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ABSTRACT

Small RNA sequencing (sRNA-seq) has become important for studying regulatory
mechanisms in many cellular processes. Data analysis remains challenging, mainly
because each class of SRNA—such as miRNA, piRNA, tRNA- and rRNA- derived
fragments (tRFs/rRFs)—needs special considerations. Analysis therefore involves
complex workflows across multiple programming languages, which can produce
research bottlenecks and transparency issues. To make analysis of SRNA more
accessible and transparent we present segpac: a tool for advanced group-based
analysis of SRNA completely integrated in R. This opens advanced sRNA analysis for
Windows users—from adaptor trimming to visualization. Seqpac provides a
framework of functions for analyzing a PAC object, which contains 3 standardized
tables: sample phenotypic information (P), sequence annotations (A), and a counts
table with unique sequences across the experiment (C). By applying a sequence-
based counting strategy that maintains the integrity of the fastq sequence, segpac
increases flexibility and transparency compared to other workflows. It also contains
an innovative targeting system allowing sequence counts to be summarized and
visualized across sample groups and sequence classifications. Reanalyzing
published data, we show that segpac’s fastg trimming performs equal to standard
software outside R and demonstrate how sequence-based counting detects
previously unreported bias. Applying seqgpac to new experimental data, we
discovered a novel rRF that was down-regulated by RNA pol | inhibition (anticancer
treatment), and up-regulated in previously published data from tumor positive
patients. Seqpac is available on github (https://github.com/Danis102/seqpac), runs
on multiple platforms (Windows/Linux/Mac), and is provided with a step-by-step
vignette on how to analyze sRNA-seq data.
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BACKGROUND

The past decades have uncovered a diversity of small RNA (sRNA), which differs
greatly in their biogenesis and biological roles. This involves miRNA that is generated
from transcribed precursors and recruited by Argonaute proteins for post- and pre-
transcriptional gene silencing (1-5). Having a similar mechanism, piRNA primarily
silence repetitive transposable elements in the germline, and can be amplified by
means of the so-called ping-pong cycle (6). Other classes involves rRNA and tRNA
derived fragments (rRF/tRFs) that may interact with Argonaute proteins in a
piRNA/mMiRNA-like fashion, but may also directly interfere with translational
processes in the ribosome (7-10). Some tRFs may not even align to their genome of
origin, since their parental tRNA matures post-transcriptionally by receiving additional
nucleotides (11). While many sRNA classes exerts their function in the cytoplasm,
some intermediately sized none-coding RNA—Ilike the snoRNA, scaRNA and
snRNA—are associated with specific organelles inside the nucleus where they play
important roles in the post-transcriptional shaping (splice, fold, and modify) of other
RNA molecules (12,13).

This complexity, where some sRNA may target single gene products while others
target highly repetitive regions, where some are biologically active after transcription
while others are post-transcriptionally modified prior to activation, where some align
to the genome that they originated from while others do not, makes the analysis
SRNA challenging. Today, it is also becoming increasingly popular to apply high-
throughput sequencing in sSRNA experiments, which makes the analysis even more
complicated. Combining massively parallel sequencing with specialized library
preparation protocols that select for short RNA species generate data often
containing millions of unique short RNA sequences across tens-to-hundreds of

samples.

Several tools and pipelines, such as Sports (14), MintMap (11), sRNAtoolbox (15),
sRNAnalyzer(16), COMPSRA (17), and iSmaRT (18) have been developed to
overcome some of the analytical thresholds in sSRNA analysis. As a rule, these tools

wrap around multiple programs written in multiple programming languages, such as
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cutadapt (19) for adapter trimming, bowtie (20) for genome mapping, and
subread:featureCounts (21) for counting sequences across sRNA subspecies. Thus,
in labs that lack strong programming skills and previous experience of SRNA
analysis, troubleshooting and advanced analysis often become bottlenecks. This may
result in the exclusion of ‘difficult-to-analyze’ sSRNA in favor of more straight-forward
sub-species, such as miRNA. Unless better, more coherent, and user-friendly tools

are developed, such discrimination will result in severe literature biases.

Workflows for sSRNA-seq analysis regularly build on methods from gene-centric
DNA/RNA-seq approaches, such as regular mMRNA-seq. This usually involves
mapping individual samples against a reference genome followed by counting
overlaps of genomic coordinates between sample reads and known genomic
features, such as gene exons or miRNAs. Such feature-based counting (Figure 1A) is
often done one read and one sample at the time. Most sRNA experiments, however,
do not contain a single sample. Instead, they contain multi-sample groups. Therefore,
as an alternative, read sequences across the whole experiment can be counted prior
to aligning the read to a reference genome. Such sequence-based counting (Figure
1A) would prevent annotating the same sequence multiple times both within and
across samples. More importantly, this strategy would maintain sequence integrity.
Thus, further annotation of the counted sequences would be possible at any time
during the analysis. In addition, with sequence-based counting users may choose to
remove sequences with low evidence, which fails to replicate across their
experiment. Hypothetically, these advantages with sequence-based counting may not
only have dramatic effects on computational performance. It may also increase the
transparency and flexibility of the whole analysis.

Here, we present—seqpac—a novel framework for sequence-based multi-sample
sRNA analysis. From adapter trimming to the visualization of group-differences,
seqpac is completely integrated as an open-source package in R. This makes it
accessible from multiple platforms, including Windows, Mac and Linux. Using both
published and novel data, we show that sequence-based counting combined with a
multi-sample approach, not only positively affects computational performance,
making sRNA-seq analysis accessible on a standard computer. It also increases the
flexibility and transparency throughout the analysis. We illustrate this by detecting
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severe contamination in published data that was previously analyzed using a feature-
based counting strategy. Finally, we use the strengths of segpac to discover and

confirm a novel rRF implicated as a diagnostic/prognostic marker in cancer.

MATERIALS AND METHODS

1. Package development
Segpac is available for download at github (https://github.com/Danis102/segpac).

Procedures on how to install segpac are explained in the vignette

(https://github.com/Danis102/seqgpac/tree/master/vignettes). Dependencies for the

main seqpac functions are listed in Table 1. Seqpac was developed and tested on a
Linux Mint v.19.1 computer using R 3.4.4 in RStudio 1.2.1335 and devtools 2.3.2.
The computer had an Intel Core i7-9800X CPU at 3.8 GHz (8 cores with in total 16
threads) and contained 94 Gb of ram memory. All R internal functions (e.g.
make_cutadapt excluded) were subsequently tested on multiple Windows 10

computers using R 3.6.3 and 4.0.1.

2. Testing seqgpac using published datasets

Fastq files for 4 datasets were accessed through Sequence Reads Archive (SRA)
and European Reads Archive (ENA). We prefer downloading these files and their
metadata through ENA (https://www.ebi.ac.uk/ena). All code for processing and

generating the results presented in Figure 2, 4, 7 and 8 are available in

Supplementary text S1. A brief explanation is provided below.

2.1 Kang et al. 2018 — Benchmarking and reannotation using human and fruit
fly multi-genome samples (Figure 2, 4)

Kang et al. 2018 (22) (SRA accession: PRINA485638; ENA download:
https://www.ebi.ac.uk/ena/browser/view/PRJNA485638) were used for benchmarking

seqpac’s make_trim function against two similar workflows. In both alternative
workflows, system calls to cutadapt (19) and fastq_quality filter (in FASTX-Toolkit;

http://hannonlab.cshl.edu/fastx toolkit/) were made from within R. The first used the

make_cutadapt function to replicate the parallelization for make_trim using the
foreach package (23), while the second used the internal parallelization option in
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cutadapt. System time was monitored over 10 iterations replicated 6 times using the

rbenchmark package (24).

PAC objects with counts from trimming/filtering using the make_trim function and
cutadapt/fasq_quality_filter alternative, were generated using make_counts function
either with trimming="seqpac” or trimming="cutadapt”. Bar graphs from the low-level
evidence filtering were saved. To assure that only sSRNA were include, since this
dataset was generated from a 75 cycle flow-cell, we removed reads that failed to
contain adaptor sequence and only kept reads <=45 nt. The counts lists with
progress reports were then applied to the standard PAC generation workflow
(make_counts > make_anno > make_pheno > make_PAC). As phenotypic input file

for make _pheno function we used metadata downloaded from SRA/ENA.

After benchmarking, only the internal (make_trim) PAC object was applied to the
reannotation workflow. Reannotation against either the human and fly reference
genomes or sSRNA class references were applied, using either the map_reanno
import="genome” or import="biotype” options, respectively. For genome alignments
we downloaded Homo sapiens GRCh38.101 (hg38) and Drosophila melanogaster
BDGP6.28 (dm6) in fasta references at Ensembl ftp
(http://www.ensembl.org/info/data/ftp/). For the sRNA class alignment we downloaded

fasta references for miRNA (mirBase v.21), ncRNA (Ensembl.ncrna), tRNA
(GtRNAdDb) and piRNA (pirBase) for the human and fruit fly genomes, respectively.
After generating reanno objects in R using the make_reanno function, we added and
simplified the annotations using the add_reanno and simplify_reanno functions. The
sRNA class hierarchy in simplify_reanno was set to rRNA > tRNA > miRNA >
snoRNA > snRNA > Inc/lincRNA > piRNA. Plots in Figure 4 were generated using the
PAC pie, PAC sizedist and PAC nbias functions.

2.2 Tong et al. 2020 — Detecting contamination in cancer cell lines (Figure 7, 8)
Tong et al. from 2020 (25) (SRA accession: PRINA666144; ENA download:

https://www.ebi.ac.uk/ena/browser/view/PRJNAG66144) were used for exemplifying

the strengths of sequence-based counting in detecting severe bias in cancer cell line
experiements. PAC generation and reannotation was performed similarly to the Kang
et al. dataset (MATERIALS AND METHODS 2.1) with a few exceptions. Since the
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Tong et al. was generated from a 50 cycle flow-cell we did not remove reads that
failed to contain adaptor sequence and did not filter by max read length. Analysis and
graphs were generated using the PAC_pca, PAC_sizedist and PAC_stackbar
functions. We also verified the 5' ETS rRF of the 45S pre-rRNA (NR_146144.1) with
the PAC_mapper and PAC_covplot functions using the same fasta reference as
described in Methods 2.3. When reannotating the PAC object after the initial analysis,
we used the Mycoplasma hyorhinis ATCC (ASM38351v1) genome in parallel with
Homo sapiens (hg38).

2.3 Skog et al. 2021 — HeLa anti-cancer treatment dataset (current study; Figure
8)

The anti-cancer treatment dataset was generated in the current study (see Methods
3) and is available at SRA (accession: PRINA708219). Since this dataset was
generated from a 75 cycle flow-cell, an annotated PAC object was created as for the
Kang et al. dataset (see Methods 2.1) removing reads that failed to contain adaptor
sequence. To better compare with the Tong et al. dataset we set a max read length of
65 nt. The PAC_deseq function was used to initially identify BMH21 sensitive
fragments comparing cells exposed to BMH21 for 60 min to those exposed to DMSO
for 60 min (control). Mapping against pre-rRNA was done using the PAC_mapper
function with a custom fasta reference (Supplementary file S2). This reference first
contained the GenBank sequence NR_146144.1. After identifying 4 peaks using the
PAC_covplot function, we added the zoomed in regions of chr 21 aligning with
NR_146144.1 and containing each of the four rRF peaks (Peak 1 = chr21:8206319-
8206669, Peak 2 = chr21:8212475-8212825, Peak 3 = chr21:8213765-8214115,
Peak 4 = chr21:8218787-8219137). These regions were downloaded from the UCSC
genome browser. Finally, we added the 47S GenBank entry U13369.1 to the fasta.

2.4 Xu et al. 2020 - Validation in cervical cancer patients (Figure 8)

The Xu et al. 2020 (26,27) (SRA accession PRINA607023; ENA download:
https://www.ebi.ac.uk/ena/browser/view/PRJNAG07023) dataset, used for validating
the 5' ETS rRF of the 45S pre-rRNA (NR_146144.1) in clinical samples. We only

used the 8 fastq files obtained by sRNA size-fractions. Files were generated using a

paired-end 2x150 cycle flow cell kit. Thus, we discarded the paired—second—read
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216 and only kept the trimmed sequences of the first read where an adaptor was present
217 (as in see Methods 2.1 and 2.3).

218

219 3. Generating the HelLa anti-cancer treatment dataset

220 Adherent HeLa CLL-2 cells were obtained from ATCC and were maintained at 37°C
221 and 5% CO2 in high glucose Dulbecco's modified Eagle's medium (DMEM),

222 supplemented with 10% fetal bovine serum and 1% Penicillin/Streptomycin cocktail.
223 Cells were treated with 1uM BMH-21 in antibiotic free media for 60min and 12h. Cells
224 treated with DMSO for 60 min were used as control. The media was removed, cells
225 were washed with PBS, collected with trypsinization, and stored at -70°C until further
226 processing.

227

228 Frozen cells were homogenized in prechilled Qiazol (Qiagen, Hilden, Germany) using
229 a Tissue Lyser LT (Qiagen) set to 2 min at 30 oscillations/second with 5 mm Stainless
230 Steel Beads (Qiagen). RNA was then extracted using miRNeasy Micro kit (Qiagen),
231 and the integrity of purified RNA was confirmed on a Bioanalyzer (Agilent

232 Technologies, Santa Clara, USA), where sample RIN values ranged between 9.3-10.
233 Library preparation was done with NEBNext Small RNA Library Prep Set for lllumina
234 (New England Biolabs, Ipswich, USA) with 100 ng of input total RNA according to
235 manufacturer instructions, except for the following minor customizations: reactions
236 were scaled-down to half the volume, adapters were diluted 1:2, amplification was
237 done for 12 cycles, and libraires were size-selected for 130 to 190 nt fragments on a
238 pre-casted 6% polyacrylamide Novex TBE gel (Invitrogen, Waltham, USA). Gel

239 extraction was done using Gel breaker tubes (IST Engineering, Milpitas, USA) in the
240 buffer provided in the NEBNext kit. After precipitation, the library concentrations were
241 estimated using QuantiFluor ONE ds DNAsystem on a Quantus fluorometer

242 (Promega, Madison, USA). Pooled libraries were sequenced on NextSeq 500 with
243 NextSeq 500/550 High Output Kit version 2.5, 75 cycles (lllumina, San Diego, USA).
244 All pooled libraries passed lllumina’s default quality control.

245

246

247 RESULTS AND DESCRIPTION

248 1.1 The seqpac workflow
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249 Segpac comes with a vignette that contains a step-by-step in-depth guide on how to
250 analyze sRNA data from high-throughput sequencing. All functions can be tested

251 using a set of down-sampled fastq files, with sSRNA data originating from single fruit
252 fly embryos. A quick reference to the main functions in segpac is available in Table 1.
253 Scripts for generating many of the analysis presented in the figures are available in
254 Supplementary file S1.

255

256 The general seqpac workflow involves three separate steps: constructing, annotating
257 and, analyzing a PAC object (Figure 1B). A PAC object is in its simplest form an R list
258 object, listing a phenotype (Pheno) table with sample information, an annotation

259 (Anno) table with information about unique sequences, and a counts (Counts) table
260 with the counts of sequences across samples (Figure 1C). While this setup reminds
261 of many S4 class objects in packages such as limma (28), DESeq2 (29) and minfi
262 (30) etc., we have deliberately made the PAC list a regular S3 object, holding two
263 classifications ‘PAC’ and ‘list’. One reason is that S4 objects are often a source of
264 confusion for beginners in R. Another is that all basic functions for handling lists are
265 directly applicable on the PAC object, making it easy for more advanced users to

266 customize their workflows.

267

268 2.1 Constructing the PAC object

269 Building the PAC object starts by generating a counts table. This is primarily done by
270 the make_counts function. It uses fastq formatted sequence files to generate a

271 standardized data frame, where each row represents unique sequences in the

272 experiment, while columns represent samples (Figure 1C). This table maintains the
273 framework for all subsequent analysis. The phenotype and annotation tables contain
274 further information about samples (columns in the counts table) and sequences (rows
275 in the counts table). These tables are produced by the make _pheno and make _anno
276 functions. The phenotype table is provided by the user and can optionally be merged
277 with a progress report from the adaptor trimming and low-level filtering (see Results
278 2.2). The make_anno function prepares a very primitive annotation table that will

279 expand in the reannotation workflow (see Results 3.1-3.4). Finally, make_PAC

280 checks the different components and builds the PAC object.

281

282 2.2 Trimming fastq of adaptor sequence
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The make_counts function reads raw sequence files in fastq format using the
ShortRead package (31), trims the reads of adaptor sequence and filters low-quality
and non-replicable reads, prior to counting each unique read sequence across all
samples. For adaptor trimming seqpac has an internal and external alternative.
Internally, make_counts calls the stand alone make_trim function that primarily uses
the Biostrings package (32) to efficiently search and remove any adaptor sequence.
In addition, sequences with low quality base scores can be filtered. For the external
option, make_counts is dependent on system calls to externally installed cutadapt
(19) and fastq_quality filter (available in FASTX-Toolkit) (33) software.

To test the performance of seqpac’s make_trim function, we downloaded fastq files
from the Kang ef al. study from 2018 (22) (SRA project: SRP157338). This dataset
contains 7 fastq ranging between 52.7-492.8 Mb in compressed size (mean=310.1
Mb) and were generated from either human or fruit fly RNA, where some samples
were generated by mixing RNA from these species in different ratios. Using the
rbenchmark package (24) we trimmed/filtered these files over 10 iterations replicated
6 times for the make_trim and make_cutadapt functions, as well as stand-alone
cutadapt/fastq_quality filter using near-to-identical settings. Each function was given
7 parallel jobs on a Linux desktop computer (for hardware specifications, see
Methods). While make_trim and make_cutadapt uses the foreach package (23) to
parallelize jobs across processor cores/threads, the stand-alone
cutadapt/fastq_quality filter workflow used cutadapt’s internal parallelization option (-
p 7). The make_trim function was on average 1.2 times faster than make_cutadapt,
and 2.4 times faster than cutadapt/fastq_quality filter (Figure 2A). On average,
make_trim finished trimming/filtering all 7 fastq in 4.8 min, make_cutadapt in 5.8 min
and the stand-alone alternative in 11.4 min. The slow performance of the stand-alone
alternative was primarily due to fastq_quality filter lacking the ability to run jobs in

parallel.

Seqpac’s make_trim function generated very similar sequence counts compared to
the cutadapt/fastq_quality filter alternative (Figure 2B-C). We noticed, however, that
make_trim generated slightly higher counts for some sequences (arrows in Figure
2B). Manually searching for these sequences across the original and trimmed fastq
files showed that one explanation was that cutadapt failed to identify concatemer
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317 adaptor sequences. Concatemer (chimeric) adaptors are found in small quantity in
318 most experiments, and are technical constructs where an incomplete adaptor

319 associates with a complete adaptor during synthesis (34).

320

321 2.3 The low-level evidence filter

322 The make_counts function contains a low-level filtering module, here called an

323 evidence filter. In default settings, it simply filters sequences that fails to replicate
324 across two independent samples. Even in small experiments, such as the Kang et al.
325 dataset, such filtering dramatically increases performance by reducing noise from
326 extremely rare transcripts/degradation products (Figure 2C). Our experience is that
327 such evidence filter often results in less than half the sequence diversity (number of
328 unique read sequences; lower bars Figure 2C), while maintaining most of the

329 sequencing depth (total number of reads; upper bars Figure 2C).

330

331 To illustrate this further, true sequence diversity—that can be replicated and is not
332 due to technical bias—should expect to rise when sRNA from two species is mixed,
333 which is also the case in the Kang et al. dataset (percentages in Figure 2C).

334 Nonetheless, the evidence filter in make _counts can both be disabled (e.g. in single
335 sample/replicate experiments) or intensified (e.g. to increase performance in very
336 large datasets). In addition, confirming our initial observation that seqpac’s make_trim
337 function was better in identifying adaptor artifacts, such as concatemer adaptors,
338 make_trim identified more replicable unique sequences passing the evidence filter
339 than the popular cutadapt/fastq_quality_filter workflow (Figure 2D).

340

341 3.1 Annotating sequence with seqpac

342 Seqpac provides two ways to annotate a sequence in a PAC object. Firstly, the

343 reannotation workflow (Figure 3: step 1-3) aligns the trimmed read sequences in the
344 PAC against reference sequences, for example a reference genome, sRNA

345 database, or sequences from another experiment, such as the results from a piwi
346 pull-down. This is done using the reannotation family of functions: map_reanno,

347 import_reanno, add_reanno and simplify_reanno. Seqgpac also provides a ‘backdoor
348 function’, PAC_mapper, that quickly calls the reannotation workflow for mapping the
349 sequences in the PAC object (see Results 6.1, 7.2).

350
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Secondly, after aligning a PAC object to a reference genome, the genomic
coordinates of PAC sequences can be overlapped with coordinates of already
annotated genomic features (Figure 3: step 4). This is done by the PAC_gtf function
(Figure 3; step 4). Thus, by annotating using PAC_gtf, users can mimic a feature-
based counting strategy, while saving the sequence integrity of the trimmed fastq-file
in the PAC object.

3.2 Bowtie mapping using the map_reanno function

The reannotation workflow (Figure 3: step 1-3) depends on Bowtie (20) for sequence
alignment, and therefore needs Bowtie indexes for the input fasta references. Similar
to the adaptor trimming, map_reanno calls Bowtie either internally or externally,
through the Rbowtie package (35) or a system call, respectively. The function can
parse either seqpac standard or user provided options to Bowtie. It also calls a
secondary function, import_reanno, which controls the import options from the Bowtie
output files. Options involve for example whether coordinates and fasta sequence
names should be reported, or only hit-or-no-hit. This is convenient for large repetitive
sRNA references that may generate massive files if everything is reported (e.g.

pirBase for humans and flies).

The map_reanno function runs multiple align/import cycles (Figure 3: step 1). After
each cycle, imported data are saved as Rdata files, and only sequences without an
alignment to any of the references will proceed to the next cycle. Each proceeding
cycle allows for one additional mismatch until the user-defined max mismatches (or
the Bowtie limit of 3 mismatches) has been reached. Reannotating only no-hit
sequences in proceeding cycles not only guarantees that only the best hits are
reported. Since system demands per sequence increases with each added
mismatch, it also significantly increases performance as only the minimum number of
sequences are aligned in each mismatch cycle. Importantly, if a sequence aligns to
two references, both references will be reported for that cycle. Thus, unlike feature-
based counting where such multimapping issues must be resolved already when
reads are counted, users of segpac can decide to discriminate between annotations

at any stage in the analysis.

3.3 Annotating a PAC object using the add_reanno and simplify_reanno
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Next, using the add_reanno function the Rdata files from each mismatch cycle is
read into R and organized into a reanno object (Figure 3: step 2). For efficient
access, this object is generated as a series of tibbles available in the tibble;tidyverse
(36) package. Using a list of search terms, add_reanno consolidates the fasta
sequence names into short character strings, which can be used as factors in
downstream analysis. Search terms are constructed using regular expressions. A
match will be reported as the reference name together with the search term. For
example, if two references named mirbase and ensembl_ncrna were used as input
for map_reanno, a search term list constructed as, list(mirbase="mir’,
ensembl=c(‘snoRNA’, tRNA"), will result in matches being returned as ‘mirbase:mir’,
‘ensembl:snoRNA’ and ‘ensembl:tRNA’. The user may choose if search terms must
catch all reference hits, or if failure to match a search term should be returned as
‘other’ (e.g. ‘ensembl.:other’).

Neither map_reanno nor add_reanno discriminates between references. Thus, if PAC
sequences align to multiple references, all alignments and search matches will be
reported (e.g. ‘mirbase:mirlensembl:other’), but only if they align in the same
mismatch cycle. For better transparency and reproducibility of SRNA experiments, we
recommend that analysis is performed on a class-by-class basis as far as possible.
Nonetheless, hierarchical discrimination is often the only option to resolve some
issues with pseudoreplication when multiple classes of SRNA are simultaneously
analyzed. This is because the same sequence sometimes appears in multiple
reference databases, and therefore obtains multiple classifications, such as both
piRNA and miRNA. The purpose of the simplify_reanno function is therefore to
hierarchically discriminate between search matches generated by the add_reanno

function (Figure 3: step 3).

Importantly, since the seqpac workflow introduces simplified hierarchical
classifications late in the annotation process, users can quickly set alternative
hierarchies by just reapplying the simplify_reanno function. Unlike feature-based
counting, the segpac workflow therefore makes it easier to observe the effects of
changes to the hierarchy. In addition, since seqpac maintains sequence integrity,

users may at any time blast candidate sequences at their favorite genome browsers,
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to verify that the correct classification was made and to get additional information

about the candidate.

3.4 Annotating genomic coordinates using PAC_gtf

When the reannotation workflow runs using the import="genome’ mode, the reference
coordinates for each PAC sequence will be imported into the reanno object and later
added to the PAC annotation table. These coordinates can be parsed to the PAC_gtf
function as an alternative way to obtain PAC sequence annotations (Figure 3: step 4).
This function uses gtf/gff formatted files that contains coordinates of genomic
features and are available at many popular databases, such as Ensembl (37).

PAC _gtf simply overlaps PAC genomic coordinates with the gtf/gff coordinates using
functions in the GenomicRanges package (38). It provides the user options on what
information in the gtf to consolidate. Two predefined tracks, specifically expecting

repeatMasker (39) and Ensembl (37) gtf files, are available besides a custom option.

3.5 Example: Reannotation workflow using the Kang et al. dataset

To exemplify seqpac’s reannotation workflow and plotting functions we ran multi-
species mapping using the PAC object generated from the Kang et al. 2018 dataset
(22) (presented in Figure 2). This involved parallel mapping to both the human (hg38)
and fruit fly (dm6) genomes, as well as species specific versions of mirBase (miRNA)
(40), pirBase (piRNA) (41), GtRNAdb (tRNA) (42) and ensembl (many types of
ncRNA) databases (37). The hierarchy was set to rRNA > tRNA > miRNA >

snoRNA > snRNA > IncRNA > piRNA, indicating that rRNA was most prioritized and
piRNA was least prioritized. Mapping was carried out allowing for up to 3

mismatches.

As expected, the test clearly discriminated between human and fly samples in terms
of genome alignment, and correctly accounted for the expected genomic ratios when
samples from these two species had been mixed (Figure 4A). The human proportion
of the dataset was more affected by perfect matching, which is expected due to more
outbreeding in the population, but both species gain almost 100% ‘mappability’ when
mismatches were allowed. The fruit fly proportion of the dataset was strongly
enriched with an rRNA sized to 30 nt (Figure 4B). Blasting this sequence showed that
it was identical to the complete 2S rRNA subunit. This was expected since Kang et al.
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did not to report of any method that depletes 2S rRNA prior to library construction,
which is commonly done in fruit fly experiments (43,44). The human proportion of the
dataset was instead enriched with miRNA with the expected size of 22 nt (Figure 4B).
There was also a T bias in the expected range between 22-25 that may indicate
piRNA (Figure 4C). Nonetheless, the proportion of piRNA classification was lower
than the T bias (Figure 4B/C), which suggests that some piRNA may have been

classified as miRNA given that miRNA was prioritized in the hierarchy.

4.1 Subsetting and grouping data using targeting objects

Seqgpac applies an innovative strategy for extracting sample groups and sequence
classifications for filtering, plotting and statistical purposes. This involves small
targeting objects constructed as a list with two inputs (Figure 5). The first being a
character string naming a target column in a specific table held by the PAC object,
while the other is a character vector naming the target entries of the target column.
Importantly, the name of the targeting object itself pinpoints to which PAC table that
should be targeted. Thus, if a function has a ‘pheno_target="input, a targeting object
naming a column in the phenotype table can be used to subdivide the data. Similarly,
if an ‘anno_target="input option is available then columns in the annotation table can
be targeted. The second entry of a targeting object is often order sensitive. Thus, if
users want the sample groups to appear in a specific order in a graph, they only need
to provide that order in the second entry of the pheno_target object (Figure 5).

As an example, when using the PAC_pie to generate the pie charts in Figure 4A, we
used an anno_target for a column in the Anno table containing the four different
genome classifications (second entry order: “No alignment”, “Fly”, “Human” and “Both
fly and human”). Similarly, when generating the size distribution histograms in Figure
4B, we used an anno_target for a column in Anno holding the sRNA classifications

generated by the simplify_reanno function.

In a few cases, seqpac functions use targeting objects for other seqpac objects, such
as a PAC summary table (see Results 5.3). While the principle of these objects is
similar to the pheno_target and anno_target objects, they may have differences that

are carefully described in the manual to each function.
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486 5.1 Overview preprocessing, summarization and statistical analysis

487 With or without advanced annotations, PAC objects can be filtered (PAC filter,

488 PAC filtsep), normalized (PAC_norm), and summarized (PAC_summarize) using
489 seqpac internal functions. More advanced statistical wrappers immediately

490 compatible with PAC objects are also available (e.g. PAC_deseq, PAC_pca).

491

492 5.2 Filtering

493 PAC_filter and PAC_filtersep handles filtering and subsetting of PAC objects. With
494 PAC filter, users can subset the PAC object by targeting columns in the Pheno and
495 Anno tables using the pheno_target and anno_target options (see Results 4.1). A
496 filter that extracts sequences that have reached a percent coverage over a certain
497 threshold is also available for both raw and normalized counts. This can for example
498 be used for the popular ‘20 counts in 50% of samples’ filter. PAC _filter can also plot a
499 graph that shows the impact on the data at different thresholds. Conveniently, seqpac
500 provides a separate function PAC filtersep, that extracts sequences reaching a

501 coverage threshold within sample groups. The output can directly be used to

502 construct Wenn-diagrams, for example visualizing the sequence overlap that reach
503 100 cpm within two sample groups. It can also be applied for more advanced filters,
504 like removing read sequences that do not reach 20 counts across all samples within
505 a group.

506

507 5.3 Normalize, summarize and statistical analysis

508 While the standard structure of a PAC list object contains three tables—Pheno, Anno
509 and Counts—it may hold any number of objects as long as they do not have the

510 same names as the standard objects, just like a regular list. There are, however, two
511 more standard objects that are added to the PAC object later in the analysis: the

512 norm list containing normalized counts tables, and the summary list that contains
513 summarized tables (Figure 6). It is easy to visualize these objects as two separate
514 ‘folders’ within a PAC object.

515

516 PAC _norm provides a few common normalization methods, like the simple

517 reads/counts per million that standardize each sample against their total counts. It
518 currently also maintains a wrapper for the rlog and vst functions of the DESeq2

519 package (29), that automatically will prepare the PAC counts table for a
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transformation blinded against experimental groups. Users are, however, encouraged
to provide their own normalization tables. As long as the table contains the same
sequence (row) and sample (column) names as the Counts table, and are stored in
the norm list (‘folder’) of the PAC object, seqpac functions with a norm input option

will automatically search the norm folder for a matching name.

PAC_summary generates simple group summaries, like means, standard deviations,
standard errors, percent group differences and log2 fold changes. It can be applied to
both raw counts, as well as normalized counts by naming a table in the PAC norm
list/folder using the norm input option. The grouping of samples is controlled by a
pheno_target object. PAC_summary does not maintain an anno_target option since
summaries over annotations would result in loss of sequence integrity (= feature-
based counts). Summarizing data across both phenotype and annotation is instead
handled by individual functions, or by subdividing the whole PAC file using the

PAC filter function prior to running PAC_summary.

For more advanced statistical analysis segpac provides a convenient function,

PAC deseq, that allow users to import a PAC object into DESeq2 (29). This function
automatically generates a report containing organized top tables, volcano-plots and
p-value distribution histograms. Further, segpac contains the PAC_pca function that
performs a principle component analysis (PCA) with aid of the FactoMineR and
factoextra packages (45,46). This function returns scatter plots of the main
components annotated using either a pheno_target or anno_target. Lastly,

PAC _saturation performs and plots the results of a sequence saturation analysis.
This is often used for checking that satisfactory sequencing depths have been
reached, where few new sequences are predicted given a hypothetical increase in

the sequencing depth.

6.1 Advanced classification and visualization

In the quick reference presented in Table 1 a selection of visualization functions is
briefly presented. In common for most of them are the option to use pheno_target
and/or anno_target objects for grouping and ordering different plots (as described in

Figure 5). Seqpac plots are primarily generated using the ggplot2 package (47) and
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553 outputs are often saved as lists with summarized data and graphs. As with the other
554 seqpac functions, outputs are described in detail in the functions’ manuals.

555

556 Since seqgpac’s reannotation workflow provides a powerful and quick pipeline for
557 sequence annotation, we have also included a ‘back-door’ function, PAC_mapper.
558 This function is ideal for detailed mapping of smaller fasta references, such as a list
559 of tRNAs, the 45S pre-rRNA subunit, the mitochondrial genome, or simply a specific
560 genomic region download as a fasta from a genome browser. Conveniently, if a

561 Bowtie index is missing for a fasta reference, PAC_mapper will automatically

562 generate that index, making the alignment of a new fasta reference highly efficient.
563 The output of PAC_mapper is a map object, which is simply a list where each entry
564 refers to a specific sequence in the fasta reference and where the coordinates of all
565 PAC sequences that mapped the reference sequence is reported (e.g. the mapping
566 coordinates of PAC sequences aligning to a specific tRNA). This map object along
567 with the original PAC object can then be fed to the PAC_covplot function to generate
568 coverage plots across the fasta reference, as exemplified in Figure 8. As we have
569 illustrated before, such coverage plots are well suited for characterizing tRNA and
570 rRNA fragmentation (8,44,48), as well as mitochondrial RNA (48).

571

572 Lastly, using the map object the map_rangetype function can generate more

573 advanced classifications such as &', i' and 3' tRFs or tRNA halves, previously best
574 demonstrated in MINTbase and MINTmap (11). Nonetheless, the

575 MINTmap/MINTbase suite is only readily available for human tRNA classification.
576 Seqpac’s PAC_mapper and map_rangetype functions fills this gap and expands the
577 possibility for discovering novel tRNA fragment classes in any species. With the

578 map_rangetype function it is easy to classify sequences in the map object in relation
579 to where the alignment starts or ends in the reference sequence. This is done by
580 either defining different ranges (e.g. classifying a fragment as 5' if it starts within the
581 first 3 nt of a tRNA), or a percentage zone (e.g. classifying a fragment as a half if it
582 ends or starts within 45-55% of a tRNA). Even better, map_rangetype may use ss
583 files, which is a format commonly used for storing information about secondary

584 structures such as tRNA loops. Thus, using this option, users can classify fragments
585 in relation to for example cleavage within a specific loop. We used this strategy to
586 identify a diet-sensitive tRNA derived fragment in human sperm, that we called
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nuclear internal T-loop tRNA derived RNA (nitRNA)(48). The PAC_trna function plots

range-classified tRNAs mimicking some graphs presented in that paper.

7.1 Segpac example 1: Identifying contaminants by sequence-based counting
To further illustrate the strengths of seqpac, we reanalyzed a recently published
dataset by Tong et al. 2020 (25) (SRA access: SRP285629). This dataset contains 42
fastq files originating from 14 human cancer cell lines, where RNA was extracted
from cells, as well as exosomes and microvesicles of these cells. Extra-cellular
vesicles—such as microvesicles and exosomes—are cellular excretion particles
produced by cells’ plasma membrane. They are found from a variety of cells—
including tumor cells—in peripheral body fluids (49). Therefore, characterizing the
sRNA content of extracellular vesicles from cancer cell lines may reveal novel

diagnostic/prognostic biomarkers.

We generated a PAC object from this dataset. The sequencing was done on an
lllumina HiSeq3000 sequencer with a flow cell kit generating read lengths of only 50
nt. From our experience, we do not recommend generating sRNA-seq data with read
lengths shorter than 75 nt. Longer reads allow for inter-adaptor length validation,
where detecting the opposite adaptor sequence in the read guarantees that it
originated from short RNA and not from long RNA. Thus, unless controlling for
sequence length in downstream analysis, SRNA experiments with very short reads
may be severely influenced by long RNA. To investigate if this was a problem in the

Tong et al. study, we therefore included all read lengths in the analysis.

Tong et al. (25) used a feature-based counting strategy. This strategy first aligns
sequences to a reference genome, often allowing for multiple mismatches, and
discards sequences that fails to align. Counts are then based on the overlaps
between the genomic coordinates of the reads and the genomic coordinates of
known sRNA. This poses several problems. The nucleotide sequence of some sRNA
may be post-transcriptionally modified, such as 3' fragments of mature tRNAs. These
may be discarded since they fail to align with the reference genome. Further, allowing
for mismatches without knowing where those mismatches occur and pool related
sequences with and without mismatch alignments into the same feature, can hide

information about sSRNA subtypes and remove traces of post-transcriptional
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modifications hidden within the reverse-transcription signature (50-52). Many sRNAs
are also highly repetitive, such as most rRNA derived fragments, and may thereby
map to multiple genomic regions. In feature-based counting strategies this is often
solved by randomly assigning such reads to one of the multimapping regions.
Together, this completely breaks sequence integrity making it difficult to interpret the

results.

Some of these issues with feature-based counting can be illustrated with the Tong et
al. dataset (25) using segpac’s workflow. It must be emphasized, however, that our
critic is not specifically aimed against Tong et al., whose work we admire, but rather
against the feature-based counting strategies that hundreds of studies have been

using.

By applying a PCA we confirmed what the original authors reported that cells were
very different from extra-cellular vesicles (Figure 7A). We also observed that the
extra-cellular vesicles from two specific cell lines—SCC4 and SCC154—were
different to the other samples. Size distribution histograms immediately identified two
problems (Figure 7B). Firstly, most read sequences were = 50 nt. Since Tong et al.
reported that the majority of SRNA from cells came from snoRNA, and sRNA from
extra-cellular vesicles came from rRNA, it indicates that their analysis did not account
for sequence length. This is because most snoRNA and rRNA are found in the >= 50
nt segment. Thus, the sRNA class proportions that was reported may involve long
RNA, possibly including full-length rRNA and tRNA.

Secondly, the extra-cellular vesicles from SCC4 and SCC154 failed almost
completely to align with known human sRNAs (Figure 7B). Since seqpac maintains
sequence integrity, we blasted a small selection of these non-annotating sequences
at NCBI (53). The result strongly indicated that most reads originated from the
Mycoplasma hyorhinis genome. Since this is a common contaminant in cell cultures
(54), we ran this Mycoplasma genome in parallel to the human genome in the
seqgpac’s reannotaion workflow, thereby picking the best possible alignment from
either of them. This showed that all vesicle samples from SCC4 and SCC154—the
same samples that explained one of the main components in the PCA—suffered
severely from Mycoplasma contamination (Figure 7C).
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655

656 Now, critics may argue that a feature-based counting strategy should have corrected
657 for this contamination, since reads that fail to align against the human genome will
658 automatically be removed prior to counting. Thus, Mycoplasmic reads should not
659 have affected the results, since normalization of the counts was made after their

660 removal.

661

662 We tested this assumption using seqgpac functions. With the output from the two-
663 genome reannotation workflow, we used the PAC_filter function to remove all

664 sequences that mapped to the Mycoplasma genome, and only kept reads that

665 mapped to the human genome. Then we re-normalized the dataset using the

666 PAC_norm function and made a new PCA. Removing nearly 6500 sequences, and
667 keeping only sequences exclusive to the human genome, had very limited effects on
668 the results (Figure 7D). This strongly indicates that the effect of the contamination
669 remained even after removing the contaminating sequences. Importantly, this bias
670 may have gone unnoticed if we would have used a feature-based counting strategy,
671 since contaminating sequences would have been removed prior to counting.

672 Together, this illustrates how seqgpac quickly provides panoptic views of data integrity,
673 which is essential for analytical transparency and correct downstream interpretations.
674

675 7.2 Seqpac example 2: Novel rRNA-derived sRNA affected by anticancer

676 treatment

677 In cancer research, non-coding RNA has been studied not only for diagnostic and
678 prognostic purposes, but also for therapeutic purposes (55). Of particular interest,
679 rRNA synthesis is commonly exaggerated in tumor cells (56). Synthesis involves
680 transcription of 47S/45S pre-rRNA genes by RNA polymerase | at specific repetitive
681 clusters in the genome (57). Over a series of precursors, pre-rRNA is turned into the
682 active mature rRNA subunits 28S, 18S and 5.8S (58,59). Inhibiting RNA polymerase |
683 (RNA pol I) has been proposed as a possible anticancer treatment, where one of the
684 most promising candidates have been the BMH21 compound (60). However, little is
685 known about sRNA generated from the pre-rRNA and their potential role in cancer.
686

687 We, therefore, used segpac to detect novel sSRNA originating from pre-rRNA,

688 hypothesizing that inhibiting RNA pol | would result in fewer rRFs. For this we
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conducted a small experiment by exposing HelLa cells—which originates from
cervical cancer cells—to BMH21. The exposure time was set to 60 min, and as
control we used DMSO. RNA from purified cells was then prepared for sRNA-seq,
which resulted in fastq files with 75 nt reads. From this raw data we generated an
annotated and filtered PAC object using only segpac functions.

Using the PAC_deseq (see Results 5.3) function, we performed a differential
expression analysis only including highly expressed sRNA mapping to rRNA
reference sequences. This showed that only 60 min of BMH21 exposure was enough
to affect rRNA fragmentation (Figure 8A). Perhaps unexpectedly, not all were
downregulated by inhibiting RNA polymerase . In fact, closer examination revealed
that most down-regulated sequences were related (Figure 8A; Supplementary table
S1), suggesting a single origin within an rRNA cluster on chromosome 21. We,
therefore, used the PAC_mapper and PAC_covplot functions (see Results 6.1) to
visualize the impact of BMH21 over a pre-rRNA 45S gene on chromosome 21
(GenBank: NR_146144.1). This revealed 4 major rRFs (Peak 1, 2, 3, 4 in Figure 8B),
where the related fragments from Figure 8A all aligned to Peak 1. For more detailed
analysis, we downloaded the sequences of the DNA immediately neighboring these
peaks from the UCSC genome browser and ran the sequences as a fasta reference
file in the PAC_mapper and PAC_covplot functions (Supplementary file S2). This
revealed what appeared to be a single large down-regulated fragment in Peak 1
(Figure 8C), an unaffected possibly degraded fragment in Peak 2 (Figure 8D), two
separate fragments in Peak 3 where only the shorter and less expressed fragment
might have been affected by BMH21 (Peak 3a in Figure 8E), and one single fragment
in Peak 4 that seemed slightly up-regulated following BMH21 treatment.

To better understand the relevance of these changes we summed the cpm of all
fragments mapping to each peak and performed a non-parametric Mann-Whitney U
test. For this analysis we also included a third group of samples that had been
exposed to BMH21 for 12 hours, to explore if any of the effects of BMH21 were
amplified following long-term exposure. Astonishingly, after 12 h exposure, fragments
of Peak 1 had almost completely disappeared (Figure 8F). This was not due to an
experimental failure since Peak 2 and Peak 3a were unaffected by the long-term
treatment (Figure 8G-H). In fact, Peak 4 fragments even showed a significant up-
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regulation (Figure 8I). Thus, the effects observed in Peak 1 and Peak 4 were

amplified by long-term exposure, but in two opposite directions.

For the Peak 2 and Peak 3 rRNA fragments we have previously observed similar
fragments in human sperm (8), and similar fragments located to the 5' ends of the
5.8S and 28S subunits in fruit fly embryos (44). This is also true for the 3' fragments
of the 28S subunit (Peak 4), even though we never have observed such expression
levels as we see in the HelLa cells. To our knowledge, however, highly expressed
sRNA fragments from the Peak 1 region—in the &' external transcribed spacers
(ETS)—have never been described. To understand the 5' ETS rRF better, we
performed a multi-species blast of the main sequence at NCBI to identify similar
GenBank entries. This showed many alignments to ribosomal precursors in humans,
one identical sequence in the Chimpanzee, and a few similar sequences in the
Gorilla (Supplementary Figure S1). Thus, this 5' ETS rRF has only evolved in our

closest relatives.

Confident that the ' ETS rRF was a human sRNA, we searched for this fragment in
the Tong et al. 2020 dataset. Despite only having read lengths of 50 nt to our disposal
(see Results 7.1), where 5' ETS rRF of Peak 1 was 61 nt, we found clear traces of
this rRF (Figure 8J). Furthermore, to explore the clinical relevance of this finding we
downloaded the Xu et al. dataset (26,27). Here sSRNA was extract from confirmed
cervical tumors and samples from normal cervix. Results indicated that the 5' ETS
rRF was upregulated in cancer patients (Figure 8K). Together this suggests that our
novel rRF—validated by the seqgpac workflow in multiple unrelated datasets—may be
targeted for diagnostic and prognostic purposes during cancer treatment.

DISCUSSION

Here we presented a novel and innovative bioinformatic tool—seqpac—that makes
advanced sRNA analysis from genome-scale sequencing data more accessible and
transparent. The workflow is completely integrated with R, from trimming the adaptor
sequences to generating plots. We showed that segpac’s trimming function performs
as well as, or even better, than trimming using standard tools outside R. We further

presented the PAC object, which builds a framework of phenotypic information (P)
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and sequence annotations (A) around a table based on sequence counts (C). Using
published data we showed that a sequence-based counting strategy—in contrast to
feature-based counting that is more commonly used—diminishes the risk of mistakes
in downstream analysis. We demonstrated the strength of maintaining sequence
integrity to enable re-annotation of sequences across species and classes of SRNA at
any point in the analysis. Lastly, we showed how seqgpac can be used for sRNA
discovery in cancer research by the discovery of a novel rRNA derived fragment
(rRF) that were down-regulated by anti-cancer treatment in vitro and up-regulated in

tumors of cervical cancer patients.

Seqpac is available at github (https://github.com/Danis102/seqpac). As the whole
workflow, from adaptor trimming to mapping and plotting, are integrated in R it runs
on common computer platforms, including Windows, Mac and Linux. It comes with a
complete collection of function manuals and a vignette that guides the user in how to
apply the default workflow using a fastq test dataset that are included with the
package. R scripts that we used to generate many of the results presented in this
paper are available in Supplementary file S1.

It must be emphasized that seqpac is primarily designed for sSRNA sequence
analysis. This means that it does not currently supports paired-end sequencing,
which is commonly applied for long RNA sequencing. Paired-end sequencing is not
required for most sRNA applications where the target sequence lengths seldom
exceed 75 nt. As we have demonstrated in this paper, too short reads—as those
generated using the 50-cycle flow cell kits available for MiSeq, NextSeq1000 and
HiSeq2500/3000/4000—should be avoided. Without some excessive sequence in
which the 3' adaptor can be detected, it is difficult to reliably discriminate medium

length sRNA (such our novel 5' ETS rRF) from unintentionally included longer RNA.

We see, however, many advantages to use sequence-based counting also in long
RNA sequence analysis, for example to easily extract sequences annotating to a
candidate mRNA and check for possible genetic variants. Coverage plots, similar to
what we describe for the 45S pre-rRNA (Figure 8B) would also be applicable for
MRNA coverage to visualize splice variants and intronic transcription. Even though
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we hope to develop long RNA analysis in future updates of seqpac, there are

currently a few technical constraints that needs to be resolved.

As mentioned, paired-end reads are not supported either for trimming or counting. In
addition, while Bowtie (20) is still the most popular aligner for sSRNA, it does not
support indel mapping. While this is not a great problem if sequence integrity is
maintained and candidate sequences subsequently can be blasted to detect any slip
through, this problem are slightly more announced in samples differing much from
their reference genomes, such as cancer cell-lines. A likely reason for Bowtie’s
popularity in sSRNA community is because it is reliable with short sequence
alignments. For instance, we initially tried to integrate the Rsubreads package (61) in
seqpac’s workflow, which applies a highly efficient ‘seed-and-vote’ mapping
algorithm. However, for certain read lengths we consistently experienced failure to
correctly vote for the best alignment, possibly as a consequence that too few seeds
were covering the read. We will off-course explore more efficient alternatives to

Bowtie in the future.

By using the sequence-based approach of seqpac, we have discovered a novel
rRNA derived sRNA (rRF) in the 5' ETS of 45S pre-rRNA. This rRF responds
negatively to anticancer treatment and are up-regulated in tumors. The scope of our
study was not to dwell deep into the mechanism and clinical potential of this rRF. To
our knowledge, however, this fragment has not been described before, and from our
experience sRNA in the 5' ETS of pre-rRNAs are rare. This, together with the insight
that the sequence is relatively unique to humans (with only some homology in
Chimpanzees and Gorillas), makes it a good target for future studies on biomarkers
in cancer treatment and diagnosis. In our HeLa cell experiment, the main fragment
was 61 nt, which indicates a unique fragment given that we had a maximum read
length of 75 nt. Even though the methods used in Tong et al. (25) and Xu et al.
(26,27) were restricted to a maximum read length of 50 nt, we found traces of this
fragment in the pile of fragments with unverifiable length of 2 50 nt. It must be
emphasized, however, that we tried to validate the 5' ETS rRF in yet another dataset,
Snoek et al. (62) (SRA accession: PRINA413777), but here we failed to detect
anything in the ' EST region. The Snoek et al. dataset is so far the largest public
sRNA dataset from cervical cancer patients. In this study, samples were collected by
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participants themselves, which may explain much higher rRF variability and
excessive number of short fragments (< 20 nt), compared to the other datasets
(Supplementary file S1). Importantly, in contrast to the other datasets that used the
NEBNext Small RNA Library Prep kit, Snoek et al. used the lllumina TruSeq Small
RNA Library Preparation Kit. We and others have consistently shown that these two
popular kits perform differently with regard to sRNA coverage (48,63-65). Thus, future
studies targeting this rRF must consider the choice of chemistry, and maybe even

apply advanced protocols for better coverage (44,66).

The 5' ETS rRF should be located somewhere close to the 01 cleavage sites in the 5'
EST of 47S pre-rRNA. When aligning the 61 nt main fragment against the GenBank
entry U13369.1—which have been commonly used to map Human pre-rRNA
cleavage sites (59)—the 5' ETS rRF only partly align. The coverage over this area in
the U13369.1 pre-rRNA is also far from what we observed for the NR_146144.1 pre-
rRNA, which was the GenBank sequence that we used for the chromosome 21
alignment in (Figure 8B; Supplementary File S2). Aligning the U13369.1 with
NR_146144.1 reveals a “G-T” insertion in NR_146144.1, right between the C414-
C416 and G420-U422 01 cleavage sites (67) (Figure 8K; Supplementary Figure S2).
Since the 5' ETS rRF contains this insertion, it strongly suggests that pre-rRNA
cleavage has been affected at this locus. Therefore, beside investigating possible
clinical values of this ' ETS rRF, future research may target mechanisms for how
natural rRNA variants may give rise to novel sSRNA, suggestively by investigating the
interactions between post-transcriptional modifications, snoRNA and proteins at this

locus.

In conclusion, the revolution of genome scale sequencing has not only brought
enormous potential for unraveling life’s mysteries in health and disease. It has also
created a gap between biology and technology. Consequently, research groups with
primary biological or medical interests are often forced to rely on specialized
programmers with limited understanding of the biology to handle their precious data.
R has long been a platform where bridges between biology, statistics and
programming are built. We have showed that building a transparent workflow in R for
sRNA analysis, with the intention of making choices early in the analysis perspicuous,
not only helps in detecting severe biases that would have otherwise gone
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857 undiscovered. It also provides the flexibility and panoptic view needed for advanced

858 biological interpretations.
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1034 TABLES AND FIGURES

Table 1. Quick reference for seqpac
Family Description Function name Dependence Function description

PAC Prepares make_counts foreach, ShortReads  Reads fastq, calls make_trim or make_cu-
generation and builds a tadapt, performs low-level filter, and
; counts sequences.
fF:én? ]%bsjteth make_trim foreach, Biostrings Adaptor trimming and fastq quality filter us-
X ing R internal packages
files. make_cutadapt Foreach, cutadapt, Adaptor trimming and fastq quality filter us-
- fastq_quality_filter ing external installed software
make_anno - Generates a simple annotation table from
- a count table.
make_pheno - Prepares user provided phenotype table
containing sample information.
make PAC - Builds PAC object with Pheno, Anno and
- Counts tables.
PAC_check - Checks if a PAC object is compatible with
- segpac functions
PAC Sequence map_reanno Rbowtie/bowtie Reannotates PAC sequences through pro-
annotation annotations gressive mismatch cycles.
by aligning import_reanno foreach, tibble Called by map_reanno to import bowtie

against fasta
references or

add_reanno

foreach, tibble

output into R.
Builds a reannotation object with genome
coordinates and/or classified fasta se-

overlap_ with quence names.
genomic co- simplify_reanno - Makes hierarchical classifications from
ordinates. - classified fasta sequence names.

PAC_gtf tibble, rtracklayer, Overlaps genomic coordinates of PAC se-

GenomicRanges quences with features of a gff file.
PAC_mapper Backdoor to the reanno workflow for fast
mapping of PAC resulting in a map object.
map_rangetype Classifies sequences in map objects ac-
cording to ranges or secondary structures
(e.g. 5.1, 3)
PAC Filtering and PAC filter - Subsets data by target objects or coverage
analysis normaliza- thresholds.
(preprocessing)  tion. PAC filtersep - Extracts sequences reaching a threshold
within groups of a pheno_target object.
PAC norm DESeq2 Normalize a raw counts table and saves it
- in the PAC$norm ‘folder’.
PAC Performs PAC_summary - Simple summaries using pheno_targets
analysis statistical (means, sd, se, %diff, log2fc) saved in
L analyses and PACS$summary.
(statistics) visualiza- PAC_deseq foreach, DESeq2 Prepares, performs and plots DESeq2
i analysis from PAC object.
tions. PAC _pca FactoMineR, Performs principal component analysis
- factoextra and plots the results.
PAC saturation foreach, ggplot2 Performs a sequence saturation analysis
- and plots the results.
PAC Generates PAC pie ggplot2, cowplot; Pie-plots using pheno_target and and
analysis graphs and grDevices anno_target.
(visualization) saves pro- PAC_stackbar ggplot2, ggthemes, Stacked bar diagrams using pheno_target
cessed data reshape2, grDevices  and and anno_target.
summarized PAC_jitter ggplot2 Jitter plots using pheno_target and and
over both anno_target.

PAC nbias ggplot2, ggthemes, Size distributed histogram stacked by nu-
phenotype - grDevices cleotide at a defined position (e.g. 1st nu-
and annota- cleotide bias).
tions. PAC sizedist ggplot2, ggthemes, Size distributed bars stacked by an

PAC_covplot

PAC_trna

grDevices

ggplot2, reshape2,
grDevices,
GenomicRanges
ggplot2, reshape?2,
grDevices

anno_target column (e.g. miRNA/piRNA
size distributions).

Plots PAC sequence coverage over a ref-
erence sequence such as a tRNA or
rRNA.

tRNA fragment analysis using information
from range-classified map object.

All functions are described in detail in the manual for each function (e.g. '?make_counts' in the R terminal) and are exemplified in the
seqpac vignette; 'vignette("segpac")' in R terminal).
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1036 Figure 1. Small RNA sequence analysis using segpac. (A) The difference between sequence-based
1037 counting and feature-based counting in sSRNA analysis. With sequence-based counting an experiment-
1038 wide count table can be created before genome alignment. This allows for efficient mapping and for
1039 sequence integrity to be maintained through the analysis. In contrast, feature-based counting

1040 strategies counts overlaps between reads' genome alignment and coordinates of genomic features.
1041 This is less efficient and disrupts sequence integrity. (B) Sequence-based counting is central in the
1042 seqgpac workflow, which is completely integrated in R, from fastq adaptor trimming and preprocessing
1043 to group-based visualization and statistical analysis. (C) Secpac builds a framework of functions that
1044 processes and analyzes a standardized list: the PAC object. In its simplest form PAC contains three
1045 tables: the Pheno table with sample information; the Anno table with sequence information, and the

1046 Counts table containing the counts of sequences across samples.
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1047

1048 Figure 2. Performance of sepac's internal trimming and counting functions. Seqpac contains multiple
1049 options for trimming and filtering adaptor sequences prior to generating a count table. The make_counts
1050 function counts sequences of already trimmed fastq files or calls make trim (R internal) or
1051 make_cutadapt (R external) functions prior to counting. Using the Kang et al. 2018 dataset (SRA access:
1052 PRJNA485638), (A) shows side-by-side the preprocessing time for segpac's trimming functions and a
1053 popular alternative workflow based on the cutadapt and fastq_quality_filter functions. The test involved
1054 7 fastq files iterated 10 times over 6 batches per function using 7 parallel processes. (B-D) Further
1055 evaluated performance of make_trim in terms of the output dataset. (B) While sequence counts strongly
1056 correlated with the alternative workflow, make_trim more often generated higher counts (arrows). This
1057 was primarily a result of concatemer trimming in make_trim (see main text). (C) The make_counts
1058 function also contains an evidence filter, which in default mode discard sequences that fails to replicate
1059 in at least two independent fastq files. Normally, this low-level filter maintains most reads (top bars),
1060 while limiting the sequence diversity (bottom bars). While make_trim and the alternative generated very
1061 similar datasets after evidence filters, make_trim generated slightly more unique sequences, which was
1062 confirmed by Venn-diagram (D) showing higher ratio of sequences unique to the make_trim workflow.
1063
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1064 Figure 3. Annotating read sequences in PAC objects. For annotation of read sequences, seqpac mainly
1065 relies on the re-annotation workflow [1-3]. The map_reanno and import_reanno functions use Bowtie to
1066 align PAC sequences against references sequences, e.g. species genome or sSRNA database [1]. This
1067 is done over cycles where each cycle introduces 1 additional mismatch in the mapping, and where only
1068 read sequences with no alignment proceed to the next cycle. After the mismatch cycles, add_reanno
1069 reads the resulting .Rdata files and organize the output into a reannotation list object [2]. Tables in this
1070 list can either directly be merged with a PAC annotation table or can be simplified hierarchically using
1071 the simplify_reanno function [3]. The PAC_mapper function is a convenient wrapper for smaller
1072 reference sequences (e.g. tRNAs or rRNAs) that will automatically generate Bowtie indexes. [4] After a
1073 PAC object has been aligned to a genome, the PAC_gtf can be used to overlap genomic coordinates of

1074 PAC sequences with known coordinates for genomic features, e.g. repeats and protein coding exons.
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1075

1076 Figure 4. Multi-genome sRNA analysis demonstrating the strength in seqgpac reannotation workflow.
1077 Graphs were plotted using a PAC object generated from the Kang et al. 2018 dataset (SRA access:
1078 PRJNA485638) primarily developed for studying interspecies contaminated samples where RNA from
1079 fly (S2) and human (HEK-293T) cells was mixed in different ratios. Seqpac functions used for generating
1080 the graphs were: (A) PAC_pie for genome proportion pie charts, (B) PAC_sizedist for size distribution
1081 histograms with sRNA class annotation, and (C) PAC_nbias for the frequency of the first nucleotide

1082 stratified over the sequence size distribution.
1083
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Figure 5. The principles for working with target objects. Many seqgpac functions applies a novel system
for grouping and sub-dividing samples (Pheno) and sequences (Anno) in a PAC object. This system
relies on small target objects, which targets information either in the Pheno (pheno_target) or Anno
(anno_target) tables. A target object is a list with two-character inputs. The first pointing to a column in

the target table, and the second to the entries of that column.
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1091

1092 Figure 6. Advanced PAC objects. All PAC objects must contain Pheno, Anno and Counts tables. Many
1093 seqgpac functions may optionally use data stored in two additional PAC objects: the norm and summary
1094 lists. The norm contains tables of normalized counts having identical row and column names as Counts.
1095 The summary contains tables with identical row names as Counts, but column names based on
1096 aggregates over the Counts columns (e.g. group means). These PAC ‘folders' can be generated by the

1097 PAC_norm or PAC_summary functions, but users are encouraged to provide their own tables.
1098
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1099

1100 Figure 7. Segpac example 1: Identifying contaminants by sequence-based counting. We generated a
1101 PAC object from a public dataset (SRA access: PRJNA666144). This study used a feature-based
1102 counting strategy to examine the sRNA in cells, and their extracellular vesicles, of 14 cervical and
1103 head/neck cancer cell lines. (A) Scatter plot generated by the PAC_pca function after vst normalization
1104 using PAC _norm. The two first principle components identify extracellular vesicles from SCC4 and
1105 SCC154 cells as outliers. (B) Size distribution histograms generated by the PAC_sizedist function. Most
1106 samples show high content of SRNA = 50 nt, except for the SCC4 and SCC154 outliers, which are
1107 enriched with 29 nt fragments with no annotation in humans. (C) Bar graphs generated by the
1108 PAC_stackbar function after reannotating the PAC object against the human and Mycoplasma hyorhinis
1109 (contaminant) genomes show high content of Mycoplasma in outliers. (D) Scatter plot generated by
1110 PAC pca after removing all non-human sequences with the PAC filter function, only including sRNA
1111 between 16-45 nt, and re-normalizing the data with PAC_norm. No big differences from the original
1112 dataset (A).

1113
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1114

1115

1116 Figure 8. Segpac’s sRNA coverage functions reveal novel rRNA derived fragment (rRF) in cancer. RNA
1117 polymerase | (Pol |) transcribes the 47/45S pre-rRNA and has been targeted in anti-cancer treatment.
1118 Small RNA analysis of HelLa cells either exposed to an RNA polymerase | inhibitor (BMH21) or DMSO
1119 (control) for 60 min (A-J)(SRA access: PRIJNA708219). Volcano plot (A) from a differential expression
1120 analysis using the PAC_deseq function showing down-regulated rRFs. Red indicates related sequences

1121 that primarily originates from an rRNA cluster on chr 21. Coverage plot (B) using the PAC_mapper and
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1122 PAC_covplot functions of an 45S pre-rRNA on chr 21 (GenBank: NR_146144.1). Shows 4 major peaks
1123 affected differently by BMH21. Zoomed in coverage plots of Peak 1-4 (C-F). Peak 1 (C) shows a novel
1124 5'ETS rRF downregulated by treatment. Peak 2 (D) shows a plausibly degraded fragment. Peak 3 (E)
1125 contains two overlapping rRFs where only the small (Peak 3a) varies by treatment. Peak 4 (F) shows a
1126 rRF possibly upregulated by treatment. Bar graphs (G-1) showing that 12h exposure to BMH21 amplifies
1127 the effects in Peak 1 and Peak 4, but not in Peak 2 and Peak 3. Coverage plots (K) validating the 5' ETS
1128 rRF of Peak 1 in cancer cells, and to a lesser degree in extra-cellular vesicles, using the Tong et al.
1129 dataset from Figure 7 (without the contaminated SCC4 and SCC154 cell lines). The zoomed in genomic
1130 sequence (bottom) shows the main fragment from (C) where the longest fragment from Tong et al. is
1131 presented as bold letters. Dotted grey box indicate GT-insertion compared to a commonly studied 47S
1132 pre-rRNA (GenBank: U13369.1). Bar graphs (L) showing an up-regulation of 5' ETS rRF related
1133 fragments in cervical tumor samples published by Xu et al. (SRA access: PRINA607023). Number of
1134 summed sequences that were found in the target regions are indicated by nseqs. Mann-Whitney U tests
1135 indicated by * p<0.05 and * p<0.1 significance levels. SEM = Standard error of the mean.

1136

1137
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