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Abstract

Structural and cellular complexity of prostatic histopathology limits the accuracy of noninvasive
detection and grading of prostate cancer (PCa). We addressed this limitation by employing a
novel diffusion basis spectrum imaging (DBSI) to derive structurally-specific diffusion
fingerprints reflecting various underlying prostatic structural and cellular components. We further
developed diffusion histology imaging (DHI) by combining DBSI-derived structural fingerprints
with a deep neural network (DNN) algorithm to more accurately classify different
histopathological features and predict tumor grade in PCa. We examined 243 patients
suspected with PCa using in vivo DBSI. The in vivo DBSI-derived diffusion metrics detected
coexisting prostatic pathologies distinguishing inflammation, PCa, and benign prostatic
hyperplasia. DHI distinguished PCa from benign peripheral and transition zone tissues with over
95% sensitivity and specificity. DHI also demonstrated over 90% sensitivity and specificity for
Gleason score noninvasively. We present DHI as a novel diagnostic tool capable of noninvasive

detection and grading of PCa.
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Introduction

Prostate cancer (PCa) is the most common and the second most deadly cancer among men in
the United States (1). Over the last 30 years, PCa screening of asymptomatic men using serum
prostate-specific antigen (PSA) blood testing has remained the standard of care for early
detection for PCa (2). Men with elevated serum PSA are sent for transrectal ultrasound (TRUS)-
guided biopsy for diagnosis and grading of PCa (3). Considered a generally safe and well-
tolerated outpatient procedure (4), needle biopsy is potentially associated with complications
affecting patients’ quality of life to various degrees (5, 6). Unfortunately, over 50% of biopsies
performed on men with elevated PSA were cancer free (7), and 30-50% of the detected
cancers were low grade (8). A negative biopsy does not exclude the presence of PCa since
biopsy can miss tumor foci. subsequent transrectal prostate biopsy increases the risk of
infectious complications (9), which is a major barrier for patients to remain on active surveillance

(10).

To address these limitations, prostate multiparametric magnetic resonance imaging (mpMRI)
has been increasingly used to risk stratify men prior to prostate biopsy (11, 12). Prostate mpMRI
allows for the visualization of lesions that can be identified and assessed for the likelihood of
clinically-significant PCa using the Prostate Imaging-Reporting and Data System (PI-RADS) (13,
14). Additionally, a prostate biopsy specifically targeting these MRI-defined “tumors” can be
performed (e.g. MRI-targeted biopsy). Thus, prostate MRI is a particularly promising tool for

active surveillance to minimize the frequency of repeat biopsies (15, 16).

Owing to the lack of pathological specificity of mpMRI-defined lesions, inflammation and BPH can
confound the interpretation of prostate MRI resulting in high variability across individual

radiologists (17-20). In fact, biopsy of mpMRI-defined prostate lesions are benign in over 35%
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of cases (i.e. false positive rate), and biopsy of normal mpMRI areas are found to harbor
aggressive PCa in over 15% of patients (i.e. false negative rate) (11, 21). Thus, prostate mpMRI
cannot eliminate unnecessary initial biopsies in men with suspected PCa (e.g. elevated PSA),

and cannot reduce the frequency of repeat biopsies for men on active surveillance (22, 23).

The greatest challenge to accurate prostate MRI interpretation remains the lack of specificity of
MRI signals to identify PCa, due to other prostate tissue signals that can “mimic” PCa according
to PI-RADS criteria (e.g. inflammation) (17, 18). We previously developed diffusion basis
spectrum imaging (DBSI), which utilizes a data-driven multiple-tensor modeling approach to
deconvolute cellular and structural profiles within an image voxel (24). DBSI-derived structural
metrics distinguish and quantify various pathologies in an array of central nervous system
(CNS) disorders (25-29). In this study, we examine whether DBSI-derived metrics reflect
structural and cellular changes associated with PCa. To improve the PCa diagnostic accuracy,
we have further developed a novel diffusion histology imaging (DHI) approach (28) using
artificial intelligence algorithms (30, 31) to recognize underlying structural and pathological
signature patterns of cancer based on DBSI-derived structural metrics, an equivalent of filtering
nuisance confounds in raw data, to predict the PCa Gleason Grade Group (GG). In this proof-
of-concept study, we will test the feasibility of performing deep neural network analysis on DBSI

structural metrics derived from diffusion-weighted MRI data for detecting and grading PCa.

Results

Patients
Of the 243 patients included in this study (Table S1 and Figure S1), 93 had a PIRADS score <

3; 54 were biopsy-negative of PCa; and 96 were biopsy positive of PCa.

DBSI derived diffusion metrics distinguish tissue structures in prostatectomy specimens
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A prostatectomy specimen from one PCa patient was imaged (Fig. 1a). T2-weighted images
and the apparent diffusion coefficient (ADC) maps from conventional prostate MRI did not
accurately reflect structural heterogeneity seen in H&E images (Fig. 1a; i, ii, iii, iv). Coexisting
histopathological components in the specimen exhibited distinct DBSI-metric profiles:
lymphocytes (Fig. 1a; iii, iv, lower left squares) associate with highly-restricted diffusion, i.e.,
DBSI-derived isotropic ADC < 0.1 um?/ms (Fig. 1b); epithelium and tumor cells (Fig. 1a; i, iv,
lower right squares) associated with restricted diffusion (Fig. 1b; 0.1 < DBSI-isotropic ADC < 0.8
pum?/ms), stroma (Fig. 1a; ii) associated with hindered diffusion (Fig. 1b; 0.8 < DBSl-isotropic
ADC < 1.5 um?ms), and intra-luminal space (Fig. 1a; i, iii) associated with free diffusion (Fig.
1b; 1.5 < DBSl-isotropic ADC < 2.0 um?ms). DBSI metric profiles of each image voxel reflect
the coexistence of heterogeneous histological components appearing as multiple signature
peaks (Fig. 1b). Collagen fibers were modeled by an anisotropic diffusion tensor while
lymphocytes, epithelial cells, stroma (without coherent orientation) and luminal contents were
each reflected by highly-restricted, restricted, hindered and free isotropic diffusion tensors,
respectively (Fig. 1c). Heat maps of DBSI-derived diffusion tensor fractions of the specimen can
thus highlight the spatial distribution of various cellular and structural components of PCa as

well as adjacent prostate tissue (Fig. 1d).

DBSI-derived diffusion metrics revealed structural complexity underlying mpMRI lesion

In a representative PCa patient, conventional mpMRI detected one hypointense lesion in both
T2WI1 and ADC map in the transition zone (Fig. 2a). Based on the histogram, the ADC of the
lesion appeared between 0.3 - 0.8 pm*/ms (Fig. 2b). Histologic analysis of the corresponding
whole-mount prostatectomy specimen sections revealed the pathological heterogeneity within
the lesion that was missed by ADC histogram (Fig. 2c). In contrast to the ADC histogram, DBSI-
isotropic ADC histogram exhibited four non-overlapping distributions within the mpMRI lesion
(Fig. 2d). The peak ADC of the four sub-histograms located at 0.05, 0.3, 1.5 and 3.0 um?®ms,

7


https://doi.org/10.1101/2021.03.22.436514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436514; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

corresponding to the highly restricted (lymphocytes), restricted (tumor), hindered (stroma), and
free (intra-luminal space) isotropic diffusion, respectively (Fig. 2d). Heat maps of DBSI-isotropic
ADC segments corresponding to the four peaks and an anisotropic diffusion fraction were
generated to reveal putative underlying cellular and structural components (Fig. 2e). A 3D-
rendered DBSI-metric heat map (Fig. 2f) of prostate from a 58-year-old patient (PSA 6.49 ng/ml)
localized suspicious peripheral zone PCa (pink, restricted fraction), transition zone BPH (gold,
anisotropic fraction), and peripheral zone inflammation overlapping PCa (blue-green, highly-
restricted fraction). These in vivo DBSI findings were consistent with corresponding H&E

staining results of the whole-mount prostatectomy specimen sections (Fig. 2f).

Tumor cellularity correlated with DBSI-restricted fraction in ex vivo prostate specimens

We have demonstrated that both ex vivo and in vivo DBSI restricted isotropic diffusion fractions
(restricted fraction) highly overlapped with pathologist-identified tumor lesions in prostate. To
quantitatively demonstrate the relationship between DBSI restricted fraction and PCa tumor
cellularity, we examined ex vivo DBSI metrics in histologically-identified tumor regions in five
prostatectomy specimens from five different PCa patients. For comparison, conventional ADC
derived from standard of care mpMRI from the same samples were also included for analysis.
We performed a landmark-based thin-plate-spline (TPS) co-registration on prostatectomy
specimens between MR images and H&E images to allow voxel-wise correlation of histology
(H&E tumor cell counts) with ADC and DBSI-restricted fraction maps (Fig. 3a). We randomly
selected ten 250 um x 250 um regions of interest (ROI) from H&E images (Fig. 3a, blue
squares) and mapped them to the co-registered MRI-metric maps. Tumor cells were manually
counted in each selected ROI and were correlated with the restricted fraction and ADC values in
the corresponding maps. For all five specimens, restricted fraction significantly correlated with
H&E quantified tumor cellularity (r2 = 0.78, 0.83, 0.75, 0.67 and 0.86, respectively; p <0.001,
<0.001, 0.001, 0.004, and <0.001, respectively), while ADC exhibited inconsistent correlations
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with H&E findings (r2 = 0.01, 0.02, 0.37, 0.004 and 0.58, respectively; p = 0.8, 0.7, 0.06, 0.9,

and 0.01, respectively) (Fig. 3b).

Conventional ADC failed to distinguish PCa of different Gleason grade groups

Histogram analysis of in vivo ADC and DBSI-isotropic ADC from image voxels collected from
150 subjects with benign prostate (n = 54), and PCa (ranging from GG 1 — 5; n = 96) was
performed and is summarized in Fig. 4. Benign peripheral and transition zone tissues were
clearly distinguished from PCa by DBSI-isotropic ADC but not conventional ADC. In addition,
conventional ADC failed to distinguish PCa of various Gleason scores (Figs. 4c — g, overlapping
histogram). DBSI-isotropic ADC exhibited distinct profiles corresponding to benign pathologies
(Figs. 4a and b) and PCa of all grades (Fig. 4c — g). Benign peripheral zone (Fig. 4a) was
commonly associated with high free diffusion fraction, reflecting extensively branching luminal
structures within the tissue. Benign transition zone tissues (Fig. 4b) typically exhibited various
extents of hindered and free diffusion fractions. The less prominent but noticeable restricted
fraction within benign transition zone tissues could potentially result from the glandular epithelial

cell proliferation in epithelial BPH.

Increased complexity of the diffusion histogram is a unique characteristic of PCa (Figs. 4c — Q).
In GG 1 PCa lesions (Fig. 4c), DBSI-isotropic ADC profiles exhibited highly-restricted, restricted,
hindered and free isotropic diffusion fractions, reflecting the heterogeneous composition of
tumor/epithelial cells, stromal cells, and luminal structures, the complexity of which is not
observed in benign tissues. In contrast, the DBSI-isotropic ADC profiles exhibited decreased
complexity with higher grade PCa. Profiles of GG 2 (Fig. 4d) and 3 (Fig. 4e) PCa consisted of
mostly restricted and hindered isotropic diffusion signals. GG 3 tumor also exhibited increase of
restricted fraction signal and a significantly decrease in free diffusion, consistent with increased

tumor cellularity and loss of glandular/luminal morphology. Both GG 4 (Fig. 4f) and 5 (Fig. 4Q)
9
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PCa exhibited a progressive increase in the restricted fraction component with a concomitant
loss of the hindered and free isotropic diffusion fraction compared to GG 1 — 3 tumors. A
noticeable trend of increasing highly restricted diffusion fraction (red, Figs. 4c - g)in GG 1 -5
tumors, potentially reflect the increasing extents of inflammation. DBSI-isotropic ADC profiles
reflected histological characteristics of GG 4 and 5 tumors, sheets of tumor cells with little to no
luminal structures or stroma. The diffusion profiles modeled the structural changes underlying
these tissues at different stages of malignancy uniquely, which ultimately allowed for the
development of diffusion histology imaging (DHI, a pattern recognition approach using deep

neural network algorithm on DBSI metrics).

Classification of prostatic histology and Gleason scores on the voxel level

Voxel-based multi-class classification of prostatic histology using DHI resulted in a high true
positive rate of PCa (0.971) and benign transition zone tissues (0.814), but low true positive rate
on benign peripheral zone tissues (0.632). Significant overlap was seen between benign
peripheral and transition zone tissues (Fig. 5a). We performed pairwise comparisons to examine
whether PCa is distinguished from benign prostatic histology (Fig. 5a, receiver operating
characteristics & precision-recall curves). DHI distinguished PCa from benign peripheral,
transition zone tissues, and combination of all benign tissues (including both peripheral and
transition zones) with areas under curve (AUCs) of 0.995 (95% CI: 0.995-0.996, peripheral
zone), 0.985 (95% CI: 0.984-0.985, transition zone), and 0.998 (95% CI: 0.997-0.998, peripheral
+ transition zones), respectively (Fig. 5b). Sensitivity (> 93%) and specificity (> 94%) at optimal
cut-off points (Youden’s Index) were calculated and summarized (Fig. 5b). The precision-recall
(PR) analyses showed good diagnostic performances with PR-AUC > 0.98 and F;-scores >

0.920 (Fig. 5a).
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In the classification of Gleason scores, DHI demonstrated a 0.90 overall accuracy with recalls of
0.84, 0.90, 0.92, 0.90 and 0.98 from GG 1 through GG 5 PCa, respectively (Fig. 5b).
Additionally, we used one-versus-rest strategy to assess the performances for classifying PCa
grade groups. The receiver operating characteristics (ROC)-AUCs for ISUP GG 1 through GG 5
were 0.989 (95% CI: 0.983 - 0.994), 0.968 (95% CI: 0.952 - 0.982), 0.967 (95% CI: 0.958 -
0.974) and 0.978 (95% CI: 0.973 - 0.982), respectively (Fig 5b). The mean sensitivity and
specificity for all of the five grade groups were above 90%. The precision-recall analysis
indicated that AUC values > 0.91 for each of the five grade groups (Fig. 5b, precision-recall
curves). The F;-scores were calculated to address class imbalance, which resulted in the

respective scores of 0.833, 0.921, 0.916, 0.896 and 0.970 for GG 1 through GG 5.

DHI noninvasively predicted PCa Gleason grade groups in patient subjects

Five representative cases with PIRADS scores of 4 and 5 were selected to test DHI model for
predicting PCa and ISUP grade groups. Specifically, all image voxels from representative image
slices of prostates were sent to the deep neural network DHI model for PCa/benign prediction
and voxels with positive tumor prediction (pink mask) were further segmented for ISUP grade
group prediction (blue mask: GG 1; light blue mask: GG 2; green mask: GG 3; yellow mask: GG

4; red mask: GG 5).

A patient underwent standard-of-care mpMRI of prostate (Fig. 6a), followed by target and
systematic biopsy, and prostatectomy (Fig. S2). The conventional ADC map revealed an
anterior transition zone lesion that matched the DBSI-derived restricted fraction map (Fig. 6a).
DHI predicted a tumor area overlapping the anterior hyperintense DBSI restricted fraction area.
For the lesion between transition and peripheral zones, DHI predicted a descrete distribution of
tumor foci of ISUP GG 4 (Fig. 6a, yellow mask) and 5 (Fig. 6a, red mask). MRI/ultrasound fusion
guided biopsy cores #7 and #8 PCa were GG 5 (Fig. S2), consistent with the DHI classification
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(Fig. 6a). The patient was considered very high risk based on the National Comprehensive
Cancer Network (NCCN) risk assessment, undergoing an expedited prostatectomy after biopsy.
The H&E of whole mount section of the prostatectomy specimen revealed comparable ISUP GG

as seen in DHI (Fig. S2).

In case 2, DHI predicted the majority of the lesion to be in GG 4 (Fig. 6b, yellow) with remaining
voxels as GG 3 (Fig. 6b, green) voxels. The predictions of case 2 agreed with prostatectomy
grade groups. Biopsy for this patient indicated 8 needle cores were PCa positive, among which
5 were GG 1, one was GG 3, and two were GG 4. For case 3, DHI predicted the primary lesion
to be GG 3 (Fig. 6¢, green mask) lesion with a few voxels as GG 2 (Fig. 6c, light blue mask).
DHI prediction was consistent with the prostatectomy evaluation that indicated this patient to be
GG 3, contradicting the targeted biopsy result that placed the lesion in GG 1 (Fig. 6¢, green). In
case 4, DHI predicted the primary lesion to be PCa of GG 2 (Fig. 6d, light blue mask) with a few
voxels indicating GG 3 presence (Fig. 6d, green mask). This finding, again, was consistent with
both targeted biopsy and prostatectomy results (GG 2). In case 5, DHI predicted the primary
lesion was GG 1 (primary; Fig. 6e, blue) and GG 2 (secondary; Fig. 6e, light blue mask). Both
prostatectomy and targeted biopsy indicated the lesion to be PCa of GG 1 in case 1. Two
additional cases (Fig. S3a & b) were PI-RADS v2 score 4 with suspicious lesions identified in
ADC maps (Fig. 3a & b, arrows). However, DHI predicted these two patients to be PCa free, in

agreement with biopsy results.

Discussion

We have demonstrated that DHI noninvasively and accurately distinguishes PCa from benign
tissues reducing the false positive rate of mpMRI confounded by BPH and prostatitis signals.
We also observed the specific association of DBSI derived “diffusion fingerprints” with various

histopathological features of prostate glands (Fig. 2). However, the mere association between
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DBSI derived “diffusion fingerprints” is insufficient to unequivocally classify PCa without false
positivity or accurately assess Gleason scores (Fig. 4). Thus, we employed DHI, with its deep
neural network analysis of DBSI “diffusion fingerprints” as the input parameters, to accurately

classify and localize PCa vs. benign tissues, and assess PCa Gleason grade groups (Fig. 4).

Normal prostate histology is rich in glandular units that are embedded in dense fibromuscular
stroma (32). This branching duct-acinar glandular architecture allows water to diffuse more
freely than in surrounding stroma or in highly cellular microenvironments (e.g. inflammation,
cancer) (32). The transition zone consists of stromal (hindered water diffusion) and
fiboromuscular (anisotropic water diffusion) tissues. The periurethral muscles, anterior
fiboromuscular regions, and stromal BPH or fibrous tissues surrounding the BPH can all

contribute to anisotropic water diffusion (32).

The development of PCa interrupts these glandular units and stroma structures, with increasing
cellularity. Corresponding diffusion MRI features of restricted diffusion reflecting inflammatory
and tumor cells are distinct from diffusion properties of benign prostate tissues. Thus, the
observed association of decreased ADC with PCa is readily attributable to the increased extent
of low-diffusivity epithelial cells disrupting the stroma and luminal spaces (33). The improved
DBSI modeling of diffusion-weighted MRI signals generating unique “diffusion fingerprints” to
represent underlying structural complexity and/or changes resulting from cancer presence has
more successfully relfected both benign and malignant prostate tissues (Fig. 4). Thus, the
combination of DBSI-“diffusion fingerprints” (i.e., structural metrics) and deep neural network
algorithm has provided a noninvasive approach to differentiate Gleason grade groups of PCa of

all grades (34).
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The microstructural changes induced by PCa is complex. Glandular structures vary in PCa
since some cancer cells grow between ducts sparing sufficient luminal space in contrast to other
poorly differentiated cancers with more expansile masses of small and tightly packed cell
clusters leaving little luminal spaces. Increased cellularity leads to the compactness of tissue
and more restricted water diffusion. This lays the foundation for decreased ADC to differentiate
between benign and low grade PCa from intermediate/high grade lesions (35, 36). ADC falls
short in distinguishing intermediate from high grade PCa because ADC values of intermediate
and high grade PCa significantly overlap (Fig. 4) (35, 37). The lack of specificity of ADC to
distinguish intermediate from high grade PCa is due to the average of coexisting pathologies

with opposing diffusion effects within an imaging voxel (32).

To improve the specificity of ADC to cancer detection, a more sophisticated diffusion MRI
modeling is needed. Restriction Spectrum Imaging (RSI) is one of such attempts (38-42). This
novel technique separates hindered and restricted diffusion to resolve a spectrum of length
scales and incorporating geometric information, estimated from high-angular diffusion-weighted
data based on the fiber orientation density function and 4th order spherical harmonics. Similar to
DBSI, RSI also assumes a Gaussian diffusion model. RSI defined spectrum was a combination
of anisotropic, restricted and free/hindered diffusion compartments (41, 43). RSI does not
guantify ADC because it uses fiber orientation density function without directly modeling
diffusion tensors as seen in DBSI. RSI assumes known free water diffusivity and a priori axial
diffusivity by fixing axial diffusivity while allowing radial diffusivity to vary for modeling diffusion-
weighted data, i.e., the geometrical assessment (ratio of radial/axial diffusivity) of tissue (41,
44). RSI has recently been applied to successfully distinguish PCa from benign tissues using
cellularity index but it did not grade PCa as demonstrated herein by DHI (42, 44). DHI does not
search through the unspecified structural or pathological features potentially embedded in the

raw diffusion-weighted MRI signals as other radiomic approaches. It focuses on classification of
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the DBSI-derived diffusion signatures that have been well-defined with increased sensitivity and
specificity to prostate structures and pathologies. DHI thus requires smaller amount of data for

classifications using artificial intelligence algorithms.

DHI accurately localized and graded PCa in this proof-of-concept study suggesting that it could
potentially guide biopsy and focal therapy, as well as monitoring treatment responses. The
observed improvement in sensitivity and specificity of DHI to PCa diagnosis herein if validated
could prevent patients with low-grade disease from undergoing unnecessary surgery, provide
less invasive treatment options, stratify therapies, and monitor effectiveness of focal therapies,
such as external beam radiation therapy (45-47) and high intensity focused ultrasound (HIFU)
therapy (48) to spare more normal tissues surrounding the lesions. DHI could potentially be
incorporated with clinical information (e.g., PSA levels, and liquid biopsy biomarkers) to improve
PCa risk stratification, therefore, providing critical information on PCa prognosis and improving

effectiveness of active surveillance.

In conclusion, we introduced the novel diffusion histology imaging approach, demonstrating its
effectiveness as a noninvasive diagnostic tool for PCa in this small proof-of-concept study. By
obtaining the DBSI-derived structural fingerprints to accurately capture the various prostate
histopathological features, DHI addressed the shortcomings of standard of care mpMRI to
improve detection and grading of PCa demonstrating its role as a noninvasive alternative to

complement and improve the current clinical diagnosis and management of PCa.

Materials and Methods

Study design
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Between March 2015 and August 2017, 254 patients with clinical suspicion of prostate cancer

(PSA > 4.0 ng/ml) were recruited for this study. Patients who received preoperative treatments

such as androgen deprivation (n = 1) or radiation therapy (n = 2) were excluded from this study.
Additionally, patients with motion artifacts in image data (n = 2) and problematic image data (n =
6) were also excluded. Total 93 patients who scored lower than 3 on the Prostate Imaging—
Reporting and Data System, version 2 (PI-RADS v2) criteria and with a PSA level lower than
10.0 ng/ml were considered cancer free and not biopsied. The remaining 150 patients with the
PI-RADS v2 scores > 3 or PSA levels > 10 ng/ml were scheduled for combined systematic and
MRI-targeted ultrasound-guided biopsy. The biopsies confirmed PCa positive in 96 patients and
benign in 54 patients. Prostatectomy specimens were procured for the ex vivo imaging study.
Prostatectomy specimens underwent high resolution MRI scanning and H&E staining. The in
vivo patient study was approved by the local Institutional Review Board. Informed consents
were waived due to the nature of retrospective study. The ex vivo specimen study was also
approved by the local Institutional Review Board. Each patient gave informed consent before

the study.

DBSI and mpMRI data acquisition

A total of 243 patients were imaged with DBSI and mpMRI at Changhai Hospital with a 3.0-T
Siemens Skyra scanner (Erlanger, Germany) with an 18-channel pelvic phased-array coil. The
DBSI protocol involved acquiring diffusion-weighted echo-planar imaging data with the following
data acquisition parameters: repetition time (TR) 5000 ms, echo time (TE) 88 ms, 4 averages,
FOV 112 x 140 mm?, in-plane resolution 2 x 2 mm?, 24 slices at 4-mm thick, 25-dir icosahedral
diffusion encoding scheme with maximum b-value 1500 s/mm?. Standard mpMRI protocol,
including T1-weighted, T2-weighted, diffusion-weighted imaging and dynamic contrast-

enhanced T1-weighted sequences, was performed on all patients. Prostate Imaging Radiology
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Assessment and Diagnostic System Version 2 (PI-RADS v2) was used by experienced

radiologists for assessing suspicious prostate cancer on mpMRI.

Ultrasound-guided target and systematic biopsy

Multi-parametric MRI suspicious of PCa was scored by an experienced radiologist according to
PI-RADS v2. A total of 150 patients with PI-RADS v2 score higher than 3 underwent
transperineal ultrasound (TPUS)-guided systematic biopsy, and TPUS-MRI-fusion guided
biopsy. Fusion of MRI with the real-time transperineal ultrasound image of the prostate during
biopsy was performed by either cognitive or software-facilitated registration. Biopsy-obtained
tissues were analyzed and graded by clinical pathologists. International Society of Urological

Pathology (ISUP) grading of prostate cancer (49) was used to assess the cancer lesions.

Prostatectomy specimen preparation for ex vivo MRI
After prostatectomy, each prostate specimen was immediately fixed with 10% formalin in
phosphate buffered saline (PBS, PH = 7.4) for at least 10 hours. The specimen was step-

sectioned at 4-mm intervals from base to apex.

Ex vivo MRI of prostatectomy specimen

Prostatectomy specimens were formalin-fixed at time of collection and examined using a 4.7-T
Agilent DirectDrive™ small-animal MRI system (Agilent Technologies, Santa Clara, CA)
equipped with a Magnex/Agilent HD imaging gradient coil (Magnex/Agilent, Oxford, UK) capable
of pulsed-gradient strengths of up to 58 G/cm and a gradient rise time < 295 ps. A multi-echo
spin-echo diffusion weighting sequence employing 25 diffusion-encoding directions with
maximum b-value = 3000 s/mm? was employed to acquire diffusion-weighted images. The
imaging parameters were: TR 1500 ms, TE 40 ms, time between application of gradient pulses

20 ms, diffusion gradient on time 8 ms, slice thickness 0.5 mm, field-of-view 24 x 24 mm?, data
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matrix 96 x 96, number of average 1. Total acquisition time was approximately 1 hour and 20

minutes. T1W, T2W and DW images with the same image resolution were also acquired.

Histological analysis

Prostatectomy specimens were embedded in paraffin and underwent sequential sectioning at 5-
pm thick after MRI. Sections were individually stained with hematoxylin and eosin (H&E).
Histology slides were digitized using NanoZoomer 2.0-HT System (Hamamatsu, Japan) with a

20x% objective for analyses.

Co-registration between ex vivo MRI and histology images

Two-dimensional (2D) thin plate spline (TPS) registration was performed using MIPAV Version
10.0.0 (NIH, Bethda, MD) as described previously (28) to co-register ex vivo MR images with
histology images. We first ensure the plane of histology section of the prostate specimens
matched closely with the slice plane of the corresponding T2W images. Then the RGB H&E
images were converted to grayscale using the Pillow package in Python
(https://pillow.readthedocs.io/en/3.1.x/index.html). After these preprocessing steps, around
eighteen pairs of landmarks along the perimeter of each specimen were manually placed on the
gray scale H&E images as well as the T2W images (inherently co-registered with ADC and
DBSI maps) to compute the transformation matrix for matching H&E images with MRI. After
successful image co-registration, ten regions with the same size of MRI voxels (250 x 250 uym?)
were randomly selected from the H&E images to correlate the tumor cell counts in each region

with corresponding ADC and restricted fraction values (Fig. 3a).

Diffusion basis spectrum imaging
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We developed diffusion basis spectrum imaging (DBSI) (24) to model DWI signals of PCa as a
linear combination of an anisotropic diffusion tensor and a spectrum of isotropic diffusion

tensors:
—_— _— b _—
Se/So = fe—lbk|he—|bk|(/1n—h) cos? P +f f(D)e‘|bk|DdD (k=1,273,..). [1]
a

The quantities S,, S, and |b_k)| are the proton-density-weighted signal, diffusion-weighted signal,
and b-value of the k™ diffusion gradient, Ok is the angle between the k™ diffusion gradient and the
principal direction of the fiber-like structures, A; and A, are axial (AD) and radial (RD) diffusivity
of the fiber-like structures (may reflect the compactness of the structure), f is the signal intensity
fraction for fibers (representing fiber density, e.g., benign prostatic hyperplasia (BPH), in the
image voxel), and a and b are the low and high diffusivity limits for the isotropic diffusion

spectrum, f(D), containing contributions from cellularity and luminal water.

DBSI was initially developed to assess CNS pathologies. It has been successfully applied in
animal models and translated to various CNS diseases (24, 27, 50). Although these CNS
related interpretations do not apply to prostate, we have performed a supervised DBSI signal
processing to readjust diffusion tensor basis sets (a dictionary of varied anisotropic and isotropic
diffusion tensors distributed in g-space for modeling DWI signal) referencing histological findings
from radical prostatectomy and biopsy specimens. Based on these preliminary results, we have
observed that DBSI-derived anisotropic fraction is highly associated with BPH and some PCa
regions, reflecting fibromuscular fiber density in each image voxel. The other hallmark prostate
histopathology of lymphocytes, PCa, stromal tissues and luminal structures exhibits high
correlation with highly-restricted diffusion (0 — 0.1 um%ms ~ lymphocytes), restricted diffusion

(0.1 — 0.8 um*ms ~ PCa), hindered diffusion (0.8 — 2.5 um?*/ms ~ stromal tissues) and free

diffusion (2.5 — 3.0 pm?ms ~ luminal water), respectively.
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The main difference between in vivo and ex vivo diffusion MRI is the tissue temperature. In
general, in vivo/ex vivo apparent diffusion coefficients differ by a 3:2 ratio based on temperature
difference. The temperature effect is masked by the diffusion restriction resulting from the size
of cells and diffusion times. In our Monte-Carlo simulation of restricted diffusion in cells of
diameter ranging between 5 - 20 um, we observed no differences in ADC of cells between in
vivo (at 37°C) and ex vivo (at 20°C). Thus, in vivo ADC thresholds for lymphocytes, tumor cells,
stroma, and lumen can be established using high-quality ex vivo data matched by the histology
defined tissues types, i.e., the gold standard. BPH definition is straightforward for DBSI analysis
since the axial and radial diffusivity of the anisotropic diffusion tensor are allowed to change
during the modeling. Thus, the in vivo and ex vivo difference in anisotropic diffusion tensor is not

significant, as supported by our previous CNS studies on autopsy specimens.

Image processing

Voxel-based DTI and DBSI analyses were performed by an in-house software developed using
MATLAB® (MathWorks; Natick, MA). Cancer regions of interest (ROIs) were delineated by one
experienced radiologist (Q.Y.) on mpMRI by referencing pathologist-marked tumor regions on
histopathological images of prostatectomy specimens using ITK-SNAP

(http://www.itksnap.org/). For patients without radical prostatectomy, ROIs were defined on

mpMRI regions with positive target biopsies. Gleason score of each lesion was evaluated from
corresponding histopathological whole mount section images (n = 92) or targeted biopsies (n =
4). For PCa negative cohorts, representative image slices were chosen to draw ROls for benign

peripheral and transition zones. The ROIs were then applied to DBSI maps for further analysis.

DNN model development and optimization
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We constructed the DNN models using TensorFlow 2.0 frameworks (51) in Python. DNN
models with various numbers of hidden layers, nodes and training epochs were tested to
optimize the model. Afterwards, the DNN model was composed of 10 fully connected hidden
layers. Batch normalization was performed with a mini-batch size of 200 before feeding data
into the next hidden layer to optimize the model and to prevent overfitting. We employed
exponential linear units (ELU) to activate specific functions in each hidden layer. The final layer
was a fully connected softmax layer that produces a likelihood distribution over the output
classes. We trained the network with random initialization of the weights as described in He et al
(52). The Adam optimizer was used with the default parameters of ;= 0.9 and 8 ;= 0.999 and a
mini-batch size of 200. The learning rate was manually tuned to achieve the fastest
convergence (1 x 107°). We chose cross-entropy loss function and trained the model to
minimize the error rate on the development dataset. In general, the hyper-parameters of the
neural network architecture and optimization algorithm were chosen through a combination of

grid search and manual tuning.

For DNN modeling of PCa vs. benign tissues, the training dataset was built with image voxels (n
= 488,762) from 93 PI-RADS v2. Score < 3 patients and 60 biopsy-confirmed PCa positive
patients. Image voxels (n = 275,774) from 52 patients with biopsy-confirmed PCa negative and
30 patients with biopsy-confirmed PCa positive were used to construct tuning dataset and test
dataset with 1:1 ratio. We performed a multi-class classification and binary classifications (PCa
vs. Benign PZ, PCa vs. benign TZ, and PCa vs. all benign tissues) among benign PZ, benign
TZ and PCa using these datasets. For classification of ISUP Gleason grade groups, we used
23,327 image voxels from 90 biopsy-confirmed PCa patients, randomly grouping these voxels
into training, tuning, and test datasets with 8:1:1 ratio. To balance data from different grade
groups, we applied a synthetic minority oversampling technique (SMOTE) (53) to over-sample

the minority group by introducing synthetic feature samples. This data balancing approach has
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been demonstrated to be beneficial for avoiding over-fitting and improving model generalization
(53, 54). Data balancing were only applied to the training dataset, while the validation and test
dataset was kept unchanged. We performed a multi-class classification on ISUP grade groups 1

through 5, followed by binary classifications using one-versus-rest strategy for each grade

group.

To further validate the model performances on predicting PCa and ISUP grade group at
individual patient level, we tested 5 biopsy-confirmed PCa positive and two biopsy-confirmed
PCa negative (PIRADS scores = 4) patients. The predicted results were compared with the
histopathological evaluations from biopsy and prostatectomy sections. Specifically, voxels of the
representative image slice of prostate were sent to the above model for binary prediction on

PCa. Subsequently, image voxels with positive PCa were further predicted for ISUP grade

group.

The diffusion metrics used for DNN modeling of PCa vs. benign tissues includes: isotropic ADC,
anisotropic fraction, anisotropic tensor fractional anisotropy (FA), anisotropic tensor axial
diffusivity (AD), anisotropic tensor radial diffusivity (RD), highly restricted isotropic fraction,
highly restricted isotropic diffusivity, restricted fraction, restricted isotropic diffusivity, hindered
isotropic diffusion fraction (hindered fraction), hindered isotropic diffusivity, free isotropic
diffusion fraction (free fraction), and free isotropic diffusivity. For DNN modelling of classification
of Gleason grade groups, we also incorporated diffusion metrics from DTI modelling, including

mean ADC, FA, AD and RD.

Statistical analysis
We used Pearson correlation to assess the relationship between histology and MRI

measurements. Statistically significant results were determined at a pre-determined alpha level
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of 0.05. We derived confusion matrices to demonstrate the agreement between DHI predictions
and respective prostatic histology and PCa grade groups assessed by the gold standard
histology. The one-versus-rest strategy was implemented for binary classification to assess
model discrimination amongst respective prostatic histology or ISUP grade groups. We
performed receiver operating characteristics (ROC) analysis and calculated area under curves
(AUC) to assess sensitivity and specificity at the optimal cut off point (Youden Index) (55). The
precision-recall curves and F;-scores were calculated to demonstrate the relationship between
precision and recall, which provides complementary information to the ROC curve, as the
dataset included imbalanced classes. All values bounding the 95% confidence intervals were
calculated with bootstrapping methods iterated 10,000 times (56). Statistical metrics and curves

were calculated by packages from Scikit-learn (57).

Supplementary list

Table S1. Patient information.

Fig. S1. Flowchart of patient recruitment process.

Fig. S2. Representative case with transperineal biopsy and prostatectomy whole mount section.

Fig. S3. False positive cases from mpMRI were correctly predicted by DHI.

References and notes

1. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2020. CA Cancer J Clin 70, 7-30
(2020).

2. X. Filella, L. Foj, Prostate Cancer Detection and Prognosis: From Prostate Specific
Antigen (PSA) to Exosomal Biomarkers. Int J Mol Sci 17, (2016).

3. D. M. Berney et al., Validation of a contemporary prostate cancer grading system using
prostate cancer death as outcome. Br J Cancer, (2016).

4. M. Wenzel et al., Complication Rates After TRUS Guided Transrectal Systematic and

MRI-Targeted Prostate Biopsies in a High-Risk Region for Antibiotic Resistances. Front
Surg 7, 7 (2020).

5. P. F. Pinsky, H. L. Parnes, G. Andriole, Mortality and complications after prostate biopsy
in the Prostate, Lung, Colorectal and Ovarian Cancer Screening (PLCO) trial. BJU Int
113, 254-259 (2014).

23


https://doi.org/10.1101/2021.03.22.436514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436514; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6. D. Olvera-Posada et al., A Population-Based Cohort Study of the Impact of Infectious
Complications Requiring Hospitalization after Prostate Biopsy on Radical Prostatectomy
Surgical Outcomes. Urology 121, 139-146 (2018).

7. F. H. Schroder et al., Screening and prostate cancer mortality: results of the European
Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up.
Lancet 384, 2027-2035 (2014).

8. F. H. Schroder et al., Screening and prostate-cancer mortality in a randomized European
study. N Engl J Med 360, 1320-1328 (2009).

9. B. Ehdaie et al., The impact of repeat biopsies on infectious complications in men with
prostate cancer on active surveillance. J Urol 191, 660-664 (2014).

10. L. P. Bokhorst et al., Complications after prostate biopsies in men on active surveillance

and its effects on receiving further biopsies in the Prostate cancer Research
International: Active Surveillance (PRIAS) study. BJU Int 118, 366-371 (2016).

11. H. U. Ahmed et al., Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in
prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815-822.

12. J. L. Leake et al., Prostate MRI: access to and current practice of prostate MRI in the
United States. J Am Coll Radiol 11, 156-160 (2014).

13. A. R. Padhani et al., PI-RADS Steering Committee: The PI-RADS Multiparametric MRI
and MRI-directed Biopsy Pathway. Radiology 292, 464-474 (2019).

14. J. C. Weinreb et al., PI-RADS Prostate Imaging - Reporting and Data System: 2015,
Version 2. Eur Urol 69, 16-40 (2016).

15. K. Sklinda, B. Mruk, J. Walecki, Active Surveillance of Prostate Cancer Using
Multiparametric Magnetic Resonance Imaging: A Review of the Current Role and Future
Perspectives. Med Sci Monit 26, €920252 (2020).

16. R. Jayadevan et al., Magnetic Resonance Imaging-Guided Confirmatory Biopsy for
Initiating Active Surveillance of Prostate Cancer. JAMA Netw Open 2, €1911019 (2019).

17. A. B. Rosenkrantz, S. S. Taneja, Radiologist, be aware: ten pitfalls that confound the
interpretation of multiparametric prostate MRI. AJR Am J Roentgenol 202, 109-120
(2014).

18. A. B. Rosenkrantz, A. Oto, B. Turkbey, A. C. Westphalen, Prostate Imaging Reporting
and Data System (PI-RADS), Version 2: A Critical Look. AJR Am J Roentgenol 206,
1179-1183 (2016).

19. N. A. Pickersgill et al., Accuracy and Variability of Prostate Multiparametric Magnetic
Resonance Imaging Interpretation Using the Prostate Imaging Reporting and Data
System: A Blinded Comparison of Radiologists. Eur Urol Focus 6, 267-272 (2020).

20. N. A. Pickersgill et al., The Accuracy of Prostate Magnetic Resonance Imaging
Interpretation: Impact of the Individual Radiologist and Clinical Factors. Urology 127, 68-
73 (2019).

21. R. S. Wang et al., Determination of the Role of Negative Magnetic Resonance Imaging
of the Prostate in Clinical Practice: Is Biopsy Still Necessary? Urology 102, 190-197
(2017).

22. A. Amin et al., The Magnetic Resonance Imaging in Active Surveillance (MRIAS) Trial:
Use of Baseline Multiparametric Magnetic Resonance Imaging and Saturation Biopsy to
Reduce the Frequency of Surveillance Prostate Biopsies. J Urol 203, 910-917 (2020).

23. G. N. Tran et al.,, Magnetic Resonance Imaging-Ultrasound Fusion Biopsy During
Prostate Cancer Active Surveillance. Eur Urol 72, 275-281 (2017).

24, Y. Wang et al., Quantification of increased cellularity during inflammatory demyelination.
Brain : a journal of neurology 134, 3590-3601 (2011).

25. T. H. Lin et al., Noninvasive quantification of axonal loss in the presence of tissue
swelling in traumatic spinal cord injury mice. J Neurotrauma, (2018).

24


https://doi.org/10.1101/2021.03.22.436514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436514; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

26. T. H. Lin et al., Diffusion MRI quantifies early axonal loss in the presence of nerve
swelling. Journal of neuroinflammation 14, 78 (2017).

27. Y. Wang et al., Differentiation and quantification of inflammation, demyelination and
axon injury or loss in multiple sclerosis. Brain : a journal of neurology 138, 1223-1238
(2015).

28. Z. Ye et al., Diffusion Histology Imaging Combining Diffusion Basis Spectrum Imaging
(DBSI) and Machine Learning Improves Detection and Classification of Glioblastoma
Pathology. Clin Cancer Res, (2020).

29. P. Sun et al., Diffusion basis spectrum imaging provides insights into MS pathology.
Neurology - Neuroimmunology Neuroinflammation 7, e655 (2020).

30. C. Cortes, V. Vapnik, Support-vector networks. Machine Learning 20, 273-297 (1995).

31. C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27 (2011).

32. J. Xu et al., Magnetic resonance diffusion characteristics of histologically defined
prostate cancer in humans. Magnetic Resonance in Medicine 61, 842-850 (2009).

33. A. Chatterjee et al., Changes in Epithelium, Stroma, and Lumen Space Correlate More
Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes
than Cellularity Metrics. Radiology 277, 751-762 (2015).

34. D. F. Gleason, G. T. Mellinger, Prediction of Prognosis for Prostatic Adenocarcinoma by
Combined Histological Grading and Clinical Staging. Journal of Urology 111, 58-64
(1974).

35. T. Hambrock et al., Relationship between Apparent Diffusion Coefficients at 3.0-T MR
Imaging and Gleason Grade in Peripheral Zone Prostate Cancer. Radiology 259, 453-
461 (2011).

36. O. F. Donati et al., Prostate Cancer Aggressiveness: Assessment with Whole-Lesion
Histogram Analysis of the Apparent Diffusion Coefficient. Radiology 271, 143-152
(2014).

37. S. Woo, S. Y. Kim, J. Y. Cho, S. H. Kim, Preoperative Evaluation of Prostate Cancer
Aggressiveness: Using ADC and ADC Ratio in Determining Gleason Score. American
Journal of Roentgenology 207, 114-120 (2016).

38. R. L. Brunsing et al., Restriction spectrum imaging: An evolving imaging biomarker in
prostate MRI. Journal of Magnetic Resonance Imaging 45, 323-336 (2017).
39. K. C. McCammack et al., In vivo prostate cancer detection and grading using restriction

spectrum imaging-MRI. Prostate Cancer and Prostatic Diseases 19, 168-173 (2016).

40. A. Latysheva et al., Diagnostic utility of Restriction Spectrum Imaging in the
characterization of the peritumoral brain zone in glioblastoma: Analysis of overall and
progression-free survival. Eur J Radiol 132, 109289 (2020).

41. N. S. White et al., Diffusion-weighted imaging in cancer: physical foundations and
applications of restriction spectrum imaging. Cancer Res 74, 4638-4652 (2014).

42. G. Yamin et al., Voxel Level Radiologic-Pathologic Validation of Restriction Spectrum
Imaging Cellularity Index with Gleason Grade in Prostate Cancer. Clin Cancer Res 22,
2668-2674 (2016).

43. N. S. White, T. B. Leergaard, H. D'Arceuil, J. G. Bjaalie, A. M. Dale, Probing tissue
microstructure with restriction spectrum imaging: Histological and theoretical validation.
Hum Brain Mapp 34, 327-346 (2013).

44, M. A. Liss et al., MRI-Derived Restriction Spectrum Imaging Cellularity Index is
Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens.
Front Oncol 5, 30 (2015).

45, T. M. Pisansky, External-beam radiotherapy for localized prostate cancer. N Engl J Med
355, 1583-1591 (2006).

25


https://doi.org/10.1101/2021.03.22.436514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436514; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

46. M. J. Zelefsky et al., High dose radiation delivered by intensity modulated conformal
radiotherapy improves the outcome of localized prostate cancer. J Urol 166, 876-881
(2001).

47. E. S. Wisenbaugh et al., Proton beam therapy for localized prostate cancer 101: basics,
controversies, and facts. Rev Urol 16, 67-75 (2014).

48. E. Baco et al., Hemi salvage high-intensity focused ultrasound (HIFU) in unilateral

radiorecurrent prostate cancer: a prospective two-centre study. BJU International 114,
532-540 (2014).

49, J. |. Epstein et al., The 2014 International Society of Urological Pathology (ISUP)
Consensus Conference on Gleason Grading of Prostatic Carcinoma. The American
Journal of Surgical Pathology 40, 244-252 (2016).

50. C. W. Chiang et al., Quantifying white matter tract diffusion parameters in the presence
of increased extra-fiber cellularity and vasogenic edema. Neurolmage 101, 310-319
(2014).

51. Mart et al., paper presented at the Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation, Savannah, GA, USA, 2016.

52. K. He, X. Zhang, S. Ren, J. Sun, in 2015 IEEE International Conference on Computer
Vision (ICCV). (2015), pp. 1026-1034.

53. N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: Synthetic minority
over-sampling technique. J Artif Intell Res 16, 321-357 (2002).

54. H. Haibo, B. Yang, E. A. Garcia, L. Shutao, in 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence). (2008), pp.
1322-1328.

55. M. D. Ruopp, N. J. Perkins, B. W. Whitcomb, E. F. Schisterman, Youden index and
optimal cut-point estimated from observations affected by a lower limit of detection.
Biometrical J 50, 419-430 (2008).

56. J. Carpenter, J. Bithell, Bootstrap confidence intervals: when, which, what? A practical
guide for medical statisticians. Stat Med 19, 1141-1164 (2000).

57. F. Pedregosa et al., Scikit-learn: Machine Learning in Python. J Mach Learn Res 12,
2825-2830 (2011).

Funding: This work was supported in part by National Institutes of Health (RO1-NS047592,
P01-NS059560 and U01-EY025500 to S.K.S.), National Multiple Sclerosis Society (RG 5258-A-

5 and RG 1701-26617 to S.K.S.). This work was also supported by the Prostate Cancer

Foundation (J.E.I).

Author contributions: S.K.S., J.L., Z.Y., Q.Y. and J.l., initiated the project and collaboration,
and drafted research design. Q.Y., C.S., P.S. and L.C. designed the clinical setup. Q.Y., Y.Z.,
L.G., ZW., M\W., and Y.C. acquired the data. Y.Z., Q.Y. and Y.Y. created the dataset and
defined clinical labels. 2.Y., J.L.,, P.S., AT.W., RY., CS. AG, J.Z, SE.G, and J.D.V.

analyzed the data. Z.Y. and A.T.W. developed the network architectures, training and testing

26


https://doi.org/10.1101/2021.03.22.436514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436514; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

setup. Z.Y., J.L.,, Q.Y., J.E.I., EHK., Q.Y. and S.K.S. wrote the paper. All authors have

reviewed and approved the final version of the manuscript.
Competing interests: S.K.S. has a financial [ownership] interest in CancerVision LLC and may
financially benefit if the company is successful in marketing its product(s) that is/are related to

this research. The other authors declare no conflict of interests.

Data and materials availability: All the data supporting the findings of this study are available

from the corresponding authors upon reasonable request.

Figures

27


https://doi.org/10.1101/2021.03.22.436514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436514; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

DBSI isotropic diffusion spectrum

0.9r Free -1
2
| o Highly
1| i Restricted : 3
: : P ‘ 0.6f 4
Specimen T2W image ADC map 3 Restricted
- =)
g- Hindered
0.3f Free
il .
1] 0.5 1 1.5 2 2.5
Isotropic ADC (um2/ms)
c Histologlc DBSI
structures modeling
Image voxel Anisotropi
N — e
Anisotropic
St rastricted
A X .
p— Restricted lsotropic
— diffusion
Single averaged
tensor : d \.ﬁ
: Hindered
Fx %
4 =
Heterogeneous T2W "‘l\. z b -
and DWI signals Lumen Free
d DBSI diffusion fraction maps
0.6 0.2 0.6
| & H
0 [+] 0
Anisotropic Highly restricted Restricted Hindered

fractlon fractlon fraction fractlen

fractlon

28


https://doi.org/10.1101/2021.03.22.436514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436514; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 1. DBSI detected different histopathological structures based on their diffusion
signatures. (a) The ex vivo MR images and the corresponding H&E images from one
representative step-sectioned prostate specimen were shown. ROIs containing stroma,
inflammation and PCa were highlighted as follows: lymphocytes (a, iii & iv, lower right square),
PCa cells (a, | & iv, lower left square) and stroma tissue (a, ii) were associated with respective
signatures: highly-restricted (0 - 0.1 m?/ms, lymphocytes), restricted (0.1 - 0.8 m*ms, PCa) and
hindered (0.8 - 1.5 m?ms, stroma) diffusion. (b) Distinct diffusion patterns, or “structural
fingerprints”, from various histopathological structures were identified in each of the ROIs (ROl i:
green peaks; ROl ii; blue peaks; ROl iii: black peaks; ROl iv: red peaks). (c) A pictorial depiction
of prostate-specific DBSI model is presented to demonstrate the association between specific
prostatic histopathological structures and diffusion characteristics. Collagen fibers were
associated with an anisotropic diffusion tensor, inflammatory cells are associated with highly
restricted isotropic diffusion tensor, tumor cells are associated with restricted isotropic diffusion
tensor, and lumen is associated with free isotropic diffusion tensor. (d) Heat maps of DBSI
metric maps were generated to highlight spatial distribution of prostatic histopathological

structures. ROIs = regions of interest.
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Figure 2. DBSI-derived diffusion metrics revealed structural complexity underlying
mpMRI lesion (a) The mpMRI images from a patient with PCa (post-op Gleason grade group 2)
indicated a malignant lesion in the transition zone. (b) DTI ADC histogram analysis indicated a
singular peak distribution with the range of 0.3 to 0.8 um?/ms reflecting tumor presence. (c) H&E
images of the whole mount section of the corresponding MRI slice also indicated a tumor region
at the transition zone. The expanded view revealed the coexistence of lymphocytes, tumor cells,
stromal cells, and luminal structure in the tumor region. (d) DBSI diffusion profiles exhibited four
distinct groups of isotropic ADC distributions as highly restricted diffusion, restricted diffusion,
hindered diffusion and free diffusion, coinciding the coexisting lymphocyte, tumor cells, stromal
cells and luminal structure underlying tumor region. (e) DBSI-metric maps reflecting underlying
prostatic structures and pathologies: anisotropic diffusion fraction (BPH, fiboromuscular tissue),
highly restricted diffusion fraction (lymphocytes), restricted diffusion fraction (cancer cells),
hindered diffusion fraction (stroma), and free diffusion fraction (luminal space). (e) A 3D-
rendered prostate from a patient containing PCa, inflammation, and BPH. The 3D-rendered
prostate was overlaid on the T2W anatomical image. Significant BPH is visible in the transition
zone (yellow channel from anisotropic fraction). Inflammation is seen in right lateral anterior
peripheral zone and left lateral anterior central zones (yellow arrows; blue-green color channel
imported from highly restricted fraction). PCa located at the left lateral anterior peripheral zone
(purple-red channel imported from restricted fraction) surrounded by inflammatory cells. In the
corresponding locations, lymphocytes, PCa and fibromuscular stroma could be identified from
prostatectomy histology. T2W and ADC map showed ambiguous signals and could not provide

as detailed information as DBSI did.
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Figure 3. Tumor cellularity correlated with DBSI-restricted fraction but not with ADC in ex
vivo prostate specimens. (a) We performed co-registration of T2-weighted (T2W) images and
H&E images to allow voxel-wise correlation of histology-measured cellularity with ADC and
DBSl-restricted fraction. Eighteen pairs of landmarks were manually placed along the perimeter
of T2W images and H&E images for co-registration. The transformation function of thin-plate-
spline registration was calculated and applied to warp MR images to match H&E images. Ten
regions of interest (ROIs) of MRI voxel size (250 x 250 ym?) were randomly selected from each
H&E image. The tumor cellularity in each ROl was manually counted. The ROIs were applied to
corresponding co-registered MRI-metric maps for correlation and quantitative analysis. (b)
Pearson’s correlation analysis indicated DBSI-restricted fraction had significant positive
correlation with H&E tumor cellularity in all five specimens. However, ADC showed inconsistent

correlation with tumor cellularity.
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Figure 4. Conventional ADC failed to distinguish PCa of different Gleason grade groups.
Based on histogram features, conventional ADC differentiated benign prostate (a, b) and lower-
grade PCa (c, GG 1) from higher-grade PCa (d — g, GG 2 — GG 5). However, it failed to further
distinguish among the higher-grade tumors. DBSI isotropic diffusivity histograms exhibited
unique features for benign and PCa of all grades. Benign peripheral zone tissue (a) is
associated with a high free diffusion fraction (purple) and low hindered fraction (cyan) while the
benign transition zone (b) exhibited a combination of high free diffusion fraction and high
hindered diffusion fraction. GG 1 tumors (c) are histologically heterogeneous, exhibiting various
extents in DBSI restricted-diffusion (green), hindered-diffusion, and free-diffusion fractions.
Diffusion profile of GG 3 PCa (e) had slightly increased restricted-diffusion fraction than that in
GG 2 PCa (d). GG 2 and GG 3 PCa exhibited similar hindered-diffusion fraction; both grade
groups have little to no signal from free-diffusion fraction, indicating an increased number of
tumor/epithelial cells and the loss of luminal space. High restricted-diffusion fraction and the
absence of free-diffusion fractions seen in GG 4 (f) and GG 5 tumors (g) are consistent with
their histological characteristics, reflecting the hyper-cellularity in PCa with sheet-like growth
pattern; few, if not the complete absence of, duct-acinar structures or stroma persists. GG =

grade group.
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Figure 5. Voxel-based classification of prostatic histology and Gleason scores. (a)
Confusion matrix shows concordance between DHI predictions and biopsy confirmed prostatic
tissue types. PCa voxels were correctly predicted with high accuracy, but benign peripheral
zone and benign transition zone voxels overlaps. ROC and precision-recall curves showed
classifications with high AUC values on groups of PCa vs. benign peripheral zone (PZ), PCa vs.
benign transition zone (TZ) and PCa vs. benign PZ + TZ. Table summarized AUC, sensitivity,
specificity and F;-score values from ROC and precision-recall analyses. (b) Confusion matrix for
DHI predicted PCa grade groups highly agreed with those determined histologically. ROC and
precision-recall curves using one-versus-rest strategy were calculated for each Gleason grade
group with high AUC values for both groups of the curves. The AUC, sensitivity, specific and F;-
scores values of these analyses were also summarized in the table. PZ = peripheral zone. TZ =

transition zone. GG = grade group. Cl = confidence interval.
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Figure 6. Patient-based DHI prediction of tumor and ISUP grade groups (GG). Five patients
were evaluated with mpMRI and one suspicious tumor lesion was identified in each patient (red
arrows in ADC maps). Patient 2 (b), 5 (e) are PI-RADS score of 4; patient 1 (a), 3 (¢) and 4 (d)
are PI-RADS score of 5. Arrows pointed to suspicious lesions. DHI predicted the same cancer
lesions (purple masks in DHI tumor map) identified by the PI-RADS criteria. The target biopsy
for all selected lesions was positive for PCa. The biopsied histology for patients 1 to 5 was GG
5 GG 4, GG 1, GG 2, and GG 1, respectively. Smaller, secondary tumor foci were also
predicted for patients 1, 2 and 5. In addition to target biopsy, standard biopsy suggested positive
PCa findings in multiple biopsy needle cores, indicating that some of the missed PCa lesion
from mpMRI would have been detected by DHI. DHI correctly predicted the grade groups for the

dominant lesions for all five patients (DHI grade maps).
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