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 22 

ABSTRACT 23 

Small RNA sequencing (sRNA-seq) has become important for studying regulatory 24 

mechanisms in many cellular processes. Data analysis remains challenging, mainly 25 

because each class of sRNA—such as miRNA, piRNA, tRNA- and rRNA- derived 26 

fragments (tRFs/rRFs)—needs special considerations. Analysis therefore involves 27 

complex workflows across multiple programming languages, which can produce 28 

research bottlenecks and transparency issues. To make analysis of sRNA more 29 

accessible and transparent we present seqpac: a tool for advanced group-based 30 

analysis of sRNA completely integrated in R. This opens advanced sRNA analysis for 31 

Windows users—from adaptor trimming to visualization. Seqpac provides a 32 

framework of functions for analyzing a PAC object, which contains 3 standardized 33 

tables: sample phenotypic information (P), sequence annotations (A), and a counts 34 

table with unique sequences across the experiment (C). By applying a sequence-35 

based counting strategy that maintains the integrity of the fastq sequence, seqpac 36 

increases flexibility and transparency compared to other workflows. It also contains 37 

an innovative targeting system allowing sequence counts to be summarized and 38 

visualized across sample groups and sequence classifications. Reanalyzing 39 

published data, we show that seqpac’s fastq trimming performs equal to standard 40 

software outside R and demonstrate how sequence-based counting detects 41 

previously unreported bias. Applying seqpac to new experimental data, we 42 

discovered a novel rRF that was down-regulated by RNA pol I inhibition (anticancer 43 

treatment), and up-regulated in previously published data from tumor positive 44 

patients. Seqpac is available on github (https://github.com/Danis102/seqpac), runs 45 

on multiple platforms (Windows/Linux/Mac), and is provided with a step-by-step 46 

vignette on how to analyze sRNA-seq data. 47 

    48 

  49 
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 50 

BACKGROUND 51 

The past decades have uncovered a diversity of small RNA (sRNA), which differs 52 

greatly in their biogenesis and biological roles. This involves miRNA that is generated 53 

from transcribed precursors and recruited by Argonaute proteins for post- and pre-54 

transcriptional gene silencing (1-5). Having a similar mechanism, piRNA primarily 55 

silence repetitive transposable elements in the germline, and can be amplified by 56 

means of the so-called ping-pong cycle (6). Other classes involves rRNA and tRNA 57 

derived fragments (rRF/tRFs) that may interact with Argonaute proteins in a 58 

piRNA/miRNA-like fashion, but may also directly interfere with translational 59 

processes in the ribosome (7-10). Some tRFs may not even align to their genome of 60 

origin, since their parental tRNA matures post-transcriptionally by receiving additional 61 

nucleotides (11). While many sRNA classes exerts their function in the cytoplasm, 62 

some intermediately sized none-coding RNA—like the snoRNA, scaRNA and 63 

snRNA—are associated with specific organelles inside the nucleus where they play 64 

important roles in the post-transcriptional shaping (splice, fold, and modify) of other 65 

RNA molecules (12,13). 66 

 67 

This complexity, where some sRNA may target single gene products while others 68 

target highly repetitive regions, where some are biologically active after transcription 69 

while others are post-transcriptionally modified prior to activation, where some align 70 

to the genome that they originated from while others do not, makes the analysis 71 

sRNA challenging. Today, it is also becoming increasingly popular to apply high-72 

throughput sequencing in sRNA experiments, which makes the analysis even more 73 

complicated. Combining massively parallel sequencing with specialized library 74 

preparation protocols that select for short RNA species generate data often 75 

containing millions of unique short RNA sequences across tens-to-hundreds of 76 

samples. 77 

 78 

Several tools and pipelines, such as Sports (14), MintMap (11), sRNAtoolbox (15), 79 

sRNAnalyzer(16), COMPSRA (17), and iSmaRT (18) have been developed to 80 

overcome some of the analytical thresholds in sRNA analysis. As a rule, these tools 81 

wrap around multiple programs written in multiple programming languages, such as 82 
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cutadapt (19) for adapter trimming, bowtie (20) for genome mapping, and 83 

subread:featureCounts (21) for counting sequences across sRNA subspecies. Thus, 84 

in labs that lack strong programming skills and previous experience of sRNA 85 

analysis, troubleshooting and advanced analysis often become bottlenecks. This may 86 

result in the exclusion of ‘difficult-to-analyze’ sRNA in favor of more straight-forward 87 

sub-species, such as miRNA. Unless better, more coherent, and user-friendly tools 88 

are developed, such discrimination will result in severe literature biases. 89 

 90 

Workflows for sRNA-seq analysis regularly build on methods from gene-centric 91 

DNA/RNA-seq approaches, such as regular mRNA-seq. This usually involves 92 

mapping individual samples against a reference genome followed by counting 93 

overlaps of genomic coordinates between sample reads and known genomic 94 

features, such as gene exons or miRNAs. Such feature-based counting (Figure 1A) is 95 

often done one read and one sample at the time. Most sRNA experiments, however, 96 

do not contain a single sample. Instead, they contain multi-sample groups. Therefore, 97 

as an alternative, read sequences across the whole experiment can be counted prior 98 

to aligning the read to a reference genome. Such sequence-based counting (Figure 99 

1A) would prevent annotating the same sequence multiple times both within and 100 

across samples. More importantly, this strategy would maintain sequence integrity. 101 

Thus, further annotation of the counted sequences would be possible at any time 102 

during the analysis. In addition, with sequence-based counting users may choose to 103 

remove sequences with low evidence, which fails to replicate across their 104 

experiment. Hypothetically, these advantages with sequence-based counting may not 105 

only have dramatic effects on computational performance. It may also increase the 106 

transparency and flexibility of the whole analysis.  107 

 108 

Here, we present—seqpac—a novel framework for sequence-based multi-sample 109 

sRNA analysis. From adapter trimming to the visualization of group-differences, 110 

seqpac is completely integrated as an open-source package in R. This makes it 111 

accessible from multiple platforms, including Windows, Mac and Linux. Using both 112 

published and novel data, we show that sequence-based counting combined with a 113 

multi-sample approach, not only positively affects computational performance, 114 

making sRNA-seq analysis accessible on a standard computer. It also increases the 115 

flexibility and transparency throughout the analysis. We illustrate this by detecting 116 
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severe contamination in published data that was previously analyzed using a feature-117 

based counting strategy. Finally, we use the strengths of seqpac to discover and 118 

confirm a novel rRF implicated as a diagnostic/prognostic marker in cancer. 119 

 120 

MATERIALS AND METHODS 121 

1. Package development   122 

Seqpac is available for download at github (https://github.com/Danis102/seqpac). 123 

Procedures on how to install seqpac are explained in the vignette 124 

(https://github.com/Danis102/seqpac/tree/master/vignettes). Dependencies for the 125 

main seqpac functions are listed in Table 1. Seqpac was developed and tested on a 126 

Linux Mint v.19.1 computer using R 3.4.4 in RStudio 1.2.1335 and devtools 2.3.2. 127 

The computer had an Intel Core i7-9800X CPU at 3.8 GHz (8 cores with in total 16 128 

threads) and contained 94 Gb of ram memory. All R internal functions (e.g. 129 

make_cutadapt excluded) were subsequently tested on multiple Windows 10 130 

computers using R 3.6.3 and 4.0.1.  131 

 132 

2. Testing seqpac using published datasets  133 

Fastq files for 4 datasets were accessed through Sequence Reads Archive (SRA) 134 

and European Reads Archive (ENA). We prefer downloading these files and their 135 

metadata through ENA (https://www.ebi.ac.uk/ena). All code for processing and 136 

generating the results presented in Figure 2, 4, 7 and 8 are available in 137 

Supplementary text S1. A brief explanation is provided below. 138 

 139 

2.1 Kang et al. 2018 – Benchmarking and reannotation using human and fruit 140 

fly multi-genome samples (Figure 2, 4)  141 

Kang et al. 2018 (22) (SRA accession: PRJNA485638; ENA download: 142 

https://www.ebi.ac.uk/ena/browser/view/PRJNA485638) were used for benchmarking 143 

seqpac’s make_trim function against two similar workflows. In both alternative 144 

workflows, system calls to cutadapt (19) and fastq_quality_filter (in FASTX-Toolkit; 145 

http://hannonlab.cshl.edu/fastx_toolkit/) were made from within R. The first used the 146 

make_cutadapt function to replicate the parallelization for make_trim using the 147 

foreach package (23), while the second used the internal parallelization option in 148 
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cutadapt. System time was monitored over 10 iterations replicated 6 times using the 149 

rbenchmark package (24).  150 

 151 

PAC objects with counts from trimming/filtering using the make_trim function and 152 

cutadapt/fasq_quality_filter alternative, were generated using make_counts function 153 

either with trimming=”seqpac” or trimming=”cutadapt”. Bar graphs from the low-level 154 

evidence filtering were saved. To assure that only sRNA were include, since this 155 

dataset was generated from a 75 cycle flow-cell, we removed reads that failed to 156 

contain adaptor sequence and only kept reads <=45 nt. The counts lists with 157 

progress reports were then applied to the standard PAC generation workflow 158 

(make_counts > make_anno > make_pheno > make_PAC). As phenotypic input file 159 

for make_pheno function we used metadata downloaded from SRA/ENA.  160 

 161 

After benchmarking, only the internal (make_trim) PAC object was applied to the 162 

reannotation workflow. Reannotation against either the human and fly reference 163 

genomes or sRNA class references were applied, using either the map_reanno 164 

import=”genome” or import=”biotype” options, respectively. For genome alignments 165 

we downloaded Homo sapiens GRCh38.101 (hg38) and Drosophila melanogaster 166 

BDGP6.28 (dm6) in fasta references at Ensembl ftp 167 

(http://www.ensembl.org/info/data/ftp/). For the sRNA class alignment we downloaded 168 

fasta references for miRNA (mirBase v.21), ncRNA (Ensembl.ncrna), tRNA 169 

(GtRNAdb) and piRNA (pirBase) for the human and fruit fly genomes, respectively. 170 

After generating reanno objects in R using the make_reanno function, we added and 171 

simplified the annotations using the add_reanno and simplify_reanno functions. The 172 

sRNA class hierarchy in simplify_reanno was set to rRNA > tRNA > miRNA > 173 

snoRNA > snRNA > lnc/lincRNA > piRNA. Plots in Figure 4 were generated using the 174 

PAC_pie, PAC_sizedist and PAC_nbias functions. 175 

 176 

2.2 Tong et al. 2020 – Detecting contamination in cancer cell lines (Figure 7, 8) 177 

Tong et al. from 2020 (25) (SRA accession: PRJNA666144; ENA download: 178 

https://www.ebi.ac.uk/ena/browser/view/PRJNA666144) were used for exemplifying 179 

the strengths of sequence-based counting in detecting severe bias in cancer cell line 180 

experiements. PAC generation and reannotation was performed similarly to the Kang 181 

et al. dataset (MATERIALS AND METHODS 2.1) with a few exceptions. Since the 182 
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Tong et al. was generated from a 50 cycle flow-cell we did not remove reads that 183 

failed to contain adaptor sequence and did not filter by max read length. Analysis and 184 

graphs were generated using the PAC_pca, PAC_sizedist and PAC_stackbar 185 

functions. We also verified the 5' ETS rRF of the 45S pre-rRNA (NR_146144.1) with 186 

the PAC_mapper and PAC_covplot functions using the same fasta reference as 187 

described in Methods 2.3. When reannotating the PAC object after the initial analysis, 188 

we used the Mycoplasma hyorhinis ATCC (ASM38351v1) genome in parallel with 189 

Homo sapiens (hg38).   190 

 191 

2.3 Skog et al. 2021 – HeLa anti-cancer treatment dataset (current study; Figure 192 

8) 193 

The anti-cancer treatment dataset was generated in the current study (see Methods 194 

3) and is available at SRA (accession: PRJNA708219). Since this dataset was 195 

generated from a 75 cycle flow-cell, an annotated PAC object was created as for the 196 

Kang et al. dataset (see Methods 2.1) removing reads that failed to contain adaptor 197 

sequence. To better compare with the Tong et al. dataset we set a max read length of 198 

65 nt. The PAC_deseq function was used to initially identify BMH21 sensitive 199 

fragments comparing cells exposed to BMH21 for 60 min to those exposed to DMSO 200 

for 60 min (control). Mapping against pre-rRNA was done using the PAC_mapper 201 

function with a custom fasta reference (Supplementary file S2). This reference first 202 

contained the GenBank sequence NR_146144.1. After identifying 4 peaks using the 203 

PAC_covplot function, we added the zoomed in regions of chr 21 aligning with 204 

NR_146144.1 and containing each of the four rRF peaks (Peak 1 = chr21:8206319-205 

8206669, Peak 2 = chr21:8212475-8212825, Peak 3 = chr21:8213765-8214115, 206 

Peak 4 = chr21:8218787-8219137). These regions were downloaded from the UCSC 207 

genome browser. Finally, we added the 47S GenBank entry U13369.1 to the fasta.  208 

 209 

2.4 Xu et al. 2020 – Validation in cervical cancer patients (Figure 8) 210 

The Xu et al. 2020 (26,27) (SRA accession PRJNA607023; ENA download: 211 

https://www.ebi.ac.uk/ena/browser/view/PRJNA607023) dataset, used for validating 212 

the 5' ETS rRF of the 45S pre-rRNA (NR_146144.1) in clinical samples. We only 213 

used the 8 fastq files obtained by sRNA size-fractions. Files were generated using a 214 

paired-end 2x150 cycle flow cell kit. Thus, we discarded the paired—second—read 215 
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and only kept the trimmed sequences of the first read where an adaptor was present 216 

(as in see Methods 2.1 and 2.3). 217 

   218 

3. Generating the HeLa anti-cancer treatment dataset 219 

Adherent HeLa CLL-2 cells were obtained from ATCC and were maintained at 37˚C 220 

and 5% CO2 in high glucose Dulbecco's modified Eagle's medium (DMEM), 221 

supplemented with 10% fetal bovine serum and 1% Penicillin/Streptomycin cocktail. 222 

Cells were treated with 1uM BMH-21 in antibiotic free media for 60min and 12h. Cells 223 

treated with DMSO for 60 min were used as control. The media was removed, cells 224 

were washed with PBS, collected with trypsinization, and stored at -70oC until further 225 

processing.  226 

 227 

Frozen cells were homogenized in prechilled Qiazol (Qiagen, Hilden, Germany) using 228 

a Tissue Lyser LT (Qiagen) set to 2 min at 30 oscillations/second with 5 mm Stainless 229 

Steel Beads (Qiagen). RNA was then extracted using miRNeasy Micro kit (Qiagen), 230 

and the integrity of purified RNA was confirmed on a Bioanalyzer (Agilent 231 

Technologies, Santa Clara, USA), where sample RIN values ranged between 9.3-10. 232 

Library preparation was done with NEBNext Small RNA Library Prep Set for Illumina 233 

(New England Biolabs, Ipswich, USA) with 100 ng of input total RNA according to 234 

manufacturer instructions, except for the following minor customizations: reactions 235 

were scaled-down to half the volume, adapters were diluted 1:2, amplification was 236 

done for 12 cycles, and libraires were size-selected for 130 to 190 nt fragments on a 237 

pre-casted 6% polyacrylamide Novex TBE gel (Invitrogen, Waltham, USA). Gel 238 

extraction was done using Gel breaker tubes (IST Engineering, Milpitas, USA) in the 239 

buffer provided in the NEBNext kit. After precipitation, the library concentrations were 240 

estimated using QuantiFluor ONE ds DNAsystem on a Quantus fluorometer 241 

(Promega, Madison, USA). Pooled libraries were sequenced on NextSeq 500 with 242 

NextSeq 500/550 High Output Kit version 2.5, 75 cycles (Illumina, San Diego, USA). 243 

All pooled libraries passed Illumina’s default quality control. 244 

 245 

 246 

RESULTS AND DESCRIPTION 247 

1.1 The seqpac workflow 248 
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Seqpac comes with a vignette that contains a step-by-step in-depth guide on how to 249 

analyze sRNA data from high-throughput sequencing. All functions can be tested 250 

using a set of down-sampled fastq files, with sRNA data originating from single fruit 251 

fly embryos. A quick reference to the main functions in seqpac is available in Table 1. 252 

Scripts for generating many of the analysis presented in the figures are available in 253 

Supplementary file S1. 254 

 255 

The general seqpac workflow involves three separate steps: constructing, annotating 256 

and, analyzing a PAC object (Figure 1B). A PAC object is in its simplest form an R list 257 

object, listing a phenotype (Pheno) table with sample information, an annotation 258 

(Anno) table with information about unique sequences, and a counts (Counts) table 259 

with the counts of sequences across samples (Figure 1C). While this setup reminds 260 

of many S4 class objects in packages such as limma (28), DESeq2 (29) and minfi 261 

(30) etc., we have deliberately made the PAC list a regular S3 object, holding two 262 

classifications ‘PAC’ and ‘list’. One reason is that S4 objects are often a source of 263 

confusion for beginners in R. Another is that all basic functions for handling lists are 264 

directly applicable on the PAC object, making it easy for more advanced users to 265 

customize their workflows. 266 

 267 

2.1 Constructing the PAC object 268 

Building the PAC object starts by generating a counts table. This is primarily done by 269 

the make_counts function. It uses fastq formatted sequence files to generate a 270 

standardized data frame, where each row represents unique sequences in the 271 

experiment, while columns represent samples (Figure 1C). This table maintains the 272 

framework for all subsequent analysis. The phenotype and annotation tables contain 273 

further information about samples (columns in the counts table) and sequences (rows 274 

in the counts table). These tables are produced by the make_pheno and make_anno 275 

functions. The phenotype table is provided by the user and can optionally be merged 276 

with a progress report from the adaptor trimming and low-level filtering (see Results 277 

2.2). The make_anno function prepares a very primitive annotation table that will 278 

expand in the reannotation workflow (see Results 3.1-3.4). Finally, make_PAC 279 

checks the different components and builds the PAC object. 280 

 281 

2.2 Trimming fastq of adaptor sequence 282 
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The make_counts function reads raw sequence files in fastq format using the 283 

ShortRead package (31), trims the reads of adaptor sequence and filters low-quality 284 

and non-replicable reads, prior to counting each unique read sequence across all 285 

samples. For adaptor trimming seqpac has an internal and external alternative. 286 

Internally, make_counts calls the stand alone make_trim function that primarily uses 287 

the Biostrings package (32) to efficiently search and remove any adaptor sequence. 288 

In addition, sequences with low quality base scores can be filtered. For the external 289 

option, make_counts is dependent on system calls to externally installed cutadapt 290 

(19) and fastq_quality_filter (available in FASTX-Toolkit) (33) software. 291 

 292 

To test the performance of seqpac’s make_trim function, we downloaded fastq files 293 

from the Kang et al. study from 2018 (22) (SRA project: SRP157338). This dataset 294 

contains 7 fastq ranging between 52.7-492.8 Mb in compressed size (mean=310.1 295 

Mb) and were generated from either human or fruit fly RNA, where some samples 296 

were generated by mixing RNA from these species in different ratios. Using the 297 

rbenchmark package (24) we trimmed/filtered these files over 10 iterations replicated 298 

6 times for the make_trim and make_cutadapt functions, as well as stand-alone 299 

cutadapt/fastq_quality_filter using near-to-identical settings. Each function was given 300 

7 parallel jobs on a Linux desktop computer (for hardware specifications, see 301 

Methods). While make_trim and make_cutadapt uses the foreach package (23) to 302 

parallelize jobs across processor cores/threads, the stand-alone 303 

cutadapt/fastq_quality_filter workflow used cutadapt’s internal parallelization option (-304 

p 7). The make_trim function was on average 1.2 times faster than make_cutadapt, 305 

and 2.4 times faster than cutadapt/fastq_quality_filter (Figure 2A). On average, 306 

make_trim finished trimming/filtering all 7 fastq in 4.8 min, make_cutadapt in 5.8 min 307 

and the stand-alone alternative in 11.4 min. The slow performance of the stand-alone 308 

alternative was primarily due to fastq_quality_filter lacking the ability to run jobs in 309 

parallel. 310 

 311 

Seqpac’s make_trim function generated very similar sequence counts compared to 312 

the cutadapt/fastq_quality_filter alternative (Figure 2B-C). We noticed, however, that 313 

make_trim generated slightly higher counts for some sequences (arrows in Figure 314 

2B). Manually searching for these sequences across the original and trimmed fastq 315 

files showed that one explanation was that cutadapt failed to identify concatemer 316 
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adaptor sequences. Concatemer (chimeric) adaptors are found in small quantity in 317 

most experiments, and are technical constructs where an incomplete adaptor 318 

associates with a complete adaptor during synthesis (34). 319 

 320 

2.3 The low-level evidence filter 321 

The make_counts function contains a low-level filtering module, here called an 322 

evidence filter. In default settings, it simply filters sequences that fails to replicate 323 

across two independent samples. Even in small experiments, such as the Kang et al. 324 

dataset, such filtering dramatically increases performance by reducing noise from 325 

extremely rare transcripts/degradation products (Figure 2C). Our experience is that 326 

such evidence filter often results in less than half the sequence diversity (number of 327 

unique read sequences; lower bars Figure 2C), while maintaining most of the 328 

sequencing depth (total number of reads; upper bars Figure 2C).  329 

 330 

To illustrate this further, true sequence diversity—that can be replicated and is not 331 

due to technical bias—should expect to rise when sRNA from two species is mixed, 332 

which is also the case in the Kang et al. dataset (percentages in Figure 2C). 333 

Nonetheless, the evidence filter in make_counts can both be disabled (e.g. in single 334 

sample/replicate experiments) or intensified (e.g. to increase performance in very 335 

large datasets). In addition, confirming our initial observation that seqpac’s make_trim 336 

function was better in identifying adaptor artifacts, such as concatemer adaptors, 337 

make_trim identified more replicable unique sequences passing the evidence filter 338 

than the popular cutadapt/fastq_quality_filter workflow (Figure 2D). 339 

 340 

3.1 Annotating sequence with seqpac 341 

Seqpac provides two ways to annotate a sequence in a PAC object. Firstly, the 342 

reannotation workflow (Figure 3: step 1-3) aligns the trimmed read sequences in the 343 

PAC against reference sequences, for example a reference genome, sRNA 344 

database, or sequences from another experiment, such as the results from a piwi 345 

pull-down. This is done using the reannotation family of functions: map_reanno, 346 

import_reanno, add_reanno and simplify_reanno. Seqpac also provides a ‘backdoor 347 

function’, PAC_mapper, that quickly calls the reannotation workflow for mapping the 348 

sequences in the PAC object (see Results 6.1, 7.2).   349 

 350 
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Secondly, after aligning a PAC object to a reference genome, the genomic 351 

coordinates of PAC sequences can be overlapped with coordinates of already 352 

annotated genomic features (Figure 3: step 4). This is done by the PAC_gtf function 353 

(Figure 3; step 4). Thus, by annotating using PAC_gtf, users can mimic a feature-354 

based counting strategy, while saving the sequence integrity of the trimmed fastq-file 355 

in the PAC object. 356 

 357 

3.2 Bowtie mapping using the map_reanno function 358 

The reannotation workflow (Figure 3: step 1-3) depends on Bowtie (20) for sequence 359 

alignment, and therefore needs Bowtie indexes for the input fasta references. Similar 360 

to the adaptor trimming, map_reanno calls Bowtie either internally or externally, 361 

through the Rbowtie package (35) or a system call, respectively. The function can 362 

parse either seqpac standard or user provided options to Bowtie. It also calls a 363 

secondary function, import_reanno, which controls the import options from the Bowtie 364 

output files. Options involve for example whether coordinates and fasta sequence 365 

names should be reported, or only hit-or-no-hit. This is convenient for large repetitive 366 

sRNA references that may generate massive files if everything is reported (e.g. 367 

pirBase for humans and flies). 368 

  369 

The map_reanno function runs multiple align/import cycles (Figure 3: step 1). After 370 

each cycle, imported data are saved as Rdata files, and only sequences without an 371 

alignment to any of the references will proceed to the next cycle. Each proceeding 372 

cycle allows for one additional mismatch until the user-defined max mismatches (or 373 

the Bowtie limit of 3 mismatches) has been reached. Reannotating only no-hit 374 

sequences in proceeding cycles not only guarantees that only the best hits are 375 

reported. Since system demands per sequence increases with each added 376 

mismatch, it also significantly increases performance as only the minimum number of 377 

sequences are aligned in each mismatch cycle. Importantly, if a sequence aligns to 378 

two references, both references will be reported for that cycle. Thus, unlike feature-379 

based counting where such multimapping issues must be resolved already when 380 

reads are counted, users of seqpac can decide to discriminate between annotations 381 

at any stage in the analysis. 382 

 383 

3.3 Annotating a PAC object using the add_reanno and simplify_reanno 384 
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Next, using the add_reanno function the Rdata files from each mismatch cycle is 385 

read into R and organized into a reanno object (Figure 3: step 2). For efficient 386 

access, this object is generated as a series of tibbles available in the tibble;tidyverse 387 

(36) package. Using a list of search terms, add_reanno consolidates the fasta 388 

sequence names into short character strings, which can be used as factors in 389 

downstream analysis. Search terms are constructed using regular expressions. A 390 

match will be reported as the reference name together with the search term. For 391 

example, if two references named mirbase and ensembl_ncrna were used as input 392 

for map_reanno, a search term list constructed as, list(mirbase=’mir’, 393 

ensembl=c(‘snoRNA’, ´tRNA´), will result in matches being returned as ‘mirbase:mir’, 394 

‘ensembl:snoRNA’  and ‘ensembl:tRNA’. The user may choose if search terms must 395 

catch all reference hits, or if failure to match a search term should be returned as 396 

‘other’ (e.g. ‘ensembl:other’). 397 

 398 

Neither map_reanno nor add_reanno discriminates between references. Thus, if PAC 399 

sequences align to multiple references, all alignments and search matches will be 400 

reported (e.g. ‘mirbase:mir|ensembl:other’), but only if they align in the same 401 

mismatch cycle. For better transparency and reproducibility of sRNA experiments, we 402 

recommend that analysis is performed on a class-by-class basis as far as possible. 403 

Nonetheless, hierarchical discrimination is often the only option to resolve some 404 

issues with pseudoreplication when multiple classes of sRNA are simultaneously 405 

analyzed. This is because the same sequence sometimes appears in multiple 406 

reference databases, and therefore obtains multiple classifications, such as both 407 

piRNA and miRNA. The purpose of the simplify_reanno function is therefore to 408 

hierarchically discriminate between search matches generated by the add_reanno 409 

function (Figure 3: step 3). 410 

 411 

Importantly, since the seqpac workflow introduces simplified hierarchical 412 

classifications late in the annotation process, users can quickly set alternative 413 

hierarchies by just reapplying the simplify_reanno function. Unlike feature-based 414 

counting, the seqpac workflow therefore makes it easier to observe the effects of 415 

changes to the hierarchy. In addition, since seqpac maintains sequence integrity, 416 

users may at any time blast candidate sequences at their favorite genome browsers, 417 
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to verify that the correct classification was made and to get additional information 418 

about the candidate.    419 

 420 

3.4 Annotating genomic coordinates using PAC_gtf 421 

When the reannotation workflow runs using the import=‘genome’ mode, the reference 422 

coordinates for each PAC sequence will be imported into the reanno object and later 423 

added to the PAC annotation table. These coordinates can be parsed to the PAC_gtf 424 

function as an alternative way to obtain PAC sequence annotations (Figure 3: step 4). 425 

This function uses gtf/gff formatted files that contains coordinates of genomic 426 

features and are available at many popular databases, such as Ensembl (37). 427 

PAC_gtf simply overlaps PAC genomic coordinates with the gtf/gff coordinates using 428 

functions in the GenomicRanges package (38). It provides the user options on what 429 

information in the gtf to consolidate. Two predefined tracks, specifically expecting 430 

repeatMasker (39) and Ensembl (37) gtf files, are available besides a custom option.    431 

 432 

3.5 Example: Reannotation workflow using the Kang et al. dataset 433 

To exemplify seqpac’s reannotation workflow and plotting functions we ran multi-434 

species mapping using the PAC object generated from the Kang et al. 2018 dataset 435 

(22) (presented in Figure 2). This involved parallel mapping to both the human (hg38) 436 

and fruit fly (dm6) genomes, as well as species specific versions of mirBase (miRNA) 437 

(40), pirBase (piRNA) (41), GtRNAdb (tRNA) (42) and ensembl (many types of 438 

ncRNA) databases (37). The hierarchy was set to rRNA > tRNA > miRNA > 439 

snoRNA > snRNA > lncRNA > piRNA, indicating that rRNA was most prioritized and 440 

piRNA was least prioritized. Mapping was carried out allowing for up to 3 441 

mismatches. 442 

 443 

As expected, the test clearly discriminated between human and fly samples in terms 444 

of genome alignment, and correctly accounted for the expected genomic ratios when 445 

samples from these two species had been mixed (Figure 4A). The human proportion 446 

of the dataset was more affected by perfect matching, which is expected due to more 447 

outbreeding in the population, but both species gain almost 100% ‘mappability’ when 448 

mismatches were allowed. The fruit fly proportion of the dataset was strongly 449 

enriched with an rRNA sized to 30 nt (Figure 4B). Blasting this sequence showed that 450 

it was identical to the complete 2S rRNA subunit. This was expected since Kang et al. 451 
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did not to report of any method that depletes 2S rRNA prior to library construction, 452 

which is commonly done in fruit fly experiments (43,44). The human proportion of the 453 

dataset was instead enriched with miRNA with the expected size of 22 nt (Figure 4B). 454 

There was also a T bias in the expected range between 22-25 that may indicate 455 

piRNA (Figure 4C). Nonetheless, the proportion of piRNA classification was lower 456 

than the T bias (Figure 4B/C), which suggests that some piRNA may have been 457 

classified as miRNA given that miRNA was prioritized in the hierarchy. 458 

 459 

4.1 Subsetting and grouping data using targeting objects 460 

Seqpac applies an innovative strategy for extracting sample groups and sequence 461 

classifications for filtering, plotting and statistical purposes. This involves small 462 

targeting objects constructed as a list with two inputs (Figure 5). The first being a 463 

character string naming a target column in a specific table held by the PAC object, 464 

while the other is a character vector naming the target entries of the target column. 465 

Importantly, the name of the targeting object itself pinpoints to which PAC table that 466 

should be targeted. Thus, if a function has a ‘pheno_target=’ input, a targeting object 467 

naming a column in the phenotype table can be used to subdivide the data. Similarly, 468 

if an ‘anno_target=’ input option is available then columns in the annotation table can 469 

be targeted. The second entry of a targeting object is often order sensitive. Thus, if 470 

users want the sample groups to appear in a specific order in a graph, they only need 471 

to provide that order in the second entry of the pheno_target object (Figure 5). 472 

 473 

As an example, when using the PAC_pie to generate the pie charts in Figure 4A, we 474 

used an anno_target for a column in the Anno table containing the four different 475 

genome classifications (second entry order: “No alignment”, “Fly”, “Human” and “Both 476 

fly and human”). Similarly, when generating the size distribution histograms in Figure 477 

4B, we used an anno_target for a column in Anno holding the sRNA classifications 478 

generated by the simplify_reanno function. 479 

 480 

In a few cases, seqpac functions use targeting objects for other seqpac objects, such 481 

as a PAC summary table (see Results 5.3). While the principle of these objects is 482 

similar to the pheno_target and anno_target objects, they may have differences that 483 

are carefully described in the manual to each function. 484 

 485 
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5.1 Overview preprocessing, summarization and statistical analysis 486 

With or without advanced annotations, PAC objects can be filtered (PAC_filter, 487 

PAC_filtsep), normalized (PAC_norm), and summarized (PAC_summarize) using 488 

seqpac internal functions. More advanced statistical wrappers immediately 489 

compatible with PAC objects are also available (e.g. PAC_deseq, PAC_pca). 490 

 491 

5.2 Filtering 492 

PAC_filter and PAC_filtersep handles filtering and subsetting of PAC objects. With 493 

PAC_filter, users can subset the PAC object by targeting columns in the Pheno and 494 

Anno tables using the pheno_target and anno_target options (see Results 4.1). A 495 

filter that extracts sequences that have reached a percent coverage over a certain 496 

threshold is also available for both raw and normalized counts. This can for example 497 

be used for the popular ‘20 counts in 50% of samples’ filter. PAC_filter can also plot a 498 

graph that shows the impact on the data at different thresholds. Conveniently, seqpac 499 

provides a separate function PAC_filtersep, that extracts sequences reaching a 500 

coverage threshold within sample groups. The output can directly be used to 501 

construct Wenn-diagrams, for example visualizing the sequence overlap that reach 502 

100 cpm within two sample groups. It can also be applied for more advanced filters, 503 

like removing read sequences that do not reach 20 counts across all samples within 504 

a group.               505 

 506 

5.3 Normalize, summarize and statistical analysis 507 

While the standard structure of a PAC list object contains three tables—Pheno, Anno 508 

and Counts—it may hold any number of objects as long as they do not have the 509 

same names as the standard objects, just like a regular list. There are, however, two 510 

more standard objects that are added to the PAC object later in the analysis: the 511 

norm list containing normalized counts tables, and the summary list that contains 512 

summarized tables (Figure 6). It is easy to visualize these objects as two separate 513 

‘folders’ within a PAC object. 514 

 515 

PAC_norm provides a few common normalization methods, like the simple 516 

reads/counts per million that standardize each sample against their total counts. It 517 

currently also maintains a wrapper for the rlog and vst functions of the DESeq2 518 

package (29), that automatically will prepare the PAC counts table for a 519 
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transformation blinded against experimental groups. Users are, however, encouraged 520 

to provide their own normalization tables. As long as the table contains the same 521 

sequence (row) and sample (column) names as the Counts table, and are stored in 522 

the norm list (‘folder’) of the PAC object, seqpac functions with a norm input option 523 

will automatically search the norm folder for a matching name. 524 

 525 

PAC_summary generates simple group summaries, like means, standard deviations, 526 

standard errors, percent group differences and log2 fold changes. It can be applied to 527 

both raw counts, as well as normalized counts by naming a table in the PAC norm 528 

list/folder using the norm input option. The grouping of samples is controlled by a 529 

pheno_target object. PAC_summary does not maintain an anno_target option since 530 

summaries over annotations would result in loss of sequence integrity (= feature-531 

based counts). Summarizing data across both phenotype and annotation is instead 532 

handled by individual functions, or by subdividing the whole PAC file using the 533 

PAC_filter function prior to running PAC_summary. 534 

 535 

For more advanced statistical analysis seqpac provides a convenient function, 536 

PAC_deseq, that allow users to import a PAC object into DESeq2 (29). This function 537 

automatically generates a report containing organized top tables, volcano-plots and 538 

p-value distribution histograms. Further, seqpac contains the PAC_pca function that 539 

performs a principle component analysis (PCA) with aid of the FactoMineR and 540 

factoextra packages (45,46). This function returns scatter plots of the main 541 

components annotated using either a pheno_target or anno_target. Lastly, 542 

PAC_saturation performs and plots the results of a sequence saturation analysis. 543 

This is often used for checking that satisfactory sequencing depths have been 544 

reached, where few new sequences are predicted given a hypothetical increase in 545 

the sequencing depth.   546 

 547 

6.1 Advanced classification and visualization 548 

In the quick reference presented in Table 1 a selection of visualization functions is 549 

briefly presented. In common for most of them are the option to use pheno_target 550 

and/or anno_target objects for grouping and ordering different plots (as described in 551 

Figure 5). Seqpac plots are primarily generated using the ggplot2 package (47) and 552 
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outputs are often saved as lists with summarized data and graphs. As with the other 553 

seqpac functions, outputs are described in detail in the functions’ manuals. 554 

 555 

Since seqpac’s reannotation workflow provides a powerful and quick pipeline for 556 

sequence annotation, we have also included a ‘back-door’ function, PAC_mapper. 557 

This function is ideal for detailed mapping of smaller fasta references, such as a list 558 

of tRNAs, the 45S pre-rRNA subunit, the mitochondrial genome, or simply a specific 559 

genomic region download as a fasta from a genome browser. Conveniently, if a 560 

Bowtie index is missing for a fasta reference, PAC_mapper will automatically 561 

generate that index, making the alignment of a new fasta reference highly efficient. 562 

The output of PAC_mapper is a map object, which is simply a list where each entry 563 

refers to a specific sequence in the fasta reference and where the coordinates of all 564 

PAC sequences that mapped the reference sequence is reported (e.g. the mapping 565 

coordinates of PAC sequences aligning to a specific tRNA). This map object along 566 

with the original PAC object can then be fed to the PAC_covplot function to generate 567 

coverage plots across the fasta reference, as exemplified in Figure 8. As we have 568 

illustrated before, such coverage plots are well suited for characterizing tRNA and 569 

rRNA fragmentation (8,44,48), as well as mitochondrial RNA (48). 570 

 571 

Lastly, using the map object the map_rangetype function can generate more 572 

advanced classifications such as 5', i' and 3' tRFs or tRNA halves, previously best 573 

demonstrated in MINTbase and MINTmap (11). Nonetheless, the 574 

MINTmap/MINTbase suite is only readily available for human tRNA classification. 575 

Seqpac’s PAC_mapper and map_rangetype functions fills this gap and expands the 576 

possibility for discovering novel tRNA fragment classes in any species. With the 577 

map_rangetype function it is easy to classify sequences in the map object in relation 578 

to where the alignment starts or ends in the reference sequence. This is done by 579 

either defining different ranges (e.g. classifying a fragment as 5' if it starts within the 580 

first 3 nt of a tRNA), or a percentage zone (e.g. classifying a fragment as a half if it 581 

ends or starts within 45-55% of a tRNA). Even better, map_rangetype may use ss 582 

files, which is a format commonly used for storing information about secondary 583 

structures such as tRNA loops. Thus, using this option, users can classify fragments 584 

in relation to for example cleavage within a specific loop. We used this strategy to 585 

identify a diet-sensitive tRNA derived fragment in human sperm, that we called 586 
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nuclear internal T-loop tRNA derived RNA (nitRNA)(48). The PAC_trna function plots 587 

range-classified tRNAs mimicking some graphs presented in that paper. 588 

 589 

7.1 Seqpac example 1: Identifying contaminants by sequence-based counting 590 

To further illustrate the strengths of seqpac, we reanalyzed a recently published 591 

dataset by Tong et al. 2020 (25) (SRA access: SRP285629). This dataset contains 42 592 

fastq files originating from 14 human cancer cell lines, where RNA was extracted 593 

from cells, as well as exosomes and microvesicles of these cells. Extra-cellular 594 

vesicles—such as microvesicles and exosomes—are cellular excretion particles 595 

produced by cells’ plasma membrane. They are found from a variety of cells—596 

including tumor cells—in peripheral body fluids (49). Therefore, characterizing the 597 

sRNA content of extracellular vesicles from cancer cell lines may reveal novel 598 

diagnostic/prognostic biomarkers.  599 

 600 

We generated a PAC object from this dataset. The sequencing was done on an 601 

Illumina HiSeq3000 sequencer with a flow cell kit generating read lengths of only 50 602 

nt. From our experience, we do not recommend generating sRNA-seq data with read 603 

lengths shorter than 75 nt. Longer reads allow for inter-adaptor length validation, 604 

where detecting the opposite adaptor sequence in the read guarantees that it 605 

originated from short RNA and not from long RNA. Thus, unless controlling for 606 

sequence length in downstream analysis, sRNA experiments with very short reads 607 

may be severely influenced by long RNA. To investigate if this was a problem in the 608 

Tong et al. study, we therefore included all read lengths in the analysis.    609 

 610 

Tong et al. (25) used a feature-based counting strategy. This strategy first aligns 611 

sequences to a reference genome, often allowing for multiple mismatches, and 612 

discards sequences that fails to align. Counts are then based on the overlaps 613 

between the genomic coordinates of the reads and the genomic coordinates of 614 

known sRNA. This poses several problems. The nucleotide sequence of some sRNA 615 

may be post-transcriptionally modified, such as 3' fragments of mature tRNAs. These 616 

may be discarded since they fail to align with the reference genome. Further, allowing 617 

for mismatches without knowing where those mismatches occur and pool related 618 

sequences with and without mismatch alignments into the same feature, can hide 619 

information about sRNA subtypes and remove traces of post-transcriptional 620 
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modifications hidden within the reverse-transcription signature (50-52). Many sRNAs 621 

are also highly repetitive, such as most rRNA derived fragments, and may thereby 622 

map to multiple genomic regions. In feature-based counting strategies this is often 623 

solved by randomly assigning such reads to one of the multimapping regions. 624 

Together, this completely breaks sequence integrity making it difficult to interpret the 625 

results. 626 

 627 

Some of these issues with feature-based counting can be illustrated with the Tong et 628 

al. dataset (25) using seqpac’s workflow. It must be emphasized, however, that our 629 

critic is not specifically aimed against Tong et al., whose work we admire, but rather 630 

against the feature-based counting strategies that hundreds of studies have been 631 

using.   632 

 633 

By applying a PCA we confirmed what the original authors reported that cells were 634 

very different from extra-cellular vesicles (Figure 7A). We also observed that the 635 

extra-cellular vesicles from two specific cell lines—SCC4 and SCC154—were 636 

different to the other samples. Size distribution histograms immediately identified two 637 

problems (Figure 7B). Firstly, most read sequences were ≥ 50 nt. Since Tong et al. 638 

reported that the majority of sRNA from cells came from snoRNA, and sRNA from 639 

extra-cellular vesicles came from rRNA, it indicates that their analysis did not account 640 

for sequence length. This is because most snoRNA and rRNA are found in the >= 50 641 

nt segment. Thus, the sRNA class proportions that was reported may involve long 642 

RNA, possibly including full-length rRNA and tRNA. 643 

  644 

Secondly, the extra-cellular vesicles from SCC4 and SCC154 failed almost 645 

completely to align with known human sRNAs (Figure 7B). Since seqpac maintains 646 

sequence integrity, we blasted a small selection of these non-annotating sequences 647 

at NCBI (53). The result strongly indicated that most reads originated from the 648 

Mycoplasma hyorhinis genome. Since this is a common contaminant in cell cultures 649 

(54), we ran this Mycoplasma genome in parallel to the human genome in the 650 

seqpac’s reannotaion workflow, thereby picking the best possible alignment from 651 

either of them. This showed that all vesicle samples from SCC4 and SCC154—the 652 

same samples that explained one of the main components in the PCA—suffered 653 

severely from Mycoplasma contamination (Figure 7C). 654 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2021.03.19.436151doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436151
http://creativecommons.org/licenses/by/4.0/


 655 

Now, critics may argue that a feature-based counting strategy should have corrected 656 

for this contamination, since reads that fail to align against the human genome will 657 

automatically be removed prior to counting. Thus, Mycoplasmic reads should not 658 

have affected the results, since normalization of the counts was made after their 659 

removal.  660 

 661 

We tested this assumption using seqpac functions. With the output from the two-662 

genome reannotation workflow, we used the PAC_filter function to remove all 663 

sequences that mapped to the Mycoplasma genome, and only kept reads that 664 

mapped to the human genome. Then we re-normalized the dataset using the 665 

PAC_norm function and made a new PCA. Removing nearly 6500 sequences, and 666 

keeping only sequences exclusive to the human genome, had very limited effects on 667 

the results (Figure 7D). This strongly indicates that the effect of the contamination 668 

remained even after removing the contaminating sequences. Importantly, this bias 669 

may have gone unnoticed if we would have used a feature-based counting strategy, 670 

since contaminating sequences would have been removed prior to counting. 671 

Together, this illustrates how seqpac quickly provides panoptic views of data integrity, 672 

which is essential for analytical transparency and correct downstream interpretations.   673 

 674 

7.2 Seqpac example 2: Novel rRNA-derived sRNA affected by anticancer 675 

treatment  676 

In cancer research, non-coding RNA has been studied not only for diagnostic and 677 

prognostic purposes, but also for therapeutic purposes (55). Of particular interest, 678 

rRNA synthesis is commonly exaggerated in tumor cells (56). Synthesis involves 679 

transcription of 47S/45S pre-rRNA genes by RNA polymerase I  at specific repetitive 680 

clusters in the genome (57). Over a series of precursors, pre-rRNA is turned into the 681 

active mature rRNA subunits 28S, 18S and 5.8S (58,59). Inhibiting RNA polymerase I 682 

(RNA pol I) has been proposed as a possible anticancer treatment, where one of the 683 

most promising candidates have been the BMH21 compound (60). However, little is 684 

known about sRNA generated from the pre-rRNA and their potential role in cancer. 685 

 686 

We, therefore, used seqpac to detect novel sRNA originating from pre-rRNA, 687 

hypothesizing that inhibiting RNA pol I would result in fewer rRFs. For this we 688 
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conducted a small experiment by exposing HeLa cells—which originates from 689 

cervical cancer cells—to BMH21. The exposure time was set to 60 min, and as 690 

control we used DMSO. RNA from purified cells was then prepared for sRNA-seq, 691 

which resulted in fastq files with 75 nt reads. From this raw data we generated an 692 

annotated and filtered PAC object using only seqpac functions. 693 

 694 

Using the PAC_deseq (see Results 5.3) function, we performed a differential 695 

expression analysis only including highly expressed sRNA mapping to rRNA 696 

reference sequences. This showed that only 60 min of BMH21 exposure was enough 697 

to affect rRNA fragmentation (Figure 8A). Perhaps unexpectedly, not all were 698 

downregulated by inhibiting RNA polymerase I. In fact, closer examination revealed 699 

that most down-regulated sequences were related (Figure 8A; Supplementary table 700 

S1), suggesting a single origin within an rRNA cluster on chromosome 21. We, 701 

therefore, used the PAC_mapper and PAC_covplot functions (see Results 6.1) to 702 

visualize the impact of BMH21 over a pre-rRNA 45S gene on chromosome 21 703 

(GenBank: NR_146144.1). This revealed 4 major rRFs (Peak 1, 2, 3, 4 in Figure 8B), 704 

where the related fragments from Figure 8A all aligned to Peak 1. For more detailed 705 

analysis, we downloaded the sequences of the DNA immediately neighboring these 706 

peaks from the UCSC genome browser and ran the sequences as a fasta reference 707 

file in the PAC_mapper and PAC_covplot functions (Supplementary file S2). This 708 

revealed what appeared to be a single large down-regulated fragment in Peak 1 709 

(Figure 8C), an unaffected possibly degraded fragment in Peak 2 (Figure 8D), two 710 

separate fragments in Peak 3 where only the shorter and less expressed fragment 711 

might have been affected by BMH21 (Peak 3a in Figure 8E), and one single fragment 712 

in Peak 4 that seemed slightly up-regulated following BMH21 treatment.  713 

 714 

To better understand the relevance of these changes we summed the cpm of all 715 

fragments mapping to each peak and performed a non-parametric Mann-Whitney U 716 

test. For this analysis we also included a third group of samples that had been 717 

exposed to BMH21 for 12 hours, to explore if any of the effects of BMH21 were 718 

amplified following long-term exposure. Astonishingly, after 12 h exposure, fragments 719 

of Peak 1 had almost completely disappeared (Figure 8F). This was not due to an 720 

experimental failure since Peak 2 and Peak 3a were unaffected by the long-term 721 

treatment (Figure 8G-H). In fact, Peak 4 fragments even showed a significant up-722 
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regulation (Figure 8I). Thus, the effects observed in Peak 1 and Peak 4 were 723 

amplified by long-term exposure, but in two opposite directions. 724 

 725 

For the Peak 2 and Peak 3 rRNA fragments we have previously observed similar 726 

fragments in human sperm (8), and similar fragments located to the 5' ends of the 727 

5.8S and 28S subunits in fruit fly embryos (44). This is also true for the 3' fragments 728 

of the 28S subunit (Peak 4), even though we never have observed such expression 729 

levels as we see in the HeLa cells. To our knowledge, however, highly expressed 730 

sRNA fragments from the Peak 1 region—in the 5' external transcribed spacers 731 

(ETS)—have never been described. To understand the 5' ETS rRF better, we 732 

performed a multi-species blast of the main sequence at NCBI to identify similar 733 

GenBank entries. This showed many alignments to ribosomal precursors in humans, 734 

one identical sequence in the Chimpanzee, and a few similar sequences in the 735 

Gorilla (Supplementary Figure S1). Thus, this 5' ETS rRF has only evolved in our 736 

closest relatives.  737 

 738 

Confident that the 5' ETS rRF was a human sRNA, we searched for this fragment in 739 

the Tong et al. 2020 dataset. Despite only having read lengths of 50 nt to our disposal 740 

(see Results 7.1), where 5' ETS rRF of Peak 1 was 61 nt, we found clear traces of 741 

this rRF (Figure 8J). Furthermore, to explore the clinical relevance of this finding we 742 

downloaded the Xu et al. dataset (26,27). Here sRNA was extract from confirmed 743 

cervical tumors and samples from normal cervix. Results indicated that the 5' ETS 744 

rRF was upregulated in cancer patients (Figure 8K). Together this suggests that our 745 

novel rRF—validated by the seqpac workflow in multiple unrelated datasets—may be 746 

targeted for diagnostic and prognostic purposes during cancer treatment. 747 

 748 

DISCUSSION 749 

Here we presented a novel and innovative bioinformatic tool—seqpac—that makes 750 

advanced sRNA analysis from genome-scale sequencing data more accessible and 751 

transparent. The workflow is completely integrated with R, from trimming the adaptor 752 

sequences to generating plots. We showed that seqpac’s trimming function performs 753 

as well as, or even better, than trimming using standard tools outside R. We further 754 

presented the PAC object, which builds a framework of phenotypic information (P) 755 
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and sequence annotations (A) around a table based on sequence counts (C). Using 756 

published data we showed that a sequence-based counting strategy—in contrast to 757 

feature-based counting that is more commonly used—diminishes the risk of mistakes 758 

in downstream analysis. We demonstrated the strength of maintaining sequence 759 

integrity to enable re-annotation of sequences across species and classes of sRNA at 760 

any point in the analysis. Lastly, we showed how seqpac can be used for sRNA 761 

discovery in cancer research by the discovery of a novel rRNA derived fragment 762 

(rRF) that were down-regulated by anti-cancer treatment in vitro and up-regulated in 763 

tumors of cervical cancer patients.    764 

 765 

Seqpac is available at github (https://github.com/Danis102/seqpac). As the whole 766 

workflow, from adaptor trimming to mapping and plotting, are integrated in R it runs 767 

on common computer platforms, including Windows, Mac and Linux. It comes with a 768 

complete collection of function manuals and a vignette that guides the user in how to 769 

apply the default workflow using a fastq test dataset that are included with the 770 

package. R scripts that we used to generate many of the results presented in this 771 

paper are available in Supplementary file S1. 772 

 773 

It must be emphasized that seqpac is primarily designed for sRNA sequence 774 

analysis. This means that it does not currently supports paired-end sequencing, 775 

which is commonly applied for long RNA sequencing. Paired-end sequencing is not 776 

required for most sRNA applications where the target sequence lengths seldom 777 

exceed 75 nt. As we have demonstrated in this paper, too short reads—as those 778 

generated using the 50-cycle flow cell kits available for MiSeq, NextSeq1000 and 779 

HiSeq2500/3000/4000—should be avoided. Without some excessive sequence in 780 

which the 3' adaptor can be detected, it is difficult to reliably discriminate medium 781 

length sRNA (such our novel 5' ETS rRF) from unintentionally included longer RNA. 782 

 783 

We see, however, many advantages to use sequence-based counting also in long 784 

RNA sequence analysis, for example to easily extract sequences annotating to a 785 

candidate mRNA and check for possible genetic variants. Coverage plots, similar to 786 

what we describe for the 45S pre-rRNA (Figure 8B) would also be applicable for 787 

mRNA coverage to visualize splice variants and intronic transcription. Even though 788 
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we hope to develop long RNA analysis in future updates of seqpac, there are 789 

currently a few technical constraints that needs to be resolved. 790 

 791 

As mentioned, paired-end reads are not supported either for trimming or counting. In 792 

addition, while Bowtie (20) is still the most popular aligner for sRNA, it does not 793 

support indel mapping. While this is not a great problem if sequence integrity is 794 

maintained and candidate sequences subsequently can be blasted to detect any slip 795 

through, this problem are slightly more announced in samples differing much from 796 

their reference genomes, such as cancer cell-lines. A likely reason for Bowtie’s 797 

popularity in sRNA community is because it is reliable with short sequence 798 

alignments. For instance, we initially tried to integrate the Rsubreads package (61) in 799 

seqpac’s workflow, which applies a highly efficient ‘seed-and-vote’ mapping 800 

algorithm. However, for certain read lengths we consistently experienced failure to 801 

correctly vote for the best alignment, possibly as a consequence that too few seeds 802 

were covering the read. We will off-course explore more efficient alternatives to 803 

Bowtie in the future. 804 

 805 

By using the sequence-based approach of seqpac, we have discovered a novel 806 

rRNA derived sRNA (rRF) in the 5' ETS of 45S pre-rRNA. This rRF responds 807 

negatively to anticancer treatment and are up-regulated in tumors. The scope of our 808 

study was not to dwell deep into the mechanism and clinical potential of this rRF. To 809 

our knowledge, however, this fragment has not been described before, and from our 810 

experience sRNA in the 5' ETS of pre-rRNAs are rare. This, together with the insight 811 

that the sequence is relatively unique to humans (with only some homology in 812 

Chimpanzees and Gorillas), makes it a good target for future studies on biomarkers 813 

in cancer treatment and diagnosis. In our HeLa cell experiment, the main fragment 814 

was 61 nt, which indicates a unique fragment given that we had a maximum read 815 

length of 75 nt. Even though the methods used in Tong et al. (25) and Xu et al. 816 

(26,27) were restricted to a maximum read length of 50 nt, we found traces of this 817 

fragment in the pile of fragments with unverifiable length of ≥ 50 nt. It must be 818 

emphasized, however, that we tried to validate the 5' ETS rRF in yet another dataset, 819 

Snoek et al. (62) (SRA accession: PRJNA413777), but here we failed to detect 820 

anything in the 5' EST region. The Snoek et al. dataset is so far the largest public 821 

sRNA dataset from cervical cancer patients. In this study, samples were collected by 822 
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participants themselves, which may explain much higher rRF variability and 823 

excessive number of short fragments (< 20 nt), compared to the other datasets 824 

(Supplementary file S1). Importantly, in contrast to the other datasets that used the 825 

NEBNext Small RNA Library Prep kit, Snoek et al. used the Illumina TruSeq Small 826 

RNA Library Preparation Kit. We and others have consistently shown that these two 827 

popular kits perform differently with regard to sRNA coverage (48,63-65). Thus, future 828 

studies targeting this rRF must consider the choice of chemistry, and maybe even 829 

apply advanced protocols for better coverage (44,66). 830 

 831 

The 5' ETS rRF should be located somewhere close to the 01 cleavage sites in the 5' 832 

EST of 47S pre-rRNA. When aligning the 61 nt main fragment against the GenBank 833 

entry U13369.1—which have been commonly used to map Human pre-rRNA 834 

cleavage sites (59)—the 5' ETS rRF only partly align. The coverage over this area in 835 

the U13369.1 pre-rRNA is also far from what we observed for the NR_146144.1 pre-836 

rRNA, which was the GenBank sequence that we used for the chromosome 21 837 

alignment in (Figure 8B; Supplementary File S2). Aligning the U13369.1 with 838 

NR_146144.1 reveals a “G-T” insertion in NR_146144.1, right between the C414-839 

C416 and G420-U422 01 cleavage sites (67) (Figure 8K; Supplementary Figure S2). 840 

Since the 5' ETS rRF contains this insertion, it strongly suggests that pre-rRNA 841 

cleavage has been affected at this locus. Therefore, beside investigating possible 842 

clinical values of this 5' ETS rRF, future research may target mechanisms for how 843 

natural rRNA variants may give rise to novel sRNA, suggestively by investigating the 844 

interactions between post-transcriptional modifications, snoRNA and proteins at this 845 

locus. 846 

 847 

In conclusion, the revolution of genome scale sequencing has not only brought 848 

enormous potential for unraveling life’s mysteries in health and disease. It has also 849 

created a gap between biology and technology. Consequently, research groups with 850 

primary biological or medical interests are often forced to rely on specialized 851 

programmers with limited understanding of the biology to handle their precious data. 852 

R has long been a platform where bridges between biology, statistics and 853 

programming are built. We have showed that building a transparent workflow in R for 854 

sRNA analysis, with the intention of making choices early in the analysis perspicuous, 855 

not only helps in detecting severe biases that would have otherwise gone 856 
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undiscovered. It also provides the flexibility and panoptic view needed for advanced 857 

biological interpretations.  858 
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TABLES AND FIGURES 1034 

Table 1. Quick reference for seqpac 
Family Description   Function name Dependence Function description 
            

PAC  
generation 

Prepares 
and builds a 
PAC object 
from fastq 
files. 

  make_counts foreach, ShortReads Reads fastq, calls make_trim or make_cu-
tadapt, performs low-level filter, and 
counts sequences. 

    make_trim foreach, Biostrings  Adaptor trimming and fastq quality filter us-
ing R internal packages 

    make_cutadapt Foreach, cutadapt, 
fastq_quality_filter  

Adaptor trimming and fastq quality filter us-
ing external installed software 

    make_anno - Generates a simple annotation table from 
a count table. 

    make_pheno - Prepares user provided phenotype table 
containing sample information. 

      make_PAC - Builds PAC object with Pheno, Anno and 
Counts tables. 

      PAC_check - Checks if a PAC object is compatible with 
seqpac functions 

            

PAC  
annotation 

Sequence 
annotations 
by aligning 
against fasta 
references or 
overlap with 
genomic co-
ordinates. 

  map_reanno Rbowtie/bowtie  Reannotates PAC sequences through pro-
gressive mismatch cycles. 

    import_reanno foreach, tibble Called by map_reanno to import bowtie 
output into R. 

    add_reanno foreach, tibble Builds a reannotation object with genome 
coordinates and/or classified fasta se-
quence names.    

    simplify_reanno - Makes hierarchical classifications from 
classified fasta sequence names. 

    PAC_gtf tibble, rtracklayer, 
GenomicRanges 

Overlaps genomic coordinates of PAC se-
quences with features of a gtf file.   

      PAC_mapper   Backdoor to the reanno workflow for fast 
mapping of PAC resulting in a map object. 

      map_rangetype   Classifies sequences in map objects ac-
cording to ranges or secondary structures 
(e.g. 5', i', 3') 

            

PAC  
analysis 

Filtering and 
normaliza-
tion. 

  PAC_filter - Subsets data by target objects or coverage 
thresholds. 

(preprocessing)   PAC_filtersep - Extracts sequences reaching a threshold 
within groups of a pheno_target object. 

    PAC_norm DESeq2 Normalize a raw counts table and saves it 
in the PAC$norm ‘folder’. 

            

PAC  
analysis 

Performs 
statistical 
analyses and 
visualiza-
tions. 

  PAC_summary - Simple summaries using pheno_targets 
(means, sd, se, %diff, log2fc) saved in 
PAC$summary. 

(statistics)   PAC_deseq foreach, DESeq2 Prepares, performs and plots DESeq2 
analysis from PAC object. 

    PAC_pca FactoMineR,  
factoextra 

Performs principal component analysis 
and plots the results. 

    PAC_saturation foreach, ggplot2 Performs a sequence saturation analysis 
and plots the results. 

            

PAC  
analysis 

Generates 
graphs and 
saves pro-
cessed data 
summarized 
over both 
phenotype 
and annota-
tions.   

  PAC_pie ggplot2, cowplot; 
grDevices 

Pie-plots using pheno_target and and 
anno_target.   

(visualization)   PAC_stackbar ggplot2, ggthemes, 
reshape2, grDevices 

Stacked bar diagrams using pheno_target 
and and anno_target. 

    PAC_jitter ggplot2 Jitter plots using pheno_target and and 
anno_target. 

    PAC_nbias ggplot2, ggthemes, 
grDevices 

Size distributed histogram stacked by nu-
cleotide at a defined position (e.g. 1st nu-
cleotide bias). 

    PAC_sizedist ggplot2, ggthemes, 
grDevices 

Size distributed bars stacked by an 
anno_target column (e.g. miRNA/piRNA 
size distributions). 

    PAC_covplot ggplot2, reshape2, 
grDevices,  
GenomicRanges 

Plots PAC sequence coverage over a ref-
erence sequence such as a tRNA or 
rRNA. 

      PAC_trna ggplot2, reshape2, 
grDevices 

tRNA fragment analysis using information 
from range-classified map object. 

            

All functions are described in detail in the manual for each function (e.g. '?make_counts' in the R terminal) and are exemplified in the 
seqpac vignette; 'vignette("seqpac")' in R terminal).  
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Figure 1. Small RNA sequence analysis using seqpac.  (A) The difference between sequence-based 1036 

counting and feature-based counting in sRNA analysis. With sequence-based counting an experiment-1037 

wide count table can be created before genome alignment. This allows for efficient mapping and for 1038 

sequence integrity to be maintained through the analysis. In contrast, feature-based counting 1039 

strategies counts overlaps between reads' genome alignment and coordinates of genomic features. 1040 

This is less efficient and disrupts sequence integrity. (B)  Sequence-based counting is central in the 1041 

seqpac workflow, which is completely integrated in R, from fastq adaptor trimming and preprocessing 1042 

to group-based visualization and statistical analysis. (C) Secpac builds a framework of functions that 1043 

processes and analyzes a standardized list: the PAC object. In its simplest form PAC contains three 1044 

tables: the Pheno table with sample information; the Anno table with sequence information, and the 1045 

Counts table containing the counts of sequences across samples.  1046 
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 1047 

Figure 2. Performance of sepac's internal trimming and counting functions. Seqpac contains multiple 1048 

options for trimming and filtering adaptor sequences prior to generating a count table. The make_counts 1049 

function counts sequences of already trimmed fastq files or calls make_trim (R internal) or 1050 

make_cutadapt (R external) functions prior to counting. Using the Kang et al. 2018 dataset (SRA access: 1051 

PRJNA485638), (A) shows side-by-side the preprocessing time for seqpac's trimming functions and a 1052 

popular alternative workflow based on the cutadapt and fastq_quality_filter functions. The test involved 1053 

7 fastq files iterated 10 times over 6 batches per function using 7 parallel processes. (B-D) Further 1054 

evaluated performance of make_trim in terms of the output dataset. (B) While sequence counts strongly 1055 

correlated with the alternative workflow, make_trim more often generated higher counts (arrows). This 1056 

was primarily a result of concatemer trimming in make_trim (see main text). (C) The make_counts 1057 

function also contains an evidence filter, which in default mode discard sequences that fails to replicate 1058 

in at least two independent fastq files. Normally, this low-level filter maintains most reads (top bars), 1059 

while limiting the sequence diversity (bottom bars). While make_trim and the alternative generated very 1060 

similar datasets after evidence filters, make_trim generated slightly more unique sequences, which was 1061 

confirmed by Venn-diagram (D) showing higher ratio of sequences unique to the make_trim workflow. 1062 
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Figure 3. Annotating read sequences in PAC objects. For annotation of read sequences, seqpac mainly 1064 

relies on the re-annotation workflow [1-3]. The map_reanno and import_reanno functions use Bowtie to 1065 

align PAC sequences against references sequences, e.g. species genome or sRNA database [1]. This 1066 

is done over cycles where each cycle introduces 1 additional mismatch in the mapping, and where only 1067 

read sequences with no alignment proceed to the next cycle. After the mismatch cycles, add_reanno 1068 

reads the resulting .Rdata files and organize the output into a reannotation list object [2]. Tables in this 1069 

list can either directly be merged with a PAC annotation table or can be simplified hierarchically using 1070 

the simplify_reanno function [3]. The PAC_mapper function is a convenient wrapper for smaller 1071 

reference sequences (e.g. tRNAs or rRNAs) that will automatically generate Bowtie indexes. [4] After a 1072 

PAC object has been aligned to a genome, the PAC_gtf can be used to overlap genomic coordinates of 1073 

PAC sequences with known coordinates for genomic features, e.g. repeats and protein coding exons. 1074 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2021.03.19.436151doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436151
http://creativecommons.org/licenses/by/4.0/


 1075 

Figure 4. Multi-genome sRNA analysis demonstrating the strength in seqpac reannotation workflow. 1076 

Graphs were plotted using a PAC object generated from the Kang et al. 2018 dataset (SRA access: 1077 

PRJNA485638) primarily developed for studying interspecies contaminated samples where RNA from 1078 

fly (S2) and human (HEK-293T) cells was mixed in different ratios. Seqpac functions used for generating 1079 

the graphs were: (A) PAC_pie for genome proportion pie charts, (B) PAC_sizedist for size distribution 1080 

histograms with sRNA class annotation, and (C) PAC_nbias for the frequency of the first nucleotide 1081 

stratified over the sequence size distribution.   1082 
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 1084 

Figure 5. The principles for working with target objects. Many seqpac functions applies a novel system 1085 

for grouping and sub-dividing samples (Pheno) and sequences (Anno) in a PAC object. This system 1086 

relies on small target objects, which targets information either in the Pheno (pheno_target) or Anno 1087 

(anno_target) tables. A target object is a list with two-character inputs. The first pointing to a column in 1088 

the target table, and the second to the entries of that column.  1089 
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 1091 

Figure 6. Advanced PAC objects. All PAC objects must contain Pheno, Anno and Counts tables. Many 1092 

seqpac functions may optionally use data stored in two additional PAC objects: the norm and summary 1093 

lists. The norm contains tables of normalized counts having identical row and column names as Counts. 1094 

The summary contains tables with identical row names as Counts, but column names based on 1095 

aggregates over the Counts columns (e.g. group means). These PAC 'folders' can be generated by the 1096 

PAC_norm or PAC_summary functions, but users are encouraged to provide their own tables. 1097 
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 1099 

Figure 7. Seqpac example 1: Identifying contaminants by sequence-based counting. We generated a 1100 

PAC object from a public dataset (SRA access: PRJNA666144). This study used a feature-based 1101 

counting strategy to examine the sRNA in cells, and their extracellular vesicles, of 14 cervical and 1102 

head/neck cancer cell lines. (A) Scatter plot generated by the PAC_pca function after vst normalization 1103 

using PAC_norm. The two first principle components identify extracellular vesicles from SCC4 and 1104 

SCC154 cells as outliers. (B) Size distribution histograms generated by the PAC_sizedist function. Most 1105 

samples show high content of sRNA ≥ 50 nt, except for the SCC4 and SCC154 outliers, which are 1106 

enriched with 29 nt fragments with no annotation in humans. (C) Bar graphs generated by the 1107 

PAC_stackbar function after reannotating the PAC object against the human and Mycoplasma hyorhinis 1108 

(contaminant) genomes show high content of Mycoplasma in outliers. (D) Scatter plot generated by 1109 

PAC_pca after removing all non-human sequences with the PAC_filter function, only including sRNA 1110 

between 16-45 nt, and re-normalizing the data with PAC_norm. No big differences from the original 1111 

dataset (A).    1112 
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       1114 

 1115 

Figure 8. Seqpac’s sRNA coverage functions reveal novel rRNA derived fragment (rRF) in cancer. RNA 1116 

polymerase I (Pol I) transcribes the 47/45S pre-rRNA and has been targeted in anti-cancer treatment. 1117 

Small RNA analysis of HeLa cells either exposed to an RNA polymerase I inhibitor (BMH21) or DMSO 1118 

(control) for 60 min (A-J)(SRA access: PRJNA708219). Volcano plot (A) from a differential expression 1119 

analysis using the PAC_deseq function showing down-regulated rRFs. Red indicates related sequences 1120 

that primarily originates from an rRNA cluster on chr 21. Coverage plot (B) using the PAC_mapper and 1121 
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PAC_covplot functions of an 45S pre-rRNA on chr 21 (GenBank: NR_146144.1). Shows 4 major peaks 1122 

affected differently by BMH21. Zoomed in coverage plots of Peak 1-4 (C-F). Peak 1 (C) shows a novel 1123 

5' ETS rRF downregulated by treatment. Peak 2 (D) shows a plausibly degraded fragment. Peak 3 (E) 1124 

contains two overlapping rRFs where only the small (Peak 3a) varies by treatment. Peak 4 (F) shows a 1125 

rRF possibly upregulated by treatment. Bar graphs (G-I) showing that 12h exposure to BMH21 amplifies 1126 

the effects in Peak 1 and Peak 4, but not in Peak 2 and Peak 3. Coverage plots (K) validating the 5' ETS 1127 

rRF of Peak 1 in cancer cells, and to a lesser degree in extra-cellular vesicles, using the Tong et al. 1128 

dataset from Figure 7 (without the contaminated SCC4 and SCC154 cell lines). The zoomed in genomic 1129 

sequence (bottom) shows the main fragment from (C) where the longest fragment from Tong et al. is 1130 

presented as bold letters. Dotted grey box indicate GT-insertion compared to a commonly studied 47S 1131 

pre-rRNA (GenBank: U13369.1). Bar graphs (L) showing an up-regulation of 5' ETS rRF related 1132 

fragments in cervical tumor samples published by Xu et al. (SRA access: PRJNA607023). Number of 1133 

summed sequences that were found in the target regions are indicated by nseqs. Mann-Whitney U tests 1134 

indicated by * p<0.05 and # p<0.1 significance levels. SEM = Standard error of the mean.      1135 
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Figure 7.     
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Figure 8. 

rRFs after RNA pol 1 inhibition
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