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Abstract 

Human behaviors are at least partially driven by genomic regions that influence human-specific 

neurodevelopment. This includes genomic regions undergoing human specific sequence 

acceleration (Human Accelerated Regions or HARs) and regions showing human-specific 

enhancer activity (Human Gained Enhancers or HGEs) not present in other primates. However, 

prior studies on HAR/HGE activities involved mixtures of brain cell types and focused only on 

putative downstream target genes. Here, we directly measured cell type specific HAR/HGE 

activity in the developing fetal human brain using two independent single-cell chromatin 

accessibility datasets with matching single-cell gene expression data. Transcription factor (TF) 

motif analyses identified upstream TFs binding to HARs/HGEs and identified LHX2, a key 

regulator of forebrain development, as an active HGE regulator in neuronal progenitors. We 

integrated our TF motif analyses with published chromatin interaction maps to build detailed 

regulatory networks where TFs are linked to downstream genes via HARs/HGEs. Through 

these networks, we identified a potential regulatory role for NFIC in human neuronal progenitor 

networks via modulating the Notch signaling and cell adhesion pathways. Therefore, by using a 

single cell multi-omics approach, we were able to capture both the upstream and downstream 

regulatory context of HARs/HGEs, which may provide a more comprehensive picture of the 

roles HARs/HGEs play amongst diverse fetal cell types of the developing human brain. 
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Background 

Humans have complex social and cognitive behaviors, which are at least partly organized 

during neurodevelopment, resulting in a brain that is exceptional among primates in terms of 

size, cortical organization, and connectivity1–4. One approach to identifying genomic regions that 

contribute to human neurodevelopment is to compare human genomic sequences and 

epigenetic features with other species. Human Accelerated Regions (HARs) are genomic 

regions that are highly conserved among vertebrates but have higher than expected substitution 

rates on the human specific lineage of the evolutionary tree5–10. The fact that these regions are 

conserved in vertebrates suggests that they are functionally important regions (such as 

regulatory regions), and the high substitution rate in the human lineage suggests that their 

function has been modified specifically in humans4. Human Gained Enhancers (HGEs) and 

Human Lost Enhancers (HLEs) are genomic elements that have been identified by examining 

changes in epigenetic features that mark regulatory activity, such as H3K27 acetylation, 

between primate and human brains in both fetal and adult contexts11,12.  

Massively Parallel Reporter Assays (MPRAs) have shown that many of these HARs 

function as enhancer regions, with many validated enhancers showing activity during embryonic 

development13,14. Additionally, HAR specific sequencing in patients with Autism Spectrum 

Disorder (ASD) coupled with chromatin interaction sequencing (Hi-C) and MPRAs have shown 

that mutations in HARs that serve as active enhancers may disrupt social and cognitive 

function15. However, understanding the role of these HARs or HGEs across the different human 

brain cell types present during neuronal development remains a challenge as these genomic 

regions are mostly in noncoding areas of the genome. Moreover, variation in genomic coding 

and non-coding sequences between individuals and within individuals (single cell somatic 

genomic mosaicism) can alter DNA sequences, creating additional challenges in understanding 

HARs and HGEs16,17. Bulk chromatin accessibility maps of the germinal zone and cortical plate 
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integrated with chromatin interaction maps (Hi-C) have revealed that genes linked to Human 

Gained Enhancers (HGEs) were enriched for expression in outer radial glia (oRG)18. Integrating 

those same chromatin interaction maps of the human germinal zone and cortical plate with 

single-cell RNA-seq profiling of human brain development enabled the identification of possible 

neurodevelopmental risk genes expressed in specific developmental cell types that are 

regulated by HARs/HGEs19. Nevertheless, to our knowledge, there is still no study that directly 

assays the cell type specific activity of HARs/HGEs in the cells from developing human cortex. 

Additionally, prior studies focused on the genes regulated by HARs/HGEs but not the 

transcription factors (TF) binding to these genomic regions that drive human specific gene 

regulatory networks. 

To address these limitations, we aimed to characterize both the upstream transcription 

factors that bind to HARs/HGEs as well as the downstream genes regulated by these genomic 

regions in a cell type specific manner by integrating multiple single cell ‘omics datasets. This 

included data we generated using both a single cell chromatin accessibility assay (scTHS-seq) 

and single nucleus RNA-seq assay (snDrop-seq) on the same nuclei isolated from the fetal 

human frontal cortex during weeks 16.6 - 18.2. To further strengthen these analyses, we 

included recently published fetal human atlases of chromatin accessibility (sciATAC-seq) and 

gene expression (sciRNA-seq) generated from across the fetal human cortex during weeks 12.7 

– 17.820,21. We also analyzed a previously published scTHS-seq dataset from the human adult 

visual cortex22 to assess for differences between fetal and adult cell types. With these integrated 

analyses, we were able to look for cell types exhibiting higher than expected accessibility of 

HARs/HGEs, as well as TFs with binding motif enriched within accessible HARs/HGEs. 

Integration of fetal brain datasets with chromatin conformation (Hi-C) maps from the developing 

human cortical cell types further permitted the construction of HAR/HGE-centered TF regulatory 

networks, with each TF linked to a gene via one or more HAR/HGE23.   
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Results 

Single cell chromatin accessibility profiling of the developing human cortex  

To characterize the chromatin accessibility landscape of the developing human fetal cortex, we 

used scTHS-seq (scTHS)22 to generate profiles from 40,678 single nuclei from 16.6 and 18.2 

week fetal frontal cortices (Figure 1a, Table S1, Methods). We additionally profiled 7,865 

nuclei from the same samples using snDrop-seq (snDrop), providing gene expression profiles 

that would permit more confident identification of molecular cell types within the chromatin 

data22,24 (Figure 1a, Table S1, Methods). We then developed a computational pipeline using 

these multi-modal datasets to identify cell types with higher-than-expected accessibility of 

genomic regions linked to human specific evolution (Figure 1a). This includes integration with 

published Hi-C data and transcription factor motif databases to identify regulatory networks 

affected by human specific genomic regions5–11,23.  

To analyze our scTHS data, we identified a consensus set of 434,899 accessible regions 

and generated a matrix of regions by cells25 (Table S1, Methods). We then used CisTopic to 

identify the primary components in the chromatin data, clustered the cells using those 

components, and generated a predicted gene activity matrix to facilitate cell type identification 

26–28 (Methods). To analyze our snDrop data, we generated a gene expression matrix, clustered 

the cells, and identified key marker genes for each cluster24,27,29 (Methods).  

To annotate cell types in our snDrop dataset, we matched cluster specific marker genes 

to canonical markers from previous scRNA-seq studies of the human fetal cortex and confirmed 

these annotations through correlation of average gene expression values to reference RNA cell 

types30 (Figure S1a, Methods). We then correlated the average gene expression of our snDrop 

cell types with the average gene activity of our scTHS clusters to generate a rough map of 
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chromatin cell type identities (Figure S1b, Methods). The activity levels of these same 

canonical marker genes30 (Figure S1c, Methods), as well as the correlation values between 

RNA and chromatin cell types (Figure S1d) further supported our chromatin cell type 

assignments.  

scTHS chromatin and snDrop RNA data both independently generated UMAP 

embeddings that were consistent with the developmental trajectory of excitatory neurons. This 

involved the progression from radial glia cell types (oRG, vRG) through intermediate progenitors 

(ipEx) and early born excitatory neurons (ebEx) to the more mature layer specific excitatory 

neurons (ExL2/3, ExL4, ExL5/6, ExL6b) 31,32 (Figure 1b, 1c). Other cell types that were 

visualized outside of this trajectory were the inhibitory neurons, which migrate into the frontal 

cortex from the Medial Ganglionic Eminence (InMGE) or the Caudal Ganglionic Eminence 

(InCGE), as well as Oligodendrocyte progenitors (OPC) and Microglia (Mic)30 (Figure 1b, 1c). 

Endothelial cells (End) were a rare cell type detected in the snDrop, but not the scTHS, dataset, 

possibly due to our scTHS chromatin analysis collapsing the Endothelial and Microglia (Mic) cell 

types as chromatin accessibility profiling typically does not separate out cell types as well as 

gene expression profiling22 (Figure 1b, 1c). To visually separate Outer and Ventral Radial Glia 

(oRG and vRG), we selected only oRG, vRG, and CycProg cells from our binary chromatin 

accessibility matrix and reran LDA and UMAP using CisTopic (Figure 1b, Methods).  

To assess the reproducibility of our analyses, we additionally examined a published 

dataset profiling human fetal development that  the entire fetal cortex (sciATAC/sciRNA) 

(Methods)20,21. We found a lack of radial glia (RG) in the sciATAC/sciRNA cell type annotations, 

which was unexpected given that the underlying samples were obtained from a period of active 

neurogenesis (weeks 12.7 – 17.8)33. We also found a large excitatory neuron (Ex) cluster that 

was capable of being further sub-clustered to resolve additional key developmental subtypes, 

such as migrating ebEx neurons (Methods)20,21. For these reasons, we sought to re-assess the 
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sciATAC/sciRNA cell type annotations based on correlation with the average expression of 

reference developmental cortex cell types and adult snDrop cell types22,30 (Figure S2a, S2c, 

Methods). We further visualized key RG (GLI3, VIM, NES, FABP7, SOX2), ipEx (EOMES, 

PPP1R17, NEUROG2, PAX6) and astrocyte (Ast) (S100B, NEU1) markers (Figure S2b, S2d). 

Using this approach we were able to re-annotate cell types within this published data set, finding 

radial glia, intermediate progenitor and excitatory neuron subpopulations that better correspond 

with expected marker gene profiles (Figure S2a-d, Methods). Robustness of the re-labeled 

sciATAC and sciRNA cell types was evident from their average marker gene expression or 

activity profiles (Figure S2e), as well as the expected trajectories observed from the UMAP 

embeddings (Figure S2f). Therefore, we find a high correspondence in the RG to Ex 

trajectories between the sciATAC/sciRNA datasets and our own scTHS/snDrop datasets 

(Figure S2f). Through this we were able to compile two multi-model data sets with harmonized 

cell type populations underlying a similar temporal window of human brain development. 
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Figure 1: Single cell chromatin accessibility profiles of the developing human cerebral 
cortex. a) We dissociated nuclei from gestational week 16.6 and 18.8 human cortices and used 

single cell THS-seq (scTHS) to profile chromatin accessibility and single nucleus Drop-Seq 

(snDrop) to profile gene expression. We identified cell types, and analyzed the cell type specific 

accessibility patterns of genomic regions linked to human specific evolution. b) UMAP 

embedding of our scTHS chromatin accessibility dataset. c) UMAP embedding of our snDrop 

gene expression dataset.  
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The cell type specific activity of human specific genomic regions in the developing human cortex  

Most Human Accelerated Regions (HARs) and Human Gained Enhancers (HGEs) reside in 

noncoding regions of the genome, with only 5% – 15% of regions overlapping an exon, 

suggesting these elements are mostly noncoding regulatory regions (Figure S3a, Table S2). 

Thus, understanding the molecular functions of HARs/HGEs requires profiling the activity of the 

noncoding genome as well as the regulatory context in which HARs/HGEs operate. To this end, 

we used the multi-model datasets to identify both the cell types where these HARs/HGEs were 

most active, and the transcription factors (TFs) with motifs enriched in highly active HARs/HGEs 

(Figure 2a). We also included adult accessible chromatin from the visual cortex that was 

profiled using scTHS-seq to assess how fetal cell types differ from those in the adult22.   

We used chromVAR to identify the cell types with greater than expected levels of 

HAR/HGE accessibility, using 20,000 randomly sampled DNase I accessible sites across all 

ENCODE cell lines and tissues as a set of control regions22,34,35 (Figure 2b, Methods). We 

found that developmental progenitors, including RG/oRG/vRG and ipEx, were highly enriched 

for HAR/HGE accessibility, which was not the case for mature excitatory neurons (Figure 2b). 

Astrocytes (Ast), which have been previously linked to human cortical expansion, and both fetal 

and adult oligodendrocytes (Oli/OPC) were also enriched for HAR/HGE accessibility36 (Figure 

2b). While fetal HGEs showed the strongest overall enrichment/depletion, most of the 

HARs/HGEs were enriched in related cell types, consistent with their tendency to converge 

within similar cells19 (Figure 2b). Overall, neuronal progenitors and glial cells were more 

associated with human specific genomic activity, with fetal HGEs tending to have the highest 

level of overall activity in these cell types. 

With the identification of cell types enriched for global HAR/HGE activity, we next sought 

to identify specific transcription factors (TFs) that might bind within these genomic regions. This 
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would indicate whether human specific sequence acceleration or human specific epigenetic 

activity influences the regulatory activity of these TFs through modulating access to their binding 

sites. We used chromVAR to find transcription factors (TFs) with motifs enriched in HARs/HGEs 

that showed high levels of cell type specific activity, or with strong enrichments across the 

different types of HARs/HGEs (Figure 2c, Table S2, Table S3, Methods). Fetal HGEs were the 

only set of genomic regions with a significant number of TFs passing our enrichment Z-score 

threshold (Z > 4) (Figure 2c, Methods). These regions gained epigenetic activity in human fetal 

brain cell types, which could be the result of sequence changes elsewhere or a result of 

changes in cell type composition in the fetal human cortex versus the primate cortex11. Since 

fetal HGEs also had the strongest overall cell type activity, we focused the remainder of our 

analyses on these regions (Methods).  

For each cell type enriched for fetal HGE activity, we visualized the top TFs that pass 

our motif enrichment threshold (Figure 2d, Methods). As with the overall fetal HGE enrichment, 

most of the TF activity occurred in neuronal progenitors and glial cells (Figure 2d). Many of the 

TFs with strong motif enrichment in fetal HGEs, such as LHX2, RFX3, and POU3F2, have been 

previously linked to brain development and/or psychiatric disorders37–40. LHX2 is a particularly 

interesting TF as it shows strong fetal HGE motif enrichment in neuronal progenitors (RG, ipEx) 

across both datasets, and is known to be a key regulator of forebrain development37. Prior 

studies have also found that an LHX2 enhancer showed accelerated evolution in placental 

mammals and was critical to social stratification in mice41. Thus, by looking for cell type specific 

TF motif enrichment in fetal HGEs, we found that these regions have the potential to influence 

forebrain development and social behavior by activating LHX2 binding sites in neuronal 

progenitors.   

To assess the reproducibility of our TF analysis, we correlated the TF motif enrichment 

Z-scores in fetal HGEs across scTHS and sciATAC cell types (Figure 2e, Methods). From this 
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we found that corresponding cell types, like neuronal progenitors (RG/ipEx), showed highly 

correlated motif enrichments across datasets. Interestingly, LHX2 had the strongest TF motif 

enrichment in both the sciATAC RG and scTHS oRG cell types, which further implicates 

involvement for LHX2 regulatory activities in fetal HGE-dependent effects on human 

development (Figure S3b). Prior studies have shown that LHX2 knockouts in mice result in 

early neurogenesis and that primate specific oRG cells have extensive self-proliferative abilities, 

suggesting that the size of the RG/oRG progenitor population at the time of neurogenesis could 

contribute to cortical size42,43. Overall, by correlating the fetal HGE TF motif enrichments across 

our cell types and the fetal atlas cell types, we find that the motif enrichment analysis is both 

reproducible and cell type specific.  

As further confirmation of our findings, we examined how our HAR/HGE TF binding site 

enrichments corresponded to differentially accessible regions (DARs) identified from chimp to 

human from a recent organoid study44 (Figure S3c, Methods). A strong correlation in the 

scTHS/sciATAC cell type specific HAR/HGE TF motif enrichments with TF motif enrichment in 

the human/chimp DARs (Figure S3c) suggest that human/chimp DARs converge with  

HARs/HGEs in terms of their TF motif activity patterns. Further correlations of fetal HGE from 

vRG and Ast with human/chimp DARs again identified LHX2 motifs as the primary driver of the 

RG TF motif correlation (Figure S3d). Alternatively, the Ast correlation was found to be driven 

by several motifs including those for POU6F2 and FOXG1 (Figure S3d). Therefore, we 

demonstrate a correspondence between TF binding motifs identified from our analyses with 

those enriched in human over chimp accessible regions identified from an orthogonal dataset. 

This provides additional support for an expanded LHX2 regulatory role in human neural 

progenitors. 
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Figure 2: The cell type specific activity of human specific genomic regions in the 
developing human cortex. a) We compiled Human Accelerated Regions (HARs) and Human 

Gained Enhancers (HGEs) and identified cell types with higher than expected accessibility at 

those genomic regions. We then found transcription factors (TFs) with motifs enriched in 

accessible HARs/HGEs. b) Heatmap of HAR/HGE cell type enrichment across our fetal/adult 

scTHS cell types and sciATAC cell types. We sampled 20,000 random DNase I accessible sites 

as a set of control genomic regions. Dots represent enrichment Z-scores greater than 6. c) 
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Barplot of the number of TFs with motif enrichment Z-scores greater than 4 in at least one cell 

type for each dataset. d) Heatmap of cell type specific TF motif enrichment in fetal HGEs. We 

visualized the top 5 TFs with an enrichment Z-score greater than 4 for each cell type. e) 
Pearson correlations of TF motif enrichment in fetal HGEs between our fetal/adult scTHS cell 

types and sciATAC cell types. Dots represent Pearson correlations greater than 0.3.  
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Capturing the transcription factor regulatory context of fetal HGEs 

After characterizing the cell type activity of HARs/HGEs and identifying enriched TF motifs, we 

next sought to build HAR/HGE-centered regulatory networks. These networks link upstream 

TFs that bind to HARs/HGEs with downstream genes whose promoters are in contact with 

HARs/HGEs (Figure 3a). Our goal with these networks was to provide a model of human 

evolution where these human specific genomic regions modify TF regulatory networks by 

modulating connections between TFs and the genes they regulate. We again focused on fetal 

HGEs, and first linked TFs to fetal HGEs using their binding motifs (Figure 3a, Table S4). 

However, the presence of a TF motif in a HGE does not necessarily mean that TF is bound to 

that region in a given cell type. Thus, for each TF, we only linked a TF to HGEs if the overall TF 

motif activity was also correlated with HGE accessibility, and where TF expression was also 

detected (Figure 3a, Methods). We then linked fetal HGEs to downstream genes using 

published chromatin conformation capture (Hi-C) data generated from RG, ipEx, ebEx and In 

cell populations, keeping only those HGEs that were also accessible in these cell types (Figure 

3a, Table S4, Methods)23. By linking TFs to HGEs, and HGEs to genes, we built HAR/HGE-

centered regulatory networks where TFs regulate genes via binding to fetal HGEs (Figure 3a). 

To assess reproducibility in these networks, we built them independently from both the scTHS 

and sciATAC (Figure 3a). Therefore, we generated two independent, yet corroborating 

HAR/HGE networks through co-assessment of the accessibility, expression, and correlation of 

TFs and HGEs in the developing fetal brain cell types (Table S4). 

 To understand the size and connectivity of these networks, we plotted the number of 

nodes and edges for each network as well as the number of overlapping nodes and edges 

between corresponding scTHS and sciATAC networks (Figure S4a). The sciATAC networks 

tended to have more nodes (TFs/genes) and edges (TF – gene links) than scTHS networks, 

possibly due to the higher sampling depth for the sciATAC assays (Figure S4a). As the 
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sciATAC networks tended to be larger than the scTHS networks, we plotted the fraction of 

scTHS network nodes and edges also found in the sciATAC networks (Figure S4b). Roughly 

60% of scTHS network nodes and 20% of scTHS network edges were also in sciATAC 

networks, and neuronal progenitor networks (RG & ipEx) tended to have a greater overlap of 

nodes/edges than Ex or In networks (Figure S4b). Since Ex and In cells were not enriched for 

overall fetal HGE accessibility and their corresponding networks tended to be fairly sparse, we 

focused the remainder of our analysis on the human neuronal progenitor (RG & ipEx) networks.  

We next sought to identify influential TFs and genes in each network. To this end, we 

computed the eigenvector centrality for nodes (TFs or genes) in each network, which assigns an 

influence score to each node (a TF or gene) based on how many other highly connected nodes 

it is linked to (Methods). Measuring eigenvector centrality enables us to find influential nodes 

that may not themselves be highly connected, but are linked to other highly connected nodes 

(Methods). We then correlated the centralities across corresponding sciATAC and scTHS 

networks45 (Figure 3b). Overall, the centralities for corresponding scTHS and sciATAC neuronal 

progenitor networks were strongly correlated, and the outsize influence of Nuclear Factor I/C, or 

NFIC, in both RG and ipEx was found to be the primary driver for these correlations (Figure 

3b). NFIC’s influence on these progenitor networks was especially interesting as the Nuclear 

Factor I (NFI) family of TFs are known to play key roles in development46.  

Given the influential role for NFIC in neuronal progenitor networks, we assessed NFIC 

target genes in greater depth. Our motif binding analysis found that NFIC was bound to 1,624 

fetal HGEs across all scTHS networks and 1,976 fetal HGEs across all sciATAC networks 

(Methods). We found a significant overlap in NFIC gene targets across the scTHS networks 

and the corresponding sciATAC networks (Figure S4c). To find pathways enriched in NFIC 

target genes, we compared the genes against a combination of the Hallmark pathways and the 

Canonical pathways from the Molecular Signatures Database47,48 (Figure S4d). Pathways that 
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showed a strong enrichment across both sciATAC and scTHS networks were associated with 

Notch Signaling and Matrisome/ECM Glycoproteins (Figure S4d). Notch signaling is critical to 

numerous aspects of brain development, including maintenance of neural stem cells49. 

Furthermore, the NFI family was found to regulate Notch signaling in Glioblastoma and Ast 

development, suggesting that NFIC may in part regulate human cortical development via Notch 

signaling50,51. The enrichment for Matrisome/ECM pathways also suggests that NFIC may be 

affecting cell adhesion, a critical cell property that affects neuronal migration and development52. 

The NFI family also regulates cell adhesion molecules during granule cell development, 

affecting cell migration, axon outgrowth, and dendrite formation53. Overall, pathway enrichment 

analysis identified Notch signaling and cell adhesion pathways, both expected to play key roles 

in neuronal differentiation and maturation, as modulated by NFIC via active human gained 

enhancers. 

To further investigate how fetal HGEs modulate NFIC’s regulation of cell adhesion, we 

built a consensus sub-network of all NFIC target genes in the Matrisome and ECM gene sets 

that are present in both sciATAC and scTHS networks (Figure 3c, Methods). Both NFIC and 

NFIA target SMOC1, encoding a calcium binding protein commonly found in basement 

membranes54 (Figure 3c). Mutations in SMOC1 cause developmental abnormalities, including 

forebrain defects54. In mice, Nfic co-localizes with Pbx to regulate cortical patterning and Smoc1 

expression in the ventricular zone, suggesting that modifications to the relationship between 

NFIC and SMOC1 via HGEs could be relevant to human specific brain development55. NFIC, 

POU3F2, and POU2F1 all target the LGALS3 gene, the protein product of which can mediate 

cell adhesion via interactions with glycosylated proteins, has been implicated in the proper 

development of locomotive function, and has been linked to Huntington’s disease56,57. Thus, our 

NFIC target gene network identified SMOC1 and LGALS3 as potential modulators of cell 

adhesion whose expression may be influenced by HGEs that activate NFIC binding sites. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.19.436193doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436193
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Since LHX2, a transcriptional activator, had consistently strong motif enrichment in fetal 

HGEs and human/chimp DARs, we also visualized the LHX2 target gene sub-network (Figure 

3d). The sub-network showed that LHX2, NFIC, and TEAD1 all regulate expression of the 

C1orf61/CROC-4 gene, encoding a brain specific cDNA that is involved in cellular remodeling of 

brain architecture via the c-fos signaling pathway58 (Figure 3d). We also found LHX2 regulates 

the SOX6 gene, a relationship that had been previously documented in retinal development59 

(Figure 3e). Upon closer examination of the C1orf61/CROC-4 locus, we identified a high 

number of chromatin interactions between a single HGE site and several other sites within the 

C1orf61/CROC-4 gene body, suggestive of alternative C1orf61 promoters (Figure 3e). We also 

found significant motif co-occupancy between LHX2 and NFIC, which was also found during 

retinal development60 and indicative of possible cooperation between these TFs. Overall, our 

findings implicate LHX2 and NFIC, both of which have shown strong motif enrichment and 

network influence in our analyses, as being highly positioned for key roles in modulating human 

specific brain development.  

We also looked for influential connections and genes in neuronal progenitor networks 

using edge betweenness centrality, which looks for connections between nodes that act as 

bridges between different densely connected sub-networks61,62 (Figure S4e, Methods). The 

connection between NFIC and GLI2 was by far the most influential in both RG networks, driving 

the correlation between the sciATAC and scTHS RG networks. GLI2 is a key TF in the 

Hedgehog signaling pathway that regulates patterning during brain development63 and while 

NFIC has been previously linked to the Hedgehog signaling cascade in the context of tooth root 

development, our edge betweenness analysis suggests this NFIC – Hedgehog signaling 

cascade may also be related to human specific brain development64. Unlike in RG networks, the 

correlation between sciATAC and scTHS in ipEx networks was driven by a number of edges, 

including an edge linking NFIC and ZNF423, a key regulator of cell cycle progression in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.19.436193doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436193
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

neuronal progenitors65 (Figure S4e). The influence of fetal HGEs on NFIC’s regulation of cell 

cycle progression is consistent with the cycling properties of ipEx cells43. 

Since the NFIC – GLI2 edge had disproportionate influence on the RG networks, we 

examined the locus containing the relevant fetal HGEs and the GLI2 promoter (Figure S4f). 

Interestingly, this locus had a high density of fetal HGEs overall, which further suggests a role 

for GLI2 in human specific brain development (Figure S4f). The two fetal HGEs contacting the 

GLI2 promoter contain NHLH1/GLI2 motifs and NFIC/FOXP1/SREBF2 motifs, respectively 

suggesting an autoregulatory loop (Figure S4f). The NFIC/SREBF2 motif co-occupancy has 

been shown to collaborate in regulating a cholesterol synthesis pathway, suggesting that this 

co-occupancy may play a role in human specific development66 (Figure S4f). Both the GLI2 

promoter and the two fetal HGEs contacting the promoter have higher accessibility in neuronal 

progenitors (RG & ipEx) than mature Ex cells, confirming that these regions are primarily active 

in neuronal progenitors (Figure S4f). Therefore, we found that enrichment of differentially 

accessible fetal HGEs within the GLI2 promoter that may drive additional human-specific 

expression of this factor within progenitor cells. Careful examination of these fetal HGEs further 

finds both a potential auto-regulatory function of GLI2, as well as a possible cooperative role for 

NFIC and SREBF2. 
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Figure 3: Capturing the transcription factor regulatory context of fetal human gained 
enhancers. a) We linked TFs to HGEs if the TF motif was in the HGE, pruning motif – HGE 

links by correlating single-cell TF motif activity with HGE accessibility using our fetal (scTHS) 

dataset and the fetal atlas (sciATAC) dataset. We then used Hi-C networks to link accessible 

HGEs to gene promoters, and built TF regulatory networks where TFs regulate genes via 

binding to HGEs. We generated networks using both our scTHS dataset and the fetal atlas 

sciATAC dataset. b) Scatterplots visualizing the influence of nodes (genes & TFs) in each 

network by plotting eigenvector centralities across the sciATAC and scTHS networks. 
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Eigenvector centrality finds nodes that point to other nodes who are themselves highly 

connected, thus allowing for a more accurate measurement of node influence than simply 

counting the number of connections for each node. c) Force directed layout of a neural 

progenitor (RG/ipEx) NFIC cell adhesion network consisting of all NFIC target genes related to 

ECM and cell adhesion present in both sciATAC and scTHS networks. d) Force directed layout 

of a neural progenitor LHX2 network consisting of all LHX2 target genes present in both 

sciATAC and scTHS networks. e) Visualization of the fetal HGE region that contains LHX2 and 

NFIC/TEAD1 motifs and is in contact with the C1orf61 promoter. Arcs represent a chromatin 

contact from the neural progenitor Hi-C networks. Tracks showing the normalized accessibility 
of the locus in Counts per Million (CPM) are displayed for RG, ipEx and mature Ex cell types.  
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Discussion 

We used single-cell chromatin accessibility and gene expression profiles from the developing 

fetal human cortex to study both the upstream TFs binding to HARs and HGEs, as well as their 

candidate downstream regulated genes. Accessibility within these genomic regions was highest 

in neuronal progenitors and glial cells, indicating that HAR/HGE regulatory activities primarily 

target progenitor populations. Consistent with this high activity in progenitors, we found that fetal 

HGEs had the strongest overall cell type enrichment. We also found that LHX2, a key regulator 

of forebrain development, had significant enrichment of its binding motifs within highly 

accessible fetal HGEs specifically in neuronal progenitors. Then, by using Hi-C networks to link 

TFs to downstream genes via fetal HGEs, we created HGE-centered regulatory networks. This 

analysis identified a central regulatory role for NFIC within these neuronal progenitor regulatory 

networks, and found that NFIC target genes were enriched for Notch signaling and cell 

adhesion pathways. A key NFIC target gene in the cell adhesion pathway was SMOC1,which 

encodes a basement membrane protein key to numerous aspects of embryonic development54. 

These networks also identified potential TF cooperation, such as the co-occupancy of LHX2 and 

NFIC motifs. Thus, we were able to create a more holistic view of the biological function of 

HARs/HGEs by analyzing both the TFs binding to these regions and the genes regulated by 

those TFs via HARs/HGEs in a cell type specific context. 

 By using single cell chromatin accessibility, we were able to directly measure HAR/HGE 

accessibility in specific cell types, whereas previous work either measured bulk HAR/HGE 

accessibility or linked HARs/HGEs to genes for cell type specific interpretation18,19. Matched 

single cell gene expression datasets enabled us to filter for TFs that were expressed in the 

same cell types showing HAR/HGE motif enrichment. This multi-omics approach also allowed 

for fewer false positive contacts in the Hi-C data between HARs/HGEs and downstream genes, 

as we were able to filter for HARs/HGEs and genes that are accessible or expressed in the 
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same cell types. Thus, the integrated use of chromatin accessibility, gene expression, and Hi-C 

modalities enabled us to construct high quality regulatory networks. 

However, when building the TF regulatory networks, we relied on the presence of TF 

motifs in HARs/HGEs to link those genomic regions to TFs. This can lead to false positive TF – 

HAR/HGE links since the presence of a TF motif does not necessarily mean the TF is bound to 

that genomic region67. To reduce these false positive links, we correlated each TF’s motif 

activity with the accessibility of HARs/HGEs that contained the TF’s motif; this ensured that we 

only identified HARs/HGEs that were accessible when the TF motif tends to be active. A 

benchmarking study of various features used to predict TF binding has shown that chromatin 

accessibility and binding motif presence have the best predictive value relative to ground truth 

Chip-Seq datasets68. Thus, ensuring that the HARs/HGEs with TF motifs are accessible in the 

same cells that the TF is active should improve our ability to link TFs with HARs/HGEs.  

While there are existing computational tools for predicting transcription factor binding, 

they have almost exclusively been trained on Chip-Seq datasets from cell lines and may not 

generalize to our fetal brain data69. Future work applying Chip-Seq or Cut & Run to human and 

chimp organoids or teratomas at different stages of organoid development or FACS sorted 

progenitor cell types could enable us to directly measure transcription factor binding during 

human and/or primate development70,71. However, these methods require a unique antibody for 

each TF, making it difficult to assay TFs in a high throughput manner. A higher throughput 

strategy could be to run Chip-Seq on organoids/teratomas or sorted human progenitor cell types 

using a set of training transcription factors, and then using these transcription factor binding site 

prediction methods to build a comprehensive database of predicted transcription factor binding 

in these models of the fetal human brain. 
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 To ensure biological reproducibility of our HAR/HGE enrichment and TF motif analysis 

results, we used independent single cell chromatin accessibility datasets generated from two 

different methods. However, the TF regulatory networks built from these two datasets were not 

entirely independent as they used the same Hi-C dataset as well as the same motif position 

database. Nevertheless, it was helpful to analyze these networks separately given dataset 

specific elements present within each TF regulatory network, such as the accessibility of HGEs 

in any given cell type or the correlations between TF motif activity and HGE accessibility. We 

also compared our results with a published study of single cell gene expression and 

accessibility in human and chimp organoids, confirming that our HAR/HGE analysis correlated 

well with human/chimp differential accessibility. Thus, by using two chromatin accessibility 

datasets as well as an orthogonal dataset comparing human and chimp organoids, we were 

able to ensure reproducibility of our analyses.  

 Region specific differences and differences in gestational time points could also explain 

some of the discrepancies between the sciATAC and scTHS TF networks. Our scTHS data was 

sampled from the fetal frontal cortex of two samples from weeks 16.6 and 18.2, while the 

sciATAC data was sampled from the entire fetal cortex of 121 samples from weeks 12.7 to 17.8.  

Additionally, our adult scTHS dataset was specifically from the visual cortex. Variation in the 

genome between individuals and within individuals may also explain some of the discrepancies 

between sciATAC and scTHS datasets16,17. Specifically, single cell somatic genomic mosaicism 

in the human brain may contribute to changes in HAR/HGE activity between cells and across 

individuals. Future studies that simultaneously assess genomic sequences, chromatin 

accessibility, and resulting transcriptomic changes in single cells would clarify these 

relationships. 

Overall, we relied on a Hi-C dataset to link HARs/HGEs to the genes they regulate. 

However, recent work using CRISPR-QTL frameworks has shown that most enhancer – gene 
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pairs do not show up as Hi-C contact pairs72. Thus we are most likely missing the vast majority 

of genes linked to HARs/HGEs. A future approach to comprehensively identifying the genes that 

HARs/HGEs regulate could employ a similar CRISPR-QTL framework applied in organoid or 

teratoma models to more robustly identify the genes regulated by HARs/HGEs73,74.  

Additional future work could also look into how the epigenetic changes underlying 

Human Gained Enhancers (HGEs) arose in the human cortex. One possibility is that mutations 

in other areas of the genome that regulate epigenetic activity could lead to these HGEs gaining 

enhancer functionality. For example, a subset of HARs could be responsible for driving the 

formation of some HGEs and exploring this potential link between HARs and HGEs could lead 

to a deeper insight into human specific brain development. An alternative possibility is that 

active enhancer regions could have been copied and pasted into new areas of the genome via 

transposable elements. Future work could investigate this possibility by looking for transposon 

sequences near HGEs and then running gain of function experiments in primate organoids.  

 

Conclusions 

Thus, by leveraging a single cell multi-omics approach to assess the biological context of 

human specific noncoding regulatory regions, we were able to identify candidate TF regulatory 

networks that may play a role in the evolutionary development of the human brain. These 

networks directly model the hypothesis that these human specific noncoding regulatory regions 

modify human specific brain development by modulating the regulatory relationships between 

TFs and genes. We believe this type of holistic approach to analyzing noncoding regions can 

help unravel the biology behind not just human specific regulatory regions, but noncoding 

regulatory regions in general. 
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Methods 

 

snDropSeq nuclei preparation 

Sections of flash frozen fetal human brain tissue from gestational week 16.6 and 18.2 were 

obtained from the Robert Chow Lab at USC. These sections included areas from the frontal 

cortex and ganglionic eminences.  Nuclei were prepared with nuclear extraction buffer (NEB) as 

described previously22. Briefly, flash-frozen brain tissue that was sectioned at 50 µm with a 

cryostat was chopped and mashed with a scalpel and placed in 1 ml of ice-cold NEB with 1 uL 

DAPI. Nuclei were extracted with 10–12 up-and-down strokes of a glass Dounce homogenizer 

with a Teflon pestle in 1 ml of NEB. Samples were passed through a 50-µm CellTrics filter into a 

15 mL conical tube and then incubated on ice for 10 min. The total volume of each sample was 

brought up to 10 mL with PBS + 2 mM EGTA and samples were spun for 10 min at 900g, 

washed in PBS + 2 mM EGTA, and resuspended in 1 mL PBS + 2 mM EGTA supplemented 

with 1% fatty-acid-free BSA (Gemini). Approximately 250,000 DAPI+ single nuclei were purified 

by flow cytometry with a FACSAria Fusion (Becton Dickinson) sorter into PBS + 2 mM EGTA 

supplemented with 1% fatty-acid-free BSA (Gemini), concentrated at 900g for 10 min, 

resuspended in PBS + 2 mM EGTA supplemented with 0.01% BSA, and then used directly for 

droplet encapsulation 

 

snDropSeq Library Preparation and Sequencing 

Drop-seq with modifications optimized for nuclei processing was performed as described 

previously22. Before droplet generation, connecting tubing and syringes were coated with 1% 
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BSA to prevent nonspecific binding of nuclei to the surface, and then rinsed with PBS. To 

reduce nuclei settling, Ficoll PM-400 was added to the nuclei suspension buffer, rather than the 

lysis buffer. Nuclei were loaded at a concentration of 100 nuclei/µl and coencapsulated in drop- 

lets with barcoded beads purchased from ChemGenes Corporation (cat. no. Macosko201110). 

When encapsulation was complete, the contents of the droplet-collecting Falcon tubes were 

overlaid with a layer of mineral oil and then transferred to a 72 °C water bath for 5 minutes to 

lyse the nuclear membranes.  We then proceeded to reverse-transcription (RT) and PCR 

amplification of cDNA as previously described. A total of 12 snDropSeq libraries were prepared, 

and cDNA from each replicate was tagmented by Nextera XT and indexed with different Nextera 

index 1 primers. cDNA libraries were pooled and sequenced on an Illumina HiSeq 2500 with 

Read1CustSeqB24 for priming of read 1 (read 1 was 30 bp; read 2 (paired end) was 120 bp).  

 

snDropSeq Data Processing and Clustering 

Paired-end sequencing reads were processed largely as described (http://mccarrolllab.com/wp-

content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf), with additional 

correction steps as previously described22. Briefly, reads were filtered to ensure the presence of 

a polyT and to remove reads with low sequencing quality bases. The right mate of each read 

pair was trimmed to remove any portion of the SMART adapter sequence or polyT tails. The 

trimmed reads were then aligned to the human genome (GENCODE GRCH38) with STAR v2.5 

with the default parameter settings. Reads that mapped to intronic or exonic regions of genes as 

per the GENCODE gene annotation were recorded. We applied one further correction step to fix 

barcode synthesis errors by inserting N at the last base of the cell barcode for reads in which 

the first 11 bases of the cell barcode were identical and the last T base of UMI was the same. 

The digital expression matrix was then generated with genes as rows and cells as columns. We 
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assigned UMI counts for each gene of each cell by collapsing UMI reads that had only 1 edit 

distance. 

 UMI matrix cell barcodes were tagged by their associated sequencing library batch ID 

and combined across independent experiments. Mitochondrial genes not expressed in nuclei 

were excluded, and only UMI counts associated with protein-coding genes were used for 

clustering analyses. Nuclei with fewer than 300 molecules or more than 5,000 molecules 

(outliers) were omitted. We normalized molecular counts by using the total number of UMIs as 

the estimated library size for each cell. Variance normalization and clustering were done with 

the PAGODA2 package (https://github.com/hms-dbmi/pagoda2) as described previously29. 

Briefly, we selected 2000 overdispersed genes and computed the top 50 principal components 

(PCs). We generated clusters using PAGODA2 and then imported the gene expression matrix 

and the PCs into Seurat for UMAP visualization and marker gene visualization. We identified 

cell types by correlating the average gene expression of our clusters with the average gene 

expression of cell type from a published fetal human cortex dataset and by visualizing the 

expression patterns of previously described marker genes for fetal human cortical cell types30 

(Figure S1a, S1b). 

  

scTHS-seq Nuclei Isolation 

We prepared nuclei for the single-cell THS-seq chromatin accessibility assay using the protocol 

described in the snDropSeq nuclei isolation section22. Briefly, after flow cytometry, nuclei were 

kept on ice and spun down at 500g for 5 min at 4 °C, after which supernatant was removed and 

the pellet was resuspended in lysis buffer. Then nuclei were spun down at 500g for 5 min at 4 

°C, supernatant was removed, and the pellet was resuspended in tagmentation buffer. At that 
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point the nuclei sample was ready for nuclei counting. A nuclei concentration of ~2.4 million 

nuclei/mL was obtained for each sample. 

 

scTHS-seq Transposome Generation 

We prepared transposons for scTHS-seq as previously described22. Briefly each transposon 

consisted of two oligos: the 74-bp barcoded transposon and the 19-bp universal 5′ 

phosphorylated mosaic end. In total, there were 384 barcoded r5 transposons, each with a 

unique 6-bp barcode. For the generation of annealed transposons, 10 µL of each 100 µM oligo 

was added to each well of a 384-well plate (final concentration: 50 µM), incubated at 95 °C for 2 

min, cooled to 14 °C at 0.1 °C/s, diluted to 8.4 µM in TE buffer with a final concentration of 50% 

glycerol, and then stored at −20 °C. 

Tn5059 was generated and normalized for activity at Illumina. Transposome complexes were 

generated freshly for each scTHS-seq run and used within a few days. First, Tn5059 was 

diluted to 4.2 µM in standard storage buffer (Illumina), and 1 µL was added to each well of 384-

well plate. Next, 1 µL of 8.4 µM annealed barcoded r5 transposon was added to each well, and 

the 384-well plate was incubated at room temperature for 30 min. For custom nXTv2_i7 Tn5059 

transposome generation, the annealed nXTv2_i7 transposon (50 µM) was generated and we 

incubated 7 µM Tn5059 with 10 µM annealed transposon for 30 min at room temperature and 

then diluted to 0.7 µM Tn5059 transposome complex with standard storage buffer (Illumina). 
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scTHS-Seq Tagmentation, Barcoding and Library Preparation 

We ran the scTHS-seq assay as previously described. Briefly, we added 4 µL of cell sample to 

each well of the 384 well-plate with the loaded transposome complex for a total of ~960 nuclei 

per well and a final concentration of 0.7 µM Tn5059 r5 transposome complex. To stop the 

reaction, we added 4.0 µL of 50 mM EDTA to each well and mixed gently five times with the 

electronic pipettor, and then incubated the mixture at 37 °C for 15 min. We added one volume of 

cold 2X FACS buffer (2 mM EDTA, 1% BSA in PBS) to each well, and samples were mixed 

gently three times with the electronic pipettor and pooled into one tube on ice. We spun down 

the tube, and resuspended the cells in 1X FACS buffer. Next, 75 µL of propidium iodide (PI; 

eBioscience) was added, and nuclei were sorted by flow cytometry into 96-well plates 

containing 10 µL of PBS per well at 100 nuclei per well and kept on ice. Doublets were removed 

on the basis of forward and side scatter plots, and PI-staining events were selected. 

 Each 96-well plate of nuclei was then processed individually as previously described. 

Briefly, 11 µL of guanidine hydrochloride was added to each well and mixed by light vortexing. 

Reactions were purified with AMPure SPRI beads. 10 µL of 1× NEB Taq polymerase was added 

to each reaction, and the plate was lightly vortexed to resuspend the beads (SPRI beads left in 

the reaction), after which the reactions were run at 72 °C for 3 min for end fill-in. For in vitro 

transcription (IVT) amplification, we used the NEB HiScribe T7 high-yield synthesis kit, with 

incubation at 37°C for 16 hours. For reverse transcription, we added 2.5 µL of 20 µM random 

hexamers to each reaction, and used the Clontech SMART MMLV reverse transcriptase kit. 

Reactions were incubated at 22 °C for 10 min, then 42 °C for 60 min, and terminated at 70 °C 

for 10 min. To degrade RNA in cDNA–RNA hybrids, we added 1 µL of 0.5 units Enzymatics 

RNase H to each reaction, vortexed the plate lightly, and incubated the plate at 37 °C for 20 

min. For second-strand synthesis, we added first 2.5 µL of 20 µM sss_scnXTv2 to each reaction 

and lightly vortexed it, then incubated it for 2 min at 65 °C and immediately cooled it on ice. 
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Then we added 5.9 µL of NEB taq5X to each reaction and incubated it at 72 °C for 8 min. 

Double-stranded cDNA fragments then underwent simultaneous fragmentation and 3′ adaptor 

addition with a custom nXTv2_i7 Tn5059 transposome. To 7-µL volumes of each sample, we 

added 2 µL of 5× tagmentation buffer, followed by 2 µL of prepared 0.7 µM custom nXTv2_i7 

Tn5059 transposomes (final transposome concentration of 0.14 µM). We added 19 µL of 6.32 M 

guanidine hydrochloride, for a final guanidine hydrochloride concentration of 4 M, to each 

reaction and briefly vortexed the sample. We eluted sample off SPRI beads held by the 

magnetic plate and transferred it to a qPCR plate. Standard Illumina Nextera XT v2 barcoding in 

an 8 × 12 (i5 × i7) format was performed with qPCR, using custom scTHS-seq i5 indexes and 

standard Illumina i7 indexes. 

 For pooling, 2 µL (4 µL or 6 µL if yields were low) of each uniquely barcoded qPCR 

reaction was combined and size-selection was performed as described22. Resultant size-

selected libraries were quantified with Qubit and sequenced on an Illumina MiSeq system (50 + 

32 + 32 single-end reads) for validation, then on the high-throughput Illumina HiSeq 2500 (50 + 

8 + 32 single-end reads) for data generation. 

 

scTHS-Seq Data Processing 

 We generated Fastq files for Read1, Index1, and Index2 and identified the reads that 

map to each unique barcode combination using deindexer (https://github.com/ws6/deindexer) 

with a zero mismatch stringency. This resulted in a single fastq file per cell barcode 

combination. After deindexing, we appended the cell barcode combination for each read to the 

read name, and then re-merged all fastq files for alignment. We aligned the merged fastq file to 
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an hg38 reference genome (GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set) 

using BWA. 

 We then used the snaptools snap-pre command (with –keep-single = TRUE) to generate 

a snap file, and the snap-add-bmat command to generate 5 kb bins across the entire genome 

and create a bins by cells matrix25. We then used the SnapATAC processing pipeline to filter out 

cells with fewer than 3000 unique reads, run dimensionality reduction and clustering on the bins 

by cells matrix, and used MACS2 to call peaks on the reads from each cluster separately. We 

merged the peaks from all clusters to generate a consensus list of peaks, and then generated a 

binary peaks by cells matrix25. 

 

scTHS-seq Dimensionality Reduction, Clustering, and Cell Type Identification 

 We first filtered the peaks by cells matrix for cells with at least 500 accessible sites to 

remove potential empty barcode combinations, and less than 20,000 accessible sites to remove 

potential multiplets. After filtering cells, we used cisTopic to run Latent Dirichlet Allocation (LDA) 

on the peaks matrix with 30 topics, with the optimal number of topics selected using cisTopic’s 

model selection functionality26. We ran UMAP on the LDA topics to generate a 2D visualization 

of the data and then imported the LDA topics into Seurat v3 and clustered the cells using default 

parameters27. To help with cell type annotation and downstream analysis, we generated a gene 

activity matrix using Cicero, with a cell bin size of 80 and a minimum coaccessibility cutoff of 

0.128. We then correlated the average gene activities of each scTHS-seq cluster with the 

average gene expression of each snDropSeq cluster to identify rough cell types for each 

scTHS-seq cluster. scTHS-seq clusters that mapped to the same snDropSeq cluster were 

merged. We then validated scTHS-seq cell types by using Seurat to find gene activity markers 
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for each scTHS-seq cell type, merging any cell types that lacked distinct markers.  We further 

validated scTHS-seq cell types by correlating the average gene activities of each annotated 

scTHS-seq cell type with the average gene expression of each annotated snDropSeq cell type. 

 

HAR/HGE Annotation and Cell Type Enrichment 

We compiled HARs, fetal HGEs (defined using fetal human and chimp brain datasets), 

Adult HGEs/HLEs (HGEs and HLEs defined using adult human and chimp brain datasets)5–12. 

We also sampled 20,000 ENCODE DNAse I accessible sites across the human genome to 

generate a set of control genomic regions75,76. We annotated the genomic location of HARs and 

HGEs using ChIPSeeker, with promoters defined as being within 3 kb of a Transcription Start 

Site (TSS)77.  

We computed a pseudobulk accessibility matrix by binarizing our peaks by cells matrix 

so that each peak is either accessible or not in any given cell and then summing the binary peak 

counts across all cells within a cell type, giving us a peaks-by-cell-types pseudobulk matrix. To 

identify cell types with a higher than expected accessibility of HARs/HGEs, we used a modified 

version of chromVAR35. Briefly, for each HAR/HGE type, we identified peaks that overlapped a 

HAR/HGE region and then used chromVAR to compute the deviation from expected 

accessibility for each peak. chromVAR then identifies a set of background peaks with similar GC 

content and average accessibility and computes the deviation for each background peak. 

chromVAR computes Z-scores by subtracting the peak deviation from the average background 

deviation and dividing by the standard deviation of the background deviation.  
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HAR/HGE Transcription Factor Analysis 

 For each set of HARs/HGEs, we subsetted our peaks by cell types pseudobulk matrix to 

only those peaks overlapping that set of HARs/HGEs and then used chromVAR with JASPAR 

motifs to identify transcription factor motifs with cell type specific accessibility patterns78. Briefly, 

for each transcription factor motif, chromVAR identifies peaks containing that motif and then 

computes a deviation from expected accessibility for those peaks and a set of GC matched 

background peaks. chromVAR computes Z-scores by subtracting the average background 

deviation from the true deviation and dividing by the standard deviation of the background 

peaks. We only considered Z-scores from transcription factor motifs in a given cell type when 

that transcription factor was expressed in a specific fraction of cells in the scRNA-seq dataset 

dataset (expression defined as having at least one UMI in a given cell), setting the Z-score to 

zero if the transcription factor did not meet the expression threshold. We set the expression 

threshold at 0.05 for the THS analysis and at 0.025 for the ATAC analysis. The matched 

scRNA-seq data for the ATAC analysis was more sparse as it was generated using a 

combinatorial indexing method instead of a droplet based method21. For each set of 

HARs/HGEs, we visualized the cell type specific activity of transcription factor motifs with a Z-

score greater than 4 in at least one cell type. A Z-score of 4 roughly corresponds to an 

unadjusted p-value of 0.000063, which after applying a Bonferroni correction for simultaneously 

testing 386 TF motifs, results in a reasonable adjusted p-value of approximately 0.025. 

 To validate our transcription factor motif activity, we used a set of differentially 

accessible peaks from a published study comparing human and chimp organoid accessibility44. 

We computed the log2 fold enrichment for JASPAR TF motifs in the peaks that showed higher 

accessibility in human organoids. We then correlated the log2 fold enrichment in human specific 

peaks with the cell type specific HAR/HGE transcription factor motif activity using a Pearson 

correlation. To avoid spurious correlations in cell types with low Z-scores, we only computed 
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correlations for cell types with at least one TF Z-score greater than 4. Otherwise the correlation 

for that cell type was set to zero. 

 

Computing Average HAR/HGE Accessibility and Average Gene Expression 

We computed the average scaled accessibility for each cell type by applying the TF-IDF 

transform to the binarized single cell peaks matrix using Signac, and then computing the 

average normalized accessibility for each cell type. To compute the average scaled gene 

expression for each cell type, we used Seurat’s NormalizeData to normalize the single cell gene 

expression counts and then used ScaleData to scale the normalized counts matrix27. We then 

took the average scaled expression for each cell type. 

 

Linking Transcription Factors to Genomic Regions (HARs/HGEs) 

We first linked TFs to peaks overlapping HARs/HGEs by finding peaks that contained 

the TF binding motif which also overlapped one or more HARs/HGEs. Since the presence of a 

TF binding motif does not mean the TF is actually bound in a given cell type, we pruned the TF 

– peak links by correlating the overall TF motif enrichment with peak accessibility. Specifically, 

we first binned our single cell chromatin accessibility matrix into bins of 50 cells each using the 

binning method from the Cicero package28. Binning improves correlations with individual peaks 

since the single cell chromatin accessibility peaks matrices tend to be sparse28. We then ran our 

HAR/HGE TF motif enrichment on the binned peaks matrix using chromVAR, and correlated the 

motif enrichment Z-scores of each TF with the log(TF-IDF) transformed accessibility of all peaks 

with the TF motif present that also overlap an HAR/HGE. We pruned any TF – peak links with a 
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Pearson correlation of less than 0.1. We used the dataset specific accessible peaks called via 

SnapATAC/MACS2 that overlap HARs/HGEs instead of using the HAR/HGE regions directly. 

HARs are defined by sequence acceleration while HGEs/HLEs are defined by the presence or 

absence of enhancer specific epigenomic marks. In both cases, the boundaries of these regions 

may not be well defined. 

 

Linking Genomic Regions (HARs/HGEs) to Genes with Cell Type Specific Hi-C Datasets 

We used cell type specific chromatin conformation capture (Hi-C) data from a published 

study on the developing human cortex to link HARs/HGEs to genes by identifying peaks 

overlapping HARs/HGEs that are in physical contact with the promoter region (within 3kb of the 

TSS) of a gene23. We required that a given peak be accessible (average scaled accessibility 

greater than zero) in the given cell type in order to include it in the cell type’s regulatory network. 

We did not require that the contacted gene be expressed since we are not sure if the HAR/HGE 

is an activator or repressor.  

 

Linking Transcription Factors to Genes via HARs/HGEs 

We then linked transcription factors (TFs) to genes by merging our previously generated 

TF – peak links and our cell type specific peak to gene links. We filter the TFs in each cell type 

specific network for TFs that are expressed (at least 5% of cells have non-zero expression of 

the TF in the THS dataset, 2.5% in the ATAC dataset). 
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Fetal Human Gained Enhancer Network Visualization and Analysis 

We visualized the TF regulatory networks for fetal HGEs using force directed layouts 

with the R igraph package79. We highlighted the TFs with a fetal HGE motif enrichment Z-score 

of greater than 4 within each network. We computed the undirected Eigenvector Centrality for all 

nodes in each network using the eigen_centrality function in igraph with default parameters. We 

also computed the undirected Edge Betweenness Centrality for all edges in each network using 

the edge_betweenness function. 

  

 

NFIC and LHX2 network analysis 

We used Fisher’s exact test and the MSigDB Hallmark Genesets and Canonical 

Pathway Genesets to compute pathway enrichment for NFIC target genes in the RG and ipEx 

networks47,48. We compared the pathway enrichment of the scTHS and sciATAC networks using 

heatmaps the –log(p-values) for the top 5 enriched pathways for each. We then identified NFIC 

consensus target genes present in both the sciATAC and scTHS cell type networks and built 

consensus sub-networks using those genes as well as any other TFs targeting those genes. We 

merged the RG and ipEx sub-networks into a single network for visualization, highlighting TFs 

in red. We applied the same target gene analysis to the LHX2 target genes, building a 

consensus sub-network of all LHX2 target genes across the RG and ipEx networks along with 

any TFs also targeting those genes.  

We visualized the Hi-C contacts between fetal HGEs with NFIC and LHX2 motifs and 

key target genes (GLI2 and C1orf61 respectively) using the merged RG and ipEx HGE – gene 
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networks from the scTHS-seq dataset. We added the accessibility tracks for RG, ipEx, and 

mature Ex cell types by generating bigwig files from all cells in each respective cell type using 

the bamCoverage command with the parameters “-bs 50 –normalizeUsing CPM –skipNAs”. 

Accessibility tracks were generated from the scTHS dataset, and the RG cells included both 

oRG and vRG cells while the mature Ex included all layer specific neurons (ExL2/3, ExL4, 

ExL5/6)  We generated the initial plot using the plot_connections function from Cicero and 

added the accessibility tracks using the Gviz package28,80. 

 

Fetal Human Chromatin Atlas Analysis 

 We downloaded the cerebrum chromatin accessibility (generated using scATAC-seq) 

(https://atlas.brotmanbaty.org/bbi/human-chromatin-during-development/) and gene expression 

datasets (https://atlas.brotmanbaty.org/bbi/human-gene-expression-during-development/) from 

their respective fetal Human Atlases20,21. Due to the extremely large size of the RNA dataset 

(over 2 million cells), we down-sampled the data to 10,000 cells per cell types. For both the 

chromatin and RNA datasets, we reclustered the Excitatory (Ex) neuron clusters using the pre-

computed UMAP coordinates from the databases to generate finer resolution clusters. We 

correlated the average scaled gene activity or gene expression from the chromatin and RNA 

datasets with the average gene activity or average gene expression from our scTHS-

seq/snDrop-seq datasets. We also visualized the average gene activities of canonical Radial 

Glia (GLI3, VIM, NES, FABP7, SOX2), Intermediate Progenitor (EOMES, PPP1R17, 

NEUROG2, PAX6), and Astrocyte (S100B, NEU1) marker genes in the scATAC-seq cell types.  

We then re-mapped the cell types using the marker gene activity/expression and the 

average activity/expression correlations. For the sciATAC chromatin dataset, given that the 
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astrocyte cell type expressed radial glia marker genes at a higher level than astrocyte markers 

and was more highly correlated with radial glia gene activity than astrocyte activity, we relabeled 

the scATAC Astrocytes as radial glia (RG). We identified that Cerebrum Unknown Cell Type 3 

was most likely intermediate progenitors (ipEx) and relabeled those cells accordingly. We also 

found 2 Excitatory Neuron sub-clusters that mapped well to ebEx and relabeled those sub-

clusters. The remaining excitatory neuron sub-clusters were labeled Ex. For the sciRNA 

dataset, we also relabeled astrocytes as RG cells. We also identified Ex sub-clusters in the 

sciRNA dataset that corresponded to RG, ipEx, and ebEx and re-labeled those sub-clusters 

accordingly. We visualized the relabeled cells using the pre-computed UMAP coordinates. 

We also lifted over the scATAC-seq dataset peaks (which were mapped to the hg19 

reference build) to the hg38 reference build.  
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Supplemental Figures 

 

Figure S1: a) Pearson correlation of average cell type gene expression between cell types from 

a reference developmental cortex dataset and cell types from our fetal snDrop-seq dataset. c) 
snDrop-seq gene expression heatmap of key cell type markers. b) scTHS-seq chromatin gene 

activity heatmap of key cell type markers. d) Pearson correlation between average snDrop-seq 

cell type gene expression and average scTHS-seq chromatin gene activity.  
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Figure S2: a) Heatmap of Pearson correlations between the average scaled gene expression of 

the original sciRNA cell types (with Ex sub-clusters) and reference developmental cortex RNA 

cell types as well as our adult snDrop cell types. b) Average scaled expression of RG, ipEx, and 

Ast markers in the original sciRNA cell types. c) Heatmap of Pearson correlations between the 

average scaled gene activity of the original sciATAC cell types (with Ex sub-clusters) and 

reference developmental cortex RNA cell types as well as our adult snDrop cell types. d) 
Average scaled gene activity of RG, ipEx and Ast markers in the original sciATAC cell types. e) 
Average scaled gene expression RG, ipEx and Ast markers in the re-mapped sciRNA and 

sciATAC cell types. g) UMAP embeddings of the sciATAC and sciRNA datasets with re-mapped 

cell types. 
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Figure S3: a) Genomic annotation of HAR/HGE regions. Promoters are defined as regions 

within 3kb of a transcription start site (TSS). b) Scatterplot of Pearson correlation of TF motif 

enrichment in fetal HGEs between our scTHS oRG cell type and the sciATAC RG cell type.  c) 
Heatmap of Pearson correlations between TF motif enrichment in HARs/HGEs from scTHS and 

sciATAC cell types and TF motif enrichment in regions that are differentially accessible (DARs) 

between human and chimp brain organoids. d) Scatterplots comparing TF motif enrichment in 

fetal HGEs for scTHS oRG/Ast and TF motif in enrichment in human/chimp DARs.  
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Figure S4: a) Bar plot comparing the number of nodes (genes & TFs) in each fetal HGE 

network for sciATAC and scTHS datasets as well as the number of nodes shared between 

corresponding networks from each dataset. d) Bar plot showing the fraction of edges/nodes 

present in scTHS networks that are also found in corresponding sciATAC networks. c) Bar plot 

comparing the number of NFIC target genes in sciATAC and scTHS fetal HGE TF networks.  d) 
Heatmap visualizing the top pathways enriched for NFIC targets across sciATAC and scTHS 

cell type networks. e) Scatterplots visualizing the influence of edges (TF – gene) links by plotting 

edge betweenness centrality across the sciATAC and scTHS networks. Edge betweenness 

centrality scores how often each edge serves as the shortest path between different parts of the 
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network, thus enabling us to identify the most influential TF – gene links. f) Visualization of the 

fetal HGEs with NFIC/FOXP1/SREBF2 and NHLH1/GLI2 motifs that contact the C1orf61 

promoter. Arcs represent a chromatin contact from neural progenitor (RG/ipEx) Hi-C networks. 

Tracks showing the normalized accessibility of the locus in Counts per Million (CPM) are 
displayed for RG, ipEx and Ex cell types. 
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