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Abstract 

Structural and cellular complexity of prostatic histopathology limits the accuracy of noninvasive 

detection and grading of prostate cancer (PCa). We addressed this limitation by employing a 

novel diffusion basis spectrum imaging (DBSI) to derive structurally-specific diffusion 

fingerprints reflecting various underlying prostatic structural and cellular components. We further 

developed diffusion histology imaging (DHI) by combining DBSI-derived structural fingerprints 

with a deep neural network (DNN) algorithm to more accurately classify different 

histopathological features and predict tumor grade in PCa. We examined 243 patients 

suspected with PCa using in vivo DBSI. The in vivo DBSI-derived diffusion metrics detected 

coexisting prostatic pathologies distinguishing inflammation, PCa, and benign prostatic 

hyperplasia. DHI distinguished PCa from benign peripheral and transition zone tissues with over 

95% sensitivity and specificity. DHI also demonstrated over 90% sensitivity and specificity for 

Gleason score noninvasively. We present DHI as a novel diagnostic tool capable of noninvasive 

detection and grading of PCa.  
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Introduction 

Prostate cancer (PCa) is the most common and the second most deadly cancer among men in 

the United States (1). Over the last 30 years, PCa screening of asymptomatic men using serum 

prostate-specific antigen (PSA) blood testing has remained the standard of care for early 

detection for PCa (2). Men with elevated serum PSA are sent for transrectal ultrasound (TRUS)-

guided biopsy for diagnosis and grading of PCa (3). Considered a generally safe and well-

tolerated outpatient procedure (4), needle biopsy is potentially associated with complications 

affecting patients’ quality of life to various degrees (5, 6). Unfortunately, over 50% of biopsies 

performed on men with elevated PSA were cancer free (7), and 30-50% of the detected 

cancers were low grade (8). A negative biopsy does not exclude the presence of PCa since 

biopsy can miss tumor foci.  subsequent transrectal prostate biopsy increases the risk of 

infectious complications (9), which is a major barrier for patients to remain on active surveillance 

(10).  

 

To address these limitations, prostate multiparametric magnetic resonance imaging (mpMRI) 

has been increasingly used to risk stratify men prior to prostate biopsy (11, 12). Prostate mpMRI 

allows for the visualization of lesions that can be identified and assessed for the likelihood of 

clinically-significant PCa using the Prostate Imaging-Reporting and Data System (PI-RADS) (13, 

14). Additionally, a prostate biopsy specifically targeting these MRI-defined “tumors” can be 

performed (e.g. MRI-targeted biopsy).  Thus, prostate MRI is a particularly promising tool for 

active surveillance to minimize the frequency of repeat biopsies (15, 16).  

 

Owing to the lack of pathological specificity of mpMRI-defined lesions, inflammation and BPH can 

confound the interpretation of prostate MRI resulting in high variability across individual 

radiologists (17-20). In fact, biopsy of mpMRI-defined prostate lesions are benign in over 35% 
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of cases (i.e. false positive rate), and biopsy of normal mpMRI areas are found to harbor 

aggressive PCa in over 15% of patients (i.e. false negative rate) (11, 21). Thus, prostate mpMRI 

cannot eliminate unnecessary initial biopsies in men with suspected PCa (e.g. elevated PSA), 

and cannot reduce the frequency of repeat biopsies for men on active surveillance (22, 23). 

 

The greatest challenge to accurate prostate MRI interpretation remains the lack of specificity of 

MRI signals to identify PCa, due to other prostate tissue signals that can “mimic” PCa according 

to PI-RADS criteria (e.g. inflammation) (17, 18). We previously developed diffusion basis 

spectrum imaging (DBSI), which utilizes a data-driven multiple-tensor modeling approach to 

deconvolute cellular and structural profiles within an image voxel (24). DBSI-derived structural 

metrics distinguish and quantify various pathologies in an array of central nervous system 

(CNS) disorders (25-29). In this study, we examine whether DBSI-derived metrics reflect 

structural and cellular changes associated with PCa. To improve the PCa diagnostic accuracy, 

we have further developed a novel diffusion histology imaging (DHI) approach (28) using 

artificial intelligence algorithms (30, 31) to recognize  underlying structural and pathological 

signature patterns of cancer based on DBSI-derived structural metrics, an equivalent of filtering 

nuisance confounds in raw data,  to predict the PCa Gleason Grade Group (GG). In this proof-

of-concept study, we will test the feasibility of performing deep neural network analysis on DBSI 

structural metrics derived from diffusion-weighted MRI data for detecting and grading PCa. 

 
Results 
 

Patients 

Of the 243 patients included in this study (Table S1 and Figure S1), 93 had a PIRADS score ≤ 

3; 54 were biopsy-negative of PCa; and 96 were biopsy positive of PCa.  

 

DBSI derived diffusion metrics distinguish tissue structures in prostatectomy specimens 
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A prostatectomy specimen from one PCa patient was imaged (Fig. 1a). T2-weighted images 

and the apparent diffusion coefficient (ADC) maps from conventional prostate MRI did not 

accurately reflect structural heterogeneity seen in H&E images (Fig. 1a; i, ii, iii, iv). Coexisting 

histopathological components in the specimen exhibited distinct DBSI-metric profiles: 

lymphocytes (Fig. 1a; iii, iv, lower left squares) associate with highly-restricted diffusion, i.e., 

DBSI-derived isotropic ADC < 0.1 µm2/ms (Fig. 1b); epithelium and tumor cells (Fig. 1a; i, iv, 

lower right squares) associated with restricted diffusion (Fig. 1b; 0.1 ≤ DBSI-isotropic ADC < 0.8 

µm2/ms), stroma (Fig. 1a; ii) associated with hindered diffusion (Fig. 1b; 0.8 ≤ DBSI-isotropic 

ADC < 1.5 µm2/ms), and intra-luminal space (Fig. 1a; i, iii) associated with free diffusion (Fig. 

1b; 1.5 ≤ DBSI-isotropic ADC < 2.0 µm2/ms). DBSI metric profiles of each image voxel reflect 

the coexistence of heterogeneous histological components appearing as multiple signature 

peaks (Fig. 1b). Collagen fibers were modeled by an anisotropic diffusion tensor while 

lymphocytes, epithelial cells, stroma (without coherent orientation) and luminal contents were 

each reflected by highly-restricted, restricted, hindered and free isotropic diffusion tensors, 

respectively (Fig. 1c). Heat maps of DBSI-derived diffusion tensor fractions of the specimen can 

thus highlight the spatial distribution of various cellular and structural components of PCa as 

well as adjacent prostate tissue (Fig. 1d). 

 

DBSI-derived diffusion metrics revealed structural complexity underlying mpMRI lesion 

In a representative PCa patient, conventional mpMRI detected one hypointense lesion in both 

T2WI and ADC map in the transition zone (Fig. 2a).  Based on the histogram, the ADC of the 

lesion appeared between 0.3 - 0.8 µm2/ms (Fig. 2b). Histologic analysis of the corresponding 

whole-mount prostatectomy specimen sections revealed the pathological heterogeneity within 

the lesion that was missed by ADC histogram (Fig. 2c). In contrast to the ADC histogram, DBSI-

isotropic ADC histogram exhibited four non-overlapping distributions within the mpMRI lesion 

(Fig. 2d). The peak ADC of the four sub-histograms located at 0.05, 0.3, 1.5 and 3.0 µm2/ms, 
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corresponding to the highly restricted (lymphocytes), restricted (tumor), hindered (stroma), and 

free (intra-luminal space) isotropic diffusion, respectively (Fig. 2d). Heat maps of DBSI-isotropic 

ADC segments corresponding to the four peaks and an anisotropic diffusion fraction were 

generated to reveal putative underlying cellular and structural components (Fig. 2e). A 3D-

rendered DBSI-metric heat map (Fig. 2f) of prostate from a 58-year-old patient (PSA 6.49 ng/ml) 

localized suspicious peripheral zone PCa (pink, restricted fraction), transition zone BPH (gold, 

anisotropic fraction), and peripheral zone inflammation overlapping PCa (blue-green, highly-

restricted fraction). These in vivo DBSI findings were consistent with corresponding H&E 

staining results of the whole-mount prostatectomy specimen sections (Fig. 2f). 

 

Tumor cellularity correlated with DBSI-restricted fraction in ex vivo prostate specimens 

We have demonstrated that both ex vivo and in vivo DBSI restricted isotropic diffusion fractions 

(restricted fraction) highly overlapped with pathologist-identified tumor lesions in prostate. To 

quantitatively demonstrate the relationship between DBSI restricted fraction and PCa tumor 

cellularity, we examined ex vivo DBSI metrics in histologically-identified tumor regions in five 

prostatectomy specimens from five different PCa patients. For comparison, conventional ADC 

derived from standard of care mpMRI from the same samples were also included for analysis. 

We performed a landmark-based thin-plate-spline (TPS) co-registration on prostatectomy 

specimens between MR images and H&E images to allow voxel-wise correlation of histology 

(H&E tumor cell counts) with ADC and DBSI-restricted fraction maps (Fig. 3a). We randomly 

selected ten 250 um x 250 um regions of interest (ROI) from H&E images (Fig. 3a, blue 

squares) and mapped them to the co-registered MRI-metric maps. Tumor cells were manually 

counted in each selected ROI and were correlated with the restricted fraction and ADC values in 

the corresponding maps. For all five specimens, restricted fraction significantly correlated with 

H&E quantified tumor cellularity (r2 = 0.78, 0.83, 0.75, 0.67 and 0.86, respectively; p <0.001, 

<0.001, 0.001, 0.004, and <0.001, respectively), while ADC exhibited inconsistent correlations 
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with H&E findings (r2 = 0.01, 0.02, 0.37, 0.004 and 0.58, respectively; p = 0.8, 0.7, 0.06, 0.9, 

and 0.01, respectively) (Fig. 3b).  

 

Conventional ADC failed to distinguish PCa of different Gleason grade groups 

Histogram analysis of in vivo ADC and DBSI-isotropic ADC from image voxels collected from 

150 subjects with benign prostate (n = 54), and PCa (ranging from GG 1 – 5; n = 96) was 

performed and is summarized in Fig. 4. Benign peripheral and transition zone tissues were 

clearly distinguished from PCa by DBSI-isotropic ADC but not conventional ADC. In addition, 

conventional ADC failed to distinguish PCa of various Gleason scores (Figs. 4c – g, overlapping 

histogram). DBSI-isotropic ADC exhibited distinct profiles corresponding to benign pathologies 

(Figs. 4a and b) and PCa of all grades (Fig. 4c – g). Benign peripheral zone (Fig. 4a) was 

commonly associated with high free diffusion fraction, reflecting extensively branching luminal 

structures within the tissue. Benign transition zone tissues (Fig. 4b) typically exhibited various 

extents of hindered and free diffusion fractions. The less prominent but noticeable restricted 

fraction within benign transition zone tissues could potentially result from the glandular epithelial 

cell proliferation in epithelial BPH.  

 

Increased complexity of the diffusion histogram is a unique characteristic of PCa (Figs. 4c – g). 

In GG 1 PCa lesions (Fig. 4c), DBSI-isotropic ADC profiles exhibited highly-restricted, restricted, 

hindered and free isotropic diffusion fractions, reflecting the heterogeneous composition of 

tumor/epithelial cells, stromal cells, and luminal structures, the complexity of which is not 

observed in benign tissues. In contrast, the DBSI-isotropic ADC profiles exhibited decreased 

complexity with higher grade PCa. Profiles of GG 2 (Fig. 4d) and 3 (Fig. 4e) PCa consisted of 

mostly restricted and hindered isotropic diffusion signals. GG 3 tumor also exhibited increase of 

restricted fraction signal and a significantly decrease in free diffusion, consistent with increased 

tumor cellularity and loss of glandular/luminal morphology. Both GG 4 (Fig. 4f) and 5 (Fig. 4g) 
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PCa exhibited a progressive increase in the restricted fraction component with a concomitant 

loss of the hindered and free isotropic diffusion fraction compared to GG 1 – 3 tumors. A 

noticeable trend of increasing highly restricted diffusion fraction (red, Figs. 4c – g) in GG 1 – 5 

tumors, potentially reflect the increasing extents of inflammation. DBSI-isotropic ADC profiles 

reflected histological characteristics of GG 4 and 5 tumors, sheets of tumor cells with little to no 

luminal structures or stroma. The diffusion profiles modeled the structural changes underlying 

these tissues at different stages of malignancy uniquely, which ultimately allowed for the 

development of diffusion histology imaging (DHI, a pattern recognition approach using deep 

neural network algorithm on DBSI metrics). 

 

Classification of prostatic histology and Gleason scores on the voxel level 

Voxel-based multi-class classification of prostatic histology using DHI resulted in a high true 

positive rate of PCa (0.971) and benign transition zone tissues (0.814), but low true positive rate 

on benign peripheral zone tissues (0.632). Significant overlap was seen between benign 

peripheral and transition zone tissues (Fig. 5a). We performed pairwise comparisons to examine 

whether PCa is distinguished from benign prostatic histology (Fig. 5a, receiver operating 

characteristics & precision-recall curves). DHI distinguished PCa from benign peripheral, 

transition zone tissues, and combination of all benign tissues (including both peripheral and 

transition zones) with areas under curve (AUCs) of 0.995 (95% CI: 0.995-0.996, peripheral 

zone), 0.985 (95% CI: 0.984-0.985, transition zone), and 0.998 (95% CI: 0.997-0.998, peripheral 

+ transition zones), respectively (Fig. 5b). Sensitivity (> 93%) and specificity (> 94%) at optimal 

cut-off points (Youden’s Index) were calculated and summarized (Fig. 5b). The precision-recall 

(PR) analyses showed good diagnostic performances with PR-AUC > 0.98 and F1-scores > 

0.920 (Fig. 5a).  
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In the classification of Gleason scores, DHI demonstrated a 0.90 overall accuracy with recalls of 

0.84, 0.90, 0.92, 0.90 and 0.98 from GG 1 through GG 5 PCa, respectively (Fig. 5b). 

Additionally, we used one-versus-rest strategy to assess the performances for classifying PCa 

grade groups. The receiver operating characteristics (ROC)-AUCs for ISUP GG 1 through GG 5 

were 0.989 (95% CI: 0.983 - 0.994), 0.968 (95% CI: 0.952 - 0.982), 0.967 (95% CI: 0.958 - 

0.974) and 0.978 (95% CI: 0.973 - 0.982), respectively (Fig 5b). The mean sensitivity and 

specificity for all of the five grade groups were above 90%. The precision-recall analysis 

indicated that AUC values > 0.91 for each of the five grade groups (Fig. 5b, precision-recall 

curves). The F1-scores were calculated to address class imbalance, which resulted in the 

respective scores of 0.833, 0.921, 0.916, 0.896 and 0.970 for GG 1 through GG 5. 

 

DHI noninvasively predicted PCa Gleason grade groups in patient subjects 

Five representative cases with PIRADS scores of 4 and 5 were selected to test DHI model for 

predicting PCa and ISUP grade groups. Specifically, all image voxels from representative image 

slices of prostates were sent to the deep neural network DHI model for PCa/benign prediction 

and voxels with positive tumor prediction (pink mask) were further segmented for ISUP grade 

group prediction (blue mask: GG 1; light blue mask: GG 2; green mask: GG 3; yellow mask: GG 

4; red mask: GG 5).  

 

A patient underwent standard-of-care mpMRI of prostate (Fig. 6a), followed by target and 

systematic biopsy, and prostatectomy (Fig. S2). The conventional ADC map revealed an 

anterior transition zone lesion that matched the DBSI-derived restricted fraction map (Fig. 6a). 

DHI predicted a tumor area overlapping the anterior hyperintense DBSI restricted fraction area. 

For the lesion between transition and peripheral zones, DHI predicted a descrete distribution of 

tumor foci of ISUP GG 4 (Fig. 6a, yellow mask) and 5 (Fig. 6a, red mask). MRI/ultrasound fusion 

guided biopsy cores #7 and #8 PCa were GG 5 (Fig. S2), consistent with the DHI classification 
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(Fig. 6a). The patient was considered very high risk based on the National Comprehensive 

Cancer Network (NCCN) risk assessment, undergoing an expedited prostatectomy after biopsy. 

The H&E of whole mount section of the prostatectomy specimen revealed comparable ISUP GG 

as seen in DHI (Fig. S2).  

 

In case 2, DHI predicted the majority of the lesion to be in GG 4 (Fig. 6b, yellow) with remaining 

voxels as GG 3 (Fig. 6b, green) voxels. The predictions of case 2 agreed with prostatectomy 

grade groups. Biopsy for this patient indicated 8 needle cores were PCa positive, among which 

5 were GG 1, one was GG 3, and two were GG 4. For case 3, DHI predicted the primary lesion 

to be GG 3 (Fig. 6c, green mask) lesion with a few voxels as GG 2 (Fig. 6c, light blue mask). 

DHI prediction was consistent with the prostatectomy evaluation that indicated this patient to be 

GG 3, contradicting the targeted biopsy result that placed the lesion in GG 1 (Fig. 6c, green). In 

case 4, DHI predicted the primary lesion to be PCa of GG 2 (Fig. 6d, light blue mask) with a few 

voxels indicating GG 3 presence (Fig. 6d, green mask). This finding, again, was consistent with 

both targeted biopsy and prostatectomy results (GG 2). In case 5, DHI predicted the primary 

lesion was GG 1 (primary; Fig. 6e, blue) and GG 2 (secondary; Fig. 6e, light blue mask). Both 

prostatectomy and targeted biopsy indicated the lesion to be PCa of GG 1 in case 1. Two 

additional cases (Fig. S3a & b) were PI-RADS v2 score 4 with suspicious lesions identified in 

ADC maps (Fig. 3a & b, arrows). However, DHI predicted these two patients to be PCa free, in 

agreement with biopsy results.   

 

Discussion  

We have demonstrated that DHI noninvasively and accurately distinguishes PCa from benign 

tissues reducing the false positive rate of mpMRI confounded by BPH and prostatitis signals. 

We also observed the specific association of DBSI derived “diffusion fingerprints” with various 

histopathological features of prostate glands (Fig. 2). However, the mere association between 
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DBSI derived “diffusion fingerprints” is insufficient to unequivocally classify PCa without false 

positivity or accurately assess Gleason scores (Fig. 4). Thus, we employed DHI, with its deep 

neural network analysis of DBSI “diffusion fingerprints” as the input parameters, to accurately 

classify and localize PCa vs. benign tissues, and assess PCa Gleason grade groups (Fig. 4). 

 

Normal prostate histology is rich in glandular units that are embedded in dense fibromuscular 

stroma (32). This branching duct-acinar glandular architecture allows water to diffuse more 

freely than in surrounding stroma or in highly cellular microenvironments (e.g. inflammation, 

cancer) (32). The transition zone consists of stromal (hindered water diffusion) and 

fibromuscular (anisotropic water diffusion) tissues. The periurethral muscles, anterior 

fibromuscular regions, and stromal BPH or fibrous tissues surrounding the BPH can all 

contribute to anisotropic water diffusion (32).  

 

The development of PCa interrupts these glandular units and stroma structures, with increasing 

cellularity. Corresponding diffusion MRI features of restricted diffusion reflecting inflammatory 

and tumor cells are distinct from diffusion properties of benign prostate tissues. Thus, the 

observed association of decreased ADC with PCa is readily attributable to the increased extent 

of low-diffusivity epithelial cells disrupting the stroma and luminal spaces (33). The improved 

DBSI modeling of diffusion-weighted MRI signals generating unique “diffusion fingerprints” to 

represent underlying structural complexity and/or changes resulting from cancer presence has 

more successfully relfected both benign and malignant prostate tissues (Fig. 4). Thus, the 

combination of DBSI-“diffusion fingerprints” (i.e., structural metrics) and deep neural network 

algorithm has provided a noninvasive approach to differentiate Gleason grade groups of PCa of 

all grades (34).  
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The microstructural changes induced by PCa is complex. Glandular structures vary in PCa 

since some cancer cells grow between ducts sparing sufficient luminal space in contrast to other 

poorly differentiated cancers with more expansile masses of small and tightly packed cell 

clusters leaving little luminal spaces. Increased cellularity leads to the compactness of tissue 

and more restricted water diffusion. This lays the foundation for decreased ADC to differentiate 

between benign and low grade PCa from intermediate/high grade lesions (35, 36). ADC falls 

short in distinguishing intermediate from high grade PCa because ADC values of intermediate 

and high grade PCa significantly overlap (Fig. 4) (35, 37). The lack of specificity of ADC to 

distinguish intermediate from high grade PCa is due to the average of coexisting pathologies 

with opposing diffusion effects within an imaging voxel (32).  

 

To improve the specificity of ADC to cancer detection, a more sophisticated diffusion MRI 

modeling is needed. Restriction Spectrum Imaging (RSI) is one of such attempts (38-42). This 

novel technique separates hindered and restricted diffusion to resolve a spectrum of length 

scales and incorporating geometric information, estimated from high-angular diffusion-weighted 

data based on the fiber orientation density function and 4th order spherical harmonics. Similar to 

DBSI, RSI also assumes a Gaussian diffusion model. RSI defined spectrum was a combination 

of anisotropic, restricted and free/hindered diffusion compartments (41, 43). RSI does not 

quantify ADC because it uses fiber orientation density function without directly modeling 

diffusion tensors as seen in DBSI. RSI assumes known free water diffusivity and a priori axial 

diffusivity by fixing axial diffusivity while allowing radial diffusivity to vary for modeling diffusion-

weighted data, i.e., the geometrical assessment (ratio of radial/axial diffusivity) of tissue (41, 

44).  RSI has recently been applied to successfully distinguish PCa from benign tissues using 

cellularity index but it did not grade PCa as demonstrated herein by DHI (42, 44). DHI does not 

search through the unspecified structural or pathological features potentially embedded in the 

raw diffusion-weighted MRI signals as other radiomic approaches. It focuses on classification of 
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the DBSI-derived diffusion signatures that have been well-defined with increased sensitivity and 

specificity to prostate structures and pathologies. DHI thus requires smaller amount of data for 

classifications using artificial intelligence algorithms. 

 

DHI accurately localized and graded PCa in this proof-of-concept study suggesting that it could 

potentially guide biopsy and focal therapy, as well as monitoring treatment responses. The 

observed improvement in sensitivity and specificity of DHI to PCa diagnosis herein if validated 

could prevent patients with low-grade disease from undergoing unnecessary surgery, provide 

less invasive treatment options, stratify therapies, and monitor effectiveness of focal therapies, 

such as external beam radiation therapy (45-47) and high intensity focused ultrasound (HIFU) 

therapy (48) to spare more normal tissues surrounding the lesions. DHI could potentially be 

incorporated with clinical information (e.g., PSA levels, and liquid biopsy biomarkers) to improve 

PCa risk stratification, therefore, providing critical information on PCa prognosis and improving 

effectiveness of active surveillance.  

 

In conclusion, we introduced the novel diffusion histology imaging approach, demonstrating its 

effectiveness as a noninvasive diagnostic tool for PCa in this small proof-of-concept study. By 

obtaining the DBSI-derived structural fingerprints to accurately capture the various prostate 

histopathological features, DHI addressed the shortcomings of standard of care mpMRI to 

improve detection and grading of PCa demonstrating its role as a noninvasive alternative to 

complement and improve the current clinical diagnosis and management of PCa. 

     

Materials and Methods 

Study design 
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Between March 2015 and August 2017, 254 patients with clinical suspicion of prostate cancer 

(PSA > 4.0 ng/ml) were recruited for this study. Patients who received preoperative treatments 

such as androgen deprivation (n = 1) or radiation therapy (n = 2) were excluded from this study. 

Additionally, patients with motion artifacts in image data (n = 2) and problematic image data (n = 

6) were also excluded. Total 93 patients who scored lower than 3 on the Prostate Imaging–

Reporting and Data System, version 2 (PI-RADS v2) criteria and with a PSA level lower than 

10.0 ng/ml were considered cancer free and not biopsied. The remaining 150 patients with the 

PI-RADS v2 scores > 3 or PSA levels > 10 ng/ml were scheduled for combined systematic and 

MRI-targeted ultrasound-guided biopsy. The biopsies confirmed PCa positive in 96 patients and 

benign in 54 patients.  Prostatectomy specimens were procured for the ex vivo imaging study. 

Prostatectomy specimens underwent high resolution MRI scanning and H&E staining. The in 

vivo patient study was approved by the local Institutional Review Board. Informed consents 

were waived due to the nature of retrospective study. The ex vivo specimen study was also 

approved by the local Institutional Review Board. Each patient gave informed consent before 

the study. 

 

DBSI and mpMRI data acquisition 

A total of 243 patients were imaged with DBSI and mpMRI at Changhai Hospital with a 3.0-T 

Siemens Skyra scanner (Erlanger, Germany) with an 18-channel pelvic phased-array coil. The 

DBSI protocol involved acquiring diffusion-weighted echo-planar imaging data with the following 

data acquisition parameters: repetition time (TR) 5000 ms, echo time (TE) 88 ms, 4 averages, 

FOV 112 x 140 mm2, in-plane resolution 2 x 2 mm2, 24 slices at 4-mm thick, 25-dir icosahedral 

diffusion encoding scheme with maximum b-value 1500 s/mm2. Standard mpMRI protocol, 

including T1-weighted, T2-weighted, diffusion-weighted imaging and dynamic contrast-

enhanced T1-weighted sequences, was performed on all patients. Prostate Imaging Radiology 
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Assessment and Diagnostic System Version 2 (PI-RADS v2) was used by experienced 

radiologists for assessing suspicious prostate cancer on mpMRI. 

 

Ultrasound-guided target and systematic biopsy 

Multi-parametric MRI suspicious of PCa was scored by an experienced radiologist according to 

PI-RADS v2. A total of 150 patients with PI-RADS v2 score higher than 3 underwent 

transperineal ultrasound (TPUS)-guided systematic biopsy, and TPUS-MRI-fusion guided 

biopsy. Fusion of MRI with the real-time transperineal ultrasound image of the prostate during 

biopsy was performed by either cognitive or software-facilitated registration. Biopsy-obtained 

tissues were analyzed and graded by clinical pathologists. International Society of Urological 

Pathology (ISUP) grading of prostate cancer (49) was used to assess the cancer lesions. 

 

Prostatectomy specimen preparation for ex vivo MRI 

After prostatectomy, each prostate specimen was immediately fixed with 10% formalin in 

phosphate buffered saline (PBS, PH = 7.4) for at least 10 hours. The specimen was step-

sectioned at 4-mm intervals from base to apex. 

 

Ex vivo MRI of prostatectomy specimen 

Prostatectomy specimens were formalin-fixed at time of collection and examined using a 4.7-T 

Agilent DirectDriveTM small-animal MRI system (Agilent Technologies, Santa Clara, CA) 

equipped with a Magnex/Agilent HD imaging gradient coil (Magnex/Agilent, Oxford, UK) capable 

of pulsed-gradient strengths of up to 58 G/cm and a gradient rise time ≤ 295 µs. A multi-echo 

spin-echo diffusion weighting sequence employing 25 diffusion-encoding directions with 

maximum b-value = 3000 s/mm2 was employed to acquire diffusion-weighted images. The 

imaging parameters were: TR 1500 ms, TE 40 ms, time between application of gradient pulses 

20 ms, diffusion gradient on time 8 ms, slice thickness 0.5 mm, field-of-view 24 × 24 mm2, data 
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matrix 96 × 96, number of average 1. Total acquisition time was approximately 1 hour and 20 

minutes. T1W, T2W and DW images with the same image resolution were also acquired.  

 

Histological analysis  

Prostatectomy specimens were embedded in paraffin and underwent sequential sectioning at 5-

μm thick after MRI. Sections were individually stained with hematoxylin and eosin (H&E). 

Histology slides were digitized using NanoZoomer 2.0-HT System (Hamamatsu, Japan) with a 

20× objective for analyses. 

 

Co-registration between ex vivo MRI and histology images 

Two-dimensional (2D) thin plate spline (TPS) registration was performed using MIPAV Version 

10.0.0 (NIH, Bethda, MD) as described previously (28) to co-register ex vivo MR images with 

histology images. We first ensure the plane of histology section of the prostate specimens 

matched closely with the slice plane of the corresponding T2W images. Then the RGB H&E 

images were converted to grayscale using the Pillow package in Python 

(https://pillow.readthedocs.io/en/3.1.x/index.html). After these preprocessing steps, around 

eighteen pairs of landmarks along the perimeter of each specimen were manually placed on the 

gray scale H&E images as well as the T2W images (inherently co-registered with ADC and 

DBSI maps) to compute the transformation matrix for matching H&E images with MRI. After 

successful image co-registration, ten regions with the same size of MRI voxels (250 × 250 μm2) 

were randomly selected from the H&E images to correlate the tumor cell counts in each region 

with corresponding ADC and restricted fraction values (Fig. 3a). 

 

Diffusion basis spectrum imaging 
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We developed diffusion basis spectrum imaging (DBSI) (24) to model DWI signals of PCa as a 

linear combination of an anisotropic diffusion tensor and a spectrum of isotropic diffusion 

tensors:  

��/�� � �������������������������	�
������ �
�� �� � � ��	
����������	���	
�

�
    �
 � 1, 2, 3, … 
.          �1� 

The quantities �� , �� and ��������� are the proton-density-weighted signal, diffusion-weighted signal, 

and b-value of the kth diffusion gradient, φk is the angle between the kth diffusion gradient and the 

principal direction of the fiber-like structures, λ|| and λ⊥ are axial (AD) and radial (RD) diffusivity 

of the fiber-like structures (may reflect the compactness of the structure), �  is the signal intensity 

fraction for fibers (representing fiber density, e.g., benign prostatic hyperplasia (BPH), in the 

image voxel), and a and b are the low and high diffusivity limits for the isotropic diffusion 

spectrum, ��	
,  containing contributions from cellularity and luminal water.  

 

DBSI was initially developed to assess CNS pathologies. It has been successfully applied in 

animal models and translated to various CNS diseases (24, 27, 50). Although these CNS 

related interpretations do not apply to prostate, we have performed a supervised DBSI signal 

processing to readjust diffusion tensor basis sets (a dictionary of varied anisotropic and isotropic 

diffusion tensors distributed in q-space for modeling DWI signal) referencing histological findings 

from radical prostatectomy and biopsy specimens. Based on these preliminary results, we have 

observed that DBSI-derived anisotropic fraction is highly associated with BPH and some PCa 

regions, reflecting fibromuscular fiber density in each image voxel. The other hallmark prostate 

histopathology of lymphocytes, PCa, stromal tissues and luminal structures exhibits high 

correlation with highly-restricted diffusion (0 – 0.1 μm2/ms ~ lymphocytes), restricted diffusion 

(0.1 – 0.8 μm2/ms ~ PCa), hindered diffusion (0.8 – 2.5 μm2/ms ~ stromal tissues) and free 

diffusion (2.5 – 3.0 μm2/ms ~ luminal water), respectively. 
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The main difference between in vivo and ex vivo diffusion MRI is the tissue temperature. In 

general, in vivo/ex vivo apparent diffusion coefficients differ by a 3:2 ratio based on temperature 

difference. The temperature effect is masked by the diffusion restriction resulting from the size 

of cells and diffusion times. In our Monte-Carlo simulation of restricted diffusion in cells of 

diameter ranging between 5 - 20 µm, we observed no differences in ADC of cells between in 

vivo (at 37°C) and ex vivo (at 20°C). Thus, in vivo ADC thresholds for lymphocytes, tumor cells, 

stroma, and lumen can be established using high-quality ex vivo data matched by the histology 

defined tissues types, i.e., the gold standard. BPH definition is straightforward for DBSI analysis 

since the axial and radial diffusivity of the anisotropic diffusion tensor are allowed to change 

during the modeling. Thus, the in vivo and ex vivo difference in anisotropic diffusion tensor is not 

significant, as supported by our previous CNS studies on autopsy specimens.  

 

Image processing 

Voxel-based DTI and DBSI analyses were performed by an in-house software developed using 

MATLAB® (MathWorks; Natick, MA). Cancer regions of interest (ROIs) were delineated by one 

experienced radiologist (Q.Y.) on mpMRI by referencing pathologist-marked tumor regions on 

histopathological images of prostatectomy specimens using ITK-SNAP 

(http://www.itksnap.org/). For patients without radical prostatectomy, ROIs were defined on 

mpMRI regions with positive target biopsies. Gleason score of each lesion was evaluated from 

corresponding histopathological whole mount section images (n = 92) or targeted biopsies (n = 

4). For PCa negative cohorts, representative image slices were chosen to draw ROIs for benign 

peripheral and transition zones. The ROIs were then applied to DBSI maps for further analysis.  

 

DNN model development and optimization 
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We constructed the DNN models using TensorFlow 2.0 frameworks (51) in Python. DNN 

models with various numbers of hidden layers, nodes and training epochs were tested to 

optimize the model. Afterwards, the DNN model was composed of 10 fully connected hidden 

layers. Batch normalization was performed with a mini-batch size of 200 before feeding data 

into the next hidden layer to optimize the model and to prevent overfitting. We employed 

exponential linear units (ELU) to activate specific functions in each hidden layer. The final layer 

was a fully connected softmax layer that produces a likelihood distribution over the output 

classes. We trained the network with random initialization of the weights as described in He et al 

(52). The Adam optimizer was used with the default parameters of β1 = 0.9 and β 2= 0.999 and a 

mini-batch size of 200. The learning rate was manually tuned to achieve the fastest 

convergence (1 × 10−3). We chose cross-entropy loss function and trained the model to 

minimize the error rate on the development dataset. In general, the hyper-parameters of the 

neural network architecture and optimization algorithm were chosen through a combination of 

grid search and manual tuning.  

 

For DNN modeling of PCa vs. benign tissues, the training dataset was built with image voxels (n 

= 488,762) from 93 PI-RADS v2. Score < 3 patients and 60 biopsy-confirmed PCa positive 

patients. Image voxels (n = 275,774) from 52 patients with biopsy-confirmed PCa negative and 

30 patients with biopsy-confirmed PCa positive were used to construct tuning dataset and test 

dataset with 1:1 ratio. We performed a multi-class classification and binary classifications (PCa 

vs. Benign PZ, PCa vs. benign TZ, and PCa vs. all benign tissues) among benign PZ, benign 

TZ and PCa using these datasets. For classification of ISUP Gleason grade groups, we used 

23,327 image voxels from 90 biopsy-confirmed PCa patients, randomly grouping these voxels 

into training, tuning, and test datasets with 8:1:1 ratio. To balance data from different grade 

groups, we applied a synthetic minority oversampling technique (SMOTE) (53) to over-sample 

the minority group by introducing synthetic feature samples. This data balancing approach has 
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been demonstrated to be beneficial for avoiding over-fitting and improving model generalization 

(53, 54). Data balancing were only applied to the training dataset, while the validation and test 

dataset was kept unchanged. We performed a multi-class classification on ISUP grade groups 1 

through 5, followed by binary classifications using one-versus-rest strategy for each grade 

group.  

 

To further validate the model performances on predicting PCa and ISUP grade group at 

individual patient level, we tested 5 biopsy-confirmed PCa positive and two biopsy-confirmed 

PCa negative (PIRADS scores ≥ 4) patients. The predicted results were compared with the 

histopathological evaluations from biopsy and prostatectomy sections. Specifically, voxels of the 

representative image slice of prostate were sent to the above model for binary prediction on 

PCa. Subsequently, image voxels with positive PCa were further predicted for ISUP grade 

group.  

 

The diffusion metrics used for DNN modeling of PCa vs. benign tissues includes: isotropic ADC, 

anisotropic fraction, anisotropic tensor fractional anisotropy (FA), anisotropic tensor axial 

diffusivity (AD), anisotropic tensor radial diffusivity (RD), highly restricted isotropic fraction, 

highly restricted isotropic diffusivity, restricted fraction, restricted isotropic diffusivity, hindered 

isotropic diffusion fraction (hindered fraction), hindered isotropic diffusivity, free isotropic 

diffusion fraction (free fraction), and free isotropic diffusivity. For DNN modelling of classification 

of Gleason grade groups, we also incorporated diffusion metrics from DTI modelling, including 

mean ADC, FA, AD and RD.  

   

Statistical analysis 

We used Pearson correlation to assess the relationship between histology and MRI 

measurements. Statistically significant results were determined at a pre-determined alpha level 
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of 0.05. We derived confusion matrices to demonstrate the agreement between DHI predictions 

and respective prostatic histology and PCa grade groups assessed by the gold standard 

histology. The one-versus-rest strategy was implemented for binary classification to assess 

model discrimination amongst respective prostatic histology or ISUP grade groups. We 

performed receiver operating characteristics (ROC) analysis and calculated area under curves 

(AUC) to assess sensitivity and specificity at the optimal cut off point (Youden Index) (55). The 

precision-recall curves and F1-scores were calculated to demonstrate the relationship between 

precision and recall, which provides complementary information to the ROC curve, as the 

dataset included imbalanced classes. All values bounding the 95% confidence intervals were 

calculated with bootstrapping methods iterated 10,000 times (56). Statistical metrics and curves 

were calculated by packages from Scikit-learn (57). 

 

Supplementary list 

Table S1. Patient information. 

Fig. S1. Flowchart of patient recruitment process. 

Fig. S2. Representative case with transperineal biopsy and prostatectomy whole mount section. 

Fig. S3. False positive cases from mpMRI were correctly predicted by DHI. 
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Figure 1. DBSI detected different histopathological structures based on their diffusion 

signatures. (a) The ex vivo MR images and the corresponding H&E images from one 

representative step-sectioned prostate specimen were shown. ROIs containing stroma, 

inflammation and PCa were highlighted as follows:  lymphocytes (a, iii & iv, lower right square), 

PCa cells (a, I & iv, lower left square) and stroma tissue (a, ii) were associated with respective 

signatures: highly-restricted (0 - 0.1 m2/ms, lymphocytes), restricted (0.1 - 0.8 m2/ms, PCa) and 

hindered (0.8 - 1.5 m2/ms, stroma) diffusion. (b) Distinct diffusion patterns, or “structural 

fingerprints”, from various histopathological structures were identified in each of the ROIs (ROI i: 

green peaks; ROI ii: blue peaks; ROI iii: black peaks; ROI iv: red peaks). (c) A pictorial depiction 

of prostate-specific DBSI model is presented to demonstrate the association between specific 

prostatic histopathological structures and diffusion characteristics. Collagen fibers were 

associated with an anisotropic diffusion tensor, inflammatory cells are associated with highly 

restricted isotropic diffusion tensor, tumor cells are associated with restricted isotropic diffusion 

tensor, and lumen is associated with free isotropic diffusion tensor. (d) Heat maps of DBSI 

metric maps were generated to highlight spatial distribution of prostatic histopathological 

structures. ROIs = regions of interest.  
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Figure 2. DBSI-derived diffusion metrics revealed structural complexity underlying 

mpMRI lesion (a) The mpMRI images from a patient with PCa (post-op Gleason grade group 2) 

indicated a malignant lesion in the transition zone. (b) DTI ADC histogram analysis indicated a 

singular peak distribution with the range of 0.3 to 0.8 µm2/ms reflecting tumor presence. (c) H&E 

images of the whole mount section of the corresponding MRI slice also indicated a tumor region 

at the transition zone. The expanded view revealed the coexistence of lymphocytes, tumor cells, 

stromal cells, and luminal structure in the tumor region. (d) DBSI diffusion profiles exhibited four 

distinct groups of isotropic ADC distributions as highly restricted diffusion, restricted diffusion, 

hindered diffusion and free diffusion, coinciding the coexisting lymphocyte, tumor cells, stromal 

cells and luminal structure underlying tumor region. (e) DBSI-metric maps reflecting underlying 

prostatic structures and pathologies: anisotropic diffusion fraction (BPH, fibromuscular tissue), 

highly restricted diffusion fraction (lymphocytes), restricted diffusion fraction (cancer cells), 

hindered diffusion fraction (stroma), and free diffusion fraction (luminal space). (e) A 3D-

rendered prostate from a patient containing PCa, inflammation, and BPH. The 3D-rendered 

prostate was overlaid on the T2W anatomical image. Significant BPH is visible in the transition 

zone (yellow channel from anisotropic fraction). Inflammation is seen in right lateral anterior 

peripheral zone and left lateral anterior central zones (yellow arrows; blue-green color channel 

imported from highly restricted fraction). PCa located at the left lateral anterior peripheral zone 

(purple-red channel imported from restricted fraction) surrounded by inflammatory cells. In the 

corresponding locations, lymphocytes, PCa and fibromuscular stroma could be identified from 

prostatectomy histology. T2W and ADC map showed ambiguous signals and could not provide 

as detailed information as DBSI did.   
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Figure 3. Tumor cellularity correlated with DBSI-restricted fraction but not with ADC in ex 

vivo prostate specimens. (a) We performed co-registration of T2-weighted (T2W) images and 

H&E images to allow voxel-wise correlation of histology-measured cellularity with ADC and 

DBSI-restricted fraction. Eighteen pairs of landmarks were manually placed along the perimeter 

of T2W images and H&E images for co-registration. The transformation function of thin-plate-

spline registration was calculated and applied to warp MR images to match H&E images. Ten 

regions of interest (ROIs) of MRI voxel size (250 × 250 μm2) were randomly selected from each 

H&E image. The tumor cellularity in each ROI was manually counted. The ROIs were applied to 

corresponding co-registered MRI-metric maps for correlation and quantitative analysis. (b) 

Pearson’s correlation analysis indicated DBSI-restricted fraction had significant positive 

correlation with H&E tumor cellularity in all five specimens. However, ADC showed inconsistent 

correlation with tumor cellularity.  
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Figure 4. Conventional ADC failed to distinguish PCa of different Gleason grade groups. 

Based on histogram features, conventional ADC differentiated benign prostate (a, b) and lower-

grade PCa (c, GG 1) from higher-grade PCa (d – g, GG 2 – GG 5). However, it failed to further 

distinguish among the higher-grade tumors. DBSI isotropic diffusivity histograms exhibited 

unique features for benign and PCa of all grades. Benign peripheral zone tissue (a) is 

associated with a high free diffusion fraction (purple) and low hindered fraction (cyan) while the 

benign transition zone (b) exhibited a combination of high free diffusion fraction and high 

hindered diffusion fraction. GG 1 tumors (c) are histologically heterogeneous, exhibiting various 

extents in DBSI restricted-diffusion (green), hindered-diffusion, and free-diffusion fractions. 

Diffusion profile of GG 3 PCa (e) had slightly increased restricted-diffusion fraction than that in 

GG 2 PCa (d). GG 2 and GG 3 PCa exhibited similar hindered-diffusion fraction; both grade 

groups have little to no signal from free-diffusion fraction, indicating an increased number of 

tumor/epithelial cells and the loss of luminal space. High restricted-diffusion fraction and the 

absence of free-diffusion fractions seen in GG 4 (f) and GG 5 tumors (g) are consistent with 

their histological characteristics, reflecting the hyper-cellularity in PCa with sheet-like growth 

pattern; few, if not the complete absence of, duct-acinar structures or stroma persists. GG = 

grade group. 
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Figure 5. Voxel-based classification of prostatic histology and Gleason scores. (a) 

Confusion matrix shows concordance between DHI predictions and biopsy confirmed prostatic 

tissue types. PCa voxels were correctly predicted with high accuracy, but benign peripheral 

zone and benign transition zone voxels overlaps. ROC and precision-recall curves showed 

classifications with high AUC values on groups of PCa vs. benign peripheral zone (PZ), PCa vs. 

benign transition zone (TZ) and PCa vs. benign PZ + TZ. Table summarized AUC, sensitivity, 

specificity and F1-score values from ROC and precision-recall analyses. (b) Confusion matrix for 

DHI predicted PCa grade groups highly agreed with those determined histologically. ROC and 

precision-recall curves using one-versus-rest strategy were calculated for each Gleason grade 

group with high AUC values for both groups of the curves. The AUC, sensitivity, specific and F1-

scores values of these analyses were also summarized in the table. PZ = peripheral zone. TZ = 

transition zone. GG = grade group. CI = confidence interval.  
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Figure 6. Patient-based DHI prediction of tumor and ISUP grade groups (GG). Five patients 

were evaluated with mpMRI and one suspicious tumor lesion was identified in each patient (red 

arrows in ADC maps). Patient 2 (b), 5 (e) are PI-RADS score of 4; patient 1 (a), 3 (c) and 4 (d) 

are PI-RADS score of 5. Arrows pointed to suspicious lesions. DHI predicted the same cancer 

lesions (purple masks in DHI tumor map) identified by the PI-RADS criteria. The target biopsy 

for all selected lesions was positive for PCa. The biopsied histology for patients 1 to 5 was GG 

5, GG 4, GG 1, GG 2, and GG 1, respectively. Smaller, secondary tumor foci were also 

predicted for patients 1, 2 and 5. In addition to target biopsy, standard biopsy suggested positive 

PCa findings in multiple biopsy needle cores, indicating that some of the missed PCa lesion 

from mpMRI would have been detected by DHI. DHI correctly predicted the grade groups for the 

dominant lesions for all five patients (DHI grade maps). 
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