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ABSTRACT

Single-cell genomics has transformed our understanding of complex cellular systems. However,
excessive costs and a lack of strategies for the purification of newly identified cell types impede their
functional characterization and large-scale profiling. Here, we have generated high content single-cell
proteo-genomic reference maps of human blood and bone marrow that quantitatively link the expression
ofup to 197 surface markers to cellular identities and biological processes across all major hematopoietic
cell types in healthy aging and leukemia. These reference maps enable the automatic design of cost-
effective high-throughput cytometry schemes that outperform state-of-the-art approaches, accurately
reflect complex topologies of cellular systems, and permit the purification of precisely defined cell states.
The systematic integration of cytometry and proteo-genomic data enables measuring the functional
capacities of precisely mapped cell states at the single-cell level. Our study serves as an accessible
resource and paves the way for a data-driven era in cytometry.

INTRODUCTION

Single-cell transcriptomic technologies have revolutionized our understanding of tissues (Giladi and
Amit, 2018; Stuart and Satija, 2019; Tanay and Regev, 2017). The systematic construction of whole-
organ and whole-organism single-cell atlases has revealed an unanticipated diversity of cell types and
cell states, and has provided detailed insights into cellular development and differentiation processes
(Baccin et al., 2020; Han et al., 2018, 2020; Schaum et al., 2018). However, strategies for the prospective
isolation of cell populations, newly identified by single-cell genomics, are needed to enable their
functional characterization or therapeutic use. Furthermore, single-cell genomics technologies remain
cost-intense and scale poorly, impeding their integration into the clinical routine.

Unlike single-cell transcriptomics, flow cytometry offers a massive throughput in terms of samples and
cells, is commonly used in the clinical routine diagnostics (Van Dongen et al., 2012) and remains
unrivaled in the ability to prospectively isolate live populations of interest for downstream applications.
However, flow cytometry provides low dimensional measurements and relies on predefined sets of
surface markers and gating strategies that have evolved historically in a process of trial and error. Hence,
single-cell transcriptomics (scRNA-seq) approaches have demonstrated that flow cytometry gating
schemes frequently yield impure or heterogeneous populations (Paul et al., 2015; Velten et al., 2017),
and flow strategies for the precise identification of cell types defined by scRNA-seq are lacking.
Conversely, the precision and efficiency of commonly used cytometry gating schemes are largely
unknown, and the exact significance of many surface markers remains unclear. Together, these findings
highlight a disconnect between single-cell genomics-based molecular cell type maps and data generated
by widely used cytometry assays.

The differentiation of hematopoietic stem cells (HSCs) in the bone marrow constitutes a particularly
striking example for this disconnect (Haas et al., 2018; Jacobsen and Nerlov, 2019; Laurenti and
Gottgens, 2018; Loughran et al., 2020). The classical model of hematopoiesis, which is mainly based on
populations defined by flow cytometry (Akashi et al., 2000; Doulatov et al., 2010; Kondo et al., 1997)
has recently been challenged in several aspects by single-cell transcriptomic (Giladi et al., 2018;
Nestorowa et al., 2016; Paul et al., 2015; Tusi et al., 2018; Velten et al., 2017), functional (Notta et al.,
2016; Perié et al., 2015) and lineage-tracing (Rodriguez-Fraticelli et al., 2018) approaches. These studies
revealed that hematopoietic lineage commitment occurs earlier than previously anticipated, that putative
oligopotent progenitors isolated by FACS consist of heterogeneous mixtures of progenitor populations,
and that lineage commitment is most accurately represented by a continuous process of differentiation
trajectories rather than by a stepwise differentiation series of discrete progenitor populations (Haas,
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2020; Haas et al., 2018; Jacobsen and Nerlov, 2019; Laurenti and Géttgens, 2018). The frequency of
functionally oligopotent progenitors in immunophenotypic hematopoietic stem and progenitor gates still
remains controversial (Karamitros et al., 2018; Psaila et al., 2016; Velten et al., 2017). These
discrepancies have contributed to conflicting results between studies that employ scRNA-seq for the
definition of progenitor populations (Giladi et al., 2018; Paul et al., 2015; Pellin et al., 2019; Tusi et al.,
2018; Velten et al., 2017) and studies that use FACS (Akashi et al., 2000; Kondo et al., 1997; Pei et al.,
2017). As a consequence, flow-based assays that accurately reflect the molecular and cellular complexity
of the hematopoietic system are urgently needed.

Recently, methods to simultaneously measure mRNA and surface protein expression in single cells have
been developed (Shahi et al., 2017; Stoeckius et al., 2017). Here, we demonstrate that ultra-high content
single-cell proteo-genomic reference maps, alongside appropriate computational tools, can be used to
systematically design and analyze cytometry assays that accurately reflect scRNA-seq based molecular
tissue maps at the level of cell types and differentiation states. For this purpose, we have generated
proteo-genomic datasets encompassing 97-197 surface markers across 122,004 cells representing the
cellular landscape of young, aged and leukemic human bone marrow and blood, as well as all states of
hematopoietic stem cell differentiation. We demonstrate how such data can be used in an unbiased
manner to evaluate and automatically design cytometry gating schemes for individual populations and
entire biological systems without prior knowledge. We show that, compared to existing approaches, such
optimized schemes are superior in the identification of cell types and more accurately reflect molecular
cell states. Projecting datasets from malignant hematopoiesis on our reference atlases enables the fine-
mapping of the exact stage of differentiation arrest in leukemias, the identification of leukemia-specific
surface markers and an unsupervised classification of disease states. Finally, we demonstrate how such
data resources can be used to project low-dimensional cytometry data on single-cell genomic atlases to
enable functional analysis of precisely defined states of cellular differentiation. Our data resource and
bioinformatic advances enable the efficient identification and isolation of any molecularly defined cell
state from blood and bone marrow while laying the grounds for reconciling flow cytometry and single-
cell genomics data across human tissues.

RESULTS

A comprehensive single-cell proteo-genomics reference map of young, aged and malignant bone
marrow

To establish a comprehensive single-cell transcriptomic and surface protein expression map in the human
bone marrow (BM), we performed a series of Abseq experiments, in which mononuclear BM cells from
hip aspirates were labelled with 97-197 oligo-tagged antibodies, followed by targeted or whole
transcriptome scRNAseq on the Rhapsody platform (Figure 1a). For targeted single-cell transcriptome
profiling, we established a custom panel, consisting of 462 mRNAs covering all HSPC differentiation
stages, cell type identity genes, mRNAs of surface receptors and additional genes that permit the
characterization of cellular states. These genes were systematically selected to capture all relevant layers
of RNA expression heterogeneity observed in this system (Supplementary Note 1 and Supplementary
Table 1). Whole transcriptome single-cell proteo-genomics confirmed that no populations were missed
due to the targeted nature of the assay (Supplementary Note 2). Using this panel, in combination with
97 surface markers (Supplementary Table 2), we analyzed the BM of three young healthy donors, three
aged healthy donors, and three acute myeloid leukemia (AML) patients at diagnosis (Figures la, S1,
Supplementary Table 3). For samples from healthy donors, CD34+ cells were enriched to enable a
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detailed study of hematopoietic stem cell (HSC) differentiation (Figure S2). For samples from AML
patients, CD3+ cells were enriched in some cases to ensure sufficient coverage of T cells.

Since single-cell proteo-genomic approaches are not commonly performed at this level of antibody
multiplexing, we designed a series of control experiments. First, we performed matched Abseq
experiments in the presence or absence of antibodies to ensure that highly multiplex antibody stains do
not impact on the transcriptome of single cells (Supplementary Note 3). We further performed a series
of AbSeq experiments on fresh and frozen samples to demonstrate that the freeze-thawing process has
no major impact on the data (Supplementary Note 3). Finally, we evaluated the sequencing requirements
for optimal cell type classification in high-parametric single-cell proteo-genomic experiments
(Supplementary Note 4). In the main reference data set, 70,017 high-quality BM cells were profiled with
combined RNA and high-parametric surface protein information, and an average of ~7500 surface
molecules per cell were detected (Figure S3). Following data integration across experiments and
measurement modalities, we identified 45 cell types and cell stages covering the vast majority of
previously described hematopoietic cell types of the bone marrow and peripheral blood, including all
stages of HSC differentiation in the CD34+ compartment, all T cell and NK cell populations of the CD3+
and CD56+ compartments, several dendritic cell and monocyte subpopulations from the CD33+
compartment and all major B cell differentiation states across CD10+, CD19+ and CD3g8"e"
compartments (Figures 1b,c Supplementary Note 5, Supplementary Table 4). In addition, poorly
characterized populations, such as cytotoxic CD4+ T cells and mesenchymal stem or stromal cells
(MSCs) are covered. Cells from young and aged bone marrow occupied the same cell states in all
individuals, whereas cell states in AML differed (Figure 1b and see below). Importantly, the combined
RNA and surface protein information provided higher resolution and revealed cell types that are not
readily identified by one of the individual data layers alone (Supplementary Note 6).

Besides our main reference dataset, we have generated ‘query‘ single-cell proteo-genomic datasets
which are displayed in the context of the main reference (Supplementary Note 7). These include, first,
the analyses of healthy BM and matched peripheral blood (PB) samples using a 197 plex antibody panel
to query the expression of additional surface markers in the context of our reference (Figure S4,
Supplementary Table 2). Second, the analyses of healthy BM analyzed with a 97 plex antibody panel in
combination with whole transcriptome profiling to query any gene’s expression in the space defined by
our reference (Supplementary Note 2). Third, the profiling of the CD34°CD38 bone marrow
compartment with a 97 plex antibody panel to provide higher resolution of immature HSPCs (see below,
Figure SO9c, d) and fourth, a cohort of 12 AML patients (see below, Figure 4). To make our
comprehensive resource accessible, we developed the Abseq-App, a web-based application that permits
visualization of gene and surface marker expression, differential expression testing and the data-driven
identification of gating schemes across all datasets presented in this manuscript. A demonstration video
of the app is available in the supplement (Supplemental Video S1). The Abseq-App is accessible at:
https://abseqapp.shiny.embl.de/.

Systematic association of surface markers with cell type identities, differentiation stages and
biological processes

While surface markers are widely used in immunology, stem cell biology and cancer research to identify
cell types, cell stages and biological processes, the exact significance of individual markers remains
frequently ambiguous. To quantitatively link surface marker expression with biological processes, we
assigned each cell in our data set to its respective cell type, and determined its differentiation stage, its
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stemness score, its cytotoxicity score, its current cell cycle phase as well as technical covariates (see
Methods and below). Moreover, we included covariates representing unknown biological processes that
were defined in an unsupervised manner using a factor model. Non-technical covariates were not
affected by marker expression level (Figure S5a, Methods). For each surface marker, we then quantified
the fraction of variance of expression that is determined by any of these processes (Figure 2a). This
model identified markers that represent cell type identities or differentiation stages, as well as stemness,
cytotoxicity and cell cycle properties (Figures 2b-d and S5b-f).

To characterize novel markers identified by this analysis, we initially focused on the evaluation of
surface molecules that specifically mark distinct stages of HSC differentiation, since a lack of specific
markers currently impedes the accurate representation of lineage commitment by flow cytometry (Notta
et al., 2016; Paul et al., 2015; Pellin et al., 2019; Tusi et al., 2018; Velten et al., 2017). For this purpose,
we performed pseudotime analyses within the CD34+ HSPC compartment and identified surface
markers that correlate with the progression of HSCs towards erythroid, megakaryocytic, monocyte,
conventional dendritic cell or B cell differentiation trajectories (Figure 2d, 3a, S5g and see Methods). Of
note, the monocyte trajectory also includes neutrophil progenitor stages, but mature neutrophils are not
included in the datasets due to the use of density gradient centrifugation of samples. Moreover trajectory
analyses were not performed for plasmacytoid dendritic and eosinophil/basophil lineages, due to a low
number of intermediate cells impeding an unanimous identification of branch points. Pseudotime
analyses quantified the exact expression dynamics of many well-established markers, such as CD38 as
a pan-differentiation marker, as well as CD10 and CD1Ic as early B cell and monocyte-dendritic cell
lineage commitment marker, respectively (Figures 2d, and S6a). Importantly, our analyses revealed
novel surface markers that specifically demarcate distinct stages of lineage commitment, including
CD326, CDl11a and Tim3 (Figure 2d and 3). To confirm the high specificity of these markers for
erythroid and myeloid commitment, respectively, we used FACS-based indexing of surface markers
coupled to single-cell RNAseq (“index scRNAseq”, see also Supplementary Note 8), or coupled to
single-cell cultures (“index cultures”) (Figure 3b). As suggested by our proteo-genomic single-cell data,
CD326 expression was associated with molecular priming and functional commitment into the erythroid
lineage (Figure 3c-g and S6b, c). In contrast, Tim3 and CDI1la were identified as pan-myeloid
differentiation markers and were associated with transcriptomic priming and functional commitment into
the myeloid lineage (Figures 3c, h-o and S6c). Finally, CD98 was identified as a novel pan-
differentiation marker of HSCs, which we confirmed by classical flow cytometry (Figures 2d, and S6d-
h). Beyond the progression of HSCs to lineage committed cells, we also analyzed the surface marker
dynamics throughout B cell differentiation, allowing us to identify markers specific to their lineage
commitment, maturation, isotype switching and final plasma cells generation (Figure S6i-p).

Together, our model provides a global and quantitative understanding of how well cell type identities,
differentiation stages and biological processes are related to the expression of individual surface markers.
A comprehensive overview of surface markers associated with these processes is depicted in the
supplement (Supplementary Table 5, Figure S5).

Adaptation of surface protein expression in healthy aging and cancer

To investigate the surface protein expression throughout healthy aging, we compared Abseq data of bone
marrow from young and aged healthy individuals. These analyses revealed that the expression of surface
molecules was highly similar across all BM populations between the age groups (Figures 4a, b,
Supplementary Table 6), suggesting unexpectedly stable and highly regulated patterns of surface protein
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expression that are only modestly affected by aging. While cell type frequencies were also only modestly
affected by aging, a significant accumulation of cytotoxic effector CD8+ T cells was observed (Figure
S7a, Fagnoni et al., 1996). Moreover, the expression of several immune regulatory molecules showed
age-related changes in surface presentation, including the death receptor FAS (CD95), the poliovirus
receptor (CD155) and the ICOS ligand (CD275) (Figure 4b). In particular, naive CD8+ and CD4+ T cell
subsets displayed an aging-associated decline of CD27 surface expression, a co-stimulatory molecule
required for generation and maintenance of long-term T cell immunity (Figures 4b, c, Peters et al., 2015).
Together these analyses suggest that the overall pattern of surface protein expression is widely
maintained upon healthy aging, whereas specific changes, most prominently in the surface presentation
of immune regulatory molecules, occur.

We next explored surface marker remodeling in AML, a blood cancer characterized by the accumulation
of immature, dysfunctional myeloid progenitors, also called blasts. While the cellular bone marrow of
healthy donors displayed highly similar topologies across 6 individuals, initial analysis of 3 AML
patients demonstrated that leukemic cells showed patient-specific alterations and a large degree of
inter-patient variability (Figure 1b). To develop a generically applicable workflow to interpret data
from hematological diseases in the context of our reference, we generated single-cell proteo-
genomics datasets from a total of 15 AML patients, covering six t(15;17) translocated acute
promyelocytic leukemias (APLs) and nine normal karyotype AMLs with NPM1 mutations, out of
which 4 patients carried an additional FLT3 internal tandem duplication (ITD) (Supplementary Table
3). While an unsupervised integration of these data primarily highlighted patient-to-patient
variability (Figure S7b), projecting cells onto our healthy reference enabled a fine-mapping of the
differentiation stages of leukemia cells (Figures 4d, Supplementary Note 7). Unsupervised
clustering of patients based on the relative abundancies of differentiation stages revealed three main
categories: ‘monocytic AMLs’ that displayed an extensive accumulation of blasts with classical
monocyte phenotype, APLs that were blocked in early and late promyelocyte states, and ‘immature
AMLs’ that showed high numbers of immature blasts resembling HSC, MPP, early lympho-myeloid
progenitor and early promyelocyte states (Figures 4e-f). In general, leukemic blasts retained many
features reminiscent of the cell stage they were blocked in (Figures S7c-e). Accordingly, differential
expression analyses revealed that many surface markers which distinguish the different AML states, also
mark their corresponding healthy counterparts, such as CD133 for immature AMLs or CD14 and CD11b
for monocytic AMLs (Figure 4g). This also translated into differential surface expression of potential
drug targets, such as PD-L1 (CD274) and CTLA4 (CD152) (Figure 4h, S7f), suggesting that the myeloid
differentiation program of the AML might be essential in the treatment choice of targeted immune
therapies.

By contrast, differential analyses between AML and healthy cells from the same differentiation stage
revealed markers specifically over-expressed in leukemic cells (Figure 4i, S7¢, Supplementary Table 6).
Interestingly, these analyses readily identified several previously described leukemia stem cell (LSC)
markers, including CD25, Tim-3, CD123 and CD45RA (Hanekamp et al., 2017), supporting the validity
of our approach. Quantifying the degree of inter-patient heterogeneity of each marker while accounting
for cell state, revealed that many known LSC markers strongly vary in their expression between patients
(Figure 41). Taken together, this workflow of projection to a well-annotated healthy reference in
combination with cell-state specific differential expression testing might become a standard in scRNA-
seq analyses of hematological diseases. Our computational routines are available online at
https://git.embl.de/triana/nrn.
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Data-driven isolation strategies and immunophenotypic characterization of rare bone marrow cell
populations

Gating strategies for flow cytometry have evolved historically in a process of trial and error. In particular,
the isolation of rare and poorly characterized cell subsets using flow cytometry remains challenging,
whereas commonly used gating schemes are not necessarily optimal in purity (precision) and efficiency
(recall). To tackle these problems, we explored different machine learning approaches for the data-driven
definition of gating schemes. For all populations in our dataset, gating schemes defined by machine
learning approaches provided higher precision (purity) if compared to classical gating schemes from
literature (Figure 5a, Figure S8, Supplementary Table 7). While different machine learning methods
tested achieved similar purities, gates defined by the hypergate algorithm (Becht et al., 2019) offered a
higher recall (Figure 5a, Figure S8).

To validate and demonstrate this approach, we focused on determining novel gating strategies for rare
and poorly characterized BM cell types, such as cytotoxic CD4+ T cells (Figure 5b and mesenchymal
stem or stromal cells (MSCs) (Figure 5h). Cytotoxic CD4+ T cells represent a rare T cell population
characterized by the expression of cytotoxicity genes typically observed in their well-characterized
CD8+ T cell counterparts (Szabo et al., 2019). While this cell type has been suggested to be involved in
several physiological and pathophysiological processes, no coherent gating strategy for their prospective
isolation exists (Takeuchi and Saito, 2017). Hypergate suggested that cytotoxic CD4+ T cells display an
immunophenotype of CD4+CD28-, and differential expression analyses of surface markers revealed that
cytotoxic CD4+ T cells express significantly lower levels of CD7, CD25, CD127 and CD197 if
compared to other CD4+ T cell subsets (Figure 5b-¢). Flow cytometric analyses of CD4+CD28- T cells
confirmed the expected immunophenotype in BM from healthy donors and patients with different
hematological cancers, suggesting a robust and efficient prospective isolation of this rare cell type
(Figure 5d-f). Finally, FACS-based sorting of CD4+CD28- T cells followed by gene expression analysis
confirmed the expression of cytotoxicity genes in this population (Figure 5g).

MSCs constitute a rare and heterogeneous group of cells in the bone marrow (Al-Sabah et al., 2020;
Frenette et al., 2013). While ex vivo-expanded MSCs have been phenotyped extensively, primary human
MSCs remain poorly characterized, in particular due to their extremely low frequency. In our dataset,
we captured a small number of heterogeneous MSCs, with one subset (MSC-1) expressing high levels
of the key bone marrow-homing cytokine CXCL12 (Figure 5h). Hypergate suggested CXCL12-
expressing MSCs to be most efficiently isolated by expression of CD13 and absence of CD11a (Figure
51). Indeed, flow cytometric analyses of CD13+CDIl1la- MSCs validated the immunophenotype
suggested by our Abseq data and confirmed known and novel MSC surface markers identified by our
approach (Figure 5j-1). Moreover, FACS-based isolation of CDI13+CDl11a- cells followed by
transcriptomic analyses revealed a high enrichment of CXCL12 and other key MSC signature genes
(Figure 5m).

Together, these analyses demonstrate the utility of our approach for deriving gating schemes from data
and mapping the surface marker expression of poorly characterized populations. The Abseq-App in
combination with our single-cell proteo-genomic reference map allows users to define new data-driven
gating schemes for any population of interest.

A fully data-driven gating scheme reflects the molecular routes of human hematopoiesis

Gating schemes for complex biological systems, such as the hematopoietic stem and progenitor cell
(HSPC) compartment, are steadily improving. However, there is strong evidence from single-cell
transcriptomics (Giladi et al., 2018; Paul et al., 2015; Tusi et al., 2018; Velten et al., 2017), lineage
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tracing (Perié et al., 2015; Rodriguez-Fraticelli et al., 2018) and single-cell functional experiments (Notta
et al., 2016) that even the most advanced gating schemes do not recapitulate the molecular and cellular
heterogeneity observed by single-cell genomics approaches. This has contributed to several
misconceptions in the understanding of the hematopoietic system, most notably, incorrect assumptions
on the purity of cell populations and inconsistent views on lineage commitment hierarchies (Haas et al.,
2018; Jacobsen and Nerlov, 2019; Laurenti and Gottgens, 2018; Loughran et al., 2020).

In order to generate flow cytometric gating schemes that most adequately reflect the transcriptomic states
associated with hematopoietic stem cell differentiation, we used the Abseq-dataset of CD34+ cells from
one BM sample (“Youngl’) to train a decision tree. Thereby, we obtained a gating scheme that uses 12
surface markers to define 14 leaves representing molecularly defined cell states with high precision
(Figure 6a-c). The data-derived scheme excelled in the identification of lineage committed progenitors,
a major shortcoming of many current gating strategies (Figure 6a-c) (Notta et al., 2016; Paul et al., 2015;
Peri¢ et al., 2015; Velten et al., 2017). Importantly, cell populations defined by the data-defined gating
scheme were transcriptionally more homogenous, compared to a widely used gating scheme (Figure 6d,
e; Doulatov et al., 2010), a state-of-the-art gating scheme focusing on lymph-myeloid differentiation
(Figure 6e, S9a-d; Karamitros et al., 2018) and a ‘consensus gating’ scheme generated in silico to
combine the latter with a scheme focusing on erythroid-myeloid differentiation (Figure 6e, S9b; Psaila
et al., 2016). Of note, individual populations from the data-defined scheme displayed a functional output
comparable to populations of the ‘consensus gating’ scheme, while the data-defined scheme overall
provided a higher level of information on functional lineage commitment (Figure S9e, f).

To validate this new gating scheme, we implemented the suggested surface marker panel in a classical
flow cytometry setup and performed Smart-seq2 based single-cell RNA-sequencing while
simultaneously recording surface marker expression (index-scRNAseq) (Figure 6f, g, Supplementary
Note 8). This approach demonstrated that the new gating strategy efficiently separated molecularly
defined cell states (Figure 6g). Quantitatively, the data-defined gating scheme performed equally well at
resolving molecularly defined cell states on the Abseq training data as on the Smart-seq2 validation data,
and significantly outperformed the expert-defined gating scheme (Figure 6h). A limitation of the low
cellular throughput of the Smart-seq2 analysis is that the signature-based identification might result in
the “over-identification” of certain cell states. Together, our results demonstrate that high-content single-
cell proteo-genomic maps can be used to derive data-defined cytometry panels that describe the
molecular states of complex biological systems with high accuracy. Moreover, our gating scheme
permits a faithful identification and prospective isolation of transcriptomically defined progenitor states
in the human hematopoietic hierarchy using cost-effective flow cytometry.

Systematic integration of single-cell genomics, flow cytometry and functional data via NRN

While classical FACS gating strategies are of great use for the prospective isolation and characterization
of populations, single-cell genomics studies revealed that differentiation processes, including the first
steps of hematopoiesis, are most accurately represented by a continuous process (Macaulay et al., 2016;
Nestorowa et al., 2016; Pellin et al., 2019; Tusi et al., 2018; Velten et al., 2017). To complement the
approach based on discrete gates, we here propose that high-dimensional flow cytometry data can be
used to place single cells into the continuous space of hematopoietic differentiation spanned by single-
cell proteo-genomics exploiting shared surface markers (Figure 7a). Based on the observation that
surface marker expressions in flow cytometry and Abseq follow similar distributions (Figure S10a), we
developed a new projection algorithm termed nearest rank neighbors  (NRN:
https://git.embl.de/triana/nrn/, see Methods). Given an identical starting population, NRN employs
sample ranks to transform surface marker expression of FACS and Abseq data to the same scale,
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followed by k-nearest neighbors-based projection into a space defined by the proteo-genomic single-cell
data. We tested NRN on FACS indexed Smart-seq2 datasets using the classification panel developed in
Figure 6 (12 markers) and a semi-automated panel based on our Abseq data to better resolve erythro-
myeloid lineages (11 markers, Supplementary Note 8). We evaluated the performance of NRN using a
variety of methods. First, cell types molecularly defined by Smart-seq2 were placed correctly on the
Abseq UMAP (Figure 7b). For most molecularly defined cell types, the accuracy of the projection using
the flow cytometry data was close to the performance of data integration using whole transcriptome data
with a state-of-the-art algorithm (Figure S10b-d). Most importantly, the projections closely reflected the
gradual progression of cells through pseudotime, as confirmed by the expression dynamics of key lineage
genes from our FACS indexed Smart-seq2 data (Figure 7c). This suggests that NRN, in combination
with high quality reference datasets, can be used to study the continuous nature of cellular differentiation
processes by flow cytometry.

A key limitation of single-cell genomics remains the lack of insights into functional differentiation
capacities of cells. We therefore evaluated whether NRN can be used to interpret functional single-cell
data in the context of single-cell genomic reference maps. For this purpose, we performed single-cell
culture assays, while recording surface markers of our data-defined gating scheme from Figure 6,
followed by data integration using our Abseq data via NRN. As expected, cells with the highest
proliferative capacity and lineage potency were placed in the phenotypic HSC and MPP compartments,
and HSPCs placed along the transcriptomically defined differentiation trajectories continuously
increased the relative generation of cells of the respective lineage (Figure 7d). Functionally unipotent
progenitors cells were observed along the respective transcriptomic trajectories, but were also present in
the phenotypic HSC/MPP compartment (Figure 7d, g), in line with previous findings on early lineage
commitment of HSPCs (Notta et al., 2016; Paul et al., 2015; Velten et al., 2017). In contrast, oligopotent
cells with distinct combinations of cell fates were specifically enriched in the HSC/MPP compartment
(Figure 7d, g). Some of these fate combinations, in particular combinations of erythroid, megakaryocytic
and eosinophilic/basophilic fates, and combinations of lymphoid, neutrophilic, monocytic, and dendritic
fates, co-occurred more frequently than expected by chance (Figure 7e, f), in line with most recent
findings on routes of lineage segregation (Drissen et al., 2019; Gorgens et al., 2014; Tusi et al., 2018;
Velten et al., 2017). Despite strong associations between surface phenotype, transcriptome and function,
cells with a highly similar phenotype can give rise to different combinations of lineages (Figure 7g).
This observation suggests a role of stochasticity in the process of lineage commitment, or hints towards
layers of cell fate regulation not observed in the transcriptome. Taken together, our observations confirm
that hematopoietic lineage commitment predominantly occurs continuously along the routes predicted
by the transcriptome, with an early primary erythro-myeloid versus lympho-myeloid split (Drissen et al.,
2019; Gorgens et al., 2014; Notta et al., 2016; Paul et al., 2015; Tusi et al., 2018; Velten et al., 2017) and
might help reconciling discrepancies in the interpretation of previous studies.

In sum, our data resource alongside the NRN algorithm enables accurate integration of flow data with
single-cell genomics data. This permits the charting of continuous processes by flow cytometry and the
mapping of single-cell functional data into the single-cell genomics space.

DISCUSSION

In this study, we have demonstrated the power of single-cell proteo-genomic reference maps for the
design and analysis of cytometry experiments. We have introduced a map of human blood and bone
marrow spanning the expression of 97-197 surface markers across 45 cell types and stages of
hematopoietic stem cell differentiation, healthy ageing, and leukemia. Our dataset is carefully annotated
and will serve as a key resource for hematology and immunology.
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While cytometry experiments remain the working horse of immunology, stem cell biology and
hematology, recent single-cell atlas projects have revealed that current cytometry setups do not
accurately reflect the full complexity of biological systems (Papalexi and Satija, 2018; Paul et al., 2015).
For the first time, we have exploited single-cell proteo-genomic data to systematically design and
interpret flow cytometry experiments that mirror most accurately the cellular heterogeneity observed by
single-cell transcriptomics. Unlike approaches based on index sorting (Baron et al., 2019; Paul et al.,
2015; Velten et al., 2017; Wilson et al., 2008), single-cell proteo-genomics has a sufficient throughput
to enable the profiling of entire tissues or organs, and at the same time covers up to several hundred of
surface markers. Unlike single-cell RNA-seq data, antibody tag counts reflect the true distributions of
surface marker expression, enabling a quantitative integration of cell atlas data with FACS. Building on
these unique properties of our reference map, we have automated the design of gating schemes for the
isolation of rare cell types, we have devised a gating strategy that reflects the molecular routes of
hematopoietic stem cell differentiation, and we have demonstrated the direct interpretation of flow
cytometry data in the context of our reference.

These advances enable a functional characterization of molecularly defined cell states and thereby
directly impact on hematopoietic stem cell research. There is a growing consensus in the field that
lineage commitment occurs early from primed HSCs, that not all progenitor cells in the classical
MEP/GMP gates are functionally oligopotent, and that the main branches of the hematopoietic system
are a GATA2-positive branch of erythroid, megakaryocytic and eosinophil/basophil/mast cell
progenitors, as well as a GATA2-negative branch of lympho-myeloid progenitors, including monocytes,
neutrophils and dendritic cells (Drissen et al., 2019; Giladi et al., 2018; Gorgens et al., 2014; Pellin et
al., 2019; Tusi et al., 2018; Velten et al., 2017; Zheng et al., 2018). Due to a lack of better alternatives,
many functional studies still use the classical gating scheme alongside the outdated concept of ‘common
myeloid progenitors’(Akashi et al., 2000; Kondo et al., 1997; Pei et al., 2017). Here, we introduce and
validate a flow cytometry scheme that allows the prospective isolation of molecularly homogeneous
progenitor populations. We have used this scheme to show that transcriptional lineage priming impacts
on cellular fate in vitro (Notta et al., 2016; Velten et al., 2017), thereby contributing further evidence for
the revised model of hematopoiesis. In the future, a wider use of this scheme has the potential to avoid
conflicting results stemming from imprecisely defined populations.

Furthermore, these advances enable the rapid profiling of blood formation and other bone marrow
phenotypes while offering a resolution comparable to single-cell genomics. Recently, bone marrow
phenotypes of diseases, ranging from sickle cell disease (Hua et al., 2019) to leukemia (van Galen et al.,
2019) have been investigated using scRNA-seq. However, due to economic and experimental hurdles,
the throughput of these studies has remained restricted to maximally tens of patients. Accordingly, the
ability to associate patient genotypes with phenotypes is thereby highly limited, and these assays have
not been translated to diagnostic routines. Our new gating schemes and analytical strategies are widely
applicable to profile aberrations encountered in disease, both in research, and ultimately in clinical
diagnostics.

While we have demonstrated the implementation of data-driven design and analysis strategies for
cytometry assays in the context of bone marrow, conceptually the approach presented here can be applied
to any organ of interest. Thereby, it has the potential to enable the precise isolation and routine profiling
of the myriad of cell types discovered by recent single-cell atlas projects.
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The implementation of the NRN algorithm is available at https://git.embl.de/triana/nrn

DATA AVAILABILITY

Data is available for interactive browsing at https://abseqapp.shiny.embl.de . Datasets including raw and

integrated gene expression data, cell type annotation, metadata and dimensionality reduction are available as
Seurat v3 objects through figshare: https://figshare.com/projects/Single-cell proteo-

genomic_reference_maps_of the human_hematopoietic_system/94469
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571  Figure 1. A comprehensive single-cell proteo-genomic map of young, aged and malignant bone
572 marrow. a. Overview of the study. See methods and main text for details. b. Top: UMAP display of
573  single-cell proteo-genomics data of human bone marrow from healthy young, healthy aged and AML
574  patients (n=70,017 single cells, 97 surface markers), integrated across n=9 samples and data modalities.
575  Clusters are color-coded. Bottom: UMAPs highlighting sample identities. See Supplementary Note 5 for
576  details on cluster annotation. The whole transcriptome Abseq data is presented in Supplementary Note
577 2, the Abseq experiments with measurements of 197 surface markers are presented in Figure S4. c.
578  Normalized expression of selected mRNAs and surface proteins highlighted on the UMAP space from
579  b. Top: Expression of mRNAs encoding surface markers widely used to identify major cell types.
580  Middle: Expression of the corresponding surface proteins. Bottom: Expression of markers widely used
581  to stratify major cell types into subtypes. Only the parts of the UMAPs highlighted by dashed polygons
582  in the middle row are shown. For all data shown, bone marrow mononuclear cells from iliac crest
583 aspirations from healthy adult donors or AML patients were used.
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Figure 2: Association of surface marker expression with cell type identities, cellular
differentiation, and biological processes. a. For each surface marker measured in our 97-plex Abseq
data, the fraction of variance explained by different covariates (colored insets in top row) is displayed.
For this, every single cell from healthy young individuals (n=3 samples, 28,031 single cells) was
assigned to a cell type identity (blue inset, see Figure 1b), and cytotoxicity, stemness and cell cycle
scores (red inset, see Figure S5e), as well as technical covariate scores were determined. Additionally,
pseudotime analyses were used to assign differentiation scores to HSPCs (orange inset, see Figure 3a).
These covariates were then used to model surface marker expression in a linear model. The fraction of
variance explained by each of the processes was quantified. See Methods, section ‘Modelling variance
in surface marker expression’ for details. b. Cell type identity markers. Dot plot depicting the expression
of the 25 surface markers with the highest fraction of variance explained by cell type across major
populations. Colors indicate mean normalized expression, point size indicates the fraction of cells
positive for the marker. Automatic thresholding was used to identify positive cells, see Methods, section
‘Thresholding of surface marker expression’ for details. ¢. T cell subtype markers. The expression of the
20 surface markers with the highest fraction of variance explained by T cell subtype is displayed, legends
like in b. d. HSPC differentiation markers. Dot plot depicting expression changes of markers across
pseudotime in CD34+ HSPCs. Color indicates logarithmic fold change between the start and the end of
each pseudotime trajectory. Point size indicates the mutual information in natural units of information
(nats) between pseudotime and marker expression. The 25 surface markers with the highest fraction of
variance explained by pseudotime covariates are displayed.
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Figure 3. Validation of novel stage-specific HSPC differentiation markers. a. UMAP plot depicting
CD34+ HSPCs and their pseudotime scores along five differentiation trajectories, see Methods, section
“Pseudotime analysis”. The normalized pseudotime score across all lineages is color-coded. b.
Scheme illustrating the experiments performed to validate the significance of selected markers. See main
text and Supplementary Note 8 for details. e. UMAP display of mRNA expression of n=630 CD34+ cells
from a single-cell Smart-seq2 experiment where surface markers were recorded using FACS. For a
detailed description of the experiment, see Supplementary Note 8. Upper left panel: Cells with myeloid
and erythroid gene expression signatures are highlighted on the UMAP. Bottom-left and right panels:
Surface protein expression (FACS data) of indicated markers is shown. d. UMAP display highlighting
the normalized CD326 surface protein expression (Abseq data). e. Line plots depicting normalized
CD326 surface protein expression (Abseq data) smoothened over the different pseudotime trajectories
illustrated in panel a. f. Boxplots depicting the ratio in erythroid cells produced in single-cell cultures in
relation to the CD326 expression of the founder cell (n=231 single cell derived colonies). g. Left panel:
scatter plots depicting the differentiation potential of single founder cells in relation to their CD326 and
CD71 surface expression. The founder cell potential was categorized by its ability to give rise to 1)
erythroid only progeny, 2) a mix of erythroid, myeloid or any other progeny, 3) only myeloid progeny
4) remaining cells. Right panel: Founder cells were subset according to their CD326 and CD71 surface
expression status and relative fractions of their respective potential are summarized as pie charts. h-o.
Like d-g, except that CD11a (h-k) or Tim3 (/-0) and their relation to the formation of myeloid cells in
single-cell cultures is investigated (n=214 single cell derived colonies). For all data presented, bone
marrow mononuclear cells from iliac crest aspirations from healthy adult donors were used.
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Figure 4. Adaptation of surface protein expression in healthy aging and cancer. a. Correlation of
surface marker expression between matched cell types from aged and young bone marrow donors. For
each cell type, mean surface marker expression across all cells was computed, separately for all ‘young’
and ‘aged’ samples, and the correlation between the two matched cell types was determined. Left panel:
Histogram of Pearson correlation coefficients. Right panel: Sample scatter plots depicting the mean
surface expression of all measured markers in indicated cell types, see also Supplementary Table 6. b.
Volcano plot depicting log2 fold change and false discovery rate (FDR) for a test for differential surface
marker expression between cells from young and aged individuals, while accounting for cell types as
covariates. See Methods, section ‘Differential expression testing between experimental groups and
estimation of inter-patient variability’ for details. ¢. Boxplots depicting CD27 surface expression in
naive T cell populations from young and aged individuals. d. Projection of AML samples onto

16


https://doi.org/10.1101/2021.03.18.435922
http://creativecommons.org/licenses/by-nc-nd/4.0/

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435922; this version posted September 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

healthy reference. See Supplementary Note 7 for detail. e. Clustering of leukemia samples by their
projected cell type composition. Lymphoid cells are excluded from the clustering. f. Density plots of
Monocyte pseudotime, resulting from projection on the healthy reference. See Methods for details. g.
Heatmap depicting surface markers with differential expression between the phenotypic classes defined
in panel e. The eight markers with the most significant p values were selected for each comparison
between classes. Average expression across all non-lymphoid cells is shown. h. Surface expression of
immunotherapy targets CTLA-4 (CD152) and PD-L1 (CD274) in different myeloid compartments of
healthy donors and AMLs. i. Scatter plot depicting the average expression of all surface markers in
healthy HSCs & MPPs (x-axis) and leukemic cells projecting to the HSC & MPP cell state (y-axis).
Cells from four patients where the HSC/MPP class was covered with more than 20 cells are included
(AML1, AML2, AML3 and AML Q6). P-values for differential expression were computed using
DESeq?2 and are encoded in the symbol size. Inter-patient variability is color-coded, see Methods, section
‘Differential expression testing between experimental groups and estimation of inter-patient
variability’ for details. See also Supplementary Table 6. For all data shown, bone marrow mononuclear
cells from iliac crest aspirations from healthy adult donors or AML/APL patients were used.
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Figure 5. Data-driven definition of gating schemes for rare cell types. a. Purity and recall of
published expert or data driven gating schemes for cell populations within CD34+ and CD34-
compartments. b. Different CD4+ T cell subsets are highlighted (central and right panels) and the
corresponding distributions of cytotoxicity scores for every subset are displayed (left panel). c.
Hypergate (Becht et al., 2019) was used to identify a gating scheme for the prospective isolation of
cytotoxic CD4+ T cells. The suggested gate is highlighted on a plot depicting the surface protein
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expression of CD4 and CD28 as identified from pre-gated CD45+CD3+ Abseq data. Yellow and green
dots correspond to cytotoxic T cells located within and outside of the selected gate, respectively. Red
dots correspond to other cells located inside the selected gate (false positives), blue dots correspond to
other CD4+ cells located outside the gate and grey dots to other cells located outside the gate. Pie charts
indicate precision and recall. d. FACS plot displaying the expression of CD4 and CD28 on pre-gated
CD45+CD3+ cells, and respective gates (yellow dots correspond to CD4+CD28- cytotoxic T cells and
blue dots to other CD4+CD28+ T cells. e. Boxplot depicting the expression of surface markers with
differential expression between CD4+ cytotoxic T cells and other CD4+ subsets, as identified from
Abseq data (left panel) and validated with FACS using the gating strategy from d (right panel). f. Paired
scatter plot depicting the mean fluorescence intensities (MFI) of CD127 and CD7 in CD4+CD28-
cytotoxic CD4+ T cells (yellow) and CD4+CD28+ other CD4+ T cells (blue) in bone marrow samples
from healthy, AML and MDS patients. n=6, 6 and 9 patients in the respective groups. g. Heatmap
depicting gene expression of cytotoxicity-related genes in FACS-sorted CD4+CD28- and CD4+CD28+
cells, as quantified by qPCR (n= 4 patients) h-k. Analogous to b-e, but with the identification and use of
a CD11a-CD13+ gate for the isolation of CXCL12+ mesenchymal stem cells (MSC). Orange and green
dots correspond to MSCs located within and outside of the selected gate, respectively. Purple dots
correspond to other cells located outside the gate. L. Representative FACS histogram plots showing
surface expression of well-known MSC surface markers, which were not contained in the original 97
antibody Abseq panel. m. Heatmap depicting gene expression of common hematopoietic and MSC
signature genes in FACS sorted CD11a-CD13+ MSCs and cells outside the gate, as quantified by qgPCR
(n= 3 patients). No significance = ns, P<0.05 *, P<0.01 **  P<0.001 *** P<0.0001 **** CD4+CD28- and
CD4+CD28+ paired cell populations within the same BM donors from different disease entities were
compared using paired two-tailed t-test. For all experiments shown, bone marrow mononuclear cells from
iliac crest aspirations from healthy adult donors, AML or MDS patients were used.
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Figure 6. Data-driven definition of gating schemes for hematopoietic stem and progenitor cells. a.
UMAP depicting all CD34+ HSPCs cells from one healthy young individual. Clustering and cluster
annotation were performed exclusively on this individual to achieve a higher subtype resolution of stem
cells (‘HSCs’), immature progenitors with lymphoid/myeloid transcriptomic priming (‘Lympho-
myeloid progenitros’) and immature progenitors with erythroid/megakaryocytic transcriptomic priming
(‘MPP’). See panel b for color scheme. b. Decision tree using surface marker expression from the Abseq
data in order to classify cells into cell types. See Methods, section ‘Data-driven identification of gating
schemes’ and main text for details. ¢. UMAP highlighting cell type classification obtained from the
decision tree. Please take note that colors now correspond to putative ‘gates’ applied to the expression
levels of the 12 markers shown in panel b, and not to cell types defined from single-cell multi-omics
data. d. UMAP highlighting classification obtained from a decision tree recapitulating the classical
gating scheme used in the field (Doulatov et al., 2010), i.e. HSC: CD34+CD38-CD45RA-CD90+; MPP:
CD34+CD38-CD45RA-CD90-; MLP: CD34+CD38-CD45RA+; CMP: CD34+CD38+CD10-CD45RA-
Flt3+; MEP: CD34+CD38+CD10-CD45RA-Flt3-; GMP: CD34+CD38+CD10-CD45RA+FIt3+; pro-B:
CD34+CD38+CD10+. Since CD135 was not part of the Abseq panel, the expression of Flt3 was
smoothened using MAGIC (van Dijk et al., 2018) for this purpose. Automatic thresholding was used to
identify marker-positive cells, see Methods, section ‘Thresholding of surface marker expression’ for
details. e. Boxplot depicting the intra-gate dissimilarity for cell classification with panels from Doulatov
et al., 2010 (panel d), the gating scheme from Karamitros et al., 2018 (Figure §9), the in-silico created
‘consensus gating’ scheme combing Doulatov et al., 2010, Karamitros et al., 2018 and Psaila et al., 2016
(Figure §9) and the data-driven gating scheme (panel ¢). Intra-gate dissimilarity is defined as one minus
the average Pearson correlation of normalized gene and surface antigen expression values of all cells
within the gate. P-values are from a two-sided Wilcoxon test. f. Implementation of FACS gating scheme
suggested by the decision tree from panel b. g. UMAP display of mRNA expression of n=630 CD34+
HSPCs from an indexed single-cell Smart-seq2 experiment where the expression of the 12 surface
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markers (for the data-defined gating) was recorded using FACS. Left panel: Clusters are highlighted
based on gene expression, see Supplementary Note 8 for details. Right panel: Classification of the cells
based on FACS markers using the data-defined gates shown in panel /. h. Precision of the classification
scheme shown in panel b, computed on the training data (i.e. the Abseq dataset) and the test data (i.e.
the Smart-seq2 dataset). Precision was computed per gate as the fraction of correctly classified cells. For
comparison with the Doulatov gating scheme, the dataset from Velten et al., 2017 was used. P-values
are from a two-sided Wilcoxon test. For all data shown, bone marrow mononuclear cells from iliac crest
aspirations from healthy adult donors were used.
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Figure 7. Systematic integration of single-cell genomics, flow cytometry and functional data via
NRN. a. [llustration of the concept. See main text and methods for details. b. Projection of indexed
Smart-seq2 data onto a reference UMAP. Single cells with recorded (‘indexed”) FACS measurements of
surface markers (data-defined classification panel or semi-automated panel) were subjected to Smart-
Seq2 based scRNA-seq. The commonly used surface markers were used to project cells via NRN onto
the Abseq UMAP (see Methods, section ‘The NRN algorithm for integrating FACS and single cell
genomics data’ for details). Take note that only FACS data was used for the projection in UMAP space,
whereas colors depict cell types identified from RNA expression. ¢. Projection of indexed Smart-seq2
data onto reference pseudotime trajectories. The same single cells were projected onto the differentiation
trajectories shown in Figure 3a using FACS measurements only. The expression of differentiation
markers was then determined from available Smart-seq2 data and smoothened over projected
pseudotime values (red lines). For comparison, the expression values of the same genes were determined
from Abseq data and smoothened over the reference pseudotime values (blue lines). The selected genes
correspond to the five genes with the strongest statistical association to the respective trajectory. d.
Projection of indexed single-cell culture data onto a reference UMAP. Single cells with available FACS
measurements of 12 surface markers (data-defined classification panel from Figure 5) were projected
onto the UMAP defined by Abseq via NRN. Single cells were seeded into culture medium supporting
the formation of erythroid, megakaryocytic and distinct myeloid cell types, see Methods, section ‘Single-
cell index cultures’ for details. The ability of single cells to give rise to erythroid cells and neutrophils
were highlighted on the UMAPs. Colony size as well as the total number of cell types per colony are
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highlighted both on the UMAP and on projected pseudotime. e. Analysis of cell type combinations in
n=397 colonies. For any combination of Erythroid (Ery), Neutrophil (Neutro), Monocytic (Mono),
Eosinophil or Basophil (EoBaso), Lymphoid (Lympho), Megakaryocytic (Mk) and Dendritic (cDC1 and
cDC2) potential, the scatter plot depicts the fraction of colonies containing this exact combination of cell
types (y-axis) and the theoretical fraction of colonies containing this exact combination of cell types
under the assumption that cell fates are independently realized with the same marginal probabilities (x-
axis). Significance was calculated from a binomial test and is color-coded. These analyses do not exclude
that other combinations of fates are not biologically selected as well, i.e. absence of evidence does not
constitute evidence for absence. f. PCA analysis of colony compositions. g. Distribution of colonies with
frequent combinations of cells types in the projected UMAP space. Erythromyeloid: Only containing
EoBaso, Mk and/or Ery cells. Lymphomyeloid: All other combinations. For all data shown, bone
marrow mononuclear cells from iliac crest aspirations from healthy adult donors were used.
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829  Figure S1. A proteo-genomic single-cell map of 97 surface markers in human bone marrow.
830  Related to Figure 1. Dot plot depicting the expression of all surface markers by cell type. Color indicates
831  mean normalized expression, point size indicates the fraction of cells positive for the marker. Automatic
832  thresholding was used to identify positive cells, see Methods, section ‘Thresholding of surface marker
833  expression’ for details. The panel on the right depicts the fraction of total reads obtained for each marker
834  as aproxy for absolute expression levels. Bottom panel illustrates the distribution of CD34+ expression
835  across populations, similar plots can be generated for any marker using the Abseq-App.
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Figure S2. Representative gating schemes used for the enrichment of CD34+ cells. Related to Figure
1. For additional information on cell sorting setups, see Methods, section ‘Cell sorting for Abseq’.
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per cell observed. Note that targeted mRNA sequencing was performed as described in the main text.
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Figure S4. A single-cell proteo-genomic map of 197 surface markers in human bone marrow and
blood. Related to Figure 1. a. UMAP projection on the original coordinate system from the healthy
dataset (see Supplementary Note 7). Cells are colored by the mapped cell type. b. UMAP colored by
sample origin (blood and bone marrow). ¢. Violin plot depicting the expression of the bone marrow
homing receptor CXCR4 on matching cell types of the blood and bone marrow. d. Dot plot depicting
the expression of all surface markers by cell type. Color indicates mean normalized expression, point
size indicates the fraction of cells positive for the marker. Automatic thresholding was used to identify
positive cells, see Methods, section ‘Thresholding of surface marker expression’ for detail. For all data
shown, bone marrow mononuclear cells from iliac crest aspirations or peripheral blood mononuclear
cells from healthy adult donors were used.
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Figure S5. Markers of cell types and biological processes. Related to Figure 2. a. Heatmap
investigating if the fraction of variance explained by the different covariates is correlated to antigen-
level technical covariates. P values were calculated from Pearson correlation using a t-distribution. b-d.
Dot plot depicting the expression of the 10-20 surface markers with the highest fraction of variance
explained by B cell subtype (b), myeloid subtype (c¢) and NK cell subtype (d). Color indicates mean
normalized expression, point size indicates the fraction of cells positive for the marker. Automatic
thresholding was used to identify positive cells, see Methods, section ‘Thresholding of surface marker
expression’ for details. e. UMAPs highlighting the scores for various biological processes, as computed
using the gene lists from Supplementary Table 9. f. Bar charts depicting the markers with the highest
fraction of variance explained by cytotoxicity score (pink), stemness score (red) and S-phase score (dark
red), and the corresponding model coefficients. See Supplementary Table 9 for the gene lists used for
calculating these scores. g. Pseudotime of all 97 surface proteins for the five trajectories (B cells, cDCs,
Monocytes, Late erythroid progenitor and Megakaryocyte progenitor). Markers were clustered
according to their expression pattern using tradeseq (van den Berge, 2020). The density plots indicate
the differentiation stages along the pseudotime.
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Figure S6. Surface markers associated with HSC and B cell differentiation. Related to Figure 2 and
3. a. top panels: Line plots depicting normalized CD38, CD10, CD11c and CD34 surface protein
expression (Abseq data) smoothened over the different pseudotime trajectories illustrated in Figure 3a.
bottom panels: UMAP display of CD34+ HSPCs, highlighting the surface expression of each
corresponding marker. b. Left panel: gating strategy for subsetting CD71+ erythroid/megakaryocytic
HSPCs into CD41+ megakaryocyte progenitors and CD326+ erythroid progenitors. Right panel: UMAP
display of CD34+ cells from a healthy donor analyzed with a 12-color FACS panel focused
erythroid/megakaryocytic differentiation (see Supplemental Table S§). Surface expression values were
used as input for UMAP dimensionality reduction. Feature plots of CD71, CD326 and CD41 expression
highlight the bifurcation within CD71+ HSPCs. ¢. Culture outcome categories described in Figure 3g
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were analyzed with regards to their CD326, CD11a or Tim3 surface expression. Wilcoxon rank sum test
was used for comparison of individual groups and significance levels between groups are depicted. d-e.
Like Figure 3 d-e, except that CD98 expression is shown. f. UMAP display of CD34+ cells from five
healthy donors analyzed with a 12-color FACS stem and progenitor panel (see Supplemental Table S8).
Surface expression values were used as input for UMAP dimensionality reduction. Left panel shows
CD98 surface expression, right panel shows assignment of individual gates to the UMAP according to
the following gating strategy; HSC: CD34+CD38-CD45RA-CD90+; MPP: CD34+CD38-CD45RA-
CD90-; MLP: CD34+CD38-CD45RA+; MEP: CD34+CD38+CD10-CD45RA-; GMP:
CD34+CD38+CD10-CD45RA+; CLP: CD34+CD38+CD10+CD45RA+; other: cells that did not fall
into any of the mentioned gates. g. Boxplots showing CD98 expression in individual cell populations
mentioned in f. h. Boxplots showing co-expression of CD98 and CD38 surface markers in respective
cell populations. i. Like Figure 3a, UMAP plot depicting the pseudotime score along the B cell
differentiation trajectory emanating from CD34+ HSCs & MPPs and Lympho-myeloid progenitors. j-p.
Line plots depicting surface protein expression (Abseq data) representative for different indicated
biological processes smoothened over the B cell pseudotime trajectory. For all experiments shown,
human adult bone marrow mononuclear cells from iliac crest aspirations were used.
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Figure S7. Changes in surface protein expression and cell type abundance induced by ageing and
leukemia. Related to Figure 4. a. Frequency of selected cell types in young and aged individuals. Only
the cell types with the most significant changes are shown, see Methods, section ‘Changes in cell type
abundance between experimental groups’. b. UMARP display of all AML patients. Data were integrated
using scanorama and MOFA, as for the main dataset (see Method ‘Data analysis of Abseq data’ and
‘MOFA integration, Clustering, and identification of cell type markers’). ¢. For every myeloid cell state
with sufficient representation of at least 20 cells in at least three patients, surface marker expression in
AML (x-axis) is compared to surface marker expression in healthy individuals (y-axis). AML cell types
were defined using a projection as in main Figure 4d, e. P-values for differential expression were
computed using DESeq?2 and are encoded in the symbol size. Inter-patient variability is color-coded, see
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Methods, section ‘Differential expression testing between experimental groups and estimation of
inter-patient variability’ for details (n=indicates the number of patients included). See also
Supplementary Table 6. d. Heatmap depicting cell state specific gene expression in leukemic and
healthy individuals. Five most significantly overexpressed markers were identified for each cell state,
using only leukemic cells. The expression of all markers selected is shown and compared to their
expression in the corresponding healthy cell states. e. Correlation in surface marker expression between
cells from aged, young and leukemic individuals, similar to main Figure 4a. Correlations are shown for
matching cell types from young versus aged individuals, from healthy individuals versus AML patients,
as well as for cell types versus the transcriptomically most similar cell type available in the dataset. f.
Boxplot depicting the expression of CD152 and CD274 in different cell states from different patients.
Only populations covered with at least 50 cells in a given patient are included. See also main Figure 4h.
For all data shown, bone marrow mononuclear cells from iliac crest aspirations from healthy adult donors
or AML/APL patients were used.
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Figure S8. Comparison of data-defined and state-of-the-art (expert-defined) gating schemes.
Related to Figure 5. a. Performance of different methods used for the definition of gates of CD34-
populations. Gates for each cell type were defined from CD34- Abseq data using the following strategies:
Black dots correspond to gates that were manually set by an expert based on the current state of the art
for purifying the cell type of interest (Supplementary Table 7). Yellow dots correspond to gate that were
set using the hypergate algorithm (Becht et al., 2019). Violet dots correspond to gates that were set using
a decision tree. light-blue dots correspond to gates that were set using a decision tree with pre-defined
thresholds, see Methods, section ‘Data-driven identification of gating schemes’. For each gating
scheme, precision (purity) and recall were calculated. b. Illustration of the calculation of precision
(purity) and recall for class switched memory B cells. Orange and blue dots on the UMAP correspond
to class switched memory B cells located within and outside of the selected gate, respectively. Green
dots correspond to other cells located inside the selected gate (false positives) and grey dots to other cells
located outside the gate (true negatives). Pie charts indicate precision (purity) and recall. Top panel: An
expert defined state of the art gating scheme (CD3-CD19+CD27+IgD-) is shown. Bottom panel: A data
defined gating scheme (CD80+CD21+I1gG+IgD-) is shown. ¢. Like a, except that CD34+ populations
are shown. d. Like b, except that gating schemes to define plasmacytoid dendritic cell progenitors are
shown.
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Figure S9: Evaluation of different gating schemes. Related to Figure 6. a. UMAP highlighting
classification obtained from the gating scheme described by Karamitros et al., 2018, i.e. HSC:
CD34+CD38-CD10-CD45RA-CD90+; MPP: CD34+CD38-CD10-CD45RA-CD90-;
LMPP:CD34+CD38-CD10-CD45RA+; MLP: CD34+CD38-CD10+; MEP: CD34+CD38+CD10-
CD45RA-CD123-; CMP: CD34+CD38+CD10-CD45RA-CD123+; GMP: CD34+CD38+CD10-
CD45RA+CD123+; B-NK: CD34+CD38+CD10+. b. UMAP highlighting classification obtained from
a consensus scheme combining the schemes of Doulatov et al., Karamitros et al. and Psaila et al., HSC:
CD34+CD38-CD10-CD45RA-CD90+; MPP:CD34+CD38-CD10-CD45RA-CD90-;
LMPP:CD34+CD38-CD10-CD45RA+; MLP: CD34+CD38-CD10+; CD71-CD41- MEP:
CD34+CD38+CD10-CD45RA-FLT3-ITGA2B-TFRC-; CD71+CD41- MEP: CD34+CD38+CD10-
CD45RA-FLT3-ITGA2B-TFRC+; CD71+CD41+ MEP: CD34+CD38+CD10-CD45RA-FLT3-
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ITGA2B+; CMP: CD34+CD38+CD10-CD45RA-FLT3+; GMP: CD34+CD38+CD10-CD45RA+; B-
NK: CD34+CD38+CD10+. The marker CD135, CD41, CD71 were not part of the 97 Abseq panel. The
expression of the corresponding genes, FLT3, ITGA2B and TFRC, were smoothened using MAGIC
respectively (van Dijk et al., 2018). ¢. UMAP of additional CD34+ cells with specific enrichment of
CD34+ CD38- cells, projected on the original coordinate system, colored by mapped cell types d. Same
as ¢ but colored by immunophenotypic classification obtained from a consensus scheme recapitulating
the scheme of Karamitros et al. and and Psaila et al. (see above). e. Separation of functional potential by
the data driven and the literature ‘consensus gating’ scheme. Single cells were sorted according to the
two gating schemes and cultured for 19 days. Colonies were scored as Ery/Mk if they contained at least
5 erythrtoid or megakaryocytic cells, and as Ly/My if they contained at least 5 cells of types Neutrophil,
cDC, Monocyte, or B/NK. Unipotent: Only one of these cell types was formed with at least 5 cells;
oligopotent: At least two of these cell types were formed. Only gates for which at least 9 colonies were
observed are shown. f. Mutual information (in nats) between the gate identity and the ability to form any
of the cell types, or the total mutual information across all cell types.
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Figure S10. Projection and classification of cytometry data using a single-cell proteo-genomic
reference. Related to Figure 7. a. Distribution of normalized, scaled expression values of Tim3 (left
panel) and CD123 (central panel) measured by scRNA-seq, Abseq, and FACS. Right panel: Scatter plot
depicts the dissimilarity between the distribution of expression values measured by FACS, and the
distribution measured by scRNA-seq (x-axis) or Abseq (y-axis) as quantified using Kolmogorov-
Smirnov distance. Data for all markers included in the panel from main Figure 6f is shown. b-d.
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Comparison of data integration strategies. Smart-seq2 data and Abseq data were integrated with five
different strategies. RNA-based: Integration by Seurat v3, based on gene expression (transcriptome).
Random: Random selection of ten nearest neighbors. Others: Surface marker-based integration using
NRN, using defined sets of surface markers (Classification panel, Semi-automated panel: see Table SS.
Literature panel: CD34, CD38, CD45RA, CD90, CD10, CD135/Flt3, CD49f.). For every cell projected
on the UMAP, the ten nearest neighbors in projected UMAP space were identified. Subsequently, the
mean Euclidean distance between their location in a gene expression-based PCA space (Smart-seq2) was
computed. b. Boxplot summarizing the distance across data integration strategies. ¢. Hexagonal plot
summarizing the projection accuracy for different regions of the UMAP. d. Boxplots stratified by cell
type demonstrate that projection using the semi-automated panel performs close to an RNA-based
integration in most cases.
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