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ABSTRACT 1 

Cellular resources are limited and their relative allocation to gene expression programmes 2 

determines physiological states and global properties such as the growth rate. Quantitative 3 

studies using various growth conditions have singled out growth rate as a major physiological 4 

variable explaining relative protein abundances. Here, we used the simple eukaryote 5 

Schizosaccharomyces pombe to determine the importance of growth rate in explaining relative 6 

changes in protein and mRNA levels during growth on a series of non-limiting nitrogen 7 

sources. Although half of fission yeast genes were significantly correlated with the growth rate, 8 

this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome 9 

often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. 10 

Genes positively correlated with growth rate participated in every level of protein production 11 

with the notable exception of RNA polymerase II, whereas those negatively correlated mainly 12 

belonged to the environmental stress response programme. Critically, metabolic enzymes, 13 

which represent ~55-70% of the proteome by mass, showed mainly condition-specific 14 

regulation. Specifically, many enzymes involved in glycolysis and NAD-dependent metabolism 15 

as well as the fermentative and respiratory pathways were condition-dependent and not 16 

consistently correlated with growth. In summary, we provide a rich account of resource 17 

allocation to gene expression in a simple eukaryote, advancing our basic understanding of the 18 

interplay between growth-rate dependent and nutrient-specific gene expression. 19 

 20 
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INTRODUCTION 1 

Cellular growth is the process by which cells increase in mass. It is a fundamental systemic 2 

process that impacts most aspects of cell physiology. Growth can be very fast: for example, 3 

yeast cells can double in mass every few hours, and certain bacteria only require minutes. 4 

Conversely, slower growth is observed in multicellular organisms, in which several cell types 5 

take days to grow and divide. Crucially, the cellular growth rate changes in response to 6 

external cues such as nutrient quality, stressing agents, or growth factors. 7 

Measurements of biomass composition in unicellular organisms have long-established cellular 8 

growth rates as a covariate of cell physiology (Schaechter, Maaløe, and Kjeldgaard 1958; 9 

Mitchison and Lark 1962; Waldron and Lacroute 1975; Fantes and Nurse 1977; Neidhardt, 10 

Ingraham, and Schaechter 1990; Bremer and Dennis 2008). In the last decade, quantitative 11 

experimental work, together with mathematical modelling, have described this relationship 12 

(reviewed in (Klumpp and Hwa 2014; Shahrezaei and Marguerat 2015; Jun et al. 2018; 13 

Bruggeman et al. 2020)). This body of work has emphasised how the macromolecular 14 

composition of the cell is tightly connected to  growth rate. Specifically, for cultures undergoing 15 

balanced exponential growth modulated by external nutrients, the total RNA abundance per 16 

unit of biomass and the growth rate are correlated linearly. This phenomenological relationship 17 

is called the first or ribosomal growth law and reflects an increased requirement for ribosomes 18 

during faster growth to support protein synthesis. The demand for ribosomes is also felt at the 19 

protein level, where it induces a trade-off between proteins involved in translation and those 20 

involved in catabolism. It was shown that about half of the total protein mass in Escherichia 21 

coli responded to growth modulations by nutrient limitation and translational inhibition (Scott 22 

et al. 2010; You et al. 2013). These observations were formalised in a phenomenological 23 

model separating the proteome into three broad sectors based on their growth rate 24 

correlations. Proteins that are positively correlated with the cellular growth rate during nutrient 25 

limitation and negatively during translational inhibition comprise the R-sector, whereas 26 

proteins showing the opposite behaviour comprise the P-sector. Proteins that do not respond 27 

to the growth rate belong to the Q-sector (Scott et al. 2010). The concept of proteome sectors 28 

has been the basis of several phenomenological and coarse-grained mechanistic models 29 

relating optimal resource allocation to protein abundance and cellular growth rates (Molenaar 30 

et al. 2009; Scott et al. 2014; Maitra and Dill 2015; Weiße et al. 2015; Pandey and Jain 2016; 31 

Liao, Blanchard, and Lu 2017; Bertaux et al. 2020; Hu et al. 2020).  32 

The molecular mechanisms behind the phenomenological assignment to the three proteome 33 

sectors remain less well understood. R-sector proteins are universally involved in translation 34 

and ribosome biogenesis and many of them are controlled by global signalling pathways such 35 

as guanosine tetraphosphate (ppGpp) in prokaryotes or the target of rapamycin complex 1 36 
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(TORC1) in eukaryotes (Irving, Choudhury, and Corrigan 2020; Petibon et al. 2020). P-sector 1 

proteins, on the other hand, are more diverse and often involved in metabolic adaptation and 2 

stress response (Brauer et al. 2008; You et al. 2013; Hui et al. 2015; A. Schmidt et al. 2016). 3 

In E. coli, the master regulator CRP-cAMP has been proposed to control the P-sector 4 

assignments of carbon catabolism enzymes when growth rate was modulated by the quality 5 

of abundant carbon sources (You et al. 2013). Under other growth modulations and in other 6 

organisms, whether the regulation of P-sector proteins is as directly mechanistically linked to 7 

the growth rate as for R-proteins is less clear.  8 

Transcriptomics and proteomics have been instrumental in characterising the coordination 9 

between gene expression and cellular growth. The ribosomal growth law was first confirmed 10 

in the E. coli proteome in continuous cultures limited by carbon availability (Peebo et al. 2015), 11 

under titrations of carbon, nitrogen, and translational inhibition (Hui et al. 2015), and in an 12 

extensive study of 22 growth conditions (A. Schmidt et al. 2016). In addition, the Hui study 13 

proposed that the P sector could be divided into subsectors related to different metabolic 14 

functions depending on the type of nutrient limitation. In the budding yeast Saccharomyces 15 

cerevisiae, a seminal microarray study showed strong correlations between hundreds of 16 

transcripts with the chemostat dilution rate across six nutrient titrations (Brauer et al. 2008). 17 

The observed correlations agreed with the ribosomal growth law and highlighted stress 18 

response as a component of the P-sector alongside metabolic functions. More recently, Metzl-19 

Raz and colleagues observed the ribosomal growth law in the proteome of budding yeast after 20 

combining existing data sets of cultures grown in a variety of carbon sources (Paulo et al. 21 

2015; 2016) with data obtained under nitrogen and phosphorus limitation (Metzl-Raz et al. 22 

2017). They also proposed that a pool of non-translating ribosomes is available as a buffer 23 

during changing growth conditions, a strategy also observed in prokaryotes (Dai et al. 2016; 24 

Mori et al. 2017; Kohanim et al. 2018). This suggest that resource allocation may not be fully 25 

optimised for maximal cell growth. Signs of excess capacity have also been reported for 26 

metabolic pathways, including glucose catabolism (Yu et al. 2020). Further omics studies in 27 

S. cerevisiae have defined additional characteristics of resource allocation such as 28 

reallocation of proteome mass from amino acid biosynthesis to protein translation upon amino 29 

acid supplementation (Björkeroth et al. 2020), or the respective contribution of transcription 30 

and translation to different allocation strategies (Yu et al. 2021). Thus, genome-wide omics 31 

experiments have been key to improve our understanding of resource allocation in E. coli and 32 

S. cerevisiae by connecting proteome sectors to specific physiological functions.  33 

The cellular growth rate reflects the metabolic state of the cell and in limiting nutrient conditions 34 

metabolic enzymes are often part of the P-sector (Hui et al. 2015; A. Schmidt et al. 2016). This 35 

suggests that expression levels of specific metabolic enzymes when responding to external 36 
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conditions can be directly regulated alongside the growth rate. The cell metabolism however 1 

is an exquisitely complex network of interconnected processes and perturbation of single 2 

pathways can have wide-spread systemic effects. Central carbon metabolism (CCM) relies on 3 

three pathways: glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) 4 

cycle. Together, these generate energy in the form of ATP, in a process mediated by reducing 5 

agents such as NADH, and produce building blocks for biosynthesis. ATP can be generated 6 

anaerobically via fermentation; a process which consists of glycolysis and the subsequent 7 

degradation of pyruvate, or aerobically via respiration, which requires the TCA cycle and 8 

subsequent oxidative phosphorylation (OXPHOS). The extent of fermentative versus 9 

respiratory metabolism affects the NAD+/NADH redox balance and vice versa, as NAD+ 10 

reduction during glycolysis and the TCA cycle must be balanced by NADH oxidation occurring 11 

during pyruvate degradation and OXPHOS (Vemuri et al. 2007; van Hoek and Merks 2012; 12 

Campbell et al. 2018; Luengo et al. 2020). In eukaryotes, these reactions are 13 

compartmentalised between the cytoplasm and the mitochondria, with the latter housing the 14 

respiratory enzymes and functioning as hubs that connect diverse metabolic pathways 15 

including CCM and amino acid metabolism (Spinelli and Haigis 2018). For instance, amino 16 

acid degradation enables the assimilation of nitrogen as ammonium or glutamate via de- or 17 

transamination reactions. The remaining carbon backbone is recycled into the cell’s biomass 18 

or excreted, and the associated metabolites affect carbon metabolism (Godard et al. 2007). 19 

Importantly, mitochondrial intermediates are required for amino acid biosynthesis even during 20 

fermentative energy generation (Malecki et al. 2020). In fission yeast, a single point mutation 21 

in the pyruvate kinase Pyk1, affecting its activity, has been shown to rebalance the fluxes 22 

through the fermentation and respiration pathways alongside shifts in the transcriptome and 23 

proteome composition (Kamrad et al. 2020), giving a prime example of how the cell co-adjusts 24 

perturbations in metabolic fluxes and expression burdens. Taken together, shifts in the 25 

metabolic demand propagate throughout the cell, as most metabolic pathways are tightly 26 

interlinked (Chubukov et al. 2014). 27 

The expression levels of CCM enzymes, and therefore the fluxes through the pathways 28 

depend on external conditions and stress levels. As a result, cellular states and metabolic 29 

strategies are linked to resource allocation to different gene expression programmes. For 30 

example, during rapid growth on glucose, yeast utilises the fermentative pathway alongside 31 

the TCA cycle even in the presence of oxygen, a phenomenon known as aerobic glycolysis or 32 

the Crabtree effect (Shimizu and Matsuoka 2018). Aerobic glycolysis is also a characteristic 33 

of tumour cells, for which it is known as the Warburg effect (Heiden, Cantley, and Thompson 34 

2009). This strategy appears counterintuitive as fermentation generates fewer molecules of 35 

ATP per glucose molecule than respiration. Several hypotheses have been proposed to 36 
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resolve this paradox. All require a second growth-limiting constraint besides glucose uptake 1 

which would be specific to respiro-fermentative growth (de Groot et al. 2019). Examples 2 

include the cytoplasmic density of macromolecules (Vazquez et al. 2008; Goelzer et al. 2015), 3 

total proteome allocation (Basan et al. 2015), and membrane area availability (Szenk, Dill, and 4 

de Graff 2017). Thus, a whole-cell understanding of cellular trade-offs between multiple 5 

constraints must take into account gene expression alongside metabolic maps (Goelzer and 6 

Fromion 2017; Yang et al. 2018; Dahal, Zhao, and Yang 2020). Resource allocation 7 

constraints have been successfully introduced into genome-wide metabolic models of several 8 

organisms as more high-quality expression data has become available (O’Brien et al. 2013; 9 

Sánchez et al. 2017; Y. Chen et al. 2020). In summary, quantitative surveys of the gene 10 

expression cost of metabolic pathways are key to understanding cell physiology. 11 

Here, we define the growth-rate dependent and nutrient-specific resource allocation to the 12 

fission yeast Schizosaccharomyces pombe proteome and transcriptome. We find that both 13 

types of regulation are interconnected and define protein synthesis and stress response as 14 

the processes positively and negatively regulated with the growth rate. We then study the 15 

plasticity of the gene expression burden of metabolic pathways in response to changes in 16 

nutrients and their reliance on transcriptional and post-transcriptional regulation. Altogether 17 

we provide a rich account of resource allocation in a simple eukaryote as a function of external 18 

conditions.       19 

RESULTS 20 

Fission yeast gene expression shows growth-rate-related and condition-specific 21 

components  22 

To generate cell populations that grow at different rates while not limited for nutrients, we used 23 

eight defined culture media each containing a unique source of nitrogen. These media have 24 

been extensively characterised elsewhere (Fantes and Nurse 1977; Carlson et al. 1999; 25 

Petersen and Russell 2016). Seven media contained 20 mM of a single amino acid (Trp, Gly, 26 

Phe, Ser, Ile, Pro, Glu), and one 93.5 mM of ammonium chloride (NH4Cl, referred to as Amm) 27 

as a reference (Fig. 1). In our hands, this design achieved growth rates ranging 0.05 - 0.28 h-28 
1. S. pombe 972h- prototroph wild-type cells were grown in turbidostats at constant 29 

concentrations of OD600 ~0.4 (3 - 5×106 cells/ml) in triplicates for 43 - 143 h (6 - 28 generations 30 

depending on the nitrogen source) (Fig. 1C-E, Supp. Table S1) (Takahashi et al. 2015). Like 31 

in chemostats, turbidostat cultures are diluted by the addition of fresh media. In the case of 32 

the turbidostat system, however, it is the cell concentration that is directly measured and 33 

maintained constant and not the proliferation rate. This ensures that cellular growth is not 34 

limited by a lack of nutrients, but rather determined by the quality of the provided nitrogen 35 
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source and the resulting internal allocation patterns. Growth rates were measured halfway 1 

through the procedure during a two-fold dilution cycle (Fig. 1B, Supp. Table S1). To measure 2 

the proteome and transcriptome allocation as a function of the growth rate, we performed 3 

label-free proteomics and RNA sequencing (RNA-Seq) analysis of cells from each culture 4 

condition (Methods, Supp. Table S2-S5).  5 

We first asked whether the fission yeast proteome composition differed significantly between 6 

the eight growth conditions. Strikingly, ~44% of the 2045 proteins robustly detected in all 7 

samples were significantly more variable across conditions than among biological replicates 8 

(Holm-adjusted pANOVA < 0.05). This pervasive level of gene regulation was also apparent at 9 

the transcriptome level where ~52% of mRNAs showed significant variability. These results 10 

indicate that the composition of the proteome and transcriptome are both strongly affected by 11 

conditions that change the growth rate. 12 

To investigate this variability further, we used the z-score transformed protein fraction of each 13 

gene for hierarchical clustering (Fig. 2A, Methods). This treatment enabled normalisation for 14 

protein expression levels across the proteome while preserving the variation of each protein 15 

between conditions. We defined 10 clusters that revealed two major features of the datasets 16 

(Fig. 2A-C). First, most clusters showed a clear change in protein expression in one or more 17 

conditions (clusters 3-10). Second, the expression of several proteins was not strictly 18 

condition-specific but instead showed a coordinated linear increase with growth rate (clusters 19 

1-2). Interestingly, the total baseline expression of the condition-specific clusters was 20 

positively (clusters 3, 4, 6, 10), or negatively (clusters 5, 7, 8, 9) correlated with the growth 21 

rate. Apart from cluster 6, clusters were enriched for defined functional categories, indicating 22 

that the shifting balance between condition-specific regulation and growth rate regulation may 23 

have physiological consequences related to the enriched functions (Fig. 2A, Supp. Fig. S2.1). 24 

Both modes of regulation were also apparent in the transcriptome data for coding and non-25 

coding RNA (ncRNA) (Fig. 2C, Supp. Figs. S2.2-S2.3). Interestingly, most ncRNAs showed 26 

clear and reproducible condition-specific expression between replicates, suggesting the 27 

presence of active regulation, consistent with analyses using different genetic and 28 

physiological conditions (Fig. S2.3) (Atkinson et al. 2018). To test this hypothesis, we 29 

compared the expression patterns of ncRNA from each cluster with the expression of their 30 

flanking coding genes (Supp. Fig. S2.3C-D). We found that for 4 out of 9 clusters, ncRNA 31 

expression patterns were not mirrored by the neighbouring mRNA. This indicates that many 32 

ncRNA are subjected to some level of independent regulation. In summary, we find that 33 

regulation of gene expression programmes across conditions that affect the growth rate has 34 
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two components; one which is condition-specific and another which is coordinated with growth 1 

rate. 2 

Growth dependent gene expression is an important determinant of the cell protein and 3 
mRNA composition 4 

We first focused our analysis on the growth-dependent component of fission yeast gene 5 

expression. Linear correlations between the expression of individual genes and the growth 6 

rate have been observed in several organisms under different types of growth limitation 7 

(Brauer et al. 2008; Hui et al. 2015; Metzl-Raz et al. 2017; Peebo et al. 2015; A. Schmidt et 8 

al. 2016; Zavřel et al. 2019). Following the terminology used in prokaryotes, we divided 9 

proteins and mRNA into three sectors depending on whether they show a growth-dependent 10 

component that was positively (R), negatively (P), or not significantly (Q) correlated with the 11 

growth rate (Scott et al. 2014; 2010). We used repeated-median linear models to quantify the 12 

linear coordination of each protein and mRNA quantity with growth. This model fits a linear 13 

dependence in the presence of large numbers of outliers and is therefore robust to the 14 

condition-specific component of gene expression (Methods, Supp. Fig. S2.4, Supp. Table 15 

S6). 16 

The linear fits generated two useful parameters. First, the slope of the linear regression is a 17 

measure of the strength of the dependence of a protein’s concentration on the growth rate. 18 

Second, its y-intercept represents the fraction of the protein numbers that is not directly 19 

dependent on growth. Both parameters are directly correlated with expression levels making 20 

it difficult to disentangle the strength of the growth-rate-related regulation from an mRNA or 21 

protein from its abundance. To take this into account, we developed a normalised measure of 22 

growth dependence called FC (Methods, Supp. Fig. S2.4G-H). FC values are a combination 23 

of the regression slope and y-intercept which do not scale with abundance, thereby enabling 24 

a direct comparison of the growth-dependence of single genes or groups thereof. 25 

Repeated-median linear models captured the growth-dependent component of the 10 clusters 26 

from Fig. 2, and proteins from the R and P sectors dominated the clusters that were positively 27 

and negatively correlated with growth, respectively (Supp. Fig. S2.5). Of all the genes 28 

detected in the proteome across the eight conditions examined, we found that 24% of proteins 29 

and 37% of mRNA belonged to the R sector; similarly, 27% and 21% of the proteins and 30 

mRNA belonged to the P sector, respectively. The protein and mRNA of a given gene 31 

belonged to the same sector in 51% of the cases (Fig. 2D). When they did not, the mRNA of 32 

P or R proteins were mostly assigned to the Q sector and vice versa, with only 23 R proteins 33 

having P sector mRNA, and 74 P proteins having R sector mRNA, out of the 2077 proteins 34 

detected. 35 
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In quantitative terms, the total proteome mass fraction of the fission yeast R sector ranged 1 

between ~20% at zero growth and 55% for the fastest measured growth rate, whereas the 2 

mass fraction of the P sector similarly ranged from ~30% to 10% (Fig. 2E). The sum of all Q 3 

sector proteins was negatively correlated with the growth rate because proteome fractions add 4 

up to one by definition. However, none of the individual proteins showed significant correlation 5 

with the growth rate. At the mRNA level, the R fraction ranged from 38% to 59% of the total 6 

normalised counts, and the P fraction from 19% to 10% (Fig. 2F). Thus, during fast growth, 7 

over half of the gene expression burden is dedicated to factors that increase in concentration 8 

with growth rate and may therefore be limiting. Moreover, the amplitude of the variability in the 9 

concentration of fission yeast proteins and mRNA that depend on the growth rate alone is in 10 

the order of magnitude of the cut-offs that are commonly used for differential expression 11 

analysis. Therefore, differences in growth rate are important factors that affect interpretation 12 

of transcriptomics and proteomics data (Yu et al. 2021). 13 

R sector proteins participate in all steps of the protein synthesis process  14 

We next queried the cellular processes that had a strong R component and could therefore 15 

be either limiting for growth or regulated by it. We used a curated list of macromolecular 16 

complexes spanning most cellular processes and calculated the proportion of each complex 17 

subunit that was growth rate-dependent in each category (Fig. 3A, Supp. Table S7) (Gene 18 

Ontology Consortium 2019; Lock et al. 2019). As observed in prokaryotes and budding yeast, 19 

the top 4 categories relying the most on R proteins belonged to a single process: the synthesis 20 

of proteins (Fig. 3AB). Strikingly, R complexes were found at every single step of protein 21 

synthesis: the transcription of rRNAs and tRNAs and their processing, assembly and post-22 

translational modification of the ribosome, and initiation and termination of translation (Fig. 23 

3B). Interestingly, expression of the chromatin-modifying complexes NuA4 and Ino80 were 24 

part of the R sector (Fig. 3C), suggesting they may be involved in ribosome biogenesis in 25 

fission yeast as has been proposed for NuA4 in budding yeast (Uprety, Sen, and Bhaumik 26 

2015). Alternatively, these results could indicate that the chromatin structure and levels of 27 

histone modification may be limiting for growth. 28 

The overall correlation between growth and the factors involved in protein synthesis had a 29 

notable exception. Although RNA polymerase (RNAP) I and specific subunits of RNAPIII were 30 

part of the R sector, RNA polymerase II specific subunits were not significantly correlated with 31 

growth rate (Fig. 3B-D). Therefore, the number of RNAP II complexes is unlikely to be a 32 

limiting step in protein production during growth. Interestingly, RNAP II numbers were found 33 

to be limiting for the scaling of gene expression to cell size, indicating that coordination of gene 34 
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expression to cell size and growth rate follow different mechanisms (Padovan-Merhar et al. 1 

2015; Sun et al. 2020).  2 

The stoichiometry of translation complexes changes with the growth rate 3 

Differences in FC values between protein complexes indicate that their relative levels or 4 

stoichiometry changes with the growth rate. We hypothesised that these variations could 5 

provide mechanistic insights into the functioning of these complexes. To investigate this in the 6 

context of protein translation, we analysed three non-overlapping subclasses of translation 7 

proteins: the ribosomal proteins (RP), the ribosome biogenesis regulon (RiBi), and the 8 

translation initiation, elongation and termination factors (IET) (Methods, Supp. Table S8). 9 

The RiBi and IET classes had similar FC values, whereas the trendline for RPs was 10 

significantly steeper (Fig. 4A, Supp. Fig. S4.1A). As a result, the ratios between IET and RPs, 11 

and between RiBi proteins and RPs were higher at slow growth (Fig. 4B). These results 12 

suggest that ribosome biogenesis may become more efficient with increasing growth rates as 13 

the ratio RiBi/RP diminishes. Alternatively, a fraction of IET and RiBi proteins larger than of 14 

RPs could be held in reserve at slower growth (Metzl-Raz et al. 2017). The relative 15 

abundances in EMM of IET:RiBi:RP were approximately 4:1:8 for the proteome mass fractions 16 

and  5:4:64 for the transcriptome RPKMs (Fig. 4A-B). This confirms earlier observations that 17 

the burden on transcription for RP synthesis is higher than for the rest of the proteome 18 

(Marguerat et al. 2012; M. W. Schmidt et al. 2007). The growth laws for the initiation and 19 

elongation factors were almost identical to each other, suggesting constant stoichiometry with 20 

the growth rate (Supp. Fig. S4.1B-C). Within the IET category, elongation factors were about 21 

three times as abundant as initiation factors, and about fifty times compared to termination 22 

factors (Supp. Fig. S4.1B-C). This is in line with biochemical evidence showing that translation 23 

initiation is a limiting step for protein synthesis (Aylett and Ban 2017). Taken together, we have 24 

shown how the growth law can inform on the regulation of gene expression through changes 25 

in the stoichiometry of factors with the growth rate. 26 

Furthermore, the large burden of RPs during fast growth resulted from the coordinated growth-27 

related expression of most individual RPs and from a growth dependence component steeper 28 

than that of IET and RiBi (Fig. 4C). This indicates that the aggregate burden of RPs results 29 

from coordinated regulation at the level of single genes (Petibon et al. 2020). The IET and RiBi 30 

categories also contained more proteins that were assigned to the P- and Q-sectors, and/or 31 

whose expression data was not well explained by the robust model due to significant condition-32 

dependent expression (Supp. Fig. S4.2). For instance, the initiation factor eIF3E was present 33 

in sub-stoichiometric amounts relative to eIF3A. Interestingly eIF3E has been shown to 34 

selectively regulate the translation of transcripts coding for metabolic enzymes (Shah et al. 35 

2016). 36 
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Principles of proteome allocation are often conserved in prokaryotes and eukaryotes despite 1 

significant mechanistic differences in the way genes are transcribed and translated (Dai and 2 

Zhu 2020). Therefore, we thought to compare our findings in fission yeast with published 3 

datasets from the budding yeast S. cerevisiae and the bacterium E. coli (A. Schmidt et al. 4 

2016; Metzl-Raz et al. 2017). We reanalysed the proteomics data for E. coli cells growing at 5 

different rates in a series of environmental conditions and extracted the growth law parameters 6 

for translational proteins (Methods, Supp. Table S9) (A. Schmidt et al. 2016). For S. 7 

cerevisiae, we used growth law parameters of ribosomal proteins published elsewhere (Metzl-8 

Raz et al. 2017). We found that E. coli could sustain a given growth rate with a smaller fraction 9 

of RPs than both yeasts (note the smaller slope, Fig. 4D). This suggests that the effective 10 

translation rate in the yeasts is lower than that of E. coli. Among the two yeasts, fission yeast 11 

used its RPs significantly more efficiently than the budding yeast trendline, but the effect could 12 

not be assigned to a significant difference in either the slope or the intercept parameter 13 

specifically. Next, we asked whether the changes in stoichiometry of translational proteins 14 

during slow growth were conserved in E. coli. Again, both the IET/RP and RiBi/RP ratios were 15 

higher during slower growth (Supp. Fig. S4.3A-B), because the individual RPs had steeper 16 

growth laws (Supp. Fig. S4.3C). A steeper growth law of RPs than that of elongation factors 17 

was recently predicted by a model of E. coli that minimised the total expression cost (Hu et al. 18 

2020). Our results indicate that allocation strategies are conserved even though protein 19 

production differs mechanistically between the two kingdoms. 20 

P sector proteins are part of the core environmental stress response programme 21 

To complement our analysis of the R sector, we next examined fission yeast proteins from the 22 

P sector, i.e., proteins with a negative growth-dependent component. In contrast to the R 23 

sector clusters 1 and 2, we could not identify P sector clusters whose expression could be 24 

explained exclusively by a negative growth rate correlation (Fig. 1A-C). This indicates that 25 

proteins with a strong P component are also often regulated in response to specific nitrogen 26 

sources. Moreover, the growth component for P proteins was less significant overall than for 27 

R proteins (Supp. Fig. S4.4A-B). These results suggest that regulation of the R and P sectors 28 

may differ mechanistically. 29 

Unlike R proteins, which are mostly involved in protein production, P proteins belonged to a 30 

diverse set of complexes participating in a large array of functions (Fig. 3A). As individual 31 

proteins, they showed weaker correlations than R sector complexes (Supp. Fig. S4.4C-D). 32 

To analyse whether this diverse set of P proteins was participating in a common higher-level 33 

functional programme we analysed the fission yeast GO-slims alongside 21 lists covering 34 

fission yeast physiology and environmental responses (Fig. 4E, Supp. Fig. S4.5A) (Mata et 35 

al. 2002; D. Chen et al. 2003; Rustici et al. 2004; Marguerat et al. 2012; Rallis, Codlin, and 36 
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Bähler 2013; Saint et al. 2019; Kamrad et al. 2020). Functional classes with strong P-sector 1 

components included vacuole biology, endosome and phagosome, transport and genes 2 

induced in the adaptation to nitrogen removal, and/or after treatment with caffeine and 3 

rapamycin. The latter two classes, which had the strongest response, are thought to be 4 

controlled by TORC1 (Mata et al. 2002; Rallis, Codlin, and Bähler 2013). This suggests that 5 

nitrogen sources supporting slower growth rates trigger a form of metabolic stress response. 6 

Accordingly, the total expression of the fission yeast core environmental stress response 7 

programme upregulated genes (CESR up) was negatively correlated with the growth rate (Fig. 8 

4F). This stress module comprises genes induced in response to a wide range of 9 

environmental and genetic perturbations (D. Chen et al. 2003; Pancaldi, Schubert, and Bähler 10 

2010). Conversely, genes downregulated as part of the CESR response (CESR down, also 11 

called growth module) belonged to the R sector (Fig. 4F-G, Supp. Fig. S4.5B). This finding 12 

validates the longstanding hypothesis that the balanced expression of the fission yeast stress 13 

response is quantitively connected with the growth rate (López-Maury, Marguerat, and Bähler 14 

2008). Additionally, P proteins were enriched for factors regulated during the S phases of the 15 

cell cycle, which is consistent with evidence that the cell-cycle phase length differs between 16 

nitrogen sources, in particular growth on Trp (Fig. 4E and Supp. Fig. S4.5C-D) (Carlson et 17 

al. 1999; Rustici et al. 2004). 18 

Notably, the functional classes involved in metabolism were not strongly negatively correlated 19 

with the growth rate (Fig. 4E), and the fission yeast P sector was only marginally enriched in 20 

proteins involved in central and energy metabolism (Supp. Fig. 4.6). This contrasts with 21 

previous data from E. coli and S. cerevisiae where metabolic genes have been reported to be 22 

important components of the P sector (Hui et al. 2015; A. Schmidt et al. 2016; Metzl-Raz et 23 

al. 2017). However, when considered globally, the sum of protein mass fractions dedicated to 24 

metabolic enzymes was clearly anti-correlated with growth in fission yeast, ranging from ~70% 25 

of the proteome in poor nitrogen sources  to ~55% in the fastest media (Fig. 5A). This indicates 26 

that in our system which does not rely on titration of a limiting nutrient to modulate the growth 27 

rate, the total protein burden on metabolism is linked to the growth rate, whereas allocation to 28 

specific enzymes is not. Therefore, the global anti-correlation of metabolic enzymes with 29 

growth rate observed in our data may be a manifestation of the trade-off between metabolism 30 

and translation, and not the result of the direct quantitative regulation of metabolic enzymes 31 

expression with the growth rate. 32 

The burden of specific metabolic pathways is principally condition-dependent 33 

On top of the growth-dependent components, many fission yeast proteins show clear 34 

condition-specific gene regulation (Fig. 2A-C, clusters 3-10). Functional analysis indicated an 35 
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enrichment of these genes for functions related to metabolism. This is consistent with the 1 

adoption of distinct metabolic allocation strategies in response to growth with different nitrogen 2 

sources (Alam et al. 2016; Mülleder et al. 2016). We classified metabolic genes into six non-3 

overlapping classes based on the following GO terms: canonical glycolysis (GO:0061621), 4 

generation of precursors and energy (GO:0006091), cellular amino acid metabolic process 5 

(GO:0006520, which includes the interconversion of ammonium, glutamate, and glutamine), 6 

lipid metabolic process (GO:0006629), vitamin metabolic process (GO:0006766), and all other 7 

metabolic pathways (including transport of metabolites) (Fig. 5B, Supp. Fig. S5.1, Supp. 8 

Table S10). To avoid overestimating the burden of gene expression by double-counting genes 9 

assigned to multiple terms, each protein was assigned only to the first of these GO-terms it 10 

was annotated with. The relative allocation to each class was condition-specific, indicating that 11 

metabolic states rely differentially on specific pathways (Fig. 5B). We note that similar growth 12 

rates can be supported by different allocation strategies, as in the case of the Trp and Gly 13 

containing media in which cells channelled resources preferentially towards glycolysis (Trp) 14 

or amino acid metabolism (Gly) (Fig. 5B, Supp. Fig. S5.1). The growth-related components 15 

of those categories were weak, except for the vitamin metabolism proteins which belonged to 16 

the R sector and the precursor/energy proteins that showed a significant P component (see 17 

below, Supp. Fig. S5.1). Most coenzymes are stable molecules synthetised only as much as 18 

necessary to support growth (Hartl et al. 2017). The strong positive correlation of vitamin 19 

metabolism expression with growth rate suggests that cells also minimise the translation 20 

burden of vitamin metabolic enzymes. In summary expression of metabolic enzymes in our 21 

system, although connected to the growth rate, is mainly condition- and pathway-specific. 22 

We next took a closer look at the energy metabolism pathways and their negative correlation 23 

with the growth rate. Nutrient quality, cell growth, and energy metabolism are intimately 24 

connected. The generation of ATP through fermentation is often favoured in conditions that 25 

support faster growth whereas slow-growing cells in limiting conditions tend to switch to 26 

respiratory metabolism (Heiden, Cantley, and Thompson 2009; Shimizu and Matsuoka 2018). 27 

Therefore, we asked whether protein allocation to either energy metabolism pathway was 28 

correlated with the nitrogen sources used and/or growth rate. To this end, we split the non-29 

glycolytic generation of precursors and energy category into the fermentative enzymes 30 

pyruvate decarboxylase (Pdc101) and alcohol dehydrogenase (Adh1), and the respiration 31 

process into tricarboxylic acid cycle (TCA, GO: 0006099) and oxidative phosphorylation 32 

(OXPHOS, GO:0006119) enzymes (Fig. 5C, Supp. Fig. S5.2). Surprisingly, none of the 33 

categories were consistently correlated with the growth rate. Instead, condition-specific 34 

expression was dominant, and a clear repression of all OXPHOS complexes upon growth on 35 

serine was observed (Supp. Fig. S5.3). A recent report showed that serine catabolism 36 
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generates high levels of reactive oxygen species (ROS) in S. pombe, suggesting that 1 

respiration may be repressed upon growth on serine to avoid a further increase in ROS (Kanou 2 

et al. 2020). Notably, expression of the fermentative enzymes Adh1 and Pdc101, although 3 

variable between conditions, was consistently higher than the total expression of the 4 

respiratory enzymes. Moreover, respiratory enzymes were not induced in nitrogen sources 5 

supporting slow growth. Taken together, the expression balance between fermentation and 6 

respiratory enzymes was not quantitatively connected to the growth rate, but depended on the 7 

nutrient properties. 8 

To complement this analysis, we searched for condition-specific patterns of protein expression 9 

that were not related to the growth rate in our proteomics dataset using principal component 10 

analysis (PCA) (Supp. Fig. S5.4). The first principal component (PC1) explained 29% of the 11 

total variance and split the culture conditions in two irrespective of the growth rate with Trp 12 

(W), Phe (F), Ser (S), and Pro (P) in one group (from here on termed the WFSP media) and 13 

Gly (G), Ile (I), Glu (E) and Amm in the other (Fig. 5D). Strikingly 24% (495/2045) of proteins 14 

had more than 50% of their variance explained by PC1. We defined two large classes of 15 

protein based on their response to this component: i) WFSP+ consisting of 275 proteins that 16 

were positively correlated with PC1 and therefore induced in the WFSP media; ii) WFSP- 17 

characterised by 220 proteins with expression negatively correlated with PC1 and therefore 18 

repressed in the WFSP media (Supp. Table S11). Interestingly, no single principal component 19 

was dominated by growth rate correlation (Supp. Fig. S5.4E), reinforcing the point that 20 

nutrient-specific and growth-dependent components of gene expression coexist for many 21 

proteins. 22 

Glycolytic and NAD-dependent enzymes were the two major classes of proteins 23 

overrepresented in the WFSP lists. First, most glycolytic enzymes belonged to one of the two 24 

WFSP classes (Fig. 5E-F, Supp. Fig. S5.5). These enzymes were highly expressed across 25 

conditions, amounting to ~15%–30% of the total proteome mass (Fig. 5B, Supp. Fig. S5.1). 26 

Therefore, the total gene expression burden of cellular metabolism across the WFSP 27 

conditions was heavily affected by the abundance of a small number of enzymes. Second, the 28 

two enzymes glyceraldehyde-3-phosphate (G3P) dehydrogenase Tdh1 and alcohol 29 

dehydrogenase Adh1 were assigned to opposing WFSP lists, and the ratio of Adh1/Tdh1 30 

expression was highly elevated in the WFSP conditions (Fig. 5F-G). Fermentation of a single 31 

molecule of glucose generates two molecules of ethanol and carbon dioxide. During the 32 

process, Tdh1 reduces two NAD+ molecules and Adh1 oxidises two NADH molecules. 33 

Therefore, the elevated Adh1/Tdh1 balance exerts a pressure on the NAD+/NADH equilibrium 34 

towards the NAD+ side. The induction of Adh1 and repression of Tdh1 proteins may be a 35 

controlled response to maintain homeostasis under disruptions to the NAD+/NADH redox 36 
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balance. This way, differential resource allocation towards the NAD-cycling glycolytic–1 

fermentation pathway may indicate that the metabolic rewiring invoked by the WFSP nitrogen 2 

sources could result from changes in the cell redox balance. 3 

To follow up on this observation, we further investigated the burden of NAD-dependent 4 

pathways. NADH is oxidised by NADH dehydrogenases that are situated in the inner 5 

mitochondrial membrane; the enzyme transfers two electrons per NADH molecule to the 6 

electron transport chain to power ATP synthesis. On the other hand, NAD+ is reduced several 7 

times during each iteration of the TCA cycle by the α-ketoglutarate (αKG) dehydrogenase 8 

complex (KGDHC), the isocitrate dehydrogenase (IDH) complex, and the malic enzymes. 9 

Fission yeast is thought to have two separate NADH dehydrogenase enzymes, Ndi1 and 10 

Nde1, with the NAD-binding domain of Ndi1 facing the mitochondrion and Nde1 facing the 11 

cytosol. We examined the expression burden of these enzymes in our data and found that, 12 

although neither belonged to one of the WFSP lists, the ratio of Nde1/Ndi1 expression was 13 

strongly elevated in the WFSP conditions (Fig. 5H, Supp. Fig. S5.6). The IDH complex 14 

comprises the two subunits Idh1 and Idh2, and KGDHC consists of four subunits: Kgd1, Kgd2, 15 

Ymr31, and Dld1, the latter being part of multiple complexes. Dld1 and Idh2 were part of the 16 

WFSP+ class, unlike any of the other subunits. As above, the ratio of protein abundances for 17 

Dld1/Kgd1 and Idh2/Idh1 were elevated in the WFSP conditions (Fig. 5I-J, Supp. Fig. S5.6). 18 

Therefore, the response to the WFSP nitrogen sources altered the stoichiometry of NAD-19 

dependent enzymatic complexes.  20 

Importantly, these signatures were not detected in our transcriptomics data, suggesting a role 21 

for post-transcriptional regulation. In line with this, ubiquitin and its related pathways, as well 22 

as the translation factors eIF3e and eIF5A, showed strong WFSP patterns suggesting a role 23 

for protein stability (Supp. Fig. S2.4E, Supp. Fig. S4.2B-D, Supp. Table S11). In summary, 24 

we identified two distinct cellular states that differed in the expression of enzymes involved in 25 

fermentation and the cell’s redox balance that were not correlated with the growth rate. 26 

Correcting for growth-rate dependence revealed additional transcriptional signatures 27 

of growth on single amino acid sources 28 

Defining the heterogeneity of metabolic states is key to a mechanistic understanding of cell 29 

population evolution, but this requires disentangling the gene signatures that depend on the 30 

growth rate from those that are purely nutrient specific. Our dataset has the unique capacity 31 

to achieve this. We performed differential expression analysis on our RNA-Seq dataset, by 32 

comparing each growth condition to a reference transcriptome obtained via averaging all the 33 

conditions, and corrected for the growth-dependent component of gene expression 34 

(Methods). We defined 10 signatures (termed R1–R10) by clustering the log2-transformed 35 
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fold change ratios with respect to the synthetic reference of all genes that were significantly 1 

enriched in at least one condition (Fig. 6A, Supp. Fig. S6.1, Supp. Table S12).  2 

The 10 signatures covered the differential expression of 2269 genes in total, representing 44% 3 

of the fission yeast transcriptome. Five signatures (R3, R4, R7, R8, and R9) were also visible 4 

at the proteome level (Fig. 6B). About 69% of the mRNA present in the transcriptomic 5 

signatures were quantified in at least one condition in the proteome and ~40% were detected 6 

in all conditions, indicating that this relatively limited agreement was not due to the lower 7 

coverage of the proteomics data. 8 

We next performed functional enrichment analyses of the transcriptomics clusters (Methods), 9 

using Gene Ontology annotations (Gene Ontology Consortium 2019; Lock et al. 2019). 10 

Broader functional categories were captured using GO-slim analysis (Fig. 6C), and specific 11 

pathways using terms from the biological_process ontology with at most 50 annotations 12 

(Supp. Fig. S6.2). In agreement with our observation that respiratory genes were repressed 13 

in Ser medium, the Ser repressed cluster R4 was strongly enriched for genes related to 14 

mitochondrial metabolism. Additionally, genes from the Ser induced cluster R8 were enriched 15 

for iron ion homeostasis. Both parts of the Ser response contained oxidoreductases, which is 16 

compatible with the recently reported high levels of ROS generated by serine catabolism 17 

(Kanou et al. 2020). The Trp repressed cluster R3 was enriched for genes related to amino 18 

acid metabolism, again suggesting that the slow growth sustained by the Trp medium was not 19 

due to any additional burden of disrupted amino acid synthesis. The smaller cluster R9 was 20 

enriched for genes related to pheromone activity (M-factor precursors), signalling, and the 21 

induction of meiosis (Supp. Fig. S6.2). Interestingly, the signature expression across 22 

conditions for these genes (induced in Trp, Phe, Pro, and Glu containing media) mirrored that 23 

of Mae2 (Supp. Fig. S2.4F), which removes excess carbon from the TCA cycle. As meiosis 24 

is usually induced by nitrogen starvation (Petersen and Russell 2016), this result suggests 25 

that the state of central carbon metabolism may also play a role in the meiotic transition, as 26 

(elemental) nitrogen was abundant in all growth media used. Altogether, we identified a rich 27 

set of metabolic signatures that were not dependent on the growth rate, but exclusively reflect 28 

changes in external nutrients. 29 

CONCLUSIONS 30 

In this study we quantified the proteome and transcriptome of the fission yeast S. pombe 31 

grown in eight defined media that affect the growth rate. Each medium contained a single 32 

nonlimiting source of nitrogen, such that variations in gene expression were determined by 33 

system-level resource allocation and not by the response of a single pathway to the titration 34 

of a limiting nutrient. This set up is in contrast to other studies which relied on a specific limiting 35 
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nutrient to perturb resource allocation while affecting the growth rate (Brauer et al. 2008; Hui 1 

et al. 2015), or leaving it constant (Yu et al. 2020) .  2 

Using this orthogonal approach, we propose a model in which shifts in resource allocation 3 

trigger two layers of gene expression regulation. The first layer consists of gene expression 4 

that is significantly correlated with growth rate and the second is condition-specific depending 5 

solely on nutrients. Many proteins and mRNAs showed a combination of both layers of 6 

regulation. This suggests that condition-specific responses occur on top of a global level gene 7 

regulation that is coordinated with the growth rate (Shahrezaei and Marguerat 2015). 8 

Importantly, the global layer of regulation discussed here affects relative abundances of 9 

proteins and of mRNAs, and is distinct from the scaling of gene expression to the growth rate 10 

which ensures constant biomolecule concentrations (Chávez et al. 2016). The mechanisms 11 

behind the observation that a large number of mRNA and proteins show some level of global 12 

scaling with the growth rate are not entirely clear. It could be related to the fact that expression 13 

of the protein production machinery itself increases with the growth rate and to changes in 14 

levels of TOR signalling for instance (see below). This could result in different cellular states 15 

that feedback globally on gene expression (Keren et al. 2013). It is of note that the growth-16 

rate-dependent component defined in this study might in some cases complicate the 17 

interpretation of condition-specific responses and should then be taken into account (Pancaldi, 18 

Schubert, and Bähler 2010; Yu et al. 2021).  19 

Eukaryotic growth-rate-related gene expression depends to some extent on the TORC1 axis 20 

of gene regulation, which is widely conserved across eukaryotes (Weisman 2016; González 21 

and Hall 2017; Morozumi and Shiozaki 2021). TORC1 activity is affected by a variety of 22 

stressors including nutrient starvation. Upstream of TORC1, the adenosine monophosphate 23 

kinase AMPK has been proposed to mediate the response to nitrogen starvation, and 24 

intriguingly, the two complexes can inhibit each other (Davie, Forte, and Petersen 2015; Ling 25 

et al. 2020). Downstream, the TORC1 pathway is a key regulator of the balance between the 26 

stress and growth modules (López-Maury, Marguerat, and Bähler 2008; Rallis, Codlin, and 27 

Bähler 2013; Rallis et al. 2014), with targets including eukaryotic initiation factor 2 subunit 28 

alpha (eIF2α) (Valbuena, Rozalén, and Moreno 2012), the SAGA complex (Laboucarié et al. 29 

2017), and the rate of fermentation through Greatwall and PP2AB55δ (Watanabe et al. 2019). 30 

These questions are often studied during adaptation to changing conditions and our system 31 

using continuous culture in turbidostats provides an attractive set up for future studies of the 32 

mechanisms that maintain the stress vs growth gene expression balance in steady-state 33 

conditions.  34 
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We found that known chromatin modifiers belonged to the R-sector. This is intriguing as 1 

expression of histones themselves were not dependent on the growth rate (Supp. Table S6). 2 

This may suggest that number of histones modifying enzymes and levels of modifications are 3 

rate limiting for transcription, or alternatively mediate an orthogonal function such as signalling 4 

the cell metabolic state through covalent protein modifications (Mellor 2016; Figlia, Willnow, 5 

and Teleman 2020; Morgan and Shilatifard 2020). This illustrates the intricate relationship of 6 

chromatin structure with the cell metabolism. Moreover, we found that RNAPII expression was 7 

not increasing with the growth rate suggesting that, unlike for gene expression scaling to cell 8 

size, its numbers are not limiting for the rate of growth (Padovan-Merhar et al. 2015; Sun et 9 

al. 2020). Yet, maintaining constant mRNA concentrations requires synthesis or degradation 10 

rates to adjust to cell growth. Therefore, other mechanisms such as transcription elongation 11 

or mRNA decay rates are likely to be modulated with the growth rate as suggested in budding 12 

yeast (Chávez et al. 2016). 13 

Discussing protein allocation in term of factors limiting for growth relies on the assumption that 14 

expression of all proteins is optimised for growth in any given condition. Recent evidence has 15 

challenged this view and has suggested that significant parts of E. coli (Valgepea et al. 2013; 16 

Peebo et al. 2015; Mori et al. 2017) and budding yeast (Metzl-Raz et al. 2017; Yu et al. 2020) 17 

gene expression are not immediately required for sustaining the growth rate and are instead 18 

held in reserve. This reserve pool of protein could support cell adaption to sudden 19 

environmental changes. It has furthermore been suggested that central carbon metabolism 20 

has a large reserve capacity, suggesting that many enzymes may also not be utilised solely 21 

to maximise metabolic fluxes (O’Brien, Utrilla, and Palsson 2016; Christodoulou et al. 2018; 22 

Yu et al. 2020). In this study, whereas several nutrient-specific regulatory programmes were 23 

detected in both the transcriptome and the proteome, such as specific responses to Ser and 24 

Trp, this was not true for the WFSP pattern and other transcriptomics signatures (Figs. 5 and 25 

6). This disconnect could means that metabolic pathways are differentially buffered through 26 

protein levels and stability which could in turn be interpreted in term of reserve capacity. A 27 

better understanding of post-transcriptional regulation in fission yeast will be important to fully 28 

understand what causes the high translational burden of metabolism. 29 

We found that expression of metabolic enzymes was strongly condition-specific and only 30 

marginally anti-correlated with the growth-rate. This condition-specific regulation represented 31 

a large change in the gene expression burden, driven by glycolytic proteins and enzymes and 32 

complexes relying on NAD turnover. Interestingly, this large variation in expression burden of 33 

the carbon metabolism resulted from changes in nitrogen source and occurred in the presence 34 

of abundant external glucose. This highlights the fact that metabolic adaptation to external 35 

condition is pervasive not only in term of fluxes but also in term of gene expression burden. 36 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435638doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435638
http://creativecommons.org/licenses/by/4.0/


19  

The catabolism of the backbones of the amino acids used as nitrogen sources could provide 1 

a link between nitrogen and carbon metabolism in our system. Our data provide a rich 2 

resource to constrain future genome-scale models of fission yeast that integrate metabolism 3 

and gene expression, which will allow testing this hypothesis (O’Brien et al. 2013; Sánchez et 4 

al. 2017; Y. Chen et al. 2020). 5 

An improved understanding of the fundamental principles behind cellular growth and the 6 

physiological and translational burden of metabolism across evolutionarily diverse biological 7 

systems would influence a wide range of research areas such as microbiology, synthetic 8 

biology, and cancer research. Cellular models of growth should integrate strategies used by a 9 

variety of organisms under a wide range of conditions, in order to identify common principles. 10 

Beyond its contribution to our understanding of gene regulation, this work will support future 11 

experimental and modelling efforts aimed at defining the nature of the trade-offs involved in 12 

growth, stress resistance, and metabolism across the tree of life.  13 
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FIGURE LEGENDS 1 

 2 

Figure 1: Characterisation of culture growth in turbidostats across eight minimal media. 3 
A. Illustration of the turbidostat culture chamber with the control flow and analysis pipeline. B. 4 
Example growth curve (Ile replicate 2) showing different growth phases in the turbidostat. C. 5 
Estimated growth rates μ based on a two-fold dilution and regrowth cycle for the 8 growth 6 
media using 3 biological replicates each. Amm: ammonium chloride, equal to standard EMM2 7 
medium. D. Total number of generations each culture spent in a turbidostat. E. Total time in 8 
hours each culture spent in a turbidostat, with the duration of individual growth phases 9 
coloured as in B. Note that, with NG the number of generations, T the time spent in the 10 
turbidostat, μ the growth rate, and Td the doubling time, Td = ln(2)/μ and NG = T/Td. 11 

Figure 2: Fission yeast gene expression shows growth-rate dependent and nutrient-12 
specific components. A. Hierarchical clustering of z-score transformed protein expression 13 
fractions for the 2045 protein groups detected across all conditions for cells grown in 7 single 14 
amino acids or NH4Cl (Amm) using 3 biological replicates. Growth conditions are ordered by 15 
increasing growth rate. Ten clusters are labelled on the left together with manual summary of 16 
enriched functional categories (see Supp. Fig. S2.1). B. Summed protein mass fractions for 17 
the 10 clusters defined in A as a function of the growth rate. Repeated-median linear model 18 
(RMLM) fit is shown as a black line and the predicted 2.5th–97.5th percentile confidence interval 19 
(CI) of the fit as the grey shaded area. C. As shown in B, for DESeq2-normalised RNA-Seq 20 
counts. D. Assignment of 2077 proteins detected across all conditions and their respective 21 
transcripts to the R (orange), P (blue), and Q (grey) sectors based on protein fractions (left) 22 
and DESeq2-normalised counts (right). Each protein is connected to its corresponding 23 
transcript by a line and colours are according to the protein sectors. E. Sum of protein fractions 24 
for the R (orange), P (blue), and Q (grey) sectors as a function of growth conditions. The figure 25 
includes all 3510 protein groups detected in at least one condition. Best fit and predicted CI 26 
are plotted for the ordinary least squares (OLS) linear model. F. As shown in E, for DESeq2-27 
normalised RNA-Seq counts for 5135 detected genes. Abbreviations: PP, QP, RP: protein 28 
groups assigned to P-, Q-, and R-sector. PT’, QT’, RT’: transcripts corresponding to protein 29 
groups detected across all conditions assigned to P-, Q-, and R-sector. PT, QT, RT: all 30 
transcripts assigned to P-, Q-, and R-sector. 31 

Figure 3: Proteins from the R sector are involved in every level of the protein production 32 
programme. A. Fraction of R (orange), P (blue), and Q (grey) genes in manually curated 33 
broad categories of protein complexes. The number of complexes (C) and genes (G) in each 34 
category are shown in parentheses. The 4 leftmost categories encompass the protein 35 
production programme. B. Volcano plot of protein complexes belonging to the broad 36 
categories "snoRNA regulation", "Protein translation", "Ribosomal proteins", and "Ribosome 37 
biogenesis" in the protein production programme. The plot shows the -log10 of the q-value of 38 
the repeated-median linear model (RMLM) fit on the sum of normalised counts in each protein 39 
complex as a function of the growth rate against a normalised estimate of the slope of the fit 40 
(see Methods). C. As shown in B for complexes belonging to the “mRNA regulation” and 41 
“Chromatin regulation” categories. D. Sums of DESeq2-normalised counts for subunits of 42 
RNAPI (left), II (middle) and III (right) are plotted as a function of the growth rate. The sums of 43 
subunits unique to a given complex are plotted in orange and of all subunits are plotted in 44 
grey. RMLM fits are shown as lines and the predicted 2.5th–97.5th percentile confidence 45 
interval (CI) of the fit as shaded areas.  46 

Figure 4: Stoichiometries of translation complexes, comparison of ribosomal growth 47 
law with other species, and functional analysis of P sector. A. Sum of the protein fractions 48 
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plotted as a function of the growth rate for factors involved in translation initiation, elongation, 1 
and termination (IET; left), ribosome biogenesis (RiBi; middle), or ribosomal proteins (RP; 2 
right). The best fit and bootstrapped 95% confidence interval (CI) are shown in black and grey, 3 
respectively. The fold change (FC) values ± standard deviations of the bootstrapped values 4 
are shown. B. Proteome mass ratio plotted as a function of the growth rate for the following 5 
comparisons: IET vs RP (left), RiBi vs IET (middle), and RiBi vs RP (right). Shown in black/grey 6 
are the predictions and 95% CIs as given by the linear models fitted to the data in A. C. FC 7 
values for proteins of the IET, RiBi, and RP categories plotted as a function of their median 8 
expression. Proteins assigned to the R, P, and Q sectors are coloured in orange, blue, and 9 
grey, respectively. D. Total proteome mass fraction allocated to ribosomal proteins as a 10 
function of growth rate for S. cerevisiae (red) (Metzl-Raz et al. 2017), S. pombe (green), and 11 
E. coli (grey) (data from (A. Schmidt et al. 2016). RMLM fits and 95% CIs are shown as lines 12 
and shaded areas, respectively. E. The -log10 Q-value of repeated-median linear model 13 
(RMLM) fits plotted against their respective FC values for proteins belonging to GO-slim and 14 
literature lists (Mata et al. 2002; D. Chen et al. 2003; Rustici et al. 2004; Rallis, Codlin, and 15 
Bähler 2013; Kamrad et al. 2020). List with a significant negative slope (q-value < 0.001) are 16 
highlighted in blue. BP GO-slim terms related to metabolism are highlighted in green, 17 
stress/growth modules from (D. Chen et al. 2003) in vermillion, and cell cycle induced modules 18 
from (Rustici et al. 2004) in orange. F. Sum of protein fractions plotted as a function of the 19 
growth rate for the Core Environmental Stress Response (CESR) repressed (growth module) 20 
or induced (stress module) genes. RMLM fit and predicted 95% CI as in A. G. Assignment of 21 
growth and stress module proteins (Prot) detected in all samples and their respective 22 
transcripts (Trans) to the R (orange), P (blue), and Q (grey) sectors based on protein fraction 23 
expression and DESeq2 normalised counts. Each protein is connected to its corresponding 24 
transcript by a line and the colours correspond to the protein sectors. 25 

Figure 5: The coordination of energy metabolism enzymes with the growth rate is 26 
marginal A. Sum of protein fractions of proteins involved in translation and ribosome 27 
biogenesis (red, see Figure 4A), energy metabolism and transport (green, see Figure 4E) or 28 
all other genes (grey) plotted as a function of the growth rate. B. Relative proteome fractions 29 
of 5 categories of proteins involved in metabolism. The median of the three replicates from 30 
each condition was used for calculating the protein fractions and plotting growth rates. C. As 31 
shown in B, for proteins of the OXPHOS and TCA pathways, the Adh1 and Pdc101 32 
fermentation proteins, and proteins annotated as "generation of precursor metabolites and 33 
energy" and not included in the other four categories or glycolysis. D. Protein expression as a 34 
function of growth rate as exhibited by the first principal component (PC1). E. Comparison of 35 
the first two principal components (PCA biplot) for each protein group detected in the proteome 36 
across all conditions. Areas with >50% variance explained by PC1 correlation are highlighted 37 
in yellow (negative correlation, WFSP-) and pink (positive correlation, WFSP+). Genes related 38 
to glycolysis and ethanol fermentation are indicated in blue. F. Topology of the glycolysis and 39 
ethanol fermentation pathway showing genes, cofactors, and selected metabolites, with 40 
colours as in E. G. Left: ratio of protein fractions for Adh1/Tdh1 plotted as a function of the 41 
growth rate. Right: diagram showing Adh1 and Tdh1 functioning together with median 42 
proteome fractions of both proteins in each condition. Colours are as annotated in D. H. As 43 
shown in G for Nde1 and Ndi1. I. Ratio of protein fractions of Idh2 and Idh1 plotted as a 44 
function of the growth rate. Colours are as annotated in D. J. As shown in I for the ratio of the 45 
protein fractions ofDld1 and Kgd1 plotted as a function of growth rate. 46 

Figure 6: Transcriptomic signatures for growth on amino acid sources. A. DESeq2 log2 47 
fold change ratios (scale capped at abs(log2(fc)) = 5) for the 10 signatures R1-R10. Fold 48 
changes are relative to the RMLM-predicted synthetic reference (Methods). Columns are 49 
ordered according to the growth rate and rows are ordered by hierarchical clustering (Supp. 50 
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Fig. 6.1). B. The log2-transformed ratios of observed versus RMLM-predicted protein fractions 1 
for genes in the R1-R10 signatures. Row and column orders are as described in A. Genes 2 
missing from the proteomics data are in grey. C. Functional analysis of the transcriptomics 3 
clusters R1-R10 as shown in A. Enrichment for GO slim terms belonging to the “biological 4 
process” (top), “cellular component” (middle), and “molecular function” (bottom) categories are 5 
shown. The colour scheme denotes the local false discovery rate (lfdr, capped at 1e-6 and 6 
printed on the figure if capped) from a Fisher exact one-sided test for the overlap of each 7 
cluster with functional lists. Only significant lists are shown (lfdr < 0.05) and the number of 8 
genes in each category and cluster are shown in parentheses. 9 
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SUPPLEMENTARY FIGURE LEGENDS 1 

 2 

Supplementary Figure S2.1: Functional analysis of the proteome clusters from Figure 3 
2A. Enrichment for GO slim terms belonging to the “biological process” (top), “cellular 4 
component” (middle), and “molecular function” (bottom) categories are shown. The colour 5 
scheme denotes the local false discovery rate (lfdr, capped at 1e-6 and printed on the figure if 6 
capped) of a Fisher exact one-sided test for the overlap of each cluster with the functional 7 
lists. Only significant lists are shown (lfdr < 0.05) and the number of genes in each category 8 
and cluster are shown in parentheses. 9 

Supplementary Figure S2.2: mRNA dependence on the growth rate. Hierarchical 10 
clustering of the z-score transformed DESeq-normalised RNA-Seq counts for 4979 mRNAs 11 
expressed across all conditions in the RNA-Seq dataset for cells grown on 7 single amino 12 
acids or NH4Cl (Amm). The growth conditions are ordered by increasing growth rate. The 13 
twelve clusters are indicated on the left. B. Sum of DESeq-normalised RNA-Seq counts for 14 
the 12 clusters defined in A as a function of growth conditions. The growth conditions are 15 
ordered by increasing growth rate. The RMLM best fit is shown in black and the predicted 95% 16 
confidence interval in grey. 17 

Supplementary Figure S2.3: ncRNA dependence on the growth rate I. Hierarchical 18 
clustering of z-score transformed DESeq-normalised RNA-Seq counts for 1211 ncRNAs for 19 
cells grown on 7 single aamino acids or NH4Cl (Amm). The growth conditions are ordered by 20 
increasing growth rate. The nine clusters are labelled on the left. B. Sum of DESeq2-21 
normalised RNA-Seq counts for the 9 clusters defined in A as a function of growth conditions. 22 
The growth conditions are ordered by increasing growth rate. The RMLM best fit is shown in 23 
black and the predicted 95% confidence interval in grey. C. The z-score transformed DESeq2 24 
normalised RNA-Seq counts of all genes that neighbour the ncRNAs from the clusters defined 25 
in A are shown. Annotations of flanking genes were taken from (Atkinson et al. 2018). D. Sum 26 
of DESeq2-normalised RNA-Seq counts (NC) for the neighbouring genes for each cluster 27 
defined in A.  28 

Supplementary Figure S2.4: Illustration of repeated-median linear model (RMLM) fits on 29 
single genes. A. Example R-protein Rpl402. B. Example P protein Suc22. C. Example Q 30 
protein group comprising Hht1, Hht2, and Hht3. D. Example of P protein with additional 31 
medium-specific expression Snz1. E. Example WFSP+ pattern (see Fig. 5D) with a poor 32 
RMLM fit for the protein group comprising Ubi3, Ubi4, and Ubi5. F. Additional example of a 33 
poor RMLM fit for the protein Mae2. The best fit for the RMLM is shown as solid black lines 34 
and the predicted 95% CI in grey. The best fit for the ordinary least squares (OLS) linear model 35 
is shown as dashed grey lines. G. Illustration of the fold change (FC) calculation for the 36 
example protein Rpl402 indicating the relationship between the FC values, slope, and the y-37 
intercept of the fit. H. Growth law shapes corresponding to a series of example FC values. 38 

Supplementary Figure S2.5: Growth category assignment of proteins and the 39 
corresponding transcripts from clusters defined in Figure 2A. Assignment of proteins 40 
from the clusters defined in Figure 2A (Prot) and their respective transcripts (Trans) in the R 41 
(orange), P (blue), and Q (grey) sectors based on protein fraction expression and DESeq2-42 
normalised counts. Each protein is connected to its corresponding transcript by a line coloured 43 
as per the protein classification. 44 

Supplementary Figure S3.1 Volcano plot of protein complexes that do not belong to 45 
those illustrated in Figure 3B-C. The -log10 of the q-value of the repeated-median linear 46 
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model (RMLM) fit on the sum of normalised counts in each protein complex as a function of 1 
the growth rate are plotted against a normalised estimate of the slope of the fit (see Methods). 2 

Supplementary Figure S4.1: Stoichiometries of translation complexes as a function of 3 
the growth rate. A. Bootstrapped parameter densities of fold change (FC), slope and intercept 4 
values for the IET (blue), RiBi (pink), and RP (red) categories. The analysis is based on the 5 
1000 bootstrap samples used in Figures 4A and B. B. The sum of protein fractions in the 6 
translation “Initiation”, “Elongation”, and “Termination” categories plotted as a function of the 7 
growth rate. The best fit and bootstrapped 95% CI are shown in black and grey, respectively. 8 
The FC values ± standard deviations of bootstrapped values are shown. C. The proteome 9 
mass ratio plotted as a function of the growth rate for the following comparisons: Elongation 10 
vs Initiation (left), Termination vs Initiation (middle), and Termination vs Elongation (right). 11 
Shown in black and grey are the predictions and 95% CIs, respectively, as given by the linear 12 
models fitted to the data in B. 13 

Supplementary Figure S4.2: Analysis of translational proteins with non-positive or 14 
weak growth-rate correlations. A. Normalised sum of squared residuals (SSR) versus 15 
coefficient of determination (R2) for repeated-median linear model (RMLM) fits to protein 16 
groups involved in translation initiation, elongation, and termination (IET, left), ribosome 17 
biogenesis (RiBi, middle), and to ribosomal proteins (RP, right). All P-sector proteins were 18 
labelled, R-sector proteins were labelled if their normalised SSR was greater than 0.1; for Q-19 
sector proteins the threshold was 0.2. B. Proteome burden associated with translation 20 
elongation and termination factor eIF5A (Tif512) as a function of growth rate. The best fitted 21 
RMLM is shown as a solid black line, with its predicted 95% CI in grey. The best fitted ordinary 22 
least squares model is shown as a dashed grey line. C. As shown in B for translation initiation 23 
factor eIF3e (Int6). D. Ratio of protein mass fractions for Int6 and the major eIF3 subunit Tif301 24 
plotted as a function of the growth rate. 25 

Supplementary Figure S4.3: Stoichiometries of translation complexes as a function of 26 
the growth rate in E. coli (A. Schmidt et al. 2016). A. Sum of the protein fractions plotted as 27 
a function of the growth rate for factors involved in translation initiation, elongation, and 28 
termination (IET, left), ribosome biogenesis (RiBi, middle), or for ribosomal proteins (RP, right). 29 
The best fit and bootstrapped 95% confidence interval (CI) are shown in black and grey, 30 
respectively. The fold change (FC) values ± standard deviations of the bootstrapped values 31 
are shown. The type of nutrient or perturbation used to modulate the growth rate are colour 32 
coded as per the legend on the right. Data from cultures in stationary phase was not included 33 
in the fits. B. The proteome mass ratio plotted as a function of the growth rate for the following 34 
comparisons: IET vs RP (left), RiBi vs IET (middle), and RiBi vs RP (right). Shown in black 35 
and grey are the predictions and 95% CIs, respectively, as given by the linear models fitted to 36 
the data in A. C. FC values for proteins of the IET, RiBi, and RP categories plotted as a function 37 
of their median expression. Proteins assigned to the R, P, and Q sectors are coloured in 38 
orange, blue, and grey, respectively. 39 

Supplementary Figure S4.4: Analysis of the residuals of the R and P sectors. A. Violin 40 
plots and box plots of the normalised sum of squared residuals (SSR) of the RMLM best fit for 41 
mRNA counts or protein fractions belonging to the R (orange) or P (blue) sectors. The p-values 42 
for the two-sided Wilcoxon rank-sum test are indicated. B. As shown in A for the R2 values. C. 43 
Normalised SSR of the RMLM fit plotted against their respective R2 values for all proteins 44 
belonging to the R (orange), P (blue), or Q (grey) sectors. D. As shown in C for clusters 1 (left), 45 
4 (middle) and 8 (right) of Figure 2A. 46 

Supplementary Figure S4.5: Functional analysis of P sector mRNAs. A. The -log10 q-47 
value of RMLM fits plotted against their respective FC values for mRNAs belonging to the GO-48 
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slim and literature lists (Mata et al. 2002; D. Chen et al. 2003; Rustici et al. 2004; Rallis, Codlin, 1 
and Bähler 2013; Kamrad et al. 2020). The lists with a significant negative slope (q-value < 2 
0.001) are highlighted in blue. The BP GO-slim terms related to metabolism are highlighted in 3 
green, stress/growth modules from (D. Chen et al. 2003) in vermillion, and cell cycle induced 4 
modules from (Rustici et al. 2004) in orange. B. Sum of the DESeq2-normalised counts plotted 5 
as a function of the growth rate for the Core Environmental Stress Response (CESR) 6 
repressed (growth module), or the induced (stress module) genes. The RMLM fit and predicted 7 
95% CI are indicated as in Figure 4F. C. The sum of protein fractions plotted as a function of 8 
the growth rate for S phase induced periodic genes (Rustici et al. 2004). D. As shown in C for 9 
the DESeq2 normalised counts. E. Total expression in RNA-Seq (DESeq2-normalised counts, 10 
left panel) and proteomics data sets (proteome fraction, right panel) for gene lists induced in 11 
the M phase versus G1 phase (Rustici et al. 2004). 12 

Supplementary Figure S4.6: Functional enrichment of P sector proteins. The -log10 of q-13 
value (tail-based false discovery rate) of the one-sided Fisher exact enrichment test plotted as 14 
a function of the number of genes detected across all conditions in the proteome for all S. 15 
pombe GO-slim categories. Significantly enriched lists (q-value < 0.05) are highlighted in cyan. 16 
The BP GO-slim terms related to metabolism are highlighted in green. 17 

Supplementary Figure S5.1: Growth rate specificity of metabolism proteins (related to 18 
Figure 5B). Sum of protein fractions plotted as a function of the growth rate for 6 categories 19 
covering metabolism (see Figure 5B and Methods). 20 

Supplementary Figure S5.2: Growth rate specificity of energy metabolism proteins 21 
(related to Figure 5C). Top left two panels: protein fractions as a function of growth rate for 22 
the ethanol fermentation enzymes Adh1 and Pdc101. Remaining three panels: sum of protein 23 
fractions as a function of growth rate for the proteins involved in oxidative phosphorylation, 24 
TCA cycle, and for those annotated as "generation of precursor metabolites and energy" and 25 
that were neither included in the first four panels nor glycolysis. 26 

Supplementary Figure S5.3: Condition specific expression of complexes forming the 27 
respiratory electron transport chain and proton pumps. The sum of protein mass fractions 28 
as a function of the growth rate (top panels) and median proteome fraction of components of 29 
the complex in each condition (bottom panels), for internal NADH dehydrogenase, the 30 
succinate dehydrogenase complex, the cytochrome C reductase complex, cytochrome C, the 31 
cytochrome C oxidase complex, and the ATP synthases.  32 

Supplementary Figure S5.4: PCA analysis of the proteomics data. A. Cumulative variance 33 
explained by the first 9 principal components of the proteomics dataset (Methods). B. PC1 34 
plotted against PC2 for all proteins belonging to the R (orange), P (blue), or Q (grey) sectors. 35 
C. As shown in B for PC3 and PC1. D. As shown in B for PC3 and PC2. E. The relative 36 
contribution of each experimental condition plotted as a function of the growth rate for the first 37 
9 principal components of the proteomics dataset. Note that PC1 shows a clear WFSP+ 38 
pattern, as repeated in Figure 5D.  39 

Supplementary Figure S5.5: Proteome burdens of enzymes in the glycolysis and 40 
ethanol fermentation pathways. Repeated-median linear model fits are shown as black lines 41 
and the predicted 2.5th–97.5th percentile confidence intervals of the fits as the grey shaded 42 
areas. 43 

Supplementary Figure S5.6: Proteome burdens of selected enzymes with NAD cofactor 44 
(related to Figure 5I–J). Repeated-median linear model fits are shown as black lines and the 45 
predicted 2.5th–97.5th percentile confidence intervals of the fits as the grey shaded areas. 46 
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Supplementary Figure S6.1: Hierarchical clustering of RNA-Seq data after correction 1 
for growth-rate dependent gene expression. Counts were normalised to the growth-2 
dependent linear model in DESeq2 and the fold change ratios fc were calculated with respect 3 
to a synthetic average sample as a reference (Methods). Only genes with at least one 4 
condition meeting abs(log2(fc)) > 0.5 and adjusted p-values < 0.01 were selected. Gene-5 
condition pairs not meeting this significance threshold are shown in grey. The colour scale is 6 
capped at abs(log2(fc)) = 5. The R1-R10 signatures from Figure 6 are shown on the left.  7 

Supplementary Figure S6.2: Functional analysis focusing on informative terms of R1-8 
R10 signatures from Figure 6. Enrichment for GO terms belonging to the “biological process” 9 
category with no more than 50 annotations are shown. The colour scheme denotes the -log10 10 
local fdr (lfdr, capped at 1e-9) for Fisher exact one-sided tests for the overlap of each cluster 11 
with functional lists. Only significant lists are shown (lfdr < 0.01) and the number of genes in 12 
each category and clusters are shown in parentheses.  13 

  14 
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SUPPLEMENTARY TABLE LEGENDS 1 

 2 

Supplementary Table S1: Summary of growth conditions for the 24 cultures studied. 3 
medium: three-letter abbreviation of growth medium; replicate: biological replicate index; 4 
growth_rate: calculated growth rate (in h-1); doubling_time: doubling time as calculated from 5 
the growth rate (in h); OD: mean OD600 during second phase of stable OD; total_doublings: 6 
total number of doubling times elapsed during turbidostat growth; growth_1_h: elapsed time 7 
(in h) between inoculation and first meeting of the OD setpoint; constant_2_h: elapsed time 8 
(in h) during the initial phase of stable growth; dilution_h: elapsed time (in h) during the 9 
approximate twofold dilution; growth_2_h: elapsed time (in h) during regrowth phase following 10 
the dilution; constant_2_h: elapsed time (in h) during the second phase of stable OD; total_h: 11 
total elapsed time (in h) during turbidostat growth; nitrogen_source: full name of nitrogen 12 
source in growth medium; turbidostat: index of physical device that the culture was grown in. 13 

Supplementary Table S2: Summary of protein groups detected in proteomics analysis. 14 
PomBaseIDs: database identifiers of the proteins comprising the protein group, i.e that were 15 
indistinguishable based on the detected peptides; n_proteins: number of proteins comprising 16 
the group; Protein IDs: FASTA headers of the proteins; total_peptides_all: number of different 17 
peptides detected in at least one sample that could have been assigned to the group; 18 
total_peptides_razor: number of different peptides detected in at least one sample that were 19 
assigned to the group; total_peptides_unique: number of different peptides detected in at least 20 
one sample that were assigned to the group and could not have been assigned to another 21 
group; sequence_coverage: percentage of the protein sequence that overlapped with at least 22 
one peptide; sequence_lengths: number of amino acids comprising the group’s proteins’ 23 
peptide chain; mol_weight: molecular weight of protein (in kDa). 24 

Supplementary Table S3: Relative protein expression levels as determined by the 25 
proteomics analysis. PomBaseIDs: database identifiers of the protein group; medium: three-26 
letter abbreviation of growth medium; replicate: biological replicate index; iBAQ: intensity 27 
based absolute quantification; raw: raw detected intensity; lfq: label-free quantification as 28 
reported by MaxQuant. 29 

Supplementary Table S4: Proteome mass fractions as determined from intensity-based 30 
absolute quantifications (iBAQ). PomBaseIDs: database identifiers of the protein group; 31 
medium: three-letter abbreviation of growth medium; replicate: biological replicate index; 32 
proteome_fraction: proteome mass fraction. 33 

Supplementary Table S5: Transcript abundance as determined by RNA-Seq analysis 34 
and subsequent normalisation. PomBaseIDs: database identifiers of the protein group; 35 
medium: three-letter abbreviation of growth medium; replicate: biological replicate index; 36 
normalised_counts: abundance after DESeq2-based normalisation; rpkm: reads per kilobase 37 
per million; raw_counts: raw counts detected in sequencing analysis.  38 

Supplementary Table S6: Summary statistics of repeated-median linear model (RMLM) 39 
fits and of gene expression. PomBaseID: systematic database identifier of the gene; 40 
primary_name: gene standard name; description: gene product description; PomBaseIDs: 41 
proteomics protein group identifier; sector.proteins: proteome sector the protein group was 42 
assigned to (q-value < 0.1); confident.proteins: whether proteome assignment was confident 43 
(local false discovery rate lfdr < 0.1); cluster.proteins: cluster the protein group was assigned 44 
to (see Fig. 2A); sector.transcripts: transcriptome sector the protein group was assigned to (q-45 
value < 0.1); confident.transcripts: whether transcriptome assignment was confident (lfdr < 46 
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0.1); cluster.transcripts: cluster the transcript was assigned to (see Supp. Fig. 2.2A); 1 
q.value.proteins: q-value assigned to the protein RMLM fit; local_fdr.proteins: lfdr assigned to 2 
the protein RMLM fit; slope.proteins: slope of the protein RMLM fit; intercept.proteins: y-3 
intercept of the protein RMLM fit; p.value.proteins: p-value associated with the protein RMLM 4 
fit; r.squared.proteins: coefficient of determination (R2) of the protein RMLM fit; fc.proteins: fold 5 
change (FC) calculated from the protein RMLM fit; median.proteins: median proteome mass 6 
fraction; max.proteins: largest detected proteome mass fraction; min.proteins: smallest 7 
detected proteome mass fraction; spread.proteins: difference between largest and smallest 8 
detected proteome mass fraction; n_conditions.proteins: number of conditions that the protein 9 
was detected in; mean.proteins: mean proteome mass fraction; var.proteins: variance of 10 
proteome mass fraction; cv.proteins: coefficient of variation (CV) of proteome mass fraction; 11 
ssr.proteins: sum of squared residuals (SSR) to the RMLM for proteome mass fractions; 12 
norm_ssr.proteins: normalised SSR for proteome mass fractions (see Methods, equation (7) 13 
); q.value.transcripts: q-value assigned to the transcript RMLM fit; local_fdr.transcripts: lfdr 14 
assigned to the transcript RMLM fit; slope.transcripts: slope of the transcript RMLM fit; 15 
intercept.transcripts: y-intercept of the transcript RMLM fit; p.value.transcripts: p-value 16 
associated with the transcript RMLM fit; r.squared.transcripts: R2 of the transcript RMLM fit; 17 
fc.transcripts: FC calculated from the transcript RMLM fit; median.transcripts: median RNA-18 
Seq normalised counts; max.transcripts: largest detected RNA-Seq normalised counts; 19 
min.transcripts: smallest detected RNA-Seq normalised counts; spread.transcripts: difference 20 
between largest and smallest detected RNA-Seq normalised counts; n_conditions.transcripts: 21 
number of conditions that the transcript was detected in; mean.transcripts: mean RNA-Seq 22 
normalised counts; var.transcripts: variance of RNA-Seq normalised counts; cv.transcripts: 23 
CV of RNA-Seq normalised counts; ssr.transcripts: SSR to the RMLM for RNA-Seq 24 
normalised counts; norm_ssr.transcripts: normalised SSR for RNA-Seq normalised counts 25 
(see Methods, equation (7) ). 26 

Supplementary Table S7: Manual assignment of complexes to broader functional 27 
categories. GOID: Gene Ontology (GO) term accession identifier; description: GO term 28 
name; category: manually assigned category. 29 

Supplementary Table S8: Assignment of S. pombe translation proteins to non-30 
overlapping functional classes. PomBaseIDs: proteomics protein group identifier; 31 
annotation: annotation to ribosomal protein (RP), initiation/elongation/termination factors 32 
(IET), or ribosome biogenesis (RiBi). 33 

Supplementary Table S9: Assignment of E. coli translation genes to non-overlapping 34 
functional classes. gene: gene identifier; annotation: annotation to ribosomal protein (RP), 35 
initiation/elongation/termination factors (IET), or ribosome biogenesis (RiBi). 36 

Supplementary Table S10: Assignment of metabolic proteins to non-overlapping 37 
functional classes. PomBaseIDs: proteomics protein group identifier; annotations: all 38 
relevant GO-slim annotations present for the protein group (semi-colon-separated); class: 39 
assignment to broad non-overlapping groups (Fig. 5B, Supp. Fig. S5.1); subclass: for 40 
Precursors/Energy class, subdivision into non-overlapping subgroups (Fig. 5C, Supp. Fig. 41 
S5.2).  42 

Supplementary Table S11: Proteins induced and repressed in Trp (W), Phe (F), Ser (S), 43 
and Pro (P) media. PomBaseIDs: proteomics protein group identifier; correlation: Pearson 44 
correlation coefficient R between z-score transformed proteome mass fractions and protein 45 
principal component 1 (PC1); r.squared: R2, WFSP: whether R>0 (+) or R<0 (-); PomBaseID: 46 
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systematic database identifier of the gene; primary_name: gene standard name; description: 1 
gene product description. 2 

Supplementary Table S12: Differential expression analysis after removal of growth rate 3 
correlations and subsequent assignment to transcriptional signatures. PomBaseID: 4 
gene identifier; cluster: assignment to transcriptional signature; medium: ; baseMean: baseline 5 
transformed expression in synthetic reference; log2fc: log2-transformed fold change; stderror: 6 
standard error of the log2-transformed fold change; statistic: test statistic of the DE analysis; 7 
p.value: raw p-value of Wald test; p.adjusted: Benjamini–Hochberg adjusted p-value. 8 

  9 
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 1 

MATERIALS AND METHODS 2 

Culture conditions 3 

Cells were grown in continuous culture in turbidostats using Edinburgh minimal media (EMM2) 4 

with saturating amounts of carbon and nitrogen (Petersen and Russell 2016). This ensured 5 

that the cells could reach balanced exponential growth, limited only by internal gene 6 

expression patterns. In addition to the standard EMM2 media where nitrogen is provided by 7 

93.5 mM of ammonium chloride (NH4Cl, referred to as Amm), we used seven alternative 8 

nitrogen sources where 20 mM of a single amino acid replaced the NH4Cl: glutamate (Glu), 9 

proline (Pro), isoleucine (Ile), serine (Ser), phenylalanine (Phe), glycine (Gly), and tryptophan 10 

(Trp) (Sigma).  11 

Cells were grown and harvested as follows: 972h- cells from frozen glycerol stocks were 12 

precultured on YES agar plates. Single colonies were inoculated in 5-10 ml of EMM2 in glass 13 

flasks and grown overnight at 32 °C. Approximately 1 ml of culture was transferred to a fresh 14 

flask containing EMM2 and the final nitrogen source and grown to large ~5 x 106 cells/ml. 15 

These cells were used to inoculate the continuous culture setup at 0.5-1 x 106 cells/ml. The 16 

process was repeated for biological triplicates grown from three different colonies. 17 

To generate the final cultures, cells were grown in turbidostats (Takahashi et al. 2015), with 18 

media flow controlled using customised Python scripts (Saint et al. 2019). Cell cultures were 19 

monitored every 30 s and fresh growth medium was added whenever the optical density OD600 20 

exceeded 0.4. This resulted in 1%–2% dilution cycles, keeping the total culture volume 21 

constant throughout. Cells were kept in the turbidostats for ~10 generations at 32 °C. To 22 

measure the growth rate, cells were diluted twofold approximately halfway through the 23 

experiment and regrown to the reference level of OD600 = 0.4. The growth rate for each sample 24 

was determined by fitting an exponential curve to the OD measures acquired every 30 s during 25 

the regrowth phase. The final culture volumes were ~30 ml, from which 10 ml was used for 26 

transcriptomics, 10 ml for proteomics analysis, and 10 ml was saved as a backup. The cells 27 

were harvested by centrifugation, washed twice with PBS and stored at –80 °C until RNA-Seq 28 

and proteomics sample preparation was performed. 29 

RNA-Seq 30 

A 10 ml aliquot of the culture was centrifuged at 3000 rpm for 3 min. After removing the 31 

supernatant, cell pellets were frozen in dry ice and kept at -80 °C until the library preparation 32 

was performed. Total RNA from the pellets was extracted using the hot-phenol method (Lyne 33 

et al. 2003) and the RNA obtained was quantified using a BioDrop (biochrom, Cambridge, 34 
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UK). Poly(A) enrichment was performed using 500 ng of total RNA with the NEBNext Poly(A) 1 

mRNA Magnetic Isolation Module (NEB, Ipswich, USA) kit according to the manufacturer’s 2 

instructions. The remaining mRNA was used for stranded RNA-seq library preparation using 3 

the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina® (NEB, Ipswich, USA) 4 

according to the manufacturer’s instructions. The resulting libraries were quality checked and 5 

quantified using the Bioanalyser (Agilent, Santa Clara, USA) and a Qubit™ dsDNA BR Assay 6 

Kit (Invitrogen) respectively. 7 

Libraries were sequenced on an Illumina HiSeq 2500 instrument (Illumina, San Diego, USA). 8 

Data were processed using RTA version 1.18.54 and 1.18.64, with default filter and quality 9 

settings. The reads were demultiplexed with CASAVA 1.8.4 and 2.17 (allowing 0 10 

mismatches). Transcripts were mapped to the genome sequences (available from PomBase) 11 

using TopHat2 (Kim et al. 2013; Lock et al. 2019). HTSeq was used to count the number of 12 

reads per exon (gff3, PomBase) (Anders, Pyl, and Huber 2015; Lock et al. 2019). The reads 13 

across exons were summed to obtain the total number of reads per gene. This procedure 14 

yielded raw counts cijk for each gene i, growth medium j, and biological replicate k. Per sample 15 

normalisation was performed using the DESeq2 estimateSizeFactors function, yielding size 16 

factors Sjk for each sample (Love, Huber, and Anders 2014). The normalised counts were 17 

calculated as follows: 18 

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
𝑆𝑆𝑗𝑗𝑗𝑗

. (1) 19 

Unless otherwise noted, RNA-Seq analyses were performed using these normalised counts, 20 

which enabled between-sample comparison of the expression of genes or sets of genes. 21 

Proteomics 22 

Cell pellets from 10 ml of each turbidostat culture was frozen in dry ice and stored at -80 °C 23 

until sample preparation. Once thawed, cells were resuspended in lysis buffer (1% sodium 24 

deoxycholate, 1% ammonium bicarbonate). Lysis was performed in a FastPrep instrument 25 

(MP Biomedical) for 5 pulses at a speed of 6 m/s. Total cell extracts were treated with 5 mM 26 

tris(2-carboxyethyl)phosphine (TCEP) for 15 min at room temperature to reduce the disulphide 27 

bonds. An alkylation reaction was performed with the addition of 10 mM iodoacetamide for 30 28 

min at 25 °C in the dark. The reaction was quenched using 12 mM N-acetyl-cysteine for 10 29 

min. The proteins were quantified using a BCA Protein Assay Reducing Agent Compatible kit 30 

(ThermoFisher Scientific) and 100 µg of total protein was used for digestion. To improve the 31 

cleavage efficiency, protein extracts underwent a double digestion, first with Lys-C (Wako 32 

chemicals, USA) for 4 h at 37 °C using a 1:200 (w/w) ratio, and then overnight with porcine 33 

trypsin at 37 °C using a 1:100 (w/w) ratio. Digestion was stopped by lowering the pH with 34 
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trifluoroacetic acid (TFA) at a final volume of 1%. The sodium deoxycholate precipitate formed 1 

due to the lowered pH was removed by centrifuging the samples at 4 °C for 15 min at 14,000 2 

rpm. The precipitated detergent was then discarded. The digested peptides were vacuum 3 

dried and stored at -80 °C until required for analysis.  4 

The protein digests were analysed by liquid chromatography-tandem mass spectrometry (LC-5 

MS/MS) via an untargeted analysis approach using Data-Dependent Acquisition (DDA) 6 

(Ducret et al. 1998). The raw MS data was analysed using MaxQuant (Cox and Mann 2008) 7 

and applying the Label-free Quantification algorithm (Cox et al. 2014) for DDA data analysis. 8 

Protein digests were reconstituted in 0.1% trifluoroacetic acid (TFA) and transferred to 9 

autosampler vials for LC-MS/MS analysis. The tryptic peptides were separated using an 10 

Ultimate 3000 RSLC nano liquid chromatography system (Thermo Scientific) coupled to a Q-11 

Exactive tandem mass spectrometer (Thermo Scientific) via an EASY-Spray source. Sample 12 

volumes were loaded onto a trap column (Acclaim PepMap 100 C18, 100 um x 2 cm) at 8 13 

ul/min of 2% acetonitrile, 0.1% TFA. Peptides were eluted on-line to an analytical column 14 

(EASY-Spray PepMap C18, 75 um x 75 cm). Peptides were separated at 200 nl/min with a 15 

ramped 180 min gradient using 4%-30% buffer B (buffer A: 2% acetonitrile, 0.1% formic acid; 16 

buffer B: 80% acetonitrile, 0.1% formic acid) over 150 min, and 30%-45% buffer B over 30 17 

min. Eluted peptides were analysed by operating in positive polarity using a data-dependent 18 

acquisition mode. Ions for fragmentation were determined from an initial MS1 survey scan at 19 

70,000 resolution (at m/z 200) in the Orbitrap followed by Higher-energy Collisional 20 

Dissociation (HCD) of the top 12 most abundant. MS1 and MS2 scan AGC targets set to 3e6 21 

and 5e4 for maximum injection times of 50 ms and 110 ms, respectively. A survey scan 22 

covering the range of 400–1800 m/z was used, with HCD parameters of isolation width 2.0 23 

m/z and a normalised collision energy of 27%.  24 

DDA data was processed using the MaxQuant software platform (v1.6.2.3) (Cox and Mann 25 

2008) with database searches performed by the in-built Andromeda search engine against the 26 

PomBase database (5,138 entries, v.20190507) (Lock et al. 2019). A reverse decoy database 27 

was created, and the results displayed at a 1% false discovery rate (fdr) for peptide spectrum 28 

matches and identified proteins. The search parameters included trypsin, two missed 29 

cleavages, fixed modification of cysteine carbamidomethylation, and variable modifications of 30 

methionine oxidation, asparagine deamidation, N-terminal glutamine to pyroglutamate 31 

modification, and protein N-terminal acetylation. Label-free quantification was enabled with an 32 

LFQ minimum ratio count of 2. The ‘match between runs’ function was used with match and 33 

alignment time limits of 0.7 and 20 min, respectively. 34 
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Intensities were based on identified unique and razor peptides, and intensity-based absolute 1 

quantification (iBAQ) was calculated as the raw intensity/number of obtainable tryptic 2 

peptides. For the post-processing of the MaxQuant output, the data was filtered for detection 3 

in all three biological replicates. Subsequently, proteome mass fractions ϕij were calculated for 4 

each protein group i, sample from growth medium j, replicate k from the reported protein 5 

masses mi, and the iBAQ quantities Bijk as follows: 6 

𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝑚𝑚𝑙𝑙𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

. (2) 7 

Repeated median linear models 8 

As shown in the main text, several genes were enriched in one or more growth conditions in 9 

addition to growth-rate correlations. The presence of such outliers affected the fit quality of the 10 

standard ordinary least squares (OLS) linear model fits. To account for this, we used repeated 11 

median linear models (RMLM) for fitting regression lines (Siegel 1982), as implemented in the 12 

R package `mblm` (Komsta 2019). This method is robust when up to 50% of outliers are 13 

present in the data, and the working is described below. 14 

In general, the data can be described as N pairs of the growth rate μ and some expression 15 

value y (N = 24 if expression was detected across all samples, or a smaller multiple of 3 when 16 

data was missing). From each observation (μ, y)i, a line is drawn to each of the other N – 1 17 

points (μ, y)j, and the median slope and y-intercept of these N – 1 lines is associated with the 18 

data point i. The regression coefficients for the slope and y-intercept of the repeated median 19 

linear model are defined as the medians of all N slopes and y-intercepts. To compare the 20 

growth law shape of protein groups with varying absolute abundances, the fold-change FC 21 

was defined from the RMLM as the ratio 22 

𝐹𝐹𝐹𝐹 =
 𝑦𝑦(𝜇𝜇 = 𝜇𝜇max) −  𝑦𝑦(𝜇𝜇 = 0)

𝑦𝑦(𝜇𝜇 = 0.5𝜇𝜇max) , (3) 23 

 24 

with μmax = 0.3 h-1. This can be expressed in terms of the fitted slope a and the y-intercept b 25 

as follows: 26 

𝐹𝐹𝐹𝐹 =
𝜇𝜇max

0.5𝜇𝜇max + 𝑏𝑏 𝑎𝑎�
. (4) 27 

Hierarchical clustering 28 

We used z-scores to normalise for variations in absolute expression levels. For each gene or 29 

protein group i in the sample with medium j and replicate k, the z-score was calculated as 30 
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𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖

𝜎𝜎𝑖𝑖
(5) 1 

from the expression values yijk, where μi and σi are the mean and standard deviations across 2 

all samples. The analysis was performed only on genes or protein groups that were detected 3 

across all 24 samples. The resulting matrices of the z-scores were analysed using hierarchical 4 

clustering and principal component analysis. 5 

Hierarchical clustering on genes/protein groups was performed using the Euclidean distance 6 

and Ward linkage (“ward.D2”), using the `hclust` implementation of the R statistical language 7 

(v.3.5.3). In the transcriptome analysis, separate dendrograms were constructed for coding 8 

and non-coding RNAs, using the protein-coding list from PomBase and selecting ncRNAs from 9 

the presence of “NCRNA.” in the systematic IDs. 10 

Sector assignment 11 

For each gene or protein group i, we calculated R-squared (R2), defined as 12 

𝑅𝑅𝑖𝑖2 = 1 −
∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖2𝑗𝑗,𝑘𝑘

∑ �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖�
2

𝑗𝑗,𝑘𝑘
, (6) 13 

and the associated p-values using the `summary.lm` method. Here rijk denotes the residuals 14 

from the RMLM fit, yijk the expression (normalised counts or proteome fractions), μi the mean 15 

expression across samples, and the summation was performed across all N samples where 16 

the gene was detected. We calculated the tail-based false discovery rates (fdr, or q-values) 17 

and local false discovery rates (fdr) using the `fdrtool` R package and the false non-discovery 18 

rate cut-off method (Strimmer, 2008). Genes or protein groups were assigned to the P or R 19 

sector when their tail-based fdr < 0.1. R and P sector genes had positive and negative slopes, 20 

respectively, as determined by the fitted RMLM. In Supp. Table S6, hits with local fdr < 0.1 21 

were flagged as confident. 22 

To assess fit quality, in addition to R2, we used a normalised sum of squared residuals, defined 23 

as 24 

𝑆𝑆𝑆𝑆𝑅𝑅norm,𝑖𝑖 =
1

𝑁𝑁 − 1

�∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖2𝑗𝑗,𝑘𝑘

𝜇𝜇𝑖𝑖
, (7) 25 

with the notations as described in the previous paragraph. 26 

Bootstrapping 27 

For the analysis illustrated in Fig. 4AB and Supp. Fig. S4.1 and S4.3, 1000 bootstrap samples 28 

were generated using the bootstraps function from the `rsample` package (v0.0.8) (Silge et al. 29 
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2021). The RMLM analysis was repeated on the bootstrapped samples, resulting in sample 1 

distributions for the RMLM slopes, intercepts, and FCs. Plots of the 2.5%-97.5% confidence 2 

interval were drawn using the RMLM predictions on a 101-point grid spanning 0 to 0.3 h-1. 3 

Other confidence intervals were drawn using the geom_smooth function in ggplot2 (v3.3.2) 4 

(Wickham 2016) with the default 95% confidence interval and the RMLM method, unless 5 

otherwise noted. 6 

Barcode plots 7 

For the barcode plots in Supp Fig. S4.3 and S4.6, the directed length lij of the bar for protein 8 

i and medium j was calculated from the median proteome mass fractions across the three 9 

biological replicates, 10 

𝑥𝑥𝑖𝑖𝑖𝑖 = median
𝑘𝑘=1,2,3

𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 , (8) 11 

and the median across all samples, 12 

𝑀𝑀𝑖𝑖 = median
𝑗𝑗,𝑘𝑘

𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 , (9) 13 

in the following way: 14 

𝑙𝑙𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑖𝑖

𝑀𝑀𝑖𝑖
, (10) 15 

with missing data imputed to zero. The scale was capped at −1 < 𝑙𝑙𝑖𝑖𝑖𝑖 < 2. 16 

Differential expression analysis 17 

To identify differential expression in the transcriptome on top of growth rate mediated effects, 18 

we performed an analysis using `DESeq2` (v1.22.2) from the Bioconductor suite (v3.8) (Love, 19 

Huber, and Anders 2014; Huber et al. 2015), comparing the residual expression in each 20 

condition to a synthetic reference condition. The fold change obtained by this procedure can 21 

be interpreted as the ratio of observed normalised counts and the counts predicted by the 22 

RMLM, and the associated p-value provides an interpretable estimate of significance.  23 

The DESeq2 analysis pipeline enables the introduction of per-gene, per-sample normalisation 24 

factors that are commonly used to correct for batch-dependent GC-content or length biases. 25 

We adapted this functionality to normalise the growth rate bias of each gene, by introducing 26 

factors Nijk that converted between the measured raw counts cijk and RMLM-predicted raw 27 

counts qijk: 28 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

, (11) 29 
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in analogy to the definition of size factors in Equation (1). However, the fitting of RMLMs 1 

yielded per-gene, per-sample predictions pijk of the normalised counts. Using the sample-2 

dependent size factors, we converted these to predictions of raw counts as follows: 3 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑗𝑗𝑗𝑗 . (12) 4 

Therefore, the normalisation factors were calculated as 5 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆𝑗𝑗𝑗𝑗𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖
=
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

. (13) 6 

We excluded genes with negative predicted raw counts and rescaled the normalisation factors 7 

across samples for each gene to have a geometric mean of 1 for numerical accuracy.  8 

Using the RMLM-predicted raw counts, we further defined a synthetic reference condition with 9 

three biological replicates by using the median predicted count across all growth media for 10 

each replicate as follows: 11 

𝑠𝑠𝑖𝑖𝑖𝑖 = int �median
𝑗𝑗

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖� . (14) 12 

These reference counts were rounded to the nearest integer, as they represent raw counts in 13 

the DESeq2 pipeline. By design, the qijk have no residual growth-rate trend. 14 

Subsequently, the analysis proceeded on the constructed data set with 9 conditions: the 15 

original 8 and the synthetic one, with each set having 3 biological replicates. Pairwise fold-16 

changes F and the associated p-values (both uncorrected and adjusted padj) are reported 17 

between the 8 growth media and the synthetic reference. Genes were reported as differentially 18 

expressed (DE) if 𝑝𝑝adj < 0.01 and |log2 𝐹𝐹| > 0.5 for at least one condition. 19 

Functional enrichment 20 

We performed one-sided Fisher exact tests to assess the enrichment of DE genes across the 21 

S. pombe GO-slims and terms from the biological_process GO with at most 50 annotations in 22 

S. pombe (Gene Ontology Consortium 2019; Lock et al. 2019) . From the resulting p-values, 23 

local false discovery rates lfdr were calculated using the `fdrtool`s false non-discovery rate 24 

method (Strimmer 2008).  25 

In the enrichment plots for the GO-slim terms (Fig. 6B, Supp. Fig. S2.1), terms with lfdr<0.05 26 

were deemed significant, and the terms were ordered from top to bottom by increasing 27 

smallest lfdr to aid interpretation. For the biological_process enrichment plot (Supp Fig. S5.3), 28 

the significance threshold was local fdr<0.001. The significant terms were clustered 29 

hierarchically using the Euclidean distance and Ward linkage (“ward.D2”), using the `hclust` 30 
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implementation of the R statistical language (v.3.5.3).The terms were ordered by the smallest 1 

lfdr as much as possible while remaining consistent with the clustering constraint.  2 

  3 
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