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Abstract

Understanding the principles of colonization resistance of the gut microbiome to the pathogen
Clostridioides difficile will enable the design of next generation defined bacterial therapeutics. We
investigate the ecological principles of community resistance to C. difficile invasion using a diverse
synthetic human gut microbiome. Our results show that species richness is a key determinant of
C. difficile growth across a wide range of ecological contexts. Using a dynamic computational
model, we demonstrate that C. difficile receives the largest number and magnitude of incoming
negative interactions. We identify molecular mechanisms of inhibition including acidification of the
environment and competition over glucose. We demonstrate that C. difficile's close relative
Clostridium hiranonis strongly inhibits C. difficile via a pH-independent mechanism. While
increasing the initial density of C. difficile can increase its abundance in the assembled
community, the community context determines the maximum achievable C. difficile abundance.
Our work suggests that the C. difficile inhibitory potential of defined bacterial therapeutics can be
optimized by designing communities that feature a combination of mechanisms including species
richness, environment acidification, and resource competition.

Introduction

Interaction with native members of human gut microbiota inhibits the ability of gastrointestinal
pathogenic strains of Clostridioides difficile, Salmonella enterica and Escherichia colito secure an
ecological niche and cause infection'. The importance of colonization resistance by gut microbiota
has been particularly highlighted in C. difficile infections, where treatment with fecal microbiota
transplants (FMT) from healthy donors has proven astonishingly effective in eliminating the
symptoms of C. difficile’. Because FMT has notable risks including the transfer of antibiotic
resistant organisms, potential associations with flares of inflammatory bowel disease, and in rare
cases death®>®, defined bacterial therapeutics that have been well-characterized and
standardized are needed to improve the safety and reproducibility of living bacterial therapeutic
treatments. However, a key challenge to the design of effective and safe bacterial therapeutics is
the vast design space of presence and absence of hundreds to thousands of potential organisms.
Improving our understanding of the ecological principles of community resistance to C. difficile
invasion could guide the design of maximally effective and safe therapeutics.

Multiple synthetic communities that inhibit C. difficile either in vitro or in vivo using murine models
have been identified®"". The majority of the defined communities are found by screening reduced
complexity communities composed of isolates from a stool sample. The isolates are combined
either randomly or selected based on phylogenetic diversity®’'°. Other C. difficile inhibiting
communities have been more rationally designed based on predicted mechanisms of resource
competition® or statistical analyses of human and murine gut microbiome data that identify taxa
that correlate with infection resistance®. However, the design process for therapeutic synthetic
microbial communities frequently does not exploit quantitative information of inter-species
interactions or molecular mechanisms. A deeper understanding of the ecological principles of
communities that inhibit C. difficile could inform the rational design of therapeutic consortia.

In macroecology, there is a long history investigating principles of invasion that has been more
recently applied to microbial systems'?. Invasion theory has identified four fundamental processes
that determine the outcome of an invasion: dispersal, selection, drift, and diversification'. Biotic
selection has been shown to be a key determinant of the outcome of an invasion, wherein higher
diversity communities can competitively exclude an invader by reducing the availability of
ecological niches and efficiently utilizing resources''. However, community biodiversity does
not always correlate with invasion outcome, as other biotic interactions (e.g., production of


https://doi.org/10.1101/2021.03.23.436677
http://creativecommons.org/licenses/by-nc-nd/4.0/

47
48
49
50
51
52

53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83

84
85
86
87
88
&9
90

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436677; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

antimicrobial molecules), abiotic selection factors (e.g., environmental pH, resource availability)
and factors from dispersal, drift, and diversification processes each contribute to the outcome of
invasion. For instance, in the case of a plant pathogen, the structure of the resource competition
network was a better predictor of invasion outcome than biodiversity'’. In multiple invasions of
microbial communities, the dispersal factor of the initial invader abundance (i.e. propagule
pressure), was found to be the key determinant of the outcome of invasion'®1819,

Synthetic communities composed of known organisms can be used to investigate the driving
factors of invasion outcome'®'. Synthetic communities enable control of initial inoculum (i.e.,
organism presence/absence and initial abundance), which can be manipulated to understand the
ecological and molecular mechanisms influencing invader growth. Dynamic computational
models informed by the experimental measurements such as the generalized Lotka-Volterra
(gLV) model can be used to decipher microbial interactions and predict community assembly®®-
2. Previous modeling efforts with synthetic communities have revealed that pairwise interactions
are informative of community assembly, making this approach a powerful way to understand
multi-species communities with a reduced number of experiments?>.

In this work, we use a defined synthetic gut community that represents the phylogenetic diversity
of natural gut microbiota to study how principles of invasion theory apply to C. difficile invasion of
gut microbiomes. To decipher microbial interactions and make predictions of community
assembly and invasion, we use our data to construct a gLV model of our system and demonstrate
that our model can accurately predict community assembly. Based on the inferred gLV interaction
network, we demonstrate that negative interactions dominate the growth of C. difficile, which is a
unique feature compared to all other species in our system. To investigate the ecological factors
influencing invasion, we study the effect of propagule pressure and species richness on C. difficile
growth. Our results show that species richness and C. difficile abundance exhibit a strong
negative relationship across a wide range of community contexts. While increasing the propagule
pressure of C. difficile can increase its abundance up to a maximum threshold, this threshold is
dictated by the microbial community context and the ecological network. By characterizing a set
of low richness communities that exhibit a range of C. difficile abundances, we identify multiple
mechanisms that contribute to the inhibition of C. difficile growth including resource competition
and external pH modification, highlighting that the mechanisms of inhibition of C. difficile vary
across community contexts. Lastly, we identify a key closely related species, Clostridium
hiranonis, that inhibits C. difficile growth in different synthetic communities. Our data show that
microbial communities feature a wide range of resistances to C. difficile and multiple mechanisms
of C. difficile inhibition, which motivates exploiting information about ecological and molecular
mechanisms to design bacterial therapeutics to inhibit C. difficile.

Results
C. difficile coexists in co-culture with a majority of a selected set of gut microbes

We sought to understand the ecological principles of C. difficile invasion using synthetic gut
communities (Fig. 1a). As a representative community, we chose a consortium of 13 prevalent
gut microbes spanning the major human gut phyla Bacteroidetes, Firmicutes, Actinobacteria, and
Proteobacteria®*. The community features Clostridium scindens, a species previously shown to
inhibit growth of C. difficile in gnotobiotic mice®, and a well-characterized set of 12 diverse species
whose interactions on community assembly have been previously studied and computationally
modeled® (Fig. 1b).
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91 We used this synthetic gut community to investigate inter-species interactions influencing C.
92  difficile growth. To decipher inter-species interactions driving C. difficile growth, we assembled
93  combinations of species in microtiter plates in an anaerobic chamber and measured cell density
94 by absorbance at 600 nm (OD600) and community composition by 16S rRNA gene sequencing
95 at timepoints of interest (Methods). Time series measurements of species absolute abundance
96  were used to infer the parameters of the gLV model to analyze and predict the growth dynamics
97  of communities and deduce inter-species interactions (Fig. 1¢). The gLV model is a system of
98 coupled ordinary differential equations that captures the growth rate and intra-species interactions
99  of single species and inter-species interactions that modify the growth dynamics of each species.
100  The gLV model can be used to decipher inter-species interactions and predict the dynamics of all
101  possible sub-communities within a larger system?*?® and thus can be used to study the inter-
102  species interactions between C. difficile and the resident gut community (i.e. all species excluding
103 C. difficile).

104  We first characterized the temporal behavior of pairwise communities of C. difficile with each
105  resident gut bacteria since we hypothesized that these direct interactions would have the largest
106  impact on C. difficile growth compared to the interactions between resident gut bacteria. To this
107  end, each resident species was grown alone and in co-culture with C. difficile, specifically the
108  R20291 reference strain of the epidemic ribotype 027 (Fig. 1d,e). Since variation in initial species
109  proportions have been shown to influence community assembly®*%, we inoculated the pairs at
110 1:1 and 1:9 ratios of C. difficile to resident species based on OD600 values (Fig. 1e, Fig. S1).
111 The communities were serially transferred every 26 hours to observe community assembly over
112 multiple batch culture growth cycles to understand the longer-term behavior of the consortia.

113 C. difficile and the resident species coexisted (both species present at greater than 0.05 OD600
114  after 24 hours) in 25 of 33 (76%) conditions of 1:1 initial ratio, and 23 of 33 (70%) conditions of
115  1:9initial ratio (Fig. 1e, Fig. S1). This frequency of coexistence in pairwise consortia was similar
116  to a previous study that characterized the 12 member resident community, wherein 1:1 initial
117  ratios resulted in 72% coexistence and 5:95 initial ratio resulted in 60% of pairs coexisting®. In
118 both cases, equal initial ratios yielded higher rates of coexistence, consistent with the
119  observations that initial conditions are important determinants of community assembly.

120  Although C. difficile and Bacteroides species co-existed in co-culture, the growth of C. difficile
121  was reduced compared to its monospecies growth. Bacteroides thetaiotaomicron and
122 Bacteroides ovatus strongly inhibited C. difficile growth, reducing C. difficile’s maximum carrying
123 capacity in the first growth passage to 8% and 23% of its monospecies carrying capacity, while
124 Bacteroides uniformis and Bacteroides vulgatus moderately inhibited C. difficile’s carrying
125  capacity to 50% and 64% of its monospecies carrying capacity (Fig. 1d,e). Bacteroides species
126  have been shown to inhibit C. difficile growth®'%?” via suggested mechanisms of competition for
127  mucosal carbohydrates or toxicity due to secondary bile acids®%’. Because our media does not
128  contain mucins or bile acids, the observed inhibition indicates a separate inhibition mechanism of
129  C. difficile by Bacteroides species. We also identified closely related species that inhibit C. difficile
130 including C. hiranonis, the closest relative to C. difficile in the system (Fig. 1b), which reduced C.
131  difficile maximum carrying capacity in the first growth passage to 78% of its monospecies carrying
132 capacity, and the next closest relative Eubacterium rectale, which reduced C. difficile’s carrying
133 capacity to 40% of its monospecies carrying capacity (Fig. 1d,e).

134  C. difficile abundance in multispecies communities depends on species richness

135  We next sought to understand if the growth inhibitions of C. difficile observed in the majority of
136  pairwise communities persisted in multispecies communities and to investigate the ecological
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137  principles governing C. difficile’s growth in multispecies communities. We designed a set of 2-13
138 member resident communities to experimentally characterize based on a model trained on our
139  monospecies data (Fig. 1d), pairs data (Fig. 1e), and previously published data of resident
140  species pairs?®. We inferred an initial set of parameters of the gLV model (“Preliminary Model”,
141  Fig. S2a, Table S3) based on these data (Table 1) and used the model to predict the abundance
142 of C. difficile at 48 hours in all possible 2-13 member resident communities (8,178 total
143 communities, Fig. S2b). Using the predictions from the Preliminary Model, we selected a set of
144 94 communities whose C. difficile abundance at 48 hours spanned the full range of predicted C.
145  difficile abundances and featured approximately equal representation of species at various initial
146  species richness (number of species in the resident community). We experimentally assembled
147  these communities with an initial equal abundance of all species and measured the composition
148  of communities after 48 hours, the time by which the majority of communities had reached a
149  steady-state according to the Preliminary Model predictions.

150  We first looked at the relationship between initial species richness and C. difficile abundance. The
151  biodiversity-invasibility hypothesis holds that species-rich communities have a higher fraction of
152 ecological niches occupied, which reduces the availability of niches for invader species and thus
153 enhances resistance to invasion relative to low-richness communities®®. In agreement with the
154  ecological theory, the final abundance of C. difficile decreased as a function of species richness
155 (Fig. 2a). The negative relationship between species richness and C. difficile abundance
156  remained the same whether richness was evaluated at the initial or final time point (Fig. 2a, S3a).
157  Notably, C. difficile did not establish in any communities with richness greater than eight. The full
158  community (13 resident members) excluded C. difficile from the community by 48 hours. This
159  resistance of the full community was observed not only with the ribotype 027 strain, but also to
160  three individual clinical isolates of C. difficile that originated from patients within 72 hours of their
161  Clostridioides difficile Infection (CDI) diagnosis® (Fig. S3b, Methods).

162  We wanted to understand whether the strong inverse relationship between species richness and
163  abundance was unique to C. difficile or also present for other species in our community. To
164  investigate this question, we inferred a new set of gLV model parameters (“Full Model”, Fig. 2b,
165 Table S4) using measurements of monospecies, pairwise and multi-species consortia (Table 1)
166  and found that the Full Model had a high goodness of fit to the training data (Fig. S4a, Pearson
167  r=0.89, p<0.001, model fits for monospecies and pairwise data shown in Fig. 1d,e). To validate
168  the predictive capability of the Full Model, we held out 24 randomly sampled communities from
169 the training data set that spanned a broad range of species richness and C. difficile abundance
170  (Fig. S4b) and found that the model predicted the community composition of the held-out dataset
171  with high accuracy (Fig. 2c, Pearson r=0.84, p<0.001). In contrast, the Preliminary Model trained
172 on monospecies and pairs was substantially less predictive of these 24 multispecies communities,
173  indicating that the model required information from the multi-species experiments (Fig. S4c,
174  Pearson r=0.52, p<0.001). We performed parameter uncertainty analysis to determine if the
175  parameters were sufficiently constrained by the data using the Metropolis—Hastings Markov chain
176 ~ Monte Carlo (MCMC) method (Methods). The coefficient of variation (CV) of the parameters
177  ranged from 0.006 to 0.06 and 82% of parameters had a CV less than 0.05 (Fig. S4d), indicating
178  that the parameters were sufficiently constrained by the data.

179  The Full Model’s accurate prediction of the held-out dataset indicates that the Full Model could
180  be used to understand our system and to reliably predict multi-species community composition.
181  Therefore, we used the Full Model to simulate the abundance of each species in all possible
182  communities (16,383 total communities) to analyze the relationship between initial species
183  richness and species abundance at 48 hours for all species (Fig. 2e). In the simulations, the 48
184  hour abundance of C. difficile displays a stronger dependence on species richness than any other
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185  species in our system (Fig. 2e, gray points), as evidenced by an abrupt decrease in C. difficile
186  abundance for communities with greater than six species. This strong inhibition of C. difficile as a
187  function of species richness can be explained by the inferred inter-species interaction network,
188  wherein C. difficile displayed the largest number and magnitude of incoming negative interactions
189 in the system (Fig. 2d). In addition, C. difficile positively impacted the growth of the majority of
190  species in the community, which combine with the negative incoming interactions to generate a
191 negative feedback loop on the growth of C. difficile. While the abundance of C. hiranonis and
192 Prevotella copri in the subset of experimentally measured communities also exhibited a strong
193  negative relationship with species richness (Fig. 2e, colored points), this trend was not observed
194  in the model predictions of all possible communities (Fig. 2e, gray points). The experimentally
195 measured communities were biased in that all communities contained C. difficile, such that
196  stronger inhibition observed in the experimental set suggests C. difficile inhibited the growth of C.
197  hiranonis and P. copri. This hypothesis is supported by the Full Model which features negative
198 interactions from C. difficile to C. hiranonis and P. copri (Fig. 2b). Overall, our model analysis
199  shows thatin this system, the abundance of C. difficile is uniquely dependent on species richness
200 due to a disproportionate number of negative incoming and outgoing positive inter-species
201 interactions, leading to multiple negative feedback loops on the growth of the C. difficile.

202 Initial abundance is a key determinant of C. difficile growth in synthetic communities

203  The propagule-pressure hypothesis dictates that increasing propagule pressure, or the amount
204  of invader (a product of its dispersal frequency and abundance), increases the chance of a
205  successful invasion®. Therefore, we next looked at the relationship between the propagule
206  pressure of C. difficile and its abundance at 48 hours. In our system, we add C. difficile to the
207  system a single timepoint, so the propagule pressure of C. difficile is equal to its initial abundance.
208 In agreement with the theory, we found that the final abundance of C. difficile correlates with the
209 initial fraction of C. difficile in the community (Fig. 3a, Pearson r=0.75, p<0.001). We analyzed
210  the 2-13 member resident communities from our richness experiment (gray data points, Fig. 3a)
211  in addition to measurements of 15, 3-4 member resident communities (Table S2) that we
212 inoculated at multiple species ratios (colored data points, Fig. 3a). We focused on 3-4 member
213 communities because communities in this richness range feature a wide range of C. difficile
214  abundance at 48 hours (Fig. 2a). The 15 communities were selected to span a wide range of
215  predicted C. difficile abundances and to contain communities with inferred interaction networks
216  dominated by negative interactions, positive interactions, or approximately equal positive and
217  negative interactions as predicted by the Preliminary Model. In all 15 communities, the abundance
218  of C. difficile at 48 hours was higher in communities inoculated with a high initial density of C.
219  difficile (approximately 65% of total community biomass) compared to a low initial density of C.
220  difficile (approximately 10% of total community biomass) (Fig. 3a, inset). For five of these
221  communities, we tested eight initial C. difficile densities and observed an increasing saturating
222 function of C. difficile absolute abundance at 48 hours with increasing propagule pressure (Fig.
223 3b). These results demonstrate that increasing the propagule pressure of C. difficile can lead to
224 higher C. difficile abundance in the assembled community within a given range, but beyond a
225  threshold of initial abundance, the maximum abundance of C. difficile was dictated by the
226  community context.

227  In the experiments and simulations, the total initial OD600 was held constant, resulting in lower
228 initial OD600 of each species with increasing richness (Methods). Therefore, in light of C.
229  difficile’s dependence on propagule pressure, we considered the possibility that C. difficile’s
230  dependence on species richness (Fig. 2a) could be a result of lower initial abundance in higher
231  richness communities. To test this possibility, we introduced a range of initial densities of C.
232 difficile into the full community (richness of 13). We observed that C. difficile grew to a higher
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233 abundance in the full community when propagule pressure was increased, although the maximum
234  abundance was lower than in the majority of 2-4 member communities (Fig. 2a, 3b). This result
235 indicates that while increasing propagule pressure of C. difficile can partially overcome the
236  inhibiting effect of species richness, richness still decreases the maximum saturating C. difficile
237  abundance.

238  To quantify the differential responses of the communities to varying initial C. difficile abundance,
239  we defined the sensitivity to propagule pressure as the initial invader fraction that resulted in the
240  half-maximal abundance of the invader at 48 hours, analogous to the EC50 of a dose response
241  curve (Fig. 3c). The communities displayed different sensitivities to initial C. difficile abundance,
242 with the EC50 ranging from 0.1 to 0.2 initial fraction of C. difficile. Community N (Table S2) was
243  the most sensitive to invasion by C. difficile while the full community displayed the lowest
244 sensitivity.

245  We next wanted to learn if the relationship between C. difficile abundance and propagule pressure
246  changed over time. To do so, we used the Full Model to simulate C. difficile’s abundance in the
247  full community from 0 to 96 hours at various propagule pressures. The simulations demonstrate
248  that C. difficile’s abundance exhibits a strong dependence on propagule pressure at early times
249  (10-20 hours), but by steady state (>48 hours) the effect of propagule pressure on C. difficile
250  abundance is reduced (Fig. S5). The insights from the model suggest that while propagule
251  pressure may have a significant effect on C. difficile’s abundance in the short term, the abundance
252 of C. difficile at steady-state is dominated by other factors such as species richness and inter-
253  species interactions.

254  While species richness and community composition influence C. difficile’s growth, we also
255 observed that C. difficile had an impact on the resident community. When adding increasing
256  amounts of C. difficile to six resident communities (Fig. 3b), we found that the composition of the
257  resident communities at 48 hours varied as a function of the initial C. difficile abundance. To
258  quantify this variation, we computed the normalized Euclidean distance between the community
259  composition in the presence and absence of C. difficile (Methods). The Euclidean distance
260  correlated with the abundance of C. difficile in the community (Fig. S6a, Pearson’s r=0.58,
261  p<0.001). Mirroring our experimental data, the abundance of C. difficile at 48 hr correlated with
262  the Euclidean distance between the resident community structure and the uninvaded resident
263  community in simulations of 1-13 member resident communities invaded with C. difficile six hours
264  after inoculation (Fig. S6b, Pearson’s r=0.61, p<0.001). Together, the experimental data and
265 model simulations indicate that higher abundance of C. difficile results in a larger impact on the
266  composition of the resident community.

267  In the full community, we observed that the abundance of D. piger and B. hydrogenotrophica
268  significantly increased in communities with higher C. difficile, while the abundance of B. vulgatus
269  significantly decreased (Fig. 3c). Notably, these trends were observed in the full community with
270  the ribotype 027 strain of C. difficile as well as the full community with three clinical isolates of C.
271  difficile (Fig. S7a). The interaction network from our model (Fig. 2b) features a positive interaction
272  between C. difficile and B. hydrogenotrophica, suggesting that increasing initial C. difficile
273  abundance directly promotes the growth of B. hydrogenotrophica. However, the inter-species
274  interaction coefficients impacting D. piger and B. vulgatus were not consistent with the observed
275  trends with these two species. These data suggest that the gLV model may not capture the effects
276  of high initial C. difficile density on the growth of all resident gut species. While at high initial
277  densities C. difficile significantly increased the abundance of B. hydrogenotrophica in the full
278  community (Fig. 3c), B. hydrogenotrophica abundance was not affected in the 3-member
279  communities F, G, and N (Fig. S7b), highlighting that C. difficile’s impact on a given species
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280  depends on the community context and its initial abundance. We note that B. hydrogenotrophica
281 and D. piger share a similar metabolic niche as hydrogen consumers®'??, suggesting C. difficile
282  could enhance their growth through a shared mechanism.

283  Environmental pH is a major factor influencing C. difficile growth in synthetic communities

284  While the community experiments revealed the importance of species richness and propagule
285 pressure on the establishment of C. difficile in multispecies communities, there remains
286  unexplained variation in the data. For example, communities with the same richness invaded with
287  equal abundances of C. difficile showed a wide range of C. difficile abundances at 48 hours (Fig.
288  2a). Since environmental pH has been shown to influence C. difficile’s growth in previous
289  studies®?* we turned next to investigate how biotic modification of the environment alters the
290  growth of C. difficile. To this end, we grew the set of 15, 3-4 member communities for six hours
291 and then invaded with low or high initial densities of C. difficile. At the time of invasion, we
292 measured the composition of the resident community and the pH of the media (Fig. 4a). We also
293  invaded the communities at zero hours with low or high initial densities of C. difficile to understand
294 the role of invasion timing on the growth of C. difficile. C. difficile’s ability to establish in multiple
295  communities significantly depended on the timing of introduction (Fig. 4b), indicating that biotic
296  modification of the environment during those six hours altered C. difficile’s ability to grow.

297  Communities that lowered the pH of the media during the first six hours featured lower C. difficile
298  abundance (Fig. 4d). However, communities with lower pH at the time of invasion also had higher
299  total biomass (Fig. 4d, inset). Since these variables are related due to growth-coupled production
300 of acidic fermentation end products, pH or resource competition could be responsible for inhibition
301 of C. difficile. Because C. difficile abundance increases with environmental pH (Fig. 4c), we
302  hypothesized that the pH of the media contributed to growth inhibition. To confirm the contribution
303  of pH, we grew eight of the communities harvested and sterilized the community supernatants
304  after six hours. We grew C. difficile in either the filtered supernatant or a modified filtered
305  supernatant wherein the pH was adjusted to the pH of the fresh media to eliminate the impact of
306 pH on growth (Fig. 4e). For the majority of the communities, the growth phenotype of C. difficile
307 in the filtered community supernatants (Fig. 4e) matched the growth phenotype of C. difficile
308  grown in the communities (Fig. 4d). However, Communities E and F inhibited C. difficile growth
309 in co-culture, while the supernatants showed no significant difference in C. difficile growth. In
310 Communities H, | and K, which strongly inhibit C. difficile in both co-culture and supernatant,
311 increasing the supernatant pH to the pH value of fresh media eliminated the growth inhibition of
312 C. difficile (Fig. 4e), indicating that pH was the driving factor of C. difficile inhibition in these
313  community supernatants. Each of these communities contained an abundant Bacteroides species
314 (Table S2) whose fermentation end products can acidify the media, suggesting abundant
315 acidifiers are a common feature of the communities that inhibit C. difficile.

316 In contrast to this pH-dependent inhibition, the filtered supernatant of Community O (CommO)
317 composed of C. hiranonis, Collinsella aerofaciens and Blautia hydrogenotrophica, whose pH did
318 not significantly differ from the pH of fresh media, inhibited the growth of C. difficile regardless of
319  pH adjustment (Fig. 4e), indicating that this community inhibits C. difficile via a pH-independent
320 mechanism. C. difficile was not inhibited by the filtered supernatant of Community E (CommE)
321  composed of C. hiranonis, Desulfovibrio piger and Eggerthella lenta, which uniquely had a higher
322  pH than fresh media, but did inhibit C. difficile when the pH was reduced to the pH of fresh media
323  (Fig. 4e). This suggests that the filtered supernatant promotes C. difficile’s growth by enhancing
324  environmental pH and the community inhibits C. difficile’s growth by a separate pH-independent
325 mechanism. The growth inhibition was only revealed when the pH increase of the media was
326  eliminated, demonstrating an interplay of different mechanisms influencing C. difficile growth.
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327  Overall, we determined that the modification of environmental pH alters C. difficile growth in many
328 communities. To determine if C. difficile’s sensitivity to pH was unique and thus a potential
329  mechanism contributing to C. difficile’s unique and strong inverse dependence on species
330 richness (Fig. 2e), we measured the carrying capacity of each species as a function of
331  environmental pH in monoculture and determined the slope of the line fit to these data (Fig. S8a),
332  representing the sensitivity of species growth to external pH. Our results demonstrated that C.
333 difficile’s pH sensitivity was not unique, ranking eighth most sensitive out of the 14 species (Fig.
334  S8b). Therefore, while acidification of the media is one mechanism by which communities inhibit
335  C. difficile in our system, our results suggest that there are also pH-independent mechanisms that
336  contribute to a strong dependence between species richness and C. difficile growth.

337  C. hiranonis inhibits C. difficile through a pH-independent mechanism

338  Notably, the two communities that displayed pH-independent growth inhibition (CommE and
339  CommO) contained C. hiranonis, which has a strong bidirectional negative interaction with C.
340  difficile in our Full Model (Fig. 2b). Our model predicted that the abundance of C. difficile at 48
341  hours decreases with increasing initial abundance of C. hiranonis in Communities E, O and the
342 C. difficile-C.hiranonis pair. We tested this prediction experimentally and confirmed that C.
343 hiranonis grew to a higher absolute abundance and C. difficile grew to a lower absolute
344  abundance in communities inoculated with higher initial fraction of C. hiranonis (Fig. 5b, inset).
345  The growth of C. difficile was sensitive even to low initial amounts of C. hiranonis, featuring a
346  significant decrease in growth between 0% and 10% initial C. hiranonis in CommE (>4-fold
347  decrease) and CommO (>1.5 fold decrease) (Fig. 5b). The strength of inhibition of C. difficile as
348  a function of the initial density of C. hiranonis was substantially higher in CommE and CommO
349  thanin the C. hiranonis-C. difficile pair (Fig. 5b). This result indicates that the other species in the
350 communities enhanced the inhibitory effect of C. hiranonis on C. difficile growth.

351  We next considered the mechanism of C. hiranonis’s inhibition of C. difficile. C. hiranonis is known
352  toconvert primary bile acids into secondary bile acids which are inhibitory to C. difficile®, however
353  with no primary bile acids in our media we turned to other possible inhibition mechanisms. C.
354  difficile was inhibited by the filtered supernatants of CommE, CommO and C. hiranonis (Fig. 4e,
355  5c¢), indicating the inhibition effect does not require direct cell contact, suggesting mechanisms
356  such as production of antibiotics or toxic metabolic byproducts, competition for resources, or pH
357  modification. In a soft agar overlay assay, where C. difficile grows in soft agar layered on top of a
358  C. hiranonis colony, we did not see inhibition by C. hiranonis, although we did see zones of
359 inhibition by specific Bacteroides species (Fig. S9). Because the pressures of resource
360  competition are removed in a soft agar assay (C. difficile has access to resources in the soft agar
361 layer), we hypothesized that inhibition observed in liquid culture with C. hiranonis was due to
362  resource competition. The hypothesis of resource competition by C. hiranonis was informed by
363 the ecological theory that closely related species are likely to compete for overlapping resource
364 niches, which has been observed in microbial systems®. This theory is supported by our model
365  which features a moderate but statistically significant positive correlation between the Full Model
366 inferred inter-species interaction coefficients and phylogenetic distance between species (Fig.
367 $10, Pearson r=0.34, p<0.001). Additionally, C. hiranonis has been shown to consume more
368 metabolites than any of the other resident species in our media conditions?®, suggesting the
369 potential to compete with C. difficile over other resources.

370  To investigative potential mechanisms of resource competition between C. difficile and C.
371  hiranonis, we focused on two key resources present in our media that C. difficile has been shown
372  to utilize: glucose and succinate®” 8. We measured the concentration of these resources in the
373  supernatant of C. difficile, C. hiranonis, CommE, and CommO after 20 hours (Methods).
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374  Corroborating previous data, each donor supernatant inhibited the growth of C. difficile, and
375 adjusting the pH of the supernatants to the pH of fresh media did not remove the inhibition (Fig.
376  4e, 5c). While succinate concentrations were either moderately increased or similar to the
377  concentration in fresh media (Fig. $11), glucose was substantially lower in the supernatants (Fig.
378  5c). Adjusting the glucose concentration to the concentration of fresh media almost completely
379  restored C. difficile growth in the CommE and CommO supernatants, but only moderately restored
380 growth in the C. hiranonis supernatant (Fig. 5¢). These results indicate that competition over
381  glucose and not pH modification was a driving mechanism of C. difficile inhibition in CommE and
382  CommO. However, neither competition over glucose nor pH modification was able to explain the
383 inhibitory effect of C. hiranonis on C. difficile in the pairwise community, suggesting C. hiranonis
384  could be inhibiting C. difficile by competing for a different resource. Therefore, our results suggest
385  that there are multiple mechanisms of C. difficile inhibition by C. hiranonis and the other resident
386  gut bacteria and that these mechanisms depend on community context.

387 Discussion

388  We combined bottom-up construction of microbial communities with dynamic computational
389 modeling to investigate microbial interactions impacting the growth of C. difficile. Our work
390 demonstrates that microbial communities feature a wide range of resistances to C. difficile
391 invasion. This variability in invasion outcome as a function of community context indicates that
392  the choice of organisms is a major design factor that can be optimized to treat C. difficile infections
393  and motivates exploiting ecological information in the design process. Previous efforts to design
394  defined consortia for C. difficile inhibition used top-down selections by reducing the complexity of
395  cultured fecal samples alone or combined with screening of antibiotic resistance phenotypes®’.
396 Some consortia have been designed by combining selected species in a bottom-up approach,
397  butwe note that these selections use a single design criterion®®. Beyond previously demonstrated
398 mechanisms of bile acid transformations® and mucosal sugar competition®, our results
399  demonstrate that acidification of the environment and competition over limiting resources such as
400  glucose can inhibit C. difficile growth. Further, species richness was a driving factor of C. difficile
401  growth across a wide range of community contexts. In sum, these results suggest that multiple
402  mechanisms could be combined to design an optimal defined bacterial therapeutic to inhibit C.
403  difficile.

404  Studies have shown that gut microbiomes of patients with CDI have significantly lower richness
405  than healthy controls®*#°, but this association does not distinguish whether CDI reduces the
406  richness of gut microbiomes or low richness microbiomes are more susceptible to CDI. The
407  striking trend between richness and C. difficile abundance in our data suggests that low richness
408  microbiomes are more susceptible to CDI. Supporting this hypothesis, the susceptibility of low
409  richness communities to invasion has been demonstrated in other microbial systems'*'. This
410  suggests that the low gut microbiome richness induced by antibiotics** could contribute to
411 increased CDI risk after antibiotic use*®. Additionally, the efficacy of FMTs may be due to the high
412  richness of stool samples which are estimated to have greater than one hundred species*.

413  Based on our work, high richness communities would be the most effective bacterial therapeutics
414 to inhibit C. difficile colonization. The scalable manufacturing of high richness bacterial
415 therapeutics is challenging, indicating the need for new bacterial manufacturing techniques to
416  reliably culture communities of gut species as opposed to single species, while maximizing
417 evenness and growth. Nevertheless, if scalable manufacturing of high richness communities
418  remains an unresolved challenge, our work suggests it is possible to design low richness inhibitory
419  communities. While all high richness communities (eight species or more) excluded C. difficile in
420  our system, we did find low richness communities that excluded C. difficile. For example, the 3-
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421  member Community | excluded C. difficile as effectively as the full community, featuring a similar
422 maximum C. difficile abundance as a function of initial C. difficile density (Fig. 3b). Corroborating
423  these results, low richness communities as small as 5-7 members have been shown to inhibit C.
424 difficile in vitro and in murine models’.

425  Our results demonstrated that communities can inhibit growth of C. difficile by acidifying the
426  environment. We showed that communities that reduce the external pH below 6.2 inhibit C.
427  difficile in a pH-dependent manner, consistent with studies showing that C. difficile has lower
428  viability and rates of sporulation in acidic environments®34. While our in vitro system lacks the
429  pH-buffering secretion of bicarbonate by host intestinal epithelial cells, the amount of bicarbonate
430  buffer in our media (4.8 mM) is within the estimated range in the gastrointestinal tract (2-20mM)*®,
431  suggesting the observed pH changes in our media could be physiologically relevant. Even with
432 host bicarbonate secretions that regulate the pH of the gut, fermentation by colonic bacteria
433 impacts luminal pH, which can be manipulated using dietary substrates*®. Notably, a human
434  cohort study found a strong association between alkaline fecal pH and CDI*". Together, these
435  suggest that manipulation of the pH of the gut environment via bacterial therapeutics or dietary
436  interventions is a potential microbiome intervention strategy to inhibit C. difficile. To optimize
437  inhibitory potential of bacterial therapeutics, in addition to designing communities that acidify the
438  environment, communities could also be designed to maximize resource competition between
439  resident members and C. difficile. We found that relieving resource competition through addition
440  of glucose reduced C. difficile inhibition by 22-90% depending on the community context (Fig.
441  5c). Therefore, constituent members of the bacterial therapeutics that compete with C. difficile for
442  the estimated 20% of carbohydrates, such as glucose, that escape absorption by the host*®4°
443 could reduce C. difficile colonization.

444 We find that increasing the propagule pressure of C. difficile leads to an increase in the pathogen’s
445  abundance in the community (Fig. 3a,b). While propagule pressure has been shown to determine
446  invasion success in microbial invasions'®'®'° here we demonstrate that this applies to C. difficile
447  in synthetic gut communities. Propagule pressure is known to be important in murine C. difficile
448  infections, where mice cohoused with supershedders containing 10 CFU g™ C. difficile in their
449  feces became colonized with C. difficile, whereas mice cohoused with low shedders containing
450 10? CFU g C. difficile did not become colonized®®. However, the relationship between C. difficile
451 dosage and incidence of CDI in humans is unknown. Our results suggest that the density of C.
452  difficile could be an important variable in the outcome of C. difficile invasions in a clinical setting.
453  Inour experiments, we found that while increasing the propagule pressure of C. difficile increases
454  its abundance in the community over a range of initial densities, communities varied in the
455  maximum C. difficile abundance (Fig. 3a,b). This suggests that different human gut microbiome
456  compositions vary in their resistance to invasion of varying amounts of C. difficile due to ecological
457  interactions.

458  We were able to construct a gLV model that accurately predicts the composition of 2-13 member
459  communities by training on similarly complex data (1-13 members), but parameters trained on
460 low richness communities alone (1-2 species) were not able to predict these higher richness
461  communities, as has been seen previously?. The inferred inter-species interaction network was
462  dominated by competition, with 73% negative interactions (a;; < -0.01), consistent with the large
463  number of negative interactions observed in other microbial communities®>*'. Notably, C. difficile
464  was the only species that was inhibited by all other community members. Infection by C. difficile
465  disrupts the environment of gut bacteria by causing diarrhea (i.e. reduces residence time for gut
466  bacteria), inducing intestinal inflammation, and altering the resource landscape®, suggesting the
467  possibility that gut bacteria have evolved to negatively impact the growth of C. difficile in order to
468  promote their fitness in the gut.
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469 Bacteroides have been found to both inhibit and promote C. difficile growth in different
470  environments®'%3%%3 putin our system all Bacteroides species in the community strongly inhibited
471  C. difficile. We did not observe a strong inhibition of C. difficile by C. scindens which has been
472  documented to occur via production of secondary bile acids that inhibit C. difficile germination®
473  because our media does not contain bile acids. Instead, in our system the closest relative of C.
474  difficile, C. hiranonis, was the strongest inhibitor of C. difficile abundance. Currently, phylogenetic
475  relatedness is a major design factor used to select species for defined bacterial therapeutics. For
476  example, defined bacterial therapeutics have been constructed by treating fecal samples with
477  ethanol to select for spore-forming bacteria, which are primarily closely related Clostridiales
478  species®. Our work shows that including other more diverse species in CommE and CommO
479  resulted in stronger inhibition of C. difficile as a function of C. hiranonis initial abundance.
480  Therefore, while our results demonstrate that closely related species can inhibit C. difficile,
481 including other diverse commensal bacteria in the community could substantially increase the
482  degree of inhibition.

483  Insum, we identified ecological and molecular mechanisms of resistance to invasion by C. difficile
484  using a synthetic gut microbiome. While our system lacks the full diversity of the human gut
485  microbiome and a host-interaction component, many of our results support principles of invasion
486  theory based on a broad range of systems, suggesting that some of these principles could be
487  generalized to the mammalian gut environment. Future work could create panels of gut microbial
488  communities that feature different weightings of the multiple community resistance mechanisms
489  demonstrated in this work. These panels could be tested in vitro for inhibition of C. difficile growth
490 and promising candidates could be introduced into germ-free mouse models to evaluate their C.
491  difficile inhibitory potential as bacterial therapeutics.
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508 Strain information and starter culture inoculations
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509  Cells were cultured in an anaerobic chamber (Coy Lab products) with an atmosphere of 2.5+0.5%
510 H., 15£1% CO2 and balance N.. The strains used in this work were obtained from the sources
511 listed in Table $1. The three clinical C. difficile isolates (MS002, MS010, MS011) were C. difficile
512 NAAT (GeneXpert) positive via admission stool sample and toxin A (tcdA) and toxin B (tcdB)
513  positive via in-house research PCR. Each patient was diagnosed with and treated for CDI. Single-
514  use glycerol stocks were prepared as described previously?®. Single species starter cultures were
515 inoculated by adding 100 uL of a single-use 25% glycerol stock to 5mL of Anaerobic Basal Broth
516 media (ABB, Oxoid). E. rectale starter cultures were supplemented with 33 mM Sodium Acetate
517  (Sigma-Aldrich) and D. piger starter cultures were supplemented with 28 mM Sodium Lactate
518  (Sigma-Aldrich) and 2.7 mM Magnesium Sulfate (Sigma-Aldrich). To begin experiments with
519  organisms in similar growth phases, starter cultures were inoculated either 16 hours or 41 hours
520  prior to experimental set up, depending on the growth rate of the organism (Table S1).

521  Monospecies and pairs experiments

522 Starter cultures were diluted to 0.0022 OD600 in ABB (Tecan Infinite Pro F200). For monospecies
523 in Fig. 1d, diluted cultures were added directly to 96 deep well plates for final OD600 of 0.0022.
524  For pairs in Fig. 1e, diluted cultures were combined into pairs in 96 deep well plates at 1:1 or 1:10
525  volume ratios for final OD600 of 0.0011 or 0.00022 and 0.00198. Cultures were combined using
526  a liquid handling robot (Tecan Evo 100). Plates were covered with gas-permeable seal
527  (BreatheEasy) and incubated at 37°C with no shaking.

528  Multispecies community experiments

529  Starter cultures were diluted to 0.0066 OD600. Diluted cultures were combined into communities
530  in 96 deep well plates using a liquid handling robot (Tecan Evo). The 94 sub-communities in Fig.
531  2a were created by combining equal volumes of each diluted starter culture, so the initial OD600
532  of each species in the community was 0.0066 divided by the number of species. The 3-4 member
533  C. difficile titration communities in Fig. 3b were combined such that all non-C. difficile species
534 had an initial OD600 of 0.00165, and C. difficile had an initial OD600 of 0, 0.00026, 0.00055,
535 0.0012, 0.0021, 0.0033, 0.00495, and 0.0074 in the 3 member communities and 0, 0.00035,
536  0.00073, 0.00165, 0.0028, 0.0044, 0.0066, and 0.0099 in the 4 member communities for initial
537  fractions 0, 0.1 ,0.2, 0.3, 0.4, 0.5, and 0.6 respectively. The full community in Fig. 3b was
538 combined so that all non-C. difficile species had an initial OD600 of 0.00047, and C. difficile had
539  aninitial OD600 of 0, 0.00032, 0.0015, 0.0026, 0.0041, 0.0061, 0.0092 for initial fractions 0, 0.1,
540 0.2,0.3,0.4, 0.5, and 0.6 respectively. The communities in Fig. 4a were combined so that all non-
541  C. difficile species had an initial OD600 of 0.00165, and C. difficile had an initial OD600 of 0.00055
542 (10% of community) in the low density zero hour invasion condition, 0.009 (65% of community) in
543  the high density zero hour invasion condition, and was not introduced into the six hour invasion
544  condition. After six hours of incubation, the community OD600 was measured and C. difficile was
545  added to the six hour invasion conditions so that its OD600 was 10% (low density condition) or
546  33% (high density condition) of the community. The C. hiranonis titration communities in Fig. 5b
547  were combined so that all non- C. hiranonis species had an initial OD600 of 0.00165, and C.
548  hiranonis had an initial OD600 of 0, 0.00055, 0.00012, 0.0021, 0.0033, 0.0050, 0.012 and 0.045
549  for initial fractions 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9 respectively. Plates were covered with
550  gas-permeable seals (BreatheEasy) and incubated at 37°C with no shaking.

551  Culture sample collection

552 At each timepoint, samples were mixed and aliquots were removed for sequencing and for
553  measuring OD600. We measured OD600 of two dilutions of each sample and selected the value
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554  that was within the linear range of the instrument (Tecan Infinite Pro F200). Sequencing aliquots
555  were spun down aerobically at 3500 rpm for 15 minutes and stored at -80°C. For timepoints with
556  dilutions, samples were mixed and aliquots were collected for sequencing and ODG600
557 measurements before the samples were diluted 1:20 into fresh media. Abundance of the diluted
558  sample was calculated by dividing the undiluted measurements by the dilution factor of 20.

559  pH measurements and adjustments

560 The pH of each community in Fig. 4d was measured using a phenol red assay as described
561  previously?®. The pH of each supernatant in Fig. 4e, 5¢ was measured using a pH probe (Mettler
562  Toledo). The pH of each supernatant was adjusted to the pH of fresh media by adding small
563  volumes of sterile 5M NaOH and 5M HCI.

564  Supernatant experiments

565  Starter cultures were diluted to 0.0066 OD600. Diluted cultures were combined into communities
566  in 96 deep well plates using a liquid handling robot (Tecan Evo). Communities were created by
567  combining equal volumes of each species, so the final OD600 of each species in the community
568 was 0.0066 divided by the number of species. Plates were covered with gas-permeable seal
569  (BreatheEasy) and incubated at 37°C with no shaking. After incubation time of six hours (Fig. 4e)
570  or 20 hours (Fig. 5¢), cultures were spun down aerobically at 3500 rpm for 15 minutes and sterile
571  filtered using Steriflip 0.2 yM filters (Millipore-Sigma) before returning to anaerobic chamber.
572  Media controls were spun down and filtered aerobically in parallel with samples. C. difficile was
573  inoculated in the sterilized supernatants to a final OD600 of 0.0022 in 96 well microplates that
574  were covered with gas-permeable seals (BreatheEasy), incubated at 37°C with shaking, and
575 OD600 was measured every 2 hours (Tecan Infinite Pro F200).

576 Genome extractions

577  Genomic DNA was extracted using a method adapted from previous work®. Briefly, cell pellets
578  were resuspended in 180 pyL Enzymatic Lysis Buffer containing 20 mg/mL lysozyme (Sigma-
579  Aldrich), 20 mM Tris-HCI pH 8 (Invitrogen), 2 mM EDTA (Sigma-Aldrich), and 1.2% Triton X-100
580  (Sigma-Aldrich). Samples were incubated at 37°C at 600 RPM for 30 minutes. Samples were
581  treated with 25 yL 20 mg/mL Proteinase K (VWR) and 200 uL Buffer AL (Qiagen), mixed by
582  pipette and incubated at 56°C at 600 RPM for 30 minutes. Samples were treated with 200 pL 200
583  proof ethanol (Koptec), mixed by pipette and transferred to 96 well nucleic acid binding plates
584  (Pall). After washing with 500 yL Buffer AW1 and AW2 (Qiagen), a vacuum was applied for 10
585 minutes to dry excess ethanol. Genomic DNA was eluted with 110 pL Buffer AE (Qiagen)
586 preheated to 56°C and then stored at -20°C.

587  Genomic DNA was quantified using Sybr Green fluorescence assay with a 6-point DNA standard
588  curve (0, 0.5, 1, 2, 4, 6 ng/uL Biotium). 1 yL of samples and 5 uL of standards were diluted into
589 95 pL of 1X SYBR Green (Invitrogen) in TE buffer and mixed by pipette. Fluorescence
590 was measured with an excitation/emission of 485/535 nm (Tecan Spark). Genomic DNA was
591  normalized to 1 ng/uL in molecular grade water using a liquid handling robot (Tecan Evo 100).
592  Samples less than 1 ng/uL were not diluted. Diluted genomic DNA was stored at -20°C.

593 Primer design, library preparation, and sequencing

594  Dual-indexed primers for multiplexed amplicon sequencing of the 16S v3-v4 region were designed
595 as described previously®*>%. Briefly, oligonucleotides (Integrated DNA Technology) were arrayed
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596 into 96 well plates using an acoustic liquid handling robot (Echo LabCyte) and stored at -
597  20°C. Genomic DNA was PCR amplified using Phusion High-Fidelity DNA Polymerase (Thermo-
598  Fisher) for 25 cycles with 0.05 uM of each primer. Samples were pooled by plate, purified (Zymo
599  Research), quantified by NanoDrop and combined in equal proportions into a library. The library
600  was quantified using Qubit 1x HS Assay (Invitrogen), diluted to 4.2 nM, and loaded at 21 pM onto
601 lllumina MiSeq platform for 300-bp paired end sequencing.

602  Data Analysis

603  Sequencing data was analyzed using a method adapted from previous work®®. MiSeq Reporter
604  software demultiplexed the indices and generated FastQ files. FastQ files were analyzed using
605  custom python scripts. Paired reads were merged using PEAR (Paired-End reAd mergeR) v0.9.0
606 (Zhang et al, 2014). A reference database containing 16S v3-v4 region of each species in the
607  study was created by assembling consensus sequence based on sequencing results of each
608  monospecies. The classify.seqs command in mothur was used to map reads to the reference
609 database using the Wang method with a confidence cut off of 60% (Wang et al). Relative
610 abundance was calculated by dividing the read counts mapped to each organism by the total
611 reads in the sample. Absolute abundance was calculated by multiplying the relative abundance
612  of an organism by the OD600 of the sample.

613  Glucose and succinate quantification

614  Succinate concentration was quantified using EnzyChrom Succinate Assay Kit (BioAssay
615  Systems) with two technical replicates of each filtered supernatant and ABB media diluted 1:100
616 in buffer to fall in the linear range of the calibration curve. Glucose concentration was quantified
617  using Amplex Red Glucose Assay Kit (ThermoFisher) with four technical replicates of each filtered
618  supernatant and ABB media diluted 1:100 in buffer to fall in the linear range of the calibration
619  curve. Glucose of the supernatants was adjusted to the concentration of glucose in ABB media
620  using a filter sterilized glucose stock (Alfa Aesar).

621  Soft agar overlay
622  Starter cultures (3 pL) were spotted in triplicate on 1.5% ABB agar plates and incubated for 24
623  hours. At this time, colonies were killed via aerobic exposure for six hours and then returned to
624  anaerobic conditions. Soft 0.7% ABB agar was inoculated to 0.0022 OD600 C. difficile and poured
625 over the colonies. Plates were then incubated for 24 before analyzing and imaging zones of
626  inhibition.
627  Generalized Lotka-Volterra Model
628  The gLV model is a set of N coupled first-order ordinary differential equations:
N

1dX;

X =Tt Do
629 ' j=1
630  where N is the number of species, the parameter X; is the abundance of species /, the parameter
631 ris the basal growth rate of species i, the parameter qj, called the interaction parameter, is the
632  growth modification of species i by species j and the parameter X; is the abundance of species j.
633  The parameter qj is constrained to be negative when i=j, representing intra-species competition.

634  Parameter estimation
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635  The gLV model parameters were estimated from time-series measurements of single-species and
636  multispecies cultures using the nonlinear programming solver FMINCON in MATLAB, which finds
637 the optimal set of parameters that minimizes a given cost function. The estimation was
638 implemented using previously developed custom MATLAB scripts®®>. The cost (C) of the
639  optimization algorithm was computed by (1) simulating each species m in each community k with
640  an ODE solver and summing the mean squared error between the abundance of each species in
641  the simulation Xmnoder and data Xex, at each timepoint n (2) adding the sum each parameter 6
642  squared multiplied by a regularization coefficient A:

C= ; Z Z(Xezlfp,m,n - Xmoalel,-m,-n)2 + A Z 932'

643 moon J

644  The second step is a L2 regularization, which penalizes the magnitude of the parameter vector to
645  prevent overfitting the data. The optimization was repeated with a range of regularization
646  coefficients. The regularization coefficient that resulted in a parameter set with a mean squared
647  error of 110% of the non-regularized parameter set was selected, which was A=0.5 for the
648  Preliminary model and A =0.1 for the Full model. The data used for parameter estimation for the
649  Preliminary model and Full model are given in Table 1. To validate the predictive ability of the
650  model, 24 2-13 member resident communities (Fig. S4a) were left out from the training data set
651  and a set of parameters was inferred from this reduced data set using A =0.1 for the regularization
652  coefficient. The community compositions of the 24 held-out communities were simulated with this
653  parameter set to evaluate the predictive capability of the model on held-out data (Fig. 2c)

654  Table 1: Data used for gLV models.

Model Data Figures showing data
Preliminary Model | Monospecies 1d
Pairwise communities 1e, S1

Pairwise communities from
Venturelli et al®®

Full model Monospecies 1d

Pairwise communities 1e, S1

2-13 member resident communities | 2a (also shown in 2e, 3a), 3b (also
shown in 3a, S6b, 3c), 4a (also
shown in 4b, 4d), 5b

655
656  Parameter uncertainty analysis

657  To quantify the uncertainties in gLV parameters, an adaptive Markov Chain Monte Carlo (MCMC)
658 method was used to sample from the posterior gLV parameter (0) distribution P(6]y) given a
659  sequence of m abundance measurements y=(y1,...,ym). In particular, for the k-th measurement,
660  yis a vector that concatenates all abundance measurements collected from all sub-community
661  experiments. Uncertainty for the k-th measurement was modeled by an additive and independent
662  noise, which is distributed according to N(0,62), where o is the diagonal covariance matrix for
663  experimental data collected in the k-th measurement. Given a fixed parameter 0, the gLV model
664  was simulated to obtain the model predicted abundance y, (0) at every instant k. The likelihood
665 to observe a sequence of abundance measurements y was then computed as:
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P(ylf) = H fyr —yr(0);0k),
666 k=1

667  where f(-;ay) is the probability density function for the normal distribution N(0,6%). The posterior
668 distribution was then described according to Bayes rule as P(0]y) « P(y|0)P(0), where P(0) is the
669  prior parameter distribution. Normal priors were used for the parameters. The means of the
670 normal distributions were set to the parameters estimated by the FMINCON method and the
671  coefficients of variation were set to 5%.

672  An adaptive, symmetric, random-walk Metropolis MCMC algorithm®® was then used to draw
673  samples from this posterior distribution. Specifically, given the current sample 8 at step n of the
674  Markov chain, the proposed sample for step (n+1) is 8*V= 8™+35" where 5 is drawn from a
675 normal distribution. The algorithm is adaptive in the sense that the covariance of this normal
676 distribution is given by a-y?, where y? is the covariance of 6(",..., 8™ and «a is a positive
677  parameter. The proposed sample is accepted with probability 1 if P(6/™V|y)/P(6]y)>1, and it is
678  accepted with probability £ if P(0Vy)/P(O™)y) = <1.

679  The algorithm described above was implemented using MATLAB R2020a, where the gLV models
680  were solved using variable step solver ode23s. 120,000 MCMC samples were collected after a
681  burn-in period of 10,000 samples. The Gelman-Rubin potential scale reduction factor (PSRF) was
682  used to evaluate convergence of the posterior distribution estimates, where a PSRF closer to 1
683 indicates better convergence. The average PSRF is 1.31 and 80% of the parameters have a
684 PSRF less than 1.5. The medians of the marginal distributions of all parameters correlated
685  strongly with parameters estimated by the FMINCON method (Pearson r=0.99).

686  Hill fits

687  The community sensitivity to C. difficile initial abundance was quantified by fitting the data to the
688  Hill equation:

E _ ATL
Emax E g[) + An

689
690 where Eis 48 hour abundance of C. difficile, Enax is the maximum 48 hour abundance of C. difficile

691 across all initial fractions, A is the initial fraction of C. difficile, ECso is the initial fraction that
692  produces 50% of Emax value, and n is a measure of ultrasensitivity. The data was fit using custom
693  python scripts implementing the curve_fit function of the scipy package optimization module.
694

695  Normalized Euclidean Distances

696  The normalized Euclidean distance (D) between uninvaded resident community R and C. difficile-
697  invaded community Vis calculated using

DR, V)= /(R —V;)?
698 i

699  where R is the 48 hour timepoint of the uninvaded resident community and V is the 48 hour
700  timepoint of the resident community invaded with C. difficile. R; is the relative abundance of
701  species i in the uninvaded resident community, equal to reads of species i divided by the total
702 community reads. V;is the normalized relative abundance of species i in the invaded community,
703  equal to reads of species i divided by the resident community reads (total community reads minus
704  C. difficile reads).
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838  Figure 1: Investigating the ecological principles of C. difficile invasion using a diverse
839  synthetic human gut community. (a) C. difficile (CD) invasibility is hypothesized to depend on
840 initial invader density, species richness, environmental pH, and resource availability. (b)
841  Phylogenetic tree of 13-member resident synthetic gut community and C. difficile based on
842  concatenated alignment of 37 marker genes. (¢) Schematic of experimental and modeling
843  workflow. Synthetic communities are cultured in microtiter plates in anaerobic conditions and
844 incubated at 37°C. The absolute abundance of each species is determined by measuring cell
845  density at 600nm (OD600) and community composition using multiplexed 16S rRNA sequencing.
846  Absolute abundance data is used to infer the parameters of a generalized Lotka-Volterra (gLV)
847  model. (d) Absolute abundance (OD600) of monospecies over time for three growth cycles.
848  Datapoints indicate experimental biological replicates. Lines indicate simulations using the
849  generalized Lotka-Volterra Full Model. (e) Absolute abundance (OD600) of C. difficile pairs over
850 time for three growth cycles. First growth cycle inoculated at an equal abundance ratio of C.
851  difficile to resident species based on OD600 measurements. Datapoints indicate experimental
852  data replicates. Lines indicate simulations using the generalized Lotka-Volterra Full Model.

21


https://doi.org/10.1101/2021.03.23.436677
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436677; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b c d
0.2
’ N " u | . 10 ¢
4 CA S - “ e e -
» - -
g </ =4 - | g 05 ,
o 015 . S FP [ o 05 ¢ 0 0 ‘
3 - 2 cH 5 o £04 . I I
s o ER M || 5 2 , _ | 1
S 010 . Ohrs 48hrs € BH [ | E £ 03 o . T 00 T HH
bl o Invade Measure | -2 Cs O a o ° . *1 HH
o) 'g DP [ | »% o 02/s - ®e o e -05 T J. ‘[
[a) & pc a4 B 02 ke,
(@] 0.05 é BV o é . o ... 10 . v,
BU 01| 8Lt * , -1
@-;‘%r::e*"‘?* BT | ;
0.00 BO B 0o B %e o 0 0
. . . a< T no
2345678 910111213 86m&65£8%85358 00 01 02 03 04 05 ood&oﬁ%oogiaﬁg
Richness at 0 hrs Effector species Experiment OD600 Species
e
» CD CA EL FP CH ER BH
£04 04 0.2 04 04 04 04
© B
M :
© R RS
o 02 021, + . ° 0.1 0.2 0.2 0.2 i 0.2
o 4 . ‘.
8 ey AR RRARI K |
O o0 Hiltvieien. 0.0 0.0 0.0 00 fittaane. 00 [edttitaenn. 0.0
[a]
O 357 91113 357 91113 357 91113 357 91113 357 91113 357 91113 357 91113
P CSs DP PC BV BU BT BO
< 04 0.2 0.8 0.8 08 0.8 0.6
@ L]
® e 1t
o 02 01 041 04 . 04 [+ 04 03
o cet i
Q ISR
[a] tHi AR AN i s,
8 0.0 0.0 0.0 PrEhe 0.0 o 0.0 " 0.0 0.0
(@] 3657 91113 357 91113 357 91113 357 91113 357 91113 357 91113 357 9113
853 Richness at 0 hrs Richness at 0 hrs Richness at 0 hrs Richness at 0 hrs Richness at 0 hrs Richness at 0 hrs Richness at 0 hrs

854  Figure 2: Growth of C. difficile decreases with community richness. (a) Swarmplot of C.
855  difficile (CD) absolute abundance (OD600) at 48 hours in 94 sub-communities as a function of
856  initial species richness. Datapoints indicate mean of two to three biological replicates. Line
857  represents median, box edges represent first and third quartiles, and whiskers indicate the
858  minimum and maximum. Outliers are denoted by diamonds. (b) Heatmap of inter-species
859 interaction coefficients of the generalized Lotka-Volterra model (gLV) Full Model. (c) Scatterplot
860 of average experimental absolute abundance (OD600) versus predicted species absolute
861  abundance by the gLV Full Model in 24 held-out communities (Pearson r=0.84, p<0.001). Error
862  bars represent standard deviation of two to three biological replicates. Gray line indicates y=x, or
863  100% prediction accuracy. (d) Box plot of incoming inter-species interactions for each species in
864 gLV Full Model. Stars represent statistical significance between C. difficile and each resident
865  species: * p<0.05, ** p<0.01, *** p<0.001 according to an unpaired t-test. Line represents median,
866  box edges represent first and third quartiles, and whiskers indicate the minimum and maximum.
867  Outliers are denoted by diamonds. (e) Subplot of the absolute abundance (OD600) of each
868  species at 48 hours as a function of initial species richness in all 16,370 possible sub-communities
869  of 2-13 species simulated by the gLV Full Model (gray data points) and in 94 experimentally
870  determined subcommunities (mean-value of two to three biological replicates, colored data
871  points).
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873  Figure 3: Impact of initial density on the growth of C. difficile. (a) Scatterplot of C. difficile
874  (CD) absolute abundance (OD600) at 48 hours in communities as a function of the initial fraction
875  of C. difficile. C. difficile was introduced into the communities at zero hours. Gray data points are
876  2-13 member resident communities measured in Fig 2a. Colored data points are 3-4 member
877  communities measured at two initial conditions: low density (approximately 10% of total
878  community OD600) or high density (approximately 65% total community OD600). Gray line
879 indicates a linear regression (y=0.25x-0.01, Pearson r=0.75, p<0.001). Transparent data points
880 indicate biological replicates and are connected to the corresponding mean values by transparent
881 lines. Inset: Abundance of C. difficile at 48 hours in communities invaded with low density or high
882  density. Gray y=x line indicates no change in abundance. Transparent data points indicate
883  biological replicates and are connected to the corresponding mean values by transparent lines.
884  (b) Absolute abundance (ODO600) of C. difficile at 48 hours as a function of the initial fraction of
885  C. difficile in different synthetic communities. C. difficile was added to communities at zero hours.
886  Datapoints indicate biological replicates. Lines indicate Hill model fits (Methods). (c) Initial
887  fraction of C. difficile corresponding to the half-maximum abundance (EC50) inferred based on
888  the fitted Hill equations in b for a subset of communities with sufficient measurements to constrain
889  the function parameters. Red circles indicate the resident species richness at zero hours. (d)
890 Heatmap of the fold change of species absolute abundance (mean-value of three biological
891  replicates) in the full community with 5-60% initial C. difficile compared to 0% initial C. difficile
892  condition. Stars represent statistical significance: * p<0.05, ** p<0.01, *** p<0.001 according to
893  an unpaired t-test.
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896  Figure 4: Impact of environmental factors on C. difficile invasion. (a) Barplot of composition
897  of communities invaded by C. difficile at low density (“LD”) or high density (“HD”). Color indicates
898  species identity. Hash indicates invasion time. Error bars represent one standard deviation from
899  the mean of two to three biological replicates. (b) Scatterplot of the absolute abundance (OD600)
900 of C. difficile at 48 hours in communities when introduced at zero hours versus six hours at low
901 density (approximately 10% community OD600). Transparent data points indicate biological
902 replicates and are connected to the corresponding mean values by transparent lines. Line
903  denotes the x=y line corresponding to no change in growth. Color indicates community, see
904 legend in d. (c) Lineplot of C. difficile OD600 at 48 hours as a function of the initial environmental
905  pH. Datapoints indicate biological replicates and line indicates mean value. (d) Scatterplot of the
906  absolute abundance (OD600) of C. difficile at 48 hours in invaded communities as a function of
907 the environmental pH at time of invasion. Fifteen 3-4 member communities were invaded with
908 (A) high density C. difficile (approximately 33% community OD600) or (e) low density C. difficile
909  (approximately 10% community OD600) at six hours. Color indicates community. Vertical gray
910 line indicates pH of fresh media. Inset: Scatterplot of environmental pH and total community
911 OD600 at six hours. Transparent data points indicate biological replicates and are connected to
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the corresponding mean values by transparent lines. Vertical gray line indicates environmental
pH of fresh media. (e) Bar plot of fold change of C. difficile growth in sterilized supernatants (top)
or supernatants where the pH was adjusted to the pH of fresh media (bottom) compared to the
growth of C. difficile in fresh media. Growth was quantified as integral of OD600 from 0 to 20
hours. Datapoints indicate biological replicates and bars indicate mean value. Red line shows pH
of community supernatants collected at six hours. Horizontal gray line indicates no change in
growth compared to fresh media.

25


https://doi.org/10.1101/2021.03.23.436677
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436677; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b c Sterilized
Xy < Q ™, % supernatants (SS) #g®
== —=J e,
\, S \, \, — ’\ l,‘
- - - - — — -
Ohrs 48 hrs 0hrs 20hs 48 hrs
Invade Measure Inoculate Invade Measure
CommE CommO CD-CH 0.2 CommE CommO CD-CH I
04 - CommE | 0.27 ‘
S o2 02 » |
4 3 . o [ 1 § =t I
< fa) < ) 3
© g3 O o1 o oo f ut =4 I
I T 3 b T » 3 CommO | 0.23 °
© © oo © Sl || @ \
S 0 05 10| S 00 05 10 E ‘
8 0.2 Initial fraction of CH 8 0.1 Initial fraction of CH 8 |
o ol . 8 CH| 009 = 007 . |
L ]
a a 2 I
O o1 o p N 5 |
$ $ s 0 ] | » | media media
e CD| 004 0002 -0.005 | 001 |oH glocose |
00 \ 00 | conc. }
0.0 0.5 1.0 0.0 05 1.0 7,& & \06 @b 50 750 25
g
Initial fraction of CH in communit Initial fraction of CH in communit & N \3’ 'Qe H lucose (MM
y y FAN & S pPH g
RS o o
* ‘}\ & &
» »
S Q’Q
920 &

921  Figure 5: C. hiranonis inhibits the growth of C. difficile. (a) Lineplot of simulated C. difficile
922  (CD) absolute abundance (OD600) at 48 hours using the generalized Lotka-Volterra (gLV) Full
923  Model as a function of the initial fraction of C. hiranonis (CH) in different communities. Inset:
924  Lineplot of simulated C. hiranonis absolute abundance (OD600) at 48 hours in the gLV Full Model
925  as a function of initial fraction of C. hiranonis in the community. (b) Lineplot of C. difficile absolute
926  abundance (OD600) at 48 hours as a function of the initial fraction of C. hiranonis in the
927  community. Inset: Lineplot of C. hiranonis absolute abundance (OD600) at 48 hours in community
928 as a function of initial fraction of C. hiranonis in the community. Datapoints indicate biological
929  replicates and lines indicate mean values. (¢) Heatmap of C. difficile growth in treated sterilized
930 supernatants. The values of the heatmap represent the fold change between the integral of C.
931 difficile OD600 from 0 to 56 hours in the treated supernatant and the integral of C. difficile OD600
932 from 0 to 56 hours in fresh media (mean-values of three biological replicates). Red barplot
933 indicates the pH of the supernatant before treatment. Dashed line indicates the pH of fresh media.
934  Blue barplot indicates the glucose concentration of the supernatant before treatment. Bar
935 indicates average value and points indicate technical replicates. Dashed line indicates glucose
936  concentration of fresh media.
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