bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436470; this version posted March 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Emergence of directional bias in tau deposition from axonal
transport dynamics

Justin Torok ', Pedro D. Maia?, Parul Verma?®, Christopher Mezias® Ashish Raj 3",

1 Department of Computational Biology and Medicine, Weill Cornell
Medical School, New York, NY, USA.

2 Department of Mathematics, University of Texas at Arlington, TX, USA.
3 Department of Radiology and Biomedical Imaging, University of
California at San Francisco, San Francisco, CA, USA.

* Email: jut2008@med.cornell.edu, ashish.raj@ucsf.edu

Abstract

Defects in axonal transport may partly underpin the differences between the observed
pathophysiology of Alzheimer’s disease (AD) and that of other non-amyloidogenic
tauopathies. Particularly, pathological tau variants may have molecular properties that
dysregulate motor proteins responsible for the anterograde-directed transport of tau in a
disease-specific fashion. Here we develop the first computational model of tau-modified
axonal transport that produces directional biases in the spread of tau pathology. We
simulated the spatiotemporal profiles of soluble and insoluble tau species in a
multicompartment, two-neuron system using biologically plausible parameters and time
scales. Changes in the balance of tau transport feedback parameters can elicit
anterograde and retrograde biases in the distributions of soluble and insoluble tau
between compartments in the system. Aggregation and fragmentation parameters can
also perturb this balance, suggesting a complex interplay between these distinct
molecular processes. Critically, we show that the model faithfully recreates the
characteristic network spread biases in both AD-like and non-AD-like mouse tauopathy
models. Tau transport feedback may therefore help link microscopic differences in tau
conformational states and the resulting variety in clinical presentations.

Author Summary

The misfolding and spread of the axonal protein tau is a hallmark of the pathology of
many neurodegenerative disorders, including Alzheimer’s disease and frontotemporal
lobar dementia. How tau misfolding causes disorders with distinct neuropathology and
clinical presentations is the subject of ongoing research. Although current evidence
suggests that the specific conformations tau adopts affect where it spreads throughout
the brain, a mechanistic explanation has remained elusive. Here we propose that the
conformer-specific dysregulation of axonal transport can lead to directionally biased
spread, and we employ a mathematical model to explore how tau spreads between
neurons in the context of this transport feedback mechanism. We find that
conformation-specific feedback is flexible enough to explain bias in either direction and
thoroughly explore how this bias emerges as a function of the model’s key parameters.
Further, the model reproduces the temporal evolution of directionality observed in two
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classes of in vivo tauopathy models, demonstrating that transport feedback is sufficient
to explain differential tau spread as a function of conformation.

1 Introduction

Despite manifest differences in clinical presentation, the pathology of many progressive
neurodegenerative diseases is linked to aberrant protein misfolding and aggregation.
Indeed, in Alzheimer’s disease (AD) [1], frontotemporal lobar degeneration (FTLD) [2],
Parkinson’s disease 3], Huntington disease [4], and in amyotrophic lateral sclerosis [5],
there are one or more proteinaceous species that appear to spread throughout the brain
and induce neuronal dysfunction and death. Both in vitro experiments with cultured
neurons [6H10] and in vivo work with animal models of neurodegeneration [11413] have
confirmed that these prion-like assemblies can spread directly between neurons by
traveling within axonal fibers and traversing the synapse. Although the mechanisms by
which these misfolded protein agents arise, propagate, and contribute to pathology
remain incompletely understood, they do play a central role in the progression of
neurodegenerative diseases [14}[15].

Tauopathy, the pathological accumulation and spread of misfolded aggregates of
microtubule-associated protein tau, is among the most common types of proteinopathies
implicated in neurodegenerative disease, including AD, FTLD, Pick’s disease, and
others. The recent discovery that there are phosphoepitopes of tau that distinguish AD
from FTLD-type disorders suggests a direct link between the specific conformer of
misfolded tau and disease diagnosis |[16H18]. Heterogeneity in tau hyperphosphorylation
and misfolding also exists between AD patients, giving rise to distinct clinical
phenotypes [19]. An appealing hypothesis for explaining how specific tau conformations
lead to distinct patterns of neurodegeneration is that although these tau species can all
spread between connected brain regions via white matter tracts, their propensities to
travel in the anterograde (i.e. from presynaptic to postsynaptic cell) or retrograde (i.e.
postsynaptic to presynaptic) directions may not be equal. Recent work by our group
has lent further support for this hypothesis, wherein we found that mouse tauopathy
models with tau species that developed in the presence of amyloid-3 showed a marked
preference to migrate in the retrograde direction, while no consensus directional bias
emerged among amyloid-negative models [20]. However, there are no models to date
that explore how this directional bias arises.

Mechanistically, conformer-specific dysregulation of active transport could explain
differential biases in the direction of tau spread between diseases. In healthy neurons,
energy-driven active transport within the axon is governed by the complex interplay of
motor proteins, their cargoes, and the microtubules along which they travel [21}[22].
Early in AD, hyperphosphorylated tau misfolds and aggregates in the axon; as the
disease progresses, it causes the breakdown of the axon initial segment barrier and
enters the somatodendritic compartment [23-25]. In vitro experiments provide direct
evidence that active transport is regulated by axonal tau concentration: a primary
anterograde-directed motor protein, kinesin-1, is physically obstructed by
microtubule-bound tau, while the retrograde-directed motor protein, dynein, remains
mostly unaffected except at aphysiological concentrations [26}27]. Disease-mimicking
tau variants limit this endogenous ability to inhibit kinesin-1 [28-30], while
neurofibrillary tangles (NFTs) knock down kinesin-1 |31]. Since anterograde-directed
and retrograde-directed motor proteins are in a constant state of “tug-of-war” whose
outcome ultimately governs the direction and rate of cargo transport, including that of
tau itself [27}/29}32], the pathological effects of tau on kinesin-1 specifically provide an
underexplored basis for the conformer-specific spatial patterns of NF'Ts observed in vivo
and clinically. Using a computational model to simulate the effects of kinesin regulation
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Figure 1. Model System. Schematized version of the one-dimensional system that we simulate. We model two distinct species of
pathological tau, soluble (red) and insoluble (blue), across within a multi-compartment model mimicking the two-neuron system shown
in the top panel. The main biological phenomena captured in this model are diffusion (blue box), active transport (green box), species
interconversion through fragmentation and aggregation (purple box), and a diffusion-based barrier to inter-compartmental spread

(brown dashed lines).

by tau on its spatial deposition patterns, therefore, could provide the needed conceptual
link between the biochemical properties of specific tau conformers and the observed
directional spread bias. While detailed models of tau axonal transport exist [33], there
have been no explorations to date of the consequences of pathological tau feedback on
axonal transport.

In the present work, we model two distinct species of pathological tau in a closed
two-neuron system under biologically plausible conditions, demonstrating the impact of
transport feedback has on their spatial concentration profiles over time. This model
yields the following insights: (i) The balance of transport feedback parameters
alone is sufficient to develop strong directional biases in both the anterograde and
retrograde directions. (ii) The rates of aggregation and fragmentation in the model
exert a dramatic effect on the equilibrium state of the system as well, indicating that
processes of interconversion between soluble and insoluble tau species are inextricably
linked to how transport feedback influences the system. (iii) This nonlinear system
converges to a single fixed point over a wide range of initial conditions. (iv) Despite its
simplicity, the transport feedback model produces biases that quantitatively match
those that develop at the network level both in AD-like and non-AD-like mouse
tauopathy models [20]. Taken together, these results demonstrate that a simple
transport feedback mechanism can explain how different tau conformers, which have
unique molecular properties, can develop distinct directional biases and propagate
differentially across the brain.

2 Results

2.1 Model Scope

We construct a system of partial differential equations (PDEs) to model the
concentration profiles along a single spatial axis of two biophysically distinct species of
pathological tau: soluble tau, such as misfolded monomers and small oligomers, and
insoluble tau, such as larger filaments and tangles. See Fig. [I] for a full schematic of the
system. The dynamics of each species depend upon the biological compartment it
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Symbol Description Remark
x Space x € [0, Lyotal], where Liotar is the total size of the system in pm
t Time t € [0, T], where T is the time to reach steady state in s
n(z,t) Soluble tau (conc.) Number of monomeric units
per volume within the fiber in uM
m(x,t) Insoluble tau (conc.) Number of monomeric units
per volume within the fiber in pM
D, Theoretical diffusivity of n Estimated to be 12 um?/s*
f Diffusing fraction of n Estimated to be 0.92*
Vg Native ant. transport velocity of n  Estimated to be 0.7 pm/s*
Uy Native ret. transport velocity of n  Estimated to be 0.7 ym/s*
B Fragmentation rate of m Unimolecular process by which m — n
¥ Aggregation rate Bimolecular process by which n — m
1) Ant. vel. enhancement factor Effect modulated by n
€ Ret. vel. enhancement factor Effect modulated by m

Table 1. Glossary of symbols used throughout the text. Values marked with an asterisk were estimated
by [34]. Ant. = anterograde, ret. = retrograde, conc. = concentration, vel. = velocity.

resides: the presynaptic and postsynaptic somatodendritic (SD) compartments, the
axon, the axon initial segment (AIS), and the synaptic cleft (SC) are modeled distinctly.
These two tau species can interconvert through the processes of fragmentation and
aggregation (Eq. , and the soluble species can undergo diffusion and, if in the axon,
active transport. Diffusion between the SD and axonal compartments is hindered by the
physical barriers of the AIS and SC, leading to slow, concentration-gradient-dependent
mixing. The effective active transport velocity within the axon, v (Eq. , is a function
of the local concentrations of the soluble and insoluble species, because each can perturb
the effective anterograde transport rate [28,29,31]. Specifically, we allow soluble tau to
increase effective anterograde transport velocity through the parameter § and insoluble
tau to decrease it through the parameter ¢ (Table . Since the effective retrograde
transport velocity is unaffected by pathological tau [26}27], directional bias of tau
transport is governed by the balance of § and e acting upon anterograde transport rate.
We thoroughly explore the dependence of model behavior on these two
transport-specific parameters below; see Methods: Model Description for a
complete explanation of the development and implementation of our model.

2.2 Model Regimes

We first explored how the balance of § and € affected the dynamics of tau in three
distinct regimes. For each instance, we initiated the model with a uniform concentration
of soluble tau n in the axonal compartment only and zero insoluble tau m anywhere.
See Table [S1] for a full list of the parameters used for each condition.

2.2.1 Anterograde-Biased Regime

Fig. 2 and Vid. S1 show the simulation results for our two-species model with § > e,
which emulates a condition where soluble tau exerts a strong effect on enhancing kinesin
processivity but insoluble tau has a minimal effect on inhibiting it. We depict the
concentrations of n and m, as well as the calculated concentration flux of n, j,, at five
time points between model initialization and the point at which equilibrium is
established, which typically takes a matter of months in model time. At ¢ = 0 (first
column), the relatively high constant value of n yields axonal j, values that are strongly
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Figure 2. Model regimes are determined by tau transport feedback parameters § and €. (a) Simulation results where
0 =1 and € = 0.01, which leads to a strong anterograde bias that emerges within hours and persists even at longer time scales. (b)
Simulation results where 6 = 0.01 and € = 1, which leads to a strong retrograde bias that only emerges at intermediate-to-late time
scales. (c) Simulation results where § = 1 and e = 0.35, which leads to an initial anterograde bias that is counteracted at intermediate
time scales, leading to a uniform distribution of tau deposition at equilibrium.

positive except at the boundary between the axon proper and the AIS, where the strong
concentration gradient forces flow to the left. Within the first few hours of model time
(second column), the combined effects of diffusion and biased transport lead to the
development of a pronounced concentration gradient within the axon proper, with a
greater buildup of soluble tau towards the axon terminal due to the transport feedback.
Over a period of days (third column), overall soluble tau concentrations decrease as it
converts to insoluble tau through aggregation, but remain asymmetrically distributed;
insoluble tau builds up within the axon proper with a concentration profile mimicking
that observed for soluble tau at previous time points. At much longer time scales,
aggregation causes insoluble tau to dominate, and although the anterograde-biased
concentration gradient within the axon persists, that between the axon and the SD
compartments becomes zero (fifth column). Although insoluble tau is strictly immobile,
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there is an apparent migration of insoluble tau at these later time points due to
transient concentration gradients of soluble tau across between the axon and SD
compartments, which emerge from the dynamic equilibrium between aggregation and
fragmentation. Overall, after a period of several months, this system reaches a stable
asymmetric distribution of pathological tau, with a greater buildup in the postsynaptic
neuron reflecting the strong anterograde-biased transport feedback.

2.2.2 Retrograde-Biased Regime

We then simulated the condition where transport feedback is strongly biased in the
opposite direction (e > §; Fig. ) and Vid. S2. Unlike the previous condition, the lack
of strong anterograde feedback parameter causes simple diffusion to dominate over the
first few hours, leading to a largely symmetric concentration profile of soluble tau
(second column). It is only when appreciable aggregation occurs at an intermediate time
scale (third column) that an asymmetric profile is allowed to develop, as the buildup of
insoluble tau leads to a net negative active transport velocity and leftward migration of
soluble tau. The net deposition in the presynpatic SD compartment only grows more
pronounced over time (fourth and fifth columns), leading to an overall retrograde-biased
concentration profile at equilibrium. Taken together with the results from the previous
simulation, it is apparent that the § and e feedback parameters independently and
consequentially impact how pathological tau is distributed throughout this two-neuron
system.

2.2.3 Net-Unbiased Regime

We further explored how these two modes of transport feedback can interact by setting
both ¢ and e values to be significantly greater than 0 (Fig. |2c and Vid. S3. Initially, as
in the anterograde-dominant condition (Fig. ), there is a pronounced asymmetric
profile of soluble tau biased towards the axon terminal due to the strong positive
kinesin feedback (second column). This bias persists even at longer time scales as
aggregation allows insoluble tau to accumulate (third and fourth columns); however, the
presence of insoluble tau begins to counteract the initial anterograde transport bias. At
equilibrium (fifth column), the net balance between § and e leads to a nearly flat
concentration profile across all compartments and roughly equal deposition between the
presynaptic and postsynaptic SD compartments.

2.3 Somatodendritic Tau Deposition Over Time

We summarize the results of the three parameter regimes described above by plotting
the mean pathological tau concentrations in each of the SD compartments across all
time points of the simulation (Fig. . Initially there is no tau of either species in the
presynaptic or postsynaptic SD compartment, but at early model times (¢t < 1 day),
diffusion allows soluble tau to migrate into both. In the anterograde-biased parameter
regime (Fig. 7 left panel), soluble tau accumulates faster in the postsynaptic SD
compartment relative to the presynaptic, which at longer time scales is converted to a
persistent net accumulation of insoluble tau. Conversely, soluble tau concentrations stay
at similar levels in both SD compartments up to a period of around 1 day of model
time in the retrograde-biased regime (Fig. , center panel), where the accumulation of
insoluble tau in the axonal compartment biases transport towards to the presynaptic SD
compartment. Presynaptic accumulation of insoluble tau steadily increases at longer
time scales while postsynaptic insoluble tau stays roughly flat, as active transport
continues to push soluble tau in the retrograde direction that then forms insoluble tau
through aggregation. In the net unbiased regime (Fig. [3p, right panel), the resulting
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Figure 3. Temporal profiles of somatodendritic tau deposition. (a) Time course of mean soluble (red) and insoluble (blue)
tau deposition in the presynaptic (solid lines) and postsynaptic (dashed lines) SD compartments for each of the previous simulation
conditions. The balance between transport parameters § and e determines the compartment in which tau preferentially accumulates
and if there is a net bias over time, which is represented by the magenta dotted line. (b) Schematized versions of the end
configurations of the system for each parameter regime.

distributions match that of the anterograde biased regime through a period of around 1
day, until the accumulation of insoluble tau inside the axon produces a counteracting
retrograde bias that leads to roughly equal concentrations of both species in each
compartment. These results can be summarized by the a single “bias” metric, which we
define as the difference between total postsynaptic tau and total presynaptic tau
divided by total somatodentric tau (magenta dotted lines); by this convention, zero bias
indicates equal deposition between SD compartments, with positive values indicating
anterograde bias and negative values indicating retrograde bias. The equilibrium
configurations of each parameter regime are schematized in Fig. Bb, exemplifying how
the 0 and e transport parameters alone strongly influence how tau is distributed
between presynaptic and postsynaptic neurons.

2.4 Aggregation and Fragmentation Rates Perturb Transport
Feedback

We more thoroughly explored the parameter dependence of equilibrium state by
calculating the SD bias as defined above across a broad range of transport bias
parameter values, keeping all other conditions the same as the previous simulations
(Fig. 7 Table . We found a linear manifold separating (0, €) pairs that result in a net
postsynaptic accumulation of tau (red) from those resulting in presynaptic accumulation
(blue), indicating that it is the ratio of these two parameters that ultimately governs the
end state of the system. However, we also wanted to explore how the interconversion
parameters for aggregation (v) and fragmentation (3) influence equilibrium bias, so we
repeated this analysis for different values of each (Fig. , , and . When 7 is
doubled (Fig. ), there is still a linear manifold of zero bias, although the slope of the
line is roughly twice that of the original v value (Fig. [4h); similarly, the slope of the
zero-bias manifold is roughly halved when + is halved (Fig. ) We observed a similar
effect when we perturb , albeit in the opposite direction (Fig. . Conversely, we
found that the parameter governing the fraction of diffusing soluble tau, f (Eq. , does
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Figure 4. Equilibrium bias analysis as a function of aggregation rate. (a) Equilibrium bias (postsynaptic SD tau -
presynaptic SD tau / total SD tau) across a range of § and e parameter values where all other parameter values are identical to those
of the previous simulations. There is a zero-bias linear manifold that emerges, whose best-fit line has a slope of approximately 2.8. (b)
Equilibrium bias for the same range of § and e parameter values where aggregation rate () is doubled. The linear zero-bias manifold
has a slope of 5.8, roughly twice that of the original aggregation rate. (c¢) Equilibrium bias for the same range of § and e parameter
values where y is halved. Here the slope of the linear manifold is 1.4, or approximately half that of the original aggregation rate.

not affect the position of the zero-bias manifold, although it is inversely related to the
intensity of the bias for any given (4, €) pair not on the manifold (Fig.[S2). An
explanation for this model behavior is that the interconversion parameters influence the
equilibrium between insoluble and soluble tau, and therefore undergird the relative
impact of § and € on the effective transport velocity, v (Eq. . For example, when
aggregation rate is increased and there is comparatively more insoluble than soluble tau
in the system, the € value required to achieve the same value of v is reduced, which
ultimately determines how pathological tau is apportioned between SD compartments.
The diffusing fraction parameter (f), by contrast, changes the extent to which axonal
transport, as opposed to diffusion, influences the overall distribution of tau in the
system and therefore affects the strength of € and ¢ to the same extent. We conclude
that, although the time course of SD tau deposition is a complex function of the
interconversion and transport parameters (Fig. , the equilibrium state can be
characterized in terms of a linear combination of these parameters.

2.5 Robustness to Initial Conditions

The previous simulations were initiated with a constant concentration of soluble
pathological tau inside the axonal compartment. To explore model dependence on
initial conditions, we re-ran the model with the same parameters as above but “seeded”
either the postsynaptic or presynaptic SD compartment with a high constant
concentration of insoluble tau (anterograde-biased, retrograde-biased, and net-unbiased
parameter regimes shown in Fig. , and respectively); this partly mimics in
vitro experiments where two connected neurons are kept microfluidically isolated .
Because only soluble tau can diffuse or be transported, the initial dose of insoluble tau
must first undergo the relatively slow process of fragmentation before tau of either
species can migrate to neighboring compartments, and so it takes a period of days
before tau begins to build up in the opposite SD compartment. However, once
equilibrium is established, the spatial concentration profiles of both species are
indistinguishable from those yielded under the constant axonal soluble tau initial
conditions (Fig. . To more thoroughly explore the robustness of this apparent
convergence to a single fixed point, we simulated 100 random initial conditions with the
same total tau mass (i.e. the same spatial integral of n plus m) as in Fig. [2| and plotted
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Figure 5. Perturbation of initial conditions does not affect equilibrium point. We plot the relative pairwise error
between model instances with randomly generated initial conditions using (a) the anterograde, (b) the retrograde, or (c) the net
unbiased parameterizations (gray lines are representative sample traces). There is universal convergence at long time scales, suggesting
that for these parameter values the model has a single fixed point.

the relative pairwise error between model instances as a function of time (Fig. [5). In all
three parameter regimes, convergence to the same fixed point is assured, despite the
initial conditions themselves being quite divergent from each other. While we cannot
conclude from these simulations that this system of PDEs does not exhibit
multistability at other sets of parameter values, it does suggest that with these
biological plausible conditions, there is a single equilibrium point that is strictly
dictated by model parameterization, not initial conditions.

2.6 Comparison to Mouse Tauopathy Models

Although our transport feedback model is robust enough to explain a wide range of
apparent directional biases in this two-neuron system, a lingering question is how
applicable it is to in vivo models of tauopathy. We therefore parameterized our model
such that the bias in SD tau deposition over time could match the apparent
directionality bias observed within mouse models of tauopathy at the network level [20].
Fig. |§| shows the apparent directionality bias in several mouse models [11}[13}[35]36]
(gray data points) alongside the temporal evolution of SD bias starting from a uniform
axonal concentration of soluble tau (magenta dotted lines), where we have separated
mouse models based on whether tau conformers were formed in the presence of A5
(AD-like, panel a) or not (non-AD-like, panel b). In both cases, we see good
concordance (R? > 0.4) between transport model bias and network bias over the same
time scale [S6l The tendency for an increasingly strong retrograde bias in tau
propagation over time is captured by a high value of the kinesin inhibition parameter e.
The early anterograde bias present in the non-AD-like studies also requires a high value
of the kinesin rate enhancement parameter ¢ in contrast to the AD-like studies. This
suggests a weaker interaction between the soluble tau assemblies formed in the presence
of amyloid with kinesin than those formed in its absence. There is also a higher
aggregation to fragmentation rate ratio for the AD-like studies, which similarly induces
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Figure 6. Tau transport feedback recaptures the directionality of mouse tauopathy models. (a) The AD-like mouse
models explored by [20] exhibit a strong retrograde bias that becomes more pronounced over time, which can be replicated in the
two-neuron system with weak anterograde-directed transport feedback (low 4 relative to €). (b) The non-AD-like mouse models
similarly have a trend towards increasing retrograde bias, although to a lesser extent than the AD-like studies and there is evidence of
early anterograde bias, which is captured by fixing both § and € at high values. For all studies, we first linearly transform the bias
parameter, s, used by [20] onto the [—1,1] scale of our SD bias estimates before plotting. Refer to Table[S2| for a full parameterization
of both simulations. Studies included: [35], |36], [11], |13].

stronger and earlier retrograde biases. Together, these results support axonal
transport feedback as a plausible mechanistic link between differences in
tau conformation and the resulting divergence in whole-brain networked
spread patterns.

3 Discussion

3.1 Transport Bias as a Mechanism for Explaining Directional
Bias

The present work demonstrates, for the first time, how directional bias can emerge on a
microscopic level as a consequence of active transport feedback by pathological tau
species. The central finding is that the model’s free parameters, which include
aggregation rate, fragmentation rate, and the transport feedback modifiers (Fig. ,
strongly determine the spatial segregation of pathological tau over time and at
equilibrium, with enough inherent robustness to explain both anterograde-biased spread
and retrograde-biased spread. At model initiation, a combination of diffusion and
anterograde-biased transport (assuming sufficiently high ) determines how soluble tau
is distributed at early time points (Fig. 2] first two columns). At intermediate and late
time points, where aggregation has allowed sufficient concentrations of insoluble tau to
accumulate in the axon, negative feedback proportional to the value of € drives tau back
towards the presynaptic SD compartment (Fig. |2} final three columns). Indeed, the
temporal evolution of SD tau concentrations exhibits three phases of behavior for all
three parameter regimes: 1) an initial rise in soluble tau (bias between compartments
influenced by positive transport feedback); 2) a fall in SD soluble tau coupled with a
rise in SD insoluble tau as aggregation occurs; 3) final re-equilibration (Fig. |3p). These
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phases are a direct consequence of phenomena operating under dramatically different
time scales, with transport and diffusion being faster processes than interconversion and
inter-compartmental spread. Despite minor differences in trajectories over time, this
system of coupled nonlinear PDEs has a single fixed point over a broad range of initial
conditions and parameter regimes (Fig. [5]), which suggests that equilibrium bias can be
characterized, as suggested by Fig. [4] and as a well-behaved function of the
internal parameters. Our results indicate that even a relatively simple,
concentration-dependent feedback mechanism (Eq. [1)) is sufficient to drive a wide range
of model behaviors.

3.2 Comparison With In Vivo Mouse Models

Our model behavior shows good agreement (R? > 0.4) with in vivo models of
tauopathic disease at the regional level: for both AD-like and non-AD-like mouse
models, we can parameterize our transport feedback model to produce biases in
somatodendritic tau deposition that match the longitudinal trends in network spread
bias (Fig. [6] and [20]. Specifically, we show that a parameter regime with high e
relative to 0 can reproduce directional bias trends in AD-like mouse models, while for
the non-AD-like models we better capture bias with higher ¢ (Table . The model
regimes chosen also exhibit different balances of aggregation and fragmentation
parameters, with a relatively higher aggregation rate in AD-like mouse models; this
tends to further strengthen the bias imposed by ¢ relative to § (Fig. 4] and . These
two effects act in concert to produce retrograde directional biases in AD-like tau models
that are stronger and have earlier onsets than those observed in non-AD-like models.
Therefore, we suggest that an amyloidogenic microenvironment may produce tau
conformers that have higher rates of aggregation relative to fragmentation in addition to
differential interactivity with kinesin. Amyloid-8 has long been considered to be the
best biomarker available for distinguishing AD from other dementias, and more recently
positive amyloid status has been shown to be strongly related to the presence of the
p181 tau phosphoepitope in patients |[16L|18]. Although the indirect and direct
interactions between amyloid-5 and tau are complex and the subject of intense scrutiny,
our work suggests that tau conformers cultured in the presence of amyloid-5 may have
specific properties impacting axonal transport that merit further exploration.

3.3 Limitations

There are several important limitations to the present work. Most notably, due to the
paucity of data measuring intra-axonal tau in the disease state, it is challenging to
directly fit our model parameters or validate our findings. Although in vitro time-lapse
microscopy studies of tau transport kinetics have been conducted with both tau in its
native conformation and pseudophosphorylated variants [28}/29], there have been no
investigations of pathological tau dynamics that determine concentration profiles over
time in single neurons. We also note that, because there are few studies for which direct
regional quantification of mouse tau pathology is available and each study reports at
most four time points, our comparison between model bias and network directional bias
suffers from limited statistical power. Our model’s single spatial dimension does not
represent the complex geometry of the SD compartments, preventing us from accurately
modeling missorting between the dendritic spines and the rest of the soma; accordingly,
we only compare the mean concentrations in these compartments (Fig. . The AIS
and SC are modeled as identical diffusion-limiting barriers save for the lack of
interconversion in the SC, which is implausible given their true dimensions and
biological properties. Firstly, it is unlikely that these two barriers are equally
impermeable to all tau species, as we encoded here. It is likewise inaccurate to assume
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that it is a purely diffusive process that facilitates tau migration across the two
phospholipid bilayers of the SC or through the structural mesh of the AIS, but our
choice was motivated by our expectation that transport rate across these boundaries
should be roughly proportional to the concentration difference across them. An
intriguing possibility for future modeling work is to incorporate a
concentration-dependent permeability; for instance, tau missorting into the SD
compartment is a consequence of AIS breakdown, which suggests a dynamic A [25].
Finally, we entirely neglect the conversion of healthy tau to pathological soluble tau,
pathological tau clearance, and the spread of tau outside of the two-neuron system from
our model since these effects would hinder model interpretability.

3.4 Applications to Other Neurodegenerative Diseases

Axonal transport feedback may also play a role in disorders such as Parkinson’s disease
(PD) and amyotrophic lateral sclerosis (ALS). Experimental and clinical studies have
reported prion like spreading of misfolded protein assemblies along the white matter
tracts of the brain in these disorders, and mathematical models successfully captured
key features of their neuropathology [37-40]. Because migration along axonal fibers is
necessary for infiltration into areas of the brain beyond regions where pathology
initiates, how the axonal active transport machinery interacts with misfolded assemblies
of a-synuclein, TDP-43, and SOD1 remains an open question. There is evidence that
a-synuclein interacts with both kinesin-1 and dynein [32], and down-regulates them at
high levels [41]. It is therefore possible that a-synuclein, as we have explored here with
tau, perturbs the balance of axonal transport in a conformer-specific fashion, potentially
explaining some of the clinical heterogeneity observed in PD [42,/43]. Similarly, axonal
transport defects in both directions are a consistent and early feature of ALS [44], with
evidence of directionally biased spread of SODI in a transgenic mouse model [45].
Although evidence of the dual feedback mechanism for pathological tau explored here is
less clear for these diseases, incorporating the effects of transport defects could lead to
better predictive models for non-tauopathic proteinopathies.

3.5 Integrating Axonal Transport at a Network Level

A necessary extension to the current work will be to scale up the two-neuron system of
PDEs explored here to a network of regions, which will facilitate parameter fitting and
allow us to directly compare our model output to histopathological data.
Conformer-specific parameters such as aggregation rate and the transport feedback
modifiers should be globally invariant to avoid overfitting; that is, they should not
depend on the compartment in which the pathological tau resides. Then, using
inter-regional connectivity to weight pathology spread, we can directly simulate how tau
transport feedback effects spread in a macroscopic sense |20,/46-H49]. Explaining
directionally biased spread in mouse models of tauopathy is the most natural immediate
fit to the current work, as there are many models for which tau pathology has been
extensively detailed [11}/13}|35l[36] and the mouse mesoscale connectivity atlas [50]
separates efferents from afferents, giving “anterograde” and “retrograde” a precise
anatomical meaning. Application to humans is more challenging given that diffusion
tensor imaging cannot typically determine the orientation of white matter tracts.
However, a hybrid-species connectome that encodes directionality for evolutionarily
conserved connections has been successfully used to model the spread of neuropathology
in progressive supranuclear palsy [51].
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3.6 Summary

We have demonstrated that transport feedback is a simple and sufficient mechanism to
explain a broad range of directional biases in tau spread in a two-neuron system.
Although much about tau biology in healthy and pathological states remains poorly
understood, and many other factors besides tau conformational status may contribute
to the progression of tauopathic diseases, it is increasingly clear that there are
disease-specific tau conformers that have distinct patterns of spread. We anticipate that
differences between tau conformers in their endogenous ability to regulate kinesin, in
addition to disparities in aggregation and fragmentation rates (among others), is a
parsimonious mechanism that, coupled with networked, trans-synaptic spread, drives
not only heterogeneity within a given tauopathy but also the distinct pathophysiologies
of different tauopathies.

4 Methods

4.1 Model Description

We use a coupled system of partial differential equations (PDEs) to model the
concentrations of two species of pathological tau: soluble n(x,t), which can travel via
diffusion and active transport processes, and insoluble tau m(x,t), which is immobile.
These two species interconvert through two opposing processes: i) aggregation, a
bimolecular reaction between one unit of n and one unit of either n or m to form m;
and ii) fragmentation, a unimolecular reaction by which a unit of m breaks apart to
form a unit of n. We did not model healthy tau concentrations or recruitment, the
process by which tau loses its native conformation via aberrant post-translational
modifications such as hyperphosphorylation, fragmentation, and acetylation to adopt a
pathological, prion-like conformation. As such, the total mass in the system is
conserved, since fragmentation and aggregation act symmetrically on n and m. The
unique feature of this model is that we incorporate the feedback these two species
provide on kinesin, with soluble tau enhancing kinesin processivity [28-30] and insoluble
tau inhibiting it [31]. Mathematically, we propose the following relationship for the
effective transport velocity:

v(n,m) =v, - (14 0n)(1 —em) — v, (1)

where v, and v, are the baseline anterograde and retrograde velocities of tau,
respectively, § is a nonnegative parameter governing the enhancement of kinesin
processivity in response to soluble pathological tau, and € is a nonnegative parameter
governing the reduction of kinesin processivity in response to insoluble pathological tau.
In this expression we have assumed that on the time scale of the simulation, the
characteristic “start-and-stop” dynamics of molecular motors [52] can be subsumed into
effective velocity parameters. By convention, positive v implies net transport from
presynaptic to postsynaptic neuron (i.e. anterograde transport). The various
compartments of this two-neuron system necessarily have different properties that
should be modeled distinctly, and we discuss the particulars of each compartment below.
Refer to Table [I] and the text below for a complete description of the parameterization
of the model.

4.1.1 Axonal Compartment

Given the axon’s high aspect ratio, which restricts movement of n parallel to its long
axis whether it is diffusing or being actively transported by molecular motors, we
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collapse the three-dimensional geometry of this system onto one dimension [53]. First
we use the following expressions for diffusive flux (jgir) and transport flux (jactive) of n:

jdiff(nw) = _Dn * Ny, (2)

jactive(n7 m) - ’U(TL7 m) cn, (3)

where parameter D, is the diffusivity of soluble pathological tau, n, denotes the partial
derivative of n with respect to x, and v(n,m) is given by Eq.[l] Under the assumptions
that i) active transport and diffusion are mutually exclusive processes and ii) the
processes of attachment and detachment from molecular motors and microtubules are
sufficiently “fast” on the simulation time scale, we define the net flux of n, jyet, in the
following way:

Jnet(n,myng) = f - Jaise(nz) + (1 = f) - Jactive(n,m) (4)

where f is the average fraction of soluble pathological tau that is undergoing diffusion
at any given time. While we estimate f based on measurements made by [34] using
pseudophosphorylated tau to mimic disease, we recognize that there is considerable
uncertainty in this parameter and therefore demonstrate how the it influences model
behavior (see Results: Parameter Dependence of Equilibrium Bias; Fig. . It
is also worth noting that the diffusivity value measured by [34] of 11 um?/s is the
effective diffusivity rate utilized in jpet, since D, - f = 12um? /s - 0.92 = 11um? /s. The
dynamics of interconversion of n and m as described above are governed by the
following expression:

F(nvm) = Bm—’yn(n—i—m), (5)

where we subsume the intricate dynamics of fragmentation and aggregation into two
parameters, 8 and . Combining these definitions, we arrive at the PDEs governing the
dynamics of n and m inside the axon:

anaxon o 0 .

ot %]nct (n,m,ns) +T'(n,m), (6)
OMaxon

— = I'(n,m), (7)

where jnet is given by Eq. [ and T is given by Eq.

4.1.2 Somatodendritic Compartments

Our two-neuron system incorporates two somatodendritic (SD) compartments,
corresponding to the presynaptic and postsynaptic cell bodies, which are modeled
identically. While the dynamics within axons can reasonably be collapsed into one
dimension, those within the SD compartments cannot. For the purposes of this model,
we focus on the overall amounts of SD tau - particularly the differences between
presynaptic and postsynaptic neurons - that result from the tau dynamics within the
axon. We therefore greatly simplify the system by modeling these compartments with a
200 pm one-dimensional lengths. The dynamics of the SD compartment only differs
from the axonal compartment regarding the active transport of n. We do not expect
transport to be more efficient than diffusion in the soma, and transport in the dendrites
is both distinct from that in the axons and beyond the scope of our model. Therefore,
the governing equations are given by:

8’17,5[) o 8 .

ot - ax.jdlff(niv) + F(n7 m) ) (8)
Omsp N
2t —L'(n,m). 9)
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4.1.3 Axon Initial Segment

The axon initial segment (AIS) constitutes the first 20-60 pm of the axonal length
beyond the hillock, and has several features that distinguish it from the axon proper.
The intricate mesh of structural proteins occupying the AIS serves as a barrier that
restricts the free intermixing of axoplasm and cytoplasm components. For tau in
particular, it serves as a one-way molecular sieve that allows tau migrate from the SD
compartment to the axon, but not the reverse [54]. Indeed, an early feature of AD
pathology is the missorting of tau in the SD compartment following a compromise of
AIS integrity [23,25,55]. We model the AIS as having a length of 40 ym with dynamics
similar to the SD compartments, with the exception that the effective diffusivity of n is
modified by the free parameter A, whose value is fixed at a value much less than one:

8nAIS 8 .

ot —A- %Jdiff(nx) +I'(n,m), (10)
Omais

5 —T'(n,m). (11)

In this way, the AIS serves as a fixed diffusion-based barrier over the course of the
simulation.

4.1.4 Synaptic Cleft

The synaptic cleft (SC) is the narrow extracellular space between the axon terminus of
the presynaptic neuron and the dendrite of the postsynaptic neuron, through which the
neurotransmitters that mediate the flow of information carried by action potentials are
released and taken up [56]. Trans-synaptic spread of pathological tau is thought to be
the dominant mechanism by which tau migrates between neurons in the brain [11,23],
although the precise molecular mechanisms by which it traverses the SC remain the
subject of intense scrutiny [57},/58]. For our purposes, the SC acts as a barrier that
restricts free diffusion of n between presynaptic and postsynaptic neurons, and, in the
absence of a more precise way of describing its dynamics, we chose to model it
identically to the AIS, with the exception that we do not allow m to accumulate or n to
aggregate, given the true spatial constraints of the synapse:

677,30 o 6 .

T A %]dlff(nz)a (12)
Omsc

- 0. (13)

We have chosen to use the same parameter A, which governs the effective diffusivity of
n, for both the AIS and the SC for two reasons. One, we lack quantitative experimental
studies from which these effective permeabilities can be ascertained, although these
barriers are likely to be differentially permeable to pathological tau in a
neuron-subtype-specific and conformer-specific way. Two, from a modeling perspective,
this allows us to cleanly explore the effects of the axonal transport parameters § and e
given the lack of mechanistic knowledge about how pathological tau migrates out of the
axonal compartment.

4.2 Numerical Implementation

We utilize the MATLAB parabolic and elliptical PDE solver pdepe, which efficiently
discretizes a system of one-dimensional PDEs over a specified spatial mesh and solves
the resulting system of differential algebraic equations (DAEs) using ode15s [59].
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4.2.1 Initial Conditions

Aside from analyses where we directly explored the effect of model initialization (see
Results: Robustness to Initial Conditions, Fig. , for all simulation results
presented herein, we specify a constant n concentration of 0.2 M within the axonal
compartment and 0 elsewhere at t = 0. We also stipulate that there are no insoluble
aggregates at the start of the simulation. This condition simulates the initiation of tau
pathology in the axon and its resulting spread to neighboring, otherwise unaffected
neuron cell bodies, as is hypothesized to occur in early tauopathic disease [23}/60].
Although the “true” initial configuration of the system would be the healthy state with
no n or m anywhere, with n gradually added to the system through the conversion of
healthy tau in the axon (i.e. recruitment), this process depends upon poorly
characterized time-dependent concentration profiles of healthy tau and numerous other
species (e.g. axonal kinases and phosphatases) and goes beyond the scope of the present
work. Since the focus of our model is how different pathological tau species, once
formed, may have apparent directional biases as a function of their propensity to
aggregate, fragment, and regulate axonal transport, we believe that our choice of initial
conditions sufficiently describes an early state of pathology in tauopathic diseases.

4.2.2 Spatial Mask and Boundary Conditions

We modify the dynamics across compartments using discontinuous, binary spatial masks
and simulate the whole system in one call of pdepe. These masks allow us to turn “on”
and “off” processes such as active transport and interconversion depending on x
position. This methodological choice allows us to take full advantage of the efficient
pdepe algorithm and grants us the flexibility to define 1-D geometries of arbitrary
complexity. Additionally, it eschews the need to encode complicated boundary
conditions for each compartment and then couple them at each time step, which would
introduce significant inaccuracies. We use zero-flux Neumann boundary conditions at
z = 0 (left boundary of the presynaptic SD compartment) and & = Liota (right
boundary of the postsynaptic SD compartment), ensuring that mass in the system is
conserved at every time point. While these boundaries are not impermeable in the open
biological system of the brain on the time scale of the simulation, we chose not to
include leakage because it would reduce model interpretability and cannot be accurately
simulated without also explicitly modeling the concentration profiles in all neighboring
cells. In order to minimize inaccuracies due to the lack of differentiability introduced by
the spatial mask while maintaining short computation times per simulation, we specify
an inhomogeneous spatial mesh that is very fine within 10 ym of each compartment
boundary on either side and coarser elsewhere.
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Supplemental Material

All code for running the model and generating the figures in the paper are available for
download at https://github.com/Raj-Lab-UCSF/Tau_Transport.

Anterograde-Biased Retrograde-Biased Net-Unbiased

B 1x1076s7t 1x1076s7! 1x107 657t
v 2x 107° (uM -s)~1 2x 1075 (uM-s)7t  2x107° (uM -s)~1
5 1puM! 0.01 pM™* 1Mt
€ 0.01 pM™? 1Mt 0.35 uM ™1
A 0.01 0.01 0.01
f 0.92 0.92 0.92
Lsp 200 pym 200 pm 200 pym
Lais 40 pm 40 pm 40 pm
Laxon 920 pm 920 pm 920 pm
Lsc 40 pm 40 pm 40 pm

Table S1. Table of all parameter values used in the simulations shown in Fig. and [5} see Methods for a full
description of each parameter.

AD-Like Non-AD-Like

B 2x 1078 g1 2x 1077 st

v 1x107% (uM-s)~t 4 x 1076 (uM-s)~ 1

) 0.01 pM ™! 0.6 uM™*

€ 1Mt 1Mt

f 0.6 0.6
Table S2. Table of parameter values used in the simulations shown in Fig. @ unlisted parameters have identical
values as in Fig.
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Figure S1. Equilibrium analysis as a function of fragmentation rate 5. (a) Equilibrium bias (postsynaptic SD tau -

presynaptic SD tau / total SD tau) across a range of § and € parameter values where all other parameter values are identical to those
of the previous simulations. There is a zero-bias linear manifold that emerges, whose best-fit line has a slope of approximately 2.8. (b)
Equilibrium bias for the same range of § and e parameter values where aggregation rate (/) is doubled. The linear zero-bias manifold
has a slope of 1.4, roughly twice that of the original fragmentation rate. (c¢) Equilibrium bias for the same range of 4 and e parameter
values where (8 is halved. Here the slope of the linear manifold is 5.8, or approximately half that of the original fragmentation rate.
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Figure S2. Equilibrium analysis as a function of diffusive tau fraction f. The overall strength of the net bias at any given
pair of § and € values is inversely proportional to f, but it does not affect the line of zero bias (dashed lines), in contrast to v and 3.
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Figure S3. Somatodendritic seeding, anterograde-biased parameter values. Seeding in either SD compartment converges
to the same equilibrium point as the axon-only initial condition in the anterograde-biased parameter regime (Fig. ) Parameter

values used identical to those in Table
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Figure S4. Somatodendritic seeding, retrograde-biased parameter values. Seeding in either SD compartment converges
to the same equilibrium point as the axon-only initial condition in the retrograde-biased parameter regime (Fig. ) Parameter values

used identical to those in Table |S_Tl
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Figure S5. Somatodendritic seeding, net-unbiased bias parameter values. Seeding in either SD compartment converges to
the same equilibrium point as the axon-only initial condition in the net-unbiased parameter regime (Fig. ) Parameter values used

identical to those in Table
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Figure S6. Transport model bias versus mouse network bias scatterplot. Scatterplot showing the relationship between
mouse network bias across several tauopathy studies and the bias predicted by the transport model at equivalent time points. The
adjusted R? values for each set of studies is listed in the legend.
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Video S1. Video of the complete simulation summarized in Fig. 2h.
Video S2. Video of the complete simulation summarized in Fig. 2p.
Video S3. Video of the complete simulation summarized in Fig. 2k.
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