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Genetic analysis of coronary artery disease
using tree-based automated machine
learning informed by biology-based feature
selection

Elisabetta Manduchi, Trang T. Le, Weixuan Fu, and Jason H. Moore

Abstract— Machine Learning (ML) approaches are increasingly being used in biomedical applications. Important challenges of
ML include choosing the right algorithm and tuning the parameters for optimal performance. Automated ML (AutoML) methods,
such as Tree-based Pipeline Optimization Tool (TPOT), have been developed to take some of the guesswork out of ML thus
making this technology available to users from more diverse backgrounds. The goals of this study were to assess applicability
of TPOT to genomics and to identify combinations of single nucleotide polymorphisms (SNPs) associated with coronary artery

disease (CAD), with a focus on genes with high likelihood of being good CAD drug targets. We leveraged public functional
genomic resources to group SNPs into biologically meaningful sets to be selected by TPOT. We applied this strategy to data
from the UK Biobank, detecting a strikingly recurrent signal stemming from a group of 28 SNPs. Importance analysis of these
uncovered functional relevance of the top SNPs to genes whose association with CAD is supported in the literature and other
resources. Furthermore, we employed game-theory based metrics to study SNP contributions to individual level TPOT
predictions and discover distinct clusters of well-predicted CAD cases. The latter indicates a promising approach towards

precision medicine.
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1 INTRODUCTION

In recent years, Machine Learning (ML) has gained in-
creased appreciation as an alternative or complemen-
tary methodology to statistical approaches in ‘omics’ data
analyses [1], [2], [3]. Setting up an appropriate ML pipe-
line for a given analysis task involves many decisions in-
cluding data pre-processing algorithm selection, feature
selection, feature engineering, estimator algorithm selec-
tion, and decisions about the many hyperparameter set-
tings. Thus, of particular appeal are Automated ML (Au-
toML) methods, which assist (potentially non-expert) us-
ers in the design and optimization of ML pipelines [4].
Our group has developed a genetic programming-(GP-
)based AutoML named Tree-based Pipeline Optimization
Tool (TPOT) [5], [6], which has been successfully used to
analyze data from metabolomics [7], [8], transcriptomics
[9], [10], and toxicogenomics [10].

In addition to these ‘omics” applications, an initial ap-
plication of TPOT to a real-world genetic data set with
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prostate cancer aggressiveness as the endpoint discovered
several feature combinations that significantly contribut-
ed to the classification accuracy [5]. The data set used in
the latter was 1-2 orders of magnitude smaller, in terms of
number of observations (~2300 subjects), than the typical
size of current Genome Wide Association Studies
(GWAS). Moreover, biological filters suggested by the
endpoint of interest were used to reduce the number of
features to the manageable size of ~200 Single Nucleotide
Polymorphisms (SNPs). Even with this biological guid-
ance, the predictive performance was much lower than
that achieved in the other TPOT ‘omics’ applications cited
above. This is, however, not surprising considering the
challenges associated with complex trait GWAS data,
such as missing heritability, typically small effect sizes of
common variants, and genetic heterogeneity (i.e. different
SNPs being responsible for the trait in different subjects)
[11], [12].

In this work, we set to further explore both the chal-
lenges and potential insights of TPOT analyses on a large-
scale genotype data set via a case study in Coronary Ar-
tery Disease (CAD) leveraging the UK Biobank resource
[13]. We note that, despite numerous large-scale GWAS,
less than half of the of CAD heritability has been account-
ed for [14]. After identifying cases and controls, to estab-
lish a baseline, we first assessed the predictive perfor-
mance of models using GWAS main effect CAD SNPs as
features, i.e. SNPs previously identified from traditional
univariate GWAS analyses. We then explored SNPs
mapped to six genes suggested for CAD drug repurpos-
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ing and drug development [15]. For each of these genes,
we also looked at SNPs mapping to its connected genes
from Hetionet (https://het.io/), an integrative network of
biomedical knowledge. For each gene in this extended
network, we considered not only the SNPs in the gene
body and proximal promoter region but also those resid-
ing in its potential enhancers based on publicly available
epigenomic data from CAD relevant tissues (Figure 1A).
We note that TPOT inherently analyzes features (i.e.
SNPs) as a group and makes no assumptions about addi-
tivity of their effects. By utilizing a 2-stage TPOT ap-
proach and leveraging biologically meaningful SNP
groupings, we identified a strikingly recurrent signal
stemming from models built on an input subset of 28
SNPs. After ranking these SNPs according to permutation
feature importance, we uncovered links between the top
SNPs and other genes related to atherosclerotic plaques
and myocardial infarction. We also analyzed contribu-
tions to the individual predictions for the 28 SNPs using
Shapley Additive exPlanations (SHAP) [16]. We clustered
cases which were well predicted by the optimal model
based on SHAP values, aiming at dissecting their hetero-
geneity in terms of driver SNPs. This also highlighted
specific groups of cases for whom the predictions were
driven by SNPs mapping to genes whose CAD relevance
is supported by the literature and other functional ge-
nomic resources. These results provide new hypotheses
about the genetic basis of CAD and demonstrate the utili-
ty of AutoML for genetic association analysis as well as
the potential of applying metrics such as SHAP to ML
models for precision medicine studies.

2 METHODS

2.1 GWAS Data Preparation

From the UK Biobank (UKB) data, we extracted all sub-
jects of white British ancestry (i.e. with a value of 1 for
UKB field #22006) and retained a maximal subset of unre-
lated individuals (exploiting the related pairs file provid-
ed by UKB) whose genetically inferred sex matched the
sex information collected at recruitment. We applied sev-
eral filters based on flags in the following UKB fields:
22010 (recommended genomics exclusions), 22051
(UKBIiLEVE quality control failure), 22019 (sex chromo-
some aneuploidy), 22021 (kinship inferences), 22027 (out-
liers for heterozygosity or missing rate). We defined CAD
cases based on the criteria from Supplemental Table 1 of
[17], arriving at a collection of 19,134 cases and 321,881
controls. For each such subject, we obtained the first 10
genetic Principal Components (PC) from UKB as well as
the genotyping array and age. We defined age as the val-
ue at the last assessment center visit for individuals in the
control group and at diagnosis/operation/death for indi-
viduals in the case group, depending on the field contrib-
uting to their case classification.

2.2 SNP Selection and Groupings

Our starting point were the six CAD ‘druggable’ genes
suggested by [15] for drug repurposing (CHRNB4,

ACSS2, and GUCY1A3) and drug development (LMODI,
HIP1, and PPP2R3A). We then obtained all autosomal
genes connected with each druggable gene from Hetionet
(https://het.io/), an integrative network assembling the
knowledge from 29 different databases of genes, com-
pounds, diseases, and more. For each gene (whether
druggable or connected to a druggable gene), we ob-
tained its GRCh37 coordinates from Ensembl genes 101
[18], extending them to include 5kb upstream and 1kb
downstream of the Transcription Start Site. In addition,
for each gene, we obtained its putative enhancers in CAD
relevant tissues (fat, heart, and vascular) from the
Roadmap Epigenomics Enhancer-Gene Links
(https://ernstlab.biolchem.ucla.edu/roadmaplinking/). We
then used BEDTools v2.25.0 [19] to extract, for each gene,
SNPs residing in its body, promoter, or any of its enhanc-
ers (we only considered SNPs with a Minor Allele Fre-
quency (MAF) > 0.01 and an imputation info score > 0.9).
We further filtered the resulting collection of SNPs using
software aimed at scoring their potential functionality
(whether coding or non-coding). Namely, we used CADD
[20] v1.6, GWAVA [21] v1.0, and TraP [22] v3.0, and we
only retained SNPs satisfying at least one of these condi-
tions: (1) CADD scaled score > 10, or (2) GWAVA score >
0.5, or (3) TraP score > 0.459. Finally, for each druggable
gene, we took the filtered SNPs mapping to the gene or
any connected gene and pruned them for Linkage Dise-
quilibrium (LD) using qctool v2
(https://www.well.ox.ac.uk/~gav/qctool_v2/)  with a
threshold of 0.8 for r2. For each druggable gene, we de-
fined one Feature Set (FS) per connected gene, consisting
of all SNPs resulting from the above filters and mapping
either to the druggable or the connected gene (body, pro-
moter, or any enhancer), as illustrated in Fig 1. Note that
any two FSs of a druggable gene share all the SNPs of that
gene.

2.3 TPOT Runs

In our first set of analyses, we used classic TPOT, whose
source code is freely available at
https://github.com/EpistasisLab/tpot. We then assessed
the results derived by incorporating covariate adjust-
ments as described in [10] using resAdj TPOT, whose
code is also freely available at
https://github.com/EpistasisLab/tpot/tree/v0.11.1-resAd;.
In the latter analysis, we adjusted the outcome for age, sex
and the first 10 PCs and we adjusted all features for geno-
typing array and the first 10 PCs. In all TPOT runs, we
applied 5-fold cross validation. For each TPOT run, to
match 19,134 cases, we randomly selected 19,134 samples
from 321,881 individuals in the control group to obtain a
balanced and reasonably sized input dataset. Where spec-
ified (see Results section), we used the Template and Fea-
ture Set Selector (FSS) described in [9]. The Template con-
strains the GP to only examine pipelines with a given ar-
chitecture. The FSS slices the input data set into smaller
sets of features, allowing the GP to select the best subset
in the final pipeline.
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Fig. 1. (A) Selection of SNPs and FSs. For each druggable gene DG,
its connected genes (CGs) were obtained from Hetionet. For each
CG, the SNPs mapping to its body, promoter, and putative enhanc-
ers were identified (CGS) and added to those mapping to DG (DGS).
The corresponding FS was derived from these SNPs after filtering by
functionality scorers and pruning. (B) FSs for the druggable genes.
Each point corresponds to an FS for the DG indicated on the y-axis
and its x-coordinate indicates the number of SNPs in that FS.

2.4 Feature Assessments

We employed ELI5 v0.10.1 (https://github.com/TeamHG-
Memex/eli5) to calculate permutation feature importance
and the python SHAP library
(https://github.com/slundberg/shap) to compute SHAP
values with kernel explainer, an agnostic method that
makes no assumption on the model type. Moreover, we
used shap.kmeans to generate the explainer background
from the training set, with 46 clusters for classic TPOT
and 73 for resAdj TPOT. We arrived at these numbers by
examining the Dunn indices for k-means clusterings for k
varying between 30 and 100 and selecting the k yielding
the highest value, using the R package NBClust [23]. The
Dunn index is a measure of cluster quality defined in [24].
We also employed NbClust to inspect Dunn indices and
generate k-means clustering of subjects based on SHAP
values.

For visualization, we used the python SHAP library to
compute a matrix of SHAP values for each individual and
SNP and produce the initial summary plots. From the
SHAP value matrix, we generated the final force plots

using the R programming language (v 4.0.3) with the
dplyr (v1.0.2), ggplot2 (v3.3.2), tidyr (v1.1.2), readr
(v1.4.0), and seriation (v1.2-9) libraries. A GitHub reposi-
tory with reproducible R visualization code is available at
https://github.com/trang1618/cad-shap.

3 RESULTS

We first explored the predictive performance of TPOT
when using as features the SNPs in the CAD loci identi-
fied in [25] and reported in Supplemental Table 2 of that
paper. After LD pruning (with a threshold of 0.6 for r?) we
obtained 92 SNPs. We ran classic TPOT 50 times (without
a Template), each with a random down-sampling of the
controls (hence with a balanced input of 19,134 cases and
19,134 controls). In each run, the input was split into
training (75%) and holdout validation testing (25%) parts.
We set a population of 100 in the GP and the stopping
criterion was the earliest of 100 generations or 2 days.
Over the 50 runs, the range for the accuracy of the TPOT
optimized pipeline on the holdout testing set was 0.561-
0.582, which is reasonable given the typically small effect
sizes of common variants and genetic heterogeneity. This
classic TPOT result served to establish a reference based
on the strongest known main effect signals, suggesting
that runs that explore other sets of variants may not yield
accuracy values much higher than 0.50. Therefore, partic-
ularly useful for this type of application, is TPOT’s feature
set selector (FSS), which slices the input data set into
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smaller sets of features and reports the best feature subset
in the final pipeline. Indeed, due to the GP stochasticity,
we carried out multiple runs of TPOT. We could therefore
examine the consistency with which the same FS was se-
lected across multiple runs, hypothesizing that an FS re-
peatedly selected in different pipelines contains potential-
ly interesting signals.

To look for variants other than the known GWAS hits,
we focused on SNPs mapped to the body, promoter, or
putative enhancers (in CAD relevant tissues) of the six
‘druggable’ genes from [15] and their connected genes
from Hetionet, as described in Methods. Since runs of
TPOT on such large data sets are computationally expen-
sive, we first carried out pilot analyses consisting of 10
TPOT runs per druggable gene, using the Template FSS-
Transformer-Classifier, where each FS comprised the SNPs
mapped to a druggable gene and one of its connected
genes (see Methods and Fig. 1). In these pilot analyses we
had the same settings as the above baseline analyses in
terms of down-sampling of controls, train/test split, and
GP population, but the GP stopping criterion was short-
ened to the earliest of 100 generations or 1 day. The best
out of 10 testing accuracies for the six druggable gene
varied from 0.5062 (for the runs using FSs derived from
LMOD1) to 0.5229 (for the runs using FSs derived from
PPP2R3A). Moreover, out of 197 FSs considered for
PPP2R3A, the same FS (corresponding to its connected
gene PRC1T) was selected in 4 of the 10 runs. Thus, we de-
cided to pursue the 197 FSs determined by PPP2R3A and
its connected genes for more extensive TPOT runs, as we
had indication of possible interesting signals among these
SNPs.
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Fig. 2. Workflow for the 2-stage procedure.

In the more extensive runs, we adopted a 2-stage pro-
cedure, illustrated in Fig. 2. In both stages we increased
the number of runs from 10 to 50. Moreover, we made
sure to use different holdout testing sets in the two stages.
More precisely, we generated 50 random down-samplings
of the controls and, for each of these, we randomly split

the resulting 38,264 cases and controls into a training
(75%) part, a holdout validation testing (13%) part for
stage 1 and a holdout validation testing part (12%) for
stage 2. In the first stage, we carried out 50 TPOT runs
(one for each of the down-sampling and train/test splits),
using the Template FSS-Transformer-Classifier, focusing
only on the FSs corresponding to PPP2R3A. We used a
population of 100 in the GP and a stopping criterion of
the earliest of 100 generations or 1 day. We noted that in
21 of the 50 runs the TPOT optimized pipeline selected
the same FS, corresponding to PRC1, re-enforcing the re-
sults from the pilot runs. Moreover, out of the 50 runs, the
accuracy of the best pipeline on the holdout testing set
was 0.5245 and this pipeline selected the PRC1 feature set
(consisting of 28 SNPs mapped to either this gene or
PPP2R3A).

To assess the significance of these results, we per-
formed permutation tests. Ideally, we would generate
1000 permutations and, for each permutation, repeat the
entire stage 1 procedure of 50 runs set up as above. How-
ever, because of the computationally expensive nature of
GP, we only generated 20 permutations of the target col-
umn in our full data set and repeated the stage 1 analysis
in each permutation (for a total of 20x50=1000 TPOT
runs). For each of the 20 permutations, we investigated
the highest occurrence frequency of the same FS out of 50
runs and all of these 20 values were < 4, much smaller
than the observed value of 21 on the unpermuted data.
We also assessed the highest testing accuracy out of 50
runs for each of these permutations, and all of these 20
values were less than the observed value (0.5245) on the
unpermuted data. Even though we cannot infer that the

train/test splits ~ TPOT

} —— PPP2R3A and PRC1 SNPs

13% test 1
2 Feature Set Selector
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TPOT
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results from stage 1 have permutation p-values < 0.05 due
to the limited number of permutations, it is nevertheless
noteworthy to see that the same FS was selected in such a
large proportion of the 50 original TPOT runs compared
to the best proportions achieved in the runs on the 20
permuted data sets.

In stage 2, we focused on the SNPs from the significant
FS from stage 1, i.e. the 28 SNPs mapped to either

75% train

12% test 2
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PPP2R3A or PRC1 (see Supplemental Table 1) and ran
TPOT without Template and extending the stopping cri-
terion to the earliest of 100 generations or 2 days, to see if
we could improve accuracy. Again, we ran TPOT 50 times
using the down-sampling and train/test splits illustrated
above, but this time, the accuracies were computed using
the holdout testing sets 2. These unconstrained runs
slightly improved the testing accuracy, with the best of 50
accuracies equal to 0.5274. For each of the 20 permuta-
tions, we ran 50 TPOT runs with the stage 2 settings
(again, for a total of 1000 runs) and again the highest test-
ing accuracy out of 50 runs was less than the observed

applied here, because permuting the target column would
have disrupted the relationship between target and co-
variates.

In order to better understand the drivers of the model
in the best pipeline from stage 2, based on the FS consist-
ing of the 28 SNPs mapping to the body, promoter, or
enhancers of PPP2R3A and PRC1, we looked at permuta-
tion feature importance, both for classic and resAdj TPOT.
The drivers for the best stage 2 pipeline from classic
TPOT (illustrated in Fig. 3) were the SNPs rs4932178 and
rs113028686. These two SNPs were also among the top 7
SNPs in the best stage2 pipeline from resAdj TPOT, to-

value across all permutations. gether with rs116415933, rs139138366, 1s8031684,
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Fig. 3. Outline of the best pipeline from the classic TPOT stage 2
runs. Select Percentile, Variance Threshold, and Recursive Feature
Elimination (RFE) are feature selectors. Extra Trees Classifier (ETC)
and Stochastic Gradient Descent Classifier (SGDC) are classifier
estimators. The Stacking Estimator adds to its input features the
results of applying the indicated estimator to those features.

The classic TPOT results indicate that there is signal
within the combination of SNPs mapped to the
body/promoter/enhancers of PPP2R3A and PRCI. In or-
der to verify that this signal persisted even when factor-
ing out potential covariate effects, we repeated a 2-stage
procedure similar to classic TPOT, using resAdj TPOT
with the adjustments described in Methods. Since resAdj
TPOT transforms the problem from classification to re-
gression, performance was measured by the coefficient of
determination, as opposed to accuracy. Because of how
resAdj TPOT operates, in stage 1 the Template used was
FeatureSetSelector-res AdjTransformer-Transformer-Regressor;
as the resAdjTranformer is required in order to make the
adjustments. For the same reason, in stage 2, we had less
flexibility and could not dispense of a Template (we used
resAdjTransformer-Transformer-Regressor). In the first stage
runs, out of the 197 FSs again the FS corresponding to
PRC1 was the one most frequently selected, in 7 out of 43
successful runs. Albeit the best coefficient of determina-
tion in stage 2 was low (0.0023), the frequency with which
the FS for PRC1 occurred in stage 1 indicates presence of
signal in this FS. We note that a permutation approach in
the spirit of what we did for classic TPOT could not be

., - .,
‘‘‘‘‘‘ .
--------

0 o
.,
_______
------

X", Z Vv
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rs11073964, rs35773450. The SNP rs4932178 resides in a
putative enhancer for PRCI (in heart and fat), but is also
within the promoter of FURIN, a gene expressed in vascu-
lar Endothelial Cells (ECs) and whose levels in ECs affect
monocyte-endothelial adhesion and migration [26]. It has
also been shown that FURIN inhibition reduces vascular
remodeling and atherosclerotic lesion progression in mice
[27]. Furthermore, this gene is among the prioritized
causal CAD genes from [28] based on cumulative evi-
dence from experimental and in silico studies. rs4932178
was also identified in GTEx (https://gtexportal.org/, v8) as
an eQTL for FES in various tissues including coronary
artery. Colocalization between CAD and expression asso-
ciation signals was observed for FES by [29]. rs113028686
is in the 5’-UTR of PRC1 and is an eQTL of FES in various
tissues including adipose, whole blood, and tibial artery
(from GTEx). rs8031684, residing within an intron of
PRC1, is an eQTL of RCCD1 in adipose, aortic and tibial
artery, as indicated in HaploReg v4.1 [30]. RCCD1 is in the
same subnetwork as FURIN for the CAD key driver
NGRN identified in [31]. rs11073964, just upstream of
PRC1, is also a missense mutation for VPS33B which is
among 13 novel susceptibility loci for early-onset myo-
cardial infarction identified in [32]. Among the remaining
3 SNPs (rs116415933, rs139138366, rs35773450), all intron-
ic within the CAD druggable gene PPP2R3A, rs116415933
is reported in GTEx as eQTL for IL20RB in various tissues,
including adipose and aortic and tibial artery. GeneCards
[33] reports an association with the CAD phenotype for
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IL20RB (www.genecards.org).
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Fig. 4. Multisample force plot for the 1489 correctly classified testing
cases in the best stage 2 pipeline for classic TPOT. Explanations for
these subjects are stacked horizontally, so the x-axis indicates the
individuals. For each individual, the feature contributions to its pre-
diction (probability of CAD) are shown along the y-direction, with
features pushing the prediction higher in red, and features pushing
the prediction lower in blue.
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Fig. 5. Feature rankings within the four SHAP value-based clusters
for the correctly classified CAD testing cases in the best stage 2
pipeline from classic TPOT. The x-axis indicates the mean absolute
SHAP value for the subjects in that cluster. Only the top 3 (out of 28)
features are indicated as all remaining ones have negligible contribu-
tions.
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Permutation importance measures the overall rele-
vance of a feature to a model, i.e. how much the model
relies on that feature, by examining how much shuffling
the feature values increases the model error. However,
especially when a model has limited predictive ability
and heterogeneity exists among subjects, as it is typically
the case with GWAS data, it is of interest to examine how
each feature contributes to the individual predictions.
With this in mind, we set to examine which features were
driving the good predictions among the CAD cases using
SHAP values, a game-theory based metric for explaining
individual predictions [16]. We first examined the best
pipeline from stage 2 of classic TPOT and computed the
feature SHAP values for the 1489 testing CAD cases that
were correctly classified. Fig. 4 shows the force plot for
these subjects (force plots were introduced in [34]). Based
on inspection of the force plot and Dunn indices for vari-
ous k values, we used SHAP values to cluster these sam-
ples into four groups (sizes: 76, 156, 252, and 1005). We

800 1000 1200 1400
then ranked the features within each group by their aver-
age impact on model output across that group.

We observed that the same three features are driving
the model output in all four clusters but with differing
relevance (Fig. 5). These are two SNPs discussed above
(rs4932178 and rs113028686) plus the rs17636091 SNP. The
latter resides within an intron of PRCI and is reported by
GTEx as eQTL, in various tissues, including adipose and
artery (aorta and tibial), for both RCCDI and VPS33B,
genes whose relevance to CAD has been discussed above.
Clusters 1 and 3 are very similar with rs4932178 having a
markedly higher average contribution to the model out-
put, and rs17636091 contributing slightly more than
rs113028686 on average in cluster 1 than in 3. For subjects
in cluster 2, predictions are mostly driven by rs113028686,
whereas for those in cluster 3, rs17636091 is the driver
with rs113028686 not too distant of a second.

We then proceeded with a similar approach for the
best stage 2 pipeline from resAdj TPOT. We focused on
the 250 CAD testing cases in the bottom quartile of the
absolute difference between the covariate-adjusted ob-
served and predicted outcomes. We note that these indi-
viduals are distinct from the 1489 correctly predicted us-
ing classic TPOT (overlap=19). Based on inspection of the
force plot (Fig. 6) and Dunn indices for various k values,
we clustered these subjects into six SHAP value-based
groups (sizes 26, 5, 27, 13, 43, and 136).

In this case (Fig. 7), rs4932178 returns as the main
driver to the model predictions for subjects in cluster 3.
Moreover, this SNP is a strong driver in cluster 4 together
with the top driver of that cluster, which is rs116415933,
discussed above. The latter SNP is also the main driver in
cluster 5, whereas in cluster 1 it is the main driver closely
followed by rs188650245, an intronic SNP in PPP2R3A4,
indicated in GTEx as eQTL in several tissues, including
cultured fibroblasts, for IL20RB, a gene discussed above.
The latter SNP is also a top driver for cluster 6, but here
with similar impact to rs139138366. Finally, cluster 2 is
dominated by rs17636091, discussed above.
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Fig. 6. Multisample force plot for the 250 well classified testing cases
in the best stage 2 pipeline for resAdj TPOT. Explanations for these
subjects are stacked horizontally, so the x-axis indicates the individ-
uals. For each individual, the feature contributions to its prediction
are shown along the y-direction, with features pushing the prediction
higher in red, and features pushing the prediction lower in blue.

sets, then the search space is indeed much larger than the
search space for univariate analyses. All of this hinders
computational feasibility. Second, the signal is weak and
hard to detect, due to several inherent characteristics of
this type of data, including small effect sizes of common
variants and heterogeneity. Our baseline runs of TPOT,

focused on features previously
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Fig. 7. Feature rankings within the six SHAP value-based clusters for
the well predicted CAD testing cases in the best stage 2 pipeline
from resAdj TPOT. The x-axis indicates the mean absolute SHAP
value for the subjects in that cluster. The features displayed are
those in the union of the top 5 from each of the 6 clusters.

4 CONCLUSION AND DISCUSSION

In this work we employed a large-scale genotype data set
for the CAD phenotype, derived from UKB, to assess the
applicability of AutoML, specifically TPOT. Traditional
GWAS analyses are based on univariate statistical ap-
proaches aimed at detecting main effects. ML approaches
like TPOT enable investigation of SNPs as groups, em-
bracing the possibility of both additive and epistatic ef-
fects. However, GWAS data sets present some unique
challenges to AutoML as compared to other data types.
First, the search space is very large, both in terms of num-
ber of observations (subjects) and features (SNPs). More-
over, if one is interested in comparing different feature

duced the feature search space by

employing biological filters where
we integrated three resources: (1) results from a previous
druggability prioritization study for CAD, (2) Hetionet
integrated network, (3) tissue specific enhancer-promoter
predictions derived from Roadmap Epigenomics data
[35]. In addition, we employed various scorers to filter out
potentially non-functional SNPs. Reducing the SNPs to be
analyzed is a necessary but very delicate step. The idea is
to utilize multiple lines of evidence to narrow down the
feature space, whereby the goal is not to look for all pos-
sible signals of interest but to focus on a promising sub-
set. There are many paths that can be taken to this end
and in our case study we picked and followed one route.
In general, for this type of filtering approaches, the risk is
to discard too much and hence eliminate all potentially
interesting features. The choice of suitable functional ge-
nomics data, public databases, and scoring algorithms
bear a crucial weight into guiding the selection of SNPs
and SNP groupings. As more functional genomics data
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become available as well as improved computational
methods to extract from these more precise and relevant
SNP-gene mappings, the application of TPOT and other
AutoML to high-throughput genotype-phenotype data
should become increasingly fruitful.

In spite of this reduction in search space size, the in-
put data to our runs were still very large; thus, we had to
set an upper bound of 100 for both the GP population and
the GP number of generations. Moreover, for our permu-
tation analyses, where the whole process had to be re-
peated for each permutation and we carried out 50 TPOT
runs per permutation per stage, we had to limit the num-
ber of permutations to 20. Thus, improving TPOT run-
time is an important area for further development so that
runs on GWAS data can be on par with the typical set-
tings used for other data types (e.g. 500-1000 generations
and similarly sized populations in the GP). Improvements
in run time would also enable increasing the number of
permutations so to estimate p-values with small uncer-
tainty.

A feature that turned out to be particularly useful for
this scenario where accuracies were just above 50%, was
the FSS which allowed us to specify that the pipelines
being searched by TPOT in the first stage should all start
with the selection of a feature set among a collection of
sets of interest. With this, by examining the consistency
with which a given FS was selected in multiple runs, we
managed to identify a strikingly recurrent FS, comprising
SNPs residing within the body, promoter, or enhancers of
the ‘druggable” PPP2R3A or its connected gene PRCI1. To
our knowledge, the latter gene has not previously been
reported as being CAD relevant. Even though we cannot
rule out the possibility that it represents a novel CAD
gene, there are other possible explanations for the signal
detected by TPOT. Indeed, when we examined permuta-
tion-based feature importance, we noted that several of
the top SNPs relevant to models from the best stage 2
TPOT pipelines were not only in functional regions for
PRC1, but also in functional regions for other genes (such
as FES, FURIN, RCCD1, VPS33B, and IL20RB) with evi-
dence for CAD relevance from previous studies. We note
that permutation feature importance should not be over-
interpreted in data sets like those derived from GWAS,
where the predictive power is limited and heterogeneity
is expected among the cases. In view of the latter, it is
especially important to examine the feature contributions
to model output on an individual basis. In this work, we
computed SHAP values to cluster the testing cases with
good predictions and examined the drivers of these pre-
dictions in different clusters. This approach underscores
the case heterogeneity in our data set and provides an
example of how to move towards precision medicine by
utilizing metrics, such as SHAP values, which can help
distinguish which features are relevant for which indi-
viduals. Our analysis of the SHAP value-based clusters
also highlighted groups of subjects where the predictions
were driven from SNPs associated to the genes with CAD
relevance indicated above. Together, our findings corrob-
orate that, despite the specific challenges presented by
GWAS to TPOT, insights can be gained from applications

of AutoML to this type of data, especially in combination
with consistency measures (as provided by the FS recur-
rence analysis) and metrics aimed at facilitating model
explanations such as SHAP.
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