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ABSTRACT

Neuronal oscillations route external and internal information across brain regions. In the olfactory system,
the two central nodes—the olfactory bulb (OB) and the piriform cortex (PC)—communicate with each other
via neural oscillations to shape the olfactory percept. Communication between these nodes have been
well characterized in non-human animals but less is known about their role in the human olfactory system.
Using a recently developed and validated EEG-based method to extract signals from the OB and PC
sources, we show in healthy human participants that there is a bottom-up information flow from the OB to
the PC in the beta and gamma frequency bands, while top-down information from the PC to the OB is
facilitated by delta and theta oscillations. Importantly, we demonstrate that there was enough information
to decipher odor identity above chance from the low gamma in the OB-PC oscillatory circuit as early as
100ms after odor onset. These data further our understanding of the critical role of bidirectional information
flow in human sensory systems to produce perception. However, future studies are needed to determine
what specific odor information is extracted and communicated in the information exchange.

INTRODUCTION

Communication within and between neural circuits
is facilitated by oscillations in neural activity across
a broad spectrum of frequencies (Bonnefond et al.
2017; Buzsaki 2006; Fries 2005; Fries 2015; Hipp
et al. 2011; Varela et al. 2001). In human and ani-
mal models alike, this oscillatory activity has been
shown to support sensory coding, memory, and at-
tention (Lakatos et al. 2008). The mammalian olfac-
tory system was one of the earliest systems where
such oscillatory activity was described, specifically
within the olfactory bulb (OB) (Adrian 1942; Adrian
1950; Freeman 1959; Freeman 1972; Freeman
1974). Subsequent studies in model species have
demonstrated a role for oscillations within the whole
olfactory pathway [e.g., the piriform cortex (PC)]
and related structures [e.g., hippocampus] (Kay
2014; Wilson and Sullivan 2011). One fundamental
role that neural oscillations serve is entrainment of

activity across different regions which amplifies in-
formation flow (Bonnefond et al. 2017; Buzsaki
2006; Fries 2005; Fries 2015; Hipp et al. 2011,
Varela et al. 2001). This entrainment is especially
important for olfactory processing were the infor-
mation flow between connected regions, such as
the OB and PC, is reciprocal with beta being bot-
tom-up connection but with overturned directional-
ity during odor sampling (Gourévitch et al. 2010;
Kay and Beshel 2010). Particularly, top-down sig-
nal flow conveys information about expectation,
state, memory, or attention, which, in turn, shape
beta oscillations, and more comprehensively the
stimulus encoding in the more peripheral OB (Gou-
révitch et al. 2010; Kay and Beshel 2010; Martin
and Ravel 2014; Wilson and Yan 2010). Similar
events occurs in thalamocortical sensory systems,
wherein the sensory cortex can modulate thalamic
sensory-driven output based on context and task
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demands (Guillery and Sherman 2002). Although
well studied in rodent models, significantly less is
known about the role of odor-evoked oscillations in
the early processing stages of the human olfactory
system.

In one of the few studies on the oscillatory activity
in human olfaction, Jiang and colleagues (2017)
recently demonstrated not only that oscillatory
activity in the theta band conveyed information odor
within 500 milliseconds of the sniff onset in the PC,
but also demonstrated an increased theta-specific
phase coupling between the PC and hippocampus
during the same temporal window. This clearly
demonstrates that, akin to what has previously
been demonstrated in animal models, oscillation-
dependent communication is an important
communication tool also within the early human
olfactory system. To date, no study has assessed
oscillatory communication between the OB and PC
in  human participants which constitutes a
significant gap in our knowledge of the olfactory
system given that the OB has been suggested to
fulfil a role comparable to both V1 (Shepherd et al.
2004) and the thalamus (Kay and Sherman 2007)
in the visual system. This lack of data can be
attributed to the fact that it has not been technically
possible to obtain non-invasive and temporally
precise recordings from the human OB until a
recent EEG-based methodological development —
the electrobulbogram (EBG) — that enables a
direct and non-invasive functional measure of the
human OB (Iravani et al. 2020). This method, that
was recently validated in a range of experiments as
a reliable method to assess signal from the human
OB (Iravani et al. 2020), has demonstrated that, like
its non-human animal counterpart, the human OB
generates gamma oscillations during odor
processing (Iravani et al. 2020).

Here, using this validated and non-invasive
recording technique that allows us to acquire odor-
induced activity within both the human OB and PC
during passive odor perception, we seek to answer
the fundamental question whether reciprocal
oscillatory connectivity between the OB and the PC
also exists in humans. We identify a unique
oscillatory bottom-up and top-down information
flow in the OB-PC circuit. Importantly, we
demonstrate that this OB-PC communication
predicts odor identity?.

METHOD

Participants

A total of 29 healthy individuals (mean
age =27 £ SD 5.30, 18 women) participated in the
study. All participants were non-smokers and had
no history of head trauma leading to
unconsciousness, nor any reported past
neurological problems. A functional sense of smell
was assessed using a 5-items 4-alternative cued
odor identification task prior to EEG recording with
all participants passing the criteria for inclusion with
at least 3 correct answers. Considering the age
range of our sample and given our inclusion criteria,
the chance of erroneously including individuals with
functional anosmia in the experiment was less than
0.05% with this screening method. Participants
avoided eating and drinking anything other than
water for at least 6 hours before testing to maximize
electrophysiological response from the olfactory
bulb (Iravani et al. 2020). The study was approved
by the Swedish Ethical Review Authority and
signed informed consent from participants was
obtained prior to participation.

Chemicals and odor delivery

To increase the ecological validity of the stimuli, we
used two odor mixtures of food odors and one
monomolecular non-food odor. These were Orange
(Sigma Aldrich, # W282510, CAS 8008-57-9),
Chocolate (Givaudan, VEO00185273), and n-
Butanol (Merck, CAS 71-36-3) diluted to 30%, 15%,
and 20%, respectively, in neat diethyl phthalate
(99.5% pure, Sigma Aldrich, CAS 84-66-2). The
dilution values are given as volume/volume from
neat compounds and concentration for each odor
was determined in a pilot experiment with the aim
of producing iso-intense odors of equal
pleasantness and familiarity. Participants in this
experiment rated each odor and, as evident in Fig
1, average odor intensity (BFex = 0.34) and
familiarity (BFo1 = 0.25) were largely similar across
odors within all three perceptual categories
determined by Bayesian repeated measured
ANOVA. However, there was strong evidence for
rejecting the null hypothesis (BFo1 = 0.04) for
pleasantness, indicating that odors were
significantly different in pleasantness. In the
Bayesian analysis, the prior for the fixed effect was
a normal distribution with mean of 0 and standard
deviation 0.2. For the random effect a half Cauchy
with scaling factor of 0.5 was considered as the
prior.

1 We are here using the term identity to indicate the identity of the odorant or mixture rather than linking the term to an
ability to name or otherwise process the odor object the odorant or mixture has become associated with.
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Fig 1. Odor perceptual ratings. Intensity, pleasantness, and familiarity scores of odor stimuli. Violin plots show the
distribution of the ratings. The white dot shows the median and the black box shows %75 and %25 quantiles.
Individual data points are marked with circles in respective color. The whiskers show the extreme value of the data
points reaching 1.5 times the inter quartile range above 75% or below 25% quantiles.

All odors were birhinally delivered in a random
order with a total flow rate of 3L/min for a length of
1s (condition: Odor) using a short rise-time (i.e. less
than 200ms) computer-controlled olfactometer
(Lundstrém et al. 2010). Interspersed with the odor
trials, there were trials consisting of 1s long 3L/min
clean air stimuli to assess both neural processing
during no odor nasal inhalation (condition: Clean
Air) and potential tactile sensations caused by air
fluctuation at the onset of a trial due to valve
switching. After each trial, participants performed a
four-alternative force-choice task containing the
name of the correct odor choice, two distractor odor
object names, and the option to select 'no odor'.
The odor identification answers from one individual
were excluded due to a corrupt data file.

Moreover, to limit potential unintended tactile
stimulation at the onset of a stimulus, a constant
clean air flow of 0.3 L/min was maintained during
the whole experiment and stimuli were inserted into
the ongoing flow. Hence, considering the constant
flow and conditions’ flow rate, a total airflow of 3.3
L/min was held constant during the trials which
yield 1.65 L/min per nostril after the flow is delivered
to the individual nostril, a flow well below the
threshold known to cause nasal irritation
(Lundstrom et al. 2010). Additionally, we prevented
potential effects of onset expectation by
implementing a nasal inhalation-triggered design in
which all trials’ onset were synchronized in phase
with inhalation and unbeknown to the participant.
Given that the activity of 50% of all Mitral and tufted
cells in the rodent OB are intertwined with
respiration (Kay and Laurent 1999), aligning onset
of trials to onset of the inhalation further increased
our signal-to-noise ratio (SNR). We enabled
inhalation triggering by tracing the inhalation

pattern using a small nasal temperature probe
attached next to the right nostril (MLT415,
ADInstrument, Colorado). A trigger-threshold,
individually set for each participant, triggered the
olfactometer slightly before the nadir of the
respiratory cycle and consequently matched stimuli
onset (factoring in the known rise-time) with nasal
inspiration. Temperature change was sampled at
the rate of 400Hz (Powerlab 16/35,
ADInstruments, Colorado) and processed in
LabChart Pro version v7.3.8. Subsequently we
assessed the length and the area under the curve
of inhalations across conditions where we found no
difference, determined by repeated measures
ANOVA, for neither length F(3,84) = 0.74, p > .53
nor area under the curve of inhalation F(3,84) =
1.00, p > .39 (supplementary Fig S1).

Timing and stimulus triggering were implemented
within E-prime 2 (Psychology Software Tools,
Pennsylvania). All the recordings were carried out
in a sound attenuating and shielded booth for
psychophysical testing with high air turnover rate to
vent out potential lingering odors. Participants wore
headphones with low-level white noise played
through them during the whole experiment to avoid
potential unintended auditory onset cues due to air
flow from the olfactometer. The volume of the noise
was individually adjusted to maintain participants’
comfort during the test. A jittered pre-stimulus
interval (600 — 2000 ms) was added before the
onset of each trial to further minimize predictability
of odor onset by participants. Moreover, to limit
odor habituation effects, a long average inter-trial
interval (14000 ms) was used.
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Electroencephalography, Electrobulbogram,
neuronavigation data collection

We collected data from 64 scalp EEG electrodes
together with 4 electrobulbogram (EBG) electrodes
above the eyebrows (Iravani et al. 2020). Signals
were sampled at 512 Hz using an active-electrode
EEG system (ActiveTwo, BioSemi, Amsterdam,
The Netherlands). Prior to recording, we visually
controlled the electrodes’ offset and adjusted those
above 40mV until the offset met the satisfactory
threshold value. EEG scalp electrode placement
followed the international 10/20 standard and later
during analysis were re-referenced to average of all
electrodes.

Following the attachment of all electrodes, we
digitized their position in stereotactic space using
an optic neuro-navigation system (BrainSight,
Rogue Research, Montreal, Canada). We
implemented the digitization of electrodes’ position
by localizing fiducial landmarks such as the nasion
and left/right preauricular as well as the central
point of each electrode. We used these landmarks
to co-register electrode coordinates to the standard
MNI space. The digitized electrode positions were
later used in the eLORETA algorithm to project
sensor data into source space.

Experimental design and Statistical Analyses

EEG/EBG signals pre-processing was started by
epoching the data from 500 ms pre-stimulus to
1500 ms post-stimulus, followed by re-referencing
to the average of all electrodes, band-pass filtering
at 1-100 Hz and power line-filtering at electrical
frequency using DFT filters (Iravani et al. 2020).
The re-referencing to averaged electrodes enabled
us to estimate an un-biased source activity. In total,
135 trials were recorded from each individual
among which there were 35 trials for each odor and
30 trials for Clean Air. Additionally, we detected
trials with muscle and eye-blink artifacts, using an
automatic artifact rejection algorithm. In brief, for
implementing the algorithm, we band-passed the
data at frequency ranges susceptible to each
specific artifact and estimated the amplitude using

Hilbert transform followed by Z-scoring. We
removed trials with Z-values more than 6 for
muscle, and 4 for blink, artifacts at susceptible
frequencies [for more details, please see (Iravani et
al. 2020)]. Finally, a visual inspection was carried
out to remove trials with exceedingly high variance.

Source reconstruction time-course

Source reconstruction, given a head model and a
source model, allowed us to extract OB and PC
time-courses. We reconstructed source space
time-courses using eLORETA algorithm with
common spatial filter approach, thus we used a
common solution to reconstruct Odor and Clean
Air, time-series in source space. The covariance
between electrodes for 1 second of stimulus
presentation (i.e., Odor and Clean Air) was
calculated. Then, we constructed a spherical head-
model with four spheres (i.e., scalp, skull, grey
matter and white matter) based on the MNI
template with conductivity of 0.43, 0.01, 0.33, and
0.14 (Fig 2). A grid with 1cm spacing was used for
source modelling. We placed dipoles on the grid
points where grey matter probability was larger
than 40%. Digitized electrode positions were co-
registered to the head-model using a six-parameter
affine transformation. Next, the sensor time-
courses were transformed into the source space as
a cross production of spatial filter, estimated by
eLORETA, and the sensor time-course. Later, we
constrained our analysis into two ROIs where the
dipoles corresponded to the left OB (x -6, y 30, z
-32), right OB (x 6, y 30, z -32) (Iravani et al. 2020),
left PC (x -22,y 0, z -14) and right PC (x 22,y 2, z
-12) (Seubert et al. 2013). Trials with muscle and
blink artifacts were subsequently removed and
time-courses across hemispheres were averaged
(Fig 2). Finally, the source activity was projected to
the principal axis using singular value
decomposition.  Notably, the regularization
parameter was set to 10% and applied before
decomposition of covariance matrix in eLORETA.
The source reconstruction was performed using
field trip toolbox 2018 within Matlab R2019b
(Oostenveld et al. 2011).
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Fig 2. Summary of the analysis procedure. (A) Data from 64 EEG together with 4 EBG electrodes were collected from individuals
during an odor identification task. (B) Electrode positions were digitalized using an optical neuronavigation system to be later
used for source reconstruction. (C) Using MNI T1 MRI template, a spherical head model, including 4 concentric spheres
representing different head tissue, and underlying source model was created. (D) Neuro navigated electrode position, head
model, and source model were fed into the eLORETA algorithm to reconstruct source time-courses. (E) Dipoles corresponding
to olfactory bulb (OB) and piriform cortex (PC) were identified. (F) Time-course activity of OB and PC were extracted. (G) Trials
with artifacts were identified and removed from further analysis. (H) Clean trials of OB and PC time-courses were transformed
in Fourier domain. FFT denotes fast Fourier transform. (K) The OB-PC connectivity was quantified as cross spectrogram. (L) The
effective connectivity of OB-PC was assess using spectrally resolved Granger causality.

Extracting signal from estimated source location is
always susceptible to signal loss. To assess the
reconstructed signal quality, the mean amplitude of
the source time course was estimated by applying
a Hilbert transform followed by averaging of
envelope signal over 1s stimulus interval and
converting to decibels (dB). The difference
between the mean amplitude of Odor and Clean Air
trials were used as estimation of odor SNR. SNRs
were subsequently sorted by their physical depth
from the cortical surface and the 95% confidence
interval (CI) of SNR at the depth corresponding to
PC (i.e. 80 to 100mm) was calculated. Finally, we
assessed the SNR at PC by comparing with 0, i.e.

where the mean amplitude of Odor is equal to
Clean Air.

PC reconstructed time-course odor SNR is
significantly above noise level

In previous work, we found the OB activity can be
reliably measured using EBG electrodes, but it is of
interest to also assess the validity and quality of
reconstructed PC time-course. Using sensitivity
analysis, we assessed the odor signal-to-noise
ratio (SNR) of potential sources at various depths
and compared the mean amplitude of Odor trials
versus Clean Air trials as a function of source
depth. A 3D grid with 1cm spatial resolution was co-
registered to the default MNI brain template where

5
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a potential source was considered for the grid's
vertex if the gray matter probability of that point was
above 40%. We found that the odor SNR was well
above the noise level for both the left PC, t(28) =
8.53, p < 3e-9, CI = [0.21 0.34], and the right PC,
t(28) = 7.44 p < 4e-8, Cl = [0.18 0.30], given the
95% confidence interval of noise at the depth
corresponding to PC, as well as situated in close
proximity within the archived space (Fig 3).
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Fig 3. Signal level in the PC source reconstruction
vs. other possible surrounding sources. Odor related
SNR level as a function of depth with each point in graph
showing the level of SNR for a possible dipole in the
brain. The black dashed line marks 0, where the level of
signal and noise are equal. Red dashed line shows 95%
Cl at the depth 80~100 mm which corresponds to PC
depth. Left/right PC shown by orange and green circles,
respectively, where both demonstrates SNR levels well
above upper bond of noise CI.

Source Connectivity

To provide a full picture of OB-PC connectivity
during odor processing, we characterized the
functional and effective connectivity between OB
and PC using two separate, yet related, analyses.
In the following section, we first explain the
functional connectivity analysis in which the
reconstructed OB and PC time-courses were
transformed into the Fourier space. This data was
subsequently used to assess the cross
spectrogram as a measure of functional
connectivity. This allowed us to identify frequency
and time points where linear information transfer
occurred between the OB and PC. Next, using
spectrally resolved Granger causality, we assessed
if the relationship of OB-PC was casual (i.e. the
effective connectivity between OB and PC). This
was done by transforming reconstructed signals to

the Fourier domain and calculating a transfer
function to estimate the spectrally resolved granger
causality (Dhamala et al. 2008).

Functional connectivity in frequency and time

Auto and cross spectral density of OB and PC were
estimated by means of multi-tapered convolution
method, implemented in the Field trip toolbox 2018
within Matlab R2019b (Oostenveld et al. 2011).
Odor and Clean Air trials were separately
transferred to Fourier space with 2 tapers from
discrete prolate spheroidal sequences (DPSS)
using a flexible time window that captures at least
two cycles [20 ~ 1000ms] of each frequency bin.
The frequency smoothing parameter was set to
80% of the targeted frequency (Fig 2). Given the
inherent inability to achieve high sensitivity in both
the temporal and frequency dimensions, this
approach allowed us to have maximum time
resolution of estimation but naturally smoothed the
frequency dimension, proportional to frequency
values, and thus more in gamma bands. However,
because the gamma band is defined as a broad
band (30~100 Hz) and odor processing in humans
are not thought to occur in the higher range (Iravani
et al. 2020), we prioritized high sensitivity in the
time domain.

Effective connectivity in frequency domain

The frequency content of the source time-course
during the 1 second stimulus was estimated for
[0~100 Hz] with a step of 1Hz using multi-tapered
fast Fourier transform with the smoothing
parameter of 4Hz and 7 tapers from DPSS.
Contrary to the functional connectivity analysis, in
this effective connectivity, the window length is
equal to total length of stimulus interval (i.e. 0-1 s),
therefore we could afford low smoothing parameter
and consequently achieve high frequency
resolution. The multivariate spectrally resolved
granger causality measures were estimated at the
individual level by computing the transfer function
of OB to PC and PC to OB from cross spectral
density using Wilson-Burg algorithms (Fig
2)(Dhamala et al. 2008). Subsequently, to increase
the statically power, we averaged the two
hemispheres. The statistical significance of
effective OB-PC connectivity on the group-level
was finally determined by two-tailed student t-test
across subjects.

Supported vector machine learning
To assess whether odor information is conveyed by
the temporal dynamic of OB-PC connection, we
used support vector machine learning (SVM) to
classify odors (3 odors) from the information
provided by the level of association between OB
and PC on the group level. One individual did not
6
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respond in the identification task and was
subsequently removed from the SVM analysis.
Hence, data of 28 individuals was used in this
analysis to create a subject level OB-PC
connectivity maps for each odor. To construct the
feature space from cross spectral density, the
measure of OB-PC connectivity, a neighbor of 5
and 5 samples were considered for frequency and
time dimension, respectively. Therefore, for each
bin of the cross spectral density map neighboring
datapoints in the time-frequency plane within the
distance of 5 samples in each axis (i.e., time,
frequency in both directions) were used to create
the feature space. Given the distance of 5 samples
in both directions, 11 time and 11 frequency bins
were considered as the neighbors and used in the
feature space. Hence, a total of 121 time-frequency
pairs were used for each bin in the cross
spectrogram for estimating the classification
accuracy. The bins that had fewer than 10
neighbors were excluded from further analysis.
Next, the whole cross spectrogram was assessed
in a searchlight manner.

Features were unity normalized and the data was
partitioned into one-leave-out scheme with all the
three odor stimuli conditions counter balanced,
spanning all the cases where each subject were left
out at least once. Next, we classified the 3 Odor
stimulus conditions. The mean accuracy on the
group level was compared with the chance level
(.33; given 3 odor categories) using non-parametric
statistics, 5000-permutation Monte Carlo test.
Finally, the accuracy for the individual odors were
extracted from the time-frequency point found in the
mean accuracy map. Given that each odor has a
slightly  different latency and frequency
representation in human OB (Hughes et al. 1969),
we allowed for £40ms jitter in latencies and + 10 Hz
in frequencies for estimating the individual odor
accuracies.

RESULTS

Early fast, and late slow, functional connectiv-
ity between olfactory bulb and piriform cortex

We first set out replicate our past finding, that the
OB initially processes odors in the gamma
frequency (Iravani et al. 2020), to assure that the
EBG method extends also to this dataset. For this
analysis, we used maximum frequency resolution
to validate our OB source extraction method
whereas subsequent analyses described below

maximize temporal resolution. As previously
published, the OB demonstrated initial oscillations
in the gamma range (Fig 4A). Having replicated our
past finding, we first assessed participants ability to
correctly identify all odor presented to them during
the experiment to assure that odors could be
identified by name. We found that all participants
but one (whose respond file was corrupted) were
able to correctly identify the odors, and Clean Air
as such, with high accuracy (mean: 89% + 9%). We
then assessed the functional connectivity,
measured as information transfer in cross spectral
analysis, between OB and PC during the odor
presentation using cross spectrograms. The
reconstructed OB and PC time-courses were
transformed into Fourier domain and the auto and
cross spectral density was estimated using multi-
tapering convolution method comparing Odor to
Clean Air conditions (inhalation of odorless air). In
the OB, we found, as expected, initial gamma
activity followed by beta activity (Fig 4B), whereas
activity in lower frequencies (theta and beta) were
found for the PC (Fig 4C). More importantly,
assessing functional connectivity between OB-PC,
we found a temporal transition across frequencies
when assessing the cross spectrogram (Fig 4D).
The earliest odor related functional connectivity
was demonstrated around 100ms in high gamma
~70Hz, t(28) = 2.131, p < .042, CI =[0.003 0.151],
which then evolved to slower oscillations around
500-700ms in low gamma ~35Hz, t(28) = 2.32, p <
.028, Cl =[0.013 0.200], to beta (~16 Hz) around
740-840ms, t(28) = 2.466, p < .020, Cl = [0.018
0.194], and transferring to theta/delta (3 Hz) at later
time points around 670-1000ms, t(28) = 2.620, p <
.014, CI=[0.031 0.257](Fig 4D). There are multiple
reports of laterality differences in odor processing
(Royet and Plailly 2004). In a next step, we
therefore separately analyzed processing in the left
and right OB-PC connectivity. Here, we found a
similar pattern for OB-r.PC and OB-I.PC. However,
comparing Odor with Clean Air for OB-I.PC we find
a weaker early gamma, t(28) = 1.27, p > .21, but
significant late beta, t(28) = 2.32, p < .028 CI =
[0.022 0.345] and theta/delta t(28) = 2.68, p < .012,
CI=[0.032 0.241] (supplementary Fig S2). Further
analysis indicated that the difference in early
gamma is potentially driven by the Clean Air, t(28)
= 2.03, p = .05 rather than Odor, t(28) = 1.54, p >
.13 (supplementary Fig S3), although this potential
effect was not significant.
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Fig 4. Auto and cross spectrogram of OB and PC. (A) Heatmap shows OB power spectrogram with finer fre-
quency, rather than temporal resolution, to replicate original finding of OB processing (Iravani et al. 2020) (B)
Heatmap of t-values for the spectral density of olfactory bulb (OB), when compared Odor against Clean Air. (C)
Similarly, spectral density for Piriform cortex (PC) when comparing Odor against Clean Air. (D) The cross spectro-
gram shows frequency and time points where OB and PC are related, or functionally connected more for Odor com-
pared with Clean Air. In panels b-d, t-values are color coded according to color scale on right side of figure using

identical scale.

Reciprocal effective functional connectivity
between olfactory bulb and piriform cortex

Connectivity between two neural populations can
be described either as functional or effective.
Functional connectivity refers to the mere statistical
dependency of amplitude (Kaboodvand et al. 2018;
Biswal et al. 1995) or phase of signal between two
populations (Kaboodvand et al. 2020; Kaboodvand
et al. 2019) whereas effective connectivity refers to
a predictive relationship between two populations
(Eldawlatly and Oweiss 2010). To assess the
effective connectivity between OB and PC, we used
the frequency domain of Granger causality, a
popular method for assessing if the future of a time
series x can be predicted of the past of time series
y over and above what can be predicted from the
past of x alone (Granger 1969). This allowed us to
characterize the function of olfactory circuitry in a
directed manner both in the time and frequency
domains (Seth et al. 2015). The reconstructed time-
courses of bilateral OB and PC were transformed
into the Fourier space by multi-tapered fast Fourier
algorithm. In the frequency domain, the relationship

between OB and PC was assessed as a function of
frequency for both afferent versus efferent
directionality (Fig 5A, B) and Odor versus Clean Air
(Fig 5C, D) using multivariate spectrally resolved
Granger causality. Benefiting from the directionality
of the Granger causality method, we found that
higher frequencies with peaks in the beta range
around ~30Hz, t(28) = 2.953, p < .006, CI = [0.208
1.150], and gamma around ~58 Hz, t(28)=2.865, p
< .008, CI =[0.148 0.888], facilitated the afferent
connection (i.e. from OB to PC; Fig 5A). For the
reverse connection, the efferent link from PC to OB,
we only found connection in the lower delta
frequency, t(28) = 5.074, p < .0001, CI = [1.076
2.533], and theta frequencies around 6Hz,
t(28)=2.078, p < .047, Cl = [0.011 1.605], during
odor processing (Fig 5B). There was no significant
relationship in signals from OB to PC induced by a
inhalation (Clean Air > Odor) except from a
connection in a narrow band around 60-70 Hz, t(28)
= 2.145, p < .041, CI = [0.019 0.809] (Fig 5C).
Likewise, no significant inhalation-related
relationship was found for the reverse direction,
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from PC to OB (Fig 5D). There was no absolute
effect of laterality for the effective connectivity,
neither from OB to PC or vice versa, or for neither
the Odor nor Clean Air-Odor contrast, except for a
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single peak at ~55 Hz, t1(28) = 2.74, p < .011, Cl =
[0.08 0.59], that was stronger for right rather than
left hemisphere when Odor was contrasted against
Clean Air (supplementary Fig S4).
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Fig 5. Effective connectivity between OB and PC for incoming versus outgoing during Odor and Clean Air.
(A) Spectrally resolved Granger causality analyses during the 1 second odor presentation show significant effective
connectivity from OB to PC in the beta and low gamma band for Odor compared to Clean Air. (B) Significant
connectivity is found from PC to OB in slower delta/theta band for Odor compared with Clean Air. (C) Connectivity
from afferent, OB to PC, shows a significant increase in effective connectivity for Clean Air vs Odor in a narrow band
around 60-70 Hz. (D) No relationship found for Clean Air from efferent, PC to OB. In all panels, colors indicate
frequency band division and red star in graph indicate significant peaks.

Connectivity between the olfactory bulb and
piriform cortex in low gamma reflects odor
identity

We found reciprocal causal relationships between
OB and PC, but in different frequency bands. The
afferent connection from OB to PC was found to be
in broad band beta/gamma and efferent link, from
PC to OB, in slow delta and theta band. To assess
whether patterns of this connectivity could be linked
to odor, we further tested if our included odors

could be read out from OB-PC connectivity using
support vector machine (SVM), a supervised
learning approach. The main prediction was that if
content-specific representations are contained
within the OB-PC connectivity, then the SVM
classifier should significantly differentiate between
the three odors. Alternatively, if the OB-PC
connectivity is due to a non-specific effect of odor
stimulation, then the classifier should not be able to
differentiate between the odors. In addition, we
were interested not only if, but also when,

9


https://doi.org/10.1101/2021.03.18.436041
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436041; this version posted March 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

information about the odor might be transferred.
Therefore, we used SVM on the cross spectrogram
of OB-PC to identify frequency/time points where
the odor identify can be read out above the chance
level. To facilitate this approach, we unity-
normalized values from the cross spectrogram for
each condition and assessed each map during 1
second stimulus and broad band (1~100 Hz) in a
searchlight framework on the individual level. When
assessing the cross spectral density of OB-PC
using SVM, we found that a time-frequency window
around 100ms and 35-45 Hz allowed us to
dissociate the three odors. Mean classifying
accuracy within this window was significantly above
chance level with peak of mean accuracy being .42
(Fig 6A), t(27) = 3.29, p < .002, and probability
confidence interval range Cl-range = 0.001 using
5000 Monte Carlo permutations test (Fig 6B). In
addition, we found that an extended area around
300ms after odor onset in the 50-70Hz frequency
range, a small area at the same time around 30Hz,
and intermitting time-periods in the theta band
facilitated classification. The slight differences
between the descriptive map (Fig 6A) and
statistical map (Fig 6B) might possibly be due to
non-normal distribution of accuracies that has been

resolved by the non-parametric Monte Carlo
permutations test in this analysis. To further assess
whether this classification was due to spurious non-
specific effects, we repeated the classification but
for connectivity between the OB and postcentral
gyrus (PCG). We selected PCG because it is an
area that demonstrate low functional connectivity
probability with piriform cortex in the large online
Neurosynth database (www.neurosynth.org) yet
has been demonstrated to process non-odorous
intranasal stimuli. We found no above chance
classification accuracy around 100ms and 35-
45Hz, thus suggesting that the odor classification
within this time window is specific to OB-PC
connectivity (Fig 6D, 6E).

We further assessed the accuracies for the
individual odors in the area where accuracy was
above chance in the OB-PC connectivity map. We
found .71, .68 and .61 accuracy for n-Butanol,
Chocolate, and Orange, respectively (Fig 6C).
Repeating the same analysis for OB-PCG
connectivity map showed indiscriminative patterns
for odors (Fig 6F).
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Fig 6. Odor identity is read out from OB-PC connectivity. (A) Heatmap shows the accuracy for classifying 3
odorants by assessing the connectivity of OB-PC using SVM. (B) Heatmap shows the t-map of accuracy for the
connectivity of OB-PC. The accuracy of 4 standard deviations above chance level (.33) was achieved around 100ms
post odor onset and 35-45 Hz shown by black box. (C) The confusion matrix for the OB-PC connectivity shows the
accuracy for each individual odor. n-Butanol, Chocolate, and Orange were classified with accuracy .71, .68 and .61,
respectively (D) Heatmap shows the accuracy for classifying 3 odorants by assessing the connectivity of OB-PCG
using SVM. (E) The t-map accuracy is shown as the heatmap, where we found no accuracy above chance level
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within the time-frequency of interest shown by black box where the odor could be read out from OB-PC connectivity.
(F) The confusion matrix for the connectivity of OB-PCG show an indiscriminative arrangement.

DISCUSSION

Here we have captured the functional connectivity
of the human OB and PC during odor perception.
We show that this dynamic connectivity is based on
a wide range of oscillatory frequencies that change
as a function of the direction of the signal and the
time from odor onset. We demonstrated that odor
can be decoded from the OB-PC oscillatory
connectivity as early as 100ms after odor onset,
thereby suggesting that odor identity, here defined
as the identity of the odorant rather than its
associated object, is at least in part deciphered in
OB-PC oscillatory communication. Importantly,
these findings show that while human and non-
human animals share commonalities in OB-PC
connectivity, the human OB-PC connectivity has
partly different frequency distribution.

Source reconstruction from human surface EEG is
spatially less specific than, for example, surgically
placed intracranial electrodes; although, EEG as a
method was recently demonstrated to be a reliable
method for extracting radial and deep sources
(Piastra et al. 2021). That said, we have previously
shown and extensively validated in several
experiments that the EBG signal can be effectively
extracted and that it reliably originates from the OB
(Iravani et al. 2020). Indeed, here we replicated our
past finding of an early (<150ms) odor-dependent
OB signal in the gamma band. The PC dipole is
more difficult to validate. Our sensitivity analyses
did, however, demonstrate that our PC sources
achieve higher odor-dependent SNR than other
possible source-locations in the surrounding area.
Moreover, in our analyses of the PC spectrogram in
response to odor stimulation, we partially replicated
previous findings obtained from intracranial
electrodes implanted in the human PC (Jiang et al.
2017). Using these two dipoles, we found reciprocal
communication between OB and PC in different
frequency bands. Except weak gamma afferent
communication, our result indicates a lack of
communication between OB and PC during the no
odor trials which emphasize the dependency on the
casual communication between OB and PC in
response to odors. Moreover, afferent connections
from OB to PC during odor stimuli seemed to utilize
mainly the gamma and beta band whereas the
efferent, top-down connection operated primarily in
the theta band. Differences in frequencies for
afferent and efferent connections have previously
been reported in both the olfactory (Fourcaud-
Trocmé et al. 2019; Kay 2014) and visual systems
(Bastos et al. 2015; van Kerkoerle et al. 2014).

Generally, in the animal model literature, higher
frequencies, such as gamma, has been linked to
within area processing and afferent ‘bottom-up’
communication whereas lower frequencies, such
as beta, have been linked to efferent ‘top-down’
communication (Richter et al. 2017; Bastos et al.
2015; Frederick et al. 2016). Indeed, odor
stimulation produces OB-PC coherence in the beta
band, which is mainly induced by efferent
communication (Neville and Haberly 2003; Gray
and Skinner 1988; Martin et al. 2006). However,
others have found afferent communication from the
hippocampus to the OB in the beta and theta band
(Gourévitch et al. 2010) where the beta
communication is more relevant for before odor
sampling (Kay and Freeman 1998), suggesting that
it is a too simplistic notion that beta is restricted to
efferent communication. Whether these
discrepancies are due to differences in task-
demand (Beshel et al. 2007; Frederick et al. 2016)
or region-specific effects is currently unclear but
from a biophysics point of view, the slower beta
oscillations are more suited for long range
transmission of information between areas, such as
between OB and hippocampus (Kopell et al. 2000).
Likewise, the wuse of non-invasive recording
methods might promote slower oscillations and it
worth noting that these signals are obtained in
healthy humans. Nonetheless, we demonstrated
here that in humans, afferent communication from
the OB to PC is dominated by the gamma band but
also activity in the high-beta band. Although it is
unclear whether it constitutes a meaningful
difference, it is interesting to note that this beta
band activity is in the higher range (around 30Hz)
of what is commonly observed in animal models
where 15-30 Hz are commonly reported in the
literature (cf. Martin and Ravel 2014). It is not clear,
however, what impact the behavioral tasks used in
the different studies might have for the
demonstrated differences in odor processing
between the human and non-human animal
literature.

One possible reason for our finding of beta
oscillatory involvement in both afferent and efferent
communication in humans is the difference in
respiration pace between humans and rodents. The
respiratory and olfactory systems are linked and
respiratory cycles in humans are significantly
slower compared to rodents (Mainland and Sobel
2006; Rojas-Libano et al. 2014). Moreover, an
intercranial study in humans found that the
inspiratory cycle entrains oscillatory activity in PC,
demonstrating that respiration, and potentially the
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respiration pace, moderates the neural activity in
PC (Zelano et al. 2016). Given the tight coupling
between breathing phase and odor perception,
where orthonasal odors are primarily experienced
during the inhalation phase, this difference may
result in  species-specific  differences in
communication frequencies within the olfactory
system. In line with this notion is a recent evidence
that cross-frequency coupling is dependent on
respiration pace (Hammer et al. 2020). A further
indication supporting this notion is our results
demonstrating that efferent communication from
the PC to OB during odor stimulation was
dominated by theta oscillations, a frequency that in
the animal literature has been linked to respiration
(Kay 2014). Interestingly, a recent intracranial study
in human participants undergoing elective surgery
for intractable epilepsy provided further evidence
for odor related theta activities by demonstrating
that odor processing within the PC is dominated by
theta activity (Jiang et al. 2017). Together, this
shows that to fully understand similarities and
differences in processing, translational studies
comparing model organisms with human
participants using identical tasks and odors are
needed.

Past studies have demonstrated that odor can be
decoded from activity within the PC assessing both
patterns of distributed piriform neurons in rodents
(Roland et al. 2017; Rennaker et al. 2007) and
oscillatory signals (Jiang et al. 2017) as well as
summated neural responses in humans (Howard et
al. 2009). Here we demonstrated that it is also
possible to decode odor from the OB-PC
connectivity as early as 100ms after odor onset.
These types of analyses lack directionality but given
the early time of the identified decoding cluster and
our granger causality analyses demonstrating
bottom up directionality in this frequency band, it is
likely that our analyses are tapping into information
from the OB to the PC. However, it should be noted
that even though we identified a homogeneous and
extended cluster in the 35-45Hz frequency, we only
had 42% classification accuracy. Although this is
significantly different from chance level (33%), it is
not a strong result; potentially due to the low
number of odors, thereby the confinement of
available perceptual space was not allowing a clear
odor differentiation. Using a larger battery of odors
in future studies might provide a better classifying
accuracy. Alternatively, our results might link to the
unique perceptual experience of these three odors
and not generalizable to other odors. Nonetheless,
the latency of the decoding results corresponds with
past intracranial recording from the PC where odor
related activity was found within 500ms (Jiang et al.

2017) and also occurs at a time point that is close
to the initial OB processing response (about 100ms
past odor onset) that we have shown earlier using
a similar method (Iravani et al. 2020), and replicate
in this data (Fig 4a). However, the above chance
performance extends to two temporal windows
around 300ms for gamma band and reverberate
during the full 1s for theta band (Fig 6B). Although
speculative, these findings fit well with the directed
Granger connectivity results (Fig 5A, 5B).
Additionally, our decoding finding is further
strengthened by the fact that we were not able to
decode odor from OB connectivity within the same
time period based on connectivity with the control
region (i.e., PCG), thus supporting the specificity of
our OB-PC finding. However, when we separately
assessed the accuracy for odors, we obtained the
maximum accuracy of 71% for n-Butanol whereas
the accuracy for Chocolate and Orange were found
to be 68% and 61%, respectively, suggesting
heterogeneity in classifier performance across
odors; perhaps due to differences in the latency and
frequency of odor representations in the OB-PC
connectivity. Moreover, the non-specificity and high
dimensionality of the employed classification
scheme unfortunately makes it difficult to deduce
exactly what aspect of the odor that is coded in the
OB-PC connection. When we assessed the
perceptual aspect of odor, we only found the effect
for pleasantness. However, this differences in the
pleasantness did not modulate the inhalation
parameters, length of inhalation or area under the
curve. Given that inhalation response is such a
robust measure of odor valence that is used as
clinical test (Frank et al. 2003), the finding of no
difference in the inhalation parameters as function
of odors suggest that potential effects of
pleasantness cannot have a decisive influence on
the results. We argue that the surprisingly large
difference in pleasantness ratings between odors
might originate from a contrast effect given that our
odor stimuli did not span a large section of available
perceptual space. Additionally, assessing the
confusion matrix brought to view that two pleasant
odors are not confused by the decoding method,
hence, making it unlikely that pleasantness is an
underlying parameter that is encoded in the OB-PC
connection. The question regarding what exactly is
decoded might be better assessed in animal
models where fewer trials are needed to obtain high
SNR, or in human experiments with a large and
diverse set of odors that vary in molecule structure,
guality, associations, and valence and therefore the
contribution of each factor can be systematically
explored.
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In summary, using a novel, non-invasive technique
for assessing activity in the first central relay in the
olfactory pathway, we demonstrated here that the
olfactory bulb and piriform cortex, two essential
nodes in the human olfactory system, show
reciprocal, oscillation-based, communication in a
frequency- and time-dependent manner during
odor stimulation. In response to an odor stimulus,
the olfactory bulb’s afferent communication to the
piriform cortex is dominated by oscillation in the
gamma and beta bands. Top-down piriform cortex
input to the olfactory bulb, in contrast, was
dominated by theta band oscillations. Moreover, we
demonstrated that odor identity could be decoded
from this reciprocal interaction within 100ms of odor
onset. These data further our understanding of the
critical role of bidirectional information flow in
human sensory systems to produce perception.
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