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ABSTRACT 48 
 49 
Single-cell genomics has transformed our understanding of complex cellular systems. However, 50 
excessive costs and a lack of strategies for the purification of newly identified cell types impede their 51 
functional characterization and large-scale profiling. Here, we have generated high content single-cell 52 
proteo-genomic reference maps of human blood and bone marrow that quantitatively link the expression 53 
of up to 197 surface markers to cellular identities and biological processes across all major hematopoietic 54 
cell types in healthy aging and leukemia. These reference maps enable the automatic design of cost-55 
effective high-throughput cytometry schemes that outperform state-of-the-art approaches, accurately 56 
reflect complex topologies of cellular systems, and permit the purification of precisely defined cell states. 57 
The systematic integration of cytometry and proteo-genomic data enables measuring the functional 58 
capacities of precisely mapped cell states at the single-cell level. Our study serves as an accessible 59 
resource and paves the way for a data-driven era in cytometry. 60 
 61 
INTRODUCTION 62 
 63 
Single-cell transcriptomic technologies have revolutionized our understanding of tissues (Giladi and 64 
Amit, 2018; Stuart and Satija, 2019; Tanay and Regev, 2017). The systematic construction of whole-65 
organ and whole-organism single-cell atlases has revealed an unanticipated diversity of cell types and 66 
cell states, and has provided detailed insights into cellular development and differentiation processes 67 
(Baccin et al., 2020; Han et al., 2018, 2020; Schaum et al., 2018). However, strategies for the prospective 68 
isolation of cell populations, newly identified by single-cell genomics, are needed to enable their 69 
functional characterization or therapeutic use. Furthermore, single-cell genomics technologies remain 70 
cost-intense and scale poorly, impeding their integration into the clinical routine. 71 
Unlike single-cell transcriptomics, flow cytometry offers a massive throughput in terms of samples and 72 
cells, is commonly used in the clinical routine diagnostics (Van Dongen et al., 2012) and remains 73 
unrivaled in the ability to prospectively isolate live populations of interest for downstream applications. 74 
However, flow cytometry provides low dimensional measurements and relies on predefined sets of 75 
surface markers and gating strategies that have evolved historically in a process of trial and error. Hence, 76 
single-cell transcriptomics (scRNA-seq) approaches have demonstrated that flow cytometry gating 77 
schemes frequently yield impure or heterogeneous populations (Paul et al., 2015; Velten et al., 2017), 78 
and flow strategies for the precise identification of cell types defined by scRNA-seq are lacking. 79 
Conversely, the precision and efficiency of commonly used cytometry gating schemes are largely 80 
unknown, and the exact significance of many surface markers remains unclear. Together, these findings 81 
highlight a disconnect between single-cell genomics-based molecular cell type maps and data generated 82 
by widely used cytometry assays. 83 
The differentiation of hematopoietic stem cells (HSCs) in the bone marrow constitutes a particularly 84 
striking example for this disconnect (Haas et al., 2018; Jacobsen and Nerlov, 2019; Laurenti and 85 
Göttgens, 2018; Loughran et al., 2020). The classical model of hematopoiesis, which is mainly based on 86 
populations defined by flow cytometry (Akashi et al., 2000; Doulatov et al., 2010; Kondo et al., 1997) 87 
has recently been challenged in several aspects by single-cell transcriptomic (Giladi et al., 2018; 88 
Nestorowa et al., 2016; Paul et al., 2015; Tusi et al., 2018; Velten et al., 2017), functional (Notta et al., 89 
2016; Perié et al., 2015) and lineage-tracing (Rodriguez-Fraticelli et al., 2018) approaches. These studies 90 
revealed that hematopoietic lineage commitment occurs earlier than previously anticipated, that putative 91 
oligopotent progenitors isolated by FACS consist of heterogeneous mixtures of progenitor populations, 92 
and that lineage commitment is most accurately represented by a continuous process of differentiation 93 
trajectories rather than by a stepwise differentiation series of discrete progenitor populations (Haas, 94 
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2020; Haas et al., 2018; Jacobsen and Nerlov, 2019; Laurenti and Göttgens, 2018). The frequency of 95 
functionally oligopotent progenitors in immunophenotypic hematopoietic stem and progenitor gates still 96 
remains controversial (Karamitros et al., 2018; Psaila et al., 2016; Velten et al., 2017). These 97 
discrepancies have contributed to conflicting results between studies that employ scRNA-seq for the 98 
definition of progenitor populations (Giladi et al., 2018; Paul et al., 2015; Pellin et al., 2019; Tusi et al., 99 
2018; Velten et al., 2017) and studies that use FACS (Akashi et al., 2000; Kondo et al., 1997; Pei et al., 100 
2017). As a consequence, flow-based assays that accurately reflect the molecular and cellular complexity 101 
of the hematopoietic system are urgently needed. 102 
 103 
Recently, methods to simultaneously measure mRNA and surface protein expression in single cells have 104 
been developed (Shahi et al., 2017; Stoeckius et al., 2017). Here, we demonstrate that ultra-high content 105 
single-cell proteo-genomic reference maps, alongside appropriate computational tools, can be used to 106 
systematically design and analyze cytometry assays that accurately reflect scRNA-seq based molecular 107 
tissue maps at the level of cell types and differentiation states. For this purpose, we have generated 108 
proteo-genomic datasets encompassing 97-197 surface markers across 122,004 cells representing the 109 
cellular landscape of young, aged and leukemic human bone marrow and blood, as well as all states of 110 
hematopoietic stem cell differentiation. We demonstrate how such data can be used in an unbiased 111 
manner to evaluate and automatically design cytometry gating schemes for individual populations and 112 
entire biological systems without prior knowledge. We show that, compared to existing approaches, such 113 
optimized schemes are superior in the identification of cell types and more accurately reflect molecular 114 
cell states. Projecting datasets from malignant hematopoiesis on our reference atlases enables the fine-115 
mapping of the exact stage of differentiation arrest in leukemias, the identification of leukemia-specific 116 
surface markers and an unsupervised classification of disease states. Finally, we demonstrate how such 117 
data resources can be used to project low-dimensional cytometry data on single-cell genomic atlases to 118 
enable functional analysis of precisely defined states of cellular differentiation. Our data resource and 119 
bioinformatic advances enable the efficient identification and isolation of any molecularly defined cell 120 
state from blood and bone marrow while laying the grounds for reconciling flow cytometry and single-121 
cell genomics data across human tissues. 122 
 123 
RESULTS 124 
 125 
A comprehensive single-cell proteo-genomics reference map of young, aged and malignant bone 126 
marrow 127 
  128 
To establish a comprehensive single-cell transcriptomic and surface protein expression map in the human 129 
bone marrow (BM), we performed a series of Abseq experiments, in which mononuclear BM cells from 130 
hip aspirates were labelled with 97-197 oligo-tagged antibodies, followed by targeted or whole 131 
transcriptome scRNAseq on the Rhapsody platform (Figure 1a). For targeted single-cell transcriptome 132 
profiling, we established a custom panel, consisting of 462 mRNAs covering all HSPC differentiation 133 
stages, cell type identity genes, mRNAs of surface receptors and additional genes that permit the 134 
characterization of cellular states. These genes were systematically selected to capture all relevant layers 135 
of RNA expression heterogeneity observed in this system (Supplementary Note 1 and Supplementary 136 
Table 1). Whole transcriptome single-cell proteo-genomics confirmed that no populations were missed 137 
due to the targeted nature of the assay (Supplementary Note 2). Using this panel, in combination with 138 
97 surface markers (Supplementary Table 2), we analyzed the BM of three young healthy donors, three 139 
aged healthy donors, and three acute myeloid leukemia (AML) patients at diagnosis (Figures 1a, S1, 140 
Supplementary Table 3). For samples from healthy donors, CD34+ cells were enriched to enable a 141 
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detailed study of hematopoietic stem cell (HSC) differentiation (Figure S2). For samples from AML 142 
patients, CD3+ cells were enriched in some cases to ensure sufficient coverage of T cells.  143 
 144 
Since single-cell proteo-genomic approaches are not commonly performed at this level of antibody 145 
multiplexing, we designed a series of control experiments. First, we performed matched Abseq 146 
experiments in the presence or absence of antibodies to ensure that highly multiplex antibody stains do 147 
not impact on the transcriptome of single cells (Supplementary Note 3). We further performed a series 148 
of AbSeq experiments on fresh and frozen samples to demonstrate that the freeze-thawing process has 149 
no major impact on the data (Supplementary Note 3). Finally, we evaluated the sequencing requirements 150 
for optimal cell type classification in high-parametric single-cell proteo-genomic experiments 151 
(Supplementary Note 4). In the main reference data set, 70,017 high-quality BM cells were profiled with 152 
combined RNA and high-parametric surface protein information, and an average of ~7500 surface 153 
molecules per cell were detected (Figure S3). Following data integration across experiments and 154 
measurement modalities, we identified 45 cell types and cell stages covering the vast majority of 155 
previously described hematopoietic cell types of the bone marrow and peripheral blood, including all 156 
stages of HSC differentiation in the CD34+ compartment, all T cell and NK cell populations of the CD3+ 157 
and CD56+ compartments, several dendritic cell and monocyte subpopulations from the CD33+ 158 
compartment and all major B cell differentiation states across CD10+, CD19+ and CD38high 159 
compartments (Figures 1b,c Supplementary Note 5, Supplementary Table 4). In addition, poorly 160 
characterized populations, such as cytotoxic CD4+ T cells and mesenchymal stem or stromal cells 161 
(MSCs) are covered. Cells from young and aged bone marrow occupied the same cell states in all 162 
individuals, whereas cell states in AML differed (Figure 1b and see below). Importantly, the combined 163 
RNA and surface protein information provided higher resolution and revealed cell types that are not 164 
readily identified by one of the individual data layers alone (Supplementary Note 6).  165 
 166 
Besides our main reference dataset, we have generated ‘query‘ single-cell proteo-genomic datasets 167 
which are displayed in the context of the main reference (Supplementary Note 7). These include, first, 168 
the analyses of healthy BM and matched peripheral blood (PB) samples using a 197 plex antibody panel 169 
to query the expression of additional surface markers in the context of our reference (Figure S4, 170 
Supplementary Table 2). Second, the analyses of healthy BM analyzed with a 97 plex antibody panel in 171 
combination with whole transcriptome profiling to query any gene’s expression in the space defined by 172 
our reference (Supplementary Note 2). Third, the profiling of the CD34+CD38- bone marrow 173 
compartment with a 97 plex antibody panel to provide higher resolution of immature HSPCs (see below, 174 
Figure S9c, d) and fourth, a cohort of 12 AML patients (see below, Figure 4). To make our 175 
comprehensive resource accessible, we developed the Abseq-App, a web-based application that permits 176 
visualization of gene and surface marker expression, differential expression testing and the data-driven 177 
identification of gating schemes across all datasets presented in this manuscript. A demonstration video 178 
of the app is available in the supplement (Supplemental Video S1). The Abseq-App is accessible at: 179 
https://abseqapp.shiny.embl.de/.  180 
 181 
Systematic association of surface markers with cell type identities, differentiation stages and 182 
biological processes 183 
 184 
While surface markers are widely used in immunology, stem cell biology and cancer research to identify 185 
cell types, cell stages and biological processes, the exact significance of individual markers remains 186 
frequently ambiguous. To quantitatively link surface marker expression with biological processes, we 187 
assigned each cell in our data set to its respective cell type, and determined its differentiation stage, its 188 
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stemness score, its cytotoxicity score, its current cell cycle phase as well as technical covariates (see 189 
Methods and below). Moreover, we included covariates representing unknown biological processes that 190 
were defined in an unsupervised manner using a factor model. Non-technical covariates were not 191 
affected by marker expression level (Figure S5a, Methods). For each surface marker, we then quantified 192 
the fraction of variance of expression that is determined by any of these processes (Figure 2a). This 193 
model identified markers that represent cell type identities or differentiation stages, as well as stemness, 194 
cytotoxicity and cell cycle properties (Figures 2b-d and S5b-f).  195 
 196 
To characterize novel markers identified by this analysis, we initially focused on the evaluation of 197 
surface molecules that specifically mark distinct stages of HSC differentiation, since a lack of specific 198 
markers currently impedes the accurate representation of lineage commitment by flow cytometry (Notta 199 
et al., 2016; Paul et al., 2015; Pellin et al., 2019; Tusi et al., 2018; Velten et al., 2017). For this purpose, 200 
we performed pseudotime analyses within the CD34+ HSPC compartment and identified surface 201 
markers that correlate with the progression of HSCs towards erythroid, megakaryocytic, monocyte, 202 
conventional dendritic cell or B cell differentiation trajectories (Figure 2d, 3a, S5g and see Methods). Of 203 
note, the monocyte trajectory also includes neutrophil progenitor stages, but mature neutrophils are not 204 
included in the datasets due to the use of density gradient centrifugation of samples. Moreover trajectory 205 
analyses were not performed for plasmacytoid dendritic and eosinophil/basophil lineages, due to a low 206 
number of intermediate cells impeding an unanimous identification of branch points. Pseudotime 207 
analyses quantified the exact expression dynamics of many well-established markers, such as CD38 as 208 
a pan-differentiation marker, as well as CD10 and CD11c as early B cell and monocyte-dendritic cell 209 
lineage commitment marker, respectively (Figures 2d, and S6a). Importantly, our analyses revealed 210 
novel surface markers that specifically demarcate distinct stages of lineage commitment, including 211 
CD326, CD11a and Tim3 (Figure 2d and 3). To confirm the high specificity of these markers for 212 
erythroid and myeloid commitment, respectively, we used FACS-based indexing of surface markers 213 
coupled to single-cell RNAseq (“index scRNAseq”, see also Supplementary Note 8), or coupled to 214 
single-cell cultures (“index cultures”) (Figure 3b). As suggested by our proteo-genomic single-cell data, 215 
CD326 expression was associated with molecular priming and functional commitment into the erythroid 216 
lineage (Figure 3c-g and S6b, c). In contrast, Tim3 and CD11a were identified as pan-myeloid 217 
differentiation markers and were associated with transcriptomic priming and functional commitment into 218 
the myeloid lineage (Figures 3c, h-o and S6c). Finally, CD98 was identified as a novel pan-219 
differentiation marker of HSCs, which we confirmed by classical flow cytometry (Figures 2d, and S6d-220 
h). Beyond the progression of HSCs to lineage committed cells, we also analyzed the surface marker 221 
dynamics throughout B cell differentiation, allowing us to identify markers specific to their lineage 222 
commitment, maturation, isotype switching and final plasma cells generation (Figure S6i-p). 223 
 224 
Together, our model provides a global and quantitative understanding of how well cell type identities, 225 
differentiation stages and biological processes are related to the expression of individual surface markers. 226 
A comprehensive overview of surface markers associated with these processes is depicted in the 227 
supplement (Supplementary Table 5, Figure S5). 228 
 229 
Adaptation of surface protein expression in healthy aging and cancer 230 
 231 
To investigate the surface protein expression throughout healthy aging, we compared Abseq data of bone 232 
marrow from young and aged healthy individuals. These analyses revealed that the expression of surface 233 
molecules was highly similar across all BM populations between the age groups (Figures 4a, b, 234 
Supplementary Table 6), suggesting unexpectedly stable and highly regulated patterns of surface protein 235 
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expression that are only modestly affected by aging. While cell type frequencies were also only modestly 236 
affected by aging, a significant accumulation of cytotoxic effector CD8+ T cells was observed (Figure 237 
S7a, Fagnoni et al., 1996). Moreover, the expression of several immune regulatory molecules showed 238 
age-related changes in surface presentation, including the death receptor FAS (CD95), the poliovirus 239 
receptor (CD155) and the ICOS ligand (CD275) (Figure 4b). In particular, naive CD8+ and CD4+ T cell 240 
subsets displayed an aging-associated decline of CD27 surface expression, a co-stimulatory molecule 241 
required for generation and maintenance of long-term T cell immunity (Figures 4b, c, Peters et al., 2015). 242 
Together these analyses suggest that the overall pattern of surface protein expression is widely 243 
maintained upon healthy aging, whereas specific changes, most prominently in the surface presentation 244 
of immune regulatory molecules, occur.  245 
We next explored surface marker remodeling in AML, a blood cancer characterized by the accumulation 246 
of immature, dysfunctional myeloid progenitors, also called blasts. While the cellular bone marrow of 247 
healthy donors displayed highly similar topologies across 6 individuals, initial analysis of 3 AML 248 
patients demonstrated that leukemic cells showed patient-specific alterations and a large degree of 249 
inter-patient variability (Figure 1b). To develop a generically applicable workflow to interpret data 250 
from hematological diseases in the context of our reference, we generated single-cell proteo-251 
genomics datasets from a total of 15 AML patients, covering six t(15;17) translocated acute 252 
promyelocytic leukemias (APLs) and nine normal karyotype AMLs with NPM1 mutations, out of 253 
which 4 patients carried an additional FLT3 internal tandem duplication (ITD) (Supplementary Table 254 
3). While an unsupervised integration of these data primarily highlighted patient-to-patient 255 
variability (Figure S7b), projecting cells onto our healthy reference enabled a fine-mapping of the 256 
differentiation stages of leukemia cells (Figures 4d, Supplementary Note 7). Unsupervised 257 
clustering of patients based on the relative abundancies of differentiation stages revealed three main 258 
categories: ‘monocytic AMLs’ that displayed an extensive accumulation of blasts with classical 259 
monocyte phenotype, APLs that were blocked in early and late promyelocyte states, and ‘immature 260 
AMLs’ that showed high numbers of immature blasts resembling HSC, MPP, early lympho-myeloid 261 
progenitor and early promyelocyte states (Figures 4e-f). In general, leukemic blasts retained many 262 
features reminiscent of the cell stage they were blocked in (Figures S7c-e). Accordingly, differential 263 
expression analyses revealed that many surface markers which distinguish the different AML states, also 264 
mark their corresponding healthy counterparts, such as CD133 for immature AMLs or CD14 and CD11b 265 
for monocytic AMLs (Figure 4g). This also translated into differential surface expression of potential 266 
drug targets, such as PD-L1 (CD274) and CTLA4 (CD152) (Figure 4h, S7f), suggesting that the myeloid 267 
differentiation program of the AML might be essential in the treatment choice of targeted immune 268 
therapies. 269 
By contrast, differential analyses between AML and healthy cells from the same differentiation stage 270 
revealed markers specifically over-expressed in leukemic cells (Figure 4i, S7c, Supplementary Table 6). 271 
Interestingly, these analyses readily identified several previously described leukemia stem cell (LSC) 272 
markers, including CD25, Tim-3, CD123 and CD45RA (Hanekamp et al., 2017), supporting the validity 273 
of our approach. Quantifying the degree of inter-patient heterogeneity of each marker while accounting 274 
for cell state, revealed that many known LSC markers strongly vary in their expression between patients 275 
(Figure 4i). Taken together, this workflow of projection to a well-annotated healthy reference in 276 
combination with cell-state specific differential expression testing might become a standard in scRNA-277 
seq analyses of hematological diseases. Our computational routines are available online at 278 
https://git.embl.de/triana/nrn. 279 
 280 
 281 
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Data-driven isolation strategies and immunophenotypic characterization of rare bone marrow cell 282 
populations 283 
 284 
Gating strategies for flow cytometry have evolved historically in a process of trial and error. In particular, 285 
the isolation of rare and poorly characterized cell subsets using flow cytometry remains challenging, 286 
whereas commonly used gating schemes are not necessarily optimal in purity (precision) and efficiency 287 
(recall). To tackle these problems, we explored different machine learning approaches for the data-driven 288 
definition of gating schemes. For all populations in our dataset, gating schemes defined by machine 289 
learning approaches provided higher precision (purity) if compared to classical gating schemes from 290 
literature (Figure 5a, Figure S8, Supplementary Table 7). While different machine learning methods 291 
tested achieved similar purities, gates defined by the hypergate algorithm (Becht et al., 2019) offered a 292 
higher recall (Figure 5a, Figure S8). 293 
To validate and demonstrate this approach, we focused on determining novel gating strategies for rare 294 
and poorly characterized BM cell types, such as cytotoxic CD4+ T cells (Figure 5b and mesenchymal 295 
stem or stromal cells (MSCs) (Figure 5h). Cytotoxic CD4+ T cells represent a rare T cell population 296 
characterized by the expression of cytotoxicity genes typically observed in their well-characterized 297 
CD8+ T cell counterparts (Szabo et al., 2019). While this cell type has been suggested to be involved in 298 
several physiological and pathophysiological processes, no coherent gating strategy for their prospective 299 
isolation exists (Takeuchi and Saito, 2017). Hypergate suggested that cytotoxic CD4+ T cells display an 300 
immunophenotype of CD4+CD28-, and differential expression analyses of surface markers revealed that 301 
cytotoxic CD4+ T cells express significantly lower levels of CD7, CD25, CD127 and CD197 if 302 
compared to other CD4+ T cell subsets (Figure 5b-e). Flow cytometric analyses of CD4+CD28- T cells 303 
confirmed the expected immunophenotype in BM from healthy donors and patients with different 304 
hematological cancers, suggesting a robust and efficient prospective isolation of this rare cell type 305 
(Figure 5d-f). Finally, FACS-based sorting of CD4+CD28- T cells followed by gene expression analysis 306 
confirmed the expression of cytotoxicity genes in this population (Figure 5g). 307 
MSCs constitute a rare and heterogeneous group of cells in the bone marrow (Al-Sabah et al., 2020; 308 
Frenette et al., 2013). While ex vivo-expanded MSCs have been phenotyped extensively, primary human 309 
MSCs remain poorly characterized, in particular due to their extremely low frequency. In our dataset, 310 
we captured a small number of heterogeneous MSCs, with one subset (MSC-1) expressing high levels 311 
of the key bone marrow-homing cytokine CXCL12 (Figure 5h). Hypergate suggested CXCL12-312 
expressing MSCs to be most efficiently isolated by expression of CD13 and absence of CD11a (Figure 313 
5i). Indeed, flow cytometric analyses of CD13+CD11a- MSCs validated the immunophenotype 314 
suggested by our Abseq data and confirmed known and novel MSC surface markers identified by our 315 
approach (Figure 5j-l). Moreover, FACS-based isolation of CD13+CD11a- cells followed by 316 
transcriptomic analyses revealed a high enrichment of CXCL12 and other key MSC signature genes 317 
(Figure 5m). 318 
Together, these analyses demonstrate the utility of our approach for deriving gating schemes from data 319 
and mapping the surface marker expression of poorly characterized populations. The Abseq-App in 320 
combination with our single-cell proteo-genomic reference map allows users to define new data-driven 321 
gating schemes for any population of interest. 322 
 323 
A fully data-driven gating scheme reflects the molecular routes of human hematopoiesis 324 
 325 
Gating schemes for complex biological systems, such as the hematopoietic stem and progenitor cell 326 
(HSPC) compartment, are steadily improving. However, there is strong evidence from single-cell 327 
transcriptomics (Giladi et al., 2018; Paul et al., 2015; Tusi et al., 2018; Velten et al., 2017), lineage 328 
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tracing (Perié et al., 2015; Rodriguez-Fraticelli et al., 2018) and single-cell functional experiments (Notta 329 
et al., 2016) that even the most advanced gating schemes do not recapitulate the molecular and cellular 330 
heterogeneity observed by single-cell genomics approaches. This has contributed to several 331 
misconceptions in the understanding of the hematopoietic system, most notably, incorrect assumptions 332 
on the purity of cell populations and inconsistent views on lineage commitment hierarchies (Haas et al., 333 
2018; Jacobsen and Nerlov, 2019; Laurenti and Göttgens, 2018; Loughran et al., 2020). 334 
In order to generate flow cytometric gating schemes that most adequately reflect the transcriptomic states 335 
associated with hematopoietic stem cell differentiation, we used the Abseq-dataset of CD34+ cells from 336 
one BM sample (‘Young1’) to train a decision tree. Thereby, we obtained a gating scheme that uses 12 337 
surface markers to define 14 leaves representing molecularly defined cell states with high precision 338 
(Figure 6a-c). The data-derived scheme excelled in the identification of lineage committed progenitors, 339 
a major shortcoming of many current gating strategies (Figure 6a-c) (Notta et al., 2016; Paul et al., 2015; 340 
Perié et al., 2015; Velten et al., 2017). Importantly, cell populations defined by the data-defined gating 341 
scheme were transcriptionally more homogenous, compared to a widely used gating scheme (Figure 6d, 342 
e; Doulatov et al., 2010), a state-of-the-art gating scheme focusing on lymph-myeloid differentiation 343 
(Figure 6e, S9a-d; Karamitros et al., 2018) and a ‘consensus gating’ scheme generated in silico to 344 
combine the latter with a scheme focusing on erythroid-myeloid differentiation (Figure 6e, S9b; Psaila 345 
et al., 2016). Of note, individual populations from the data-defined scheme displayed a functional output 346 
comparable to populations of the ‘consensus gating’ scheme, while the data-defined scheme overall 347 
provided a higher level of information on functional lineage commitment (Figure S9e, f). 348 
To validate this new gating scheme, we implemented the suggested surface marker panel in a classical 349 
flow cytometry setup and performed Smart-seq2 based single-cell RNA-sequencing while 350 
simultaneously recording surface marker expression (index-scRNAseq) (Figure 6f, g, Supplementary 351 
Note 8). This approach demonstrated that the new gating strategy efficiently separated molecularly 352 
defined cell states (Figure 6g). Quantitatively, the data-defined gating scheme performed equally well at 353 
resolving molecularly defined cell states on the Abseq training data as on the Smart-seq2 validation data, 354 
and significantly outperformed the expert-defined gating scheme (Figure 6h). A limitation of the low 355 
cellular throughput of the Smart-seq2 analysis is that the signature-based identification might result in 356 
the “over-identification” of certain cell states. Together, our results demonstrate that high-content single-357 
cell proteo-genomic maps can be used to derive data-defined cytometry panels that describe the 358 
molecular states of complex biological systems with high accuracy. Moreover, our gating scheme 359 
permits a faithful identification and prospective isolation of transcriptomically defined progenitor states 360 
in the human hematopoietic hierarchy using cost-effective flow cytometry. 361 
 362 
Systematic integration of single-cell genomics, flow cytometry and functional data via NRN  363 
 364 
While classical FACS gating strategies are of great use for the prospective isolation and characterization 365 
of populations, single-cell genomics studies revealed that differentiation processes, including the first 366 
steps of hematopoiesis, are most accurately represented by a continuous process (Macaulay et al., 2016; 367 
Nestorowa et al., 2016; Pellin et al., 2019; Tusi et al., 2018; Velten et al., 2017). To complement the 368 
approach based on discrete gates, we here propose that high-dimensional flow cytometry data can be 369 
used to place single cells into the continuous space of hematopoietic differentiation spanned by single-370 
cell proteo-genomics exploiting shared surface markers (Figure 7a). Based on the observation that 371 
surface marker expressions in flow cytometry and Abseq follow similar distributions (Figure S10a), we 372 
developed a new projection algorithm termed nearest rank neighbors (NRN: 373 
https://git.embl.de/triana/nrn/, see Methods). Given an identical starting population, NRN employs 374 
sample ranks to transform surface marker expression of FACS and Abseq data to the same scale, 375 
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followed by k-nearest neighbors-based projection into a space defined by the proteo-genomic single-cell 376 
data. We tested NRN on FACS indexed Smart-seq2 datasets using the classification panel developed in 377 
Figure 6 (12 markers) and a semi-automated panel based on our Abseq data to better resolve erythro-378 
myeloid lineages (11 markers, Supplementary Note 8). We evaluated the performance of NRN using a 379 
variety of methods. First, cell types molecularly defined by Smart-seq2 were placed correctly on the 380 
Abseq UMAP (Figure 7b). For most molecularly defined cell types, the accuracy of the projection using 381 
the flow cytometry data was close to the performance of data integration using whole transcriptome data 382 
with a state-of-the-art algorithm (Figure S10b-d). Most importantly, the projections closely reflected the 383 
gradual progression of cells through pseudotime, as confirmed by the expression dynamics of key lineage 384 
genes from our FACS indexed Smart-seq2 data (Figure 7c). This suggests that NRN, in combination 385 
with high quality reference datasets, can be used to study the continuous nature of cellular differentiation 386 
processes by flow cytometry. 387 
A key limitation of single-cell genomics remains the lack of insights into functional differentiation 388 
capacities of cells. We therefore evaluated whether NRN can be used to interpret functional single-cell 389 
data in the context of single-cell genomic reference maps. For this purpose, we performed single-cell 390 
culture assays, while recording surface markers of our data-defined gating scheme from Figure 6, 391 
followed by data integration using our Abseq data via NRN. As expected, cells with the highest 392 
proliferative capacity and lineage potency were placed in the phenotypic HSC and MPP compartments, 393 
and HSPCs placed along the transcriptomically defined differentiation trajectories continuously 394 
increased the relative generation of cells of the respective lineage (Figure 7d). Functionally unipotent 395 
progenitors cells were observed along the respective transcriptomic trajectories, but were also present in 396 
the phenotypic HSC/MPP compartment (Figure 7d, g), in line with previous findings on early lineage 397 
commitment of HSPCs (Notta et al., 2016; Paul et al., 2015; Velten et al., 2017). In contrast, oligopotent 398 
cells with distinct combinations of cell fates were specifically enriched in the HSC/MPP compartment 399 
(Figure 7d, g). Some of these fate combinations, in particular combinations of erythroid, megakaryocytic 400 
and eosinophilic/basophilic fates, and combinations of lymphoid, neutrophilic, monocytic, and dendritic 401 
fates, co-occurred more frequently than expected by chance (Figure 7e, f), in line with most recent 402 
findings on routes of lineage segregation (Drissen et al., 2019; Görgens et al., 2014; Tusi et al., 2018; 403 
Velten et al., 2017). Despite strong associations between surface phenotype, transcriptome and function, 404 
cells with a highly similar phenotype can give rise to different combinations of lineages (Figure 7g). 405 
This observation suggests a role of stochasticity in the process of lineage commitment, or hints towards 406 
layers of cell fate regulation not observed in the transcriptome. Taken together, our observations confirm 407 
that hematopoietic lineage commitment predominantly occurs continuously along the routes predicted 408 
by the transcriptome, with an early primary erythro-myeloid versus lympho-myeloid split (Drissen et al., 409 
2019; Görgens et al., 2014; Notta et al., 2016; Paul et al., 2015; Tusi et al., 2018; Velten et al., 2017) and 410 
might help reconciling discrepancies in the interpretation of previous studies. 411 
In sum, our data resource alongside the NRN algorithm enables accurate integration of flow data with 412 
single-cell genomics data. This permits the charting of continuous processes by flow cytometry and the 413 
mapping of single-cell functional data into the single-cell genomics space.  414 
 415 
DISCUSSION 416 
 417 
In this study, we have demonstrated the power of single-cell proteo-genomic reference maps for the 418 
design and analysis of cytometry experiments. We have introduced a map of human blood and bone 419 
marrow spanning the expression of 97-197 surface markers across 45 cell types and stages of 420 
hematopoietic stem cell differentiation, healthy ageing, and leukemia. Our dataset is carefully annotated 421 
and will serve as a key resource for hematology and immunology. 422 
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While cytometry experiments remain the working horse of immunology, stem cell biology and 423 
hematology, recent single-cell atlas projects have revealed that current cytometry setups do not 424 
accurately reflect the full complexity of biological systems (Papalexi and Satija, 2018; Paul et al., 2015). 425 
For the first time, we have exploited single-cell proteo-genomic data to systematically design and 426 
interpret flow cytometry experiments that mirror most accurately the cellular heterogeneity observed by 427 
single-cell transcriptomics. Unlike approaches based on index sorting (Baron et al., 2019; Paul et al., 428 
2015; Velten et al., 2017; Wilson et al., 2008), single-cell proteo-genomics has a sufficient throughput 429 
to enable the profiling of entire tissues or organs, and at the same time covers up to several hundred of 430 
surface markers. Unlike single-cell RNA-seq data, antibody tag counts reflect the true distributions of 431 
surface marker expression, enabling a quantitative integration of cell atlas data with FACS. Building on 432 
these unique properties of our reference map, we have automated the design of gating schemes for the 433 
isolation of rare cell types, we have devised a gating strategy that reflects the molecular routes of 434 
hematopoietic stem cell differentiation, and we have demonstrated the direct interpretation of flow 435 
cytometry data in the context of our reference.  436 
 437 
These advances enable a functional characterization of molecularly defined cell states and thereby 438 
directly impact on hematopoietic stem cell research. There is a growing consensus in the field that 439 
lineage commitment occurs early from primed HSCs, that not all progenitor cells in the classical 440 
MEP/GMP gates are functionally oligopotent, and that the main branches of the hematopoietic system 441 
are a GATA2-positive branch of erythroid, megakaryocytic and eosinophil/basophil/mast cell 442 
progenitors, as well as a GATA2-negative branch of lympho-myeloid progenitors, including monocytes, 443 
neutrophils and dendritic cells (Drissen et al., 2019; Giladi et al., 2018; Görgens et al., 2014; Pellin et 444 
al., 2019; Tusi et al., 2018; Velten et al., 2017; Zheng et al., 2018). Due to a lack of better alternatives, 445 
many functional studies still use the classical gating scheme alongside the outdated concept of ‘common 446 
myeloid progenitors’(Akashi et al., 2000; Kondo et al., 1997; Pei et al., 2017). Here, we introduce and 447 
validate a flow cytometry scheme that allows the prospective isolation of molecularly homogeneous 448 
progenitor populations. We have used this scheme to show that transcriptional lineage priming impacts 449 
on cellular fate in vitro (Notta et al., 2016; Velten et al., 2017), thereby contributing further evidence for 450 
the revised model of hematopoiesis. In the future, a wider use of this scheme has the potential to avoid 451 
conflicting results stemming from imprecisely defined populations. 452 
 453 
Furthermore, these advances enable the rapid profiling of blood formation and other bone marrow 454 
phenotypes while offering a resolution comparable to single-cell genomics. Recently, bone marrow 455 
phenotypes of diseases, ranging from sickle cell disease (Hua et al., 2019) to leukemia (van Galen et al., 456 
2019) have been investigated using scRNA-seq. However, due to economic and experimental hurdles, 457 
the throughput of these studies has remained restricted to maximally tens of patients. Accordingly, the 458 
ability to associate patient genotypes with phenotypes is thereby highly limited, and these assays have 459 
not been translated to diagnostic routines. Our new gating schemes and analytical strategies are widely 460 
applicable to profile aberrations encountered in disease, both in research, and ultimately in clinical 461 
diagnostics. 462 
 463 
While we have demonstrated the implementation of data-driven design and analysis strategies for 464 
cytometry assays in the context of bone marrow, conceptually the approach presented here can be applied 465 
to any organ of interest. Thereby, it has the potential to enable the precise isolation and routine profiling 466 
of the myriad of cell types discovered by recent single-cell atlas projects. 467 
 468 
 469 
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MAIN FIGURES 568 
 569 

 570 
Figure 1. A comprehensive single-cell proteo-genomic map of young, aged and malignant bone 571 
marrow. a. Overview of the study. See methods and main text for details. b. Top: UMAP display of 572 
single-cell proteo-genomics data of human bone marrow from healthy young, healthy aged and AML 573 
patients (n=70,017 single cells, 97 surface markers), integrated across n=9 samples and data modalities. 574 
Clusters are color-coded. Bottom: UMAPs highlighting sample identities. See Supplementary Note 5 for 575 
details on cluster annotation. The whole transcriptome Abseq data is presented in Supplementary Note 576 
2, the Abseq experiments with measurements of 197 surface markers are presented in Figure S4. c. 577 
Normalized expression of selected mRNAs and surface proteins highlighted on the UMAP space from 578 
b. Top: Expression of mRNAs encoding surface markers widely used to identify major cell types. 579 
Middle: Expression of the corresponding surface proteins. Bottom: Expression of markers widely used 580 
to stratify major cell types into subtypes. Only the parts of the UMAPs highlighted by dashed polygons 581 
in the middle row are shown. For all data shown, bone marrow mononuclear cells from iliac crest 582 
aspirations from healthy adult donors or AML patients were used. 583 
 584 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.03.18.435922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435922
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 585 
Figure 2: Association of surface marker expression with cell type identities, cellular 586 
differentiation, and biological processes. a. For each surface marker measured in our 97-plex Abseq 587 
data, the fraction of variance explained by different covariates (colored insets in top row) is displayed. 588 
For this, every single cell from healthy young individuals (n=3 samples, 28,031 single cells) was 589 
assigned to a cell type identity (blue inset, see Figure 1b), and cytotoxicity, stemness and cell cycle 590 
scores (red inset, see Figure S5e), as well as technical covariate scores were determined. Additionally, 591 
pseudotime analyses were used to assign differentiation scores to HSPCs (orange inset, see Figure 3a). 592 
These covariates were then used to model surface marker expression in a linear model. The fraction of 593 
variance explained by each of the processes was quantified. See Methods, section ‘Modelling variance 594 
in surface marker expression’ for details.  b. Cell type identity markers. Dot plot depicting the expression 595 
of the 25 surface markers with the highest fraction of variance explained by cell type across major 596 
populations. Colors indicate mean normalized expression, point size indicates the fraction of cells 597 
positive for the marker. Automatic thresholding was used to identify positive cells, see Methods, section 598 
‘Thresholding of surface marker expression’ for details. c. T cell subtype markers. The expression of the 599 
20 surface markers with the highest fraction of variance explained by T cell subtype is displayed, legends 600 
like in b. d. HSPC differentiation markers. Dot plot depicting expression changes of markers across 601 
pseudotime in CD34+ HSPCs. Color indicates logarithmic fold change between the start and the end of 602 
each pseudotime trajectory. Point size indicates the mutual information in natural units of information 603 
(nats) between pseudotime and marker expression. The 25 surface markers with the highest fraction of 604 
variance explained by pseudotime covariates are displayed.  605 
 606 
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 607 
Figure 3. Validation of novel stage-specific HSPC differentiation markers. a. UMAP plot depicting 608 
CD34+ HSPCs and their pseudotime scores along five differentiation trajectories, see Methods, section 609 
“Pseudotime analysis”. The normalized pseudotime score across all lineages is color-coded. b. 610 
Scheme illustrating the experiments performed to validate the significance of selected markers. See main 611 
text and Supplementary Note 8 for details. c. UMAP display of mRNA expression of n=630 CD34+ cells 612 
from a single-cell Smart-seq2 experiment where surface markers were recorded using FACS. For a 613 
detailed description of the experiment, see Supplementary Note 8. Upper left panel: Cells with myeloid 614 
and erythroid gene expression signatures are highlighted on the UMAP. Bottom-left and right panels: 615 
Surface protein expression (FACS data) of indicated markers is shown. d. UMAP display highlighting 616 
the normalized CD326 surface protein expression (Abseq data). e. Line plots depicting normalized 617 
CD326 surface protein expression (Abseq data) smoothened over the different pseudotime trajectories 618 
illustrated in panel a. f. Boxplots depicting the ratio in erythroid cells produced in single-cell cultures in 619 
relation to the CD326 expression of the founder cell (n=231 single cell derived colonies). g. Left panel: 620 
scatter plots depicting the differentiation potential of single founder cells in relation to their CD326 and 621 
CD71 surface expression. The founder cell potential was categorized by its ability to give rise to 1) 622 
erythroid only progeny, 2) a mix of erythroid, myeloid or any other progeny, 3) only myeloid progeny 623 
4) remaining cells. Right panel: Founder cells were subset according to their CD326 and CD71 surface 624 
expression status and relative fractions of their respective potential are summarized as pie charts. h-o. 625 
Like d-g, except that CD11a (h-k) or Tim3 (l-o) and their relation to the formation of myeloid cells in 626 
single-cell cultures is investigated (n=214 single cell derived colonies). For all data presented, bone 627 
marrow mononuclear cells from iliac crest aspirations from healthy adult donors were used. 628 
 629 
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 630 
Figure 4. Adaptation of surface protein expression in healthy aging and cancer. a. Correlation of 631 
surface marker expression between matched cell types from aged and young bone marrow donors. For 632 
each cell type, mean surface marker expression across all cells was computed, separately for all ‘young’ 633 
and ‘aged’ samples, and the correlation between the two matched cell types was determined. Left panel: 634 
Histogram of Pearson correlation coefficients. Right panel: Sample scatter plots depicting the mean 635 
surface expression of all measured markers in indicated cell types, see also Supplementary Table 6. b. 636 
Volcano plot depicting log2 fold change and false discovery rate (FDR) for a test for differential surface 637 
marker expression between cells from young and aged individuals, while accounting for cell types as 638 
covariates. See Methods, section ‘Differential expression testing between experimental groups and 639 
estimation of inter-patient variability’ for details. c. Boxplots depicting CD27 surface expression in 640 
naïve T cell populations from young and aged individuals. d. Projection of AML samples onto 641 
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healthy reference. See Supplementary Note 7 for detail. e. Clustering of leukemia samples by their 642 
projected cell type composition. Lymphoid cells are excluded from the clustering. f. Density plots of 643 
Monocyte pseudotime, resulting from projection on the healthy reference. See Methods for details. g. 644 
Heatmap depicting surface markers with differential expression between the phenotypic classes defined 645 
in panel e. The eight markers with the most significant p values were selected for each comparison 646 
between classes. Average expression across all non-lymphoid cells is shown. h. Surface expression of 647 
immunotherapy targets CTLA-4 (CD152) and PD-L1 (CD274) in different myeloid compartments of 648 
healthy donors and AMLs. i. Scatter plot depicting the average expression of all surface markers in 649 
healthy HSCs & MPPs (x-axis) and leukemic cells projecting to the HSC & MPP cell state (y-axis). 650 
Cells from four patients where the HSC/MPP class was covered with more than 20 cells are included 651 
(AML1, AML2, AML3 and AML Q6). P-values for differential expression were computed using 652 
DESeq2 and are encoded in the symbol size. Inter-patient variability is color-coded, see Methods, section 653 
‘Differential expression testing between experimental groups and estimation of inter-patient 654 
variability’ for details. See also Supplementary Table 6. For all data shown, bone marrow mononuclear 655 
cells from iliac crest aspirations from healthy adult donors or AML/APL patients were used. 656 
  657 
 658 
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 659 
Figure 5. Data-driven definition of gating schemes for rare cell types. a. Purity and recall of 660 
published expert or data driven gating schemes for cell populations within CD34+ and CD34- 661 
compartments. b. Different CD4+ T cell subsets are highlighted (central and right panels) and the 662 
corresponding distributions of cytotoxicity scores for every subset are displayed (left panel). c. 663 
Hypergate  (Becht et al., 2019) was used to identify a gating scheme for the prospective isolation of 664 
cytotoxic CD4+ T cells. The suggested gate is highlighted on a plot depicting the surface protein 665 
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expression of CD4 and CD28 as identified from pre-gated CD45+CD3+ Abseq data. Yellow and green 666 
dots correspond to cytotoxic T cells located within and outside of the selected gate, respectively. Red 667 
dots correspond to other cells located inside the selected gate (false positives), blue dots correspond to 668 
other CD4+ cells located outside the gate and grey dots to other cells located outside the gate. Pie charts 669 
indicate precision and recall. d. FACS plot displaying the expression of CD4 and CD28 on pre-gated 670 
CD45+CD3+ cells, and respective gates (yellow dots correspond to CD4+CD28- cytotoxic T cells and 671 
blue dots to other CD4+CD28+ T cells.  e. Boxplot depicting the expression of surface markers with 672 
differential expression between CD4+ cytotoxic T cells and other CD4+ subsets, as identified from 673 
Abseq data (left panel) and validated with FACS using the gating strategy from d (right panel). f. Paired 674 
scatter plot depicting the mean fluorescence intensities (MFI) of CD127 and CD7 in CD4+CD28- 675 
cytotoxic CD4+ T cells (yellow) and CD4+CD28+ other CD4+ T cells (blue) in bone marrow samples 676 
from healthy, AML and MDS patients. n=6, 6 and 9 patients in the respective groups. g. Heatmap 677 
depicting gene expression of cytotoxicity-related genes in FACS-sorted CD4+CD28- and CD4+CD28+ 678 
cells, as quantified by qPCR (n= 4 patients) h-k. Analogous to b-e, but with the identification and use of 679 
a CD11a-CD13+ gate for the isolation of CXCL12+ mesenchymal stem cells (MSC). Orange and green 680 
dots correspond to MSCs located within and outside of the selected gate, respectively. Purple dots 681 
correspond to other cells located outside the gate. l. Representative FACS histogram plots showing 682 
surface expression of well-known MSC surface markers, which were not contained in the original 97 683 
antibody Abseq panel. m. Heatmap depicting gene expression of common hematopoietic and MSC 684 
signature genes in FACS sorted CD11a-CD13+ MSCs and cells outside the gate, as quantified by qPCR 685 
(n= 3 patients). No significance = ns, P<0.05 *, P<0.01 **, P<0.001 ***, P<0.0001 ****. CD4+CD28- and 686 
CD4+CD28+ paired cell populations within the same BM donors from different disease entities were 687 
compared using paired two-tailed t-test. For all experiments shown, bone marrow mononuclear cells from 688 
iliac crest aspirations from healthy adult donors, AML or MDS patients were used. 689 
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 704 
Figure 6. Data-driven definition of gating schemes for hematopoietic stem and progenitor cells. a. 705 
UMAP depicting all CD34+ HSPCs cells from one healthy young individual. Clustering and cluster 706 
annotation were performed exclusively on this individual to achieve a higher subtype resolution of stem 707 
cells (‘HSCs’), immature progenitors with lymphoid/myeloid transcriptomic priming (‘Lympho-708 
myeloid progenitros’) and immature progenitors with erythroid/megakaryocytic transcriptomic priming 709 
(‘MPP’). See panel b for color scheme. b. Decision tree using surface marker expression from the Abseq 710 
data in order to classify cells into cell types. See Methods, section ‘Data-driven identification of gating 711 
schemes’ and main text for details.  c. UMAP highlighting cell type classification obtained from the 712 
decision tree. Please take note that colors now correspond to putative ‘gates’ applied to the expression 713 
levels of the 12 markers shown in panel b, and not to cell types defined from single-cell multi-omics 714 
data. d. UMAP highlighting classification obtained from a decision tree recapitulating the classical 715 
gating scheme used in the field (Doulatov et al., 2010), i.e. HSC: CD34+CD38-CD45RA-CD90+; MPP:  716 
CD34+CD38-CD45RA-CD90-; MLP: CD34+CD38-CD45RA+; CMP: CD34+CD38+CD10-CD45RA-717 
Flt3+; MEP: CD34+CD38+CD10-CD45RA-Flt3-; GMP: CD34+CD38+CD10-CD45RA+Flt3+; pro-B: 718 
CD34+CD38+CD10+. Since CD135 was not part of the Abseq panel, the expression of Flt3 was 719 
smoothened using MAGIC (van Dijk et al., 2018) for this purpose. Automatic thresholding was used to 720 
identify marker-positive cells, see Methods, section ‘Thresholding of surface marker expression’ for 721 
details. e. Boxplot depicting the intra-gate dissimilarity for cell classification with panels from Doulatov 722 
et al., 2010 (panel d), the gating scheme from Karamitros et al., 2018 (Figure S9), the in-silico created 723 
‘consensus gating’ scheme combing Doulatov et al., 2010, Karamitros et al., 2018 and Psaila et al., 2016 724 
(Figure S9) and the data-driven gating scheme (panel c). Intra-gate dissimilarity is defined as one minus 725 
the average Pearson correlation of normalized gene and surface antigen expression values of all cells 726 
within the gate. P-values are from a two-sided Wilcoxon test. f. Implementation of FACS gating scheme 727 
suggested by the decision tree from panel b. g. UMAP display of mRNA expression of n=630 CD34+ 728 
HSPCs from an indexed single-cell Smart-seq2 experiment where the expression of the 12 surface 729 
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markers (for the data-defined gating) was recorded using FACS. Left panel: Clusters are highlighted 730 
based on gene expression, see Supplementary Note 8 for details. Right panel: Classification of the cells 731 
based on FACS markers using the data-defined gates shown in panel f. h. Precision of the classification 732 
scheme shown in panel b, computed on the training data (i.e. the Abseq dataset) and the test data (i.e. 733 
the Smart-seq2 dataset). Precision was computed per gate as the fraction of correctly classified cells. For 734 
comparison with the Doulatov gating scheme, the dataset from Velten et al., 2017 was used. P-values 735 
are from a two-sided Wilcoxon test. For all data shown, bone marrow mononuclear cells from iliac crest 736 
aspirations from healthy adult donors were used. 737 
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 751 
Figure 7. Systematic integration of single-cell genomics, flow cytometry and functional data via 752 
NRN. a. Illustration of the concept. See main text and methods for details. b. Projection of indexed 753 
Smart-seq2 data onto a reference UMAP. Single cells with recorded (‘indexed’) FACS measurements of 754 
surface markers (data-defined classification panel or semi-automated panel) were subjected to Smart-755 
Seq2 based scRNA-seq. The commonly used surface markers were used to project cells via NRN onto 756 
the Abseq UMAP (see Methods, section ‘The NRN algorithm for integrating FACS and single cell 757 
genomics data’ for details). Take note that only FACS data was used for the projection in UMAP space, 758 
whereas colors depict cell types identified from RNA expression. c. Projection of indexed Smart-seq2 759 
data onto reference pseudotime trajectories. The same single cells were projected onto the differentiation 760 
trajectories shown in Figure 3a using FACS measurements only. The expression of differentiation 761 
markers was then determined from available Smart-seq2 data and smoothened over projected 762 
pseudotime values (red lines). For comparison, the expression values of the same genes were determined 763 
from Abseq data and smoothened over the reference pseudotime values (blue lines). The selected genes 764 
correspond to the five genes with the strongest statistical association to the respective trajectory. d. 765 
Projection of indexed single-cell culture data onto a reference UMAP. Single cells with available FACS 766 
measurements of 12 surface markers (data-defined classification panel from Figure 5) were projected 767 
onto the UMAP defined by Abseq via NRN. Single cells were seeded into culture medium supporting 768 
the formation of erythroid, megakaryocytic and distinct myeloid cell types, see Methods, section ‘Single-769 
cell index cultures’ for details. The ability of single cells to give rise to erythroid cells and neutrophils 770 
were highlighted on the UMAPs. Colony size as well as the total number of cell types per colony are 771 
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highlighted both on the UMAP and on projected pseudotime. e. Analysis of cell type combinations in 772 
n=397 colonies. For any combination of Erythroid (Ery), Neutrophil (Neutro), Monocytic (Mono), 773 
Eosinophil or Basophil (EoBaso), Lymphoid (Lympho), Megakaryocytic (Mk) and Dendritic (cDC1 and 774 
cDC2) potential, the scatter plot depicts the fraction of colonies containing this exact combination of cell 775 
types (y-axis) and the theoretical fraction of colonies containing this exact combination of cell types 776 
under the assumption that cell fates are independently realized with the same marginal probabilities (x-777 
axis). Significance was calculated from a binomial test and is color-coded. These analyses do not exclude 778 
that other combinations of fates are not biologically selected as well, i.e. absence of evidence does not 779 
constitute evidence for absence. f. PCA analysis of colony compositions. g. Distribution of colonies with 780 
frequent combinations of cells types in the projected UMAP space. Erythromyeloid: Only containing 781 
EoBaso, Mk and/or Ery cells. Lymphomyeloid: All other combinations.  For all data shown, bone 782 
marrow mononuclear cells from iliac crest aspirations from healthy adult donors were used.  783 
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SUPPLEMENTARY FIGURES 826 
 827 

 828 
Figure S1. A proteo-genomic single-cell map of 97 surface markers in human bone marrow. 829 
Related to Figure 1. Dot plot depicting the expression of all surface markers by cell type. Color indicates 830 
mean normalized expression, point size indicates the fraction of cells positive for the marker. Automatic 831 
thresholding was used to identify positive cells, see Methods, section ‘Thresholding of surface marker 832 
expression’ for details. The panel on the right depicts the fraction of total reads obtained for each marker 833 
as a proxy for absolute expression levels. Bottom panel illustrates the distribution of CD34+ expression 834 
across populations, similar plots can be generated for any marker using the Abseq-App.  835 
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 836 
Figure S2. Representative gating schemes used for the enrichment of CD34+ cells. Related to Figure 837 
1. For additional information on cell sorting setups, see Methods, section ‘Cell sorting for Abseq’. 838 
 839 
 840 

 841 
Figure S3. Sequencing statistics. Related to Figure 1. Plots depict a. the number of cells passing filters. 842 
Note that samples AML Q1-Q6 and APQ1-6 were multiplexed (hashed) into one experiment. b-c. the 843 
sequencing depth on the surface and mRNA level and d-e. the number of surface and mRNA molecules 844 
per cell observed. Note that targeted mRNA sequencing was performed as described in the main text. 845 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.03.18.435922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435922
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 846 

 847 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.03.18.435922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435922
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Figure S4. A single-cell proteo-genomic map of 197 surface markers in human bone marrow and 848 
blood. Related to Figure 1. a. UMAP projection on the original coordinate system from the healthy 849 
dataset (see Supplementary Note 7). Cells are colored by the mapped cell type. b. UMAP colored by 850 
sample origin (blood and bone marrow). c. Violin plot depicting the expression of the bone marrow 851 
homing receptor CXCR4 on matching cell types of the blood and bone marrow. d. Dot plot depicting 852 
the expression of all surface markers by cell type. Color indicates mean normalized expression, point 853 
size indicates the fraction of cells positive for the marker. Automatic thresholding was used to identify 854 
positive cells, see Methods, section ‘Thresholding of surface marker expression’ for detail. For all data 855 
shown, bone marrow mononuclear cells from iliac crest aspirations or peripheral blood mononuclear 856 
cells from healthy adult donors were used. 857 
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 890 
Figure S5. Markers of cell types and biological processes. Related to Figure 2. a. Heatmap 891 
investigating if the fraction of variance explained by the different covariates is correlated to antigen-892 
level technical covariates. P values were calculated from Pearson correlation using a t-distribution. b-d. 893 
Dot plot depicting the expression of the 10-20 surface markers with the highest fraction of variance 894 
explained by B cell subtype (b), myeloid subtype (c) and NK cell subtype (d). Color indicates mean 895 
normalized expression, point size indicates the fraction of cells positive for the marker. Automatic 896 
thresholding was used to identify positive cells, see Methods, section ‘Thresholding of surface marker 897 
expression’ for details. e. UMAPs highlighting the scores for various biological processes, as computed 898 
using the gene lists from Supplementary Table 9. f. Bar charts depicting the markers with the highest 899 
fraction of variance explained by cytotoxicity score (pink), stemness score (red) and S-phase score (dark 900 
red), and the corresponding model coefficients. See Supplementary Table 9 for the gene lists used for 901 
calculating these scores. g. Pseudotime of all 97 surface proteins for the five trajectories (B cells, cDCs, 902 
Monocytes, Late erythroid progenitor and Megakaryocyte progenitor). Markers were clustered 903 
according to their expression pattern using tradeseq (van den Berge, 2020). The density plots indicate 904 
the differentiation stages along the pseudotime. 905 
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 906 
Figure S6. Surface markers associated with HSC and B cell differentiation. Related to Figure 2 and 907 
3. a. top panels: Line plots depicting normalized CD38, CD10, CD11c and CD34 surface protein 908 
expression (Abseq data) smoothened over the different pseudotime trajectories illustrated in Figure 3a. 909 
bottom panels: UMAP display of CD34+ HSPCs, highlighting the surface expression of each 910 
corresponding marker. b. Left panel: gating strategy for subsetting CD71+ erythroid/megakaryocytic 911 
HSPCs into CD41+ megakaryocyte progenitors and CD326+ erythroid progenitors. Right panel: UMAP 912 
display of CD34+ cells from a healthy donor analyzed with a 12-color FACS panel focused 913 
erythroid/megakaryocytic differentiation (see Supplemental Table S8). Surface expression values were 914 
used as input for UMAP dimensionality reduction. Feature plots of CD71, CD326 and CD41 expression 915 
highlight the bifurcation within CD71+ HSPCs. c. Culture outcome categories described in Figure 3g 916 
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were analyzed with regards to their CD326, CD11a or Tim3 surface expression. Wilcoxon rank sum test 917 
was used for comparison of individual groups and significance levels between groups are depicted. d-e. 918 
Like Figure 3 d-e, except that CD98 expression is shown. f. UMAP display of CD34+ cells from five 919 
healthy donors analyzed with a 12-color FACS stem and progenitor panel (see Supplemental Table S8). 920 
Surface expression values were used as input for UMAP dimensionality reduction. Left panel shows 921 
CD98 surface expression, right panel shows assignment of individual gates to the UMAP according to 922 
the following gating strategy; HSC: CD34+CD38-CD45RA-CD90+; MPP:  CD34+CD38-CD45RA-923 
CD90-; MLP: CD34+CD38-CD45RA+; MEP: CD34+CD38+CD10-CD45RA-; GMP: 924 
CD34+CD38+CD10-CD45RA+; CLP: CD34+CD38+CD10+CD45RA+; other: cells that did not fall 925 
into any of the mentioned gates. g. Boxplots showing CD98 expression in individual cell populations 926 
mentioned in f. h. Boxplots showing co-expression of CD98 and CD38 surface markers in respective 927 
cell populations. i. Like Figure 3a, UMAP plot depicting the pseudotime score along the B cell 928 
differentiation trajectory emanating from CD34+ HSCs & MPPs and Lympho-myeloid progenitors. j-p. 929 
Line plots depicting surface protein expression (Abseq data) representative for different indicated 930 
biological processes smoothened over the B cell pseudotime trajectory. For all experiments shown, 931 
human adult bone marrow mononuclear cells from iliac crest aspirations were used. 932 
 933 
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 934 
Figure S7. Changes in surface protein expression and cell type abundance induced by ageing and 935 
leukemia. Related to Figure 4. a. Frequency of selected cell types in young and aged individuals. Only 936 
the cell types with the most significant changes are shown, see Methods, section ‘Changes in cell type 937 
abundance between experimental groups’. b. UMAP display of all AML patients. Data were integrated 938 
using scanorama and MOFA, as for the main dataset (see Method ‘Data analysis of Abseq data’ and 939 
‘MOFA integration, Clustering, and identification of cell type markers’). c. For every myeloid cell state 940 
with sufficient representation of at least 20 cells in at least three patients, surface marker expression in 941 
AML (x-axis) is compared to surface marker expression in healthy individuals (y-axis). AML cell types 942 
were defined using a projection as in main Figure 4d, e. P-values for differential expression were 943 
computed using DESeq2 and are encoded in the symbol size. Inter-patient variability is color-coded, see 944 
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Methods, section ‘Differential expression testing between experimental groups and estimation of 945 
inter-patient variability’ for details (n=indicates the number of patients included). See also 946 
Supplementary Table 6.  d. Heatmap depicting cell state specific gene expression in leukemic and 947 
healthy individuals. Five most significantly overexpressed markers were identified for each cell state, 948 
using only leukemic cells. The expression of all markers selected is shown and compared to their 949 
expression in the corresponding healthy cell states. e. Correlation in surface marker expression between 950 
cells from aged, young and leukemic individuals, similar to main Figure 4a. Correlations are shown for 951 
matching cell types from young versus aged individuals, from healthy individuals versus AML patients, 952 
as well as for cell types versus the transcriptomically most similar cell type available in the dataset. f. 953 
Boxplot depicting the expression of CD152 and CD274 in different cell states from different patients. 954 
Only populations covered with at least 50 cells in a given patient are included. See also main Figure 4h. 955 
For all data shown, bone marrow mononuclear cells from iliac crest aspirations from healthy adult donors 956 
or AML/APL patients were used. 957 
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 964 
Figure S8. Comparison of data-defined and state-of-the-art (expert-defined) gating schemes. 965 
Related to Figure 5. a. Performance of different methods used for the definition of gates of CD34- 966 
populations. Gates for each cell type were defined from CD34- Abseq data using the following strategies: 967 
Black dots correspond to gates that were manually set by an expert based on the current state of the art 968 
for purifying the cell type of interest (Supplementary Table 7). Yellow dots correspond to gate that were 969 
set using the hypergate algorithm (Becht et al., 2019). Violet dots correspond to gates that were set using 970 
a decision tree. light-blue dots correspond to gates that were set using a decision tree with pre-defined 971 
thresholds, see Methods, section ‘Data-driven identification of gating schemes’. For each gating 972 
scheme, precision (purity) and recall were calculated. b. Illustration of the calculation of precision 973 
(purity) and recall for class switched memory B cells. Orange and blue dots on the UMAP correspond 974 
to class switched memory B cells located within and outside of the selected gate, respectively. Green 975 
dots correspond to other cells located inside the selected gate (false positives) and grey dots to other cells 976 
located outside the gate (true negatives). Pie charts indicate precision (purity) and recall. Top panel: An 977 
expert defined state of the art gating scheme (CD3-CD19+CD27+IgD-) is shown. Bottom panel: A data 978 
defined gating scheme (CD80+CD21+IgG+IgD-) is shown. c. Like a, except that CD34+ populations 979 
are shown. d. Like b, except that gating schemes to define plasmacytoid dendritic cell progenitors are 980 
shown. 981 
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 982 

 983 
Figure S9:  Evaluation of different gating schemes. Related to Figure 6. a. UMAP highlighting 984 
classification obtained from the gating scheme described by Karamitros et al., 2018, i.e. HSC: 985 
CD34+CD38-CD10-CD45RA-CD90+; MPP:  CD34+CD38-CD10-CD45RA-CD90-; 986 
LMPP:CD34+CD38-CD10-CD45RA+; MLP: CD34+CD38-CD10+; MEP: CD34+CD38+CD10-987 
CD45RA-CD123-; CMP: CD34+CD38+CD10-CD45RA-CD123+; GMP: CD34+CD38+CD10-988 
CD45RA+CD123+; B-NK: CD34+CD38+CD10+. b. UMAP highlighting classification obtained from 989 
a consensus scheme combining the schemes of Doulatov et al., Karamitros et al. and Psaila et al.,  HSC: 990 
CD34+CD38-CD10-CD45RA-CD90+; MPP:CD34+CD38-CD10-CD45RA-CD90-; 991 
LMPP:CD34+CD38-CD10-CD45RA+; MLP: CD34+CD38-CD10+; CD71-CD41- MEP: 992 
CD34+CD38+CD10-CD45RA-FLT3-ITGA2B-TFRC-; CD71+CD41- MEP: CD34+CD38+CD10-993 
CD45RA-FLT3-ITGA2B-TFRC+; CD71+CD41+ MEP: CD34+CD38+CD10-CD45RA-FLT3-994 
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ITGA2B+; CMP: CD34+CD38+CD10-CD45RA-FLT3+; GMP: CD34+CD38+CD10-CD45RA+; B-995 
NK: CD34+CD38+CD10+. The marker CD135, CD41, CD71 were not part of the 97 Abseq panel. The 996 
expression of the corresponding genes, FLT3, ITGA2B and TFRC, were smoothened using MAGIC 997 
respectively (van Dijk et al., 2018). c. UMAP of additional CD34+ cells with specific enrichment of 998 
CD34+ CD38- cells, projected on the original coordinate system, colored by mapped cell types d. Same 999 
as c but colored by immunophenotypic classification obtained from a consensus scheme recapitulating 1000 
the scheme of Karamitros et al. and and Psaila et al. (see above). e. Separation of functional potential by 1001 
the data driven and the literature ‘consensus gating’ scheme. Single cells were sorted according to the 1002 
two gating schemes and cultured for 19 days. Colonies were scored as Ery/Mk if they contained at least 1003 
5 erythrtoid or megakaryocytic cells, and as Ly/My if they contained at least 5 cells of types Neutrophil, 1004 
cDC, Monocyte, or B/NK. Unipotent: Only one of these cell types was formed with at least 5 cells; 1005 
oligopotent: At least two of these cell types were formed. Only gates for which at least 9 colonies were 1006 
observed are shown. f. Mutual information (in nats) between the gate identity and the ability to form any 1007 
of the cell types, or the total mutual information across all cell types. 1008 
 1009 
 1010 

 1011 
Figure S10. Projection and classification of cytometry data using a single-cell proteo-genomic 1012 
reference. Related to Figure 7. a. Distribution of normalized, scaled expression values of Tim3 (left 1013 
panel) and CD123 (central panel) measured by scRNA-seq, Abseq, and FACS. Right panel: Scatter plot 1014 
depicts the dissimilarity between the distribution of expression values measured by FACS, and the 1015 
distribution measured by scRNA-seq (x-axis) or Abseq (y-axis) as quantified using Kolmogorov-1016 
Smirnov distance. Data for all markers included in the panel from main Figure 6f is shown. b-d. 1017 
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Comparison of data integration strategies. Smart-seq2 data and Abseq data were integrated with five 1018 
different strategies. RNA-based: Integration by Seurat v3, based on gene expression (transcriptome). 1019 
Random: Random selection of ten nearest neighbors. Others: Surface marker-based integration using 1020 
NRN, using defined sets of surface markers (Classification panel, Semi-automated panel: see Table S8. 1021 
Literature panel: CD34, CD38, CD45RA, CD90, CD10, CD135/Flt3, CD49f.). For every cell projected 1022 
on the UMAP, the ten nearest neighbors in projected UMAP space were identified. Subsequently, the 1023 
mean Euclidean distance between their location in a gene expression-based PCA space (Smart-seq2) was 1024 
computed. b. Boxplot summarizing the distance across data integration strategies. c. Hexagonal plot 1025 
summarizing the projection accuracy for different regions of the UMAP. d. Boxplots stratified by cell 1026 
type demonstrate that projection using the semi-automated panel performs close to an RNA-based 1027 
integration in most cases.  1028 
 1029 
 1030 
 1031 
 1032 
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