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Abstract:

Prostate-specific antigen (PSA) is a key biomarker, which is commonly used to screen patients of
prostate cancer. There is a significant number of unnecessary biopsies that are performed every
year, due to poor accuracy of PSA based biomarker. In this study, we identified alternate
biomarkers based on gene expression that can be used to screen prostate cancer with high accuracy.
All models were trained and test on gene expression profile of 500 prostate cancer and 51 normal
samples. Numerous feature selection techniques have been used to identify potential biomarkers.
These biomarkers have been used to develop various models using different machine learning
techniques for predicting samples of prostate cancer. Our logistic regression-based model achieved
highest AUROC 0.91 with accuracy 82.42% on validation dataset. We introduced a new approach
called propensity index, where expression of gene is converted into propensity. Our propensity-
based approach improved the performance of classification models significantly and achieved
AUROC 0.99 with accuracy 96.36% on validation dataset. We also identified and ranked selected
genes which can be used to discriminate prostate cancer patients from health individuals with high
accuracy. It was observed that single gene-based biomarkers can only achieve accuracy around
90%. In this study, we got best performance using a panel of 10 genes; random forest model using
propensity index.

Keywords: Prostate cancer, Gene Biomarker, Machine learning techniques, Propensity index,
PRAD cancer biomarker

Abbreviations:

PCa - Prostate cancer

GDC - Genomic Data Commons

TCGA - The Cancer Genome Atlas program
PRAD - Prostate Adenocarcinoma

PSA - Prostate Specific Antigen

SPSA — Serum PSA

PCAS3- Prostate Cancer Antigen 3

DD3 - Differential display code 3

AUROC - Area Under Receiver Operating Characteristics curve
MCC — Matthews Correlation Coefficient
Sens — Sensitivity

Spec - Specificity

Introduction:

Prostate Adenocarcinoma (PRAD) is the second most prevalent cancer diagnosed in men around
the world [1]. Patients with prostate cancer are diagnosed at an advanced stage, as patients hardly
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develop any symptoms at an early stage. Better understanding of the molecular insights responsible
for the onset of prostate carcinogenesis, would help in exploring novel therapeutics methods. In
the literature, Prostate specific antigen (PSA) test is a widely used test for detecting prostate cancer
at a clinically significant stage for better treatment outcomes [2]. Higher PSA levels could indicate
benign prostatic enlargement at an early stage. Due to false positive prediction by this test, it leads
to many unnecessarily biopsies. Thus, there is a need to identify novel prostate cancer specific
biomarkers [3]. Recently two urine based RNA biomarkers prostate cancer antigen 3 (PCA3) [4]
and fusion of two genes TMPRSS2:ERG [5] have also been reported which can be used to
distinguish between men with early stage disease from men in higher risk stage. Studies have
reported the molecular insights involved in development of prostate adenocarcinoma such as
members of the E26 transformation-specific (ETS) family of transcription factors fusions with
androgen-regulated promoters (e.g. TMPRSS2) [6] and occurrence of point mutations of TP53,
FOXAL, PTEN and SPOP gene [7]. PCA3 (originally named as DD3) is a urine based biomarker,
which is widely used for prostate cancer detection [8]. Apart from genomic changes, epigenetic
level changes have also been reported in cases of prostate cancer such as GSTP1 hypermethylation
reported in up to 70 percent of cases [9].

In one study, researchers claimed to identify a three gene panel (HOXC6, TDRD1, and DLX1) as
a promising tool to distinguish men with prostate cancer even though they have been reported with
low sPSA values [10]. Researchers proposed a method SelectMDx which analyses RNA based
biomarkers HOXC6 and DLX1 via reverse transcription, to reduce the need of initial biopsy test
[11]. This method is applied on post-DRE patients, measures the HOXC6 & DLX1 mRNA levels
[12]. In one study, researchers have proposed ConfirmMDx method which is a tissue-based
epigenetic test, developed in a study of 350 men with negative biopsy or repeat biopsy in last two
years [13]. The test builds on a “field effect” phenomenon [14]. Due to limited data and samples
available, this method is not regularly recommended in clinical practice.

In the recent studies over better cancer clinical management, use of machine learning techniques
have contributed in early detection of cancer disease [15]. There is need of identify reliable
biomarkers to for screening of prostate cancer in order to avoid unnecessary biopsies [16]. This
motivated us to design this study for identifying biomarkers for screening prostate cancer patients
with high precision. In this study, we aimed to identify gene expression-based biomarkers to
distinguish between prostate cancer patients and a healthy control. In order to select relevant
features, we introduce single-gene based feature selection techniques. These techniques allow to
rank genes based on their discrimination power. We select top 10 genes using each feature
selection technique. These genes are based on difference in mean, significance difference in mean
and area under receiver operating characteristic curve (AUROC). We used seven machine learning
techniques to develop prediction model using selected genes for identification of prostate cancer
patients. In order to improve the performance, we used propensity index based approach for
developing prediction models using propensity instead of expression of genes. This propensity
based improve the performance of models significantly.
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Materials and Methods:
Dataset

We downloaded GDC TCGA Prostate Cancer (PRAD) dataset from Xena Browser
(https://xenabrowser.net/datapages/) that contain gene expression profile of 500 prostate cancer
samples and 51 normal samples. It contains expression of 20530 genes for each sample. In this
study, FPKM values of RNA transcripts are used as quantification values. Due to large variation
in FPKM value, we normalized values using log2 after addition of 1.0 as a constant number to
each of FPKM values.

Feature selection techniques

In this study we have used three types of feature selection techniques, which are based on Mean,
Significance difference in mean and AUROC. We have applied these approaches to identify genes
whose expression could easily distinguish between prostate and non-prostate subjects. We have
extracted top 10 genes using these feature selection approaches, from a list of 20530 gene
identifiers. Following is brief description of each technique.

Mean based approach: In this approach we have calculated the mean expression of each gene
prostate cancer patients as well as for health samples. Then we compute difference between mean
expression in prostate cancer and healthy samples for each gene. If difference is high, it means that
gene can be used to discriminate two types of samples. We ranked genes based difference in mean;
and selected top genes which have maximum difference. Following formula has been used for
computing difference in mean for a given gene

D, = | Mean (PC;) + Mean (NPCy) | 1)

where Dy is difference in mean for gene g, PCy is gene expression of gene g for prostate cancer
samples, NPCyq is gene expression of gene g for non-prostate cancer samples.

Gene identifiers were sorted in decreasing order of the absolute difference in mean values. Top 10
genes identifiers were selected from the sorted list with the highest mean difference between
prostate cancer and non-prostate cancer samples.

Significance difference in mean: In this approach, we compute the level of significance in mean
expression of a gene in prostate and non-prostate cancer samples. In addition to mean, we also
compute standard deviation in expression of a gene in prostate and non-prostate cancer samples.
Following formula is used to compute significance difference in mean for given gene

| Mean (PCq) + Mean (NPCy) |

SDg ) (PCg) + STD (NPCy) (2)
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Where SDy is significance difference in mean of gene g in prostate and non-prostate cancer
samples. PCq is gene expression of gene g for prostate cancer samples, NPCyq is gene expression
of gene g for non-prostate cancer samples. STD is standard deviation; STD(PCy) is standard
deviation in expression of gene g in prostate cancer samples. STD(NPCy) is standard deviation in
expression of gene g in non-prostate cancer samples.

The genes are sorted in decreasing order of SDyg, i.e. value calculated by dividing mean by standard
deviation. Top 10 genes identifiers were selected from the sorted list with the highest difference
between prostate and non-prostate cancer samples.

Area under curve: In this feature selection technique, we compute the discrimination power of
each gene in term AUROC. First of all we calculated the mean of each gene ID for Prostate cancer
and non-cancer data respectively. The classification of samples is performed based on expression
of a given gene is above or below the threshold value. The threshold value is varied to compute
the AUROC from the curve between true positive rate and false positive rate. This process is
performed for all genes in dataset. Finally, top 10 genes were selected which have maximum
discrimination power in term of AUROC.

Mean Based Feature Std. Dev. based features AUC-ROC based features
' Jo
DLX1 EPHALD ] owx2
SEMG1 NKX2-3 [[] ArOoBEC3C
PCA3 LOC100128675 [ eFnea
SEMG2 APOBEC3C [] asox2
21c2 DLX1 [ wen
SLCASA2 PPARGC1A [ sGEF
HOXC6 TMLHE ) Hoxce
[] TorRD1 [] HOxCe [ pLe2
[T] mk3C2G [] mED21 [[] NnORrRG2
AQP2 [] c1orf190 ] owa

Figure 1: List of genes selected based on different feature selection techniques; top 10 genes
from each technique.

Propensity Index Matrix:

In this study, we have coined the concept of propensity index matrix, for feature extraction from
gene expression. In this method, we have computed the range of gene expression for a given gene
in our dataset and difference has been divided into 10 equal bins. In each bin we compute
propensity of prostate and non-prostate cancer samples in each bin. In next step, we replaced the
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expression value of a gene by a propensity score based on bin it belongs. A new data set is created
using propensity index score, which is provided as an input file to machine learning techniques for
classification models.

Application on Machine learning techniques:

In this study, we have applied seven different machine learning techniques for developing
classification models. These techniques are Support Vector Machine, K-Nearest Neighbour,
Decision Tree, Random Forest, Linear Regression, Gaussian Naive Bayes, XGBoost machine
learning to our dataset. Using these techniques, we have developed our classification models.
These techniques have been implemented using a python library scikit-learn.

Evaluation of models:

In this study, we have used cross validation techniques to evaluate the performance of our models.
We divided our dataset randomly into two datasets in the ratio of 70:30, where 70% of data is used
for training and 30% of dataset is used for validation. We trained and tested our models on training
dataset using five-fold cross-validation technique; where four folds are used as training dataset and
remaining one-fold as testing data set. This process of dividing training and testing dataset is
repeated five times. The performance evaluation of developed models on the testing dataset is
called internal validation. In order to optimize the performance of our models on training dataset
we optimized parameters. Final optimized model, best performance in internal validation was
used to test on independent or validation dataset.

In order to measure the performance of our models, we used standard parameters commonly used
to measure the performance of classification models. Both threshold-dependent and threshold-
independent parameters are reported to evaluate the performance. We computed sensitivity,
specificity, accuracy and Matthew’s correlation coefficient (MCC) as threshold-dependent
parameters using the following equations:

TP

Sensitivity = e 100 4)
Specificity = ——— *100 (5)
TP+TN
ACCUT‘CLC}/ = m* 100 (6)

(TP+TN) — (FP*FN)

MCC =
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(7)

Where, FP is false positive, FN is false negative, TP is true positive and TN is true negative,
respectively.
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Area Under the Receiver Operating Characteristic curve (AUROC) is reported as a standard
parameter for threshold-independent measures.

Results:

We developed classification models for classifying prostate and non-prostate cancer samples using
seven machine learning techniques. First, we identified to 10 genes (DLX1, SEMG1, PCAS,
SEMG2, ZIC2, SLC45A2, HOXC6, TDRD1, PIK3C2G, and AQP2) using mean-based feature
selection techniques. These selected genes were used to build machine learning techniques-based
classification models. The performance of all models is evaluated on training and validation
dataset. As shown in Table 1, our logistic regression-based model achieved maximum AUROC
0.91 on training as well as on validation dataset.

Table 1: The performance of machine learning techniques based models developed using top 10
genes selected using mean based approach.

Model Training Dataset Validation Dataset

Sens | Spec | Accuracy | AUROC | MCC | Sens | Spec | Accuracy | AUROC | MCC
GNB 97.41 | 83.33 96.10 0.90 0.78 | 94.63 | 68.75 92.12 0.82 0.59
KNN 98.85 | 75.00 96.63 0.87 0.79 | 97.32 | 75.00 95.15 0.86 0.73
SVM 94.82 | 88.88 94.29 0.92 0.73 | 85.91 | 75.00 84.85 0.80 0.45
DT 98.56 | 83.33 96.36 0.90 0.78 | 97.99 | 62.50 94.54 0.80 0.66
RF 99.42 | 72.22 96.62 0.86 0.80 | 97.98 | 62.50 94.54 0.80 0.66
XGB 98.56 | 72.22 96.10 0.85 0.76 | 95.95 | 62.50 92.73 0.79 0.58
LR 93.96 | 88.89 93.50 0.91 0.70 | 83.22 | 75.00 82.42 0.91 0.70

Similarly, we extract top 10 genes (EPHA10, NKX2-3, LOC100128675, APOBEC3C, DLX1,
PPARGC1A, TMLHE, HOXC6, MED21, C1orf190) using significance difference in mean-based
feature selection techniques. These to 10 genes were used to build classification models using
machine learning techniques. The performance of these models were evaluated on training and
validation/testing dataset. As shown in Table 2, our Support vector machine (SVM) based model
achieved highest AUROC 0.92 on training dataset and AUROC 0.89 on validation datasets.

Table 2: The performance of machine learning techniques based models developed using top 10
genes selected using significance difference in mean.

Model Training Dataset Validation Dataset

Sens Spec | Accuracy | AUROC | MCC | Sens | Spec | Accuracy | AUROC | MCC
GNB 97.41 | 91.97 96.88 0.95 0.83 | 95.30 | 81.25 93.94 0.88 0.70
KNN 98.56 | 86.11 97.40 0.92 0.85 | 95.30 | 62.50 92.12 0.79 0.56
SVM 95.40 | 88.89 94.80 0.92 0.74 | 90.60 | 87.50 90.30 0.89 0.62
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DT 97.70 | 77.77 96.09 0.88 0.75 | 97.32 | 56.25 93.33 0.76 0.58
RF 97.98 | 77.78 96.35 0.88 0.77 | 9731 | 75.00 95.15 0.86 0.72
XGB 97.99 | 80.56 96.36 0.89 0.79 | 96.64 | 81.25 95.15 0.89 0.74
LR 95.40 | 97.22 95.57 0.96 0.80 | 91.95 | 87.50 91.15 0.88 0.65

Finally, we used AUROC based approach for feature selection, where top ten genes were selected
based on their performance. There genes are (DLX2, APOBEC3C, EFNB1, QSOX2, HPN, SGEF,
HOXC6, PLP2, NDRG2, DLX1) shown highest performance in term of AUROC when we used
threshold-based model for prediction. As shown in Table 3, our K-means nearest neighbor (KNN)
based model obtained maximum AUROC 0.92 on training dataset and AUROC 0.91 and testing
datasets.

Table 3: The performance of machine learning techniques based models developed using top 10
genes selected using AUROC based approach.

Model Training Dataset Validation Dataset

Sens | Spec | Accuracy | AUROC | MCC | Sens | Spec | Accuracy | AUROC | MCC
GNB 94.54 | 94.45 94.53 0.94 0.75 | 93.29 | 87.50 92.73 0.90 0.68
KNN 98.27 | 86.11 97.14 0.92 0.83 | 95.30 | 87.50 94.55 0.91 0.74
SVM 90.51 | 94.45 90.90 0.92 0.65 | 88.59 | 87.50 88.48 0.88 0.58
DT 97.99 | 83.34 96.10 0.91 0.80 | 96.64 | 68.75 93.94 0.83 0.65
RF 98.85 | 7222 97.40 0.86 0.77 | 97.31 | 81.25 95.76 0.89 0.76
XGB 98.27 | 75.00 96.09 0.87 0.76 | 97.31 | 81.25 95.76 0.89 0.76
LR 92.53 | 94.45 92.72 0.93 0.70 | 88.59 | 87.50 88.48 0.88 0.58

Models based on propensity Index

In this study, we added a new concept for developing classification models. Instead of using
expression of a gene as input, we used propensity of a gene as input. In order to convert expression
of a gene to propensity index of a gene, we divide range of expression in 10 bins. In next step, we
compute propensity index for each bin. Finally, expression of a gene is converted into a propensity
based it expression fall in to a given bin. We developed classification models using top 10 genes
selected by mean based feature selection techniques. As shown in Table 4, we got maximum
AUROC 1.0 on training dataset and 0.91 on testing dataset using Random Forest (RF) model. The
performance of our models improved significantly when we used propensity index instead of
expression (See Table 1 and 4).

Table 4: The performance of different machine learning techniques based models developed
using top 10 genes selected by mean based features selection technique. The models were
developed using propensity index of genes instead of their expression.
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Model Training Dataset Validation Dataset

Sens Spec Accuracy | AUROC | MCC Sens Spec | Accuracy | AUROC | MCC
GNB 98.50 | 100.00 98.64 1.00 0.93 | 100.00 | 80.00 98.18 0.90 0.89
KNN 98.50 | 100.00 98.64 1.00 0.93 | 100.00 | 80.00 98.18 0.89 0.89
SVM 98.75 | 97.62 98.64 1.00 0.93 | 100.00 | 60.00 96.36 0.90 0.76
DT 99.25 | 92.86 98.64 0.96 0.92 | 100.00 | 30.00 93.64 0.65 0.53
RF 98.50 | 100.00 98.64 1.00 0.93 | 100.00 | 70.00 97.27 0.91 0.82
XGB 97.75 | 97.62 97.74 0.99 0.88 | 100.00 | 80.00 98.18 0.93 0.89
LR 98.75 | 100.00 98.87 1.00 0.94 | 100.00 | 70.00 97.27 0.87 0.82

Similarly, we developed models based on propensity index of 10 gene selected using significance
difference in based feature selection. As shown in Table 5, logistic regression based (LR) based
model achieved highest performance with AUROC 1.00 on training dataset and AUROC 0.97 on
validation dataset. In comparison to table 2 statistics, performance of prediction models reported
in table 5 have increased after converting expression values to propensity index values.

Table 5: The performance of different machine learning techniques based models developed using
top 10 genes selected by significance difference in mean based approach. The models were
developed using propensity index of genes instead of their expression.

Model Training Dataset Validation Dataset

Sens Spec Accuracy | AUROC | MCC Sens Spec | Accuracy | AUROC | MCC
GNB 99.50 | 100.00 99.55 1.00 0.97 | 100.00 | 70.00 97.27 0.90 0.82
KNN 99.75 | 100.00 99.77 1.00 0.99 | 100.00 | 70.00 97.27 0.95 0.82
SVM 99.00 | 100.00 99.10 1.00 0.95 | 100.00 | 80.00 98.18 0.95 0.89
DT 97.75 90.48 97.06 0.94 0.84 | 99.00 | 60.00 95.45 0.80 0.69
RF 99.75 95.24 99.32 1.00 0.96 | 100.00 | 80.00 98.18 0.94 0.89
XGB 98.75 97.62 98.64 1.00 0.93 | 99.00 | 80.00 97.27 0.93 0.83
LR 99.00 | 100.00 99.10 1.00 0.95 | 100.00 | 80.00 98.18 0.97 0.89

Finally, we developed models using propensity index of top 10 genes obtained from AUROC
based feature selection approach. As shown in Table 6, Random Forest (RF) model obtain best
performance with AUROC 1.00 on training dataset and 0.99 on validation dataset. It is clear from
above results that performance models developed using propensity index (Table 4, 5, 6) got better
performance than models developed using gene expression (Table 1, 2, 3).

Table 6: The performance of different machine learning techniques based models developed using
top 10 genes selected by AUROC based approach. The models were developed using propensity
index of genes instead of their expression.

Training Dataset Validation Dataset

Model
Sens ‘ Spec ‘Accuracy ‘AUROC MCC Sens ‘ Spec ‘ Accuracy | AUROC | MCC
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GNB 99.50 | 100.00 99.55 1.00 0.97 | 100.00 | 50.00 95.45 0.85 0.69
KNN 99.50 | 100.00 99.55 1.00 0.97 | 100.00 | 50.00 95.45 0.84 0.69
SVM 99.25 | 100.00 99.32 1.00 0.96 | 100.00 | 70.00 97.27 0.95 0.82
DT 97.75 | 90.48 97.06 0.94 0.84 | 99.00 | 60.00 95.45 0.80 0.69
RF 98.25 | 100.00 98.42 1.00 0.92 | 99.00 | 70.00 96.36 0.99 0.76
XGB 98.50 | 95.24 98.19 0.99 0.90 | 99.00 | 80.00 97.27 0.97 0.83
LR 98.75 | 100.00 98.87 1.00 0.94 | 100.00 | 70.00 97.27 0.78 0.82

Single gene based classification

In order to understand importance of individual gene in discriminating prostate and non-prostate
samples. We developed threshold-based models that can be used to identify prostate cancer
samples based on expression of a single gene. Thus, after identifying best genes using feature
selection techniques, we have also ranked them on the basis of their capability of correctly
predicting prostate cancer samples. All 30 gene extracted using feature selection techniques (i.e.
top 10 from mean-based method, 10 from standard deviation based and 10 from AUROC based
method) are considered for ranking. After removing duplicate genes, we ranked these genes based
on probability of correct prediction of prostate cancer samples. As shown in figure 2, we got 13
genes which have probability of correct prediction from 0.97 to 0.989. In figure 2, we also added
the performance of KLK3 a gene associated with PSA (commonly use test). It is clear that the
performance of KLK3 gene is too poor in comparison to other genes used in our study.

Gene Minimum Maximum Threshold Sensitivity Specificity Accuracy Prob_of_CP
DLX2 0.000 10.990 266 90.40 90.38 90.40 0.989
HPN 3.510 14.726 11.05 89.00 88.46 88.95 0.987
Qs0x2 7.435 10.686 8.59 88.80 88.46 88.77 0.987
HOXC6 0.777 11.083 6.24 88.40 88.46 88.41 0.987
DLX1 0.000 11.545 493 87.60 88.46 87.68 0.986
SGEF 7.060 12.735 9.84 88.20 86.54 88.04 0.984
SLCASA2 0.000 12.989 2.39 87.20 86.54 87.14 0.984
EPHAL0 2.774 9.523 6.66 87.00 86.54 £6.96 0.984
NKX2-3 0.000 8.208 2.30 85.20 84.62 85.14 0.982
LOC100128675 0.000 6.911 2.06 84.80 84.62 84.78 0.981
zc2 0.000 9.725 2.37 82.60 82.69 82.61 0.979
TDRD1 0.000 11.333 3.36 77.80 76.92 77.72 0.970
PCA3 0.872 15.567 9.93 77.00 76.92 76.99 0.970
KLK3 8.172 20.586 18.36 59.20 59.60 59.24 0.934

Figure 2: Ranking of genes based on their probability of correct prediction, the performance of
each gene is computed using threshold-based approach.


https://doi.org/10.1101/2021.03.22.436371
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436371; this version posted March 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In addition to ranking of genes, we also compute whether expression of these genes in prostate
cancer samples is statistically significant or not. We plotted the gene expression value of the genes
as box plot figures using GEPIA (Gene Expression Profiling Interactive Analysis) tool [17]. As
shown in Figure 2, box plots generated depicts that 7 out of 14 genes (HPN, HOXC6, DLX1,
SGEF, EPHA10, TDRD1, PCAZ3) are found to be significant.

ad v 2 4 -4 :
: vd 3 5 1 ¥
i 3 : s - ~ - !
o4 !A— ° o4 il il o4 I i ° —_—
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Figure 3: Box plots of ranked genes. In this figure red box plot depicts cancer samples and
yellow depicts normal samples.

Discussion:

In this study we aimed to identify gene expression-based biomarkers to distinguish between
prostate cancer patients and a healthy control. We aimed to provide a tool to diagnose prostate
cancer at an early stage. Patients with prostate cancer are usually diagnosed at a later stage of this
disease as patients hardly develop any symptoms at an early stage of this cancer type. Better
understanding of the molecular insights could aid in developing a tool which can detect the early
onset of prostate carcinogenesis. We have extracted features using mean, significance difference
in mean and AUROC based methods. We have identified the top ten genes based on these three
methods and further applied machine learning techniques for classification of prostate cancer and
healthy control subjects with high accuracy. In this study, we have converted expression values of
top 10 genes identified by feature selection techniques to propensity index matrix. Classification
models have been developed using propensity matric which showed significant improvement over


https://doi.org/10.1101/2021.03.22.436371
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436371; this version posted March 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the models developed using genes expression. This is a novel approach used in this study to
improve the accuracy of correct prediction.

PSA being the widely accepted primary blood test for prostate cancer detection. We have also
explored the possibility of KLK3 gene (PSA associated gene) as prostate cancer biomarker. Due
to small difference between the mean expression value for normal and prostate cancer patient,
KLK3 gene was not identified in the top10 genes in the feature selection techniques used in the
current study. From figure 2 and 3, it is also evident that KLK3 gene performance as a biomarker
for prostate cancer is not good in terms of sensitivity, specificity and accuracy. Various feature
selection techniques were applied in order to determine the genes that can strongly distinguish
between tumorous and non-tumorous records. It was observed that DLX1 and HOXC6 appeared
to be in the top ten genes set in all three feature extraction techniques. In a recent study, researchers
have reported a method SelectMDx which proposed HOXC6 and DLX1 as RNA based urine
biomarkers in their study [11]. They have reported AUROC of 0.85 with 93% sensitivity, 47%
specificity and 95% negative predictive value and the PCPTRC AUROC as 0.76 on the validation
cohort.

Another study reported a urinary three gene panel i.e. HOXC6, TDRD1, and DLX1 as a tool to
distinguish prostate cancer patients with low sPSA values [10]. They have reported an AUROC
value as 0.77 for these three biomarkers. We have also developed a model using these three
biomarkers, ran the process ten times by shuffling the data each time, and achieved the average
AUROC for KNN model as 0.927+0.009 (Mean + SD) for training and 0.971+0.002 for testing
data set. We have also converted the expression values to propensity index and obtained the
AUROC for SVC model as 0.981+0.002 for training and 0.914+0.001 for testing dataset. These
results were highly unbalanced in terms of sensitivity and specificity.

In this study we have plotted Box plots to understand the potential of ranked top 14 genes based
on probability of correct prediction. We have reported that HPN, HOXC6, DLX1, SGEF,
EPHAL0, TDRD1, PCAS3 are found to be significant. Using past studies, we have mapped the role
of DLX1, TDRD1 and HOXCS6 in Prostate cancer. In literature, we have found studies which
explains role of HPN [18], SGEF [19], EPHAL0 [20] and PCAS3 [8] in prostate cancer diagnosis
and prognosis. These studies further validate our findings. In current study, we have applied 3
feature selection techniques i.e., mean based, standard deviation based and AUROC ROC based
approach for identifying top 10 gene identifier for classifying prostate cancer sample vs. normal
sample. Out of top 10 genes identified DLX1 and HOXC6 were found to be present using all three
approaches. Further to understand the role of DLX1 and HOXC®6 gene in functional pathways, we
have explored GO annotations of both genes. DLX1 gene also known as Distal-Less Homeobox 1
is a protein encoding gene and is located on the long arm of chromosome 2. Gene Ontology (GO)
annotation of DLX1 gene include sequence-specific DNA binding and chromatin binding. In
literature DLX1 is reported to be associated with Dental Fluorosis and Witkop Syndrome. It is
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involved in related pathways such as DNA Damage/Telomere Stress Induced Senescence and
Regulation of nuclear SMAD2/3 signaling pathway.

HOXCG6 gene also referred as Homeobox C6 is also a protein coding gene and is located in a cluster
on chromosome 12. Homeobox gene family usually encode a highly conserved family of
transcription factors that are involved in a crucial role such as morphogenesis in multicellular
organisms. Further Gene Ontology (GO) annotations include DNA-binding transcription factor
activity and transcription corepressor activity. Diseases which are reported to be linked with
HOXC6 include Lymphoma, Non-Hodgkin, Familial. With recent advancements, there is always
a scope for improvement. Apart from these approaches, various other measures like entropy
changes, etc. can be used to select the genes that will lead to higher information gain. We could
also apply network analysis models to establish connections between various gene IDs. Building
networks for tumorous and non-tumorous gene expression data could unfold deeper insights of the
molecular mechanisms involved in development of the cancerous conditions.
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Minimum Maximum Threshold Sensitivity Specificity Accuracy Prob_of CP

DLX2 0.000 10.990 2.66 90.40 90.38 90.40 0.989
HPN 3.510 14.726 11.05 89.00 88.46 88.95 0.987
QS50X2 7.435 10.686 8.59 88.80 88.46 88.77 0.987
HOXC6 0.777 11.083 6.24 88.40 88.46 88.41 0.987
DLX1 0.000 11.545 493 87.60 88.46 87.68 0.986
SGEF 7.060 12.735 9.84 88.20 86.54 88.04 0.984
SLCASA2 0.000 12.989 2.39 87.20 86.54 87.14 0.984
EPHALO 2.774 9.523 6.66 87.00 86.54 86.96 0.984
NKX2-3 0.000 8.208 2.30 85.20 84.62 85.14 0.982
LOC100128675 0.000 6.911 2.06 84.80 84.62 84.78 0.981
ZIC2 0.000 9.725 2.37 82.60 82.69 82.61 0.979
TDRD1 0.000 11.333 3.36 77.80 76.92 77.72 0.970
PCA3 0.872 15.567 9.93 77.00 76.92 76.99 0.970
KLK3 8.172 20.586 18.36 59.20 59.60 59.24 0.934
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