

Aggregated *Mycobacterium tuberculosis* enhances the inflammatory response

Hylton E. Rodel^{1,2}, Isabella Markham Ferreira¹, Carly G.K Ziegler^{3,4,5,6}, Yashica Ganga¹, Mallory Bernstein¹, Shi-Hsia Hwa^{1,2}, Kievershen Nargan¹, Gila Lustig¹, Gilla Kaplan⁷, Mahdad Noursadeghi², Alex K. Shalek^{3,4,5,6}, Adrie Steyn^{1,8,9}, Alex Sigal^{1,2,8,10*}

¹*Africa Health Research Institute, Durban, South Africa.* ²*Division of Infection and Immunity, University College London, London, UK.* ³*Ragon Institute of MGH, Harvard, and MIT, Cambridge, USA.*

⁴*Department of Chemistry, Institute for Medical Engineering and Sciences, MIT, Cambridge, USA.* ⁵*Broad Institute of MIT and Harvard, Cambridge, USA.* ⁶*Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA* ⁷*University of Cape Town, Cape Town, South Africa.* ⁸*School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.*

⁹*Department of Microbiology, Centres for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, USA.* ¹⁰*Max Planck Institute for Infection Biology, Berlin, Germany.*

* Corresponding author. Email: alex.sigal@ahri.org

1 Abstract

2 *Mycobacterium tuberculosis* (Mtb) readily aggregates in culture and Mtb aggregates in
3 the lung were observed in experimental Mtb infection. However, the physiological conse-
4 quences of Mtb aggregation are incompletely understood. Here we examined the human
5 macrophage transcriptional response to aggregated Mtb relative to infection with non-
6 aggregated single or multiple bacilli per host cell. Infection with aggregated Mtb led to
7 an early upregulation of pro-inflammatory associated genes and enhanced TNF α signaling
8 via the NF κ B pathway. Both these pathways were significantly upregulated relative to
9 infection with single bacilli, and TNF α signaling was also significantly elevated relative to
10 infection with multiple non-aggregated Mtb. Secretion of TNF α and downstream cytokines
11 were also enhanced. On a longer timescale, aggregate infection led to overall increased
12 acidification per macrophage and a high proportion of death in these cells after aggregate
13 phagocytosis. Host cell death did not occur when Mtb aggregates were heat killed despite
14 such clumps being readily picked up. To validate that Mtb aggregates do occur in the
15 human lung, we document Mtb aggregates surrounding a cavity in a human TB lesion.
16 Aggregates may therefore be present in some lesions and elicit a stronger inflammatory
17 response resulting in recruitment of additional phagocytes and their subsequent death,
18 potentially leading to necrosis and transmission.

19 Introduction

20 Mtb infection of a human lung results in either a latent disease state, in which an individual is infected
21 and asymptomatic, or active TB disease, manifesting as hemoptysis, lung damage, weight loss, and other
22 severe systemic effects [1, 2, 3, 4, 5]. In active TB, Mtb infection leads to necrosis of the granuloma,
23 the structure which encapsulates Mtb infection, attempting to isolate it from the surrounding lung
24 [6, 4, 7, 8]. This in turn results in the necrotic granuloma entering the airway and expectoration of
25 bacilli out of the lung and transmission to other hosts [1, 2, 3, 4].

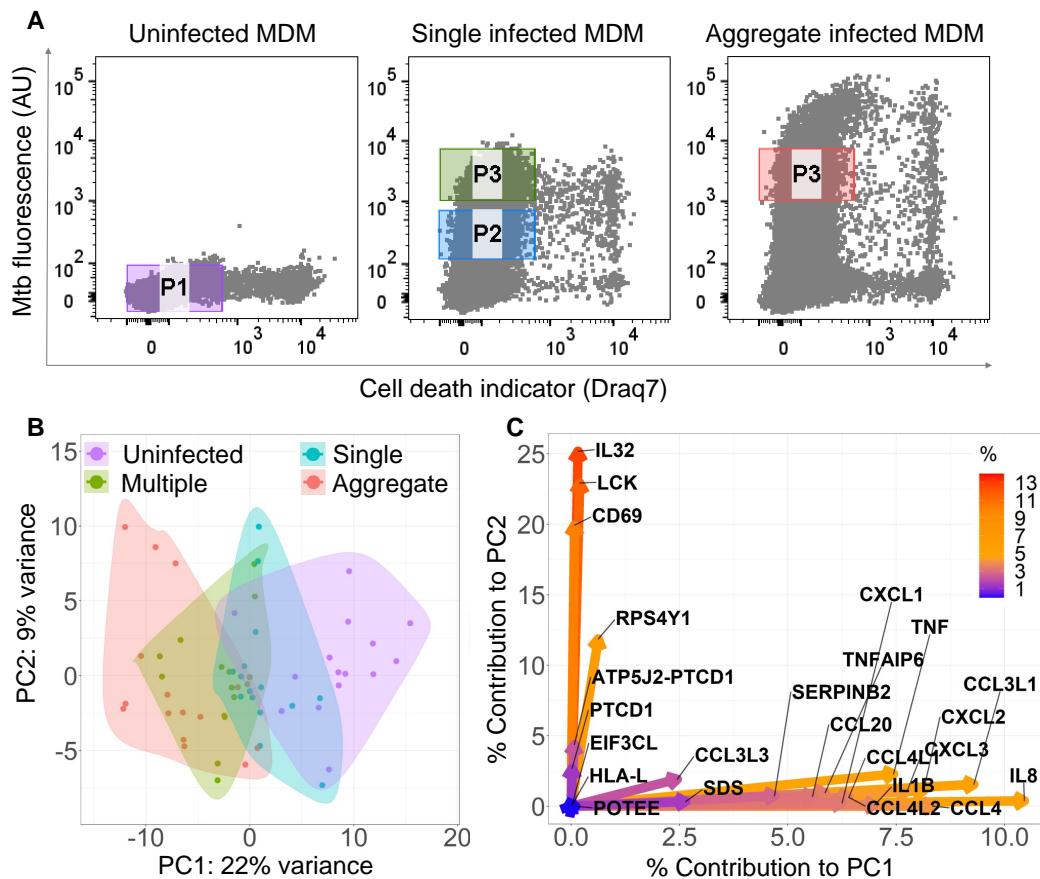
26 The host-pathogen interactions that tip the balance to active disease are not clearly defined. Ag-
27 gregation has been proposed to be associated with pathogenicity [9, 10] and increase Mtb virulence in
28 mice and *ex vivo* [11, 12, 13]. Mtb aggregates have been observed in human lung tissue [7], though the
29 fraction of bacilli in this state is unclear. Additionally, Mtb aggregates have recently been shown to be
30 transmitted in bio-aerosols [14].

31 We have previously demonstrated using time-lapse microscopy that infection with aggregated Mtb
32 preferentially leads to macrophage death [15] and this has been observed by others using different
33 methods [16, 17]. Death of infected macrophages in turn results in rapid replication of the bacilli inside
34 the dead infected cells [15], an observation which was independently confirmed [18]. The necrotic,
35 infected cell may then be phagocytosed by another macrophage, leading to additional cycles of host cell
36 death and bacterial growth which may close a positive-feedback loop [15], provided more phagocytes
37 are recruited to the infection area.

38 Macrophages show extensive transcriptional remodeling of their immune and inflammatory pathways
39 [19, 20, 21]. This includes upregulation and secretion of TNF α , IL8, CCL3, CCL4, IL1 β and other factors
40 involved in inflammation [22, 23, 24]. This response activates macrophages for the killing of phagocytosed
41 Mtb [25] and recruits additional cell types, such as neutrophils, to the site of Mtb infection [26, 27]. While
42 such a response may be host protective, macrophage cell death may also be a consequence [25, 28, 9].
43 Here we investigated the effects of Mtb aggregation on the macrophage early transcriptional response.
44 We observed that infection with Mtb aggregates led to a stronger early inflammatory response in human
45 monocyte derived macrophages, with higher secretion of TNF α , as well as upregulation of genes leading
46 to chemotaxis. We also observed that Mtb aggregates accounted for a substantial number of the Mtb
47 identified on the periphery of a cavitary lesion. Taken together, these results may be consistent with

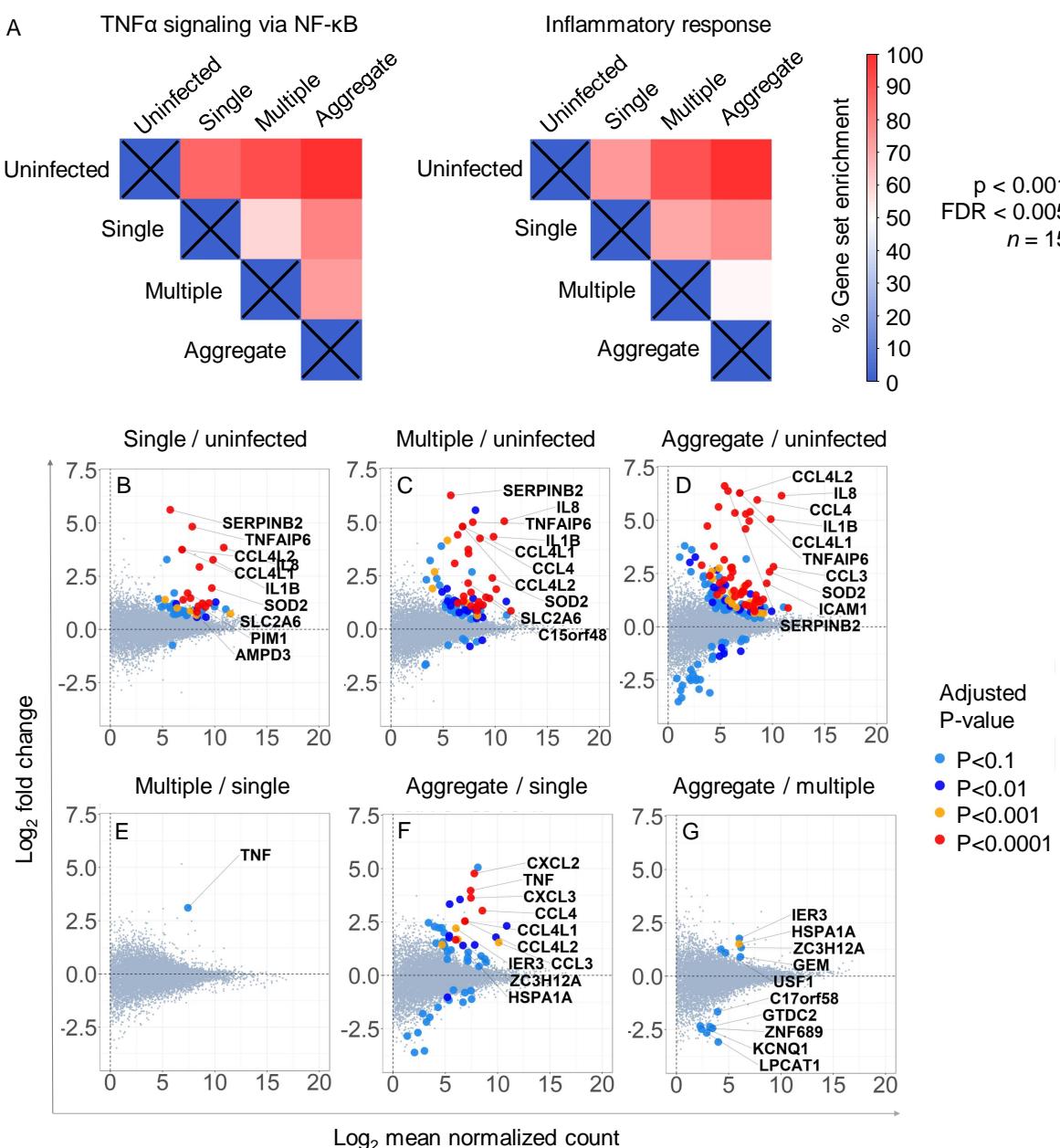
48 Mtb aggregation playing a role in TB pathogenesis.

49 Results


50 Aggregated Mtb shows a distinct transcriptional response de- 51 pending on both Mtb number and aggregation state

52 We asked whether bacterial aggregation could modulate the early host cell transcriptional response,
53 where secondary processes associated with host cell death have not yet begun.

54 We infected monocyte derived macrophages (MDM) with single or aggregated bacilli (3 repeats for
55 each of 5 donors, $n = 15$). Single Mtb were obtained by bead beating Mtb grown in the absence of de-
56 tergent, followed by filtration (Materials and methods). At 3 hours post-infection, we sorted live MDM
57 which internalized aggregated Mtb (Figure 1A), or live MDM which internalized single Mtb or multiple
58 single Mtb. As a control, we sorted uninfected MDM. We performed population RNA-Seq on the differ-
59 ent sorted populations. We identified the most variably expressed genes after normalization and batch
60 correction and used principal component analyses (PCA) to plot the top 0.1 % of variable genes across
61 the different conditions. We observed that the infection conditions could be separated along the first
62 principal component, where there was a graded response in gene expression from uninfected to aggregate
63 infected cells (Figure 1B), indicating that both the number of infecting bacilli and the aggregation state
64 determines the transcriptional profile. The genes contributing to this separation included TNF, IL8,
65 CCL4, IL1 β , CXCL2, CXCL3 and other genes involved in inflammation and chemotaxis (Figure 1C).


66 We examined the functional differences between infection conditions at the transcriptional level using
67 the Gene Set Enrichment Analysis (GSEA). We compared all infection conditions relative to each other
68 and plotted the normalized enrichment scores (NES) for two gene sets ("TNF α signaling via NF- κ B"
69 and "Inflammatory response") that were most significantly different between comparisons (Figure 2A-B,
70 Table S1). We observed that, relative to uninfected cells, there was enrichment of both gene sets when
71 MDM were infected with single Mtb. However, a further increase in the enrichment score occurred when
72 infection was by multiple non-aggregated bacilli and was highest with aggregated bacilli. Interestingly,
73 both the number of bacilli and aggregation state showed an effect: there was enrichment in both TNF α
74 signaling and the inflammatory response with multiple non-aggregated Mtb relative to single Mtb, and
75 in TNF α signaling with aggregate infection relative to infection with multiple non-aggregated bacilli per
76 cell (Figure 2A).

77 We next investigated the specific genes which were significantly up or down-regulated under the
78 different infection conditions. When MDM were infected with single Mtb, the transcriptional response
79 predominantly consisted of an upregulation of a subset of genes, including the TNF α responsive genes
80 IL1 β , CCL4L1 and CCL4L2, SERPINB2, and TNFAIP6 (Figure 2B, Table S2). More genes were
81 upregulated when multiple single Mtb bacilli infected one MDM, including additional TNF α responsive
82 genes IL8 and CCL4 (Figure 2C). With aggregate infection, there was a highly upregulated cluster
83 of genes, including CCL4L1 and CCL4L2, IL8, CCL4, IL1 β , SERPINB2, and TNFAIP6 (Figure 2D).
84 These genes had functions including inflammation, neutrophil chemotaxis and regulation of apoptosis
85 [29, 30, 31, 32, 33].

Figure 1: Mtb Aggregation changes the macrophage transcriptional response. (A) MDM were infected with mCherry labeled, aggregated Mtb (right panel), single Mtb bacilli (middle panel) or uninfected (left panel) and sorted for RNA-Seq 3 hours post-infection. Populations consisted of cells infected with aggregated Mtb (Gate P3 - right panel), cells infected with single or few bacilli (Gate P2 - middle panel), cells infected with multiple single bacilli (Gate P3 - middle panel), or uninfected (Gate P1 - left panel). Dead cells were excluded. X-axis is signal from the cell death detection dye DRAQ7, y-axis is mCherry signal from Mtb infection. (B) Principal component analysis (PCA) of the top 0.1% most variably expressed genes following rlog normalization and batch correction in R. Small circles are individual experiments (3 repeats from each of 5 blood donors). (C) Percentage contribution of individual genes used in the PCA. Color bar represents the percent contribution of individual genes to the first two principal components.

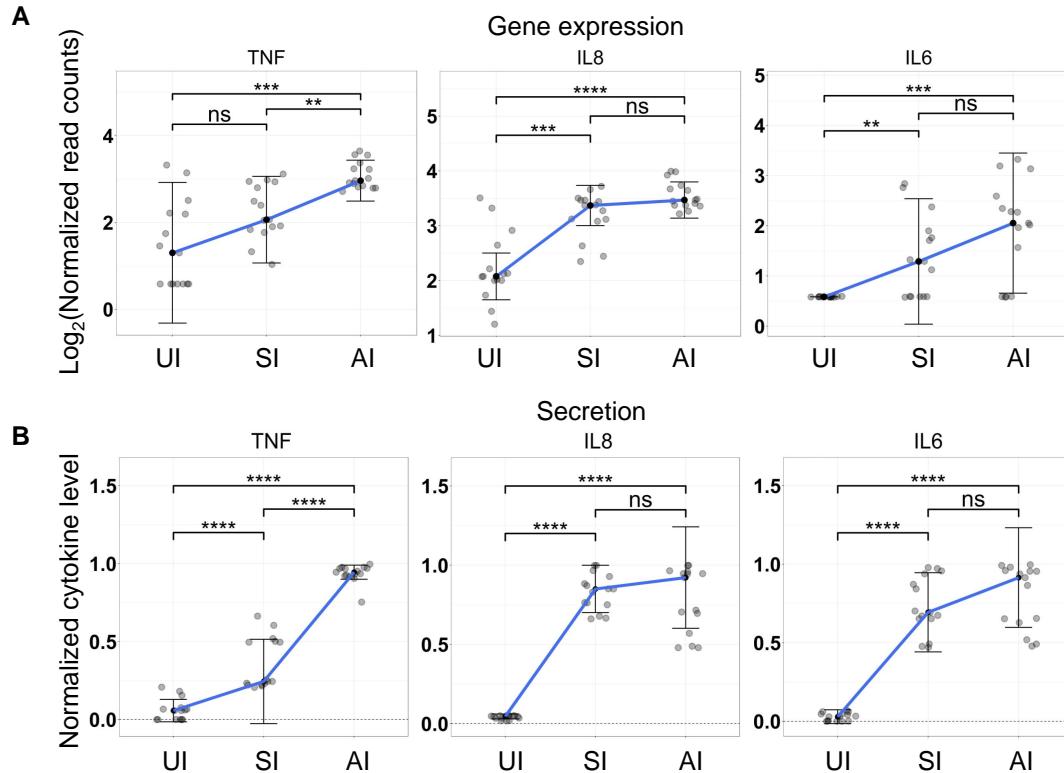

86 A comparison of multiple to single infected MDM yielded enhancement in TNF α expression (Figure
 87 2E). In contrast, comparison of aggregate to single infection included enhancement of TNF α and also
 88 CCL4, CCL4L1, CCL4L2, CXCL2, and CXCL3 (Figure 2F). Genes were both up and down regulated
 89 in the comparison between aggregate and multiple single infection (Figure 2G). The genes HSPA1A and
 90 IER3 have been shown to be involved in the negative regulation of apoptotic cell death [34, 35]. Taken
 91 together, there is a trend toward stronger expression of inflammatory mediators with a progression from
 92 single infection to infection with unaggregated multiple Mtb, to aggregates.

Figure 2: Gene sets and individual genes differentially regulated between infection conditions.

(A) Normalised enrichment score (NES), expressed as percentage of maximum enrichment for the gene sets defined as "TNF α signaling via NF- κ B", and "Inflammatory response". Enrichment scores were calculated for all treatment comparisons and were significantly different at Nominal $p < 0.001$ and FDR < 0.005 , with the exception of the aggregate to multiple comparison for the "inflammatory response" gene set (where $p < 0.05$ and FDR = 0.24). Individual differentially regulated genes were identified by comparing infection conditions (B-G) in DESeq2. Large circles represent genes differentially regulated between two infection conditions at a significance indicated in the corresponding colour key, while smaller grey circles are not significantly different. Fold-change in expression is on the y-axis, with values above zero indicating up-regulation and below zero down-regulation. Read count is on the x-axis.

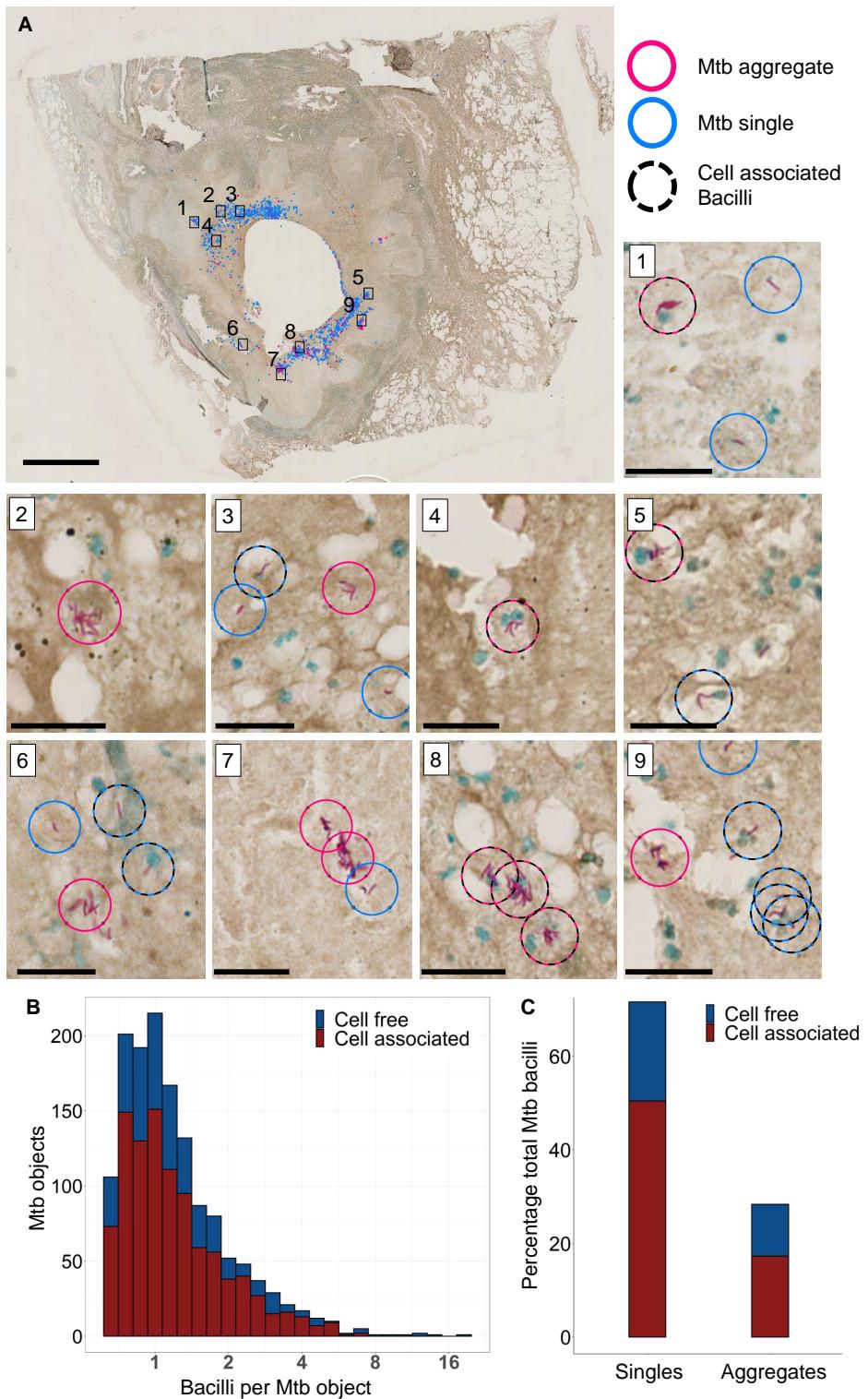
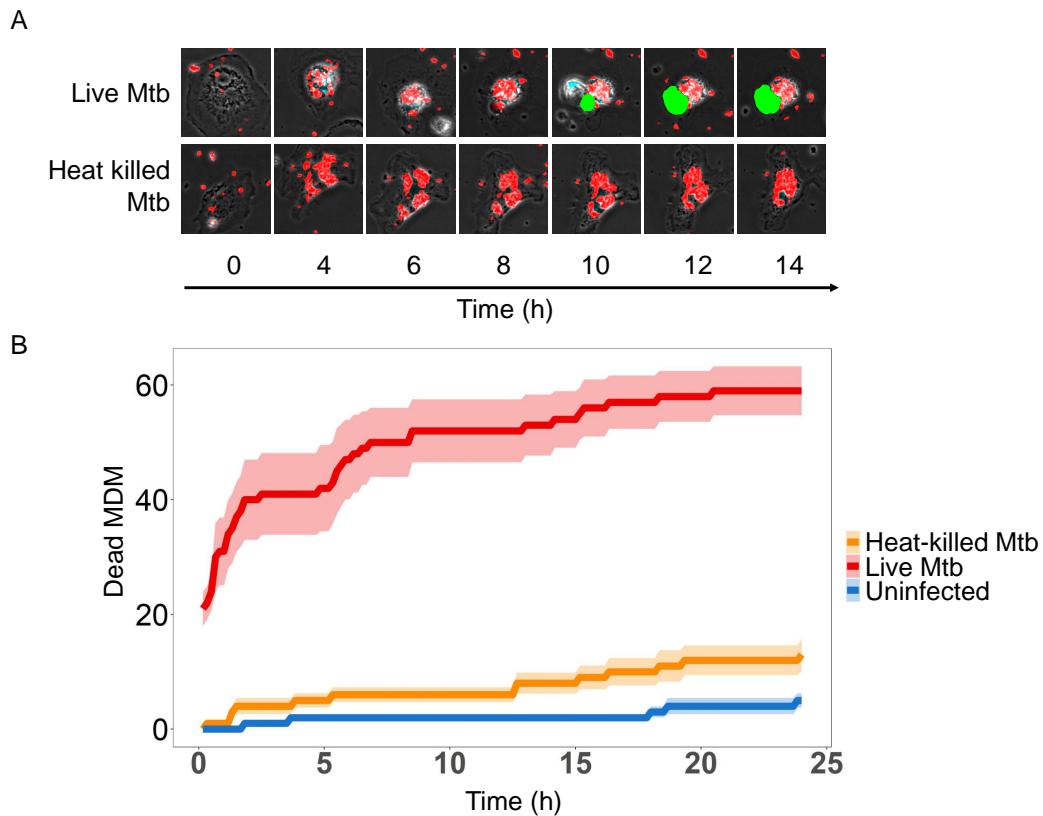

93 We examined whether the observed transcriptional regulation is also reflected in cytokine secretion
 94 using TNF α and two cardinal TNF α responsive genes. Both at the transcriptional level (Figure 3A) and
 95 at the level of cytokine secretion (Figure 3B), TNF α response showed higher expression and secretion
 96 in MDM infected by aggregated Mtb relative to single Mtb. Interestingly, IL8, and IL6 did not show a
 97 significant upregulation or secretion when infection was by aggregated relative to single Mtb.

Figure 3: Transcriptional upregulation and secretion of TNF α and downstream genes with aggregated versus single Mtb infection. (A) Normalized transcripts or (B) cytokine secretion 3 hours post-Mtb infection. MDM were either uninfected (UI), infected with single Mtb (SI) or with aggregated Mtb (AI). Shown are median and IQR of the transcriptional or cytokine response from 15 independent infections of MDM from 5 blood donors. p-values are ** <0.01 ; *** <0.001 ; **** <0.0001 ; as determined by Mann-Whitney U test with Bonferroni multiple comparison correction.

98 **Mtb aggregates at the periphery of a TB cavity in the human
 99 lung**

100 We analysed stained sections of lung tissue from a TB infected individual requiring clinically indicated
 101 lung lobe resection to determine if Mtb aggregates were present. Image analysis was performed using
 102 a custom image analysis code in Matlab 2019a (Materials and methods) to automatically identify Mtb
 103 within the tissue section. Mtb was classified as single or aggregated based on size and tested for cell
 104 association by proximity to adjacent cell nuclei (Figure S1). Mtb were located around the TB cavity
 105 but not elsewhere in the section (Figure 4A). A total of 1420 Mtb objects, containing different numbers
 106 of individual bacilli, were detected (Figure 4B). The total number of Mtb bacilli present in all objects
 107 was estimated at 2086, based on the average size of an individual bacterium (Materials and


Figure 4: Mtb and Mtb aggregates are found near the periphery of a TB cavitary lesion. (A) Ziehl-Neelsen stain of a lung section. Aggregated bacilli are highlighted with a red circle and single bacilli with a blue circle. A black dashed circle is overlaid if the Mtb are in close proximity to a cell nucleus (blue stain). Sub-areas 1-9 are magnified in separate panels. Scale bars are 20 μ m in the sub-areas. (B) Stacked histogram of the number of Mtb objects with varying numbers of Mtb bacilli found to be cell free or cell-associated (C) Stacked histogram of the total number of Mtb observed to be single bacilli or aggregates, and were found to be in close association with host cell nuclei.

108 methods). 151 objects were classified as Mtb aggregates and corresponded to a minimum of 2.4 Mtb
109 bacilli. These accounted for 28% of all detected Mtb bacilli (Figure 4C). 993 Mtb objects, 68% of all
110 bacilli, detected were within close proximity of host cell nuclei and were classified as cell associated.
111 61% of the aggregated and 70% of the single Mtb bacilli were cell associated (Figure 4C). This data
112 supports the existence of aggregates in a naturally infected human lung.

113 Aggregate mediated macrophage death requires live Mtb

114 We tested whether macrophage cell death, elicited by Mtb aggregates, required the bacilli to be live.
115 MDM death was quantified using confocal fluorescence timelapse microscopy to detect penetration of
116 the cell membrane permeability dye DRAQ7, where penetration of dye is associated with the loss of
117 plasma membrane integrity (Figure 5A).

118 We infected MDM with live Mtb aggregates (Figure 5A, Supplementary Movie 1) or with Mtb
119 aggregates that had been heat-killed for 20 minutes at 80°C (Figure 5A, Supplementary Movie 2). We
120 then monitored cell death in infected MDM over time. Despite the aggregates being heat killed, they
121 were readily phagocytosed by macrophages (Supplementary Movie 2). We observed extensive MDM
122 death when MDM were infected with live Mtb aggregates. In contrast, the number of dead MDM
123 infected with fluorescent, heat killed aggregates did not markedly differ from uninfected MDMs (Figure
124 5B).

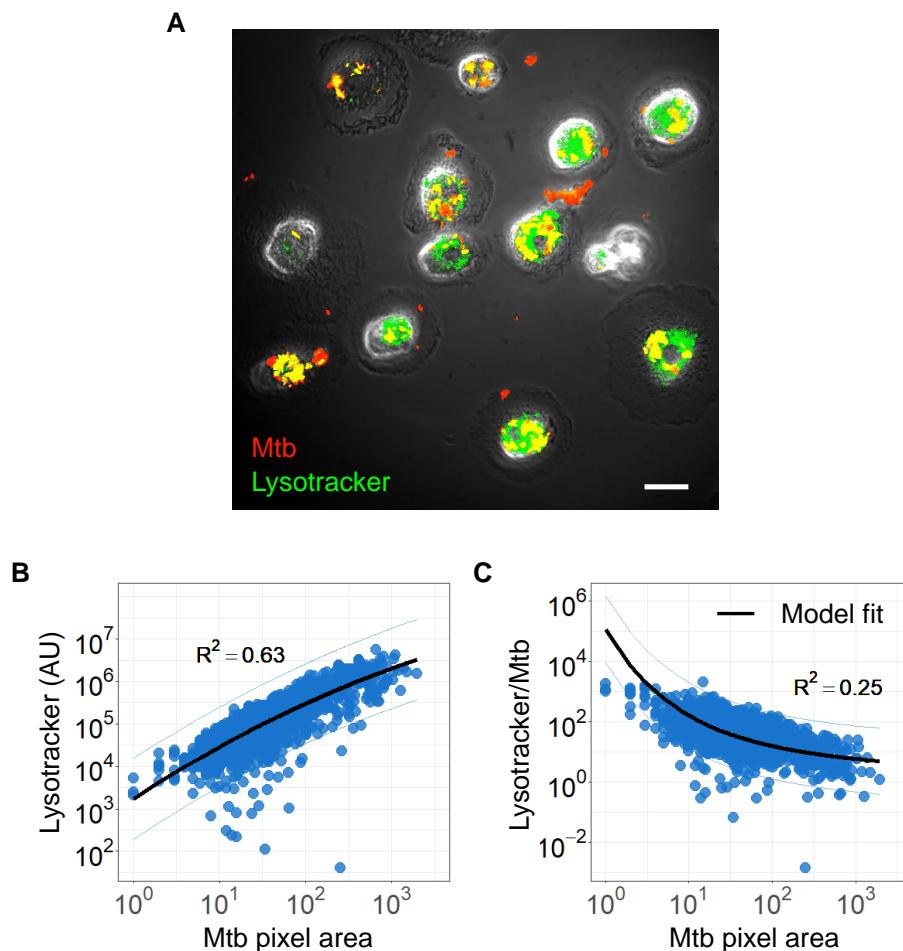


Figure 5: Macrophage death is dependent on infection with live Mtb aggregates. (A) Timelapse microscopy showing mCherry labelled Mtb (red) induced MDM death as detected by DRAQ7 (green). (B) The number of dead cells in MDM infected with live Mtb (red line), heat killed Mtb (orange), or uninfected (blue). Shown are mean \pm std of DRAQ7 positive cells per field of view at each timepoint measured.

125 Reduced acidification of bacilli in intracellular Mtb aggregates

126 To examine the possible causes of sub-optimal control of intracellular Mtb aggregates, which may lead
127 to macrophage death, we asked whether the aggregation state modulates the ability of the macrophages
128 to acidify phagosome associated Mtb. We infected MDM with single or aggregated Mtb for 6 hours,
129 and imaged cells following staining with the Lysotracker reporter for acidification. We quantified Mtb
130 and lysotracker fluorescence within each cell and the areas of overlap between Mtb and Lysotracker
131 fluorescence (Figure 6A).

132 We plotted Lysotracker fluorescence against Mtb area and found that Lysotracker signal increases
133 with Mtb signal (Figure 6B). However, the lysotracker signal normalised to Mtb fluorescence decreased as
134 Mtb aggregate area increased (Figure 6C). Given that the phagosome closely envelopes the phagocytosed
135 Mtb [36, 37], we hypothesized that the phagosome activity would be dependent on the surface area of
136 the aggregate. The number of bacilli however, would be related to the phagosome volume, which would
137 increase faster than its surface area as phagosome size increased. In support of this, fitting a surface
138 area to volume ratio gave a reasonable fit of the data ($R^2 = 0.25$, $p < 0.0001$, black line in Figure 6C).

Figure 6: Mt b acidification per Mt b bacillus decreases with increasing Mt b aggregate size. (A) Image of lysotracker (green) colocalization with phagocytosed mCherry expressing Mt b (red). Scale bar is 20 μ m (B) Lysotracker fluorescence as a function of total aggregate area. The linear regression line is shown in black ($R^2 = 0.63$, $p < 0.0001$). (C) Ratio of Lysotracker fluorescence to Mt b fluorescence as a function of Mt b area. Black line shows a model based on the surface area to volume ratio ($R^2 = 0.25$, $p < 0.0001$, black line).

139 Discussion

140 We investigated the early transcriptional response to macrophage infection by single or aggregated Mtb
141 and observed that aggregate infection upregulates the TNF α and inflammatory responses relative to
142 infection by single Mtb. This effect is mediated both by the number of bacilli infecting one cell, and
143 the aggregation state, indicating that aggregation state in addition to the number of infecting bacilli
144 per host cell drives the stronger response. The negative regulation of apoptosis in aggregate infected
145 macrophages, relative to multiple infected macrophages, is consistent with our previous results indicating
146 that apoptosis was not the cell death pathway elicited in macrophages infected by Mtb aggregates[15].
147 Interestingly, while TNF α itself is more strongly expressed and secreted at higher levels in aggregate
148 Mtb infection, IL6 and IL8, key TNF α downstream genes are induced and secreted at similar levels
149 independently of whether infection is by single or aggregated Mtb.

150 As we reported previously [15], we also observed here that aggregate infection tended to result in
151 macrophage death. However, this occurred with live but not heat killed Mtb. The mechanism remains
152 unclear, but may be consistent with an active process such as secretion of a toxin [38, 39]. Possibly related
153 to poorer control of aggregates and macropgage death, we observed that aggregates elicit stronger
154 acidification of the phagosome. Yet, per Mtb bacillus in the aggregate, the acidification is reduced
155 relative to that of phagosomes containing single bacilli, consistent with a decrease in the phagosome
156 surface area to volume ratio. We speculate that while overall increased activation may be deleterious
157 to the host cell, it has less cytopathic effect per bacillus in an aggregate.

158 One possibility of how Mtb aggregates may play a role in TB pathogenesis may be the recruitment
159 of additional phagocytes to the infection site. CCL4 [40, 41], CXCL2 [41, 42, 43], and CXCL3 [44],
160 upregulated in aggregate versus single infection (Figure 2H), are chemokines which recruit neutrophils.
161 Neutrophil accumulation in Mtb infection leads to inflammation and has been shown to be detrimental to
162 the host [27, 45]. Aggregated Mtb infection led to neutrophil accumulation in a mouse model [11]. Death
163 of Mtb infected neutrophils may also enhance Mtb growth, which we have observed to be accelerated
164 in dead infected cells [15] and may make aggregated Mtb a more virulent form of infection [12, 11,
165 46, 17, 10]. In support of this, we observed that Mtb aggregates occurred at a substantial frequency
166 around a TB cavitary lesion. The aggregates would therefore be in the correct location for transmission.
167 Mtb aggregates were recently observed in bio-aerosols [14]. If indeed aggregate transmission occurs, the
168 increased virulence of Mtb aggregates may potentially increase the probability of developing active TB
169 disease.

170 Material and methods

171 Ethical statement

172 Blood was obtained from adult healthy volunteers after written informed consent (University of KwaZulu-
173 Natal Institutional Review Board approval BE022/13). Lung sections were obtained from clinically
174 indicated resection due to TB complications (University of KwaZulu-Natal Institutional Review Board
175 approval BE019/13). Written informed consent was obtained.

176 Combination staining of human lungs

177 Human lung tissue were cut into 2 mm thick sections and picked on charged slides. Slides were baked
178 at 56°C for 15 min. Mounted sections were dewaxed in xylene followed by rinse in 100% ethanol and
179 1 change of SVR (95%). Slides were then washed under running water for 2 min followed by antigen
180 retrieval via heat induced epitope retrieval (HIER) in Tris-sodium chloride (pH 6.0) for 30 min. Slides
181 were then cooled for 15 min and rinsed under running water for 2 min. Endogenous peroxide activity was
182 blocked using 3% hydrogen peroxide for 10 min at room temperature (RT). Slides were then washed in
183 PBST and blocked with protein block (Novolink) for 5 min at RT. Sections were incubated with primary
184 antibodies for CD68 (M0814-CD68-KP1, DAKO, 1:3000) followed by washing and incubation with the
185 polymer (Novolink) for 30 min at RT. Slides were then washed and stained with DAB for 5 min, washed
186 under running water for 5min. For the combination staining, slides were incubated with heated carbol
187 fuchsin for 10min and then washed in running tap water. 3% acid alcohol was applied to the slide to
188 decolourize for 30 seconds or until sections appeared clear. Slides were then washed in running tap water
189 for 2minutes and where then counter stained with methylene blue. Slides were rinsed under running
190 water, dehydrated and mounted in Distyrene Plasticiser Xylene (DPX).

191 Semi-automated detection of Mtb in histology slides

192 RGB Images of resected lung tissue in .ndpi format were converted to .TIFF file types (without compres-
193 sion) to enable compatibility with Matlab (Mathworks, Massachusetts , US) image processing functions.
194 The resultant image files were sectioned into smaller tiles and imported individually into Matlab in a
195 looped process. Saturated image tiles (tiles that had near completely white pixel values at all positions)
196 were discarded from the analysis. Each layer of the RGB image matrix was separated and converted
197 to a greyscale image. Putative Mtb bacilli were then manually identified and used to set threshold
198 values to eliminate background noise relative to Mtb signal. Thresholded images were then used to
199 identify "Mtb-like" objects in an image for further downstream verification. Each of these objects was
200 numerically labelled and compared against a user determined spectral profile to identify putative Mtb
201 and eliminate false positives. Host cellular nuclei were identified in an identical fashion, but compared
202 to a different spectral profile to identify true positives. Mtb and cellular nuclear objects identified in this
203 way were tested for association, based on mean alveolar macrophage radius [47], and added to a matrix
204 that was mapped onto a reduced image of the whole tissue section to reveal physical locations of Mtb
205 infection. Following automated Mtb object detection, each object was manually validated to ensure
206 only putative detections were used for downstream analysis. Additionally, aggregated or single Mtb
207 classification was manually validated. The resultant curated matrices were exported to R for graphing.
208 Average single bacterium size was calculated by finding the mean area of manually validated Mtb single
209 bacteria. Mean single Mtb area was then used to estimate the number of bacteria in all Mtb objects.
210 The largest manually validated single mtb object was used as a threshold above which all other Mtb
211 objects were classified as aggregates.

212 Macrophage cultures

213 Peripheral blood mononuclear cells were isolated by density gradient centrifugation using Histopaque
214 1077 (Sigma-Aldrich, St Louis, MO). CD14+ monocytes were purified under positive selection using
215 anti-CD14 microbeads (Miltenyi Biotec, San Diego, CA). For RNA-Seq protocols, CD14+ monocytes
216 were seeded at 1×10^6 cells per well in non-tissue culture treated 35 mm 6-well plates. For time-
217 lapse microscopy protocols, CD14+ monocytes were seeded at 0.2×10^6 cells per 0.01% fibronectin
218 (Sigma-Aldrich) coated 35 mm glass bottom optical dishes (Mattek, Ashland, MA). Monocytes were
219 then differentiated in macrophage growth medium containing 1% each of HEPES, sodium pyruvate,
220 L-glutamine, and non-essential amino acids, 10% human AB serum (Sigma-Aldrich), and 50 ng/ml
221 GM-CSF (Peprotech, Rocky Hill, NJ) in RPMI. The cell culture medium was replaced one, three and
222 six days post plating.

223 Mtb Culture and macrophage infection

224 The mCherry fluorescent strain of H37Rv Mtb was derived by transforming the parental strain with
225 a plasmid with mCherry under the smyc' promoter (gift from D. Russell). Mtb were maintained in
226 Difco Middlebrook 7H9 medium enriched with oleic acid-albumin-dextrose catalase supplement (BD,
227 Sparks, MD). Three days before macrophage infection, Mtb were switched to grow in Tween 80-free
228 media. On the day of infection, exponentially growing bacterial culture was pelleted at $2000 \times g$ for 10
229 min, washed twice with 10 ml PBS, and large aggregates broken up by shaking with sterilized 2–4 mm
230 glass beads for 30 s (bead beating). 10 ml of PBS was added and large clumps were further excluded
231 by allowing them to settle for 5 min. Where heat killing was required, Mtb suspension was placed in
232 a heating block for 20 minutes at 80 °C. To generate single Mtb bacilli, the bacterial suspension was
233 passed through a 5 µm syringe filter following aggregate preparation. The resulting singlet and aggregate
234 Mtb suspensions were immediately used to infect differentiated MDM. Mtb grown in media containing
235 Tween 80 surfactant was grown in parallel with detergent free Mtb culture to monitor bacterial growth
236 and calibrate macrophage infection using optical density readings. MDM were infected with $150\mu l$ Mtb
237 aggregate suspension or $1000\mu l$ singlet suspension for 3 hours, washed with PBS to remove extracellular
238 Mtb and incubated for a further 3 hours.

239 Cell sorting

240 Following infection, macrophages were lifted from non-tissue culture treated plates, using 1ml of Ac-
241 cutase (Sigma-Aldrich) cell dissociation reagent per 35mm well, and transferred to FACS tubes. $1\mu l$
242 of Draq7 was added per macrophage containing FACS tube. Macrophage populations were gated into
243 high and low Mtb infected populations based on Mtb mCherry fluorescence within each macrophage
244 (measured at 561nm). Live and infected macrophages were selected for by gating out dead cells with
245 compromised membranes using Draq7 fluorescence (at 633nm excitation). 10000 infected macrophages,
246 per tube, were sorted into Trizol (Thermo-Fischer) and snap frozen in a dry ice and 99 percent iso-
247 propanol slurry using a BD FACSAria III flow cytometer (BD, New Jersey, US).

248 RNA-Seq

249 Snap frozen samples were stored at -80C prior to transport and sequencing. Sample cDNA libraries
250 were prepared according to protocols established by John J. Trombetta et.al [48] and sequenced on
251 an Illumina NextSeq 500/550 instrument. Transcripts were aligned to human reference hg19 and read
252 count libraries generated using the RSEM software package.

253 Transcriptomics data analysis

254 Read count libraries, generated for each of the 15 replicates per treatment at an average read depth
255 of 4 per base [49], were processed using the DESeq2 package for the R programming platform [50].
256 Metadata and read count matrices from each batch were concatenated into a single metadata and read
257 count matrix prior to processing. For PCA analyses count matrices were R-log normalized in DESeq2,
258 to prevent low abundance transcripts from dominating variation, and corrected for batch effects using
259 the SVA ComBat function for R. Read count matrices were then arranged in descending order by
260 variance across treatment conditions, and the top 0.1% of variable genes plotted in a PCA to reveal any
261 clustering evident at the early assay timepoint. For differential expression analysis, the conventional
262 DESeq2 negative binomial model was used, including blood donor as a factor. Candidate genes identified
263 in this way were cross-referenced with the R-Log normalised, variance ordered lists to narrow potential
264 candidate gene lists. Genes identified were then tested for significant differences between infection
265 conditions using a Bonferroni corrected Mann-Whitney U-test.

266 Cytokine analysis

267 MDMs were isolated and differentiated as previously described, at a concentration of 1×10^6 cells per
268 well on tissue culture treated 35 mm 6-well plates. MDMs were infected with $150\mu\text{l}$ Mtb aggregate
269 suspension or $1000\mu\text{l}$ Mtb single suspension and incubated for 3h before being washed with PBS to
270 remove extracellular Mtb, and incubated for a further 3h. Supernatant was then collected, $0.2\mu\text{m}$
271 filtered and frozen prior to cytokine quantification. Cytokine levels were quantified using a Biorad
272 Bioplex 200 (BioRad, California, US) instrument and custom R&D systems Luminex cytokine panel
273 kit, according to kit instructions. Custom panels were constructed to have a broad array of cytokines to
274 validate against transcriptional data. Due to the early supernatant harvesting timepoint, only cytokines
275 that had levels above background were retained for analysis purposes.

276 Microscopy

277 Macrophages and bacteria were imaged using an Andor (Andor, Belfast, UK) integrated Metamorph-
278 controlled (Molecular Devices, Sunnyvale, CA) Nikon TiE motorized microscope (Nikon Corporation,
279 Tokyo, Japan) with a 20x, 0.75 NA phase objective. Images were captured using an 888 EMCCD
280 camera (Andor). Temperature and CO_2 were maintained at 37C and 5% using an environmental chamber
281 (OKO Labs, Naples, Italy). For timelapse protocols, images were captured once every ten minutes for
282 the duration of the time-lapse. For each acquisition, images were captured at wavelengths applicable
283 to fluorophores used in the analysis including transmitted light (phase contrast), 561nm (RFP), and
284 640nm (DRAQ7, lysotracker). Image analysis was performed using custom written matlab script. Single
285 cell segmentation was manually carried out prior to fluorescent signal quantification. For each cell,
286 fluorescent signal in each channel was quantified as pixel intensity.

287 Macrophage acidification assay

288 Single cell fluorescence data for lysotracker acidification was acquired at a single timepoint at 6 hours
289 post infection using the confocal microscopy system described previously. MDM on fibronectin coated
290 optical dishes were infected with $400\mu\text{l}$ Mtb aggregate suspension and incubated for 3 hours before
291 being washed with PBS to remove any cell free Mtb and further incubated for 2 hours. 1 hour before
292 image acquisition, Lysotracker was added to wells at a concentration of 75 nM. Images were processed
293 as previously described to acquire pixel fluorescence intensity data for each fluorescent channel per cell.
294 Model fit was to $3/r$, where r was aggregate radius.

295 Acknowledgments

296 This study was supported by a Bill and Melinda Gates Foundation Award OPP1116944. IMF was
297 supported through a Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE, a
298 DELTAS Africa Initiative (grant DEL-15-006)) fellowship. AKS was supported by the Searle Scholars
299 Program, the Beckman Young Investigator Program, and a Sloan Fellowship in Chemistry.

300 References

301 [1] L. Ramakrishnan. Revisiting the role of the granuloma in tuberculosis. *Nat Rev Immunol*, 12(5):
302 352–66, 2012. ISSN 1474-1741 (Electronic) 1474-1733 (Linking). doi: 10.1038/nri3211 nri3211 [pii].
303 URL <http://www.ncbi.nlm.nih.gov/pubmed/22517424>.

304 [2] D. G. Russell. Who puts the tubercle in tuberculosis? *Nat Rev Microbiol*, 5(1):39–47, 2007. ISSN
305 1740-1534 (Electronic) 1740-1526 (Linking). doi: nrmicro1538 [pii] 10.1038/nrmicro1538. URL
306 <http://www.ncbi.nlm.nih.gov/pubmed/17160001>.

307 [3] D. G. Russell. Mycobacterium tuberculosis: here today, and here tomorrow. *Nat Rev Mol Cell Biol*,
308 2(8):569–77, 2001. ISSN 1471-0072 (Print) 1471-0072 (Linking). doi: 10.1038/35085034 35085034
309 [pii]. URL <http://www.ncbi.nlm.nih.gov/pubmed/11483990>.

310 [4] 3rd Barry, C. E., H. I. Boshoff, V. Dartois, T. Dick, S. Ehrt, J. Flynn, D. Schnap-
311 pinger, R. J. Wilkinson, and D. Young. The spectrum of latent tuberculosis: rethinking
312 the biology and intervention strategies. *Nat Rev Microbiol*, 7(12):845–55, 2009. ISSN 1740-
313 1534 (Electronic) 1740-1526 (Linking). doi: 10.1038/nrmicro2236 nrmicro2236 [pii]. URL
314 <http://www.ncbi.nlm.nih.gov/pubmed/19855401>.

315 [5] Constance J Martin, Anthony M Cadena, Vivian W Leung, Philana Ling Lin, Pauline Maiello,
316 Nathan Hicks, Michael R Chase, JoAnne L Flynn, and Sarah M Fortune. Digitally barcoding my-
317 cobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis.
318 *MBio*, 8(3), 2017.

319 [6] A. Lenaerts, 3rd Barry, C. E., and V. Dartois. Heterogeneity in tuberculosis pathol-
320 ogy, microenvironments and therapeutic responses. *Immunol Rev*, 264(1):288–307, 2015.
321 ISSN 1600-065X (Electronic) 0105-2896 (Linking). doi: 10.1111/imr.12252. URL
322 <http://www.ncbi.nlm.nih.gov/pubmed/25703567>.

323 [7] G. Kaplan, F. A. Post, A. L. Moreira, H. Wainwright, B. N. Kreiswirth, M. Tanverdi, B. Math-
324 ema, S. V. Ramaswamy, G. Walther, L. M. Steyn, 3rd Barry, C. E., and L. G. Bekker. My-
325 cobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immu-
326 nity. *Infect Immun*, 71(12):7099–108, 2003. ISSN 0019-9567 (Print) 0019-9567 (Linking). URL
327 <http://www.ncbi.nlm.nih.gov/pubmed/14638800>.

328 [8] P. L. Lin, C. B. Ford, M. T. Coleman, A. J. Myers, R. Gawande, T. Ioerger, J. Sacchet-
329 tini, S. M. Fortune, and J. L. Flynn. Sterilization of granulomas is common in active and la-
330 tent tuberculosis despite within-host variability in bacterial killing. *Nat Med*, 20(1):75–9, 2014.
331 ISSN 1546-170X (Electronic) 1078-8956 (Linking). doi: 10.1038/nm.3412 nm.3412 [pii]. URL
332 <http://www.ncbi.nlm.nih.gov/pubmed/24336248>.

333 [9] Liku B Tezera, Salah Mansour, and Paul Elkington. Reconsidering the optimal immune response
334 to mycobacterium tuberculosis. *American Journal of Respiratory and Critical Care Medicine*, 201
335 (4):407–413, 2020.

336 [10] Ian M. Orme. A new unifying theory of the pathogenesis of tuberculosis. *Tuber-
337 culosis (Edinb)*, 94:8–14, 2014. ISSN 1472-9792. doi: 10.1016/j.tube.2013.07.004. URL
338 <http://dx.doi.org/10.1016/j.tube.2013.07.004>.

339 [11] Lilibeth Arias, Paula Cardona, Martí Català, Víctor Campo-Pérez, Clara Prats, Cristina Vilaplana,
340 Esther Julián, and Pere-Joan Cardona. Cording mycobacterium tuberculosis bacilli have a key role
341 in the progression towards active tuberculosis, which is stopped by previous immune response.
342 *Microorganisms*, 8(2):228, 2020.

343 [12] Elena G Ufimtseva, Natalya I Eremeeva, Ekaterina M Petrunina, Tatiana V Umpeleva, Sergey I
344 Bayborodin, Diana V Vakhrusheva, and Sergey N Skornyakov. Mycobacterium tuberculosis coding
345 in alveolar macrophages of patients with pulmonary tuberculosis is likely associated with increased
346 mycobacterial virulence. *Tuberculosis*, 112:1–10, 2018.

347 [13] Michael S Glickman, Jeffery S Cox, and William R Jacobs Jr. A novel mycolic acid cyclopropane
348 synthetase is required for cording, persistence, and virulence of mycobacterium tuberculosis. *Molec-*
349 *ular cell*, 5(4):717–727, 2000.

350 [14] R. Dinkelle, S. Gessner, A. McKerry, B. Leonard, R. Seldon, A. S. Koch, C. Morrow, M. Gqada,
351 M. Kamariza, C. R. Bertozzi, B. Smith, C. McLoud, A. Kamholz, W. Bryden, C. Call, G. Ka-
352 plan, V. Mizrahi, R. Wood, and D. F. Warner. Capture and visualization of live Mycobacterium
353 tuberculosis bacilli from tuberculosis patient bioaerosols. *PLoS Pathog*, 17(2):e1009262, Feb 2021.

354 [15] D. Mahamed, M. Boulle, Y. Ganga, C. Mc Arthur, S. Skroch, L. Oom, O. Catinas, K. Pillay,
355 M. Naicker, S. Rampersad, C. Mathonsi, J. Hunter, E. B. Wong, M. Suleman, G. Sreejit, A. S.
356 Pym, G. Lustig, and A. Sigal. Intracellular growth of Mycobacterium tuberculosis after macrophage
357 cell death leads to serial killing of host cells. *Elife*, 6, 01 2017.

358 [16] Cecilia Brambilla, Marta Llorens-Fons, Esther Julián, Estela Noguera-Ortega, Cristina Tomàs-
359 Martínez, Miriam Pérez-Trujillo, Thomas F Byrd, Fernando Alcaide, and Marina Luquin. My-
360 cobacteria clumping increase their capacity to damage macrophages. *Frontiers in microbiology*, 7:
361 1562, 2016.

362 [17] Jinhee Lee, Heinz G. Remold, Michael H. Ieong, and Hardy Kornfeld. Macrophage apoptosis in
363 response to high intracellular burden of mycobacterium tuberculosis is mediated by a novel caspase-
364 independent pathway. *Journal of immunology (Baltimore, Md. : 1950)*, 176:4267–4274, 2006. ISSN
365 0022-1767 (Print)0022-1767 (Linking). doi: 10.4049/jimmunol.176.7.4267.

366 [18] Thomas R Lerner, Sophie Borel, Daniel J Greenwood, Urska Repnik, Matthew RG Russell, Susanne
367 Herbst, Martin L Jones, Lucy M Collinson, Gareth Griffiths, and Maximiliano G Gutierrez. My-
368 cobacterium tuberculosis replicates within necrotic human macrophages. *Journal of Cell Biology*,
369 216(3):583–594, 2017.

370 [19] Davide Pisu, Lu Huang, Jennifer K Grenier, and David G Russell. Dual rna-seq of mtb-infected
371 macrophages in vivo reveals ontologically distinct host-pathogen interactions. *Cell reports*, 30(2):
372 335–350, 2020.

373 [20] Alissa C Rothchild, Gregory S Olson, Johannes Nemeth, Lynn M Amon, Dat Mai, Elizabeth S
374 Gold, Alan H Diercks, and Alan Aderem. Alveolar macrophages generate a noncanonical nrf2-
375 driven transcriptional response to mycobacterium tuberculosis in vivo. *Science immunology*, 4(37),
376 2019.

377 [21] Richard G Jenner and Richard A Young. Insights into host responses against pathogens from
378 transcriptional profiling. *Nature Reviews Microbiology*, 3(4):281–294, 2005.

379 [22] Elisabetta Volpe, Giulia Cappelli, Manuela Grassi, Angelo Martino, Annalucia Serafino, Vittorio
380 Colizzi, Nunzia Sanarico, and Francesca Mariani. Gene expression profiling of human macrophages
381 at late time of infection with mycobacterium tuberculosis. *Immunology*, 118(4):449–460, 2006.

382 [23] Silvia Ragno, Maria Romano, Steven Howell, Darryl JC Pappin, Peter J Jenner, and Michael J
383 Colston. Changes in gene expression in macrophages infected with mycobacterium tuberculosis: a
384 combined transcriptomic and proteomic approach. *Immunology*, 104(1):99–108, 2001.

385 [24] S. Roy, S. Schmeier, B. Kaczkowski, E. Arner, T. Alam, M. Ozturk, O. Tamgue, S. P. Parihar,
386 H. Kawai, M. Itoh, T. Lassmann, P. Carninci, Y. Hayashizaki, A. R. R. Forrest, R. Guler, V. B.
387 Bajic, F. Brombacher, and H. Suzuki. Transcriptional landscape of *Mycobacterium tuberculosis*
388 infection in macrophages. *Sci Rep*, 8(1):6758, 04 2018.

389 [25] Francisco J Roca and Lalita Ramakrishnan. Tnf dually mediates resistance and susceptibility to
390 mycobacteria via mitochondrial reactive oxygen species. *Cell*, 153(3):521–534, 2013.

391 [26] Y. Zhang, M. Brosler, H. Cohen, M. Bodkin, K. Law, J. Reibman, and W. N. Rom. Enhanced
392 interleukin-8 release and gene expression in macrophages after exposure to *Mycobacterium tuber-*
393 *closis* and its components. *J. Clin. Invest.*, 95(2):586–592, Feb 1995.

394 [27] Bisweswar Nandi and Samuel M Behar. Regulation of neutrophils by interferon- γ limits lung
395 inflammation during tuberculosis infection. *Journal of Experimental Medicine*, 208(11):2251–2262,
396 2011.

397 [28] D. M. Tobin, F. J. Roca, S. F. Oh, R. McFarland, T. W. Vickery, J. P. Ray, D. C. Ko, Y. Zou,
398 N. D. Bang, T. T. Chau, J. C. Vary, T. R. Hawn, S. J. Dunstan, J. J. Farrar, G. E. Thwaites,
399 M. C. King, C. N. Serhan, and L. Ramakrishnan. Host genotype-specific therapies can optimize
400 the inflammatory response to mycobacterial infections. *Cell*, 148(3):434–46, 2012. ISSN 1097-4172
401 (Electronic) 0092-8674 (Linking). doi: 10.1016/j.cell.2011.12.023 S0092-8674(12)00010-4 [pii]. URL
402 <http://www.ncbi.nlm.nih.gov/pubmed/22304914>.

403 [29] Charles A Dinarello. Overview of the il-1 family in innate inflammation and acquired immunity.
404 *Immunological reviews*, 281(1):8–27, 2018.

405 [30] Marco Baggolini and Ian Clark-Lewis. Interleukin-8, a chemotactic and inflammatory cytokine.
406 *FEBS letters*, 307(1):97–101, 1992.

407 [31] Patricia Menten, Anja Wuyts, and Jo Van Damme. Macrophage inflammatory protein-1. *Cytokine*
408 & growth factor reviews, 13(6):455–481, 2002.

409 [32] Joanne L Dickinson, Edna J Bates, Antonio Ferrante, and Toni M Antalis. Plasminogen activator
410 inhibitor type 2 inhibits tumor necrosis factor α -induced apoptosis: evidence for an alternate
411 biological function. *Journal of Biological Chemistry*, 270(46):27894–27904, 1995.

412 [33] S. Danchuk, J. H. Ylostalo, F. Hossain, R. Sorge, A. Ramsey, R. W. Bonvillain, J. A. Lasky,
413 B. A. Bunnell, D. A. Welsh, D. J. Prockop, and D. E. Sullivan. Human multipotent stromal
414 cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis
415 factor- α -induced protein 6. *Stem Cell Res Ther*, 2(3):27, May 2011.

416 [34] J. A. Ribeil, Y. Zermati, J. Vandekerckhove, S. Cathelin, J. Kersual, M. Dussiot, S. Coulon, I. C.
417 Moura, A. Zeuner, T. Kirkegaard-Sørensen, B. Varet, E. Solary, C. Garrido, and O. Hermine. Hsp70
418 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. *Nature*, 445(7123):
419 102–105, Jan 2007.

420 [35] Mei X Wu, Zhaojun Ao, KVnS Prasad, Ruilian Wu, and Stuart F Schlossman. Iex-11, an apoptosis
421 inhibitor involved in nf- κ b-mediated cell survival. *Science*, 281(5379):998–1001, 1998.

422 [36] N. van der Wel, D. Hava, D. Houben, D. Fluitsma, M. van Zon, J. Pierson, M. Bren-
423 ner, and P. J. Peters. *M. tuberculosis* and *m. leprae* translocate from the phagolysosome
424 to the cytosol in myeloid cells. *Cell*, 129(7):1287–98, 2007. ISSN 0092-8674 (Print)
425 0092-8674 (Linking). doi: S0092-8674(07)00782-9 [pii] 10.1016/j.cell.2007.05.059. URL
426 <http://www.ncbi.nlm.nih.gov/pubmed/17604718>.

427 [37] Kevin Pethe, Dana L Swenson, Sylvie Alonso, Jennifer Anderson, Carren Wang, and David G
428 Russell. Isolation of *mycobacterium tuberculosis* mutants defective in the arrest of phagosome
429 maturation. *Proceedings of the National Academy of Sciences*, 101(37):13642–13647, 2004.

430 [38] J. Sun, A. Siroy, R. K. Lokareddy, A. Speer, K. S. Doornbos, G. Cingolani, and M. Niederweis. The
431 tuberculosis necrotizing toxin kills macrophages by hydrolyzing nad. *Nat Struct Mol Biol*, 2015.
432 ISSN 1545-9985 (Electronic) 1545-9985 (Linking). doi: 10.1038/nsmb.3064 nsmb.3064 [pii]. URL
433 <http://www.ncbi.nlm.nih.gov/pubmed/26237511>.

434 [39] Uday Tak, Jiri Vlach, Acely Garza-Garcia, Doreen William, Olga Danilchanka, Luiz Pedro Sório
435 de Carvalho, Jamil S Saad, and Michael Niederweis. The tuberculosis necrotizing toxin is an nad+
436 and nadp+ glycohydrolase with distinct enzymatic properties. *Journal of Biological Chemistry*, 294
437 (9):3024–3036, 2019.

438 [40] Nicolas M Bless, Markus Huber-Lang, Ren-Feng Guo, Roscoe L Warner, Hagen Schmal, Boris J
439 Czermak, Thomas P Shanley, Larry D Crouch, Alex B Lentsch, Vidya Sarma, et al. Role of cc
440 chemokines (macrophage inflammatory protein-1 β , monocyte chemoattractant protein-1, rantes)
441 in acute lung injury in rats. *The Journal of Immunology*, 164(5):2650–2659, 2000.

442 [41] Yoshiro Kobayashi et al. The role of chemokines in neutrophil biology. *Front Biosci*, 13(1):2400–7,
443 2008.

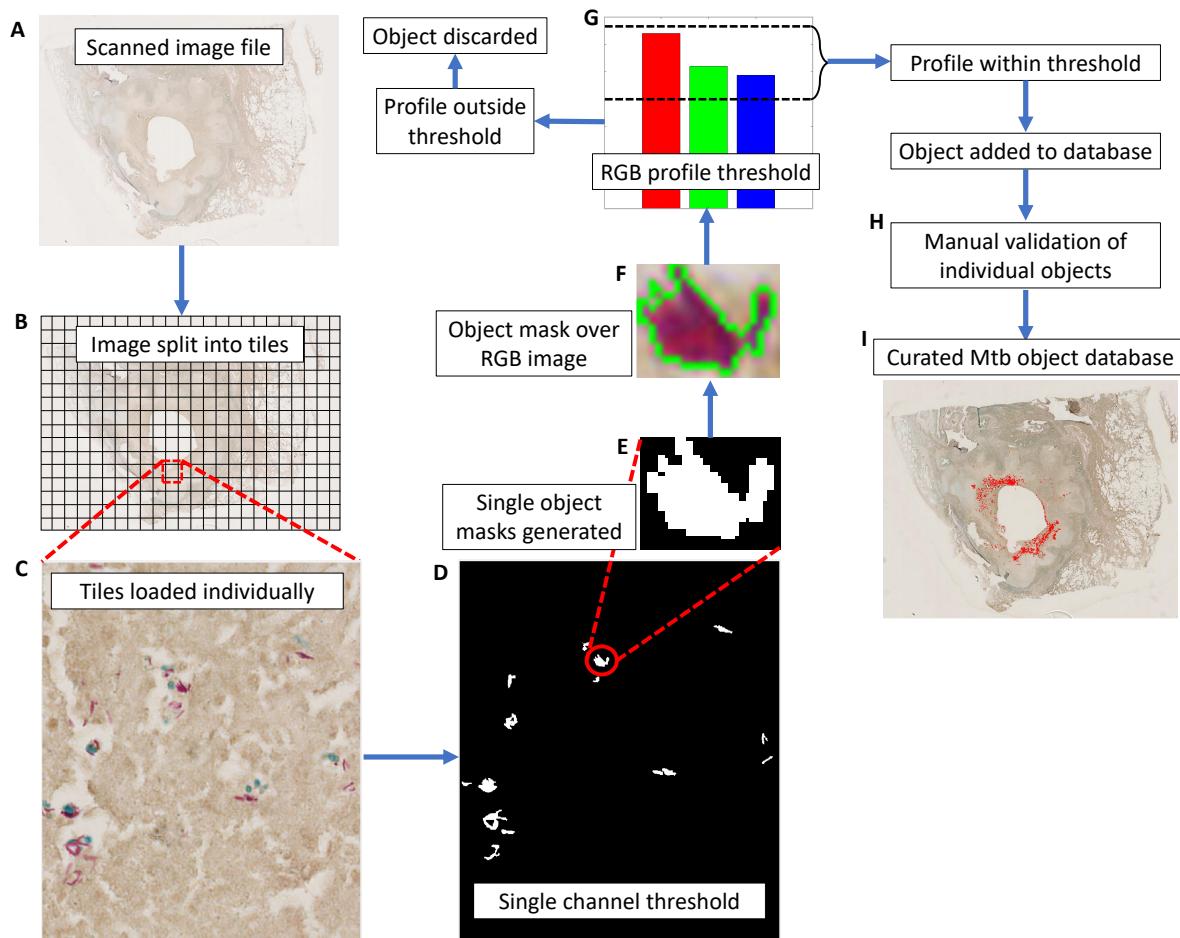
444 [42] Peter CE Burdon, Coralie Martin, and Sara M Rankin. The cxc chemokine mip-2 stimulates
445 neutrophil mobilization from the rat bone marrow in a cd49d-dependent manner. *Blood*, 105(6):
446 2543–2548, 2005.

447 [43] Y Ohtsuka, J Lee, DS Stamm, and IR Sanderson. Mip-2 secreted by epithelial cells increases
448 neutrophil and lymphocyte recruitment in the mouse intestine. *Gut*, 49(4):526–533, 2001.

449 [44] Sofia de Oliveira, Emily E Rosowski, and Anna Huttenlocher. Neutrophil migration in infection
450 and wound repair: going forward in reverse. *Nature Reviews Immunology*, 16(6):378, 2016.

451 [45] J Nancy Hilda, Sulochana Das, Srikanth P Tripathy, and Luke Elizabeth Hanna. Role of neutrophils
452 in tuberculosis: A bird's eye view. *Innate Immunity*, 26(4):240–247, 2020.

453 [46] T. Repasy, J. Lee, S. Marino, N. Martinez, D. E. Kirschner, G. Hendricks, S. Baker, A. A. Wil-
454 son, D. N. Kotton, and H. Kornfeld. Intracellular bacillary burden reflects a burst size for my-
455 cobacterium tuberculosis in vivo. *PLoS Pathog*, 9(2):e1003190, 2013. ISSN 1553-7374 (Electronic)
456 1553-7366 (Linking). doi: 10.1371/journal.ppat.1003190 PPATHOGENS-D-12-00538 [pii]. URL
457 <http://www.ncbi.nlm.nih.gov/pubmed/23436998>.


458 [47] Fritz Krombach, Silvia Münzing, Anne-Marie Allmeling, J Tilman Gerlach, Jürgen Behr, and
459 Martina Dörger. Cell size of alveolar macrophages: an interspecies comparison. *Environmental
460 health perspectives*, 105(suppl 5):1261–1263, 1997.

461 [48] John J Trombetta, David Gennert, Diana Lu, Rahul Satija, Alex K Shalek, and Aviv Regev.
462 Preparation of single-cell rna-seq libraries for next generation sequencing. *Current protocols in
463 molecular biology*, 107(1):4–22, 2014.

464 [49] Eric S Lander and Michael S Waterman. Genomic mapping by fingerprinting random clones: a
465 mathematical analysis. *Genomics*, 2(3):231–239, 1988.

466 [50] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and
467 dispersion for rna-seq data with deseq2. *Genome biology*, 15(12):1–21, 2014.

468 **Supplementary figures**

Figure S1: Schematic overview of semi-automated histological image analysis. (A) The section was scanned using a Hamamatsu Nanozoomer 2.0 rs slide scanner and exported to (B) ImageJ to split large files into smaller image tiles in preparation for processing in Matlab. (C) Smaller image tiles were individually loaded into Matlab and (D) thresholded in the Mtb channel to create binary masks corresponding to the locations of Mtb bacilli. Each of these individual binary object masks (E) were applied to the original RGB image (F) to isolate full RGB profiles of the objects. Each of these object profiles was then compared to a reference RGB pattern that matched the RGB profile of stained Mtb (G). Objects that were within the RGB thresholds were added to the database. Objects that succeeded the RGB profile thresholds were then individually manually curated (H) and added to the curated database (I).

Table S1: GSEA differentially regulated gene sets between infection conditions at Nominal p-value and FDR < 0.05.

Gene set	Gene set size	NES	Nominal P-value	FDR q-value
Aggregate vs. Uninfected				
tnfa signaling via nfkб	200	2,81	<0,001	<0,001
inflammatory response	200	2,46	<0,001	<0,001
allograft rejection	200	1,63	<0,001	0,010
interferon gamma response	200	1,61	<0,001	0,009
il6 jak stat3 signaling	87	1,61	<0,001	0,007
hypoxia	200	1,59	<0,001	0,008
cholesterol homeostasis	74	1,46	0,009	0,038
apoptosis	161	1,44	<0,001	0,038
kras signaling up	200	1,43	0,004	0,037
complement	200	1,39	0,003	0,046
Multiple vs. Uninfected				
tnfa signaling via nfkб	200	2,59	<0,001	<0,001
inflammatory response	200	2,24	<0,001	<0,001
il6 jak stat3 signaling	87	1,81	<0,001	<0,001
complement	200	1,59	<0,001	0,014
interferon gamma response	200	1,58	<0,001	0,013
allograft rejection	200	1,57	<0,001	0,012
apoptosis	161	1,45	0,004	0,043
Single vs Uninfected				
tnfa signaling via nfkб	200	2,42	<0,001	<0,001
inflammatory response	200	1,83	<0,001	<0,001
cholesterol homeostasis	74	1,57	0,011	0,032
notch signaling	32	1,51	0,025	0,038
complement	200	1,48	<0,001	0,040
Multiple vs. Single				
inflammatory response	200	1,73	<0,001	0,004
tnfa signaling via nfkб	200	1,68	<0,001	0,004
il6 jak stat3 signaling	87	1,63	<0,001	0,005
e2f targets	200	1,46	0,001	0,040
Aggregate vs. Single				
tnfa signaling via nfkб	200	2,24	<0,001	<0,001
inflammatory response	200	1,87	<0,001	0,001
Aggregate vs. Multiple				
tnfa signaling via nfkб	200	2,07	<0,001	<0,001

Table S2: DESeq2 differentially regulated genes between infection conditions at adjusted p-value < 0.01

Gene	Mean reads	log ₂ Fold Change	Adjusted p	Gene	Mean reads	log ₂ Fold Change	Adjusted p
Aggregate relative to Uninfected				DRAM1	166	1,04	<0,0001
CCL4L1	117	6,29	<0,0001	CSF1	437	1,13	<0,001
CCL4L2	117	6,29	<0,0001	MSANTD3	30	1,49	<0,001
IL1B	923	5,06	<0,0001	MSC	305	0,93	<0,001
IL8	1886	6,16	<0,0001	AMZ1	68	1,61	<0,001
CCL4	374	5,96	<0,0001	G0S2	30	2,75	<0,001
SOD2	847	2,58	<0,0001	GPR35	18	2,60	<0,001
SERPINB2	53	6,39	<0,0001	TNFAIP3	151	1,84	<0,001
TNFAIP6	232	5,40	<0,0001	TRAF3	69	1,17	<0,001
CCL3	1098	2,82	<0,0001	MTHFD2	446	0,65	<0,001
ICAM1	702	2,04	<0,0001	HCK	309	0,64	<0,001
HSPA1A	64	2,32	<0,0001	RILPL2	94	0,91	<0,001
EHD1	206	2,03	<0,0001	HSPA1B	19	2,26	<0,001
CCL20	43	6,62	<0,0001	SLC2A3	231	1,14	<0,001
ZC3H12A	73	2,58	<0,0001	ATP2B1	55	1,24	<0,001
CXCL3	175	5,30	<0,0001	GEM	70	1,08	<0,001
MFSD2A	140	1,67	<0,0001	HMOX1	573	0,63	<0,01
PIM1	346	1,28	<0,0001	B4GALT1	391	1,05	<0,01
SLC2A6	170	1,93	<0,0001	PPP1R15A	444	0,96	<0,01
INHBA	42	3,14	<0,0001	IFIT2	27	1,72	<0,01
BTG2	316	1,10	<0,0001	STX11	114	0,79	<0,01
OSGIN1	85	1,41	<0,0001	MAP2K3	525	0,71	<0,01
AMPD3	126	1,60	<0,0001	CD80	4	3,03	<0,01
TNF	172	4,60	<0,0001	CES1	237	1,54	<0,01
C15orf48	557	1,28	<0,0001	RIN2	30	-1,39	<0,01
CXCL2	219	4,97	<0,0001	TREM1	37	1,94	<0,01
NFE2L2	300	0,81	<0,0001	IL1A	26	2,66	<0,01
CCL3L1	276	8,59	<0,0001	CCRL2	122	0,87	<0,01
CXCL1	85	5,35	<0,0001	CD180	41	-1,27	<0,01
CD274	125	1,51	<0,0001	PDK4	126	-1,15	<0,01
IER3	65	2,77	<0,0001	CYP27B1	63	1,01	<0,01
PTGS2	21	3,78	<0,0001	TNFSF15	45	1,96	<0,01
NCK2	16	2,40	<0,0001	EDN1	6	3,27	<0,01
NAMPT	154	1,64	<0,0001	SDC4	239	0,71	<0,01
TRAF1	80	1,69	<0,0001	HIVEP2	21	1,85	<0,01
LIF	31	2,06	<0,0001	NFKBIA	397	1,26	<0,01
HLA-DQA1	345	1,48	<0,0001	CD83	972	0,72	<0,01
SQSTM1	2922	0,88	<0,0001	LINC00674	35	-0,99	<0,01
IRAK2	41	2,19	<0,0001	DENND5A	43	1,23	<0,01
BID	205	0,98	<0,0001	USF1	19	1,15	<0,01
IL7R	70	2,79	<0,0001	MORC3	62	0,96	<0,01
ADORA2A	14	4,73	<0,0001	Multiple relative to uninfected			
IL6	29	5,63	<0,0001	IL1B	923	4,33	<0,0001
KYNU	455	1,17	<0,0001	SERPINB2	53	6,27	<0,0001
PDE4DIP	315	0,72	<0,0001	SOD2	847	2,40	<0,0001
KDM6B	9	2,89	<0,0001	CCL4L1	117	4,81	<0,0001
MAP3K8	26	1,50	<0,0001	CCL4L2	117	4,81	<0,0001
RNF144B	37	1,70	<0,0001	IL8	1886	5,06	<0,0001

Gene	Mean reads	log2 Fold Change	Adjusted p	Gene	Mean reads	log2 Fold Change	Adjusted p	
TNFAIP6	232	5,01	<0,0001	SOD2	847	1,94	<0,0001	
SLC2A6	170	2,16	<0,0001	IL1B	923	3,27	<0,0001	
CCL4	374	4,26	<0,0001	CCL4L1	117	3,75	<0,0001	
C15orf48	557	1,49	<0,0001	CCL4L2	117	3,75	<0,0001	
PIM1	346	1,28	<0,0001	IL8	1886	3,85	<0,0001	
BTG2	316	1,11	<0,0001	SLC2A6	170	1,71	<0,0001	
EHD1	206	1,73	<0,0001	PIM1	346	1,09	<0,0001	
AMPD3	126	1,54	<0,0001	AMPD3	126	1,39	<0,0001	
HCK	309	0,87	<0,0001	EHD1	206	1,47	<0,0001	
BID	205	1,08	<0,0001	C15orf48	557	1,05	<0,0001	
IL7R	70	3,08	<0,0001	CCL4	374	2,94	<0,0001	
CCL3	1098	1,87	<0,0001	KYNU	455	1,23	<0,0001	
ICAM1	702	1,44	<0,0001	BTG2	316	0,82	<0,0001	
OSGIN1	85	1,22	<0,0001	ICAM1	702	1,24	<0,0001	
SQSTM1	2922	0,85	<0,0001	BID	205	0,87	<0,001	
CXCL1	85	4,42	<0,0001	HCK	309	0,67	<0,001	
TNF	172	3,73	<0,0001	SQSTM1	2922	0,74	<0,001	
CD274	125	1,30	<0,0001	OSGIN1	85	1,01	<0,001	
CXCL3	175	3,54	<0,0001	TNIP1	38	1,40	<0,001	
KYNU	455	1,13	<0,0001	MSC	305	0,86	<0,01	
GPR35	18	2,68	<0,001	CCL3	1098	1,28	<0,01	
CCL20	43	4,16	<0,001	PDE4DIP	315	0,57	<0,01	
NCK2	16	1,90	<0,001	TRAF1	80	1,20	<0,01	
PDE4DIP	315	0,63	<0,001	HMOX1	573	0,58	<0,01	
NAMPT	154	1,25	<0,001	Aggregate relative to single				
ACSL1	2158	1,30	<0,01	CXCL2	219	4,77	<0,0001	
TRAF1	80	1,29	<0,01	CCL4	374	3,03	<0,0001	
NCF1	30	1,74	<0,01	CCL4L1	117	2,54	<0,0001	
MSC	305	0,83	<0,01	CCL4L2	117	2,54	<0,0001	
CCL3L1	276	5,57	<0,01	TNF	172	3,97	<0,0001	
INHBA	42	1,90	<0,01	HSPA1A	64	1,67	<0,0001	
HLA-DQA1	345	1,09	<0,01	CXCL3	175	3,63	<0,0001	
DENND5A	43	1,31	<0,01	ZC3H12A	73	1,68	<0,001	
NCAPH	192	-0,81	<0,01	CCL3	1098	1,54	<0,001	
SLC7A11	398	1,11	<0,01	IER3	65	2,20	<0,001	
NFE2L2	300	0,50	<0,01	MAP3K8	26	1,43	<0,001	
DRAM1	166	0,85	<0,01	CCL2	103	1,40	<0,01	
IFNGR2	275	0,93	<0,01	CXCL1	85	3,55	<0,01	
RILPL2	94	0,78	<0,01	IRAK2	41	1,76	<0,01	
CES1	237	1,43	<0,01	INHBA	42	1,86	<0,01	
MTHFD2	446	0,55	<0,01	IL8	1886	2,31	<0,01	
GPR68	53	1,09	<0,01	CCL20	43	3,34	<0,01	
AMZ1	68	1,35	<0,01	RPRD1A	37	-1,02	<0,01	
MFSD2A	140	0,91	<0,01	KLF6	224	1,42	<0,01	
IVNS1ABP	435	-0,52	<0,01	IL1B	923	1,79	<0,01	
Single relative to uninfected				Aggregate relative to multiple				
SERPINB2	53	5,63	<0,0001	HSPA1A	64	1,51	<0,001	
TNFAIP6	232	4,83	<0,0001					