). The Euclidean distance 259 
correlated with the abundance of C. difficile in the community (Fig. S6a, Pearson’s r=0.58, 260 
p<0.001). Mirroring our experimental data, the abundance of C. difficile at 48 hr correlated with 261 
the Euclidean distance between the resident community structure and the uninvaded resident 262 
community in simulations of 1-13 member resident communities invaded with C. difficile six hours 263 
after inoculation (Fig. S6b, Pearson’s r=0.61, p<0.001). Together, the experimental data and 264 
model simulations indicate that higher abundance of C. difficile results in a larger impact on the 265 
composition of the resident community. 266 

In the full community, we observed that the abundance of D. piger and B. hydrogenotrophica 267 
significantly increased in communities with higher C. difficile, while the abundance of B. vulgatus 268 
significantly decreased (Fig. 3c). Notably, these trends were observed in the full community with 269 
the ribotype 027 strain of C. difficile as well as the full community with three clinical isolates of C. 270 
difficile (Fig. S7a). The interaction network from our model (Fig. 2b) features a positive interaction 271 
between C. difficile and B. hydrogenotrophica, suggesting that increasing initial C. difficile 272 
abundance directly promotes the growth of B. hydrogenotrophica. However, the inter-species 273 
interaction coefficients impacting D. piger and B. vulgatus were not consistent with the observed 274 
trends with these two species. These data suggest that the gLV model may not capture the effects 275 
of high initial C. difficile density on the growth of all resident gut species. While at high initial 276 
densities C. difficile significantly increased the abundance of B. hydrogenotrophica in the full 277 
community (Fig. 3c), B. hydrogenotrophica abundance was not affected in the 3-member 278 
communities F, G, and N (Fig. S7b), highlighting that C. difficile’s impact on a given species 279 
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depends on the community context and its initial abundance. We note that B. hydrogenotrophica 280 
and D. piger share a similar metabolic niche as hydrogen consumers31,32, suggesting C. difficile 281 
could enhance their growth through a shared mechanism. 282 

Environmental pH is a major factor influencing C. difficile growth in synthetic communities 283 

While the community experiments revealed the importance of species richness and propagule 284 
pressure on the establishment of C. difficile in multispecies communities, there remains 285 
unexplained variation in the data. For example, communities with the same richness invaded with 286 
equal abundances of C. difficile showed a wide range of C. difficile abundances at 48 hours (Fig. 287 
2a). Since environmental pH has been shown to influence C. difficile’s growth in previous 288 
studies33,34, we turned next to investigate how biotic modification of the environment alters the 289 
growth of C. difficile. To this end, we grew the set of 15, 3-4 member communities for six hours 290 
and then invaded with low or high initial densities of C. difficile. At the time of invasion, we 291 
measured the composition of the resident community and the pH of the media (Fig. 4a). We also 292 
invaded the communities at zero hours with low or high initial densities of C. difficile to understand 293 
the role of invasion timing on the growth of C. difficile. C. difficile’s ability to establish in multiple 294 
communities significantly depended on the timing of introduction (Fig. 4b), indicating that biotic 295 
modification of the environment during those six hours altered C. difficile’s ability to grow.  296 

Communities that lowered the pH of the media during the first six hours featured lower C. difficile 297 
abundance (Fig. 4d). However, communities with lower pH at the time of invasion also had higher 298 
total biomass (Fig. 4d, inset). Since these variables are related due to growth-coupled production 299 
of acidic fermentation end products, pH or resource competition could be responsible for inhibition 300 
of C. difficile. Because C. difficile abundance increases with environmental pH (Fig. 4c), we 301 
hypothesized that the pH of the media contributed to growth inhibition. To confirm the contribution 302 
of pH, we grew eight of the communities harvested and sterilized the community supernatants 303 
after six hours. We grew C. difficile in either the filtered supernatant or a modified filtered 304 
supernatant wherein the pH was adjusted to the pH of the fresh media to eliminate the impact of 305 
pH on growth (Fig. 4e). For the majority of the communities, the growth phenotype of C. difficile 306 
in the filtered community supernatants (Fig. 4e) matched the growth phenotype of C. difficile 307 
grown in the communities (Fig. 4d). However, Communities E and F inhibited C. difficile growth 308 
in co-culture, while the supernatants showed no significant difference in C. difficile growth. In 309 
Communities H, I and K, which strongly inhibit C. difficile in both co-culture and supernatant, 310 
increasing the supernatant pH to the pH value of fresh media eliminated the growth inhibition of 311 
C. difficile (Fig. 4e), indicating that pH was the driving factor of C. difficile inhibition in these 312 
community supernatants. Each of these communities contained an abundant Bacteroides species 313 
(Table S2) whose fermentation end products can acidify the media, suggesting abundant 314 
acidifiers are a common feature of the communities that inhibit C. difficile. 315 

In contrast to this pH-dependent inhibition, the filtered supernatant of Community O (CommO) 316 
composed of C. hiranonis, Collinsella aerofaciens and Blautia hydrogenotrophica, whose pH did 317 
not significantly differ from the pH of fresh media, inhibited the growth of C. difficile regardless of 318 
pH adjustment (Fig. 4e), indicating that this community inhibits C. difficile via a pH-independent 319 
mechanism. C. difficile was not inhibited by the filtered supernatant of Community E (CommE) 320 
composed of C. hiranonis, Desulfovibrio piger and Eggerthella lenta, which uniquely had a higher 321 
pH than fresh media, but did inhibit C. difficile when the pH was reduced to the pH of fresh media 322 
(Fig. 4e). This suggests that the filtered supernatant promotes C. difficile’s growth by enhancing 323 
environmental pH and the community inhibits C. difficile’s growth by a separate pH-independent 324 
mechanism. The growth inhibition was only revealed when the pH increase of the media was 325 
eliminated, demonstrating an interplay of different mechanisms influencing C. difficile growth. 326 
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Overall, we determined that the modification of environmental pH alters C. difficile growth in many 327 
communities. To determine if C. difficile’s sensitivity to pH was unique and thus a potential 328 
mechanism contributing to C. difficile’s unique and strong inverse dependence on species 329 
richness (Fig. 2e), we measured the carrying capacity of each species as a function of 330 
environmental pH in monoculture and determined the slope of the line fit to these data (Fig. S8a), 331 
representing the sensitivity of species growth to external pH. Our results demonstrated that C. 332 
difficile’s pH sensitivity was not unique, ranking eighth most sensitive out of the 14 species (Fig. 333 
S8b). Therefore, while acidification of the media is one mechanism by which communities inhibit 334 
C. difficile in our system, our results suggest that there are also pH-independent mechanisms that 335 
contribute to a strong dependence between species richness and C. difficile growth.  336 

C. hiranonis inhibits C. difficile through a pH-independent mechanism 337 

Notably, the two communities that displayed pH-independent growth inhibition (CommE and 338 
CommO) contained C. hiranonis, which has a strong bidirectional negative interaction with C. 339 
difficile in our Full Model (Fig. 2b). Our model predicted that the abundance of C. difficile at 48 340 
hours decreases with increasing initial abundance of C. hiranonis in Communities E, O and the 341 
C. difficile-C.hiranonis pair. We tested this prediction experimentally and confirmed that C. 342 
hiranonis grew to a higher absolute abundance and C. difficile grew to a lower absolute 343 
abundance in communities inoculated with higher initial fraction of C. hiranonis (Fig. 5b, inset). 344 
The growth of C. difficile was sensitive even to low initial amounts of C. hiranonis, featuring a 345 
significant decrease in growth between 0% and 10% initial C. hiranonis in CommE (>4-fold 346 
decrease) and CommO (>1.5 fold decrease) (Fig. 5b). The strength of inhibition of C. difficile as 347 
a function of the initial density of C. hiranonis was substantially higher in CommE and CommO 348 
than in the C. hiranonis-C. difficile pair (Fig. 5b). This result indicates that the other species in the 349 
communities enhanced the inhibitory effect of C. hiranonis on C. difficile growth. 350 

We next considered the mechanism of C. hiranonis’s inhibition of C. difficile. C. hiranonis is known 351 
to convert primary bile acids into secondary bile acids which are inhibitory to C. difficile35, however 352 
with no primary bile acids in our media we turned to other possible inhibition mechanisms. C. 353 
difficile was inhibited by the filtered supernatants of CommE, CommO and C. hiranonis (Fig. 4e, 354 
5c), indicating the inhibition effect does not require direct cell contact, suggesting mechanisms 355 
such as production of antibiotics or toxic metabolic byproducts, competition for resources, or pH 356 
modification. In a soft agar overlay assay, where C. difficile grows in soft agar layered on top of a 357 
C. hiranonis colony, we did not see inhibition by C. hiranonis, although we did see zones of 358 
inhibition by specific Bacteroides species (Fig. S9). Because the pressures of resource 359 
competition are removed in a soft agar assay (C. difficile has access to resources in the soft agar 360 
layer), we hypothesized that inhibition observed in liquid culture with C. hiranonis was due to 361 
resource competition. The hypothesis of resource competition by C. hiranonis was informed by 362 
the ecological theory that closely related species are likely to compete for overlapping resource 363 
niches, which has been observed in microbial systems36. This theory is supported by our model 364 
which features a moderate but statistically significant positive correlation between the Full Model 365 
inferred inter-species interaction coefficients and phylogenetic distance between species (Fig. 366 
S10, Pearson r=0.34, p<0.001). Additionally, C. hiranonis has been shown to consume more 367 
metabolites than any of the other resident species in our media conditions23, suggesting the 368 
potential to compete with C. difficile over other resources.  369 

To investigative potential mechanisms of resource competition between C. difficile and C. 370 
hiranonis, we focused on two key resources present in our media that C. difficile has been shown 371 
to utilize: glucose and succinate37,38. We measured the concentration of these resources in the 372 
supernatant of C. difficile, C. hiranonis, CommE, and CommO after 20 hours (Methods). 373 
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Corroborating previous data, each donor supernatant inhibited the growth of C. difficile, and 374 
adjusting the pH of the supernatants to the pH of fresh media did not remove the inhibition (Fig. 375 
4e, 5c). While succinate concentrations were either moderately increased or similar to the 376 
concentration in fresh media (Fig. S11), glucose was substantially lower in the supernatants (Fig. 377 
5c). Adjusting the glucose concentration to the concentration of fresh media almost completely 378 
restored C. difficile growth in the CommE and CommO supernatants, but only moderately restored 379 
growth in the C. hiranonis supernatant (Fig. 5c). These results indicate that competition over 380 
glucose and not pH modification was a driving mechanism of C. difficile inhibition in CommE and 381 
CommO. However, neither competition over glucose nor pH modification was able to explain the 382 
inhibitory effect of C. hiranonis on C. difficile in the pairwise community, suggesting C. hiranonis 383 
could be inhibiting C. difficile by competing for a different resource. Therefore, our results suggest 384 
that there are multiple mechanisms of C. difficile inhibition by C. hiranonis and the other resident 385 
gut bacteria and that these mechanisms depend on community context.  386 

Discussion 387 

We combined bottom-up construction of microbial communities with dynamic computational 388 
modeling to investigate microbial interactions impacting the growth of C. difficile. Our work 389 
demonstrates that microbial communities feature a wide range of resistances to C. difficile 390 
invasion. This variability in invasion outcome as a function of community context indicates that 391 
the choice of organisms is a major design factor that can be optimized to treat C. difficile infections 392 
and motivates exploiting ecological information in the design process. Previous efforts to design 393 
defined consortia for C. difficile inhibition used top-down selections by reducing the complexity of 394 
cultured fecal samples alone or combined with screening of antibiotic resistance phenotypes6,7. 395 
Some consortia have been designed by combining selected species in a bottom-up approach, 396 
but we note that these selections use a single design criterion8,9. Beyond previously demonstrated 397 
mechanisms of bile acid transformations9 and mucosal sugar competition8, our results 398 
demonstrate that acidification of the environment and competition over limiting resources such as 399 
glucose can inhibit C. difficile growth. Further, species richness was a driving factor of C. difficile 400 
growth across a wide range of community contexts. In sum, these results suggest that multiple 401 
mechanisms could be combined to design an optimal defined bacterial therapeutic to inhibit C. 402 
difficile.   403 

Studies have shown that gut microbiomes of patients with CDI have significantly lower richness 404 
than healthy controls39,40, but this association does not distinguish whether CDI reduces the 405 
richness of gut microbiomes or low richness microbiomes are more susceptible to CDI. The 406 
striking trend between richness and C. difficile abundance in our data suggests that low richness 407 
microbiomes are more susceptible to CDI. Supporting this hypothesis, the susceptibility of low 408 
richness communities to invasion has been demonstrated in other microbial systems14,41. This 409 
suggests that the low gut microbiome richness induced by antibiotics42 could contribute to 410 
increased CDI risk after antibiotic use43. Additionally, the efficacy of FMTs may be due to the high 411 
richness of stool samples which are estimated to have greater than one hundred species44.  412 

Based on our work, high richness communities would be the most effective bacterial therapeutics 413 
to inhibit C. difficile colonization. The scalable manufacturing of high richness bacterial 414 
therapeutics is challenging, indicating the need for new bacterial manufacturing techniques to 415 
reliably culture communities of gut species as opposed to single species, while maximizing 416 
evenness and growth. Nevertheless, if scalable manufacturing of high richness communities 417 
remains an unresolved challenge, our work suggests it is possible to design low richness inhibitory 418 
communities. While all high richness communities (eight species or more) excluded C. difficile in 419 
our system, we did find low richness communities that excluded C. difficile. For example, the 3-420 
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member Community I excluded C. difficile as effectively as the full community, featuring a similar 421 
maximum C. difficile abundance as a function of initial C. difficile density (Fig. 3b). Corroborating 422 
these results, low richness communities as small as 5-7 members have been shown to inhibit C. 423 
difficile in vitro and in murine models7–9.  424 

Our results demonstrated that communities can inhibit growth of C. difficile by acidifying the 425 
environment. We showed that communities that reduce the external pH below 6.2 inhibit C. 426 
difficile in a pH-dependent manner, consistent with studies showing that C. difficile has lower 427 
viability and rates of sporulation in acidic environments33,34. While our in vitro system lacks the 428 
pH-buffering secretion of bicarbonate by host intestinal epithelial cells, the amount of bicarbonate 429 
buffer in our media (4.8 mM) is within the estimated range in the gastrointestinal tract (2-20mM)45, 430 
suggesting the observed pH changes in our media could be physiologically relevant. Even with 431 
host bicarbonate secretions that regulate the pH of the gut, fermentation by colonic bacteria 432 
impacts luminal pH, which can be manipulated using dietary substrates46. Notably, a human 433 
cohort study found a strong association between alkaline fecal pH and CDI47. Together, these 434 
suggest that manipulation of the pH of the gut environment via bacterial therapeutics or dietary 435 
interventions is a potential microbiome intervention strategy to inhibit C. difficile. To optimize 436 
inhibitory potential of bacterial therapeutics, in addition to designing communities that acidify the 437 
environment, communities could also be designed to maximize resource competition between 438 
resident members and C. difficile. We found that relieving resource competition through addition 439 
of glucose reduced C. difficile inhibition by 22-90% depending on the community context (Fig. 440 
5c). Therefore, constituent members of the bacterial therapeutics that compete with C. difficile for 441 
the estimated 20% of carbohydrates, such as glucose, that escape absorption by the host48,49 442 
could reduce C. difficile colonization.  443 

We find that increasing the propagule pressure of C. difficile leads to an increase in the pathogen’s 444 
abundance in the community (Fig. 3a,b). While propagule pressure has been shown to determine 445 
invasion success in microbial invasions16,18,19, here we demonstrate that this applies to C. difficile 446 
in synthetic gut communities. Propagule pressure is known to be important in murine C. difficile 447 
infections, where mice cohoused with supershedders containing 108 CFU g-1 C. difficile in their 448 
feces became colonized with C. difficile, whereas mice cohoused with low shedders containing 449 
102 CFU g-1 C. difficile did not become colonized50. However, the relationship between C. difficile 450 
dosage and incidence of CDI in humans is unknown. Our results suggest that the density of C. 451 
difficile could be an important variable in the outcome of C. difficile invasions in a clinical setting. 452 
In our experiments, we found that while increasing the propagule pressure of C. difficile increases 453 
its abundance in the community over a range of initial densities, communities varied in the 454 
maximum C. difficile abundance (Fig. 3a,b). This suggests that different human gut microbiome 455 
compositions vary in their resistance to invasion of varying amounts of C. difficile due to ecological 456 
interactions. 457 

We were able to construct a gLV model that accurately predicts the composition of 2-13 member 458 
communities by training on similarly complex data (1-13 members), but parameters trained on 459 
low richness communities alone (1-2 species) were not able to predict these higher richness 460 
communities, as has been seen previously25. The inferred inter-species interaction network was 461 
dominated by competition, with 73% negative interactions (αij < -0.01), consistent with the large 462 
number of negative interactions observed in other microbial communities25,51. Notably, C. difficile 463 
was the only species that was inhibited by all other community members. Infection by C. difficile 464 
disrupts the environment of gut bacteria by causing diarrhea (i.e. reduces residence time for gut 465 
bacteria), inducing intestinal inflammation, and altering the resource landscape52, suggesting the 466 
possibility that gut bacteria have evolved to negatively impact the growth of C. difficile in order to 467 
promote their fitness in the gut.  468 
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Bacteroides have been found to both inhibit and promote C. difficile growth in different 469 
environments8,10,38,53, but in our system all Bacteroides species in the community strongly inhibited 470 
C. difficile. We did not observe a strong inhibition of C. difficile by C. scindens which has been 471 
documented to occur via production of secondary bile acids that inhibit C. difficile germination9 472 
because our media does not contain bile acids. Instead, in our system the closest relative of C. 473 
difficile, C. hiranonis, was the strongest inhibitor of C. difficile abundance. Currently, phylogenetic 474 
relatedness is a major design factor used to select species for defined bacterial therapeutics. For 475 
example, defined bacterial therapeutics have been constructed by treating fecal samples with 476 
ethanol to select for spore-forming bacteria, which are primarily closely related Clostridiales 477 
species54. Our work shows that including other more diverse species in CommE and CommO 478 
resulted in stronger inhibition of C. difficile as a function of C. hiranonis initial abundance. 479 
Therefore, while our results demonstrate that closely related species can inhibit C. difficile, 480 
including other diverse commensal bacteria in the community could substantially increase the 481 
degree of inhibition. 482 

In sum, we identified ecological and molecular mechanisms of resistance to invasion by C. difficile 483 
using a synthetic gut microbiome. While our system lacks the full diversity of the human gut 484 
microbiome and a host-interaction component, many of our results support principles of invasion 485 
theory based on a broad range of systems, suggesting that some of these principles could be 486 
generalized to the mammalian gut environment. Future work could create panels of gut microbial 487 
communities that feature different weightings of the multiple community resistance mechanisms 488 
demonstrated in this work. These panels could be tested in vitro for inhibition of C. difficile growth 489 
and promising candidates could be introduced into germ-free mouse models to evaluate their C. 490 
difficile inhibitory potential as bacterial therapeutics. 491 
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Strain information and starter culture inoculations 508 
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Cells were cultured in an anaerobic chamber (Coy Lab products) with an atmosphere of 2.5±0.5% 509 
H2, 15±1% CO2 and balance N2. The strains used in this work were obtained from the sources 510 
listed in Table S1. The three clinical C. difficile isolates (MS002, MS010, MS011) were C. difficile 511 
NAAT (GeneXpert) positive via admission stool sample and toxin A (tcdA) and toxin B (tcdB) 512 
positive via in-house research PCR. Each patient was diagnosed with and treated for CDI. Single-513 
use glycerol stocks were prepared as described previously25. Single species starter cultures were 514 
inoculated by adding 100 µL of a single-use 25% glycerol stock to 5mL of Anaerobic Basal Broth 515 
media (ABB, Oxoid). E. rectale starter cultures were supplemented with 33 mM Sodium Acetate 516 
(Sigma-Aldrich) and D. piger starter cultures were supplemented with 28 mM Sodium Lactate 517 
(Sigma-Aldrich) and 2.7 mM Magnesium Sulfate (Sigma-Aldrich). To begin experiments with 518 
organisms in similar growth phases, starter cultures were inoculated either 16 hours or 41 hours 519 
prior to experimental set up, depending on the growth rate of the organism (Table S1). 520 

Monospecies and pairs experiments 521 

Starter cultures were diluted to 0.0022 OD600 in ABB (Tecan Infinite Pro F200). For monospecies 522 
in Fig. 1d, diluted cultures were added directly to 96 deep well plates for final OD600 of 0.0022. 523 
For pairs in Fig. 1e, diluted cultures were combined into pairs in 96 deep well plates at 1:1 or 1:10 524 
volume ratios for final OD600 of 0.0011 or 0.00022 and 0.00198. Cultures were combined using 525 
a liquid handling robot (Tecan Evo 100). Plates were covered with gas-permeable seal 526 
(BreatheEasy) and incubated at 37°C with no shaking.  527 

Multispecies community experiments 528 

Starter cultures were diluted to 0.0066 OD600. Diluted cultures were combined into communities 529 
in 96 deep well plates using a liquid handling robot (Tecan Evo). The 94 sub-communities in Fig. 530 
2a were created by combining equal volumes of each diluted starter culture, so the initial OD600 531 
of each species in the community was 0.0066 divided by the number of species. The 3-4 member 532 
C. difficile titration communities in Fig. 3b were combined such that all non-C. difficile species 533 
had an initial OD600 of 0.00165, and C. difficile had an initial OD600 of 0, 0.00026, 0.00055, 534 
0.0012, 0.0021, 0.0033, 0.00495, and 0.0074 in the 3 member communities and 0, 0.00035, 535 
0.00073, 0.00165, 0.0028, 0.0044, 0.0066, and 0.0099 in the 4 member communities for initial 536 
fractions 0, 0.1 ,0.2, 0.3, 0.4, 0.5, and 0.6 respectively. The full community in Fig. 3b was 537 
combined so that all non-C. difficile species had an initial OD600 of 0.00047, and C. difficile had 538 
an initial OD600 of 0, 0.00032, 0.0015, 0.0026, 0.0041, 0.0061, 0.0092 for initial fractions 0, 0.1, 539 
0.2, 0.3, 0.4, 0.5, and 0.6 respectively. The communities in Fig. 4a were combined so that all non-540 
C. difficile species had an initial OD600 of 0.00165, and C. difficile had an initial OD600 of 0.00055 541 
(10% of community) in the low density zero hour invasion condition, 0.009 (65% of community) in 542 
the high density zero hour invasion condition, and was not introduced into the six hour invasion 543 
condition. After six hours of incubation, the community OD600 was measured and C. difficile was 544 
added to the six hour invasion conditions so that its OD600 was 10% (low density condition) or 545 
33% (high density condition) of the community. The C. hiranonis titration communities in Fig. 5b 546 
were combined so that all non- C. hiranonis species had an initial OD600 of 0.00165, and C. 547 
hiranonis had an initial OD600 of 0, 0.00055, 0.00012, 0.0021, 0.0033, 0.0050, 0.012 and 0.045 548 
for initial fractions 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9 respectively. Plates were covered with 549 
gas-permeable seals (BreatheEasy) and incubated at 37°C with no shaking. 550 

Culture sample collection 551 

At each timepoint, samples were mixed and aliquots were removed for sequencing and for 552 
measuring OD600. We measured OD600 of two dilutions of each sample and selected the value 553 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.23.436677doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

that was within the linear range of the instrument (Tecan Infinite Pro F200). Sequencing aliquots 554 
were spun down aerobically at 3500 rpm for 15 minutes and stored at -80°C. For timepoints with 555 
dilutions, samples were mixed and aliquots were collected for sequencing and OD600 556 
measurements before the samples were diluted 1:20 into fresh media. Abundance of the diluted 557 
sample was calculated by dividing the undiluted measurements by the dilution factor of 20.  558 

pH measurements and adjustments 559 

The pH of each community in Fig. 4d was measured using a phenol red assay as described 560 
previously25. The pH of each supernatant in Fig. 4e, 5c was measured using a pH probe (Mettler 561 
Toledo). The pH of each supernatant was adjusted to the pH of fresh media by adding small 562 
volumes of sterile 5M NaOH and 5M HCl.  563 

Supernatant experiments 564 

Starter cultures were diluted to 0.0066 OD600. Diluted cultures were combined into communities 565 
in 96 deep well plates using a liquid handling robot (Tecan Evo). Communities were created by 566 
combining equal volumes of each species, so the final OD600 of each species in the community 567 
was 0.0066 divided by the number of species. Plates were covered with gas-permeable seal 568 
(BreatheEasy) and incubated at 37°C with no shaking. After incubation time of six hours (Fig. 4e) 569 
or 20 hours (Fig. 5c), cultures were spun down aerobically at 3500 rpm for 15 minutes and sterile 570 
filtered using Steriflip 0.2 µM filters (Millipore-Sigma) before returning to anaerobic chamber. 571 
Media controls were spun down and filtered aerobically in parallel with samples. C. difficile was 572 
inoculated in the sterilized supernatants to a final OD600 of 0.0022 in 96 well microplates that 573 
were covered with gas-permeable seals (BreatheEasy), incubated at 37°C with shaking, and 574 
OD600 was measured every 2 hours (Tecan Infinite Pro F200). 575 

Genome extractions 576 

Genomic DNA was extracted using a method adapted from previous work25. Briefly, cell pellets 577 
were resuspended in 180 µL Enzymatic Lysis Buffer containing 20 mg/mL lysozyme (Sigma-578 
Aldrich), 20 mM Tris-HCl pH 8 (Invitrogen), 2 mM EDTA (Sigma-Aldrich), and 1.2% Triton X-100 579 
(Sigma-Aldrich). Samples were incubated at 37°C at 600 RPM for 30 minutes. Samples were 580 
treated with 25 µL 20 mg/mL Proteinase K (VWR) and 200 µL Buffer AL (Qiagen), mixed by 581 
pipette and incubated at 56°C at 600 RPM for 30 minutes. Samples were treated with 200 µL 200 582 
proof ethanol (Koptec), mixed by pipette and transferred to 96 well nucleic acid binding plates 583 
(Pall). After washing with 500 µL Buffer AW1 and AW2 (Qiagen), a vacuum was applied for 10 584 
minutes to dry excess ethanol. Genomic DNA was eluted with 110 µL Buffer AE (Qiagen) 585 
preheated to 56°C and then stored at -20°C.  586 

Genomic DNA was quantified using Sybr Green fluorescence assay with a 6-point DNA standard 587 
curve (0, 0.5, 1, 2, 4, 6 ng/µL Biotium). 1 µL of samples and 5 µL of standards were diluted into 588 
95 µL of 1X SYBR Green (Invitrogen) in TE buffer and mixed by pipette. Fluorescence 589 
was measured with an excitation/emission of 485/535 nm (Tecan Spark). Genomic DNA was 590 
normalized to 1 ng/µL in molecular grade water using a liquid handling robot (Tecan Evo 100). 591 
Samples less than 1 ng/µL were not diluted. Diluted genomic DNA was stored at -20°C. 592 

Primer design, library preparation, and sequencing 593 

Dual-indexed primers for multiplexed amplicon sequencing of the 16S v3-v4 region were designed 594 
as described previously23,25. Briefly, oligonucleotides (Integrated DNA Technology) were arrayed 595 
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into 96 well plates using an acoustic liquid handling robot (Echo LabCyte) and stored at -596 
20°C. Genomic DNA was PCR amplified using Phusion High-Fidelity DNA Polymerase (Thermo-597 
Fisher) for 25 cycles with 0.05 µM of each primer. Samples were pooled by plate, purified (Zymo 598 
Research), quantified by NanoDrop and combined in equal proportions into a library. The library 599 
was quantified using Qubit 1x HS Assay (Invitrogen), diluted to 4.2 nM, and loaded at 21 pM onto 600 
Illumina MiSeq platform for 300-bp paired end sequencing. 601 

Data Analysis 602 

Sequencing data was analyzed using a method adapted from previous work23. MiSeq Reporter 603 
software demultiplexed the indices and generated FastQ files. FastQ files were analyzed using 604 
custom python scripts. Paired reads were merged using PEAR (Paired-End reAd mergeR) v0.9.0 605 
(Zhang et al, 2014). A reference database containing 16S v3-v4 region of each species in the 606 
study was created by assembling consensus sequence based on sequencing results of each 607 
monospecies. The classify.seqs command in mothur was used to map reads to the reference 608 
database using the Wang method with a confidence cut off of 60% (Wang et al). Relative 609 
abundance was calculated by dividing the read counts mapped to each organism by the total 610 
reads in the sample. Absolute abundance was calculated by multiplying the relative abundance 611 
of an organism by the OD600 of the sample. 612 

Glucose and succinate quantification 613 

Succinate concentration was quantified using EnzyChrom Succinate Assay Kit (BioAssay 614 
Systems) with two technical replicates of each filtered supernatant and ABB media diluted 1:100 615 
in buffer to fall in the linear range of the calibration curve. Glucose concentration was quantified 616 
using Amplex Red Glucose Assay Kit (ThermoFisher) with four technical replicates of each filtered 617 
supernatant and ABB media diluted 1:100 in buffer to fall in the linear range of the calibration 618 
curve. Glucose of the supernatants was adjusted to the concentration of glucose in ABB media 619 
using a filter sterilized glucose stock (Alfa Aesar). 620 

Soft agar overlay 621 

Starter cultures (3 µL) were spotted in triplicate on 1.5% ABB agar plates and incubated for 24 622 
hours. At this time, colonies were killed via aerobic exposure for six hours and then returned to 623 
anaerobic conditions. Soft 0.7% ABB agar was inoculated to 0.0022 OD600 C. difficile and poured 624 
over the colonies. Plates were then incubated for 24 before analyzing and imaging zones of 625 
inhibition. 626 

Generalized Lotka-Volterra Model 627 

The gLV model is a set of N coupled first-order ordinary differential equations: 628 

 629 
where N is the number of species, the parameter Xi is the abundance of species i, the parameter 630 
ri is the basal growth rate of species i, the parameter αij, called the interaction parameter, is the 631 
growth modification of species i by species j and the parameter Xj is the abundance of species j. 632 
The parameter αij is constrained to be negative when i=j, representing intra-species competition. 633 

Parameter estimation 634 
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The gLV model parameters were estimated from time-series measurements of single-species and 635 
multispecies cultures using the nonlinear programming solver FMINCON in MATLAB, which finds 636 
the optimal set of parameters that minimizes a given cost function. The estimation was 637 
implemented using previously developed custom MATLAB scripts25. The cost (C) of the 638 
optimization algorithm was computed by (1) simulating each species m in each community k with 639 
an ODE solver and summing the mean squared error between the abundance of each species in 640 
the simulation Xmodel and data Xexp at each timepoint n (2) adding the sum each parameter θ 641 
squared multiplied by a regularization coefficient λ: 642 

 643 
The second step is a L2 regularization, which penalizes the magnitude of the parameter vector to 644 
prevent overfitting the data. The optimization was repeated with a range of regularization 645 
coefficients. The regularization coefficient that resulted in a parameter set with a mean squared 646 
error of 110% of the non-regularized parameter set was selected, which was λ=0.5 for the 647 
Preliminary model and λ =0.1 for the Full model. The data used for parameter estimation for the 648 
Preliminary model and Full model are given in Table 1. To validate the predictive ability of the 649 
model, 24 2-13 member resident communities (Fig. S4a) were left out from the training data set 650 
and a set of parameters was inferred from this reduced data set using λ =0.1 for the regularization 651 
coefficient. The community compositions of the 24 held-out communities were simulated with this 652 
parameter set to evaluate the predictive capability of the model on held-out data (Fig. 2c)  653 

Table 1: Data used for gLV models. 654 

Model Data Figures showing data 

Preliminary Model Monospecies 
Pairwise communities 
Pairwise communities from 
Venturelli et al23 

1d 
1e, S1 

Full model Monospecies 
Pairwise communities 
2-13 member resident communities 

1d 
1e, S1 
2a (also shown in 2e, 3a), 3b (also 
shown in 3a, S6b, 3c), 4a (also 
shown in 4b, 4d), 5b 

 655 

Parameter uncertainty analysis 656 

To quantify the uncertainties in gLV parameters, an adaptive Markov Chain Monte Carlo (MCMC) 657 
method was used to sample from the posterior gLV parameter (q) distribution P(q|y) given a 658 
sequence of m abundance measurements y=(y1,…,ym). In particular, for the k-th measurement, 659 
yk is a vector that concatenates all abundance measurements collected from all sub-community 660 
experiments. Uncertainty for the k-th measurement was modeled by an additive and independent 661 
noise, which is distributed according to N(0,s!"), where s!"  is the diagonal covariance matrix for 662 
experimental data collected in the k-th measurement. Given a fixed parameter q, the gLV model 663 
was simulated to obtain the model predicted abundance 𝐲"!(q) at every instant k. The likelihood 664 
to observe a sequence of abundance measurements y was then computed as:  665 
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 666 
where 𝑓(	∙	; 𝜎!) is the probability density function for the normal distribution 𝑁(0,s!"). The posterior 667 
distribution was then described according to Bayes rule as 𝑃(q|𝐲) ∝ 𝑃(𝐲|q)𝑃(q), where P(q) is the 668 
prior parameter distribution. Normal priors were used for the parameters. The means of the 669 
normal distributions were set to the parameters estimated by the FMINCON method and the 670 
coefficients of variation were set to 5%.  671 

An adaptive, symmetric, random-walk Metropolis MCMC algorithm55 was then used to draw 672 
samples from this posterior distribution. Specifically, given the current sample q(n) at step n of the 673 
Markov chain, the proposed sample for step (n+1) is q(n+1)= q(n)+d(n), where d(n) is drawn from a 674 
normal distribution. The algorithm is adaptive in the sense that the covariance of this normal 675 
distribution is given by 𝛼 ∙ 𝛾#", where 𝛾#" is the covariance of q(1),…, q(n) and 𝛼 is a positive 676 
parameter. The proposed sample is accepted with probability 1 if P(q(n+1)|y)/P(q(n)|y)>1, and it is 677 
accepted with probability 𝛽 if P(q(n+1)|y)/P(q(n)|y) =	𝛽 ≤1.  678 

The algorithm described above was implemented using MATLAB R2020a, where the gLV models 679 
were solved using variable step solver ode23s. 120,000 MCMC samples were collected after a 680 
burn-in period of 10,000 samples. The Gelman-Rubin potential scale reduction factor (PSRF) was 681 
used to evaluate convergence of the posterior distribution estimates, where a PSRF closer to 1 682 
indicates better convergence. The average PSRF is 1.31 and 80% of the parameters have a 683 
PSRF less than 1.5. The medians of the marginal distributions of all parameters correlated 684 
strongly with parameters estimated by the FMINCON method (Pearson r=0.99).  685 

Hill fits 686 

The community sensitivity to C. difficile initial abundance was quantified by fitting the data to the 687 
Hill equation: 688 

 689 
where E is 48 hour abundance of C. difficile, Emax is the maximum 48 hour abundance of C. difficile 690 
across all initial fractions, A is the initial fraction of C. difficile, EC50 is the initial fraction that 691 
produces 50% of Emax value, and n is a measure of ultrasensitivity. The data was fit using custom 692 
python scripts implementing the curve_fit function of the scipy package optimization module. 693 
 694 
Normalized Euclidean Distances 695 

The normalized Euclidean distance (D) between uninvaded resident community R and C. difficile-696 
invaded community V is calculated using 697 

 698 
where R is the 48 hour timepoint of the uninvaded resident community and V is the 48 hour 699 
timepoint of the resident community invaded with C. difficile. Ri is the relative abundance of 700 
species i in the uninvaded resident community, equal to reads of species i divided by the total 701 
community reads. Vi is the normalized relative abundance of species i in the invaded community, 702 
equal to reads of species i divided by the resident community reads (total community reads minus 703 
C. difficile reads).  704 
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 837 
Figure 1: Investigating the ecological principles of C. difficile invasion using a diverse 838 
synthetic human gut community. (a) C. difficile (CD) invasibility is hypothesized to depend on 839 
initial invader density, species richness, environmental pH, and resource availability. (b) 840 
Phylogenetic tree of 13-member resident synthetic gut community and C. difficile based on 841 
concatenated alignment of 37 marker genes. (c) Schematic of experimental and modeling 842 
workflow. Synthetic communities are cultured in microtiter plates in anaerobic conditions and 843 
incubated at 37°C. The absolute abundance of each species is determined by measuring cell 844 
density at 600nm (OD600) and community composition using multiplexed 16S rRNA sequencing. 845 
Absolute abundance data is used to infer the parameters of a generalized Lotka-Volterra (gLV) 846 
model. (d) Absolute abundance (OD600) of monospecies over time for three growth cycles. 847 
Datapoints indicate experimental biological replicates. Lines indicate simulations using the 848 
generalized Lotka-Volterra Full Model. (e) Absolute abundance (OD600) of C. difficile pairs over 849 
time for three growth cycles. First growth cycle inoculated at an equal abundance ratio of C. 850 
difficile to resident species based on OD600 measurements. Datapoints indicate experimental 851 
data replicates. Lines indicate simulations using the generalized Lotka-Volterra Full Model.   852 
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 853 
Figure 2: Growth of C. difficile decreases with community richness. (a) Swarmplot of C. 854 
difficile (CD) absolute abundance (OD600) at 48 hours in 94 sub-communities as a function of 855 
initial species richness. Datapoints indicate mean of two to three biological replicates. Line 856 
represents median, box edges represent first and third quartiles, and whiskers indicate the 857 
minimum and maximum. Outliers are denoted by diamonds. (b) Heatmap of inter-species 858 
interaction coefficients of the generalized Lotka-Volterra model (gLV) Full Model. (c) Scatterplot 859 
of average experimental absolute abundance (OD600) versus predicted species absolute 860 
abundance by the gLV Full Model in 24 held-out communities (Pearson r=0.84, p<0.001). Error 861 
bars represent standard deviation of two to three biological replicates. Gray line indicates y=x, or 862 
100% prediction accuracy. (d) Box plot of incoming inter-species interactions for each species in 863 
gLV Full Model. Stars represent statistical significance between C. difficile and each resident 864 
species: * p<0.05, ** p<0.01, *** p<0.001 according to an unpaired t-test. Line represents median, 865 
box edges represent first and third quartiles, and whiskers indicate the minimum and maximum. 866 
Outliers are denoted by diamonds. (e) Subplot of the absolute abundance (OD600) of each 867 
species at 48 hours as a function of initial species richness in all 16,370 possible sub-communities 868 
of 2-13 species simulated by the gLV Full Model (gray data points) and in 94 experimentally 869 
determined subcommunities (mean-value of two to three biological replicates, colored data 870 
points).  871 
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 872 
Figure 3: Impact of initial density on the growth of C. difficile. (a) Scatterplot of C. difficile 873 
(CD) absolute abundance (OD600) at 48 hours in communities as a function of the initial fraction 874 
of C. difficile. C. difficile was introduced into the communities at zero hours. Gray data points are 875 
2-13 member resident communities measured in Fig 2a. Colored data points are 3-4 member 876 
communities measured at two initial conditions: low density (approximately 10% of total 877 
community OD600) or high density (approximately 65% total community OD600). Gray line 878 
indicates a linear regression (y=0.25x-0.01, Pearson r=0.75, p<0.001). Transparent data points 879 
indicate biological replicates and are connected to the corresponding mean values by transparent 880 
lines. Inset: Abundance of C. difficile at 48 hours in communities invaded with low density or high 881 
density. Gray y=x line indicates no change in abundance. Transparent data points indicate 882 
biological replicates and are connected to the corresponding mean values by transparent lines. 883 
(b) Absolute abundance (ODO600) of C. difficile at 48 hours as a function of the initial fraction of 884 
C. difficile in different synthetic communities. C. difficile was added to communities at zero hours. 885 
Datapoints indicate biological replicates. Lines indicate Hill model fits (Methods). (c) Initial 886 
fraction of C. difficile corresponding to the half-maximum abundance (EC50) inferred based on 887 
the fitted Hill equations in b for a subset of communities with sufficient measurements to constrain 888 
the function parameters. Red circles indicate the resident species richness at zero hours. (d) 889 
Heatmap of the fold change of species absolute abundance (mean-value of three biological 890 
replicates) in the full community with 5-60% initial C. difficile compared to 0% initial C. difficile 891 
condition. Stars represent statistical significance: * p<0.05, ** p<0.01, *** p<0.001 according to 892 
an unpaired t-test. 893 
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 895 
Figure 4: Impact of environmental factors on C. difficile invasion. (a) Barplot of composition 896 
of communities invaded by C. difficile at low density (“LD”) or high density (“HD”). Color indicates 897 
species identity. Hash indicates invasion time. Error bars represent one standard deviation from 898 
the mean of two to three biological replicates. (b) Scatterplot of the absolute abundance (OD600) 899 
of C. difficile at 48 hours in communities when introduced at zero hours versus six hours at low 900 
density (approximately 10% community OD600). Transparent data points indicate biological 901 
replicates and are connected to the corresponding mean values by transparent lines. Line 902 
denotes the x=y line corresponding to no change in growth. Color indicates community, see 903 
legend in d. (c) Lineplot of C. difficile OD600 at 48 hours as a function of the initial environmental 904 
pH. Datapoints indicate biological replicates and line indicates mean value.  (d) Scatterplot of the 905 
absolute abundance (OD600) of C. difficile at 48 hours in invaded communities as a function of 906 
the environmental pH at time of invasion. Fifteen 3-4 member communities were invaded with 907 
(▲) high density C. difficile (approximately 33% community OD600) or (⬤) low density C. difficile 908 
(approximately 10% community OD600) at six hours. Color indicates community. Vertical gray 909 
line indicates pH of fresh media. Inset: Scatterplot of environmental pH and total community 910 
OD600 at six hours. Transparent data points indicate biological replicates and are connected to 911 
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the corresponding mean values by transparent lines. Vertical gray line indicates environmental 912 
pH of fresh media. (e) Bar plot of fold change of C. difficile growth in sterilized supernatants (top) 913 
or supernatants where the pH was adjusted to the pH of fresh media (bottom) compared to the 914 
growth of C. difficile in fresh media. Growth was quantified as integral of OD600 from 0 to 20 915 
hours. Datapoints indicate biological replicates and bars indicate mean value. Red line shows pH 916 
of community supernatants collected at six hours. Horizontal gray line indicates no change in 917 
growth compared to fresh media.  918 
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 920 
Figure 5: C. hiranonis inhibits the growth of C. difficile. (a) Lineplot of simulated C. difficile 921 
(CD) absolute abundance (OD600) at 48 hours using the generalized Lotka-Volterra (gLV) Full 922 
Model as a function of the initial fraction of C. hiranonis (CH) in different communities. Inset: 923 
Lineplot of simulated C. hiranonis absolute abundance (OD600) at 48 hours in the gLV Full Model 924 
as a function of initial fraction of C. hiranonis in the community. (b) Lineplot of C. difficile absolute 925 
abundance (OD600) at 48 hours as a function of the initial fraction of C. hiranonis in the 926 
community. Inset: Lineplot of C. hiranonis absolute abundance (OD600) at 48 hours in community 927 
as a function of initial fraction of C. hiranonis in the community. Datapoints indicate biological 928 
replicates and lines indicate mean values. (c) Heatmap of C. difficile growth in treated sterilized 929 
supernatants. The values of the heatmap represent the fold change between the integral of C. 930 
difficile OD600 from 0 to 56 hours in the treated supernatant and the integral of C. difficile OD600 931 
from 0 to 56 hours in fresh media (mean-values of three biological replicates). Red barplot 932 
indicates the pH of the supernatant before treatment. Dashed line indicates the pH of fresh media. 933 
Blue barplot indicates the glucose concentration of the supernatant before treatment. Bar 934 
indicates average value and points indicate technical replicates. Dashed line indicates glucose 935 
concentration of fresh media. 936 
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