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Abstract

We assess risks differently when they are explicitly described, compared to when we learn

directly from experience, suggesting dissociable decision-making systems. Our needs, such

as hunger, could globally affect our risk preferences, but do they affect described and learned

risks equally? On one hand, explicit decision-making is often considered flexible and context-

sensitive, and might therefore be modulated by metabolic needs. On the other hand, im-

plicit preferences learned through reinforcement might be more strongly coupled to biological

drives. To answer this, we asked participants to choose between two options with different

risks, where the probabilities of monetary outcomes were either described or learned. In

agreement with previous studies, rewarding contexts induced risk-aversion when risks were

explicitly described, but risk-seeking when they were learned through experience. Crucially,

hunger attenuated these contextual biases, but only for learned risks. The results suggest

that our metabolic state determines risk-taking biases when we lack explicit descriptions.

Introduction

When we decide between options with uncertain outcomes, we factor risk into the decision.

This is most commonly evaluated by asking people to decide between explicitly described,

hypothetical choice scenarios (Allais, 1953; Arrow, 1951; Ellsberg, 1961; Kahneman and

Tversky, 1979; Weber et al., 2004). In these experiments, risk-taking is typically modu-

lated by the magnitude and probability of outcomes, or by framing choices in a positive or

negative context using words or diagrams. This contrasts with real life scenarios, in which
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humans usually make repeated choices, and learn about uncertain outcomes from experi-

ence. Several studies have reported that experienced-based choices differ from choices based

on verbal or graphical descriptions (Hertwig et al., 2004; Hertwig and Erev, 2009; Niv et al.,

2012). This observation is better known as the experience-description gap. In particular,

empirical studies have also shown that people are typically risk-seeking for negatively framed

choices, but risk-averse for positively framed choices when outcomes are explicitly described

(Kahneman and Tversky, 1979; Tversky and Kahneman, 1981). However, when experiential

choices are framed in a positive or negative context, risk attitudes are reversed compared

to description-based decisions (Hertwig et al., 2004; Ludvig et al., 2014; Ludvig and Spetch,

2011).

The effect of decision context is thought to be driven by anticipatory emotions (De

Martino et al., 2006) as well as biological needs (Stephens, 1981). Nevertheless, only a

handful of studies has investigated the effect of physiological factors, such as hunger, on

explicit risk-taking behaviour in humans, and suggest that hunger increases risk-seeking

(Levy et al., 2013; Shabat-Simon et al., 2018; Symmonds et al., 2010), but the effect of

hunger on experiential risk-taking has not yet been tested in humans. Biological need, which

is described as the disparity between the current state and the goal state, has been shown

to motivate decision-making in animals that make experiential choices (Aw et al., 2011;

Papageorgiou et al., 2016; Pompilio et al., 2006) and has been captured by computational

models (van Swieten and Bogacz, 2020). The concept of making decisions to reduce this

disparity also underlies the risk-sensitive foraging theory (Stephens, 1981). This theory

describes that if the goal cannot be reached with a safe, low-risk option, then an individual

should choose a high-risk option because it offers a chance of meeting the need and increases

the chance of survival.

For described risks, the contextual modulation of risk-taking can be captured by a utility

function, such as proposed by prospect theory (Kahneman and Tversky, 1979). For experi-

enced risks, in contrast, contextual modulation can be accounted for by a recently described

model that captures the roles of dopamine in learning and choice (Möller et al., 2021). This

model aligns with evidence that dopamine enhancement promotes risk-seeking behaviour

(Gallagher et al., 2007; Rigoli et al., 2016; St Onge and Floresco, 2009). The Prediction

Error Induced Risk-Seeking (PEIRS) model proposes that a positive decision context elicits

a positive context prediction error that enhances dopamine release, while a negative decision

contexts evokes a negative context prediction error that reduces dopamine release (Möller

et al., 2021). Similar to the utility function in prospect theory, PEIRS includes a risk sensi-

tivity parameter that determines the impact of context on risk-taking. Crucially, if hunger

alters the extent to which context modulates risk-taking, this could be captured by changes

in this parameter.
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Given that experiential and description-based risk-taking are thought to involve different

neural systems (Fitzgerald et al., 2010), we tested two alternative hypotheses about the

effects of hunger on explicitly described versus experientially learned risky choice. On one

hand, we might expect the description-based decision-making to be modulated by hunger,

because risk is tracked and represented in a range of cortical areas that are informed by

high-level cognitive representations (Clark et al., 2008; Elliott et al., 1999; Hsu et al., 2005;

Huettel et al., 2005, 2006; Knutson and Bossaerts, 2007; Kuhnen and Knutson, 2005; McCoy

and Platt, 2005; O’Neill and Schultz, 2010; Platt and Huettel, 2008; Preuschoff et al., 2008;

St. Onge et al., 2011; Tobler et al., 2007). It is susceptible to framing effects, whereby

the cognitive, numerical and linguistic context of options influences choice (Allais, 1953;

Arrow, 1951; Kahneman and Tversky, 1979) and might therefore be more flexible than

the experienced-based system. Hunger may modulate high-level decision-making systems,

with the appetite-stimulating hormone ghrelin activating receptors distributed widely in the

cerebral cortex including hippocampus (Zigman et al., 2006) and can enhance memory and

performance (Diano et al., 2006). Accordingly, hunger may increase risk-seeking for explicitly

described food but also monetary reward (Levy et al., 2013; Shabat-Simon et al., 2018;

Symmonds et al., 2010), suggesting that metabolic signals do impact cognitive decisions.

On the other hand, we might expect experiential decision-making to be biased by the

organism’s needs, because it may rely more on primitive neural systems. The modulation of

risk preferences according to energy reserves may be crucial for the adaptation to changes

in the environment, in particular when resources are scarce (Houston, 1991; Kacelnik and

Bateson, 1997; Stephens, 1981). Experiential decision-making relies on subcortical brain

areas such as the striatum and the dopaminergic midbrain (Abler et al., 2006; Knutson

et al., 2001; Niv et al., 2012; Tobler et al., 2007) that are targeted by circulating hormones

that signal current energy reserves (Elmquist et al., 1998; Zigman et al., 2006). In particular,

leptin inhibits and ghrelin activates dopaminergic neurons in the ventral tegmental area, and

could therefore modulate learning and decision-making via the mesolimbic pathway (Abizaid

et al., 2006; Figlewicz et al., 2007; Hommel et al., 2006). In line with this, in animal studies,

food deprivation increases risk-seeking in experience-based tasks (Kacelnik and Bateson,

1997). Perhaps surprisingly, the effects of hunger on experiential and explicit risk-taking

have never been directly compared.

We employed two complementary risk-taking tasks in a within-subject design. One task

involved decisions between two options whose probability of winning and losing, and the

magnitude of rewards, were explicitly described. The other task involved decisions between

options whose average reward and uncertainty had to be learned through sampling.

We included three decision contexts to verify whether choices were driven by the expected

value or by the risk of options. The options presented in a mixed context differed in their
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expected value, which typically drive risk-neutral behaviour. The pair of options in a negative

context differed in risk, and were matched in expected value, but both yielded less than the

average reward in the task. Options in the positive decision context were analogous to

the negative context, but the expected values were both higher than average. These three

decision contexts allowed us to examine the effect of both hunger and decision context on

experiential and explicit risk-taking.

In agreement with previous studies, we showed that risk attitudes for described risks

were opposite to those for learned risks. Hunger only modulated risk preferences for learned

risks in a context-specific manner, showing that the experience-based system, but not the

cognitive system, is sensitive to the motivational drive of an organism.

Methods

Participants

Thirty-two healthy volunteers (females: 20, mean age: 25.6 ± 6.5) were recruited for this

study. All participants were healthy, had no history of psychiatric diagnoses, neurological or

metabolic illnesses, and had not used recreational drugs in the past 3 months. All participants

had a normal weight (Body Mass Index: 22.9 ± 3.2 kg/m2), regular eating patterns and

no history of eating disorders. Each participant gave written informed consent and the

study was conducted in accordance with the guidelines of the University of Oxford ethics

committee. We estimated the effect size from previous papers as 0.25 (Shabat-Simon et al.,

2018; Symmonds et al., 2010). We then used G*Power (3.1.9.7) and estimated that we need

30 participants to obtain a power of 0.85. Post-hoc power calculations confirmed that the

observed power in our study was 0.8. All data and code is openly available at http://...

Manipulation of metabolic state

Participants were tested in a within-subjects counterbalanced, randomised crossover design

for the effects of food deprivation on risk-taking tasks (Fig. 1A). Sessions were approximately

1 week apart (at least 4 days, but no more than 14 days). All sessions took place at the

same time of day between 10 am and 1 pm, to minimise time-of-day effects. For one session,

participants were asked to refrain from eating and drinking caloric drinks from 8 pm the

night prior to testing. For the other session, participants were asked to eat normally the

day before and consume a full breakfast within 1 hour of arriving at the lab for testing. We

assessed the effect of food deprivation on self-reported feelings of hunger and mood using

a computerised Visual Analogue Scale of each session (Bond and Lader, 1974; Flint et al.,

2000). Participants were asked to place a cursor on a 100 mm scale with positive or negative
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text ratings anchored at either end. This assessment provided a subjective measure of

whether the manipulation worked. Participants performed the decision-by-description task

first, then a learning, attention and planning not described in this paper, and finished with

the decision-by-experience task. This order was fixed to control for fasting time. Finally,

the session order did not affect performance.

Experimental design

Decisions by experience We employed a modified version of a risk taking task devel-

oped by Möller et al. (2021). Participants learned the reward value of four stimuli through

repeated sampling. Each stimulus was associated with a Gaussian reward distribution that

followed a two-by-two design: high or low mean value (65 or 35 points) and high or low

standard deviation (20 or 5) (Fig. 1B). When a stimulus was chosen, participants received

a reward drawn from the corresponding distribution. The task included three trial types:

positive/negative context trials (50%), mixed context trials (33%) and sampling trials (17%)

(Fig. 1C) (Ludvig et al., 2014; Niv et al., 2012). Positive/negative context trials consisted

of two options with equal mean, but different risks. Positive context trials have a mean

above the average outcome in the task. In contrast, negative context trials have a mean

below the average outcome in the task. Mixed context trials offered choices between options

with unequal expected value, which were used to test whether participants paid attention to

their choices and understood the difference between the stimuli. Sampling trials were forced

choice trials in which only one stimulus was presented. These trials ensured that all options

were sampled from and that participants occasionally experienced reward contingencies that

they did not prefer (Ludvig et al., 2014; Niv et al., 2012).

Each trial had the same structure. After a short inter-trial-interval (ITI) of 500-700

milliseconds, the stimuli were presented on the screen. Responses were made by pressing on

the left or right arrow key of the keyboard to choose the left or right option, respectively.

Choices were immediately followed by feedback for 1.5 seconds, showing the number of

points won (Fig. 1C). The total accumulated points was continuously displayed at the top

of the screen. Participants were instructed to maximise their total number of points, which

was converted into a monetary performance bonus at the end of the task. Each participants

completed four blocks of 72 trials. All trial types were equally distributed over the blocks, but

we ensured that a stimulus presented in a sampling trial did not precede a positive/negative

context trial with the same stimulus to avoid priming of choices. Reward distributions were

generated at the start of each block to ensure each block had the intended reward distribution

and stimulus sets were reset after 2 blocks (or 144 trials). After each block, participants were

asked to indicate the reward distribution of each stimulus by placing two cursors on a Visual

Analogue Scale ranging from 0 to 100 points, one for the minimum and one for the maximum
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Figure 1: Decisions by experience. A) Participants were tested in a counterbalanced
randomised crossover design. Participants were tested on two separate days approximately
1 week apart. One session took place after 14 hours fasting, the other session after consum-
ing a full meal. B) Each reward distribution associated with a stimulus was approximately
normal. The mean of the distribution was either 35 or 65 with a standard deviation of either
5 or 20. The dark grey distributions indicate the more risky option. C) Task structure
of decisions made from experience. The task consisted of three different trial types: posi-
tive/negative context trials (1/2 of the trials), mixed context trials (2/3 of the trials) and
sampling trials (1/6 of the trials). After a response, a reward sampled from the associated
reward distribution was presented.

reward in the distribution. The rated spread was computed as the difference between the

rated minimum and maximum of the reward distribution and the rated mean was taken as

the average of the two values.

Decisions by description Explicit risk-taking behaviour was probed using the proba-

bilistic task described by Rogers and colleagues (Norbury et al., 2013; Rogers et al., 2003).

On each trial, participants were required to choose between two simultaneously presented
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gambles (Fig. 2A). Each gamble was represented visually by a histogram of which the height

indicated the relative probability of winning a given number of points. The magnitude of

possible points to win was indicated in green above each histogram, with the magnitude of

possible points to lose indicated below in red. We used 10 different types of choice (Fig. 2B),

each specifying a decision between two options. Each of the two options was specified by

a probability of winning, an amount that could be won, and an amount that could be lost.

Eight of these 10 types of decision offered a choice between two options that differed in their

objective expected values (mixed decision context). One option was a reference option, and

always consisted of a 50:50 chance of winning or losing 10 points, giving an expected value

of 0. The other option was a risky gamble, and varied either in the probability of winning

(0.6 or 0.4), the magnitude of possible points to win (30 or 70 points), or the magnitude of

possible points to lose (30 or 70 points). The remaining two decision types offered a choice

between a certain win or loss and a 50:50 chance gamble with the same expected value. These

gamble types were identical in terms of prospect, but differed in valence, allowing for the

examination of positive and negative context effects on differences in risk attitudes. Visual

feedback (win/lose) was given after each choice was made, and the revised running total

points was presented before the next trial. Participants were instructed that each gamble

should be considered independently of outcomes of previous gambles. Participants completed

four blocks of 20 trials, and the order in which gambles were presented was kept constant for

both conditions. The highest total score obtained in a block was converted into pence and

paid at the end of the task as a performance bonus. Deliberation times were also recorded.

All computerised behavioural paradigms were implemented using Psychophysics Toolbox

Version 3 on MATLAB (version 19b, MathWorks, Natick, MA).

Behavioural analyses

Risk was defined as the uncertainty in possible outcomes of a decision, expressed as the

variance of the associated reward distribution (Rothschild and Stiglitz, 1970). Risk attitudes

were computed separately for positive and negative contexts.

For learned risks, the risk preference was averaged over the second half of the trials

(72 trials) of each stimulus set (Fig. S1A). Using only the second half of the trials allowed

participants sufficient opportunity to learn the outcomes associated with each option, while

providing a long enough sample to get a reliable measure of their risk preference (Ludvig

et al., 2014; Niv et al., 2012).

For described risks, the risk preference was assessed as the proportion of risky gambles

chosen in the negative (decision type 9) or positive (decision type 10) decision context. All

trials were included, because no learning occurred and each gamble was considered indepen-

dently (Fig. S1B).
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Figure 2: Decisions by description. A) Example trial of decisions from description.
Each trial consisted of a choice between a reference gamble (yellow) and risky gamble (blue).
Points to win and lose were presented in green and red, respectively. The probability of
winning corresponded to the size of the filled bar. Feedback was given after a choice and the
running total was updated. B) Gambles 1–8 show different combinations of points to win,
points to lose and the probabilities of winning, with expected values ranging from -30 to 30.
Gambles 9 and 10 have equal expected values, but different risks.

We used the performance on mixed context trials as a control measure to verify if people

maximised their outcome. The proportion of options with the highest expected value was

calculated based on the performance on mixed context trials in experiential risk-taking task

and the gambles 1–8 in the explicit risk-taking task.

Statistical significance was tested using paired t-tests or repeated measures analysis of

variance (ANOVA) as appropriate in MATLAB and SPSS (IBM Corp. Released 2019. IBM

SPSS statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.).

Computational model fitting

We used two reinforcement learning models to further assess the effects of hunger on experience-

based risk-taking. The models themselves are described in the results section. We used a

hierarchical model-fitting strategy that takes into account the likelihood of individual par-
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ticipant choices given the individual participant parameters and also the likelihood of the

individual participant parameters given the parameter distribution in the overall population

across conditions. This two-stage hierarchical procedure is a estimation strategy of the it-

erative expectation-maximization algorithm (EM) (Guitart-Masip et al., 2011; Huys et al.,

2012; MacKay, 2003). This regularises individual participants’ parameter fits, rendering

them more robust toward over-fitting. To infer the maximum-a-posteriori estimate of each

parameter for each participant, we set the prior distribution to the maximum-likelihood

given the data of all participants and then use EM for the two conditions separately to

obtain parameter estimates for each condition. The statistical significance was tested using

paired t-tests with respect to the Gaussian scaled model parameters (see supplemental ma-

terial for the transformation of parameters). Reported p-values were corrected for multiple

comparisons using the Bonferonni method.

In the fitting procedure, all context trials were used to estimate all parameters. Sampling

trials were only included for the estimation of learning rates for the mean and variance

of a stimulus using Eq. (1) and Eq. (3), respectively. Due to the absence of a choice,

sampling trials were excluded from the estimation of the softmax choice parameter and the

risk parameters. The presence of only one stimulus makes the probability of choosing this

stimulus one, and this would interfere with the parameter estimation. Initial values for Q

and S were set to 50 and 5, respectively. The model comparison and parameter recovery

method can be found in the supplemental material.

Results

As expected, participants rated their subjective feelings of hunger significantly higher after

14 hours of fasting than after eating a full meal (Wilcoxon signed rank test: [Z = −4.84,

p < 0.0001, d = 0.86]), indicating that the manipulation was successful.

Hunger altered experiential risk-taking in a context-specific manner

We first analysed choice behaviour in the positive and negative context to evaluate experien-

tial risk-taking in a context-specific manner (Fig. 3A). Participants were significantly more

likely to choose the risky option in a positive decision context, but not a negative context

(main effect of context [F1,31 = 10.28, p < 0.003, η2
p = 0.25]). Such risk-seeking for posi-

tive and risk avoidance for negative decision contexts is consistent with previously reported

risk attitudes for learned risks (Ludvig et al., 2014; Madan et al., 2015). Crucially, food

deprivation modulated risk-attitudes for positive and negative contexts in opposite manner

(interaction effect of food deprivation and context [F1,31 = 8.38, p < 0.007, η2
p = 0.21]),
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such that hunger neutralised the risk preferences in both contexts. A post hoc paired t-test

revealed that this interaction effect was mainly driven by hunger decreasing risk-taking be-

haviour in the positive context [t31 = 2.73, p = 0.010, d = 0.49], and not by an increase in

risk-seeking in the negative context [t31 = 1.01, p = 0.319, d = 0.18].

Although the interaction is significant at a group level, we further asked whether the

effect is strong enough to be seen within individuals. For each participant, we ran a post hoc

context × hunger logistic regression (Fig. S2). 10 out of 32 people had effects that reached

significance in the expected direction even within single participants. Only 1 person had

a significant effect in the opposite direction. Finally, food deprivation did not alter overall

risk-taking behaviour (main effect of food deprivation [F1,31 = 1.19, p = 0.283, η2
p = 0.04]).

Figure 3: Risk attitudes for learned and described risks. A) For learned risks, par-
ticipants were risk-averse for negative decision contexts and risk-seeking positive decision
contexts. Food deprivation attenuated risk attitudes for decision contexts in opposite direc-
tion. B) Proportion of high mean options chosen for mixed context trials in decisions from
experience. C) For described risks, participants were risk-seeking for negative contexts and
risk-averse for positive contexts (gambles 9 and 10; Fig. 2B). Food deprivation did not affect
these risk preferences. D) Proportion of high mean options chosen for mixed context trials
(gambles 1–8; Fig. 2B) in explicit risk task. Error bars represent SEM. ** p < 0.01, ***
p < 0.001.

To verify that neutral risk preferences were not caused by an inability to differentiate

stimuli, we used mixed context trials to examine whether participants understood the dif-

ference in mean and variance of reward distributions. All participants performed on average

above 90% on mixed context trials, and no participant performed below 60%, indicating

that they understood the distinction between high and low mean stimuli. The level of food

deprivation did not affect the accuracy on mixed context trials [t31 = 0.62, p = 0.543;

Fig. 3B].

Finally, the observed changes in risk preferences following food deprivation were not the

result of changes in attention, as the overall reaction times were consistent across conditions

(main effect of food deprivation [F1,31 < 1]; Fig. S3A).
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Hunger did not affect explicit risk-taking

To provide a comparable measure to the context effects in experience-based risk-taking,

we also analysed the risk preference for matched mean gambles in positive and negative

decision context in description-based choices (Fig. 3C). Participants were risk-seeking for

negative decision contexts and risk-averse for positive decision contexts (main effect of con-

text [F1,31 = 55.01, p < 0.0001, η2
p = 0.64]). This risk pattern has been previously described

by prospect theory (Kahneman and Tversky, 1979), in which extreme positive outcomes

are down-weighted. In contrast to learned risks, food deprivation did not alter context-

specific risk attitudes for described risks (interaction effect of food deprivation and context

[F1,31 = 1.53, p = 0.255, η2
p = 0.05]) or overall risk-taking (main effect of food deprivation

[F1,31 < 1]; Fig. 3C). In line with previous reports, the risk attitudes for experiential and

explicit risk-taking were opposite, and confirms the existence of the description-experience

gap (Hertwig and Erev, 2009).

Participants chose the option with the highest expected value more often in mixed deci-

sion contexts, regardless of the level of risk (Fig. 3D), showing that the difference in expected

value drove choice behaviour (Weber et al., 2004). In line with the performance on the ex-

periential task, but inconsistent with previous findings (Levy et al., 2013; Symmonds et al.,

2010), food deprivation did not attenuate this effect [t31 = −0.29, p = 0.776]. Despite the

absence of a shift in risk preference, food deprivation increased reaction times for all gam-

bles independently of the decision context (main effect of food deprivation [F1,31 = 37.42,

p < 0.0001, η2
p = 0.31]; Fig. S3B).

Modelling of risk-sensitive choice behaviour

The previous analyses showed that food deprivation only altered decision-making when risks

had to be learned. However, the behavioural analyses do not provide insight into what com-

putational process was altered by food deprivation. Therefore, we employed a computational

modelling strategy to account for the integration of a specific reward history triggered by

sampling. This strategy allowed us to attribute the effects of food deprivation to a spe-

cific computational process. We relied on two reinforcement learning models to explain the

behavioural data: a standard reinforcement learning (RW) model (Rescorla and Wagner,

1972) and an adapted version of a recently proposed reinforcement learning model that can

account for contextual risk preferences (PEIRS) (Möller et al., 2021).

Standard reinforcement learning models provide trial-by-trial estimates of the expected

mean value of each stimulus, without considering the variability in outcomes. They provide

a good account of what a rational decision-maker would do based on the objective expected

value of a reward. In this model, the expected mean value of the chosen stimulus Qc was

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.19.435837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.435837
http://creativecommons.org/licenses/by/4.0/


updated using:

Qc,t+1 = Qc,t + αQ(rt −Qc,t), (1)

where rt is the reward obtained by choosing a stimulus on trial t and αQ is the learning

rate for the mean reward. Decisions in this model were solely based on the expected mean

value of the presented stimuli. The utility U of stimulus i on trial t was Ui,t = Qi,t. The

probability of choosing an option was computed using the softmax decision rule:

Pc =
1

1 + exp(−β(Uc − Uu))
, (2)

where U reflects the utility for the chosen c and unchosen u option. The parameter β

determines the participant’s tendency to exploit (i.e. to choose the stimulus with the highest

U value) or to explore (i.e. to randomly choose a stimulus).

In contrast, the PEIRS model accounts for both the average outcome and the variability,

or spread (S), in outcomes of an action. It also captures innate risk propensities and assumes

that positive and negative decision contexts influence how the spread in reward outcomes

affects the subjective utility of an action.

The mean expected value in the PEIRS model was also updated using Eq. (1). A measure

of the spread in reward outcomes was learned in an analogous manner to Q-values using:

Sc,t+1 = Sc,t + αS(|rt −Qc,t| − Sc,t), (3)

where αS is the learning rate for the spread, and rt−Qc,t is the reward prediction error that

captures the deviation of the current outcome from the average outcome, which is compared

with the current expected spread in reward outcomes Sc,t.

The PEIRS model accounts for how participants differentiate matched mean stimuli based

on the spread and captures individual risk propensities. For this model, the utility that was

entered into the softmax function, Eq. (2), depends on the expected mean reward, the spread

in reward outcomes and the sensitivity to the decision context (i.e. the context effect), in

the following way:

Uc,t = Qc,t︸︷︷︸
Expected mean

+ γ0 · Sc,t︸ ︷︷ ︸
Risk propensity

+ γ1 · δcontext · Sc,t︸ ︷︷ ︸
Context effect

, (4)

where the parameter γ0 modulates the risk propensity of an individual and reflects the tonic

level of dopamine (Mikhael and Bogacz, 2016). A positive value of γ0 increases risk-seeking,

because a high variance contributes positively to an option’s value, meaning that the high-

spread option is preferred. This effect is reversed when γ0 < 0. Note that the first two
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terms in Eq. (4) are analogous to the mean-variance models developed for decisions from

description (Boorman and Sallet, 2009; D’Acremont et al., 2009).

The third term captures the biasing effect of positive or negative decision contexts on

choice behaviour. Context effects play an important modulatory role in risky decision-making

(De Martino et al., 2006; Tversky and Kahneman, 1981) and were also observed in the current

study. The context reflects how the expected value of the presented stimuli compares to the

overall expected value of all stimuli in the task δcontext = Qpresented,t−Qall,t, where Qpresented,t is

the average of the Q-values of the stimuli on the current trial and Qall,t is the average of the Q-

values of all four stimuli. The true average value of all stimuli is 50 points, but Qall,t fluctuates

around 50 as the Q-values of the stimuli change by trial-to-trial updates. Positive decision

contexts have an objective value above the average (δ+
context = 65−50 = +15 points), whereas

negative decision contexts have a context value below the average (δ−context = 35− 50 = −15

points). The parameter γ1 is a gain parameter that determines the extent to which the

decision context and spread in reward outcomes contribute to choice behaviour. Positive

values of γ1 increase risk-taking behaviour in positive contexts, and reduce risk-seeking in

negative contexts. The opposite is true for negative values of γ1. In the PEIRS model, the

effects of food deprivation can be attributed to how participants learn about the expected

value (reflected by αQ), the spread of reward outcomes (reflected by αS), the individual risk

propensity (reflected by γ0) and/or sensitivity to the context (reflected by γ1).

Computational modelling captured risk preferences

A model comparison revealed that over 70% (23 out of 32 participants) were better described

by the PEIRS model (BICRW = 16915 and BICPEIRS = 15996), confirming that the addition

of extra parameters was justified. The quality of the fitting procedure was verified with a

parameter recovery analysis. All parameters were well recovered (0.75 < R < 0.95) and the

model fitting procedure did not introduce spurious correlations between the other parameters

(|R| < 0.3; Fig. S4). Surrogate data generated with the best fitted parameters specifically

confirmed that the model reproduces the key effect of food deprivation on choice preferences

(Fig. 4A).

In line with the behavioural analyses, we found an effect of food deprivation on parameter

estimates obtained with the PEIRS model (Fig. 4B). On average, food deprived participants

had lower learning rates for the spread [αS, p < 0.0001, d = 0.70] and a lower sensitivity to

context effects [γ1, p = 0.02, d = 0.55], making them risk neutral across decision contexts.

Food deprivation did not significantly alter learning rates of mean values [αQ, p = 0.165, d =

0.48] or choice stochasticity [β, p = 1, d = 0.13]. Although risk propensities were differently

affected by hunger among individuals, at the group level, individual risk propensities were

not significantly altered by food deprivation [γ0, p = 1, d = 0.04].
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Figure 4: Model fitting results with the PEIRS model. A) Simulated choice behaviour
using estimated parameters for the food deprived and sated condition. Simulated data
showed a similar pattern to the behavioural data depicted in Fig. 3A. B) Food deprivation
significantly decreased the learning rate for reward spread αS, and the sensitivity to contexts
γ1. Food deprivation did not alter the softmax temperature β, the learning rate for mean
αQ, or individual risk preferences γ0. Error bars represent SEM. Statistical significance was
tested with respect to the Gaussian scaled parameters. * p < 0.05.

Subjective rating reflects learned utility

We also asked participants to indicate the reward distribution of each stimulus on a Visual

Analogue Scale at the end of each block. We used these measures to examine whether

people distinguished the stimuli based on the true mean and variance, or a scaled version

of the objective values. We found that the subjectively rated mean and spread of each

reward distribution (Fig. 5A–B) showed a similar pattern as the objective values (Fig. 1B).

Participants were able to reliably distinguish stimuli based on their mean (main effect of mean

[F1,31 = 831.91, p < 0.0001, η2
p = 0.96]; Fig. 5A). The average outcome for the risky option

was rated higher for high mean stimulus, but lower for the low mean stimulus (interaction

effect of true mean and spread [F1,31 = 11.19, p < 0.002, η2
p = 0.27]). To highlight this effect,

Fig. 5A includes lines connecting the mean ratings of low and high variance stimuli, which

have different slopes for high mean and low mean stimuli. These findings are consistent with

the risk preferences observed in Fig. 3A, showing that participants valued their preferred

stimulus more. This effect was less strong in hungry individuals, who rated the mean of

stimuli in the positive and negative context more similarly, regardless of the level of risk

(interaction effect of hunger and spread [F1,31 = 9.48, p < 0.004, η2
p = 0.23]). The rated

values are in line with the risk-neutral choice behaviour of hungry individuals (Fig. 3A).

All participants understood that matched mean stimuli differed in the level of spread

(main effect of spread [F1,31 = 61.93, p < 0.0001]; Fig. 5B). However, participants rated

the spread for high mean options consistently higher than for low mean options (main effect
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Figure 5: Subjective rating reflects learned utility. At the end of each block, par-
ticipants indicated the mean (A) and spread (B) of the distribution associated with each
stimulus. C) The computed utility for each of the stimuli, Eq. (4), reflects the same pattern
as the subjectively rated mean values. Dashed lines indicate objective mean or spread in the
reward points. Error bars represent SEM.

of mean [F1,31 = 86.56, p < 0.0001]). Furthermore, the perceived contrast in variance for

high mean options was larger compared to the perceived contrast for low mean options

(interaction effect mean and spread [F1,31 = 32.45, p < 0.0001, η2
p = 0.51]).

Given that we observed biases for the preferred (i.e. most chosen) stimulus in the sub-

jective ratings, we examined whether this was reflected by the learned utility. The utility

of each of the stimuli, Eq. (4), was computed using the Q and S-values obtained from the

simulations in Fig. 4A and the best fitted parameters of each individual. During the ratings

only one stimulus is presented at the time, thus δcontext = Qrated stimulus − mean(Qall stimuli).

The utilities were computed for each stimulus set separately and averaged across individuals

(Fig. 5C). We observed three analogous effects in the learned utility as observed in the sub-

jectively rated mean values (Fig. 5A vs Fig. 5C). First, the utility of high mean stimuli was

significantly higher than the utility of low mean stimuli (main effect of mean [F1,31 = 319.85,

p < 0.0001, η2
p = 0.91]). Second, the learned utility for the risky option was higher for the

high mean stimulus, but lower for the low mean stimulus (interaction effect of mean and

variance [F1,31 = 19.32, p < 0.0001, η2
p = 0.38]). Third, hunger altered the learned utility.

Hunger increased the utility for low mean stimuli, but not for high mean stimuli (interaction

effect of mean and hunger [F1,31 = 6.21, p = 0.018, η2
p = 0.17]). This effect was specific for

high variance options, but not low variance options (interaction effect of mean, variance and

hunger [F1,31 = 5.86, p = 0.022, η2
p = 0.16]).
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Discussion

Using information about the current metabolic state to adapt to variable reward outcomes

is critical for survival (Stephens, 1981). In this study, we used two complementary tasks

to test whether food deprivation selectively affected risk-taking for learned or explicitly

described options. We found that food deprivation modulated risk attitudes for decisions

whose outcome statistics had to be learned, but not for decisions whose outcome statistics

were explicitly described. Furthermore, hunger promoted risk aversion for positive contexts,

but not for negative contexts. These results suggest that the current metabolic state drives

adaptive behaviour for trial-and-error learning in a context-specific manner, but may not

alter the integration of factual information.

As postulated by the risk-sensitive foraging theory (Stephens, 1981), individuals should

make decisions that minimise the disparity between the goal and the current state to max-

imise the chance of survival. When forced to choose between two low reward options of

similar expected value but different risk, the high variance option should be preferred when

hungry, because this is the only option that offers a chance of fulfilling the current biological

need (Fig. 6A). In contrast, when higher rewards are at stake, hungry individuals should

now opt for the low-risk option, because this option allows them to fulfil their need, without

incurring an unnecessary cost that may compromise survival (Fig. 6B). Although the par-

ticipants in this study were not starving and the rewards in this task may only indirectly

(via money) fulfil their biological needs, we found shifts in risk preferences (Fig. 3A) that

follow the predictions by the risk foraging theory explained in Fig. 6. In particular, when

participants became hungry, they decreased the tendency of selecting risky option in posi-

tive context (Fig. 3A). Our data illustrates that hunger has the tendency to alter risk-taking

and provides evidence of how evolutionary pressure from the past is still influencing our

behaviour.

While both explicit and experiential risk-taking are modulated by the contextual value

of the options presented, they are not equally susceptible to modulation by hunger. For

experience-based decisions, information about the availability of reward and the metabolic

need is integrated (Abizaid et al., 2006; Aitken et al., 2016; Cone et al., 2016; Hommel et al.,

2006; Papageorgiou et al., 2016), whereas the evaluation of description-based decisions is

susceptible to reward availability only.

Importantly, the behavioural data showed that the decision context was important for

choice behaviour. For example, participants preferred the risky option in positive decision

contexts, but preferred the safer option when it was presented with a low mean stimulus in

a mixed context. This contextual adaptability is beneficial for survival and recent work has

provided a mechanistic explanation for these contextual effects in experiential risk-taking

(Möller et al., 2021). Pupil dilation at the time of decision context tracked how surprising
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Figure 6: “Optimal” choice scenarios for positive and negative decision contexts.
The circles denote the expected value of the high and low risk option and the arrows denote
the spread of the reward. Filled circle indicates the preferred choice. A) Represents a
scenario in a low mean/negative decision context. When forced to choose between options
of similar expected value but different risk (i.e. outcome variance), decision-makers should
prefer high-risk options (filled circle) when hungry (because it is the only option that offers a
chance of fulfilling their need), and prefer low-risk options (open circle) when sated to ensure
the goal state is achieved and avoid unnecessary downside costs that might be incurred if
the high risk option is chosen. B) Represents a scenario in a high mean/positive decision
context. The goal state can now be achieved with the low-risk option so this should be
chosen in a positive context. The risky option should only be chosen if the needs cannot be
met by choosing a safe option. Sated individuals can afford the costs (as this is still close to
their goal state) and may therefore be more willing to gamble.

the context was, corresponding to |δcontext|. Furthermore, across individuals this dilation

independently correlated with the size of γ1, which controls how strongly context biases

choices. Crucially, in the present study, the effects of hunger were directly reflected by

this parameter. Sated individuals showed a different choice bias in each decision context,

while hungry participants were risk-neutral across both decision contexts. Hunger has been

previously associated with maladaptive behaviour (Bartholdy et al., 2016; Kirk and Logue,
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1997; Skrynka and Vincent, 2019), however, the results in this study show that hunger makes

people more “rational” in their behaviour. These individuals rely more on the objective

expected value of an option, rather than the subjective expected utility (von Neumann and

Morgenstern, 1944).

Hunger did not affect description-based risk-taking. This may be surprising given that

previous studies reported that hungry individuals were more risk-seeking for food, water and

monetary rewards when gambles were explicitly described (Levy et al., 2013; Shabat-Simon

et al., 2018; Symmonds et al., 2010). The absence of an effect may be due to differences

in task design. First, previous studies mostly concerned a decision between a fixed certain

amount and a risky alternative (Levy et al., 2013; Shabat-Simon et al., 2018), whereas the

current study compared two risky options (as in Symmonds et al. (2010)), so one possibility

is that hunger affects how risk is compared against certainty. Second, our task included

10 unique choice types that were played 8 times each, which might increase familiarity and

promote explicit rational processing; in contrast previous studies used trial-unique gambles

that were only played once. Third, studies involving described risks typically omit feedback.

Although this approach is acceptable for a laboratory setting, real world choices usually

lead to outcomes even if the outcome probabilities are known. Feedback about described

risks could alter risk attitudes (Jessup and O’Doherty, 2010), we did not find evidence that

learning occurred in this task as there was no change in risk preferences over the course of

the task or across sessions.

We first opted for a design that was more similar in reward outcomes to the experienced-

based task (similar to the design by Symmonds et al. (2010)), but a pilot study showed that

using normally distributed reward complicated the task and failed to induce clear risk pref-

erences. We therefore opted for a task that has been previously used to measure changes in

risk preferences following the manipulation of the dopamine (motivational) system (Norbury

et al., 2013).

Our data suggests that hunger does not impact risk-taking for description-based choices,

at least when explicitly comparing two risky options with feedback provided, perhaps because

the neural processes that drive explicit risk-taking are not under the direct control of hunger.

An important contribution of the current study is that we compared the effect of hunger

on risk preferences for description and experience-based risks in the same individual following

the same level of deprivation. Existing studies may be difficult to compare due to varying

levels of deprivation; some studies report 4 hours deprivation, others 12 hours (Levy et al.,

2013; Shabat-Simon et al., 2018; Symmonds et al., 2010). Furthermore, risk preferences vary

greatly among individuals (Levy et al., 2013). Previous studies showed that hunger had a

converging effect on a population – individuals who were highly risk-averse when satiated

became less averse when hungry, while risk-seeking individuals became more risk-averse
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(Levy et al., 2013).

Our study demonstrates that the opposing risk patterns in the description-experience

gap are driven by how risks are presented, rather than individual risk propensities. Previ-

ous studies suggested that these different risk patterns arise from memory biases (Madan

et al., 2014) or under- and overweighting of rare events in description and experience-based

choices, respectively (Hertwig, 2012; Hertwig et al., 2004; Kahneman and Tversky, 1979).

The dissociable effect of hunger on experiential and explicit risk-taking in this study suggest

that the neural processes driving these preferences are, at least partially, distinct (Fitzgerald

et al., 2010; Jessup and O’Doherty, 2010).

In conclusion, we found that food deprivation decreased risk-taking for positive decision

context in decisions where outcome statistics had to be learned. This observation matches

optimal foraging theory, which predicts a survival advantage when individuals consider the

variability of resources in the environment according to the current level of energy reserves.

For learned risks, hungry individuals considered their metabolic need and the availability of

rewards when making choices, whereas sated individuals only considered the availability for

rewards. Hunger did not alter explicit risk-taking, suggesting that cognitive evaluation of

risk may be unaffected. This is the first study that uses a within-subject design to test the

effects of food deprivation on risk attitudes for decisions involving learned and described risks

in positive and negative decision contexts. It provides new insights into the modulatory role

of hunger in adaptive behaviour. Further studies will need to address the neural processing

that are involved in the effects of hunger on decision-making under uncertainty.
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