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ABSTRACT

Cellular resources are limited and their relative allocation to gene expression programmes
determines physiological states and global properties such as the growth rate. Quantitative
studies using various growth conditions have singled out growth rate as a major physiological
variable explaining relative protein abundances. Here, we used the simple eukaryote
Schizosaccharomyces pombe to determine the importance of growth rate in explaining relative
changes in protein and mRNA levels during growth on a series of non-limiting nitrogen
sources. Although half of fission yeast genes were significantly correlated with the growth rate,
this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome
often showed coordinated regulation but with notable exceptions, such as metabolic enzymes.
Genes positively correlated with growth rate participated in every level of protein production
with the notable exception of RNA polymerase Il, whereas those negatively correlated mainly
belonged to the environmental stress response programme. Critically, metabolic enzymes,
which represent ~55-70% of the proteome by mass, showed mainly condition-specific
regulation. Specifically, many enzymes involved in glycolysis and NAD-dependent metabolism
as well as the fermentative and respiratory pathways were condition-dependent and not
consistently correlated with growth. In summary, we provide a rich account of resource
allocation to gene expression in a simple eukaryote, advancing our basic understanding of the

interplay between growth-rate dependent and nutrient-specific gene expression.


https://doi.org/10.1101/2021.03.16.435638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435638; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

N oo o A WN e

0o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36

made available under aCC-BY 4.0 International license.

INTRODUCTION

Cellular growth is the process by which cells increase in mass. It is a fundamental systemic
process that impacts most aspects of cell physiology. Growth can be very fast: for example,
yeast cells can double in mass every few hours, and certain bacteria only require minutes.
Conversely, slower growth is observed in multicellular organisms, in which several cell types
take days to grow and divide. Crucially, the cellular growth rate changes in response to

external cues such as nutrient quality, stressing agents, or growth factors.

Measurements of biomass composition in unicellular organisms have long-established cellular
growth rates as a covariate of cell physiology (Schaechter, Maalge, and Kjeldgaard 1958;
Mitchison and Lark 1962; Waldron and Lacroute 1975; Fantes and Nurse 1977; Neidhardt,
Ingraham, and Schaechter 1990; Bremer and Dennis 2008). In the last decade, quantitative
experimental work, together with mathematical modelling, have described this relationship
(reviewed in (Klumpp and Hwa 2014; Shahrezaei and Marguerat 2015; Jun et al. 2018;
Bruggeman et al. 2020)). This body of work has emphasised how the macromolecular
composition of the cell is tightly connected to growth rate. Specifically, for cultures undergoing
balanced exponential growth modulated by external nutrients, the total RNA abundance per
unit of biomass and the growth rate are correlated linearly. This phenomenological relationship
is called the first or ribosomal growth law and reflects an increased requirement for ribosomes
during faster growth to support protein synthesis. The demand for ribosomes is also felt at the
protein level, where it induces a trade-off between proteins involved in translation and those
involved in catabolism. It was shown that about half of the total protein mass in Escherichia
coli responded to growth modulations by nutrient limitation and translational inhibition (Scott
et al. 2010; You et al. 2013). These observations were formalised in a phenomenological
model separating the proteome into three broad sectors based on their growth rate
correlations. Proteins that are positively correlated with the cellular growth rate during nutrient
limitation and negatively during translational inhibition comprise the R-sector, whereas
proteins showing the opposite behaviour comprise the P-sector. Proteins that do not respond
to the growth rate belong to the Q-sector (Scott et al. 2010). The concept of proteome sectors
has been the basis of several phenomenological and coarse-grained mechanistic models
relating optimal resource allocation to protein abundance and cellular growth rates (Molenaar
et al. 2009; Scott et al. 2014; Maitra and Dill 2015; Weile et al. 2015; Pandey and Jain 2016;
Liao, Blanchard, and Lu 2017; Bertaux et al. 2020; Hu et al. 2020).

The molecular mechanisms behind the phenomenological assignment to the three proteome
sectors remain less well understood. R-sector proteins are universally involved in translation
and ribosome biogenesis and many of them are controlled by global signalling pathways such

as guanosine tetraphosphate (ppGpp) in prokaryotes or the target of rapamycin complex 1
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(TORCH1) in eukaryotes (Irving, Choudhury, and Corrigan 2020; Petibon et al. 2020). P-sector
proteins, on the other hand, are more diverse and often involved in metabolic adaptation and
stress response (Brauer et al. 2008; You et al. 2013; Hui et al. 2015; A. Schmidt et al. 2016).
In E. coli, the master regulator CRP-cAMP has been proposed to control the P-sector
assignments of carbon catabolism enzymes when growth rate was modulated by the quality
of abundant carbon sources (You et al. 2013). Under other growth modulations and in other
organisms, whether the regulation of P-sector proteins is as directly mechanistically linked to

the growth rate as for R-proteins is less clear.

Transcriptomics and proteomics have been instrumental in characterising the coordination
between gene expression and cellular growth. The ribosomal growth law was first confirmed
in the E. coli proteome in continuous cultures limited by carbon availability (Peebo et al. 2015),
under titrations of carbon, nitrogen, and translational inhibition (Hui et al. 2015), and in an
extensive study of 22 growth conditions (A. Schmidt et al. 2016). In addition, the Hui study
proposed that the P sector could be divided into subsectors related to different metabolic
functions depending on the type of nutrient limitation. In the budding yeast Saccharomyces
cerevisiae, a seminal microarray study showed strong correlations between hundreds of
transcripts with the chemostat dilution rate across six nutrient titrations (Brauer et al. 2008).
The observed correlations agreed with the ribosomal growth law and highlighted stress
response as a component of the P-sector alongside metabolic functions. More recently, Metzl-
Raz and colleagues observed the ribosomal growth law in the proteome of budding yeast after
combining existing data sets of cultures grown in a variety of carbon sources (Paulo et al.
2015; 2016) with data obtained under nitrogen and phosphorus limitation (Metzl-Raz et al.
2017). They also proposed that a pool of non-translating ribosomes is available as a buffer
during changing growth conditions, a strategy also observed in prokaryotes (Dai et al. 2016;
Mori et al. 2017; Kohanim et al. 2018). This suggest that resource allocation may not be fully
optimised for maximal cell growth. Signs of excess capacity have also been reported for
metabolic pathways, including glucose catabolism (Yu et al. 2020). Further omics studies in
S. cerevisiae have defined additional characteristics of resource allocation such as
reallocation of proteome mass from amino acid biosynthesis to protein translation upon amino
acid supplementation (Bjorkeroth et al. 2020), or the respective contribution of transcription
and translation to different allocation strategies (Yu et al. 2021). Thus, genome-wide omics
experiments have been key to improve our understanding of resource allocation in E. coli and

S. cerevisiae by connecting proteome sectors to specific physiological functions.

The cellular growth rate reflects the metabolic state of the cell and in limiting nutrient conditions
metabolic enzymes are often part of the P-sector (Hui et al. 2015; A. Schmidt et al. 2016). This

suggests that expression levels of specific metabolic enzymes when responding to external
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conditions can be directly regulated alongside the growth rate. The cell metabolism however
is an exquisitely complex network of interconnected processes and perturbation of single
pathways can have wide-spread systemic effects. Central carbon metabolism (CCM) relies on
three pathways: glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA)
cycle. Together, these generate energy in the form of ATP, in a process mediated by reducing
agents such as NADH, and produce building blocks for biosynthesis. ATP can be generated
anaerobically via fermentation; a process which consists of glycolysis and the subsequent
degradation of pyruvate, or aerobically via respiration, which requires the TCA cycle and
subsequent oxidative phosphorylation (OXPHOS). The extent of fermentative versus
respiratory metabolism affects the NAD+/NADH redox balance and vice versa, as NAD+
reduction during glycolysis and the TCA cycle must be balanced by NADH oxidation occurring
during pyruvate degradation and OXPHOS (Vemuri et al. 2007; van Hoek and Merks 2012;
Campbell et al. 2018; Luengo et al. 2020). In eukaryotes, these reactions are
compartmentalised between the cytoplasm and the mitochondria, with the latter housing the
respiratory enzymes and functioning as hubs that connect diverse metabolic pathways
including CCM and amino acid metabolism (Spinelli and Haigis 2018). For instance, amino
acid degradation enables the assimilation of nitrogen as ammonium or glutamate via de- or
transamination reactions. The remaining carbon backbone is recycled into the cell’'s biomass
or excreted, and the associated metabolites affect carbon metabolism (Godard et al. 2007).
Importantly, mitochondrial intermediates are required for amino acid biosynthesis even during
fermentative energy generation (Malecki et al. 2020). In fission yeast, a single point mutation
in the pyruvate kinase Pyk1, affecting its activity, has been shown to rebalance the fluxes
through the fermentation and respiration pathways alongside shifts in the transcriptome and
proteome composition (Kamrad et al. 2020), giving a prime example of how the cell co-adjusts
perturbations in metabolic fluxes and expression burdens. Taken together, shifts in the
metabolic demand propagate throughout the cell, as most metabolic pathways are tightly
interlinked (Chubukov et al. 2014).

The expression levels of CCM enzymes, and therefore the fluxes through the pathways
depend on external conditions and stress levels. As a result, cellular states and metabolic
strategies are linked to resource allocation to different gene expression programmes. For
example, during rapid growth on glucose, yeast utilises the fermentative pathway alongside
the TCA cycle even in the presence of oxygen, a phenomenon known as aerobic glycolysis or
the Crabtree effect (Shimizu and Matsuoka 2018). Aerobic glycolysis is also a characteristic
of tumour cells, for which it is known as the Warburg effect (Heiden, Cantley, and Thompson
2009). This strategy appears counterintuitive as fermentation generates fewer molecules of

ATP per glucose molecule than respiration. Several hypotheses have been proposed to
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resolve this paradox. All require a second growth-limiting constraint besides glucose uptake
which would be specific to respiro-fermentative growth (de Groot et al. 2019). Examples
include the cytoplasmic density of macromolecules (Vazquez et al. 2008; Goelzer et al. 2015),
total proteome allocation (Basan et al. 2015), and membrane area availability (Szenk, Dill, and
de Graff 2017). Thus, a whole-cell understanding of cellular trade-offs between multiple
constraints must take into account gene expression alongside metabolic maps (Goelzer and
Fromion 2017; Yang et al. 2018; Dahal, Zhao, and Yang 2020). Resource allocation

constraints have been successfully introduced into genome-wide metabolic models of several
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organisms as more high-quality expression data has become available (O’Brien et al. 2013;

=
o

Sanchez et al. 2017; Y. Chen et al. 2020). In summary, quantitative surveys of the gene

11  expression cost of metabolic pathways are key to understanding cell physiology.

12 Here, we define the growth-rate dependent and nutrient-specific resource allocation to the
13 fission yeast Schizosaccharomyces pombe proteome and transcriptome. We find that both
14  types of regulation are interconnected and define protein synthesis and stress response as
15 the processes positively and negatively regulated with the growth rate. We then study the
16  plasticity of the gene expression burden of metabolic pathways in response to changes in
17  nutrients and their reliance on transcriptional and post-transcriptional regulation. Altogether
18  we provide a rich account of resource allocation in a simple eukaryote as a function of external

19 conditions.

20 RESULTS

21 Fission yeast gene expression shows growth-rate-related and condition-specific
22 components

23 Togenerate cell populations that grow at different rates while not limited for nutrients, we used
24  eight defined culture media each containing a unique source of nitrogen. These media have
25 been extensively characterised elsewhere (Fantes and Nurse 1977; Carlson et al. 1999;
26 Petersen and Russell 2016). Seven media contained 20 mM of a single amino acid (Trp, Gly,
27  Phe, Ser, lle, Pro, Glu), and one 93.5 mM of ammonium chloride (NH4ClI, referred to as Amm)
28 as areference (Fig. 1). In our hands, this design achieved growth rates ranging 0.05 - 0.28 h-
29 . S. pombe 972h  prototroph wild-type cells were grown in turbidostats at constant
30 concentrations of ODggo ~0.4 (3 - 5%108 cells/ml) in triplicates for 43 - 143 h (6 - 28 generations
31 depending on the nitrogen source) (Fig. 1C-E, Supp. Table $1) (Takahashi et al. 2015). Like
32 in chemostats, turbidostat cultures are diluted by the addition of fresh media. In the case of
33  the turbidostat system, however, it is the cell concentration that is directly measured and
34  maintained constant and not the proliferation rate. This ensures that cellular growth is not

35 limited by a lack of nutrients, but rather determined by the quality of the provided nitrogen
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source and the resulting internal allocation patterns. Growth rates were measured halfway
through the procedure during a two-fold dilution cycle (Fig. 1B, Supp. Table S1). To measure
the proteome and transcriptome allocation as a function of the growth rate, we performed
label-free proteomics and RNA sequencing (RNA-Seq) analysis of cells from each culture
condition (Methods, Supp. Table S2-S5).

We first asked whether the fission yeast proteome composition differed significantly between
the eight growth conditions. Strikingly, ~44% of the 2045 proteins robustly detected in all
samples were significantly more variable across conditions than among biological replicates
(Holm-adjusted panova < 0.05). This pervasive level of gene regulation was also apparent at
the transcriptome level where ~52% of mRNAs showed significant variability. These results
indicate that the composition of the proteome and transcriptome are both strongly affected by

conditions that change the growth rate.

To investigate this variability further, we used the z-score transformed protein fraction of each
gene for hierarchical clustering (Fig. 2A, Methods). This treatment enabled normalisation for
protein expression levels across the proteome while preserving the variation of each protein
between conditions. We defined 10 clusters that revealed two major features of the datasets
(Fig. 2A-C). First, most clusters showed a clear change in protein expression in one or more
conditions (clusters 3-10). Second, the expression of several proteins was not strictly
condition-specific but instead showed a coordinated linear increase with growth rate (clusters
1-2). Interestingly, the total baseline expression of the condition-specific clusters was
positively (clusters 3, 4, 6, 10), or negatively (clusters 5, 7, 8, 9) correlated with the growth
rate. Apart from cluster 6, clusters were enriched for defined functional categories, indicating
that the shifting balance between condition-specific regulation and growth rate regulation may

have physiological consequences related to the enriched functions (Fig. 2A, Supp. Fig. S2.1).

Both modes of regulation were also apparent in the transcriptome data for coding and non-
coding RNA (ncRNA) (Fig. 2C, Supp. Figs. $2.2-S2.3). Interestingly, most ncRNAs showed
clear and reproducible condition-specific expression between replicates, suggesting the
presence of active regulation, consistent with analyses using different genetic and
physiological conditions (Fig. S$2.3) (Atkinson et al. 2018). To test this hypothesis, we
compared the expression patterns of ncRNA from each cluster with the expression of their
flanking coding genes (Supp. Fig. S2.3C-D). We found that for 4 out of 9 clusters, ncRNA
expression patterns were not mirrored by the neighbouring mRNA. This indicates that many
NncRNA are subjected to some level of independent regulation. In summary, we find that

regulation of gene expression programmes across conditions that affect the growth rate has
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1 two components; one which is condition-specific and another which is coordinated with growth

N

rate.

Growth dependent gene expression is an important determinant of the cell protein and
MRNA composition

W

We first focused our analysis on the growth-dependent component of fission yeast gene
expression. Linear correlations between the expression of individual genes and the growth
rate have been observed in several organisms under different types of growth limitation
(Brauer et al. 2008; Hui et al. 2015; Metzl-Raz et al. 2017; Peebo et al. 2015; A. Schmidt et

al. 2016; Zavrel et al. 2019). Following the terminology used in prokaryotes, we divided

O 00 N o U

10 proteins and mRNA into three sectors depending on whether they show a growth-dependent
11  component that was positively (R), negatively (P), or not significantly (Q) correlated with the
12 growth rate (Scott et al. 2014; 2010). We used repeated-median linear models to quantify the
13 linear coordination of each protein and mRNA quantity with growth. This model fits a linear
14  dependence in the presence of large numbers of outliers and is therefore robust to the
15  condition-specific component of gene expression (Methods, Supp. Fig. S2.4, Supp. Table
16  S6).

17  The linear fits generated two useful parameters. First, the slope of the linear regression is a
18 measure of the strength of the dependence of a protein’s concentration on the growth rate.
19  Second, its y-intercept represents the fraction of the protein numbers that is not directly
20 dependent on growth. Both parameters are directly correlated with expression levels making
21 it difficult to disentangle the strength of the growth-rate-related regulation from an mRNA or
22 protein from its abundance. To take this into account, we developed a normalised measure of
23 growth dependence called FC (Methods, Supp. Fig. $2.4G-H). FC values are a combination
24 of the regression slope and y-intercept which do not scale with abundance, thereby enabling

25 adirect comparison of the growth-dependence of single genes or groups thereof.

26  Repeated-median linear models captured the growth-dependent component of the 10 clusters
27  from Fig. 2, and proteins from the R and P sectors dominated the clusters that were positively
28 and negatively correlated with growth, respectively (Supp. Fig. S2.5). Of all the genes
29 detected in the proteome across the eight conditions examined, we found that 24% of proteins
30 and 37% of mRNA belonged to the R sector; similarly, 27% and 21% of the proteins and
31  mRNA belonged to the P sector, respectively. The protein and mRNA of a given gene
32  belonged to the same sector in 51% of the cases (Fig. 2D). When they did not, the mRNA of
33 P orR proteins were mostly assigned to the Q sector and vice versa, with only 23 R proteins
34  having P sector mRNA, and 74 P proteins having R sector mRNA, out of the 2077 proteins
35 detected.


https://doi.org/10.1101/2021.03.16.435638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435638; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

© 00 N O U b W N B

[ = N =
w N B O

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34

made available under aCC-BY 4.0 International license.

In quantitative terms, the total proteome mass fraction of the fission yeast R sector ranged
between ~20% at zero growth and 55% for the fastest measured growth rate, whereas the
mass fraction of the P sector similarly ranged from ~30% to 10% (Fig. 2E). The sum of all Q
sector proteins was negatively correlated with the growth rate because proteome fractions add
up to one by definition. However, none of the individual proteins showed significant correlation
with the growth rate. At the mRNA level, the R fraction ranged from 38% to 59% of the total
normalised counts, and the P fraction from 19% to 10% (Fig. 2F). Thus, during fast growth,
over half of the gene expression burden is dedicated to factors that increase in concentration
with growth rate and may therefore be limiting. Moreover, the amplitude of the variability in the
concentration of fission yeast proteins and mRNA that depend on the growth rate alone is in
the order of magnitude of the cut-offs that are commonly used for differential expression
analysis. Therefore, differences in growth rate are important factors that affect interpretation

of transcriptomics and proteomics data (Yu et al. 2021).
R sector proteins participate in all steps of the protein synthesis process

We next queried the cellular processes that had a strong R component and could therefore
be either limiting for growth or regulated by it. We used a curated list of macromolecular
complexes spanning most cellular processes and calculated the proportion of each complex
subunit that was growth rate-dependent in each category (Fig. 3A, Supp. Table S7) (Gene
Ontology Consortium 2019; Lock et al. 2019). As observed in prokaryotes and budding yeast,
the top 4 categories relying the most on R proteins belonged to a single process: the synthesis
of proteins (Fig. 3AB). Strikingly, R complexes were found at every single step of protein
synthesis: the transcription of rRNAs and tRNAs and their processing, assembly and post-
translational modification of the ribosome, and initiation and termination of translation (Fig.
3B). Interestingly, expression of the chromatin-modifying complexes NuA4 and Ino80 were
part of the R sector (Fig. 3C), suggesting they may be involved in ribosome biogenesis in
fission yeast as has been proposed for NuA4 in budding yeast (Uprety, Sen, and Bhaumik
2015). Alternatively, these results could indicate that the chromatin structure and levels of

histone modification may be limiting for growth.

The overall correlation between growth and the factors involved in protein synthesis had a
notable exception. Although RNA polymerase (RNAP) | and specific subunits of RNAPIII were
part of the R sector, RNA polymerase Il specific subunits were not significantly correlated with
growth rate (Fig. 3B-D). Therefore, the number of RNAP Il complexes is unlikely to be a
limiting step in protein production during growth. Interestingly, RNAP Il numbers were found

to be limiting for the scaling of gene expression to cell size, indicating that coordination of gene
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1  expression to cell size and growth rate follow different mechanisms (Padovan-Merhar et al.
2015; Sun et al. 2020).

The stoichiometry of translation complexes changes with the growth rate

Differences in FC values between protein complexes indicate that their relative levels or
stoichiometry changes with the growth rate. We hypothesised that these variations could
provide mechanistic insights into the functioning of these complexes. To investigate this in the
context of protein translation, we analysed three non-overlapping subclasses of translation

proteins: the ribosomal proteins (RP), the ribosome biogenesis regulon (RiBi), and the

O 00 N o Uu b W

translation initiation, elongation and termination factors (IET) (Methods, Supp. Table S8).
10 The RIiBi and IET classes had similar FC values, whereas the trendline for RPs was
11  significantly steeper (Fig. 4A, Supp. Fig. S4.1A). As a result, the ratios between IET and RPs,
12 and between RiBi proteins and RPs were higher at slow growth (Fig. 4B). These results
13 suggest that ribosome biogenesis may become more efficient with increasing growth rates as
14  the ratio RiBi/RP diminishes. Alternatively, a fraction of IET and RiBi proteins larger than of
15 RPs could be held in reserve at slower growth (Metzl-Raz et al. 2017). The relative
16  abundances in EMM of IET:RiBi:RP were approximately 4:1:8 for the proteome mass fractions
17 and 5:4:64 for the transcriptome RPKMs (Fig. 4A-B). This confirms earlier observations that
18 the burden on transcription for RP synthesis is higher than for the rest of the proteome
19  (Marguerat et al. 2012; M. W. Schmidt et al. 2007). The growth laws for the initiation and
20 elongation factors were almost identical to each other, suggesting constant stoichiometry with
21 the growth rate (Supp. Fig. $S4.1B-C). Within the IET category, elongation factors were about
22  three times as abundant as initiation factors, and about fifty times compared to termination
23 factors (Supp. Fig. S4.1B-C). This is in line with biochemical evidence showing that translation
24  initiation is a limiting step for protein synthesis (Aylett and Ban 2017). Taken together, we have
25  shown how the growth law can inform on the regulation of gene expression through changes

26 in the stoichiometry of factors with the growth rate.

27  Furthermore, the large burden of RPs during fast growth resulted from the coordinated growth-
28 related expression of most individual RPs and from a growth dependence component steeper
29 than that of IET and RiBi (Fig. 4C). This indicates that the aggregate burden of RPs results
30 from coordinated regulation at the level of single genes (Petibon et al. 2020). The IET and RiBi
31 categories also contained more proteins that were assigned to the P- and Q-sectors, and/or
32  whose expression data was not well explained by the robust model due to significant condition-
33  dependent expression (Supp. Fig. $4.2). For instance, the initiation factor elF3E was present
34  in sub-stoichiometric amounts relative to elF3A. Interestingly elF3E has been shown to
35 selectively regulate the translation of transcripts coding for metabolic enzymes (Shah et al.
36 2016).

10
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Principles of proteome allocation are often conserved in prokaryotes and eukaryotes despite
significant mechanistic differences in the way genes are transcribed and translated (Dai and
Zhu 2020). Therefore, we thought to compare our findings in fission yeast with published
datasets from the budding yeast S. cerevisiae and the bacterium E. coli (A. Schmidt et al.
2016; Metzl-Raz et al. 2017). We reanalysed the proteomics data for E. coli cells growing at
different rates in a series of environmental conditions and extracted the growth law parameters
for translational proteins (Methods, Supp. Table S9) (A. Schmidt et al. 2016). For S.
cerevisiae, we used growth law parameters of ribosomal proteins published elsewhere (Metzl-
Raz et al. 2017). We found that E. coli could sustain a given growth rate with a smaller fraction
of RPs than both yeasts (note the smaller slope, Fig. 4D). This suggests that the effective
translation rate in the yeasts is lower than that of E. coli. Among the two yeasts, fission yeast
used its RPs significantly more efficiently than the budding yeast trendline, but the effect could
not be assigned to a significant difference in either the slope or the intercept parameter
specifically. Next, we asked whether the changes in stoichiometry of translational proteins
during slow growth were conserved in E. coli. Again, both the IET/RP and RiBi/RP ratios were
higher during slower growth (Supp. Fig. S4.3A-B), because the individual RPs had steeper
growth laws (Supp. Fig. $4.3C). A steeper growth law of RPs than that of elongation factors
was recently predicted by a model of E. coli that minimised the total expression cost (Hu et al.
2020). Our results indicate that allocation strategies are conserved even though protein

production differs mechanistically between the two kingdoms.

P sector proteins are part of the core environmental stress response programme

To complement our analysis of the R sector, we next examined fission yeast proteins from the
P sector, i.e., proteins with a negative growth-dependent component. In contrast to the R
sector clusters 1 and 2, we could not identify P sector clusters whose expression could be
explained exclusively by a negative growth rate correlation (Fig. 1A-C). This indicates that
proteins with a strong P component are also often regulated in response to specific nitrogen
sources. Moreover, the growth component for P proteins was less significant overall than for
R proteins (Supp. Fig. S4.4A-B). These results suggest that regulation of the R and P sectors

may differ mechanistically.

Unlike R proteins, which are mostly involved in protein production, P proteins belonged to a
diverse set of complexes participating in a large array of functions (Fig. 3A). As individual
proteins, they showed weaker correlations than R sector complexes (Supp. Fig. $4.4C-D).
To analyse whether this diverse set of P proteins was participating in a common higher-level
functional programme we analysed the fission yeast GO-slims alongside 21 lists covering
fission yeast physiology and environmental responses (Fig. 4E, Supp. Fig. S4.5A) (Mata et
al. 2002; D. Chen et al. 2003; Rustici et al. 2004; Marguerat et al. 2012; Rallis, Codlin, and
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Bahler 2013; Saint et al. 2019; Kamrad et al. 2020). Functional classes with strong P-sector
components included vacuole biology, endosome and phagosome, transport and genes
induced in the adaptation to nitrogen removal, and/or after treatment with caffeine and
rapamycin. The latter two classes, which had the strongest response, are thought to be
controlled by TORC1 (Mata et al. 2002; Rallis, Codlin, and Bahler 2013). This suggests that
nitrogen sources supporting slower growth rates trigger a form of metabolic stress response.
Accordingly, the total expression of the fission yeast core environmental stress response
programme upregulated genes (CESR up) was negatively correlated with the growth rate (Fig.
4F). This stress module comprises genes induced in response to a wide range of
environmental and genetic perturbations (D. Chen et al. 2003; Pancaldi, Schubert, and Bahler
2010). Conversely, genes downregulated as part of the CESR response (CESR down, also
called growth module) belonged to the R sector (Fig. 4F-G, Supp. Fig. $4.5B). This finding
validates the longstanding hypothesis that the balanced expression of the fission yeast stress
response is quantitively connected with the growth rate (Lopez-Maury, Marguerat, and Bahler
2008). Additionally, P proteins were enriched for factors regulated during the S phases of the
cell cycle, which is consistent with evidence that the cell-cycle phase length differs between
nitrogen sources, in particular growth on Trp (Fig. 4E and Supp. Fig. $4.5C-D) (Carlson et
al. 1999; Rustici et al. 2004).

Notably, the functional classes involved in metabolism were not strongly negatively correlated
with the growth rate (Fig. 4E), and the fission yeast P sector was only marginally enriched in
proteins involved in central and energy metabolism (Supp. Fig. 4.6). This contrasts with
previous data from E. coli and S. cerevisiae where metabolic genes have been reported to be
important components of the P sector (Hui et al. 2015; A. Schmidt et al. 2016; Metzl-Raz et
al. 2017). However, when considered globally, the sum of protein mass fractions dedicated to
metabolic enzymes was clearly anti-correlated with growth in fission yeast, ranging from ~70%
of the proteome in poor nitrogen sources to ~55% in the fastest media (Fig. 5A). This indicates
that in our system which does not rely on titration of a limiting nutrient to modulate the growth
rate, the total protein burden on metabolism is linked to the growth rate, whereas allocation to
specific enzymes is not. Therefore, the global anti-correlation of metabolic enzymes with
growth rate observed in our data may be a manifestation of the trade-off between metabolism
and translation, and not the result of the direct quantitative regulation of metabolic enzymes

expression with the growth rate.
The burden of specific metabolic pathways is principally condition-dependent

On top of the growth-dependent components, many fission yeast proteins show clear

condition-specific gene regulation (Fig. 2A-C, clusters 3-10). Functional analysis indicated an
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enrichment of these genes for functions related to metabolism. This is consistent with the
adoption of distinct metabolic allocation strategies in response to growth with different nitrogen
sources (Alam et al. 2016; Mulleder et al. 2016). We classified metabolic genes into six non-
overlapping classes based on the following GO terms: canonical glycolysis (GO:0061621),
generation of precursors and energy (GO:0006091), cellular amino acid metabolic process
(G0O:0006520, which includes the interconversion of ammonium, glutamate, and glutamine),
lipid metabolic process (G0O:0006629), vitamin metabolic process (GO:0006766), and all other
metabolic pathways (including transport of metabolites) (Fig. 5B, Supp. Fig. $5.1, Supp.
Table $10). To avoid overestimating the burden of gene expression by double-counting genes
assigned to multiple terms, each protein was assigned only to the first of these GO-terms it
was annotated with. The relative allocation to each class was condition-specific, indicating that
metabolic states rely differentially on specific pathways (Fig. 5B). We note that similar growth
rates can be supported by different allocation strategies, as in the case of the Trp and Gly
containing media in which cells channelled resources preferentially towards glycolysis (Trp)
or amino acid metabolism (Gly) (Fig. 5B, Supp. Fig. S5.1). The growth-related components
of those categories were weak, except for the vitamin metabolism proteins which belonged to
the R sector and the precursor/energy proteins that showed a significant P component (see
below, Supp. Fig. $5.1). Most coenzymes are stable molecules synthetised only as much as
necessary to support growth (Hartl et al. 2017). The strong positive correlation of vitamin
metabolism expression with growth rate suggests that cells also minimise the translation
burden of vitamin metabolic enzymes. In summary expression of metabolic enzymes in our

system, although connected to the growth rate, is mainly condition- and pathway-specific.

We next took a closer look at the energy metabolism pathways and their negative correlation
with the growth rate. Nutrient quality, cell growth, and energy metabolism are intimately
connected. The generation of ATP through fermentation is often favoured in conditions that
support faster growth whereas slow-growing cells in limiting conditions tend to switch to
respiratory metabolism (Heiden, Cantley, and Thompson 2009; Shimizu and Matsuoka 2018).
Therefore, we asked whether protein allocation to either energy metabolism pathway was
correlated with the nitrogen sources used and/or growth rate. To this end, we split the non-
glycolytic generation of precursors and energy category into the fermentative enzymes
pyruvate decarboxylase (Pdc101) and alcohol dehydrogenase (Adh1), and the respiration
process into tricarboxylic acid cycle (TCA, GO: 0006099) and oxidative phosphorylation
(OXPHOS, GO:0006119) enzymes (Fig. 5C, Supp. Fig. $5.2). Surprisingly, none of the
categories were consistently correlated with the growth rate. Instead, condition-specific
expression was dominant, and a clear repression of all OXPHOS complexes upon growth on

serine was observed (Supp. Fig. S5.3). A recent report showed that serine catabolism
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generates high levels of reactive oxygen species (ROS) in S. pombe, suggesting that
respiration may be repressed upon growth on serine to avoid a further increase in ROS (Kanou
et al. 2020). Notably, expression of the fermentative enzymes Adh1 and Pdc101, although
variable between conditions, was consistently higher than the total expression of the
respiratory enzymes. Moreover, respiratory enzymes were not induced in nitrogen sources
supporting slow growth. Taken together, the expression balance between fermentation and
respiratory enzymes was not quantitatively connected to the growth rate, but depended on the

nutrient properties.

To complement this analysis, we searched for condition-specific patterns of protein expression
that were not related to the growth rate in our proteomics dataset using principal component
analysis (PCA) (Supp. Fig. S5.4). The first principal component (PC1) explained 29% of the
total variance and split the culture conditions in two irrespective of the growth rate with Trp
(W), Phe (F), Ser (S), and Pro (P) in one group (from here on termed the WFSP media) and
Gly (G), lle (1), Glu (E) and Amm in the other (Fig. 5D). Strikingly 24% (495/2045) of proteins
had more than 50% of their variance explained by PC1. We defined two large classes of
protein based on their response to this component: i) WFSP+ consisting of 275 proteins that
were positively correlated with PC1 and therefore induced in the WFSP media; ii) WFSP-
characterised by 220 proteins with expression negatively correlated with PC1 and therefore
repressed in the WFSP media (Supp. Table S11). Interestingly, no single principal component
was dominated by growth rate correlation (Supp. Fig. $5.4E), reinforcing the point that
nutrient-specific and growth-dependent components of gene expression coexist for many

proteins.

Glycolytic and NAD-dependent enzymes were the two major classes of proteins
overrepresented in the WFSP lists. First, most glycolytic enzymes belonged to one of the two
WFSP classes (Fig. S5E-F, Supp. Fig. $5.5). These enzymes were highly expressed across
conditions, amounting to ~15%—-30% of the total proteome mass (Fig. 5B, Supp. Fig. $5.1).
Therefore, the total gene expression burden of cellular metabolism across the WFSP
conditions was heavily affected by the abundance of a small number of enzymes. Second, the
two enzymes glyceraldehyde-3-phosphate (G3P) dehydrogenase Tdh1 and alcohol
dehydrogenase Adh1 were assigned to opposing WFSP lists, and the ratio of Adh1/Tdh1
expression was highly elevated in the WFSP conditions (Fig. 5F-G). Fermentation of a single
molecule of glucose generates two molecules of ethanol and carbon dioxide. During the
process, Tdh1 reduces two NAD+ molecules and Adh1 oxidises two NADH molecules.
Therefore, the elevated Adh1/Tdh1 balance exerts a pressure on the NAD+/NADH equilibrium
towards the NAD+ side. The induction of Adh1 and repression of Tdh1 proteins may be a

controlled response to maintain homeostasis under disruptions to the NAD+/NADH redox
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1 balance. This way, differential resource allocation towards the NAD-cycling glycolytic—

fermentation pathway may indicate that the metabolic rewiring invoked by the WFSP nitrogen

w

sources could result from changes in the cell redox balance.

To follow up on this observation, we further investigated the burden of NAD-dependent
pathways. NADH is oxidised by NADH dehydrogenases that are situated in the inner
mitochondrial membrane; the enzyme transfers two electrons per NADH molecule to the
electron transport chain to power ATP synthesis. On the other hand, NAD+ is reduced several

times during each iteration of the TCA cycle by the a-ketoglutarate (aKG) dehydrogenase

© 00 N oo u b

complex (KGDHC), the isocitrate dehydrogenase (IDH) complex, and the malic enzymes.
10 Fission yeast is thought to have two separate NADH dehydrogenase enzymes, Ndi1 and
11  Nde1, with the NAD-binding domain of Ndi1 facing the mitochondrion and Nde1 facing the
12 cytosol. We examined the expression burden of these enzymes in our data and found that,
13 although neither belonged to one of the WFSP lists, the ratio of Nde1/Ndi1 expression was
14  strongly elevated in the WFSP conditions (Fig. 5H, Supp. Fig. $5.6). The IDH complex
15  comprises the two subunits Idh1 and Idh2, and KGDHC consists of four subunits: Kgd1, Kgd2,
16  Ymr31, and DId1, the latter being part of multiple complexes. DId1 and Idh2 were part of the
17  WFSP+ class, unlike any of the other subunits. As above, the ratio of protein abundances for
18 DId1/Kgd1 and Idh2/Idh1 were elevated in the WFSP conditions (Fig. 51-J, Supp. Fig. $5.6).
19  Therefore, the response to the WFSP nitrogen sources altered the stoichiometry of NAD-

20  dependent enzymatic complexes.

21  Importantly, these signatures were not detected in our transcriptomics data, suggesting a role
22 for post-transcriptional regulation. In line with this, ubiquitin and its related pathways, as well
23 as the translation factors elF3e and elF5A, showed strong WFSP patterns suggesting a role
24  for protein stability (Supp. Fig. S2.4E, Supp. Fig. S4.2B-D, Supp. Table S$11). In summary,
25  we identified two distinct cellular states that differed in the expression of enzymes involved in

26  fermentation and the cell’'s redox balance that were not correlated with the growth rate.

27  Correcting for growth-rate dependence revealed additional transcriptional signatures

28  of growth on single amino acid sources

29  Defining the heterogeneity of metabolic states is key to a mechanistic understanding of cell
30 population evolution, but this requires disentangling the gene signatures that depend on the
31  growth rate from those that are purely nutrient specific. Our dataset has the unique capacity
32 to achieve this. We performed differential expression analysis on our RNA-Seq dataset, by
33  comparing each growth condition to a reference transcriptome obtained via averaging all the
34  conditions, and corrected for the growth-dependent component of gene expression

35 (Methods). We defined 10 signatures (termed R1-R10) by clustering the log.-transformed
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fold change ratios with respect to the synthetic reference of all genes that were significantly

enriched in at least one condition (Fig. 6A, Supp. Fig. S6.1, Supp. Table $12).

The 10 signatures covered the differential expression of 2269 genes in total, representing 44%
of the fission yeast transcriptome. Five signatures (R3, R4, R7, R8, and R9) were also visible
at the proteome level (Fig. 6B). About 69% of the mRNA present in the transcriptomic
signatures were quantified in at least one condition in the proteome and ~40% were detected
in all conditions, indicating that this relatively limited agreement was not due to the lower

coverage of the proteomics data.

We next performed functional enrichment analyses of the transcriptomics clusters (Methods),
using Gene Ontology annotations (Gene Ontology Consortium 2019; Lock et al. 2019).
Broader functional categories were captured using GO-slim analysis (Fig. 6C), and specific
pathways using terms from the biological process ontology with at most 50 annotations
(Supp. Fig. S6.2). In agreement with our observation that respiratory genes were repressed
in Ser medium, the Ser repressed cluster R4 was strongly enriched for genes related to
mitochondrial metabolism. Additionally, genes from the Ser induced cluster R8 were enriched
for iron ion homeostasis. Both parts of the Ser response contained oxidoreductases, which is
compatible with the recently reported high levels of ROS generated by serine catabolism
(Kanou et al. 2020). The Trp repressed cluster R3 was enriched for genes related to amino
acid metabolism, again suggesting that the slow growth sustained by the Trp medium was not
due to any additional burden of disrupted amino acid synthesis. The smaller cluster R9 was
enriched for genes related to pheromone activity (M-factor precursors), signalling, and the
induction of meiosis (Supp. Fig. S6.2). Interestingly, the signature expression across
conditions for these genes (induced in Trp, Phe, Pro, and Glu containing media) mirrored that
of Mae2 (Supp. Fig. S2.4F), which removes excess carbon from the TCA cycle. As meiosis
is usually induced by nitrogen starvation (Petersen and Russell 2016), this result suggests
that the state of central carbon metabolism may also play a role in the meiotic transition, as
(elemental) nitrogen was abundant in all growth media used. Altogether, we identified a rich
set of metabolic signatures that were not dependent on the growth rate, but exclusively reflect

changes in external nutrients.

CONCLUSIONS

In this study we quantified the proteome and transcriptome of the fission yeast S. pombe
grown in eight defined media that affect the growth rate. Each medium contained a single
nonlimiting source of nitrogen, such that variations in gene expression were determined by
system-level resource allocation and not by the response of a single pathway to the titration

of a limiting nutrient. This set up is in contrast to other studies which relied on a specific limiting
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1 nutrient to perturb resource allocation while affecting the growth rate (Brauer et al. 2008; Hui
et al. 2015), or leaving it constant (Yu et al. 2020) .

N

Using this orthogonal approach, we propose a model in which shifts in resource allocation
trigger two layers of gene expression regulation. The first layer consists of gene expression
that is significantly correlated with growth rate and the second is condition-specific depending
solely on nutrients. Many proteins and mRNAs showed a combination of both layers of
regulation. This suggests that condition-specific responses occur on top of a global level gene

regulation that is coordinated with the growth rate (Shahrezaei and Marguerat 2015).

O 00 N o U0 b~ W

Importantly, the global layer of regulation discussed here affects relative abundances of
10  proteins and of mMRNAs, and is distinct from the scaling of gene expression to the growth rate
11 which ensures constant biomolecule concentrations (Chavez et al. 2016). The mechanisms
12 behind the observation that a large number of MRNA and proteins show some level of global
13 scaling with the growth rate are not entirely clear. It could be related to the fact that expression
14  of the protein production machinery itself increases with the growth rate and to changes in
15 levels of TOR signalling for instance (see below). This could result in different cellular states
16 that feedback globally on gene expression (Keren et al. 2013). It is of note that the growth-
17  rate-dependent component defined in this study might in some cases complicate the
18 interpretation of condition-specific responses and should then be taken into account (Pancaldi,
19  Schubert, and Bahler 2010; Yu et al. 2021).

20  Eukaryotic growth-rate-related gene expression depends to some extent on the TORC1 axis
21 of gene regulation, which is widely conserved across eukaryotes (Weisman 2016; Gonzalez
22 and Hall 2017; Morozumi and Shiozaki 2021). TORC1 activity is affected by a variety of
23 stressors including nutrient starvation. Upstream of TORC1, the adenosine monophosphate
24  kinase AMPK has been proposed to mediate the response to nitrogen starvation, and
25 intriguingly, the two complexes can inhibit each other (Davie, Forte, and Petersen 2015; Ling
26 etal. 2020). Downstream, the TORC1 pathway is a key regulator of the balance between the
27  stress and growth modules (Lépez-Maury, Marguerat, and Bahler 2008; Rallis, Codlin, and
28  Bahler 2013; Rallis et al. 2014), with targets including eukaryotic initiation factor 2 subunit
29 alpha (elF2a) (Valbuena, Rozalén, and Moreno 2012), the SAGA complex (Laboucarié et al.
30 2017), and the rate of fermentation through Greatwall and PP2AB5% (Watanabe et al. 2019).
31 These questions are often studied during adaptation to changing conditions and our system
32  using continuous culture in turbidostats provides an attractive set up for future studies of the
33 mechanisms that maintain the stress vs growth gene expression balance in steady-state

34 conditions.
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We found that known chromatin modifiers belonged to the R-sector. This is intriguing as
expression of histones themselves were not dependent on the growth rate (Supp. Table S6).
This may suggest that number of histones modifying enzymes and levels of modifications are
rate limiting for transcription, or alternatively mediate an orthogonal function such as signalling
the cell metabolic state through covalent protein modifications (Mellor 2016; Figlia, Willnow,
and Teleman 2020; Morgan and Shilatifard 2020). This illustrates the intricate relationship of
chromatin structure with the cell metabolism. Moreover, we found that RNAPII expression was
not increasing with the growth rate suggesting that, unlike for gene expression scaling to cell
size, its numbers are not limiting for the rate of growth (Padovan-Merhar et al. 2015; Sun et
al. 2020). Yet, maintaining constant mMRNA concentrations requires synthesis or degradation
rates to adjust to cell growth. Therefore, other mechanisms such as transcription elongation
or mRNA decay rates are likely to be modulated with the growth rate as suggested in budding
yeast (Chavez et al. 2016).

Discussing protein allocation in term of factors limiting for growth relies on the assumption that
expression of all proteins is optimised for growth in any given condition. Recent evidence has
challenged this view and has suggested that significant parts of E. coli (Valgepea et al. 2013;
Peebo et al. 2015; Mori et al. 2017) and budding yeast (Metzl-Raz et al. 2017; Yu et al. 2020)
gene expression are not immediately required for sustaining the growth rate and are instead
held in reserve. This reserve pool of protein could support cell adaption to sudden
environmental changes. It has furthermore been suggested that central carbon metabolism
has a large reserve capacity, suggesting that many enzymes may also not be utilised solely
to maximise metabolic fluxes (O’Brien, Utrilla, and Palsson 2016; Christodoulou et al. 2018;
Yu et al. 2020). In this study, whereas several nutrient-specific regulatory programmes were
detected in both the transcriptome and the proteome, such as specific responses to Ser and
Trp, this was not true for the WFSP pattern and other transcriptomics signatures (Figs. 5 and
6). This disconnect could means that metabolic pathways are differentially buffered through
protein levels and stability which could in turn be interpreted in term of reserve capacity. A
better understanding of post-transcriptional regulation in fission yeast will be important to fully

understand what causes the high translational burden of metabolism.

We found that expression of metabolic enzymes was strongly condition-specific and only
marginally anti-correlated with the growth-rate. This condition-specific regulation represented
a large change in the gene expression burden, driven by glycolytic proteins and enzymes and
complexes relying on NAD turnover. Interestingly, this large variation in expression burden of
the carbon metabolism resulted from changes in nitrogen source and occurred in the presence
of abundant external glucose. This highlights the fact that metabolic adaptation to external

condition is pervasive not only in term of fluxes but also in term of gene expression burden.
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The catabolism of the backbones of the amino acids used as nitrogen sources could provide
a link between nitrogen and carbon metabolism in our system. Our data provide a rich
resource to constrain future genome-scale models of fission yeast that integrate metabolism
and gene expression, which will allow testing this hypothesis (O’Brien et al. 2013; Sanchez et
al. 2017; Y. Chen et al. 2020).

v A W N R

An improved understanding of the fundamental principles behind cellular growth and the
physiological and translational burden of metabolism across evolutionarily diverse biological

systems would influence a wide range of research areas such as microbiology, synthetic

O 00 N O

biology, and cancer research. Cellular models of growth should integrate strategies used by a
10 variety of organisms under a wide range of conditions, in order to identify common principles.
11  Beyond its contribution to our understanding of gene regulation, this work will support future
12 experimental and modelling efforts aimed at defining the nature of the trade-offs involved in

13 growth, stress resistance, and metabolism across the tree of life.
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FIGURE LEGENDS

Figure 1: Characterisation of culture growth in turbidostats across eight minimal media.
A. lllustration of the turbidostat culture chamber with the control flow and analysis pipeline. B.
Example growth curve (lle replicate 2) showing different growth phases in the turbidostat. C.
Estimated growth rates y based on a two-fold dilution and regrowth cycle for the 8 growth
media using 3 biological replicates each. Amm: ammonium chloride, equal to standard EMM2
medium. D. Total number of generations each culture spent in a turbidostat. E. Total time in
hours each culture spent in a turbidostat, with the duration of individual growth phases
coloured as in B. Note that, with Ng the number of generations, T the time spent in the
turbidostat, u the growth rate, and T4 the doubling time, T4 = In(2)/u and Ng = T/T4.

Figure 2: Fission yeast gene expression shows growth-rate dependent and nutrient-
specific components. A. Hierarchical clustering of z-score transformed protein expression
fractions for the 2045 protein groups detected across all conditions for cells grown in 7 single
amino acids or NH4Cl (Amm) using 3 biological replicates. Growth conditions are ordered by
increasing growth rate. Ten clusters are labelled on the left together with manual summary of
enriched functional categories (see Supp. Fig. S2.1). B. Summed protein mass fractions for
the 10 clusters defined in A as a function of the growth rate. Repeated-median linear model
(RMLM) fit is shown as a black line and the predicted 2.5""-97.5" percentile confidence interval
(Cl) of the fit as the grey shaded area. C. As shown in B, for DESeg2-normalised RNA-Seq
counts. D. Assignment of 2077 proteins detected across all conditions and their respective
transcripts to the R (orange), P (blue), and Q (grey) sectors based on protein fractions (left)
and DESeg2-normalised counts (right). Each protein is connected to its corresponding
transcript by a line and colours are according to the protein sectors. E. Sum of protein fractions
for the R (orange), P (blue), and Q (grey) sectors as a function of growth conditions. The figure
includes all 3510 protein groups detected in at least one condition. Best fit and predicted ClI
are plotted for the ordinary least squares (OLS) linear model. F. As shown in E, for DESeq2-
normalised RNA-Seq counts for 5135 detected genes. Abbreviations: Pp, Qp, Rp: protein
groups assigned to P-, Q-, and R-sector. Pr’, Qt’, Rt’: transcripts corresponding to protein
groups detected across all conditions assigned to P-, Q-, and R-sector. Pr, Qr, Ry: all
transcripts assigned to P-, Q-, and R-sector.

Figure 3: Proteins from the R sector are involved in every level of the protein production
programme. A. Fraction of R (orange), P (blue), and Q (grey) genes in manually curated
broad categories of protein complexes. The number of complexes (C) and genes (G) in each
category are shown in parentheses. The 4 leftmost categories encompass the protein
production programme. B. Volcano plot of protein complexes belonging to the broad
categories "snoRNA regulation”, "Protein translation", "Ribosomal proteins", and "Ribosome
biogenesis" in the protein production programme. The plot shows the -log+ of the g-value of
the repeated-median linear model (RMLM) fit on the sum of normalised counts in each protein
complex as a function of the growth rate against a normalised estimate of the slope of the fit
(see Methods). C. As shown in B for complexes belonging to the “mRNA regulation” and
“Chromatin regulation” categories. D. Sums of DESeg2-normalised counts for subunits of
RNAPI (left), Il (middle) and Il (right) are plotted as a function of the growth rate. The sums of
subunits unique to a given complex are plotted in orange and of all subunits are plotted in
grey. RMLM fits are shown as lines and the predicted 2.5"-97.5" percentile confidence
interval (Cl) of the fit as shaded areas.

Figure 4: Stoichiometries of translation complexes, comparison of ribosomal growth
law with other species, and functional analysis of P sector. A. Sum of the protein fractions
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plotted as a function of the growth rate for factors involved in translation initiation, elongation,
and termination (IET; left), ribosome biogenesis (RiBi; middle), or ribosomal proteins (RP;
right). The best fit and bootstrapped 95% confidence interval (Cl) are shown in black and grey,
respectively. The fold change (FC) values + standard deviations of the bootstrapped values
are shown. B. Proteome mass ratio plotted as a function of the growth rate for the following
comparisons: IET vs RP (left), RiBi vs IET (middle), and RiBi vs RP (right). Shown in black/grey
are the predictions and 95% Cls as given by the linear models fitted to the data in A. C. FC
values for proteins of the IET, RiBi, and RP categories plotted as a function of their median
expression. Proteins assigned to the R, P, and Q sectors are coloured in orange, blue, and
grey, respectively. D. Total proteome mass fraction allocated to ribosomal proteins as a
function of growth rate for S. cerevisiae (red) (Metzl-Raz et al. 2017), S. pombe (green), and
E. coli (grey) (data from (A. Schmidt et al. 2016). RMLM fits and 95% Cls are shown as lines
and shaded areas, respectively. E. The -logis Q-value of repeated-median linear model
(RMLM) fits plotted against their respective FC values for proteins belonging to GO-slim and
literature lists (Mata et al. 2002; D. Chen et al. 2003; Rustici et al. 2004; Rallis, Codlin, and
Bahler 2013; Kamrad et al. 2020). List with a significant negative slope (g-value < 0.001) are
highlighted in blue. BP GO-slim terms related to metabolism are highlighted in green,
stress/growth modules from (D. Chen et al. 2003) in vermillion, and cell cycle induced modules
from (Rustici et al. 2004) in orange. F. Sum of protein fractions plotted as a function of the
growth rate for the Core Environmental Stress Response (CESR) repressed (growth module)
or induced (stress module) genes. RMLM fit and predicted 95% CI as in A. G. Assignment of
growth and stress module proteins (Prot) detected in all samples and their respective
transcripts (Trans) to the R (orange), P (blue), and Q (grey) sectors based on protein fraction
expression and DESeq2 normalised counts. Each protein is connected to its corresponding
transcript by a line and the colours correspond to the protein sectors.

Figure 5: The coordination of energy metabolism enzymes with the growth rate is
marginal A. Sum of protein fractions of proteins involved in translation and ribosome
biogenesis (red, see Figure 4A), energy metabolism and transport (green, see Figure 4E) or
all other genes (grey) plotted as a function of the growth rate. B. Relative proteome fractions
of 5 categories of proteins involved in metabolism. The median of the three replicates from
each condition was used for calculating the protein fractions and plotting growth rates. C. As
shown in B, for proteins of the OXPHOS and TCA pathways, the Adh1 and Pdc101
fermentation proteins, and proteins annotated as "generation of precursor metabolites and
energy" and not included in the other four categories or glycolysis. D. Protein expression as a
function of growth rate as exhibited by the first principal component (PC1). E. Comparison of
the first two principal components (PCA biplot) for each protein group detected in the proteome
across all conditions. Areas with >50% variance explained by PC1 correlation are highlighted
in yellow (negative correlation, WFSP-) and pink (positive correlation, WFSP+). Genes related
to glycolysis and ethanol fermentation are indicated in blue. F. Topology of the glycolysis and
ethanol fermentation pathway showing genes, cofactors, and selected metabolites, with
colours as in E. G. Left: ratio of protein fractions for Adh1/Tdh1 plotted as a function of the
growth rate. Right: diagram showing Adh1 and Tdh1 functioning together with median
proteome fractions of both proteins in each condition. Colours are as annotated in D. H. As
shown in G for Nde1 and Ndi1. I. Ratio of protein fractions of Idh2 and Idh1 plotted as a
function of the growth rate. Colours are as annotated in D. J. As shown in | for the ratio of the
protein fractions ofDId1 and Kgd1 plotted as a function of growth rate.

Figure 6: Transcriptomic signatures for growth on amino acid sources. A. DESeq2 log-
fold change ratios (scale capped at abs(logx(fc)) = 5) for the 10 signatures R1-R10. Fold
changes are relative to the RMLM-predicted synthetic reference (Methods). Columns are
ordered according to the growth rate and rows are ordered by hierarchical clustering (Supp.
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Fig. 6.1). B. The log.-transformed ratios of observed versus RMLM-predicted protein fractions
for genes in the R1-R10 signatures. Row and column orders are as described in A. Genes
missing from the proteomics data are in grey. C. Functional analysis of the transcriptomics
clusters R1-R10 as shown in A. Enrichment for GO slim terms belonging to the “biological
process” (top), “cellular component” (middle), and “molecular function” (bottom) categories are
shown. The colour scheme denotes the local false discovery rate (/fdr, capped at 1e® and
printed on the figure if capped) from a Fisher exact one-sided test for the overlap of each
cluster with functional lists. Only significant lists are shown (/fdr < 0.05) and the number of
genes in each category and cluster are shown in parentheses.

30


https://doi.org/10.1101/2021.03.16.435638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435638; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

N

O oo ~NO UL bW

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44

45
46

made available under aCC-BY 4.0 International license.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure $2.1: Functional analysis of the proteome clusters from Figure
2A. Enrichment for GO slim terms belonging to the “biological process” (top), “cellular
component” (middle), and “molecular function” (bottom) categories are shown. The colour
scheme denotes the local false discovery rate (Ifdr, capped at 1€ and printed on the figure if
capped) of a Fisher exact one-sided test for the overlap of each cluster with the functional
lists. Only significant lists are shown (/fdr < 0.05) and the number of genes in each category
and cluster are shown in parentheses.

Supplementary Figure S2.2: mRNA dependence on the growth rate. Hierarchical
clustering of the z-score transformed DESeg-normalised RNA-Seq counts for 4979 mRNAs
expressed across all conditions in the RNA-Seq dataset for cells grown on 7 single amino
acids or NH4Cl (Amm). The growth conditions are ordered by increasing growth rate. The
twelve clusters are indicated on the left. B. Sum of DESeg-normalised RNA-Seq counts for
the 12 clusters defined in A as a function of growth conditions. The growth conditions are
ordered by increasing growth rate. The RMLM best fit is shown in black and the predicted 95%
confidence interval in grey.

Supplementary Figure S2.3: ncRNA dependence on the growth rate l. Hierarchical
clustering of z-score transformed DESeq-normalised RNA-Seq counts for 1211 ncRNAs for
cells grown on 7 single aamino acids or NH4+Cl (Amm). The growth conditions are ordered by
increasing growth rate. The nine clusters are labelled on the left. B. Sum of DESeq2-
normalised RNA-Seq counts for the 9 clusters defined in A as a function of growth conditions.
The growth conditions are ordered by increasing growth rate. The RMLM best fit is shown in
black and the predicted 95% confidence interval in grey. C. The z-score transformed DESeq2
normalised RNA-Seq counts of all genes that neighbour the ncRNAs from the clusters defined
in A are shown. Annotations of flanking genes were taken from (Atkinson et al. 2018). D. Sum
of DESeq2-normalised RNA-Seq counts (NC) for the neighbouring genes for each cluster
defined in A.

Supplementary Figure S2.4: lllustration of repeated-median linear model (RMLM) fits on
single genes. A. Example R-protein Rpl402. B. Example P protein Suc22. C. Example Q
protein group comprising Hht1, Hht2, and Hht3. D. Example of P protein with additional
medium-specific expression Snz1. E. Example WFSP+ pattern (see Fig. 5D) with a poor
RMLM fit for the protein group comprising Ubi3, Ubi4, and Ubi5. F. Additional example of a
poor RMLM fit for the protein Mae2. The best fit for the RMLM is shown as solid black lines
and the predicted 95% Cl in grey. The best fit for the ordinary least squares (OLS) linear model
is shown as dashed grey lines. G. lllustration of the fold change (FC) calculation for the
example protein Rpl402 indicating the relationship between the FC values, slope, and the y-
intercept of the fit. H. Growth law shapes corresponding to a series of example FC values.

Supplementary Figure S2.5: Growth category assignment of proteins and the
corresponding transcripts from clusters defined in Figure 2A. Assignment of proteins
from the clusters defined in Figure 2A (Prot) and their respective transcripts (Trans) in the R
(orange), P (blue), and Q (grey) sectors based on protein fraction expression and DESeq2-
normalised counts. Each protein is connected to its corresponding transcript by a line coloured
as per the protein classification.

Supplementary Figure S3.1 Volcano plot of protein complexes that do not belong to
those illustrated in Figure 3B-C. The -logo of the g-value of the repeated-median linear
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model (RMLM) fit on the sum of normalised counts in each protein complex as a function of
the growth rate are plotted against a normalised estimate of the slope of the fit (see Methods).

Supplementary Figure S4.1: Stoichiometries of translation complexes as a function of
the growth rate. A. Bootstrapped parameter densities of fold change (FC), slope and intercept
values for the IET (blue), RiBi (pink), and RP (red) categories. The analysis is based on the
1000 bootstrap samples used in Figures 4A and B. B. The sum of protein fractions in the
translation “Initiation”, “Elongation”, and “Termination” categories plotted as a function of the
growth rate. The best fit and bootstrapped 95% CI are shown in black and grey, respectively.
The FC values % standard deviations of bootstrapped values are shown. C. The proteome
mass ratio plotted as a function of the growth rate for the following comparisons: Elongation
vs Initiation (left), Termination vs Initiation (middle), and Termination vs Elongation (right).
Shown in black and grey are the predictions and 95% Cls, respectively, as given by the linear
models fitted to the data in B.

Supplementary Figure S4.2: Analysis of translational proteins with non-positive or
weak growth-rate correlations. A. Normalised sum of squared residuals (SSR) versus
coefficient of determination (R?) for repeated-median linear model (RMLM) fits to protein
groups involved in translation initiation, elongation, and termination (IET, left), ribosome
biogenesis (RiBi, middle), and to ribosomal proteins (RP, right). All P-sector proteins were
labelled, R-sector proteins were labelled if their normalised SSR was greater than 0.1; for Q-
sector proteins the threshold was 0.2. B. Proteome burden associated with translation
elongation and termination factor elF5A (Tif512) as a function of growth rate. The best fitted
RMLM is shown as a solid black line, with its predicted 95% Cl in grey. The best fitted ordinary
least squares model is shown as a dashed grey line. C. As shown in B for translation initiation
factor elF3e (Int6). D. Ratio of protein mass fractions for Int6 and the major elF3 subunit Tif301
plotted as a function of the growth rate.

Supplementary Figure S4.3: Stoichiometries of translation complexes as a function of
the growth rate in E. coli (A. Schmidt et al. 2016). A. Sum of the protein fractions plotted as
a function of the growth rate for factors involved in translation initiation, elongation, and
termination (IET, left), ibosome biogenesis (RiBi, middle), or for ribosomal proteins (RP, right).
The best fit and bootstrapped 95% confidence interval (Cl) are shown in black and grey,
respectively. The fold change (FC) values + standard deviations of the bootstrapped values
are shown. The type of nutrient or perturbation used to modulate the growth rate are colour
coded as per the legend on the right. Data from cultures in stationary phase was not included
in the fits. B. The proteome mass ratio plotted as a function of the growth rate for the following
comparisons: IET vs RP (left), RiBi vs IET (middle), and RiBi vs RP (right). Shown in black
and grey are the predictions and 95% Cls, respectively, as given by the linear models fitted to
the data in A. C. FC values for proteins of the IET, RiBi, and RP categories plotted as a function
of their median expression. Proteins assigned to the R, P, and Q sectors are coloured in
orange, blue, and grey, respectively.

Supplementary Figure S4.4: Analysis of the residuals of the R and P sectors. A. Violin
plots and box plots of the normalised sum of squared residuals (SSR) of the RMLM best fit for
MRNA counts or protein fractions belonging to the R (orange) or P (blue) sectors. The p-values
for the two-sided Wilcoxon rank-sum test are indicated. B. As shown in A for the R? values. C.
Normalised SSR of the RMLM fit plotted against their respective R? values for all proteins
belonging to the R (orange), P (blue), or Q (grey) sectors. D. As shown in C for clusters 1 (left),
4 (middle) and 8 (right) of Figure 2A.

Supplementary Figure S$4.5: Functional analysis of P sector mRNAs. A. The -logo g-
value of RMLM fits plotted against their respective FC values for mRNAs belonging to the GO-

32


https://doi.org/10.1101/2021.03.16.435638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435638; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

O 00O NOUTL DS WN -

S
N 2 O

13
14
15
16
17

18
19
20

21
22
23
24
25
26

27
28
29
30
31
32

33
34
35
36
37
38
39

40
41
42
43

44
45
46

made available under aCC-BY 4.0 International license.

slim and literature lists (Mata et al. 2002; D. Chen et al. 2003; Rustici et al. 2004; Rallis, Codlin,
and Bahler 2013; Kamrad et al. 2020). The lists with a significant negative slope (g-value <
0.001) are highlighted in blue. The BP GO-slim terms related to metabolism are highlighted in
green, stress/growth modules from (D. Chen et al. 2003) in vermillion, and cell cycle induced
modules from (Rustici et al. 2004) in orange. B. Sum of the DESeqg2-normalised counts plotted
as a function of the growth rate for the Core Environmental Stress Response (CESR)
repressed (growth module), or the induced (stress module) genes. The RMLM fit and predicted
95% CI are indicated as in Figure 4F. C. The sum of protein fractions plotted as a function of
the growth rate for S phase induced periodic genes (Rustici et al. 2004). D. As shown in C for
the DESeq2 normalised counts. E. Total expression in RNA-Seq (DESeqg2-normalised counts,
left panel) and proteomics data sets (proteome fraction, right panel) for gene lists induced in
the M phase versus G1 phase (Rustici et al. 2004).

Supplementary Figure $4.6: Functional enrichment of P sector proteins. The -log1o of g-
value (tail-based false discovery rate) of the one-sided Fisher exact enrichment test plotted as
a function of the number of genes detected across all conditions in the proteome for all S.
pombe GO-slim categories. Significantly enriched lists (g-value < 0.05) are highlighted in cyan.
The BP GO-slim terms related to metabolism are highlighted in green.

Supplementary Figure S5.1: Growth rate specificity of metabolism proteins (related to
Figure 5B). Sum of protein fractions plotted as a function of the growth rate for 6 categories
covering metabolism (see Figure 5B and Methods).

Supplementary Figure S5.2: Growth rate specificity of energy metabolism proteins
(related to Figure 5C). Top left two panels: protein fractions as a function of growth rate for
the ethanol fermentation enzymes Adh1 and Pdc101. Remaining three panels: sum of protein
fractions as a function of growth rate for the proteins involved in oxidative phosphorylation,
TCA cycle, and for those annotated as "generation of precursor metabolites and energy" and
that were neither included in the first four panels nor glycolysis.

Supplementary Figure S$5.3: Condition specific expression of complexes forming the
respiratory electron transport chain and proton pumps. The sum of protein mass fractions
as a function of the growth rate (top panels) and median proteome fraction of components of
the complex in each condition (bottom panels), for internal NADH dehydrogenase, the
succinate dehydrogenase complex, the cytochrome C reductase complex, cytochrome C, the
cytochrome C oxidase complex, and the ATP synthases.

Supplementary Figure S5.4: PCA analysis of the proteomics data. A. Cumulative variance
explained by the first 9 principal components of the proteomics dataset (Methods). B. PC1
plotted against PC2 for all proteins belonging to the R (orange), P (blue), or Q (grey) sectors.
C. As shown in B for PC3 and PC1. D. As shown in B for PC3 and PC2. E. The relative
contribution of each experimental condition plotted as a function of the growth rate for the first
9 principal components of the proteomics dataset. Note that PC1 shows a clear WFSP+
pattern, as repeated in Figure 5D.

Supplementary Figure S5.5: Proteome burdens of enzymes in the glycolysis and
ethanol fermentation pathways. Repeated-median linear model fits are shown as black lines
and the predicted 2.5"-97.5" percentile confidence intervals of the fits as the grey shaded
areas.

Supplementary Figure S5.6: Proteome burdens of selected enzymes with NAD cofactor
(related to Figure 51-J). Repeated-median linear model fits are shown as black lines and the
predicted 2.5"-97.5™ percentile confidence intervals of the fits as the grey shaded areas.
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Supplementary Figure S6.1: Hierarchical clustering of RNA-Seq data after correction
for growth-rate dependent gene expression. Counts were normalised to the growth-
dependent linear model in DESeq2 and the fold change ratios fc were calculated with respect
to a synthetic average sample as a reference (Methods). Only genes with at least one
condition meeting abs(logx(fc)) > 0.5 and adjusted p-values < 0.01 were selected. Gene-
condition pairs not meeting this significance threshold are shown in grey. The colour scale is
capped at abs(logz(fc)) = 5. The R1-R10 signatures from Figure 6 are shown on the left.

Supplementary Figure S6.2: Functional analysis focusing on informative terms of R1-
R10 signatures from Figure 6. Enrichment for GO terms belonging to the “biological process”
category with no more than 50 annotations are shown. The colour scheme denotes the -log1o
local fdr (Ifdr, capped at 1e®) for Fisher exact one-sided tests for the overlap of each cluster
with functional lists. Only significant lists are shown (/fdr < 0.01) and the number of genes in
each category and clusters are shown in parentheses.
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SUPPLEMENTARY TABLE LEGENDS

Supplementary Table S1: Summary of growth conditions for the 24 cultures studied.
medium: three-letter abbreviation of growth medium; replicate: biological replicate index;
growth_rate: calculated growth rate (in h™'); doubling_time: doubling time as calculated from
the growth rate (in h); OD: mean ODey during second phase of stable OD; total_doublings:
total number of doubling times elapsed during turbidostat growth; growth_1_h: elapsed time
(in h) between inoculation and first meeting of the OD setpoint; constant_2 h: elapsed time
(in h) during the initial phase of stable growth; dilution_h: elapsed time (in h) during the
approximate twofold dilution; growth_2_h: elapsed time (in h) during regrowth phase following
the dilution; constant_2_h: elapsed time (in h) during the second phase of stable OD; total_h:
total elapsed time (in h) during turbidostat growth; nitrogen_source: full name of nitrogen
source in growth medium; turbidostat: index of physical device that the culture was grown in.

Supplementary Table S2: Summary of protein groups detected in proteomics analysis.
PomBaselDs: database identifiers of the proteins comprising the protein group, i.e that were
indistinguishable based on the detected peptides; n_proteins: number of proteins comprising
the group; Protein IDs: FASTA headers of the proteins; total_peptides_all: number of different
peptides detected in at least one sample that could have been assigned to the group;
total_peptides_razor: number of different peptides detected in at least one sample that were
assigned to the group; total_peptides_unique: number of different peptides detected in at least
one sample that were assigned to the group and could not have been assigned to another
group; sequence_coverage: percentage of the protein sequence that overlapped with at least
one peptide; sequence_lengths: number of amino acids comprising the group’s proteins’
peptide chain; mol_weight: molecular weight of protein (in kDa).

Supplementary Table S3: Relative protein expression levels as determined by the
proteomics analysis. PomBaselDs: database identifiers of the protein group; medium: three-
letter abbreviation of growth medium; replicate: biological replicate index; iBAQ: intensity
based absolute quantification; raw: raw detected intensity; Ifq: label-free quantification as
reported by MaxQuant.

Supplementary Table S4: Proteome mass fractions as determined from intensity-based
absolute quantifications (iBAQ). PomBaselDs: database identifiers of the protein group;
medium: three-letter abbreviation of growth medium; replicate: biological replicate index;
proteome_fraction: proteome mass fraction.

Supplementary Table S5: Transcript abundance as determined by RNA-Seq analysis
and subsequent normalisation. PomBaselDs: database identifiers of the protein group;
medium: three-letter abbreviation of growth medium; replicate: biological replicate index;
normalised_counts: abundance after DESeq2-based normalisation; rpkm: reads per kilobase
per million; raw_counts: raw counts detected in sequencing analysis.

Supplementary Table S6: Summary statistics of repeated-median linear model (RMLM)
fits and of gene expression. PomBaselD: systematic database identifier of the gene;
primary_name: gene standard name; description: gene product description; PomBaselDs:
proteomics protein group identifier; sector.proteins: proteome sector the protein group was
assigned to (g-value < 0.1); confident.proteins: whether proteome assignment was confident
(local false discovery rate Ifdr < 0.1); cluster.proteins: cluster the protein group was assigned
to (see Fig. 2A); sector.transcripts: transcriptome sector the protein group was assigned to (g-
value < 0.1); confident.transcripts: whether transcriptome assignment was confident (/fdr <
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0.1); cluster.transcripts: cluster the transcript was assigned to (see Supp. Fig. 2.2A);
g.value.proteins: g-value assigned to the protein RMLM fit; local_fdr.proteins: Ifdr assigned to
the protein RMLM fit; slope.proteins: slope of the protein RMLM fit; intercept.proteins: y-
intercept of the protein RMLM fit; p.value.proteins: p-value associated with the protein RMLM
fit; r.squared.proteins: coefficient of determination (R?) of the protein RMLM fit; fc.proteins: fold
change (FC) calculated from the protein RMLM fit; median.proteins: median proteome mass
fraction; max.proteins: largest detected proteome mass fraction; min.proteins: smallest
detected proteome mass fraction; spread.proteins: difference between largest and smallest
detected proteome mass fraction; n_conditions.proteins: number of conditions that the protein
was detected in; mean.proteins: mean proteome mass fraction; var.proteins: variance of
proteome mass fraction; cv.proteins: coefficient of variation (CV) of proteome mass fraction;
ssr.proteins: sum of squared residuals (SSR) to the RMLM for proteome mass fractions;
norm_ssr.proteins: normalised SSR for proteome mass fractions (see Methods, equation (7)
); g.value.transcripts: g-value assigned to the transcript RMLM fit; local_fdr.transcripts: /fdr
assigned to the transcript RMLM fit; slope.transcripts: slope of the transcript RMLM fit;
intercept.transcripts: y-intercept of the transcript RMLM fit; p.value.transcripts: p-value
associated with the transcript RMLM fit; r.squared.transcripts: R? of the transcript RMLM fit;
fc.transcripts: FC calculated from the transcript RMLM fit; median.transcripts: median RNA-
Seq normalised counts; max.transcripts: largest detected RNA-Seq normalised counts;
min.transcripts: smallest detected RNA-Seq normalised counts; spread.transcripts: difference
between largest and smallest detected RNA-Seq normalised counts; n_conditions.transcripts:
number of conditions that the transcript was detected in; mean.transcripts: mean RNA-Seq
normalised counts; var.transcripts: variance of RNA-Seq normalised counts; cv.transcripts:
CV of RNA-Seq normalised counts; ssr.transcripts: SSR to the RMLM for RNA-Seq
normalised counts; norm_ssr.transcripts: normalised SSR for RNA-Seq normalised counts
(see Methods, equation (7) ).

Supplementary Table S7: Manual assignment of complexes to broader functional
categories. GOID: Gene Ontology (GO) term accession identifier; description: GO term
name; category: manually assigned category.

Supplementary Table S8: Assignment of S. pombe translation proteins to non-
overlapping functional classes. PomBaselDs: proteomics protein group identifier;
annotation: annotation to ribosomal protein (RP), initiation/elongation/termination factors
(IET), or ribosome biogenesis (RiBi).

Supplementary Table S9: Assignment of E. coli translation genes to non-overlapping
functional classes. gene: gene identifier; annotation: annotation to ribosomal protein (RP),
initiation/elongation/termination factors (IET), or ribosome biogenesis (RiBi).

Supplementary Table S10: Assignment of metabolic proteins to non-overlapping
functional classes. PomBaselDs: proteomics protein group identifier; annotations: all
relevant GO-slim annotations present for the protein group (semi-colon-separated); class:
assignment to broad non-overlapping groups (Fig. 5B, Supp. Fig. S$5.1); subclass: for
Precursors/Energy class, subdivision into non-overlapping subgroups (Fig. 5C, Supp. Fig.
S$5.2).

Supplementary Table S11: Proteins induced and repressed in Trp (W), Phe (F), Ser (S),
and Pro (P) media. PomBaselDs: proteomics protein group identifier; correlation: Pearson
correlation coefficient R between z-score transformed proteome mass fractions and protein
principal component 1 (PC1); r.squared: R?, WFSP: whether R>0 (+) or R<0 (-); PomBaselD:
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systematic database identifier of the gene; primary_name: gene standard name; description:
gene product description.

Supplementary Table S12: Differential expression analysis after removal of growth rate
correlations and subsequent assignment to transcriptional signatures. PomBaselD:
gene identifier; cluster: assignment to transcriptional signature; medium: ; baseMean: baseline
transformed expression in synthetic reference; log2fc: log.-transformed fold change; stderror:
standard error of the logz-transformed fold change; statistic: test statistic of the DE analysis;
p.value: raw p-value of Wald test; p.adjusted: Benjamini-Hochberg adjusted p-value.

37


https://doi.org/10.1101/2021.03.16.435638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435638; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

2 MATERIALS AND METHODS
3 Culture conditions

Cells were grown in continuous culture in turbidostats using Edinburgh minimal media (EMM2)
with saturating amounts of carbon and nitrogen (Petersen and Russell 2016). This ensured
that the cells could reach balanced exponential growth, limited only by internal gene
expression patterns. In addition to the standard EMM2 media where nitrogen is provided by

93.5 mM of ammonium chloride (NH4ClI, referred to as Amm), we used seven alternative

O© 00 N oo u b

nitrogen sources where 20 mM of a single amino acid replaced the NH.ClI: glutamate (Glu),
10 proline (Pro), isoleucine (lle), serine (Ser), phenylalanine (Phe), glycine (Gly), and tryptophan
11 (Trp) (Sigma).

12 Cells were grown and harvested as follows: 972h" cells from frozen glycerol stocks were
13 precultured on YES agar plates. Single colonies were inoculated in 5-10 ml of EMM2 in glass
14  flasks and grown overnight at 32 °C. Approximately 1 ml of culture was transferred to a fresh
15  flask containing EMM2 and the final nitrogen source and grown to large ~5 x 10° cells/ml.
16  These cells were used to inoculate the continuous culture setup at 0.5-1 x 10° cells/ml. The

17  process was repeated for biological triplicates grown from three different colonies.

18  To generate the final cultures, cells were grown in turbidostats (Takahashi et al. 2015), with
19 media flow controlled using customised Python scripts (Saint et al. 2019). Cell cultures were
20  monitored every 30 s and fresh growth medium was added whenever the optical density ODego
21  exceeded 0.4. This resulted in 1%—-2% dilution cycles, keeping the total culture volume
22 constant throughout. Cells were kept in the turbidostats for ~10 generations at 32 °C. To
23 measure the growth rate, cells were diluted twofold approximately halfway through the
24  experiment and regrown to the reference level of ODeoo = 0.4. The growth rate for each sample
25  was determined by fitting an exponential curve to the OD measures acquired every 30 s during
26  the regrowth phase. The final culture volumes were ~30 ml, from which 10 ml was used for
27  transcriptomics, 10 ml for proteomics analysis, and 10 ml was saved as a backup. The cells
28  were harvested by centrifugation, washed twice with PBS and stored at —80 °C until RNA-Seq

29  and proteomics sample preparation was performed.
30 RNA-Seq

31 A 10 ml aliquot of the culture was centrifuged at 3000 rpm for 3 min. After removing the
32 supernatant, cell pellets were frozen in dry ice and kept at -80 °C until the library preparation
33  was performed. Total RNA from the pellets was extracted using the hot-phenol method (Lyne

34 et al. 2003) and the RNA obtained was quantified using a BioDrop (biochrom, Cambridge,
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UK). Poly(A) enrichment was performed using 500 ng of total RNA with the NEBNext Poly(A)
mRNA Magnetic Isolation Module (NEB, Ipswich, USA) kit according to the manufacturer’s
instructions. The remaining mRNA was used for stranded RNA-seq library preparation using
the NEBNext® Ultra™ Il Directional RNA Library Prep Kit for lllumina® (NEB, Ipswich, USA)
according to the manufacturer’s instructions. The resulting libraries were quality checked and
quantified using the Bioanalyser (Agilent, Santa Clara, USA) and a Qubit™ dsDNA BR Assay

Kit (Invitrogen) respectively.

Libraries were sequenced on an lllumina HiSeq 2500 instrument (lllumina, San Diego, USA).
Data were processed using RTA version 1.18.54 and 1.18.64, with default filter and quality
settings. The reads were demultiplexed with CASAVA 1.8.4 and 2.17 (allowing 0
mismatches). Transcripts were mapped to the genome sequences (available from PomBase)
using TopHat2 (Kim et al. 2013; Lock et al. 2019). HTSeq was used to count the number of
reads per exon (gff3, PomBase) (Anders, Pyl, and Huber 2015; Lock et al. 2019). The reads
across exons were summed to obtain the total number of reads per gene. This procedure
yielded raw counts c;jix for each gene i, growth medium j, and biological replicate k. Per sample
normalisation was performed using the DESeq2 estimateSizeFactors function, yielding size
factors Sj for each sample (Love, Huber, and Anders 2014). The normalised counts were
calculated as follows:

_ Cijk
Mk,

jk

(1)

Unless otherwise noted, RNA-Seq analyses were performed using these normalised counts,

which enabled between-sample comparison of the expression of genes or sets of genes.
Proteomics

Cell pellets from 10 ml of each turbidostat culture was frozen in dry ice and stored at -80 °C
until sample preparation. Once thawed, cells were resuspended in lysis buffer (1% sodium
deoxycholate, 1% ammonium bicarbonate). Lysis was performed in a FastPrep instrument
(MP Biomedical) for 5 pulses at a speed of 6 m/s. Total cell extracts were treated with 5 mM
tris(2-carboxyethyl)phosphine (TCEP) for 15 min at room temperature to reduce the disulphide
bonds. An alkylation reaction was performed with the addition of 10 mM iodoacetamide for 30
min at 25 °C in the dark. The reaction was quenched using 12 mM N-acetyl-cysteine for 10
min. The proteins were quantified using a BCA Protein Assay Reducing Agent Compatible kit
(ThermoFisher Scientific) and 100 ug of total protein was used for digestion. To improve the
cleavage efficiency, protein extracts underwent a double digestion, first with Lys-C (Wako
chemicals, USA) for 4 h at 37 °C using a 1:200 (w/w) ratio, and then overnight with porcine
trypsin at 37 °C using a 1:100 (w/w) ratio. Digestion was stopped by lowering the pH with
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trifluoroacetic acid (TFA) at a final volume of 1%. The sodium deoxycholate precipitate formed
due to the lowered pH was removed by centrifuging the samples at 4 °C for 15 min at 14,000
rom. The precipitated detergent was then discarded. The digested peptides were vacuum

dried and stored at -80 °C until required for analysis.

The protein digests were analysed by liquid chromatography-tandem mass spectrometry (LC-
MS/MS) via an untargeted analysis approach using Data-Dependent Acquisition (DDA)
(Ducret et al. 1998). The raw MS data was analysed using MaxQuant (Cox and Mann 2008)
and applying the Label-free Quantification algorithm (Cox et al. 2014) for DDA data analysis.

Protein digests were reconstituted in 0.1% trifluoroacetic acid (TFA) and transferred to
autosampler vials for LC-MS/MS analysis. The tryptic peptides were separated using an
Ultimate 3000 RSLC nano liquid chromatography system (Thermo Scientific) coupled to a Q-
Exactive tandem mass spectrometer (Thermo Scientific) via an EASY-Spray source. Sample
volumes were loaded onto a trap column (Acclaim PepMap 100 C18, 100 um x 2 cm) at 8
ul/min of 2% acetonitrile, 0.1% TFA. Peptides were eluted on-line to an analytical column
(EASY-Spray PepMap C18, 75 um x 75 cm). Peptides were separated at 200 nl/min with a
ramped 180 min gradient using 4%-30% buffer B (buffer A: 2% acetonitrile, 0.1% formic acid;
buffer B: 80% acetonitrile, 0.1% formic acid) over 150 min, and 30%-45% buffer B over 30
min. Eluted peptides were analysed by operating in positive polarity using a data-dependent
acquisition mode. lons for fragmentation were determined from an initial MS1 survey scan at
70,000 resolution (at m/z 200) in the Orbitrap followed by Higher-energy Collisional
Dissociation (HCD) of the top 12 most abundant. MS1 and MS2 scan AGC targets set to 3e6
and 5e4 for maximum injection times of 50 ms and 110 ms, respectively. A survey scan
covering the range of 400-1800 m/z was used, with HCD parameters of isolation width 2.0

m/z and a normalised collision energy of 27%.

DDA data was processed using the MaxQuant software platform (v1.6.2.3) (Cox and Mann
2008) with database searches performed by the in-built Andromeda search engine against the
PomBase database (5,138 entries, v.20190507) (Lock et al. 2019). A reverse decoy database
was created, and the results displayed at a 1% false discovery rate (fdr) for peptide spectrum
matches and identified proteins. The search parameters included trypsin, two missed
cleavages, fixed modification of cysteine carbamidomethylation, and variable modifications of
methionine oxidation, asparagine deamidation, N-terminal glutamine to pyroglutamate
modification, and protein N-terminal acetylation. Label-free quantification was enabled with an
LFQ minimum ratio count of 2. The ‘match between runs’ function was used with match and

alignment time limits of 0.7 and 20 min, respectively.
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Intensities were based on identified unique and razor peptides, and intensity-based absolute
quantification (iBAQ) was calculated as the raw intensity/number of obtainable tryptic
peptides. For the post-processing of the MaxQuant output, the data was filtered for detection
in all three biological replicates. Subsequently, proteome mass fractions ¢; were calculated for
each protein group i, sample from growth medium j, replicate k from the reported protein
masses m;, and the iBAQ quantities Bjx as follows:
m;Biji
biji = sz—zéz]k

(2)

Repeated median linear models

As shown in the main text, several genes were enriched in one or more growth conditions in
addition to growth-rate correlations. The presence of such outliers affected the fit quality of the
standard ordinary least squares (OLS) linear model fits. To account for this, we used repeated
median linear models (RMLM) for fitting regression lines (Siegel 1982), as implemented in the
R package 'mblim" (Komsta 2019). This method is robust when up to 50% of outliers are

present in the data, and the working is described below.

In general, the data can be described as N pairs of the growth rate y and some expression
value y (N = 24 if expression was detected across all samples, or a smaller multiple of 3 when
data was missing). From each observation (u, y), a line is drawn to each of the other N — 1
points (u, y);, and the median slope and y-intercept of these N — 1 lines is associated with the
data point i. The regression coefficients for the slope and y-intercept of the repeated median
linear model are defined as the medians of all N slopes and y-intercepts. To compare the
growth law shape of protein groups with varying absolute abundances, the fold-change FC

was defined from the RMLM as the ratio

_ Y = timax) — y(u = 0)
y(u = 0.50max)

FC , 3)

with umax = 0.3 h™'. This can be expressed in terms of the fitted slope a and the y-intercept b

as follows:

FC = be' 4)
O-Sﬂmax + /a

Hierarchical clustering

We used z-scores to normalise for variations in absolute expression levels. For each gene or

protein group i in the sample with medium j and replicate k, the z-score was calculated as
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YVijk — Hi
Zijk =% (5)
l

from the expression values yjx, where p; and o; are the mean and standard deviations across
all samples. The analysis was performed only on genes or protein groups that were detected
across all 24 samples. The resulting matrices of the z-scores were analysed using hierarchical

clustering and principal component analysis.

Hierarchical clustering on genes/protein groups was performed using the Euclidean distance
and Ward linkage (“ward.D2”), using the "hclust implementation of the R statistical language
(v.3.5.3). In the transcriptome analysis, separate dendrograms were constructed for coding
and non-coding RNAs, using the protein-coding list from PomBase and selecting ncRNAs from

the presence of “NCRNA.” in the systematic IDs.
Sector assignment
For each gene or protein group j, we calculated R-squared (R?), defined as

2
Xk Tk

Zj,k(yijk - lii)z ’

RF=1- (6)
and the associated p-values using the 'summary.Im” method. Here rjx denotes the residuals
from the RMLM fit, yjx the expression (normalised counts or proteome fractions), y;the mean
expression across samples, and the summation was performed across all N samples where
the gene was detected. We calculated the tail-based false discovery rates (fdr, or g-values)
and local false discovery rates (fdr) using the “fdrtool’ R package and the false non-discovery
rate cut-off method (Strimmer, 2008). Genes or protein groups were assigned to the P or R
sector when their tail-based fdr < 0.1. R and P sector genes had positive and negative slopes,
respectively, as determined by the fitted RMLM. In Supp. Table S6, hits with local fdr < 0.1

were flagged as confident.
To assess fit quality, in addition to R?, we used a normalised sum of squared residuals, defined

as

2
1 Xk jk

N-1 p

SSRnorm,i = (7)

with the notations as described in the previous paragraph.
Bootstrapping

For the analysis illustrated in Fig. 4AB and Supp. Fig. S4.1 and $4.3, 1000 bootstrap samples

were generated using the bootstraps function from the ‘rsample’ package (v0.0.8) (Silge et al.
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2021). The RMLM analysis was repeated on the bootstrapped samples, resulting in sample
distributions for the RMLM slopes, intercepts, and FCs. Plots of the 2.5%-97.5% confidence

interval were drawn using the RMLM predictions on a 101-point grid spanning 0 to 0.3 h™'.

Other confidence intervals were drawn using the geom_smooth function in ggplot2 (v3.3.2)
(Wickham 2016) with the default 95% confidence interval and the RMLM method, unless

otherwise noted.
Barcode plots

For the barcode plots in Supp Fig. S4.3 and $4.6, the directed length /; of the bar for protein
i and medium j was calculated from the median proteome mass fractions across the three

biological replicates,

%y = median b, ®
and the median across all samples,
M; = me]%cian bijk» )
in the following way:
w=“&m, (10)

with missing data imputed to zero. The scale was capped at —1 < [;; < 2.

Differential expression analysis

To identify differential expression in the transcriptome on top of growth rate mediated effects,
we performed an analysis using ‘'DESeq2’ (v1.22.2) from the Bioconductor suite (v3.8) (Love,
Huber, and Anders 2014; Huber et al. 2015), comparing the residual expression in each
condition to a synthetic reference condition. The fold change obtained by this procedure can
be interpreted as the ratio of observed normalised counts and the counts predicted by the

RMLM, and the associated p-value provides an interpretable estimate of significance.

The DESeq2 analysis pipeline enables the introduction of per-gene, per-sample normalisation
factors that are commonly used to correct for batch-dependent GC-content or length biases.
We adapted this functionality to normalise the growth rate bias of each gene, by introducing
factors Njx that converted between the measured raw counts cjx and RMLM-predicted raw
counts gjx:

Cijk

o= Uk 11
qu Nijk ( )
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in analogy to the definition of size factors in Equation (1). However, the fitting of RMLMs
yielded per-gene, per-sample predictions pjx of the normalised counts. Using the sample-

dependent size factors, we converted these to predictions of raw counts as follows:

Qijk = PijSjk- (12)
Therefore, the normalisation factors were calculated as
Cijk _ Mijk

Niji =

= . (13)
SikDijk  DPijk
We excluded genes with negative predicted raw counts and rescaled the normalisation factors

across samples for each gene to have a geometric mean of 1 for numerical accuracy.

Using the RMLM-predicted raw counts, we further defined a synthetic reference condition with
three biological replicates by using the median predicted count across all growth media for

each replicate as follows:
S; = int (median qijk) . (14)
j

These reference counts were rounded to the nearest integer, as they represent raw counts in

the DESeq2 pipeline. By design, the gjx have no residual growth-rate trend.

Subsequently, the analysis proceeded on the constructed data set with 9 conditions: the
original 8 and the synthetic one, with each set having 3 biological replicates. Pairwise fold-
changes F and the associated p-values (both uncorrected and adjusted pa.qj) are reported
between the 8 growth media and the synthetic reference. Genes were reported as differentially

expressed (DE) if p,4; < 0.01 and |log, F| > 0.5 for at least one condition.

Functional enrichment

We performed one-sided Fisher exact tests to assess the enrichment of DE genes across the
S. pombe GO-slims and terms from the biological_process GO with at most 50 annotations in
S. pombe (Gene Ontology Consortium 2019; Lock et al. 2019) . From the resulting p-values,
local false discovery rates Ifdr were calculated using the “fdrtool's false non-discovery rate
method (Strimmer 2008).

In the enrichment plots for the GO-slim terms (Fig. 6B, Supp. Fig. S2.1), terms with /fdr<0.05
were deemed significant, and the terms were ordered from top to bottom by increasing
smallest /fdr to aid interpretation. For the biological_process enrichment plot (Supp Fig. $5.3),
the significance threshold was local fdr<0.001. The significant terms were clustered

hierarchically using the Euclidean distance and Ward linkage (“ward.D2”), using the “hclust
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1 implementation of the R statistical language (v.3.5.3).The terms were ordered by the smallest

2 Ifdr as much as possible while remaining consistent with the clustering constraint.
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