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Highlights 

● Application of Machine learning techniques to identify Biomarkers for PRAD cancer. 

● Highly accurate models developed for classifying prostate cancer vs. normal sample. 

● Introducing Propensity index concept for enhancing model performance. 

● Top 10 genes identified using feature selection techniques.  
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Abstract:  

Prostate-specific antigen (PSA) is a key biomarker, which is commonly used to screen patients of 

prostate cancer. There is a significant number of unnecessary biopsies that are performed every 

year, due to poor accuracy of PSA based biomarker. In this study, we identified alternate 

biomarkers based on gene expression that can be used to screen prostate cancer with high accuracy.  

All models were trained and test on gene expression profile of 500 prostate cancer and 51 normal 

samples. Numerous feature selection techniques have been used to identify potential biomarkers. 

These biomarkers have been used to develop various models using different machine learning 

techniques for predicting samples of prostate cancer. Our logistic regression-based model achieved 

highest AUROC 0.91 with accuracy 82.42% on validation dataset.  We introduced a new approach 

called propensity index, where expression of gene is converted into propensity. Our propensity-

based approach improved the performance of classification models significantly and achieved 

AUROC 0.99 with accuracy 96.36% on validation dataset. We also identified and ranked selected 

genes which can be used to discriminate prostate cancer patients from health individuals with high 

accuracy. It was observed that single gene-based biomarkers can only achieve accuracy around 

90%. In this study, we got best performance using a panel of 10 genes; random forest model using 

propensity index.  

Keywords: Prostate cancer, Gene Biomarker, Machine learning techniques, Propensity index, 

PRAD cancer biomarker 

Abbreviations: 

PCa - Prostate cancer 

GDC - Genomic Data Commons 

TCGA - The Cancer Genome Atlas program  

PRAD - Prostate Adenocarcinoma 

PSA - Prostate Specific Antigen 

sPSA – Serum PSA 

PCA3- Prostate Cancer Antigen 3 

DD3 - Differential display code 3 

AUROC - Area Under Receiver Operating Characteristics curve 

MCC – Matthews Correlation Coefficient 

Sens – Sensitivity 

Spec - Specificity 

Introduction: 

Prostate Adenocarcinoma (PRAD) is the second most prevalent cancer diagnosed in men around 

the world [1]. Patients with prostate cancer are diagnosed at an advanced stage, as patients hardly 
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develop any symptoms at an early stage. Better understanding of the molecular insights responsible 

for the onset of prostate carcinogenesis, would help in exploring novel therapeutics methods. In 

the literature, Prostate specific antigen (PSA) test is a widely used test for detecting prostate cancer 

at a clinically significant stage for better treatment outcomes [2]. Higher PSA levels could indicate 

benign prostatic enlargement at an early stage. Due to false positive prediction by this test, it leads 

to many unnecessarily biopsies. Thus, there is a need to identify novel prostate cancer specific 

biomarkers [3]. Recently two urine based RNA biomarkers prostate cancer antigen 3 (PCA3) [4] 

and fusion of two genes TMPRSS2:ERG [5] have also been reported which can be used to 

distinguish between men with early stage disease from men in higher risk stage. Studies have 

reported the molecular insights involved in development of prostate adenocarcinoma such as 

members of the E26 transformation-specific (ETS) family of transcription factors fusions with 

androgen-regulated promoters (e.g. TMPRSS2) [6] and occurrence of point mutations of TP53, 

FOXA1, PTEN and SPOP gene [7]. PCA3 (originally named as DD3) is a urine based biomarker, 

which is widely used for prostate cancer detection [8].  Apart from genomic changes, epigenetic 

level changes have also been reported in cases of prostate cancer such as GSTP1 hypermethylation 

reported in up to 70 percent of cases [9]. 

In one study, researchers claimed to identify a three gene panel (HOXC6, TDRD1, and DLX1) as 

a promising tool to distinguish men with prostate cancer even though they have been reported with 

low sPSA values [10]. Researchers proposed a method SelectMDx which analyses RNA based 

biomarkers HOXC6 and DLX1 via reverse transcription, to reduce the need of initial biopsy test 

[11]. This method is applied on post-DRE patients, measures the HOXC6 & DLX1 mRNA levels 

[12]. In one study, researchers have proposed ConfirmMDx method which is a tissue-based 

epigenetic test, developed in a study of 350 men with negative biopsy or repeat biopsy in last two 

years [13]. The test builds on a “field effect” phenomenon [14]. Due to limited data and samples 

available, this method is not regularly recommended in clinical practice. 

In the recent studies over better cancer clinical management, use of machine learning techniques 

have contributed in early detection of cancer disease [15]. There is need of identify reliable 

biomarkers to for screening of prostate cancer in order to avoid unnecessary biopsies [16]. This 

motivated us to design this study for identifying biomarkers for screening prostate cancer patients 

with high precision. In this study, we aimed to identify gene expression-based biomarkers to 

distinguish between prostate cancer patients and a healthy control. In order to select relevant 

features, we introduce single-gene based feature selection techniques. These techniques allow to 

rank genes based on their discrimination power. We select top 10 genes using each feature 

selection technique. These genes are based on difference in mean, significance difference in mean 

and area under receiver operating characteristic curve (AUROC). We used seven machine learning 

techniques to develop prediction model using selected genes for identification of prostate cancer 

patients. In order to improve the performance, we used propensity index based approach for 

developing prediction models using propensity instead of expression of genes. This propensity 

based improve the performance of models significantly.    
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Materials and Methods: 

Dataset 

We downloaded GDC TCGA Prostate Cancer (PRAD) dataset from Xena Browser 

(https://xenabrowser.net/datapages/) that contain gene expression profile of 500 prostate cancer 

samples and 51 normal samples. It contains expression of 20530 genes for each sample. In this 

study, FPKM values of RNA transcripts are used as quantification values. Due to large variation 

in FPKM value, we normalized values using log2 after addition of 1.0 as a constant number to 

each of FPKM values.   

Feature selection techniques 

In this study we have used three types of feature selection techniques, which are based on Mean, 

Significance difference in mean and AUROC. We have applied these approaches to identify genes 

whose expression could easily distinguish between prostate and non-prostate subjects. We have 

extracted top 10 genes using these feature selection approaches, from a list of 20530 gene 

identifiers. Following is brief description of each technique.  

Mean based approach:  In this approach we have calculated the mean expression of each gene 

prostate cancer patients as well as for health samples. Then we compute difference between mean 

expression in prostate cancer and healthy samples for each gene. If difference is high, it means that 

gene can be used to discriminate two types of samples. We ranked genes based difference in mean; 

and selected top genes which have maximum difference.  Following formula has been used for 

computing difference in mean for a given gene  

𝐷𝑔  =  | 𝑀𝑒𝑎𝑛 (𝑃𝐶𝑔) +  𝑀𝑒𝑎𝑛 (𝑁𝑃𝐶𝑔) |                        (1) 

where Dg is difference in mean for gene g, PCg  is gene expression of gene g for prostate cancer 

samples, NPCg is gene expression of gene g for non-prostate cancer samples.  

Gene identifiers were sorted in decreasing order of the absolute difference in mean values. Top 10 

genes identifiers were selected from the sorted list with the highest mean difference between 

prostate cancer and non-prostate cancer samples.   

Significance difference in mean: In this approach, we compute the level of significance in mean 

expression of a gene in prostate and non-prostate cancer samples. In addition to mean, we also 

compute standard deviation in expression of a gene in prostate and non-prostate cancer samples. 

Following formula is used to compute significance difference in mean for given gene   

𝑆𝐷𝑔  =  
| 𝑀𝑒𝑎𝑛 (𝑃𝐶𝑔) + 𝑀𝑒𝑎𝑛 (𝑁𝑃𝐶𝑔) |

𝑆𝑇𝐷 (𝑃𝐶𝑔) + 𝑆𝑇𝐷 (𝑁𝑃𝐶𝑔)
            (2) 
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Where SDg is significance difference in mean of gene g in prostate and non-prostate cancer 

samples. PCg is gene expression of gene g for prostate cancer samples, NPCg is gene expression 

of gene g for non-prostate cancer samples. STD is standard deviation; STD(PCg) is standard 

deviation in expression of gene g in prostate cancer samples.  STD(NPCg) is standard deviation in 

expression of gene g in non-prostate cancer samples. 

The genes are sorted in decreasing order of SDg, i.e. value calculated by dividing mean by standard 

deviation. Top 10 genes identifiers were selected from the sorted list with the highest difference 

between prostate and non-prostate cancer samples.   

Area under curve: In this feature selection technique, we compute the discrimination power of 

each gene in term AUROC. First of all we calculated the mean of each gene ID for Prostate cancer 

and non-cancer data respectively. The classification of samples is performed based on expression 

of a given gene is above or below the threshold value. The threshold value is varied to compute 

the AUROC from the curve between true positive rate and false positive rate. This process is 

performed for all genes in dataset. Finally, top 10 genes were selected which have maximum 

discrimination power in term of AUROC.   

 

Figure 1: List of genes selected based on different feature selection techniques; top 10 genes 

from each technique. 

Propensity Index Matrix: 

In this study, we have coined the concept of propensity index matrix, for feature extraction from 

gene expression. In this method, we have computed the range of gene expression for a given gene 

in our dataset and difference has been divided into 10 equal bins. In each bin we compute 

propensity of prostate and non-prostate cancer samples in each bin. In next step, we replaced the 
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expression value of a gene by a propensity score based on bin it belongs. A new data set is created 

using propensity index score, which is provided as an input file to machine learning techniques for 

classification models.   

Application on Machine learning techniques: 

In this study, we have applied seven different machine learning techniques for developing 

classification models. These techniques are Support Vector Machine, K-Nearest Neighbour, 

Decision Tree, Random Forest, Linear Regression, Gaussian Naive Bayes, XGBoost machine 

learning to our dataset. Using these techniques, we have developed our classification models. 

These techniques have been implemented using a python library scikit-learn. 

Evaluation of models: 

In this study, we have used cross validation techniques to evaluate the performance of our models. 

We divided our dataset randomly into two datasets in the ratio of 70:30, where 70% of data is used 

for training and 30% of dataset is used for validation. We trained and tested our models on training 

dataset using five-fold cross-validation technique; where four folds are used as training dataset and 

remaining one-fold as testing data set. This process of dividing training and testing dataset is 

repeated five times. The performance evaluation of developed models on the testing dataset is 

called internal validation. In order to optimize the performance of our models on training dataset 

we optimized parameters.  Final optimized model, best performance in internal validation was 

used to test on independent or validation dataset. 

In order to measure the performance of our models, we used standard parameters commonly used 

to measure the performance of classification models. Both threshold-dependent and threshold-

independent parameters are reported to evaluate the performance. We computed sensitivity, 

specificity, accuracy and Matthew’s correlation coefficient (MCC) as threshold-dependent 

parameters using the following equations: 

      𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗  100                                            (4) 

     𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  ∗ 100                                            (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
∗ 100          (6) 

𝑀𝐶𝐶 =
(𝑇𝑃∗𝑇𝑁) − (𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
         (7) 

Where, FP is false positive, FN is false negative, TP is true positive and TN is true negative, 

respectively. 
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Area Under the Receiver Operating Characteristic curve (AUROC) is reported as a standard 

parameter for threshold-independent measures.  

Results: 

We developed classification models for classifying prostate and non-prostate cancer samples using 

seven machine learning techniques. First, we identified to 10 genes (DLX1, SEMG1, PCA3, 

SEMG2, ZIC2, SLC45A2, HOXC6, TDRD1, PIK3C2G, and AQP2) using mean-based feature 

selection techniques. These selected genes were used to build machine learning techniques-based 

classification models.  The performance of all models is evaluated on training and validation 

dataset. As shown in Table 1, our logistic regression-based model achieved maximum AUROC 

0.91 on training as well as on validation dataset.  

Table 1: The performance of machine learning techniques based models developed using top 10 

genes selected using mean based approach. 

Model 
Training Dataset Validation Dataset 

Sens Spec Accuracy AUROC MCC Sens Spec Accuracy AUROC MCC 

GNB 97.41 83.33 96.10 0.90 0.78 94.63 68.75 92.12 0.82 0.59 

KNN 98.85 75.00 96.63 0.87 0.79 97.32 75.00 95.15 0.86 0.73 

SVM 94.82 88.88 94.29 0.92 0.73 85.91 75.00 84.85 0.80 0.45 

DT 98.56 83.33 96.36 0.90 0.78 97.99 62.50 94.54 0.80 0.66 

RF 99.42 72.22 96.62 0.86 0.80 97.98 62.50 94.54 0.80 0.66 

XGB 98.56 72.22 96.10 0.85 0.76 95.95 62.50 92.73 0.79 0.58 

LR 93.96 88.89 93.50 0.91 0.70 83.22 75.00 82.42 0.91 0.70 

 

Similarly, we extract top 10 genes (EPHA10, NKX2-3, LOC100128675, APOBEC3C, DLX1, 

PPARGC1A, TMLHE, HOXC6, MED21, C1orf190) using significance difference in mean-based 

feature selection techniques. These to 10 genes were used to build classification models using 

machine learning techniques. The performance of these models were evaluated on training and 

validation/testing dataset. As shown in Table 2, our Support vector machine (SVM) based model 

achieved highest AUROC 0.92 on training dataset and AUROC 0.89 on validation datasets. 

Table 2: The performance of machine learning techniques based models developed using top 10 

genes selected using significance difference in mean. 

Model 
Training Dataset Validation Dataset 

Sens Spec Accuracy AUROC MCC Sens Spec Accuracy AUROC MCC 

GNB 97.41 91.97 96.88 0.95 0.83 95.30 81.25 93.94 0.88 0.70 

KNN 98.56 86.11 97.40 0.92 0.85 95.30 62.50 92.12 0.79 0.56 

SVM 95.40 88.89 94.80 0.92 0.74 90.60 87.50 90.30 0.89 0.62 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.22.436371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436371
http://creativecommons.org/licenses/by/4.0/


DT 97.70 77.77 96.09 0.88 0.75 97.32 56.25 93.33 0.76 0.58 

RF 97.98 77.78 96.35 0.88 0.77 97.31 75.00 95.15 0.86 0.72 

XGB 97.99 80.56 96.36 0.89 0.79 96.64 81.25 95.15 0.89 0.74 

LR 95.40 97.22 95.57 0.96 0.80 91.95 87.50 91.15 0.88 0.65 

 

Finally, we used AUROC based approach for feature selection, where top ten genes were selected 

based on their performance. There genes are (DLX2, APOBEC3C, EFNB1, QSOX2, HPN, SGEF, 

HOXC6, PLP2, NDRG2, DLX1) shown highest performance in term of AUROC when we used 

threshold-based model for prediction. As shown in Table 3, our K-means nearest neighbor (KNN) 

based model obtained maximum AUROC 0.92 on training dataset and AUROC 0.91 and testing 

datasets.   

Table 3: The performance of machine learning techniques based models developed using top 10 

genes selected using AUROC based approach. 

Model 
Training Dataset Validation Dataset 

Sens Spec Accuracy AUROC MCC Sens Spec Accuracy AUROC MCC 

GNB 94.54 94.45 94.53 0.94 0.75 93.29 87.50 92.73 0.90 0.68 

KNN 98.27 86.11 97.14 0.92 0.83 95.30 87.50 94.55 0.91 0.74 

SVM 90.51 94.45 90.90 0.92 0.65 88.59 87.50 88.48 0.88 0.58 

DT 97.99 83.34 96.10 0.91 0.80 96.64 68.75 93.94 0.83 0.65 

RF 98.85 72.22 97.40 0.86 0.77 97.31 81.25 95.76 0.89 0.76 

XGB 98.27 75.00 96.09 0.87 0.76 97.31 81.25 95.76 0.89 0.76 

LR 92.53 94.45 92.72 0.93 0.70 88.59 87.50 88.48 0.88 0.58 

Models based on propensity Index 

In this study, we added a new concept for developing classification models. Instead of using 

expression of a gene as input, we used propensity of a gene as input.  In order to convert expression 

of a gene to propensity index of a gene, we divide range of expression in 10 bins. In next step, we 

compute propensity index for each bin. Finally, expression of a gene is converted into a propensity 

based it expression fall in to a given bin. We developed classification models using top 10 genes 

selected by mean based feature selection techniques. As shown in Table 4, we got maximum 

AUROC 1.0 on training dataset and 0.91 on testing dataset using Random Forest (RF) model. The 

performance of our  models improved significantly when we used propensity index instead of 

expression (See Table 1 and 4).  

Table 4: The performance of different machine learning techniques based models developed 

using top 10 genes selected by mean based features selection technique. The models were 

developed using propensity index of genes instead of their expression. 
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Model 
Training Dataset Validation Dataset 

Sens Spec Accuracy AUROC MCC Sens Spec Accuracy AUROC MCC 

GNB 98.50 100.00 98.64 1.00 0.93 100.00 80.00 98.18 0.90 0.89 

KNN 98.50 100.00 98.64 1.00 0.93 100.00 80.00 98.18 0.89 0.89 

SVM 98.75 97.62 98.64 1.00 0.93 100.00 60.00 96.36 0.90 0.76 

DT 99.25 92.86 98.64 0.96 0.92 100.00 30.00 93.64 0.65 0.53 

RF 98.50 100.00 98.64 1.00 0.93 100.00 70.00 97.27 0.91 0.82 

XGB 97.75 97.62 97.74 0.99 0.88 100.00 80.00 98.18 0.93 0.89 

LR 98.75 100.00 98.87 1.00 0.94 100.00 70.00 97.27 0.87 0.82 

Similarly, we developed models based on propensity index of 10 gene selected using significance 

difference in based feature selection. As shown in Table 5, logistic regression based (LR) based 

model achieved highest performance with AUROC 1.00 on training dataset and AUROC 0.97 on 

validation dataset. In comparison to table 2 statistics, performance of prediction models reported 

in table 5 have increased after converting expression values to propensity index values. 

Table 5: The performance of different machine learning techniques based models developed using 

top 10 genes selected by significance difference in mean based approach. The models were 

developed using propensity index of genes instead of their expression. 

Model 
Training Dataset Validation Dataset 

Sens Spec Accuracy AUROC MCC Sens Spec Accuracy AUROC MCC 

GNB 99.50 100.00 99.55 1.00 0.97 100.00 70.00 97.27 0.90 0.82 

KNN 99.75 100.00 99.77 1.00 0.99 100.00 70.00 97.27 0.95 0.82 

SVM 99.00 100.00 99.10 1.00 0.95 100.00 80.00 98.18 0.95 0.89 

DT 97.75 90.48 97.06 0.94 0.84 99.00 60.00 95.45 0.80 0.69 

RF 99.75 95.24 99.32 1.00 0.96 100.00 80.00 98.18 0.94 0.89 

XGB 98.75 97.62 98.64 1.00 0.93 99.00 80.00 97.27 0.93 0.83 

LR 99.00 100.00 99.10 1.00 0.95 100.00 80.00 98.18 0.97 0.89 

Finally, we developed models using propensity index of top 10 genes obtained from AUROC 

based feature selection approach. As shown in Table 6, Random Forest (RF) model obtain best 

performance with AUROC 1.00 on training dataset and 0.99 on validation dataset. It is clear from 

above results that performance models developed using propensity index (Table 4, 5, 6) got better 

performance than models developed using gene expression (Table 1, 2, 3).  

Table 6: The performance of different machine learning techniques based models developed using 

top 10 genes selected by AUROC based approach. The models were developed using propensity 

index of genes instead of their expression. 

Model 
Training Dataset Validation Dataset 

Sens Spec Accuracy AUROC MCC Sens Spec Accuracy AUROC MCC 
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GNB 99.50 100.00 99.55 1.00 0.97 100.00 50.00 95.45 0.85 0.69 

KNN 99.50 100.00 99.55 1.00 0.97 100.00 50.00 95.45 0.84 0.69 

SVM 99.25 100.00 99.32 1.00 0.96 100.00 70.00 97.27 0.95 0.82 

DT 97.75 90.48 97.06 0.94 0.84 99.00 60.00 95.45 0.80 0.69 

RF 98.25 100.00 98.42 1.00 0.92 99.00 70.00 96.36 0.99 0.76 

XGB 98.50 95.24 98.19 0.99 0.90 99.00 80.00 97.27 0.97 0.83 

LR 98.75 100.00 98.87 1.00 0.94 100.00 70.00 97.27 0.78 0.82 

Single gene based classification 

In order to understand importance of individual gene in discriminating prostate and non-prostate 

samples. We developed threshold-based models that can be used to identify prostate cancer 

samples based on expression of a single gene. Thus, after identifying best genes using feature 

selection techniques, we have also ranked them on the basis of their capability of correctly 

predicting prostate cancer samples. All 30 gene extracted using feature selection techniques (i.e. 

top 10 from mean-based method, 10 from standard deviation based and 10 from AUROC based 

method) are considered for ranking. After removing duplicate genes, we ranked these genes based 

on probability of correct prediction of prostate cancer samples. As shown in figure 2, we got 13 

genes which have probability of correct prediction from 0.97 to 0.989. In figure 2, we also added 

the performance of KLK3 a gene associated with PSA (commonly use test). It is clear that the 

performance of KLK3 gene is too poor in comparison to other genes used in our study.  

  

Figure 2: Ranking of genes based on their probability of correct prediction, the performance of 

each gene is computed using threshold-based approach. 
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In addition to ranking of genes, we also compute whether expression of these genes in prostate 

cancer samples is statistically significant or not. We plotted the gene expression value of the genes 

as box plot figures using GEPIA (Gene Expression Profiling Interactive Analysis) tool [17]. As 

shown in Figure 2, box plots generated depicts that 7 out of 14 genes (HPN, HOXC6, DLX1, 

SGEF, EPHA10, TDRD1, PCA3) are found to be significant. 

 

 
Figure 3: Box plots of ranked genes. In this figure red box plot depicts cancer samples and 

yellow depicts normal samples. 

Discussion: 

In this study we aimed to identify gene expression-based biomarkers to distinguish between 

prostate cancer patients and a healthy control. We aimed to provide a tool to diagnose prostate 

cancer at an early stage. Patients with prostate cancer are usually diagnosed at a later stage of this 

disease as patients hardly develop any symptoms at an early stage of this cancer type. Better 

understanding of the molecular insights could aid in developing a tool which can detect the early 

onset of prostate carcinogenesis.   We have extracted features using mean, significance difference 

in mean and AUROC based methods. We have identified the top ten genes based on these three 

methods and further applied machine learning techniques for classification of prostate cancer and 

healthy control subjects with high accuracy. In this study, we have converted expression values of 

top 10 genes identified by feature selection techniques to propensity index matrix. Classification 

models have been developed using propensity matric which showed significant improvement over 
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the models developed using genes expression. This is a novel approach used in this study to 

improve the accuracy of correct prediction.  

PSA being the widely accepted primary blood test for prostate cancer detection. We have also 

explored the possibility of KLK3 gene (PSA associated gene) as prostate cancer biomarker. Due 

to small difference between the mean expression value for normal and prostate cancer patient, 

KLK3 gene was not identified in the top10 genes in the feature selection techniques used in the 

current study. From figure 2 and 3, it is also evident that KLK3 gene performance as a biomarker 

for prostate cancer is not good in terms of sensitivity, specificity and accuracy. Various feature 

selection techniques were applied in order to determine the genes that can strongly distinguish 

between tumorous and non-tumorous records. It was observed that DLX1 and HOXC6 appeared 

to be in the top ten genes set in all three feature extraction techniques. In a recent study, researchers 

have reported a method SelectMDx which proposed HOXC6 and DLX1 as RNA based urine 

biomarkers in their study [11]. They have reported AUROC of 0.85 with 93% sensitivity, 47% 

specificity and 95% negative predictive value and the PCPTRC AUROC as 0.76 on the validation 

cohort.  

Another study reported a urinary three gene panel i.e. HOXC6, TDRD1, and DLX1 as a tool to 

distinguish prostate cancer patients with low sPSA values [10]. They have reported an AUROC 

value as 0.77 for these three biomarkers. We have also developed a model using these three 

biomarkers, ran the process ten times by shuffling the data each time, and achieved the average 

AUROC for KNN model as 0.927±0.009 (Mean ± SD) for training and 0.971±0.002 for testing 

data set. We have also converted the expression values to propensity index and obtained the 

AUROC for SVC model as 0.981±0.002 for training and 0.914±0.001 for testing dataset. These 

results were highly unbalanced in terms of sensitivity and specificity.  

In this study we have plotted Box plots to understand the potential of ranked top 14 genes based 

on probability of correct prediction. We have reported that HPN, HOXC6, DLX1, SGEF, 

EPHA10, TDRD1, PCA3 are found to be significant. Using past studies, we have mapped the role 

of DLX1, TDRD1 and HOXC6 in Prostate cancer. In literature, we have found studies which 

explains role of HPN [18], SGEF [19], EPHA10 [20] and PCA3 [8] in prostate cancer diagnosis 

and prognosis. These studies further validate our findings. In current study, we have applied 3 

feature selection techniques i.e., mean based, standard deviation based and AUROC ROC based 

approach for identifying top 10 gene identifier for classifying prostate cancer sample vs. normal 

sample. Out of top 10 genes identified DLX1 and HOXC6 were found to be present using all three 

approaches. Further to understand the role of DLX1 and HOXC6 gene in functional pathways, we 

have explored GO annotations of both genes. DLX1 gene also known as Distal-Less Homeobox 1 

is a protein encoding gene and is located on the long arm of chromosome 2. Gene Ontology (GO) 

annotation of DLX1 gene include sequence-specific DNA binding and chromatin binding. In 

literature DLX1 is reported to be associated with Dental Fluorosis and Witkop Syndrome. It is 
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involved in related pathways such as DNA Damage/Telomere Stress Induced Senescence and 

Regulation of nuclear SMAD2/3 signaling pathway. 

HOXC6 gene also referred as Homeobox C6 is also a protein coding gene and is located in a cluster 

on chromosome 12. Homeobox gene family usually encode a highly conserved family of 

transcription factors that are involved in a crucial role such as morphogenesis in multicellular 

organisms. Further Gene Ontology (GO) annotations include DNA-binding transcription factor 

activity and transcription corepressor activity. Diseases which are reported to be linked with 

HOXC6 include Lymphoma, Non-Hodgkin, Familial. With recent advancements, there is always 

a scope for improvement. Apart from these approaches, various other measures like entropy 

changes, etc. can be used to select the genes that will lead to higher information gain. We could 

also apply network analysis models to establish connections between various gene IDs. Building 

networks for tumorous and non-tumorous gene expression data could unfold deeper insights of the 

molecular mechanisms involved in development of the cancerous conditions. 
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