

1 **Thyroid Hormone Dependent Transcriptional Programming by TR β Requires SWI/SNF**
2 **Chromatin Remodelers**
3

4 Noelle E. Gillis^{1,2}, Joseph R. Boyd³, Jennifer A. Tomczak¹, Seth Frietze^{2,3*}, and Frances E.
5 Carr^{1,2*}

6 ¹Department of Pharmacology, Larner College of Medicine

7 ²University of Vermont Cancer Center,

8 ³Department of Biomedical and Health Sciences, College of Nursing and Health Sciences
9 University of Vermont
10 Burlington, VT 05405

11 *Co-corresponding Authors

12 Frances E. Carr, PhD, Department of Pharmacology, Larner College of Medicine, University of
13 Vermont, 89 Beaumont Avenue, Burlington VT 05405. E-mail: frances.carr@med.uvm.edu.

14 Seth Frietze, PhD, Department of Biomedical and Health Sciences, College of Nursing and
15 Health Sciences, University of Vermont, 106 Carrigan Drive, Burlington VT 05405. E-mail:
16 seth.frietze@med.uvm.edu.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 **ABSTRACT**

53 Transcriptional regulation in response to thyroid hormone (T_3) is a dynamic and cell-type
54 specific process that maintains cellular homeostasis and identity in all tissues. However, our
55 understanding of the mechanisms of thyroid hormone receptor (TR) actions at the molecular
56 level are actively being refined. We used an integrated genomics approach to profile and
57 characterize the cistrome of $TR\beta$, map changes in chromatin accessibility, and capture the
58 transcriptomic changes in response to T_3 in normal thyroid cells. There are significant shifts in
59 $TR\beta$ genomic occupancy in response to T_3 , which are associated with differential chromatin
60 accessibility, and differential recruitment of SWI/SNF chromatin remodelers. We further
61 demonstrate selective recruitment of BAF and PBAF SWI/SNF complexes to $TR\beta$ binding sites,
62 revealing novel differential functions in regulating chromatin accessibility and gene expression.
63 Our findings highlight three distinct modes of $TR\beta$ interaction with chromatin and coordination of
64 coregulator activity.

65 **INTRODUCTION**

66 Thyroid hormones play key roles in maintaining cell identity, metabolism, and homeostasis in all
67 tissues. Thyroid hormone receptors (TRs) function primarily as transcription factors that regulate
68 broad networks of target genes in response to fluctuations in thyroid hormone (T_3) levels. Two
69 distinct genes encoding $TR\alpha$ (*THRA*) and $TR\beta$ (*THRB*) are expressed in a tissue-specific
70 patterns. $TR\beta$ is the predominant TR expressed in the liver, kidney, and thyroid, while $TR\alpha$ is
71 expressed in the heart, bone, and brain¹. The classic bimodal switch model (reviewed in^{2,3}) where
72 TR is constitutively bound to chromatin and T_3 binding promotes dissociation of corepressors
73 and recruitment of coactivators, was the predominant model used to describe transcriptional
74 regulation by TRs for many years. However, a number of studies that point to more nuanced
75 mechanisms have recently been put forth. For example, multiple genome-wide studies of TR
76 binding have shown significant T_3 -dependent recruitment of $TR\beta$ to chromatin and *de novo*
77 chromatin remodeling, in opposition to the bimodal switch model⁴⁻⁶. Additionally, it has been
78 demonstrated that a large proportion of $TR\beta$ binding occurs in distal regulatory elements, and
79 that $TR\beta$ coordinates histone acetylation of enhancer regions and higher order chromatin
80 structure⁷. Recruitment of cofactors by $TR\beta$ has been recently described as a T_3 -dependent
81 coregulator shift, rather than a complete loss of corepressors and gain of co-activators upon
82 ligand binding⁸. Our data supports a multi-modal regulation model for $TR\beta$ interaction with
83 chromatin that integrates each of these concepts.

84 ATP-dependent chromatin remodeling complexes are known to act as coregulators for nuclear
85 receptor transcriptional regulation and have been implicated in chromatin remodeling
86 specifically by $TR\beta$. SWI/SNF components were found to be associated with NCOR, a well-
87 known co-repressor for TRs and other non-steroidal hormone receptors⁹. This provided indirect
88 evidence that SWI/SNF chromatin remodeling might be required for target gene repression by
89 TRs. We have described an interaction between the SWI/SNF core subunit BRG1 and $TR\beta$ for
90 repression the oncogene RUNX2¹⁰. Recruitment of the SWI/SNF complex to T_3 -activated
91 promoters has been suggested to be dependent upon interactions between SRC and p300,
92 rather than a direct interaction between BRG1 and $TR\beta$ ¹¹. Direct interaction between BAF57, a
93 key SWI/SNF subunit, and $TR\beta$ have been observed at T_3 -responsive promoters¹². Given the
94 limited studies of SWI/SNF participation in T_3 -regulated gene expression, a specific mechanism
95 for TR interactions with SWI/SNF complexes has yet to be defined.

96 In this study, we mapped the binding sites of endogenous $TR\beta$ in normal thyroid cells and
97 integrated this data with changes in chromatin accessibility to classify three distinct modes of
98 $TR\beta$ chromatin interaction and remodeling. However, a majority of $TR\beta$ binding sites were found

99 in distal regulatory elements. In order to identify the protein-protein interactions involved in T₃-
100 dependent transcriptional regulation, we performed a proximity labeling assay followed by mass
101 spectrometry. Some interactions between TR β and its binding partners are gained or lost with
102 T₃, but notably the majority do not exhibit a T₃-dependent switch. Differential enrichment of
103 interactions between TR β and members of BAF and PBAF SWI/SNF complex subspecies were
104 identified. We further demonstrated that TR β differentially recruits SWI/SNF complexes to its
105 binding sites. Based on our comprehensive genomic and proteomic analyses, we propose a
106 new model whereby selective recruitment of BAF and PBAF SWI/SNF complexes to TR β
107 binding sites regulates chromatin accessibility and gene expression.

108 RESULTS

109 TR β binds to and remodels chromatin in three distinct modes.

110 We profiled the genomic binding patterns of TR β in the human normal thyroid epithelial cell line
111 Nthy-ORI using CUT&RUN¹³. This approach allows high-resolution detection of genomic binding
112 sites of low abundance transcription factors compared with ChIP-seq. Replicate CUT&RUN
113 peaks were used to generate high confidence peak sets for TR β with and without 10nM T₃ for 6
114 hours (**Supplemental Figure 1A**). We identified a total of 8,200 TR β binding sites that we
115 classified into three distinct groups based on response to T₃ treatment (**Figure 1A**). The largest
116 group is the liganded TR β binding sites (n = 6,768), which have significantly increased TR β
117 enrichment when T₃ is present. Unliganded TR β binding sites (n = 959) are enriched with TR β
118 only in the absence of T₃, and ligand-independent binding sites (n = 473) are detected both in
119 the presence and absence of T₃. The enrichment profile of TR β binding at each of the three
120 groups of sites was visualized in a heat map (**Figure 1B**), and in representative genome
121 browser shots (**Figure 1C**). Accordingly, we observed a nearly complete loss of TR β enrichment
122 at unliganded binding sites with T₃ treatment, while the enrichment remained stable at ligand-
123 independent binding sites with T₃ treatment. Liganded binding sites exhibited a significant gain
124 in TR β enrichment upon T₃ treatment. The gain in signal at liganded binding sites is consistent
125 with the dynamic assisted loading model^{14,15}, the concept whereby nuclear receptors have
126 sparse transient interactions with chromatin and ligand binding increases the residency time to
127 stabilize interactions with response elements.

128 Annotation of TR β binding sites revealed differences in the distribution of TR β binding relative to
129 transcriptional start sites (TSS) (**Figure 1D**). 30% of ligand-independent sites mapped to
130 proximal promoter regions (within 500bp of TSS), while only 18% of liganded and 9% of
131 unliganded TR β binding sites mapped to a proximal promoter. Unliganded binding sites were
132 more likely to map to distal regulatory elements (28%), compared to liganded binding sites
133 (19%). Calculating the distance to the nearest TSS of each of these three types of binding sites
134 revealed that ligand-independent binding sites tend to be closer to transcriptional start sites than
135 others (**Figure 1E**). Transcription factor motif analysis revealed that thyroid hormone response
136 elements (TRE) were strongly overrepresented in each of the three groups of TR β binding sites
137 (**Supplemental Figure 2**). Ligand-independent binding sites have the highest frequency of the
138 full-length direct-repeat palindromic TRE (DR4), while liganded sites have the highest frequency
139 of TRE half-sites.

140 To map changes in chromatin accessibility in response to T₃ in Nthy-ORI cells, we performed
141 ATAC-seq after 6 hours (early) and 24 hours (late) hours after treatment with T₃ (**Supplemental**
142 **Figure 3**). Differential accessibility analysis revealed a significant increase in the chromatin
143 accessibility with early and late T₃ treatments (7,754 and 21,678 opened regions, respectively;
144 FDR < 0.05). In contrast, we found that only 107 regions were closed by T₃ treatment, all of
145 which were closed with early T₃ treatment (**Figure 2A**). We next examined the chromatin

146 accessibility associated with TR β binding. Unliganded TR β binding sites, which are lost upon T₃
147 treatment, had relatively little T₃-induced chromatin accessibility with a modest decrease in
148 accessibility with T₃ treatment (**Figure 2B**). However, chromatin accessibility increased at
149 liganded binding sites with early T₃ treatment and further increased with late T₃ treatment
150 (**Figure 2C**). Ligand-independent binding sites also had significant increases in chromatin
151 accessibility after 6 and 24 hours of T₃ treatment (**Figure 2D**). To estimate the size of
152 differentially accessible regions of chromatin following T₃ treatment, we compared the average
153 peak width of differentially accessible ATAC-seq peaks within 5kb of each of the groups of TR β
154 binding sites (**Figure 2E**). Unliganded TR β binding sites had the smallest average peak width
155 (190 bp), consistent with the modest changes in accessibility near those sites. Differentially
156 accessible peak width was greatest for ligand-independent TR β binding sites (355 bp) followed
157 by liganded sites (253 bp). This suggests that remodeling around liganded binding TR β binding
158 sites is more focused while remodeling around ligand-independent TR β binding sites stretches
159 across broader regions.

160 **T₃ induces changes in the TR β interactome.**

161 To detect protein-protein interactions between TR β and potential coregulators, including
162 transient cofactors that are exchanged in a T₃-dependent fashion, we used a live cell proximity-
163 dependent biotin labeling assay (**Figure 1A**). Nthy-ORI cells were transfected with vectors that
164 express a TR β -miniTurboID fusion construct that can rapidly biotinylate proximal proteins, which
165 were isolated via biotin-affinity purification and subsequently identified by mass spectrometry
166 (**Figure 3A, Supplemental Figure 4**). We identified a total of 1,328 high-confidence proteins
167 that interact with TR β either in the presence and absence of T₃. Differential enrichment analysis
168 revealed that 75 of these were gained in the presence of T₃, and 70 were lost in the presence of
169 T₃ (**Figure 3B, Supplemental Table 1**). The largest group are unchanged interactions (1,183
170 proteins). Pathway analysis showed an enrichment of distinctive biological processes
171 associated with the different groups of TR β interaction partners that change with T₃ treatment
172 (**Figure 3D**). Interacting proteins that were lost with T₃ treatment were enriched with
173 transcription repressor activity, demethylase activity, and translation factor activity, while gained
174 proteins were enriched with transcriptional coactivator and RNA polymerase binding activity.
175 Interacting proteins that remained stable were classified as nucleosome remodeling, ATPase
176 activity, and histone binding proteins.

177 To examine the impact of ligand-dependent interactions and DNA-binding dependent
178 interactions, we compared the interaction profiles of a ligand-binding domain mutant (TR β ^{PV})¹⁶
179 and a DNA-binding domain mutant (TR β ^{GS125})¹⁷ with that of wildtype TR β . The subset of 143 T₃-
180 induced differential interactions with wildtype TR β were altered by TR β ^{PV} and TR β ^{GS125} mutants
181 (**Figure 3C**). TR β ^{PV} mutant retained many of the wildtype interactions, but did not exhibit
182 differential binding upon T₃ treatment, while TR β ^{GS125} mutant lost many interactions entirely. Our
183 analysis of the TR β interactome is consistent with a co-regulatory shift model⁸, where, rather
184 than an all-or-nothing switch, T₃ alters the ratio of corepressor to coactivator binding partners.

185 We focused our analysis on interacting proteins that were likely to participate in chromatin
186 remodeling. Several multi-subunit chromatin remodeling complexes were identified in our
187 proximity labeling assay such as SWI/SNF, Mi-2/NURD, the NCOR and SIN3 co-repressors,
188 and the CBP/p300 and TRAP/DRIP/Mediator co-activators (**Figure 3E**). Each of these has been
189 previously linked to TR β gene regulation¹⁸⁻²². We identified several members of each of these
190 complexes as in our proteomic dataset. An interaction score was calculated for TR β -associated
191 chromatin remodeling complexes by dividing the sum of the signal
192 intensity of each subunit in the complex by the total subunits identified (**Figure 3F**). The Mi-

193 2/NURD, SIN3, and TRAP/DRIP/Mediator complexes did not have significant changes in their
194 interaction scores. There was an increase in the CBP coactivator complex interaction score and
195 decrease in the NCOR corepressor complex interaction score with T₃, consistent with previous
196 studies of their interaction with TR β ¹⁸. The SWI/SNF complex also significantly increased with
197 T₃. TR β ^{PV} and TR β ^{GS125} mutations both inhibited these T₃-dependent interactions.

198 **TR β differentially recruits SWI/SNF complexes.**

199 Upon closer examination of the SWI/SNF complex subunits that were identified as TR β
200 interacting proteins, it became apparent that TR β interacts with two different subspecies of
201 SWI/SNF complexes: canonical BAF and polybromo-associated BAF (PBAF). Each of these
202 contains one of the mutually exclusive ATPase catalytic subunits, (BRG1 or BRM) which are
203 necessary for nucleosome displacement, array of accessory components, and a few
204 subspecies-specific subunits²³ (**Figure 4A**). Our proteomic analysis identified the BRG1 core
205 subunit, many of the accessory components, and three subspecies-specific subunits.
206 Enrichment of the BAF-specific subunit ARID1A (BAF250) was decreased with T₃ treatment,
207 while the PBAF-specific subunits ARID2 (BAF200) and PBRM1(BAF180) were increased in the
208 presence of T₃ (**Figure 4B**). BAF57 enrichment was also increased in the presence of T₃. BRG1
209 was not differentially enriched.

210 Based on differential enrichment observed in our proximity ligation data, we performed
211 CUT&RUN to determine T₃-induced changes in genomic binding of ARID1A as a representative
212 of BAF complexes, PBRM1 as a representative of PBAF complexes, as well as BRG1
213 (**Supplemental Figure 1B-D**). We then examined the binding of each of these factors
214 specifically at TR β binding sites. BRG1 CUT&RUN tag density was unchanged with T₃ at
215 unliganded sites, while ARID1A tag density was low with a slight increase with T₃, and PBRM1
216 tag density was low (**Figure 4C**). This indicates that unliganded TR β may recruit BRG1 to prime
217 its binding sites in a manner similar to a mechanism described for the glucocorticoid receptor²⁴.
218 Ligand-independent sites had an increase in all three SWI/SNF components with T₃, indicating
219 that both BAF and PBAF complexes are recruited (**Figure 4D**). Liganded binding sites had an
220 increase BRG1 tag density, while ARID1A and PBRM1 remained stable (**Figure 4E**).

221 To further examine differential recruitment of BAF and PBAF complexes, TR β peaks were
222 annotated based on whether they occurred near a promoter (< 5kb from nearest TSS) or in a
223 distal regulatory region (> 5kb from nearest TSS). The CUT&RUN tag density of SWI/SNF
224 subunits were quantified near two subsets of peaks (**Figure 5A**). As expected, BRG1 was
225 recruited to both sites in the presence and absence of T₃. ARID1A was recruited in a T₃-
226 dependent manner to both TR β -bound promoters and distal binding sites. PBRM1, however,
227 was recruited preferentially to TR β -bound promoters and not to distal binding sites. Visualization
228 of representative binding sites in genome browser shots (**Figure 5D**) further demonstrated
229 differential recruitment. There is a much greater degree of change in chromatin accessibility at 6
230 and 24 hours near TR β -bound promoters (**Figure 5B**) then at distal binding sites (**Figure 5C**).
231 Given that both BAF and PBAF complexes are recruited to promoters, both complexes may be
232 required to facilitate the large changes in chromatin accessibility observed (**Figure 5B**).

233 **TR β chromatin interactions are correlated with target gene expression.**

234 To determine the effect of T₃ treatment on gene expression, Nthy-ORI cells were treated with
235 10nM T₃ or vehicle control for 6 and 24 hours and global transcriptomic analysis by RNA-seq
236 was performed. Differential gene expression analysis was performed comparing each treatment
237 to the corresponding control. We determined that 366 and 368 genes were up and
238 downregulated, respectively, by T₃ at 6 hours (**Figure 6A, Supplemental Table 2**). The effect
239 was increased at the 24-hour period where 480 and 667 up and downregulated genes,

240 respectively. Enriched biological function pathways within early and late DEGs were compared
241 using Ingenuity Pathway Analysis software (**Figure 6C**). Highly enriched upregulated pathways
242 included cellular homeostasis, survival, viability, and cell cycle progression. Transcription and
243 protein synthesis switched from down- to upregulated between early and late T₃ treatment, while
244 carbohydrate metabolism switched from up- to downregulated. Apoptosis, cell transformation,
245 and ER stress response were downregulated. BETA²⁵ was used to predict whether T₃-regulated
246 genes are likely to be direct transcriptional targets of TR β based on proximity of a TR β peak to
247 the TSS (**Figure 6B**). 63% (230/366) of early upregulated genes and 51% (245/480) of late
248 upregulated genes were predicted to be direct targets of TR β . This suggests that increases in
249 chromatin accessibility that occur in the time between early and late T₃ timepoints (**Figure 2A**)
250 may allow TR β to access additional binding sites for induction of a subsequent set of target
251 genes. Conversely, 48% (177/368) of early and 18% (120/667) of late downregulated genes
252 were predicted to be direct targets of TR β , which indicates that direct TR β -induced gene
253 repression occurs more immediately and the additional downregulation we observed may be
254 secondary effects downstream of the early transcriptomic effects of T₃-treatment.

255 We examined SWI/SNF complex recruitment to promoters of T₃-induced differentially expressed
256 genes (**Figure 6D**). A majority of early upregulated genes have a SWI/SNF complex binding site
257 within 10kb of the TSS; most have both ARID1A and PBRM1 peaks, while a minority had
258 exclusively one or the other. There was a similar trend in the late upregulated genes. In
259 contrast, a majority of downregulated genes, both early and late, did not have SWI/SNF binding
260 near their promoter. However, among those that did there was a preference for ARID1A
261 recruitment over PBRM1. Combined, these results suggest that SWI/SNF complexes participate
262 in T₃-induced gene regulation near promoters of target genes, particularly in the context of
263 upregulation. For upregulation of gene expression, both BAF and PBAF complexes are likely to
264 be recruited to remodel the proximal promoter region, while BAF complexes may be preferred
265 for remodeling of downregulated promoters.

266 DISCUSSION

267 Although it is now appreciated that the classic model for TR β interaction with chromatin is
268 oversimplified, a consensus has yet to be reached on an updated model. Based on the data
269 presented here, we propose a multi-modal regulation model where TR β has at least three
270 distinct modes of binding and remodeling chromatin (**Figure 7**). In agreement with previous
271 genome-wide studies^{4-6,8}, we observed significant shifts in TR β occupancy in the presence and
272 absence of T₃. Unliganded TR β binds to chromatin with limited effects on chromatin
273 accessibility, but much of this binding is lost upon T₃ treatment. Liganded binding sites represent
274 the vast majority of TR β binding, and they are associated with significant changes in localized
275 chromatin accessibility (**Figure 1A,B; Figure 2C**). Intriguingly, liganded binding sites show a
276 clear increase in enrichment upon the addition of T₃, however most sites have some, albeit low,
277 enrichment before T₃ is added (**Figure 1B**). This suggests that TR β interactions with this type of
278 site are transient and are stabilized by ligand binding and recruitment of coregulators, consistent
279 with a dynamic assisted loading model^{15,26}. Since they are numerous and broadly distributed
280 across the genome, there are likely multiple functions of liganded binding sites that further
281 studies may clarify. While some of these binding sites occur near proximal promoters and
282 facilitate direct induction or repression of gene expression, many occur in distal regulatory
283 elements and may regulate enhancers or coordinate higher order chromatin structure. Ligand-
284 independent binding sites are defined by enrichment both in the presence and absence of T₃,
285 and substantial induction of chromatin accessibility (**Figure 1A,B; Figure 2D**). While they have
286 a clear functional importance for regulation of gene expression, these binding sites represent a
287 small minority of the overall cistrome of TR β . Notably, ligand-independent binding sites have
288 many of the characteristics originally described in the bimodal switch model such as their

289 proximity to transcriptional start sites, high frequency of full-length DR4 TREs, and high
290 regulatory potential.

291 TR β binding sites are also characterized by differential recruitment of SWI/SNF chromatin
292 remodelers. BRG1 alone is recruited to unliganded and liganded sites in the absence of T $_3$
293 (**Figure 4D**) suggesting that it may be recruited to prime binding sites for TR β occupancy, a
294 mechanism which has been clearly delineated for the glucocorticoid receptor²⁴. BAF and PBAF
295 complexes, each with unique subunits which dictate their precise function, are recruited to TR β
296 binding sites within promoters and likely contribute directly to the changes in chromatin
297 accessibility and recruitment of other transcription factors to alter target gene expression. Both
298 BAF and PBAF complexes have been implicated previously in hormone-dependent gene
299 regulation^{27,28}, however the distinct functional role of each when they are recruited by a nuclear
300 receptor to the same location remains unclear. BAF complexes are preferentially recruited by
301 TR β to binding sites that occur in distal regulatory regions. This might be a mechanism by which
302 TR β primes these binding sites or organizes higher order chromatin structure to promote
303 persistent changes in gene expression. These multifaceted interactions with a single chromatin
304 remodeling complex illustrate the importance of the proposed coregulator shift model⁸ over a
305 complete coregulator switch.

306 As a deeper understanding of the variety of ways in which TRs regulate gene expression and
307 coordinate a network of cofactors is developed, it is important that the models we use reflect
308 their multidimensional function. We suggest a model for multi-modal regulation by TR β that has
309 at least three distinct modes defined by their T $_3$ -dependent occupancy, changes in accessibility,
310 and differential recruitment of chromatin remodelers. Collectively, this study provides a next-
311 generation model for TR β interactions with chromatin, and lays a foundation for further studies
312 of TR β regulation of gene expression and recruitment of key cofactors in both normal cells and
313 in disease models.

314 METHODS

315 **Cell Culture and Hormone Treatments.** Nthy-ORI cells (Sigma) were routinely cultured in
316 RPMI 1640 growth media with L-glutamine (300 mg/L) (Sigma), sodium pyruvate and
317 nonessential amino acids (1%) (Cellgro/Mediatech), supplemented with 10% fetal bovine serum
318 (Peak Serum) and penicillin-streptomycin (200 IU/L) (Cellgro/Mediatech) at 37°C, 5% CO $_2$, and
319 100% humidity. For T $_3$ treatments, cells were hormone-starved for 24 hours in growth media
320 substituted with phenol-red free RPMI 1640 and charcoal-stripped fetal bovine serum (Sigma)
321 prior to the addition of 10nM T $_3$ or NaOH vehicle for the indicated time course. Nthy-ORI cell line
322 was authenticated by the Vermont Integrative Genomics Resource at the University of Vermont
323 with short tandem repeat profiles using the Promega GenePrint10 platform.

324 CUT&RUN.

325 Sample collection and Sequencing: CUT&RUN was performed as described¹³. Briefly, Nthy-
326 ORI cells were harvested, washed, and bound to activated Concanavalin A coated magnetic
327 beads (Epicypher 21-1401). Cells were then permeabilized with Wash buffer (20mM HEPES pH
328 7.5, 150mM NaCl, 0.5 mM spermidine 0.05% digitonin). Permeabilized cells were then
329 incubated with the indicated antibody (Supplemental Table 3) at 4°C with constant agitation
330 overnight. Cells were washed twice more before incubation with recombinant p-AG MNase
331 (Epicypher 15-1016) at 4°C for 2 hours. Liberated DNA was purified, and libraries were
332 prepared using the NEB Ultra FS II DNA Library Kit (NEB E6177) and amplified with 14 cycles
333 of PCR. Amplified libraries were then purified with AMPure beads (Agencourt), quantified via
334 Qubit (Life Technologies), and quality was assessed using the BioAnalyzer (Agilent) High-

335 Sensitivity DNA kit. CUT&RUN libraries were pooled and sequenced on the Illumina HiSeq 1500
336 with 100 bp paired-end reads.

337 ***Data Analysis:*** Quality scores across sequenced reads were assessed using FASTQC. Illumina
338 adapters were removed using Trim-Galore. Paired-end reads were mapped to hg38 using
339 Bowtie2, and peaks were called using MACS2. Consensus peak sets for downstream analysis
340 were derived using IDR²⁹ using two replicates (Supplementary Figure 2A) per target and a cut-
341 off of 0.05.

342 **ATAC-seq.**

343 ***Sample collection and Sequencing:*** ATAC-Seq was performed as previously described³⁰ using
344 50,000 Nthy-ORI cells with two biological replicates per condition. Libraries were generated
345 using custom Nextera barcoded primers³⁰ and were amplified by PCR for a total of 10 cycles.
346 Amplified libraries were then purified with AMPure beads (Agencourt), quantified using a Qubit
347 (Life Technologies), and quality was assessed using the BioAnalyzer (Agilent) High-Sensitivity
348 DNA kit. ATAC-seq libraries were then pooled and sequenced on the Illumina HiSeq 1500 with
349 100 bp paired-end reads.

350 ***Data Analysis:*** Quality scores across sequenced reads were assessed using FASTQC. Nextera
351 adapters were removed using Trim-Galore. Paired-end reads were mapped to hg38 using
352 Bowtie2, and peaks were called using MACS2. DiffBind³¹ was used to identify regions of
353 differential accessibility. Consensus peak sets for downstream analysis were derived using IDR
354²⁹ using two replicates (Supplementary Figure 2) per target and a cut-off of 0.05.

355 **RNA-seq.**

356 ***Sample collection and Sequencing:*** Nthy-ORI cells were treated 10nM T₃ or vehicle for 6 or 24
357 hours prior to sample collection. Total RNA was extracted and purified using RNeasy Plus Kit
358 (Qiagen) according to manufacturer's protocol. This was repeated to collect a total of three
359 biological replicates per condition. Purity of the total RNA samples was assessed via
360 BioAnalyzer (Agilent) and samples with an RNA integrity score >8 were used for library
361 construction. rRNA was depleted from 1 µg of total RNA with the RiboErase kit (KAPA
362 Biosystems). Strand-specific Illumina cDNA libraries were prepared using the KAPA Stranded
363 RNA-Seq library preparation kit with 10 cycles of PCR (KAPA Biosystems). Library quality was
364 assessed by BioAnalyzer (Agilent) to ensure an average library size of 300bp and the absence
365 of excess adaptors in each sample. RNA-Seq libraries were pooled and sequenced on the
366 Illumina HiSeq 1500 with 50 bp single-end reads.

367 ***Data Analysis:*** Quality scores across sequenced reads were assessed using FASTQC. All
368 samples were high quality. For alignment and transcript assembly, the sequencing reads were
369 mapped to hg38 using STAR. Sorted reads were counted using HTSeq and differential
370 expression analysis was performed using DESeq2. Genes with a p-value of <0.05 and a log₂
371 fold change greater than 1 or less than -1 were considered differentially expressed
372 (Supplemental Table 2).

373 **Proximity Labeling by miniTurboID.**

374 ***Cloning of 3xHA-miniTurbo-TRβ.*** 3xHA-miniTurbo-NLS_pCDNA3 vector was a gift from Dr.
375 Alice Ting (Addgene plasmid # 107172; <http://n2t.net/addgene:107172>; RRID:
376 Addgene_107172)³². 3xHA-miniTurbo-NLS_pCDNA3 was linearized by PCR and THRB cDNA
377 was inserted via HiFi Assembly Cloning (NEB E5520S) to create the 3X-HA-miniTurbo-TRβ
378 vector. Site directed mutagenesis (NEB E00554) was used to create mutant 3X-HA-miniTurbo-
379 TRβ-GS¹²⁵ and 3X-HA-miniTurbo-TRβ-PV vectors. Successful insertion of the THRB cDNA and

380 site-directed mutagenesis were confirmed by Sanger sequencing. Expression of fusion
381 constructs from the cloned vectors was confirmed by Western blot (Supplemental Figure 3A).

382 ***Transfection and Biotin Labeling.*** Nthy-ORI cells were grown as a monolayer in DMEM-F12
383 (Cellgro/Mediatech) supplemented with 10% fetal bovine serum and penicillin-streptomycin (200
384 IU/L) in 15cm cell culture dishes. Cells were transfected at approximately 80% confluence with
385 20 μ g of plasmid DNA using 25 μ L Lipofectamine 3000 for 24 hours. BiOID samples were
386 simultaneously labeled using 250 μ M biotin and treated with 10nM T₃ or vehicle for 15 minutes.
387 Labeling was stopped by placing cells on ice and washing three times with ice-cold PBS. Cells
388 were detached from the plate and collected by centrifugation. The cell pellet was subjected to
389 nuclear protein extraction using the NE-PER Protein Extraction Kit (ThermoFisher 78833) with
390 the addition of Protease Inhibitor Cocktail (Thermo Scientific 781410) per the manufacturer's
391 instructions.

392 ***Sample Preparation and Mass Spectrometry.*** To enrich biotinylated proteins, 1mg of nuclear
393 extract was incubated for 30 minutes rotating at room temperature with 100 μ L of streptavidin-
394 coated magnetic beads (Invitrogen 65001). The supernatant was removed, and the beads were
395 washed three times with high salt RIPA buffer (100mM Tris pH 9.0, 500mM LiCl, 150mM NaCl,
396 1% Igepal/NP-40, 1% deoxycholic acid). Washed beads were then resuspended in Laemmli
397 sample buffer and boiled for 10 minutes to denature and release the biotinylated proteins from
398 the beads. The eluents were loaded onto 10% Tris-Glycine gels (Invitrogen XP00100BOX), and
399 separated by SDS-PAGE. Gels were then silver stained (Pierce 24600) prior to band excision
400 for mass spectrometry (Supplemental Figure 3B). LC-MS was performed using an LTQ-Orbitrap
401 instrument (ThermoFisher).

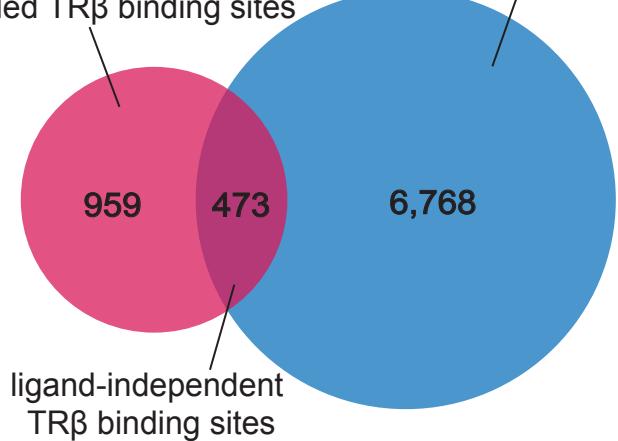
402 ***Data Analysis:*** Data acquired by mass spectrometry was quantified using MaxQuant label-free
403 quantification (LFQ) workflow, and LFQ values were used to calculate differential enrichment of
404 identified proteins between experimental conditions using the DEP Bioconductor package³³
405 (Supplemental Figure 3C, Supplemental Table 1). Proteins with a p-value of <0.05 and a log₂
406 fold change greater than 1 or less than -1 were considered differentially enriched. Proteins
407 found to be enriched in the empty vector control group were excluded from wildtype and mutant
408 TR β datasets and were not used for downstream analysis.

409 REFERENCES

- 410 1 Cheng, S.-Y., Leonard, J. L. & Davis, P. J. Molecular Aspects of Thyroid Hormone
411 Actions. *Endocrine Reviews* **31**, 139-170, doi:10.1210/er.2009-0007 (2010).
- 412 2 Astapova, I. & Hollenberg, A. N. The in vivo role of nuclear receptor corepressors in
413 thyroid hormone action. *Biochim Biophys Acta* **1830**, 3876-3881,
414 doi:10.1016/j.bbagen.2012.07.001 (2013).
- 415 3 Brent, G. A. Mechanisms of thyroid hormone action. *J Clin Invest* **122**, 3035-3043,
416 doi:10.1172/jci60047 (2012).
- 417 4 Grontved, L. et al. Transcriptional activation by the thyroid hormone receptor through
418 ligand-dependent receptor recruitment and chromatin remodelling. *Nat Commun* **6**,
419 7048, doi:10.1038/ncomms8048 (2015).
- 420 5 Ayers, S. et al. Genome-wide binding patterns of thyroid hormone receptor beta. *PLoS
421 One* **9**, e81186, doi:10.1371/journal.pone.0081186 (2014).
- 422 6 Ramadoss, P. et al. Novel mechanism of positive versus negative regulation by thyroid
423 hormone receptor β 1 (TR β 1) identified by genome-wide profiling of binding sites in
424 mouse liver. *J Biol Chem* **289**, 1313-1328, doi:10.1074/jbc.M113.521450 (2014).
- 425 7 Praestholm, S. M. et al. Multiple mechanisms regulate H3 acetylation of enhancers in
426 response to thyroid hormone. *PLoS Genet* **16**, e1008770,
427 doi:10.1371/journal.pgen.1008770 (2020).

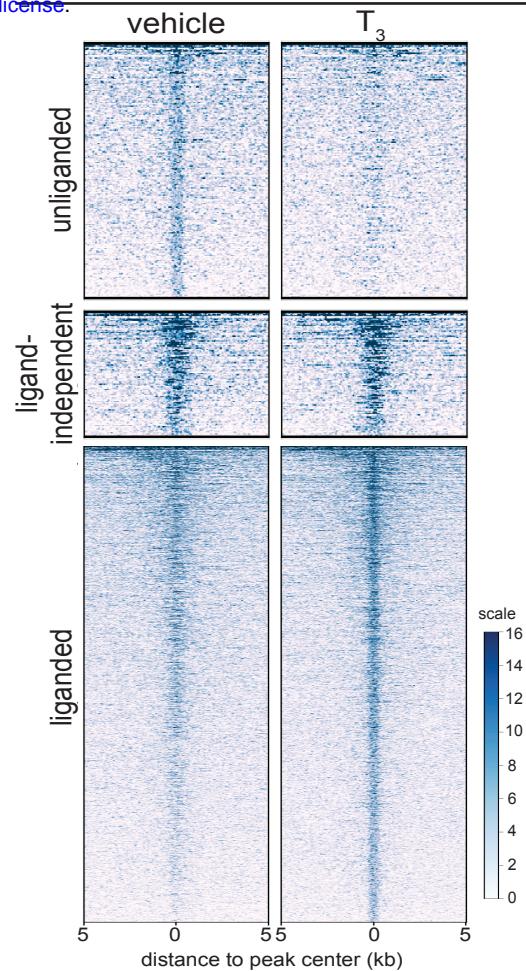
428 8 Shabtai, Y. *et al.* A coregulator shift, rather than the canonical switch, underlies thyroid
429 hormone action in the liver. *Genes Dev*, doi:10.1101/gad.345686.120 (2021).
430 9 Underhill, C., Qutob, M. S., Yee, S. P. & Torchia, J. A novel nuclear receptor
431 corepressor complex, N-CoR, contains components of the mammalian SWI/SNF
432 complex and the corepressor KAP-1. *J Biol Chem* **275**, 40463-40470,
433 doi:10.1074/jbc.M007864200 (2000).
434 10 Gillis, N. E. *et al.* Thyroid Hormone Receptor beta Suppression of RUNX2 Is Mediated
435 by Brahma-Related Gene 1-Dependent Chromatin Remodeling. *Endocrinology* **159**,
436 2484-2494, doi:10.1210/en.2018-00128 (2018).
437 11 Huang, Z. Q., Li, J., Sachs, L. M., Cole, P. A. & Wong, J. A role for cofactor-cofactor and
438 cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription.
439 *Embo J* **22**, 2146-2155, doi:10.1093/emboj/cdg219 (2003).
440 12 Heimeier, R. A., Hsia, V. S. & Shi, Y. B. Participation of Brahma-related gene 1 (BRG1)-
441 associated factor 57 and BRG1-containing chromatin remodeling complexes in thyroid
442 hormone-dependent gene activation during vertebrate development. *Mol Endocrinol* **22**,
443 1065-1077, doi:10.1210/me.2007-0492 (2008).
444 13 Meers, M. P., Bryson, T. D., Henikoff, J. G. & Henikoff, S. Improved CUT&RUN
445 chromatin profiling tools. *eLife* **8**, e46314, doi:10.7554/eLife.46314 (2019).
446 14 Swinstead, E. E. *et al.* Steroid Receptors Reprogram FoxA1 Occupancy through
447 Dynamic Chromatin Transitions. *Cell* **165**, 593-605, doi:10.1016/j.cell.2016.02.067
448 (2016).
449 15 Voss, T. C. *et al.* Dynamic exchange at regulatory elements during chromatin
450 remodeling underlies assisted loading mechanism. *Cell* **146**, 544-554,
451 doi:10.1016/j.cell.2011.07.006 (2011).
452 16 Cheng, S.-y. Thyroid hormone receptor mutations and disease: beyond thyroid hormone
453 resistance. *Trends in Endocrinology & Metabolism* **16**, 176-182,
454 doi:<https://doi.org/10.1016/j.tem.2005.03.008> (2005).
455 17 Shibusawa, N., Hollenberg, A. N. & Wondisford, F. E. Thyroid hormone receptor DNA
456 binding is required for both positive and negative gene regulation. *J Biol Chem* **278**, 732-
457 738, doi:10.1074/jbc.M207264200 (2003).
458 18 Vella, K. R. *et al.* Thyroid hormone signaling in vivo requires a balance between
459 coactivators and corepressors. *Mol Cell Biol* **34**, 1564-1575, doi:10.1128/mcb.00129-14
460 (2014).
461 19 Gillis, N. E. *et al.* Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by
462 Brahma-Related Gene 1-Dependent Chromatin Remodeling. *Endocrinology* **159**, 2484-
463 2494, doi:10.1210/en.2018-00128 (2018).
464 20 Ito, M. & Roeder, R. G. The TRAP/SMCC/Mediator complex and thyroid hormone
465 receptor function. *Trends Endocrinol Metab* **12**, 127-134, doi:10.1016/s1043-
466 2760(00)00355-6 (2001).
467 21 Li, J., Lin, Q., Wang, W., Wade, P. & Wong, J. Specific targeting and constitutive
468 association of histone deacetylase complexes during transcriptional repression. *Genes*
469 *Dev* **16**, 687-692, doi:10.1101/gad.962502 (2002).
470 22 Huang, E. Y. *et al.* Nuclear receptor corepressors partner with class II histone
471 deacetylases in a Sin3-independent repression pathway. *Genes Dev* **14**, 45-54 (2000).
472 23 Mashtalir, N. *et al.* Modular Organization and Assembly of SWI/SNF Family Chromatin
473 Remodeling Complexes. *Cell* **175**, 1272-1288.e1220, doi:10.1016/j.cell.2018.09.032
474 (2018).
475 24 Hoffman, J. A., Trotter, K. W., Ward, J. M. & Archer, T. K. BRG1 governs glucocorticoid
476 receptor interactions with chromatin and pioneer factors across the genome. *Elife* **7**,
477 doi:10.7554/elife.35073 (2018).

478 25 Wang, S. *et al.* Target analysis by integration of transcriptome and ChIP-seq data with
479 BETA. *Nat Protoc* **8**, 2502-2515, doi:10.1038/nprot.2013.150 (2013).
480 26 Voss, T. C. & Hager, G. L. Dynamic regulation of transcriptional states by chromatin and
481 transcription factors. *Nat Rev Genet* **15**, 69-81, doi:10.1038/nrg3623 (2014).
482 27 Dietrich, N., Hoffman, J. A. & Archer, T. K. BAF complexes and the glucocorticoid
483 receptor in breast cancers. *Current Opinion in Endocrine and Metabolic Research* **15**, 8-
484 14, doi:<https://doi.org/10.1016/j.coemr.2020.07.001> (2020).
485 28 Beato, M. & Vicent, G. P. Impact of chromatin structure and dynamics on PR signaling.
486 The initial steps in hormonal gene regulation. *Molecular and Cellular Endocrinology* **357**,
487 37-42, doi:<https://doi.org/10.1016/j.mce.2011.09.004> (2012).
488 29 Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-
489 throughput experiments. *The Annals of Applied Statistics* **5**, 1752-1779, 1728 (2011).
490 30 Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: A Method for
491 Assaying Chromatin Accessibility Genome-Wide. *Curr Protoc Mol Biol* **109**, 21.29.21-
492 21.29.29, doi:10.1002/0471142727.mb2129s109 (2015).
493 31 Ross-Innes, C. S. *et al.* Differential oestrogen receptor binding is associated with clinical
494 outcome in breast cancer. *Nature* **481**, 389-393, doi:10.1038/nature10730 (2012).
495 32 Branon, T. C. *et al.* Efficient proximity labeling in living cells and organisms with TurbOLD.
496 *Nat Biotechnol* **36**, 880-887, doi:10.1038/nbt.4201 (2018).
497 33 Zhang, X. *et al.* Proteome-wide identification of ubiquitin interactions using UbIA-MS. *Nat
498 Protoc* **13**, 530-550, doi:10.1038/nprot.2017.147 (2018).
499

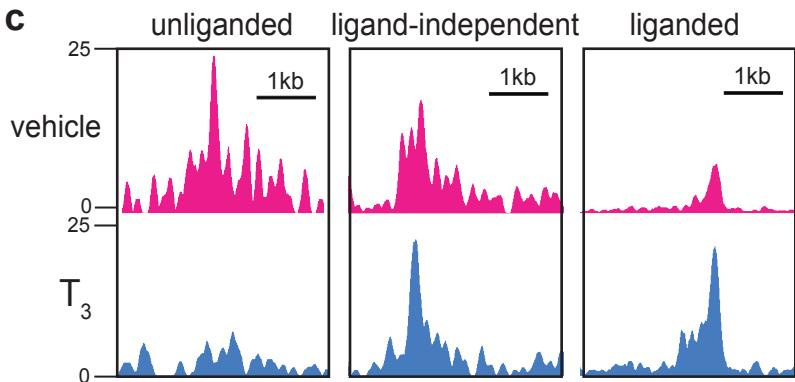

500 **Data Availability:** All raw and processed next generation sequencing data associated with this
501 manuscript is available for download from the NCBI Gene Expression Omnibus repository under
502 accession code GSE168954.

503 **Acknowledgements:** The research reported here was supported by grants from National
504 Institutes of Health U54 GM115516 for the Northern New England Clinical and Translational
505 Research Network; National Cancer Institute 1F99CA245796-01; and UVM Larner College of
506 Medicine. Next-generation sequencing was performed in the Vermont Integrative Genomics
507 Resource Massively Parallel Sequencing Facility supported by the University of Vermont
508 Cancer Center and the UVM Larner College of Medicine. Mass spectrometry was performed at
509 the Vermont Biomedical Research Network Proteomics Core Facility with support from Dr. Bin
510 Deng. Figures 3A, 4A, and 7 were created with Biorender. The authors would like to thank Dr.
511 Jane Lian for her thoughtful discussions and guidance on this project.

512 **Author Contributions:** NEG, SF, and FEC conceptualized and designed this study; NEG and
513 JAT performed the experiments and prepared the sequencing libraries. NEG analyzed the data
514 with help from JRB, and SF. NEG drafted the manuscript and it was edited by JAT, JRB, SF,
515 and FEC.

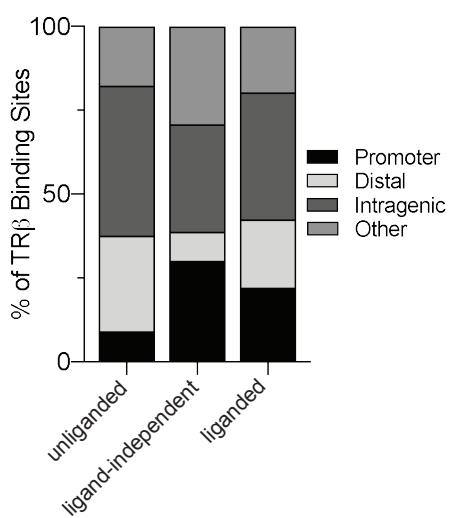

516 **Conflict of Interest Statement:** The authors declare that they have no conflict of interest.

a unliganded TR β binding sites

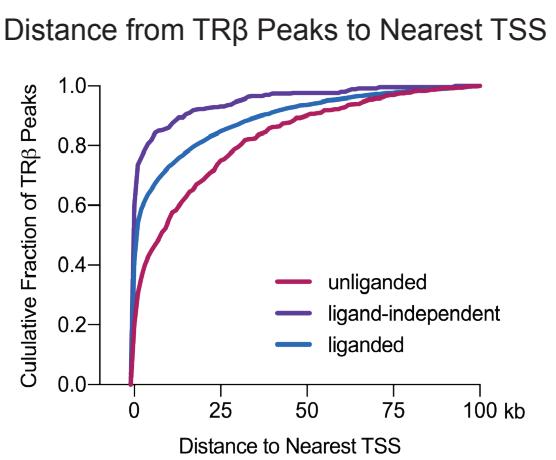


liganded TR β binding sites

b CUT&RUN signal at TR β binding sites

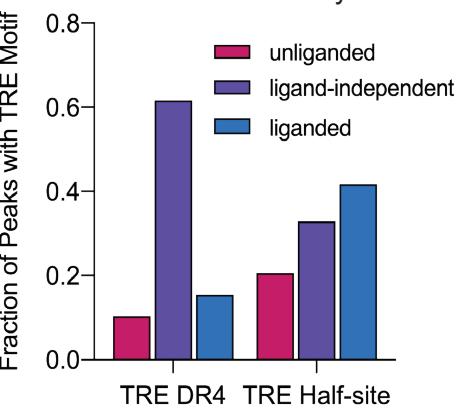


c

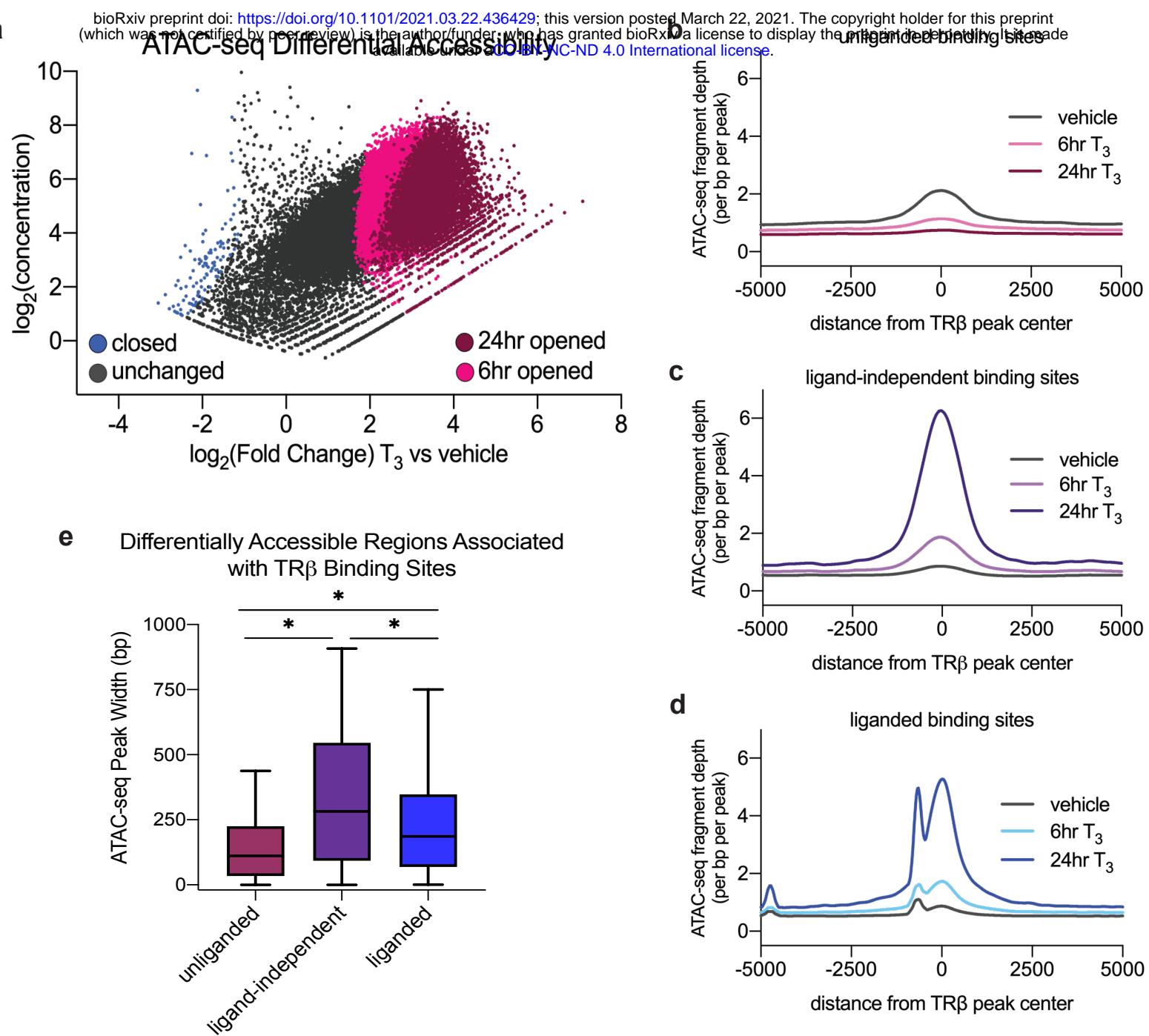


d

TR β Peak Annotations



e


f

TRE Motif Density

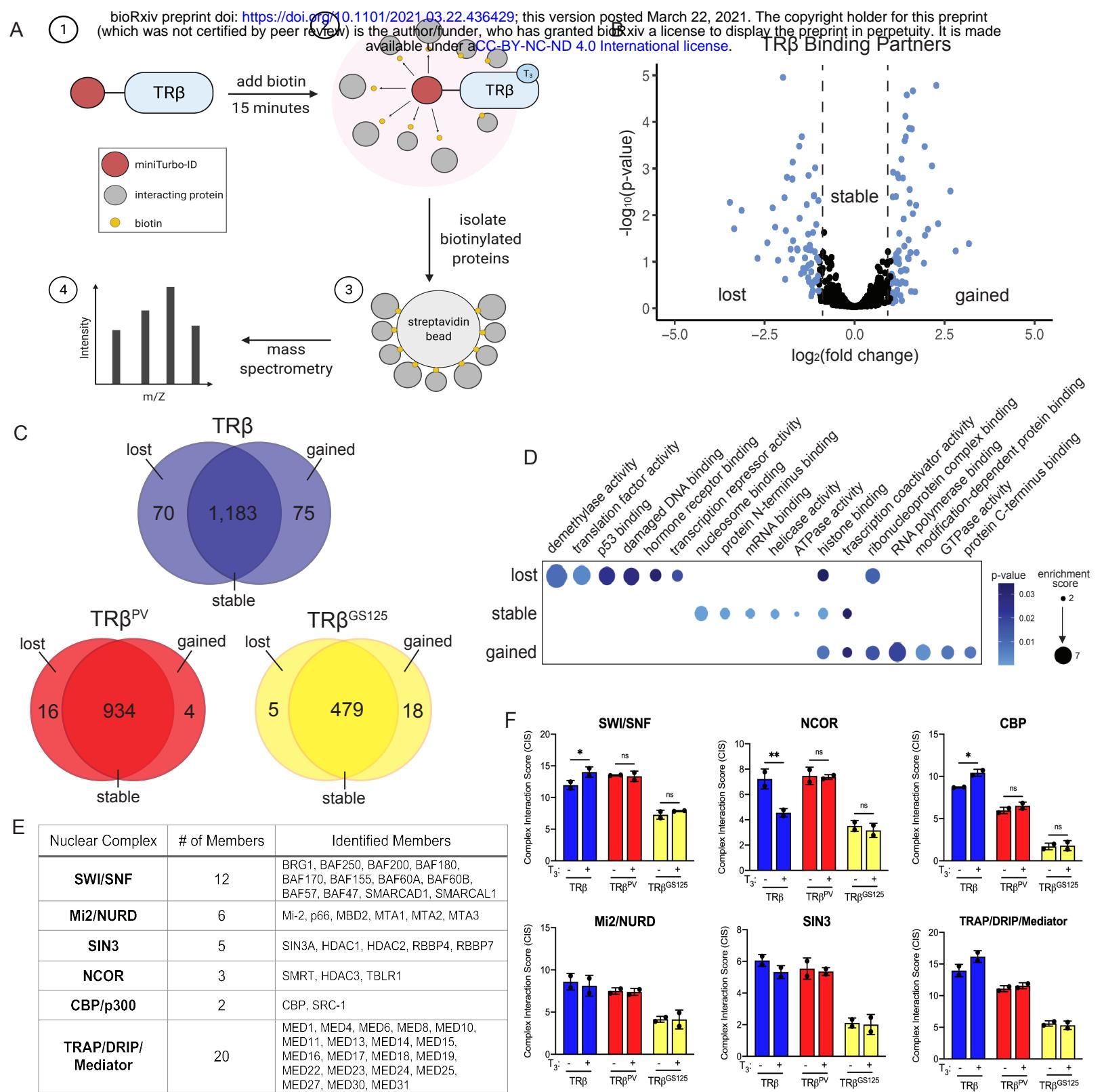


Figure 1. CUT&RUN reveals three distinct modes of TR β binding in thyroid cells . A. Venn

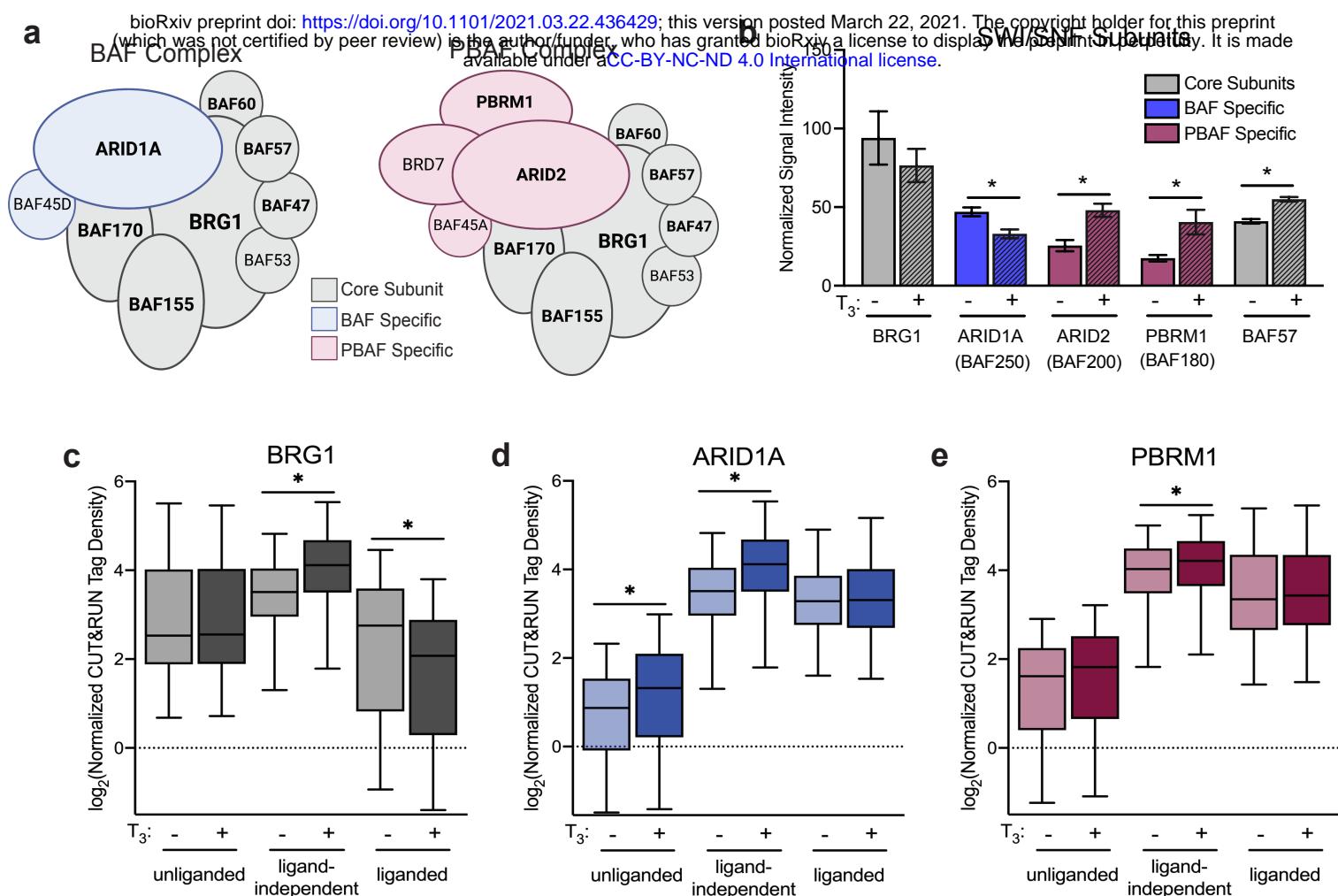
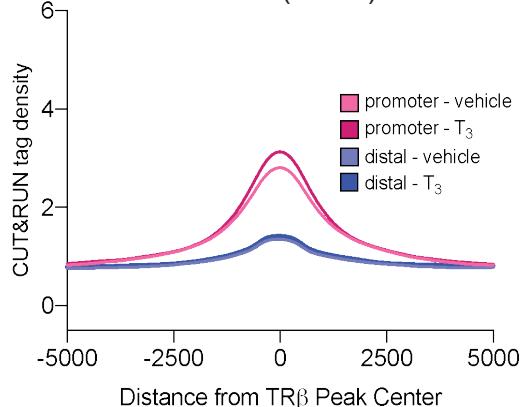
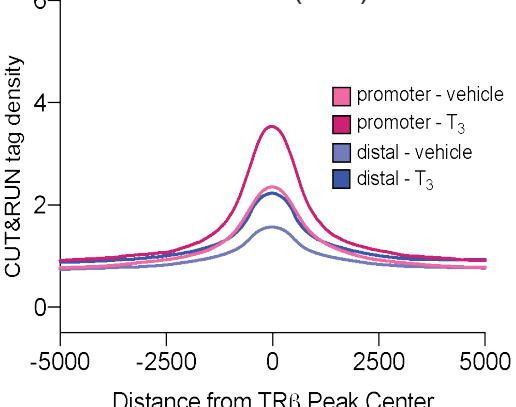
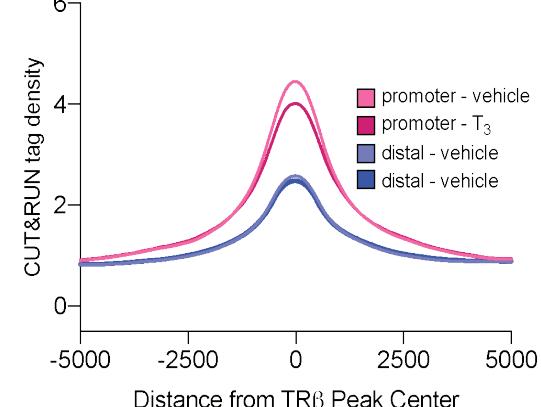

diagram illustrates peak overlap analysis and defines three modes of TR β occupancy. **B.** Heatmap demonstrating differentially bound regions classified as unliganded, ligand-independent, or liganded. **C.** Representative genome browser shots (fold enrichment over IgG) of differentially bound regions. **D.** Distribution of TR β binding sites annotated to proximal promoters (< 500bp from TSS), distal regulatory elements (500bp – 10kb from TSS), and intragenic regions. **E.** Distance from TR β binding sites to the nearest TSS. **F.** Fraction of TR β peaks containing a full-length DR4 thyroid hormone response element (TRE) or a TRE half-site.

Figure 2. T₃ induces changes in chromatin accessibility. A. Scatter plot highlights differentially accessible ATAC-seq peaks after 6 and 24 hours of T₃ treatment. T₃ induced accessibility at 7,754 peaks after 6 hours (light pink) and an additional 21,678 peaks after 24 hours (dark pink). 107 peaks were repressed by T₃ (blue). Differentially accessible peaks are defined as having a log₂FC ≥ 1 or ≤ -1 and an FDR ≤ 0.05 . ATAC-seq tag desnity is plotted near unliganded (B), ligand-independent (C), and liganded (D) TR β CUT&RUN peaks. E. Distribution of peak width of differentially accessible ATAC-seq peaks within 5kb of TR β binding sites. Statistical significance was determined by one-way ANOVA followed by multiple comparisons; * indicates p < 0.001.

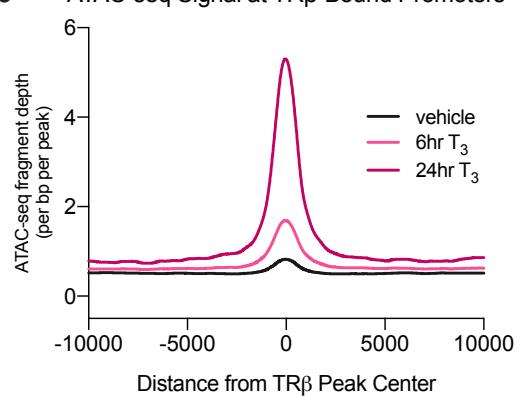
Figure 3. The TR β interactome is altered by T₃ binding. A. Schematic of miniTurboID proximity labeling assay used to identify TR β -binding partners. B. Volcano plot depicts differentially enriched TR β binding partners (DEPs) defined as gained with T₃ treatment (75), lost with T₃ treatment (70), or stable (1,183). Differentially enriched proteins are defined as having a \log_2 FC ≥ 1 or ≤ -1 and a p-value ≤ 0.05 . C. Venn diagrams show DEPs that interact with wildtype TR β and with TR β ^{PV} (ligand-binding domain mutant), and TR β ^{GS125} (DNA-binding domain mutant). D. GO Molecular Function enrichment of gained, lost, and stable TR β binding partners. E. Multisubunit chromatin remodeling complexes found to interact with TR β . F. Complex interaction scores of chromatin remodeling complexes.

Figure 4. BAF and PBAF complexes differentially interact with TRβ. A. Diagram of BAF and PBAF complex subunits. Core subunits are colored in grey, BAF specific subunits are colored in blue, and PBAF specific subunits are colored in pink. Labels of subunits identified as TRβ binding partners by miniTurboID proximity-labeling assay are bolded. B. Signal intensity of differentially enriched SWI/SNF subunits identified in miniTurboID proximity-labeling assay in the presence and absence of T₃. Significance (* p<0.05) was determined by paired t-test. Box plots demonstrate differential CUT&RUN tag density of BRG1 (C), ARID1A (D), and PBRM1 (E) subunits at TRβ binding sites. Significance (* p<0.05) was determined by paired t-test.

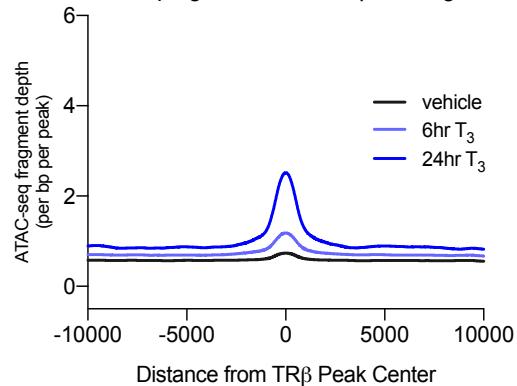



a

SWI/SNF CUT&RUN Signal at Promoter and Distal TR β Binding Sites

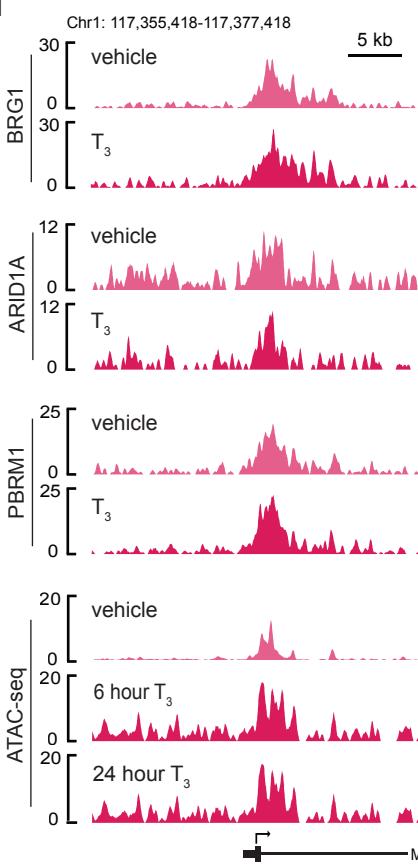
BRG1


ARID1A (BAF)

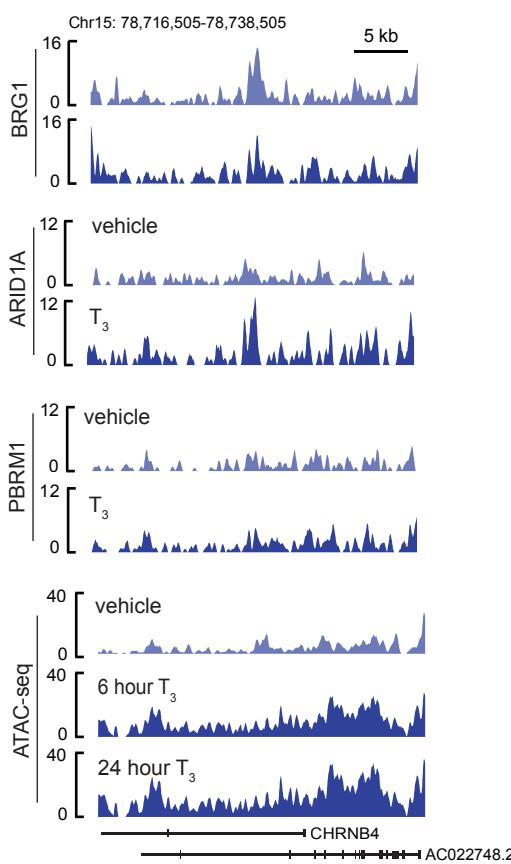
PBRM1 (PBAF)


b

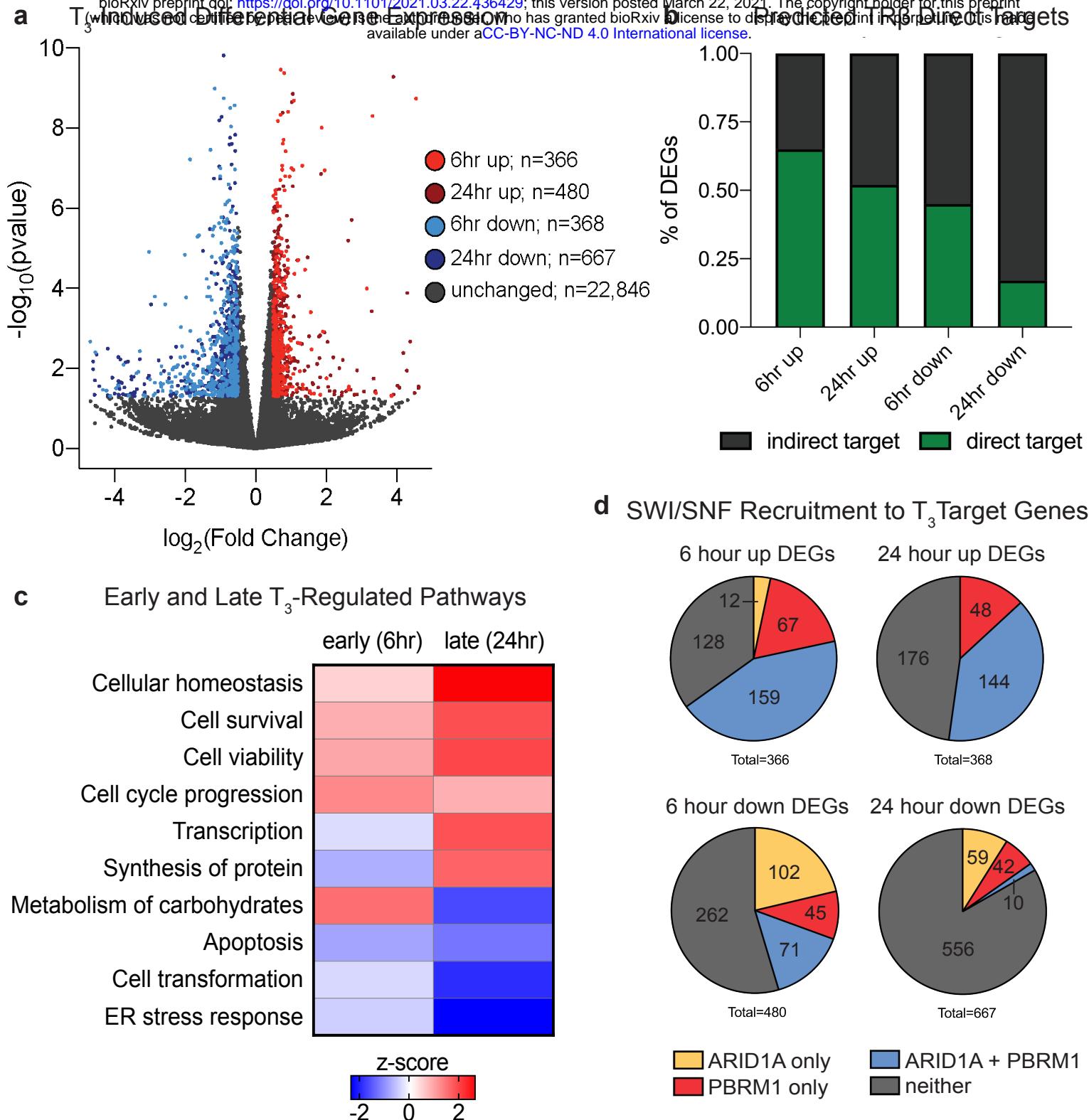
ATAC-seq Signal at TR β -Bound Promoters


c

ATAC-seq Signal at Distal TR β Binding Sites



d


TR β -Bound Promoter

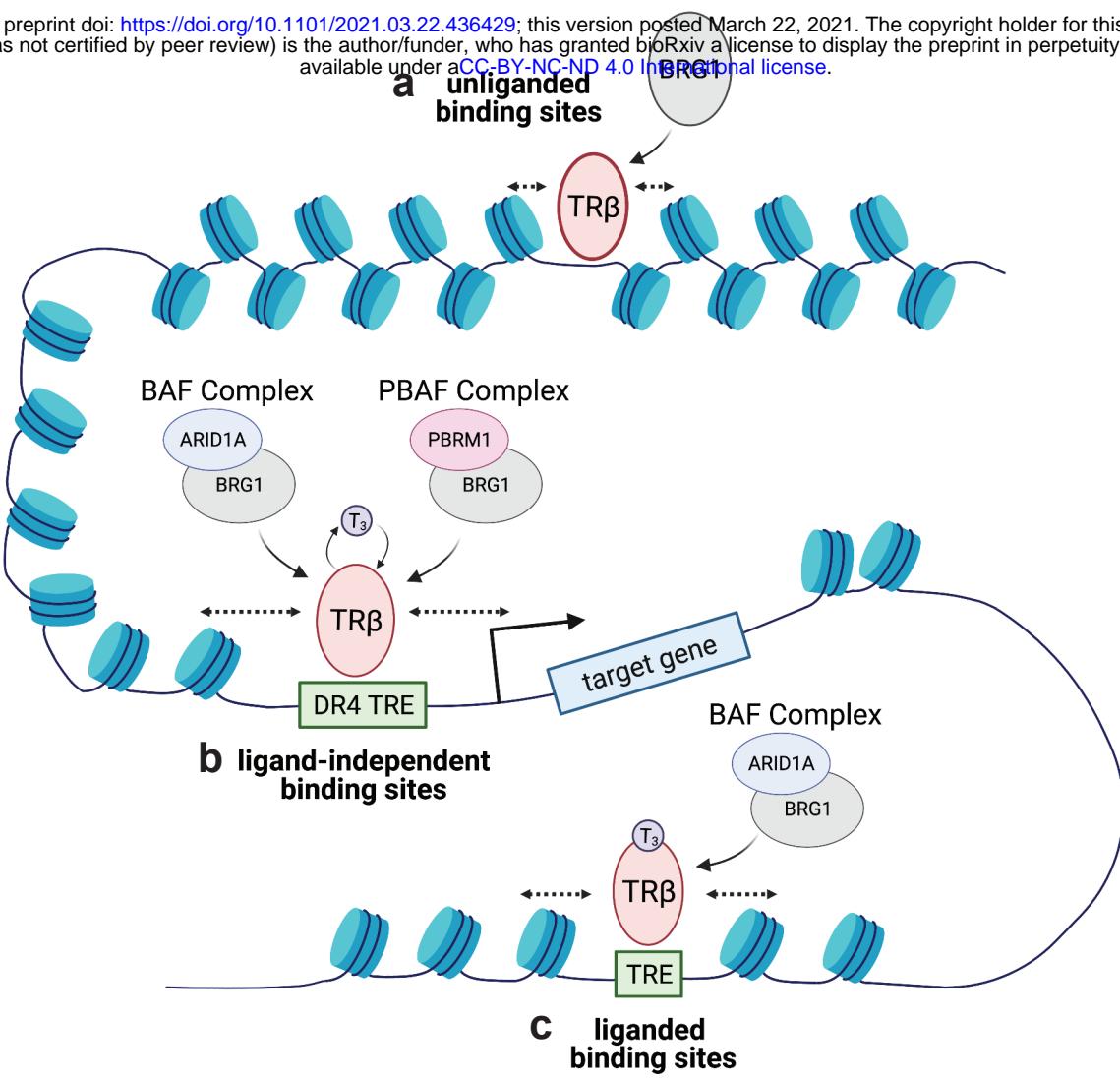

TR β -Bound Distal Site

Figure 5. BAF and PBAF complexes are differentially recruited to TR β binding sites. A. CUT&RUN tag density of BRG1, ARID1A (BAF-specific), and PBRM1 (PBAF-specific) near TR β binding sites classified as promoters (< 5kb from nearest TSS) or distal binding sites (> 5kb from nearest TSS). BRG1 and ARID1A are recruited to promoter and distal sites, PBRM1 is preferentially recruited to promoter sites. B. ATAC-seq tag density is increased upon T₃ treatment for 6 and 24 hours near promoter binding sites. C. ATAC-seq tag density is increased upon T₃ treatment for 6 and 24 hours near distal binding sites. D. Genome browser shots (fold enrichment over IgG) highlight differential recruitment of SWI/SNF complexes to a representative promoter and distal binding site.

Figure 6. TR β chromatin interactions are correlated with target gene expression. A. T₃-induced and -repressed genes determined by RNA-seq after 6 and 24 hours of T₃ treatment in two independent biological replicates. Differentially expressed genes (DEGs) are defined as having a log₂FC ≥ 0.5 or ≤ -0.5 and an p-value ≤ 0.05 . B. BETA regulatory potential prediction of TR β direct targets among DEGs after 6 and 24 hours of T₃ treatment. Direct targets have a log₂FC ≥ 0.5 or ≤ -0.5 , p-value ≤ 0.05 , and a TR β peak within 10kb of the TSS. C. IPA analysis reveals differentially enriched biological functions after early and late T₃ treatment. D. Proportion of DEGs with ARID1A (yellow) or PBRM1 (red) binding exclusively, both ARID1A and PBRM1 (blue), or neither within 10kb of the promoter.

Figure 7. Multi-modal regulation model for TR β chromatin interaction and recruitment of SWI/SNF complexes. A. BRG1 is recruited to unliganded TR β binding sites for modest changes in chromatin accessibility. B. BAF and PBAF complexes are both recruited to ligand-independent TR β binding sites near the TSS of target genes to facilitate broad changes in chromatin accessibility. C. BAF complexes are specifically recruited to liganded TR β binding sites to facilitate T₃-induced changes in chromatin accessibility at distal regulatory regions.