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Corresponding author: Christoffer B: Harder, Phone: +46704565065, e-mail:
cbharder@pbio.ku.dk. Originality significance statement: This is the first study to apply a dual
approach of systematic metabarcoding of plant roots and stable isotope signatures on dried
field material to the large and common saprotrophic fungal genus Mycena. This is significant as
it shows that members of this genus, normally not expected to be found inside plant roots at all,
are in fact associated eith multiple plant hosts. The study furthermore shows that species in this
genus may occupy different ecological roles in the field besides being saprotrophic. That a large
and common fungal genus known to be a quantitatively important litter decayer can be an
opportunistic root invader and interact with host plants is of interest to all mycologists and

ecologists working on plant-fungus/microb symbiosis.

Summary

Recently, several saprotrophic genera have been found to invade/interact with plant roots in
laboratory growth experiments, and this coincides with reports of abundant saprotrophic fungal
sequences in plant roots. However, it is uncertain if this reflects field phenomena, and if reports
on coincidentally amplified saprotrophs are simply coincidental.

We investigated root invasion by presumed saprotrophic fungi by focusing on the large genus

Mycena in 1) a systematic analysis of the occurrence of saprotrophic fungi in new and
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previously published ITS1/ITS2 datasets generated from roots of 10 mycorrhizal plant species,
and 2) we analysed natural abundances of "*C/"N stable isotope signatures of fungal/plant
communities from five comparable field locations to examine the trophic status of Mycena
species.

Mycena was the only saprotrophic genus consistently found in 9 of 10 plant host roots, with high
within-host variation in Mycena sequence proportions (0-80%) recovered. Mycena carpophores
displayed isotopic signatures consistent with published "*C/*N profiles of both saprotrophic or
mutualistic lifestyles, with considerable intraspecific variation, resembling the patterns seen in
growth experiments. These results indicate that multiple Mycena species opportunistically
invade the roots of a range of plant species, possibly forming a spectrum of interactions. This

potentially challenges our general understanding of fungal ecology.

Introduction

Among ecologists, a consensus is emerging that the classical assignment of fungal species into
single trophic groups with a mycorrhizal, saprotrophic or pathogenic lifestyle may be too
restrictive (Baldrian and Kohout, 2017; Selosse et al., 2018). Some otherwise free-living fungi
have been shown to invade plant roots and exist as either asymptomatic endophytes (neither
harmful nor beneficial), and then switch from endophytic into becoming pathogenic (e.g.
Fusarium graminearum, Lofgren et al., 2018), or into forming AM mycorrhizas (Piriformospora
indica, Weif} et al., 2016) or ericoid mycorrhizal associations (Meliniomyces spp., Martino et al.,
2018).

A wide range of saprotrophic fungal genera have been screened for their ability to colonise
Pinus sylvestris and Picea abies seedling roots in vitro (Smith et al., 2017), and several,
including Mycena, Gymnopus, Phlebiopsis, Marasmius or Pleurotus, invaded roots apparently
without decomposing dead tissue in the process. However, beyond the invasion, the nature of
the interactions with the plant host (if any) remains unknown.

For Mycena, however, there are several lines of direct and indirect evidence for their ability to
invade and interact with living plant roots, at least in vitro. Mycena species have been identified
as potential orchid mycorrhizal symbionts (Ogura-Tsuijita et al., 2009; Zhang et al., 2012),
endophytes in photosynthetic moss tissue (Davey et al., 2013) and non-mycorrhizal
brassicaceous plants (Glynou et al., 2018). They have also been shown to form mycorrhiza-like
structures in roots of Vaccinium corymbosum in growth studies (Grelet et al., 2017). Recently
and perhaps most importantly, Thoen et al. (2020) showed that multiple species and individual
strains of Mycena could colonise roots of Betula pendula seedlings in vitro, and formed a
gradient of interactions from harmful to neutral to beneficial, with some species/strains being
able to transfer nutrients to the plant host. This is significant, as prior to this Mycena sensu

stricto (Moncalvo et al., 2002) (henceforth simply "Mycena"), which is one the largest genera in
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Agaricales (over 500 species), widespread across habitats and climate zones (Kiuhner, 1938;
Maas Geesteranus, 1992; Rexer, 1994; Robich, 2003; Aronsen and Laessge,2016), was known
primarily as quantitatively important litter and wood debris decomposers (Boberg et al., 2008;
Baldrian et al., 2012; Kyaschenko et al., 2017). The spectrum of interactions seen in Thoen et
al. (2020) is further noteworthy in the light of the "Waiting room hypothesis" (van der Heijden et
al. 2015) on mycorrhizal evolution, which suggests that the mycorrhizal habit evolves from
saprotrophs gradually via neutral endophytic intermediate states. This hypothesis has remained
controversial even though it is accepted that the mycorrhizal habit has evolved on numerous,
independent occasions from saprotrophic ancestors (Tedersoo and Smith 2013, Kohler et al.
2015). Thus, the genus Mycena may represent a promising research model for studying both
ecological versatility in fungi and the possible ongoing evolution of fungi traditionally believed to
be purely saprotrophic en route to developing mycorrhizal abilities.

Most of this evidence for trophic versatility in Mycena originates from in vitro studies,
and it is uncertain to what extent this translates to the field. To investigate the trophic mode of
fungi in natural environments, analysis of the natural abundance of "*C:'C and "°N:"N ratios
(isotope ratios, expressed as d'*C and d'°N values relative to known standards) can be applied
directly to fungal carpophores and other field material. Mycorrhizal fungi are generally more
enriched in "°N and depleted in ">C than saprotrophic fungi (Taylor et al., 1997; Kohzu et al.,
1999; Hobbie et al., 1999; Hobbie et al., 2001; Griffith, 2004; Mayor et al., 2009). Based on
comparisons between fungi of known trophic status, natural abundance of 15 and 13C can also
give strong indications of the nutritional mode of fungi with unknown trophic status. Thus,
Halbwachs et al. (2018) recently used this approach to strongly suggest that Hygrocybe,
another genus traditionally believed to be saprotrophic, was most likely biotrophic with plants.
The occurrence and abundance of Mycena sequences retrieved from wild plant roots also
suggests interactions with plant roots in situ. There are scattered reports of Mycena identified
from inside wild plant roots, particularly in the Arctic plants, including Bistorta vivipara, Cassiope
tetragona, Dryas octopetala, and Salix polaris (Blaalid et al., 2014; Botnen et al., 2014;
Lorberau et al., 2017). In some cases, Mycena sequences comprised >30-50% of the total
reads, suggesting that they are not simply casual colonisers. It has been suggested that the
harsh and oligotrophic Arctic environments stimulate otherwise free-living fungal genera
(including Mycena) to explore new ecological niches (Jumpponen and Trappe, 1998; Ryberg et
al., 2009; Ryberg et al., 2011; Timling et al., 2012; Botnen et al., 2014; Lorberau et al., 2017).
Nevertheless, Mycena reads have also been recovered in high quantities from inside living
Picea abies roots in temperate environments (Kohout et al., 2018). In this case, Mycena

species were present in the roots prior to felling but then became dominant post-felling.
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Overall, however, current information on the occurrence of Mycena and other saprotrophs in
roots unsystematic and too scattered to identify any clear patterns of their occurrence and
abundance.

High throughput sequencing (HTS) studies of fungal communities in plant roots are generally
targeting mycorrhizal fungi (Buee et al., 2009; Tedersoo et al., 2010; Bahram et al., 2011;
Blaalid et al., 2014; Vasar et al., 2017; Kaur et al., 2019), and the workflow requires the
annotation of tens of thousands of OTUs/clusters of fungi into ecological guilds. Most studies
tend to favour more conservative taxonomic ecological generalisations based at the genus
level, which is traditionally considered the most relevant level for separating fungal taxa by
nutritional mode (Fries and Mueller, 1984; Molina and Trappe, 1994; den Bakker et al., 2004;
Tedersoo and Smith, 2013; Garnica et al., 2016). Ecological annotation software (Nguyen et
al., 2016) is largely based on this view. Thus, in studies of mycorrhizal fungi in roots, fungal
genera identified as being saprotrophic may be at best briefly mentioned and/or reported as one
lumped ecological group (Menkis et al., 2012; Tedersoo and Smith, 2013), or simply dismissed
as accidental contamination (Liao et al., 2014). This means that the ecological understanding of
root ecosystems may become oversimplified, and large quantities of potentially informative data
are left unanalysed and erroneously ignored.

Here, we present a dual analysis on the occurrence of Mycena in roots of wild plants in a range
of ecosystems, and an investigation of the potential trophic versatility of Mycena in the field by
presenting: 1) a systematic analysis of data from 10 plant species from Arctic and temperate
regions (Information on plants and studies given in Table 1) from previously published and
newly generated ITS1/ITS2 HTS data sets from living plant roots, and 2) a comparison of the
natural abundance of "*C and N in carpophores of Mycena with other fungi, soils and
mycorrhizal host plants from 253 fungal collections, host plants and soils from five field
locations (See Fig S1-S2 for a map of sampling sites).

We investigated four main research questions: 1) Are Mycena species (and other
supposedly saprotrophic genera) systematically found inside living plant roots in significant
quantities? 2) If so, are these more prevalent in Arctic/Alpine environments? 3) Are there
indications of host preferences/specificity among invasive Mycena species? 4) Do the data from
3C and N abundances support the view that Mycena species may form mutualist association

with plants?

Results

HTP-sequencing data summary
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Our dataset consisted of 3 species amplified with ITS1 primers and 2 species amplified with
ITS2 primers from previously published data reanalysed here. 5 new species (from three
separate 454 datasets amplified with ITS2 primers) represent new data (Table 1).

After quality sorting, a final dataset of 889,290 ITS1 sequences were clustered into 1193 3%
OTUs (n=10, henceforth simply OTUs) for the three plant species where the ITS1 marker were
used, and an ITS2 dataset of 992890 sequences and1032 3% OTUs in the seven datasets with
ITS2 (Table 2). For a detailed list of the sequence sorting steps on the ITS1 and ITS2 data and
the respective counts for each host species, see Supplementary data and Tables S1-6.
Applying the "coverage/completeness" method for assessing saturation (Chao and Jost, 2012),
111 samples failed to meet the 97% coverage cutoff value and were discarded. Though the
INEXT (Hsieh et al., 2016) extrapolations of observed species richness suggested that some
slight undersampling remained in some samples (Fig S5), none of the ten species showed
correlations between Mycena infection levels (all Ps>0.05, table S7) with sampling depth.

We analysed the datasets with both amplicon sequence variants (ASVs/"zotus”, aimed at
capturing the haplotype diversity) and 3%-OTUs, aimed at capturing species. As expected,
there were higher numbers of ASVs than OTUs. However, using 3% OTUs or ASVs made little
difference to the taxonomic composition of the datasets, as seen by the near-identical Mycena
shares in OTUs and ASVs . There were no clear signs of potential host specialisation by
Mycena at either the finer ASV-(“haplotype”) scale or at the coarser 3% OTU scale (Tables S8-
9). Thus, the further analyses focused on the 3% OTU datasets.

For ITS1, 606 of 1193 OTUs (78.3% of the sequences) could be identified to genus level by
SINTAX at the threshold of BPP >0.6; for ITS2, this number was 513 of 1032 ITS2 OTUs
(84.5% of sequences).

The same SINTAX classification identified 13 Mycena OTUs (1.5% of all ITS1 sequences) in
the ITS1 dataset, and 14 Mycena OTUs in ITS2 (12.6% of all ITS2 sequences). However, in a
second identification step especially targeting Mycena where representative sequences of all
OTUs were clustered with the Mycena ITS database 576 sequences (described below), an
additional 7 ITS1 OTUs and 7 ITS2 OTUs not identified as Mycena by SINTAX at BPP >0.6
formed clusters (at 97%) with Mycena species in the database. Thus, in total 20 ITS1 OTUs
(2.1% of sequences) and 21 ITS2 OTUs (15.8% of sequences) could be identified as Mycena
(s. str) with these two combined methods. (3 ITS1 OTUs identified as Mycena by the 8.2 utax
eukaryote reference database represented taxa now classified as Phloeomana and Atheniella
(Redhead, 2013) and were excluded from detailed analysis).

Of other (non-Mycena) taxa traditionally considered to be saprotrophic/endophytic, we found
Sebacinales in the four Arctic host plants, the zygomycete Mortierella in most Scottish hosts,
and Phialocephala in B. vivipara and Clavulinopsis/Clavaria in C. tetragona (Fig. 2a-c). No other

saprotrophic/endophytic genera formed more than 0.5% of the sequences in any of the host
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182 plants. The high and very variable infection levels and frequency patterns of Mycena were not
183  found in any other saprotrophic/endophytic taxa.

184

185 Mycena infection levels

186

187  In nine out of ten host plants, Mycena infection levels reached 25-80% of all reads in individual
188 samples (Fig. 2a-c), with considerable intraspecific infection variation (Fig 1, Fig. S3). For the
189 ITS1 data, Mycena average read content for all 519 B. vivipara samples was significantly lower
190 (than for S. polaris (n=20) and D. octopetala (n=22) (Fig.1a-b, Table S10)). However, the S.
191  polaris and D. octopetala data sets came from only one locality (Botnen et al., 2014), and when
192  comparing them only with the B. vivipara dataset (n=19) from the same locality, no significant
193  differences were observed (1-way ANOVA, df=2, F=1.36, p=0.263). Without considering the
194  differences in sample sizes (Table 1), ITS2 host species could be roughly divided into three
195  groups based on average Mycena infection level - 1) P. sylvestris with virtually no Mycena, 2)
196 an intermediate group (median values about 5-10%) with S. herbacea, A. alpine, B. nana, and
197  A. uva-ursi, and 3) B. pubescens and C. tetragona with median Mycena infection levels above
198  20%. While all species (except P. sylvestris) harboured individual samples with few if any

199 Mycena and some with >30%, there were still significant differences between these three rough
200 categories.

201 (Fig. 1 d-e, Table S11)).

202

203  Environmental influences on Mycena

204  Disparities in sample size and study metadata only permitted limited testing of environmental
205 influences on Mycena infection to three host species. In C. tetragona, there were no difference
206  in Mycena infection levels between samples derived from drought and control plots applied by
207  Lorberau et al. (2017)(two-tailed t-test, unequal variances, p=0.57). In A. uva-ursi, the level of
208  Mycena infection decreased significantly with increasing altitude (65-805 m above sea level)
209  (R?=0.2, p<0.0001, data not shown), which is contrary to the assumption (question 2) that

210 increasingly stressful environments facilitating infection with Mycena/saprotrophs.

211 In B. vivipara, no correlations between Mycena infection level and annual mean temperature,
212  latitude nor mean temperature of the wettest quartal were found (all adjusted R?<0.01, all

213 P>0.25, see Table S12). A very weak correlation between decreasing Mycena species richness
214  inroots and increasing mean temperature of the wettest quartal (R>=0.01, P=0.04) disappeared
215  when the Austrian outlier samples (which contained no Mycena) were excluded.

216 A chi-quare test on the observed vs. expected prevalence of Mycena in 222 B. vivipara host

217  plants from 44 patches (a patch constituted multiple plants collected in close proximity) showed


https://doi.org/10.1101/2021.03.23.436563
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436563; this version posted March 23, 2021. The copyright holder for this preprint

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

a significant, non-random association (c?=65.22, df=43, p=0.01) of Mycena infections in host

plants, suggesting that Mycena-infected B. vivipara were distributed in clumps.

Mycena phylogenetics of OTUs and species diversity

Among the 20 ITS1 and the 21 ITS2 OTUs that were identified as Mycena, we found no
phylogenetic signal suggesting that root invasion might be linked to certain clades (Fig. 3).
Many of the same Mycena species were found in both the ITS1 and ITS2 datasets with 12
ITS1-ITS2 pairs of OTUs clustered with >90% probability to the same branches. There were no
indications of host specialisation by Mycena species on particular host species, with large
individual variations in all host plants (again except P. sylvestris) between which Mycena
species that were found (Fig. S3), Several Mycena species such as M. epipterygia or M.
leptocephala occurred in infection levels of >10% in at least one individual of 6 of 10 host
species or more (Fig. S3). Indeed, the two OTUs were the only OTUs shared between C.

tetragona from Svalbard and all Scottish host species (except P. sylvestris).

Mycena database

We compiled 576 new and previously published full-length Mycena ITS Sanger sequences
representing 137 identified species level into a database (see Experimental procedures
below).They clustered into 156 and 139 ITS1 and ITS2 3% OTUs, respectively.

For both regions, some OTUs contained two or more species (such as Mycena galericulata +
M. megaspora and M. olivaceomarginata, M.citrinomarginata and M. albidolilacea), while other
species were split into multiple OTUs (e.g. M. pura and M. epipterygia). Average intraspecific
variation was 3.6% (ITS1) and 2.7% (ITS2) (Fig. S4).

Stable isotope data

On average, carpophores values of 15N and 13C placed Mycena among the saprotrophs. They
were higher in 8"°C and lower in 8"°N than the average of the remaining non-Mycena
saprotrophs (Fig. 4a-e). The 8'°C values of all saprotrophic species for all regions were
between -26 and -22%., except for a Phloeomana speirea at Finse (Fig. 4a) at -27.1%., and one
Mycena metata collection from Svalbard (Fig. 4c) at -26.9%.. However, there were striking
anomalies (and intraspecific variations) in the 8'°N values for certain individual collections of
Mycena, particularly M. pura, which varied between 1.7%o for M. pura in Gribskov to 12.6%. for
M. pural at Finse. A t-test showed the M. pural and M. pura2 collections at Finse to be strongly
and significantly higher in 8'°N than the average for the other Mycena at Finse (p < 0.0001),
and slightly but still significantly higher in §">C (p = 0.02).
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In the stepwise regression of 8'°N, genera were separated by up to 12%o into five groups (Table
S13). Relative to the mean, Mycena grouped at -3%o0 with the litter decay fungi Calvatia,
Lycoperdon, and Rhodocollybia. The overall adjusted r? of the regression model was 0.56, with
site accounting for 8.1% of variance and the remaining 48.0% accounted for by genus.

In the stepwise regression of 8'°C, genera were separated by up to 5%o into eight groups
(Table S14). Relative to the mean, Mycena grouped at +1%. with both the ectomycorrhizal
Rhizopogon, the partly saprotrophic/ectomycorrhizal Ramaria and the litter decay fungi
Calvatia, Lepista, and Rhodocollybia. The overall adjusted r* of the regression model was 0.66,
with site accounting for 11.7% of variance, nitrogen concentration (%N) for 2.8%, and the
remaining 51.4% accounted for by genus.
The 8"N values for host plants in all 5 regions were all below 0%o, which is significantly lower
than not only carpophores, but also the soil (Fig.4). Soil "°N values were below 2%, with lower
overall N contents but higher 8"°N values for deeper soil depths, in line with earlier studies
(Evans, 2007; Seitzman et al., 2011, Clemmensen K, 2013; Halbwachs et al., 2018). The §'"°N
and 8"*C values differed significantly between the five regions, but the amount of variance for
both measures explained by region in the mixed linear model was <20% for both isotopes and
well below that explained by sample type and genus/sample type in combination (> 75% for
both).
Overall, the other fungal genera had isotopic profiles that matched their expected nutritional

mode.

Discussion

This study constitutes the first systematic analysis of Mycena in wild plant roots, and the results
clearly indicate that Mycena species are frequent root colonisers of a taxonomic range of
mycorrhizal host plants, although infection levels are very variable. The isotopic data here
suggest that they could have several potential ecological functions inside the roots. They could
be endophytes, as has been suggested for Sebacinales (Blaalid et al., 2014; Botnen et al.,
2014; Lorberau et al., 2017) or dark septate endophytes (Newsham, 2011) in many Arctic
plants. However, here we found Mycena infection to be widespread in Arctic/alpine hosts as
well as in temperate hosts, and the general lack of host-specificity in Mycena was also
universal. The ability to colonise living roots appears to be a widely shared trait across the
Mycena phylogeny, consistent with the findings of Thoen et al. (2020).

Mycena infections displayed a qualitatively remarkably similar pattern in 9 of 10 host plants:
present in many samples and varying from little or no infection up to >40-50% of the recovered

reads i.e:. The complete lack of Mycena (and saprotrophs in general) in P. sylvestris (Fig.1) is
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noteworthy, as Mycena were frequent root invaders in P. sylvestris seedlings in in vitro growth
experiments by Smith et al. (2017). Pines have strongly heterorhizic root systems and only the
final feeder roots are not either suberised or metacutinised, which will severely limit colonisation
by fungi. In addition, under field conditions ectomycorrhizal colonisation levels of the feeder
roots will be close to 100%, so the available surface for colonisation by non-mycorrhizal fungi
will be very limited.

"However, Kohout et al. (2018) found Mycena to be widespread in roots of mature (+80y)
stands of conifers (P. abies) in forests. Furthermore, the Mycena infection patterns in B.
pendula seedlings in vitro (Thoen et al., 2020) were indeed consistent with our observations in
the close relative B. pubescens roots in the field.

However, the spruce in Kohout et al. (2018) originated from intensely managed and ultimately
clear-cut forest, and they had a high overall root fungal diversity in addition to the levels of
Mycena infections. The B. pubescens in this study were tree saplings of >1 m on a location
where they were kept low by a particularly high grazing impact from sheep and deer, and all
other species with high Mycena infection levels were smaller dwarf shrubs of varying sizes or
herbaceous plants, also known to be subject to deer/reindeer grazing (Kolari et al., 2019). In
contrast, the P. sylvestris in our study were in largely undisturbed stands within a national park,
and their near-complete dominance by one genus (Suillus, Fig. 2d) and associated very low
general root diversity (Fig. 1g-h) is consistent also with pre-HTP sequencing era studies of
undisturbed P. sylvestris roots (Jonsson et al., 1999).

It is possible that differences in disturbance is an explanation for the difference in Mycena
infection levels, i.e. that Mycena root invasion should be seen as a largely opportunistic feature
of plants that are young, disturbed or otherwise vulnerable. This is also consistent with what is
generally known to facilitate attacks from known fungal parasites (Walters, 2011). We speculate
that this disturbance effect could also apply within species: e.g. grazing by herbivores passing
by at one location would be likely to impact multiple individuals close by each other. The
clumped (uneven) distribution of Mycena infections levels in B.vivipara can thus be interpreted
as offering some support for this theory.

An important issue (question 4) is what is the basis of interaction when Mycena invades a host
root. It was not possible to determine i the Mycena carpophores sampled for analysis of stable
isotopes were free-living or from mycelia associated with a plant, Although the average value of
Mycena suggested a saprotrophic lifestyle, there were several individual collections with profiles
that suggested an alternative mode of nutrition. Most clearly, two collections of Mycena pura in
Finse have isotopic profiles that resemble that of mycorrhizal fungi., Interestingly, in the study
by Thoen et al., (2020) the culture of M. pura which could transfer *P to its plant host was

grown from the M. pura1 sample from Finse.
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In addition, the isotopic profiles of M. pura and its close relatives M. rosea2 and M. diosma of
the section (Calodontes) from Gribskov (in Denmark) are not far from those of the
ectomycorrhizal Russula or Cortinarius.(Fig. 4 However, the M. pura from Svalbard and
Vettakollen (in mainland Norway) and a M. rosea1 from Gribskov had isotopic signatures closer
to the expected profiles for saprotrophs. The members of the Mycena section Calodontes are
notably hard to grow in culture which has previously led to speculations about their nutrition
(Perreau et al., 1992; Boisselier-Dubayle et al., 1996; Harder et al., 2010; Harder et al., 2012).
However, it must be noted that Mycena pura was rarely found in the root samples and only
constituted a significant (>10%) fraction of the root community in one single B. vivipara
individual (Fig. S5). None of our collections of M. galopus displayed similar intraspecific
variations and/or mycorrhizal-like patterns in their isotopic profiles as one might have

expected based on Grelet et al. (2017) or Thoen et al. (2020). Whether this is a coincidence for
this study or not must be left for further research to explore.

Overall, the variable isotopic patterns of Mycena from the field are broadly consistent with the
interspecific and intraspecific variation observed in the interactions between Mycena and birch
roots in the growth experiments by Thoen et al. (2020), where different species and conspecific
strains displayed harmful, neutral/endophytic, or beneficial interaction phenotypes in vitro. In
the light of the emerging discoveries of variable ecologies among several fungal genera, these
findings highlight the need for more targeted organism-level research on multiple individuals of
fungal species to obtain a more comprehensive picture of the possible ecological versatilities. If
fungal ecology is versatile not only below the genus, but also below the species level, then this
may lead to reconsideration of the high importance ascribed to nutrition as a decisive taxon-
delimiting trait (as in Serpulaceae (Skrede et al., 2011) or Clavariaceae (Birkebak et al., 2013)).
Redhead et al. (2016) proposed to split the monophyletic Amanita sensu lato into
ectomycorrhizal Amanita sensu stricto and a new saprotrophic Saproamanita, precisely to make
ecological annotation in molecular studies easier, but this would be unnecessary with greater
appreciation of ecological versatility. This has important implications for the widely applied
approach in HTP-sequencing/metabarcoding plant root studies where annotating ecology to a
sequence with genus-level based taxonomy could be misguided.

A question was raised by Vohnik (2020) concerning the high numbers of Mycenal/Clavaria
sequences recovered from C. tefragona by Lorberau et al. (2017) suggesting that they might be
explained by a lack of root cleaning/washing. While this is an issue that should not be ignored,
all root samples included in the present study were either serially washed and/or surface
sterilised as standard, including (Lorberau et al. (2017). It is therefore very unlikely that the
recovery of large numbers of Mycena reads (and other saprotrophs) is purely due to mycelia

living commensally on the root surface.


https://doi.org/10.1101/2021.03.23.436563
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436563; this version posted March 23, 2021. The copyright holder for this preprint

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Until now, most data on the occurrence of saprotrophic fungi inside plant roots has arisen as a
by-product of other research, and the sampling for these metabarcoding datasets here were not
originally designed to investigate this question or to be analysed together. The differences (Fig
1) in average Mycena infection levels between 9 of the 10 host plants in our sample should be
interpreted with the caution warranted by differences in sample sizes and site variations, and in
comparing two ITS regions (Harder et al., 2013). The reverse primer (ITS2_r) of the ITS1 primer
set has a terminal mismatch with 99% of all Mycena species (Tedersoo and Lindahl, 2016),
which suggests that Mycena content in the ITS1 dataset could be underestimated. If true, this
would merely strengthen our overall conclusions about Mycena as an overlooked but significant
root invading genus; however, more studies directly targeting supposedly saprotrophic or
endophytic (non-mycorrhizal) fungi in roots are certainly desirable.

To test our hypothesis that Mycena (or other saprotrophic) root infections are a result of
opportunistic invasion under disturbance-related circumstances, future targeted metabarcoding
root studies should directly analyse roots of multiple host species of different age and
disturbance levels in the field in order to identify particular factors that may affect root invasion.
Annotation databases should be continuously updated to reflect our best taxonomic knowledge,
and further efforts should be undertaken to identify fungal OTUs or ASVs beyond the genus
level, which may require more attention to detail than relying on SINTAX/RDP classification
based on even the best possible databases.

Most importantly, more studies on direct ecological interactions between particular hosts and
known fungal species are needed; both resynthesis host-fungus experiments with studies of
nutrient and C transfer between the symbionts, and stable isotope studies in the field that

specifically target saprotrophic taxa.

Conclusions

The investigation of the trophic status of genus Mycena using sequence data from wild plant
roots and 15N and 13C stable isotope signatures yielded the following: 1) In nine of ten
analysed herbaceous and ericaceous plants and tree mycorrhizal host plants from temperate,
alpine and arctic environments, Mycena was consistently present in living plant roots across
species and in different environments, but other saprotrophic taxa were only occasionally
present; 2) Mycena infections were not generally more prevalent in Arctic environments or at
higher altitudes, but we hypothesise that infection may be more prevalent under conditions of
disturbance; 3) The ability to invade living plant roots is a feature of multiple Mycena species
that do not discriminate between plant hosts, and 4) The stable isotopic data on carpophores

suggested that, although the genus Mycena is indeed mostly saprotrophic, strains of
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certain Mycena species can display an ecological versatility in the field and exchange nutrients
with plants, consistent with previous results from in vitro resynthesis experiments.

The evidence that fungal trophic modes may be variable on the species level, and that within a
large genus such as Mycena there may be several potential trophic options in addition to pure
free-living saprotrophy, raises intriguing questions about the general understanding and study of
fungal ecology. More research directly targeting root-associated fungi with unclear or unknown
ecologies is required to resolve these questions. This study highlights the importance of
continued detailed studies on interactions among organisms at the species level in order
enhance data usage from broad, environmental metabarcoding approaches to community

characterisation.

Experimental procedures

Sample site and sample descriptions

Betula pubescens roots were collected at the RSPB Nature Reserve at Corrimony in north-west
Scotland in August 2008. The trees were regenerating saplings at a maximum 1 m in height,
growing on moorland within heather-dominated vegetation on a site previously browsed by
sheep and deer. Roots samples (supporting 100-200 ECM tips) were taken from the trees by
direct tracing fine roots from the main laterals. Roots from 5 trees from within a block were
pooled to give one single sample.

Roots from Salix herbacea, Betula nana, Arctostaphylos. alpina, and 8 A. uva-ursi from an
original biogeography study were collected from mountains across Scotland (Fig S1) (Hesling
and Taylor 2013).

The remaining 68 sample of A. uva-ursi roots were from an altitudinal gradient study (and 9
additional P.sylvestris samples in addition to those from Jarvis et al. (2015) in this study),
collected June-Jduly 2011 in the Invereshie-Inshriach National Nature Reserve in the north-west
of the Cairngorms National Park in Scotland (Figs. S1, S2). Samples came from 9 elevation
transects from 450-850 masl on a Calluna-Arctostaphylos subalpine heath with scattered Scots
pine trees up until the tree limit at ~650 masl. This was in close proximity to the P. sylvestris
forest studied in Jarvis et al. (2015)

The previously published datasets of B. vivipara, S.polaris, D. octopetala and C.tetragona were
all collected in Arctic and Alpine tundra above the treeline in Arctic Norway, lIceland and Austria,
and from grassland below the treeline in Scotland. For more details on the previously published
data, we refer to the original publications. A more detailed description of the plant species

targeted and the sample sites for the new data can be found in the supplementary data.

Preparation of roots and old amplicon libraries for previously published ITS2 datasets
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For the three new ITS2 datasets/454 runs representing 5 of 7 host species (see
bioinformatics below), roots were sampled and cleaned under a dissection microscope to
remove visible soil debris, woody and non-target species’ roots, then lyophilized in 2 ml tubes
and milled using a steel bead in a mixer mill (RETSCH, Dusseldorf, Germany). Dry weight for
DNA extraction was adjusted for each sample so that extracted mass was proportional to total
sample dry weight: extract weight (mg) = (42.50 x fotal sample dry weight (mg)) + 47.98. DNA
was extracted using 96 well, DNeasy Plant Minikits (QIAGEN, Hilden, Germany).

PCR amplification of the ITS2 region was conducted on a 2720 Thermal Cycler (Life
Technologies, Carlsbad, CA, USA) in 10 pl reactions: 5 ul diluted template; 40 uM of each
nucleotide; 0.55 mM MgCl,; 40 nM ITS7A primer (lhrmark et al. 2012); 40 nM ITS 4 primer with
a 3’ 8 bp tag (unique by 22 bp between samples); and 0.005 U/ul polymerase (DreamTaq
Green, Thermo Scientific, Waltham, MA, USA) in buffer. Cycling parameters were: 94 °C for 5
min then 25, 30 or 35 cycles at 94 °C for 30 s; 57 °C for 30 s; 72 °C for 30 s; with a final
extension of 72 °C for 10 min. PCR products were checked using gel electrophoresis
(dilutions/cycles adjusted if products were out with the range 1-10 ng pl™"), then purified using
AMPure 96 (Beckman Coulter, Brea, USA). DNA concentrations were established using a Qubit
2.0 fluorometer (Invitrogen, Paisley, UK), samples combined in equal molar proportion, further
purified using GeneJET PCR Purification (Thermo Scientific, Waltham, USA) and lyophilized.
Adaptor ligation, 454-sequencing and sequence adapter trimming were performed by the NERC
genomics facility (Liverpool, UK) on one pico-titre plate using the GL FLX Titanium system

(Roche, Basel, Switzerland).

Mycena database

For identification of Mycena sequence data to species level, we first generated 151 new
sequences from herbarium specimens and personal collections, using the ITS1F/ITS4 primers
and the PCR protocol of Gardes and Bruns (1993). All Mycena ITS full-length sequences from
GenBank and from the UNITE database (1099 sq) were extracted. Sequences not identified to
species level, which did not cover the regions amplified by the ITS1F-2/ITS3-4 primer target
regions, and which were not inside the Mycena sensu stricto clade (Fig. 3), or duplicates
between both databases were discarded. Additionally, 14 complete Mycena sequences in
GenBank were also discarded, as these were deemed to be misidentified (see table S15), most
of those from (Hofstetter et al. 2019). The final database comprised 576 high-quality sequences

with 136 named Mycena species, 89 of which with =22 sequences.
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Sequences were aligned with the FFT-NS-i algoritm in MAFFT v 5 (Katoh and Standley, 2013).
The complete (628 bp) and annotated M. pura EU517504 sequence was used to identify the
ITS1 and ITS2 regions in the alignment.

Bioinformatics

From the previously published studies of B. vivipara, a high-quality dataset of 119 054
sequences was compiled from Blaalid et al (2012), 191,099 from Yao et al. (2013),157 181 from
Botnen et al. (2014), 244 523 from Blaalid et al. (2014) 272 595 sequences from Mundra et al.
,(2015) 249 888 from Davey et al. (2015), and 132912 from Botnen et al. (2019), making a total
of 1095997 ITS1 sequences for clustering into OTUs/ASVs.

For the ITS2 dataset, we first analysed the two previously published studies of Jarvis et al
(2015) and Lorberau et al (2017), and obtained 175829 and 1952314 sequences, For the three
unpublished ITS2 454 runs, 327480 raw reads were obtained on a run with 104 Betula
pubescens samples; 494187 raw reads on a run combining altitude and biogeography
samples, and 232125 for a run with 16 1st year biogeography samples. After denoising,
chimera check, length, primer/base pair match and quality controls, 121587, 326380 and
154121 high-quality reads remained, respectively. In total, this amounted to 2730231 high-
quality ITS2 sequences of all fungal ecological groups. These were then used for clustering into
OTUs/ASVs.

The OTUs/ASVs were classified taxonomically with the non-Bayesian SINTAX classifier (Edgar,
2016) using the 8.2 utax eukaryote reference database (Abarenkov et al., 2020).

QIIME (Caporaso et al., 2010) 1.9.1 pipeline was employed for the three unpublished 454 runs
through the same steps as in Jarvis et al., (2015) until the OTU clustering step. We retained
those with a sequence length 200-550 bp, only 100% match to in primer/tag sequences, passed
chimera check in UCHIME(Edgar et al., 2011), a sliding window quality check of 50 bp applied
to identify low-quality regions (average Phred score < 25). The resulting fasta files from the
individual ITS1 and ITS2 runs were combined, and clustered first into OTUs at 97% similarity
using vsearch (Rognes et al., 2016) and its usearch_global command function, and then into
ASVs using the standard settings in UNOISE (Edgar, 2016). The R decontam package (Davis
et al., 2018) with the default settings to remove likely contaminants based on the negative
controls on a per sample basis for each of the 6 different datasets in the ITS1 part, and on the
single negative control samples in the Cassiope tetragona ITS2 dataset (no negative controls
were sequenced in Jarvis et al. (2015) nor in any of the new ITS2 datasets). Non-fungal
sequences (P<0.95), and OTUs and ASVs with respectively <10/<8 counts were removed.

Finally, sampling saturation was assessed with the INEXT package (Hsieh et al., 2016), (see


https://doi.org/10.1101/2021.03.23.436563
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436563; this version posted March 23, 2021. The copyright holder for this preprint

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

also Fig. S5), and all samples not meeting a coverage-based completeness (Chao and Jost,
2012) of 97% were discarded.

Collection of samples for isotope analysis: Fungal carpophores, host plants and soil were
collected from 5 different regions: Svalbard (arctic Norway); Finse/Hardangervidda (alpine
central Norway), Vettakollasen (boreal forest) in southeastern Norway; Solhomfjell National
Park (boreal forest) in South Norway, and Gribsg /Gribskov (North Zealand, Denmark), in a
beech-dominated broadleaf forest patch (Fig. S1) in 2015 and 2016. For more information and
geographic coordinates of the field locations, see Fig. S1 and legend. In Svalbard, the collection
sites spanned several similar valleys on the southern banks of Isfjorden, with the sites
separated by up to ~60 km (Fig. S1); for the other four remaining collection sites, samples were
taken from an area that extended over no more than 1 km?.

Fungal carpophores, soil samples and plants were dried with continuous airflow for 12-36
hours at 70 °C until dry. Plants and fungi were identified morphologically, and Mycena
furthermore by ITS sequences. For Svalbard, some additional fungal samples were taken from
dried mushroom specimens kept at the herbarium at Tgyen at the Natural History Museum in
Oslo. It was assumed that individual carpophores collected within a distance of <50 centimeters
between them originated from the same mycelium. Conspecific Mycena carpophores sampled
from larger distances were treated as separate samples. Whenever possible, collections from a
given site were triplicated or at least duplicated, using separate fruit bodies from the same
collection. Fungi were divided into the three categories "ectomycorrhizal”, "saprotrophic” or
"Mycena". For every 36 samples analysed, internal replicates of material from two samples from
the same fruitbody was used to verify consistent machine functioning. Soil samples were taken
from top-soil (A horizon, 0 cm) and from mineral soils in ~50 cm depths. We sampled soil from

three different locations on the different sites. Plant samples were all taken from leaves.

Stable isotope analysis: Dried samples (plants, fungi, soil) were ground by hand, weighed
(see supplementary table TS4) into 5 x 9 mm tin capsules (Sercon), closed and compressed.
Samples consisted of 5 mg of fungi/plant, 10 mg of topsoil, or 20 mg of 50 cm depth soil.
Samples were analysed for §'*C, "N, % C, and % N by continuous flow with a Costech
ECS4010 elemental analyser (Costech Analytical Technologies Inc, Valencia, California)
coupled with a DELTAplus XP isotope ratio mass spectrometer (Thermo Scientific, Bremen,
Germany) at the University of New Hampshire Stable Isotope Laboratory. All carbon and
nitrogen isotope data are reported in delta notation according to this equation: 86X =
[(Rsampie/Rstandara) - 1] X 1000 where X is "*C or "°N and R is the ratio "*C/"*C or "N/"N. All §°C

and 8"°N values were normalised on VPDB (3"C) and AIR (8"°N) reference scales with the
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following internationally calibrated standards and values: IAEA CH6 (210.45%), CH7
(232.15%), N1 (0.4%) and N2 (20.3%). Laboratory working standards included NIST 1515
(apple leaves), NIST 1575a (pine needles) and tuna muscle, as well as a Boletus quality

control.

Statistics/graphics

Stepwise multiple regression models of fungal '°N and §"°C were analyzed with genus, site,
and %N as the independent variables. Because of the declining 'C of atmospheric carbon
dioxide, year was also included as a continuous factor in the 8'°C regression. Genus and site
were categorical variables and year and %N were continuous variables. These statistical
analyses were carried out in JMP 13 Pro (SAS Institute, Middleton, Massachusetts, USA).
Models that minimized the Bayesian Information Criterion (BIC) were selected. The variance
inflation factor (VIF) of each model factor was also calculated, which measures multicollinearity.
This approach allowed a test of whether Mycena generally grouped with saprotrophic or
ectomycorrhizal genera without a priori setting up specific contrasts among Mycena,
saprotrophic genera, and ectomycorrhizal genera.

All other statistics were done in R using'phyloseq' 1.19.1 R package (McMurdie and Holmes,
2013) for combining and rearranging OTU tables and taxonomy information, and the heatmap.2
function from the 'gplots' package (Warnes et al., 2016) for visualising heatmaps. We applied a
sequential ANOVA for Fig. 1a-d at the 0.05 significance threshold with the Scheffe post-hoc test

correction for multiple comparisons, using the 'agricolae’ package (de Mendiburu, 2020).

Phylogenetics

The ITS phylogeny (Fig. 3) was constructed by first aligning a selected high-quality subset of
89 ITS full-length sequences with the Q-ins-i algoritm in MAFFT(Katoh and Standley, 2013) for
a final alignment of 1502 positions (gaps included), and then running a maximum likelihood with
1000 bootstrap replications in RaxML (Stamatakis, 2014), saving branch lengths. Then, the 20
+ 21 Mycena ITS1 and ITS2 OTUs were added the, the Q-ins-i alignment redone, and the
OTUs mapped to the branches using the EPA algoritm (Barbera, 2019). The tree was visualised
in FIGTREE v. 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree).

Sequences and data
MiSeq/454 files are found at the respective sources listed in Table S16. Sanger sequences can
be accessed through GenBank/UNITE, see Table S17 for accession numbers. R scripts and

downstream analysis files can be obtained from C.B. Harder upon request.
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Fig.1. Mycena infection levels (fraction of read shares) and species richness at
97% coverage corrected for sampling depths (Chao and Jost 2012) for the ITS1
(a-d) and ITS2 (e-h) datasets. Very little differerence between the OTU and the
ASV approaches were found. Letters x-y-z denote host species «significance
groups» as found by ANOVA + Scheffes multiple comparisons test for a
significance at the P< 0.05 level. Species sharing one identical letter (x, y or z) do
not significantly differ from each other in mean Mycena infection level /overall
species richness (at 97% coverage).
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Fig.2. Heatmap of Mycena species occurrence (a-c) and overall genus occurrence
(b-d). Note the slightly different colour bars in each plot. Only Mycena species
that made up >1% of at least one sample were included as separate rows in a-c.
In b-d, only genera that comprised >5% of reads as an average in at least one
host species had its own separate row. Besides these criteria, we also included
Helotiales that could not be identified to generic level, but might still conceivably
harbour ericoid mycorrhizal fungi or dark septate endophytes (as
Phialocephala). but might. ERM=Ericoid mycorrhiza, ECM= Ectomycorrhiza,
Sap=Saprotroph, End=Endophyte. Note the near-complete dominance of
ectomycorrhiza (particularly Suillus) in P. sylvestris. (Ps).
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Fig.3. RaxML complete ITS phylogeny of 64 Mycena s.s. sequences, with 25
outgroups from "Mycena s.l." and other Agaricales. Bootstrap supports indicated
about each branch. 20+21 OTUs from ITS1 and ITS2 are superimposed upon the
branches with the best fit.
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Fig.4. Biplots of stable isotopes >N and 13C for soil, host plants, and the three
simplified categories Mycena, Mycorrhiza and saprotrophs. Overall, saprotrophs
will be found predominantly bottom right, mycorrhizal fungi top left. Note the
deviant particular M. puras at Finse, upper left.
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ITS1 Samples’ Locality Description of
Title of study original purpose
Blaalid et al. (2012) Bistorta vivipara Finse(Nor | Succession
(n=59) way)
Yao et al. (2013) Bistorta vivipara Finse(Nor | Ridge-to-snowbed
(n=51) way) gradient
Blaalid et al. (2014) Bistorta vivipara 32 Spatial/bioclimatic
(n=146) localities variation
on
Svalbard
Botnen et al. (2014) | Bistorta vivipara Blomsterd | Host specificity
(n=19), Dryas alen,
octopetala (n=22), Svalbard
Salix polaris (n=20)
Mundra et al. (2015) | Bistorta vivipara Isdammen, | Temporal variation
(n=84) Svalbard
Davey et al (2015) Bistorta vivipara Svalbard, | Succession/glacial
(n=103) Finse(Nor | chronosequence
way) gradient
Botnen et al. (2019) | Bistorta Scotland, Biogeography
vivipara(n=57) Austria,
Iceland,
Jan Mayen
ITS2
Title of study
Jarvis et al. (2015) Pinus sylvestris Scotland Altitude
(n=32)
Lorberau et al (2017) | Cassiope tetragona Endalen, Drought
(n=15) Svalbard
Biogeography project | Arctostaphylos Scotland Biogeography
(new data) alpine(n=10),
Arctostaphylos uva-
ursi(n=8)
Betula nana (n=8)
Salix herbacea (n=7)
Altitude project (new | Arctostaphylos uva- | Scotland Altitude
data) ursi(n=68), Pinus
sylvestris (n=9)
Birch (new data) Betula pendula Scotland Grazing effects
(n=81)

Table 1.0Overview of all species and samples included in this study. "Number
represent samples which ended up being included in the final analyses. Our
plant samples consisted of the herbaceous ectomycorrhizal Arctic Bistorta vivipara,
subshrub Dryas octopetala, and the dwarf shrub Salix polaris (Blaalid et al., 2012;
Yao et al., 2013; Blaalid et al., 2014; Botnen et al., 2014; Davey et al., 2015; Mundra
et al., 2015); the Arctic ericaceous Cassiope tetragona (Lorberau et al., 2017) and
the ectomycorrhizal conifer Pinus sylvestris (Jarvis et al., 2015) from Scotland; and
new data also from Scottish (temperate) plants: the arbutoid mycorrhizal
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Arctostaphylos alpina and A. uva-ursi, ectomycorrhizal dwarf shrubs Betula nana and
Salix herbacea, and the ectomycorrhizal trees Betula pubescens and additional
Pinus sylvestris. The Betula pubescens samples all came from saplings of < 1 m kept
low by deer/sheep grazing; the other host plants collected were mature.

ITS1 B. vivipara (n=519)" | D. octopetala (n=22) | S.polaris (n=20)"
OTUs 803649 39880 30069
(n=1193)
ASVs 908621 43286 33141
(n=2272)
ITS2 A.alpine A.uva-ursi B.nana B.pendula P. S. C. tetragona
(n=10) (n=76) ! (n=8) (n=81 )2 sylvestris herbacea (n=15)
(n=41) (n=7)
OTUs
(n=1032) 59829 241418 49927 90214 212577 25298 313627
ASVs
(n=1559) 61703 247091 51182 93429 219124 25497 385763

Table 2. Total sequence counts for OTU/ASVs for each host species.’Numbers
represent samples included in the final analyses.
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