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Super-interactive promoters provide insight into cell type-specific

regulatory networks in blood lineage cell types

Abstract

Existing studies of chromatin conformation have primarily focused on potential enhancers
interacting with gene promoters. By contrast, the interactivity of promoters per se, while equally
critical to understanding transcriptional control, has been largely unexplored, particularly in a cell
type-specific manner for blood lineage cell types. In this study, we leverage promoter capture
Hi-C data across a compendium of blood lineage cell types to identify and characterize cell
type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of
SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for
relevant blood cell traits than PIRs of non-SIPs. Further, SIP genes tend to express at a higher
level in the corresponding cell type, and show enriched heritability of relevant blood cell trait(s).
Importantly, this analysis shows the potential of using promoter-centric analyses of chromatin

spatial organization data to identify biologically important genes and their regulatory regions.

Background

Genome-wide chromosome conformation capture techniques such as Hi-C [1] have been widely
used to study chromatin three dimensional (3D) organization. However, due to the complexity
and sparsity of Hi-C data, it is difficult to identify statistically significant long-range chromatin
interactions between distant genomic sequences at fine resolutions (e.g, at restriction fragment
level, or < 10Kb equal size bin level) even with tens of billions of pairwise reads produced [2, 3].
Furthermore, ultra-deep sequencing is costly and likely to generate redundant reads, leading to
Hi-C library saturation [4]. In addition, chromatin spatial organization studies have largely

focused on regulatory regions, but characterization of the 3D genome at promoters is also
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important for understanding gene expression regulation. To bridge this gap, capture Hi-C and
subsequent variations were developed as an extension of the Hi-C technique by combining
target enrichment and sequencing [5—8]. One such capture technique, promoter capture Hi-C
(pcHi-C), was developed to focus on promoter regions. These regions have been largely taken
for granted and automatically removed from detailed study in many chromatin conformation-
based studies [9-11]. pcHi-C is specifically enriched for promoter sequences and enables the
genome-wide detection of distal promoter-interacting regions (PIRs), for all promoters with a

priori designed probes/baits in a single experiment [12].

Promoter interactomes (the set of all interactions involving promoters within a cell) are tissue-
and lineage-specific and have been used to link promoters to GWAS risk loci [9, 12—14].
Consequently, there has been growing interest in studying cell type-specific differences in PIRs.
As one example, pcHi-C analysis of 17 human hematopoietic cells demonstrated that PIRs are
highly cell type-specific and reflective of the expected lineage relationships (such as mapping of
promoter interactions for T-cell receptor component encoding genes to lymphoid cell types only,
not to myeloid lineage cell types). Importantly, this analysis demonstrated the ability of pcHi-C to
link non-coding regulatory variants to their target genes [13]. Thus, pcHi-C analysis can be
leveraged to provide insight into gene expression control and the function of non-coding

disease-associated sequence variants [12].

A recent study on human corticogenesis has identified a subset of promoters exhibiting
unusually high degrees of chromatin interactivity (where chromatin interactivity is defined by
cumulative CHICAGO scores of interactions with neighboring regions), which were termed
super-interactive promoters (SIPs) [8]. Song et al. found that these brain cortex SIPs were
enriched for corresponding lineage-specific genes, suggesting that the interactions between

SIPs and their regulatory networks may play a role in modulating cell type-specific transcription.
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In addition, Song et al. also found SIPs in hematopoietic lineages using pcHi-C data, but did not

perform further annotation or characterization of these hematopoietic SIPs.

Due to the relative ease of measuring blood cells, rich genomics data is available for
hematopoietic cells. Further, different hematopoietic cell types play different roles in blood cell
generation and function and correspond to different phenotypic traits (for example inflammation,
autoimmunity, and infection phenotypes for white blood cell types, thrombosis and hemostasis
related phenotypes for platelet producing megakaryocytes), emphasizing the importance of
studying them in cell type-specific manner [15]. Blood cells are highly relevant tissues for many
complex phenotypes, including infectious disease susceptibility (including COVID-19), disease
related biomarkers such as telomere length or circulating inflammatory cytokines, thrombosis
(including venous thromboembolism and stroke), asthma and other respiratory diseases, and
autoimmune conditions [16]. Understanding of interactions of gene promoters and their
regulatory regions in specific blood cell types, as opposed to simple analysis of “whole blood”,
can lead to improved annotation of genome-wide association study (GWAS) identified loci and
their target genes, and thus of the genetic mechanisms underlying complex disease risk.
Hematopoietic SIPs are thus of broad interest for understanding gene regulation and its

connection to disease risk in human populations.

Here, we focus on characterizing promoter-centric chromatin spatial interaction profiles, across
a compendium of cell types in the hematopoietic lineage. In this study, we identify and
characterize SIPs in human blood cells using pcHi-C data from the Javierre et al. study [13]. We
find that SIPs tend to be cell type-specific or shared across all cell types. Through examining the
differences between SIPs and non-SIPs in terms of their interaction profiles as well as their

genes, we find that SIPs share common properties across cell types. Importantly, we
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demonstrate how studying SIP networks may provide insight into the complex regulation of

promoters as well as potential functional interactions.

Results

Cell Type-Specifically Expressed Genes Exhibit Higher Levels of Chromatin Interactivity
in the Corresponding Cell Type than Shared Genes

We first explored the relationship between chromatin interactivity and gene expression in a cell
type-specific manner. We examined this relationship using pcHi-C data from Javierre et al. [13]
and gene expression data from BLUEPRINT [17], in each of the five hematopoietic cell types:
erythrocyte (Ery), macrophage/monocyte (MacMon), megakaryocyte (MK), naive CD4 T-cell
(nCD4), and neutrophil (Neu) (Methods). We classified genes as “specific” (expressed in a cell
type-specific manner) or “shared” across the five cell types (Methods). The promoters for cell
type-specific genes have significantly more interactions than the shared genes across all five
cell types (p-value < 0.05) (Figure Sla-e). Similar results were observed by Song et al. in

neuron cells [8].

Inequality in the Promoter Interactome: Few Super-Interactive Promoters

For each cell type, we ranked the promoter-containing anchor bins (baits) according to their
cumulative interaction scores (Methods) (Figure 1). We find that a small number of promoter
baits (~7.5%) have extremely high cumulative interaction scores, as defined based on the curve
inflection point in each cell type, and annotated them as super-interactive promoters (SIPs). In
total, we annotate 1,157, 808, 1,287, 993, and 861 SIPs in erythrocytes,
macrophages/monocytes, megakaryocytes, naive nCD4 T-cells, and neutrophils, respectively
(Table S1). These SIPs can be cell type-specific or shared across cell types. There are 170

SIPs shared across all five cell types, as well as 189, 107, 302, 283, and 274 cell type-specific
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SIPs in erythrocytes, macrophages/monocytes, megakaryocytes, naive nCD4 T-cells, and
neutrophils, respectively. Figure S2 details how the SIPs are shared across the different cell
types (Additional File 1). Similar to GTEXx analyses of eQTLSs’ tissue specificity [18, 19], the most
common configurations pertain to cell type-specific SIPs and shared SIPs (across all five cell
types). In addition, principal component analysis (PCA) on the cumulative interaction scores
reflects expected correlations between cell type-specific SIPs in each cell type, as well as

between any SIP and those SIPs shared by all five cell types (Figure S3).

Moreover, many cell type-specific SIPs correspond to known lineage-specific genes and have
PIRs overlapping relevant GWAS variants (examples annotated by red dots in Figure la-e)
(Methods, Additional File 2). For example, the neutrophil SIP gene DOCKS8 is an
immunodeficiency gene that is expressed in resting human neutrophils [20], and the
macrophage SIP gene FMNL?2 is most highly expressed in macrophages and is cell type
relevant [21-23]. The naive CD4 T-cell SIP gene CD6 is a strong positive control, as this gene
is essentially only expressed in CD4 T-cells [24]; BACH2 plays a vital role in maintaining naive
CD4 T-cells and regulating immune homeostasis [25]. All of these SIP genes have at least one

PIR overlapping a GWAS identified SNP.

The unusually high cumulative interaction scores at SIPs are driven by a large number of
interactions, rather than a few interactions with large scores (Figure 2a-b). SIP baits have a
significantly greater number of other end interactions (i.e., PIRs) compared to non-SIP baits in
each cell type (Wilcoxon p-value < 2.2e-16). The median number of significant interactions is
38-61 for SIPs and only 4-7 for non-SIPs. SIPs interact with ~9 times more PIRs than non-SIPs
on average. However, the median CHICAGO score [26] of significant interactions per bait,
although statistically different, is comparable between SIPs and non-SIPs (the median is ~8.4

for SIPs and ~6.4 for non-SIPs).
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SIPs and Super Promoter-Interacting Regulatory Regions

In each cell type, ~59% of PIRs interact with a single promoter fragment while only ~10% of
PIRs interact with 4 or more promoter fragments. Therefore, we define a super promoter-
interacting region (super PIR) as a PIR interacting with at least 4 promoter fragments. As
expected, SIPs interact with a larger proportion of super PIRs than non-SIPs in each cell type
(Chi-square p-value < 3.2e-35) (Figure 2c, Table S2). Approximately 74-90% of SIPs interact
with a super PIR, whereas only 49-67% of non-SIPs interact with a super PIR. We assign each
promoter region (bait) a PIR score, defined by its PIR with the maximum number of interactions.
SIPs have significantly higher PIR scores than non-SIPs in each cell type (Wilcoxon p-value <
1.7e-50) (Figure 2d, Table S3). The median PIR score is ~6 for SIPs and ~4 for non-SIPs. The
basic characteristics of SIPs (e.g., number of PIRs and proportion with super PIRs) are

consistent across all five hematopoietic cell types.

SIP PIRs Overlap with ATAC-seq Peaks and Relevant GWAS Variants

We can further characterize SIPs through their PIRs by looking at the proximity of PIRs to open
chromatin regions and known GWAS variants. In each cell type, over 96% of SIPs have a PIR
overlapping an ATAC-seq peak of the corresponding cell type [27], compared to 63-83% of non-
SIPs. In each cell type, the proportion of SIPs with a PIR that overlaps a cell type-specific
ATAC-seq peak is significantly greater than the proportion of non-SIPs with a PIR that overlaps
an ATAC-seq peak (Chi-square p-value < 2.9e-45) (Figure 3a). We then compared the number
of PIRs overlapping cell type-specific ATAC-seq peaks, for SIPs and non-SIPs (Figure 3b). In
each cell type, significantly more SIP PIRs overlap with cell type-specific ATAC-seq peaks
compared to non-SIP PIRs (t-test p-value < 1.2e-162). The median number of ATAC-seq

overlaps per bait is 8-22 for SIPs and only 1-3 for non-SIPs. Details on the number of overlaps
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as well as specific p-values are reported in Table S3. Note that neutrophils are excluded from

this analysis due to data availability (Supplemental Note 1).

Next, we examine the overlap between GWAS variants and PIRs. In each cell type, SIPs have
significantly greater odds (3-4 times the odds) of having at least one PIR overlap with a relevant
blood cell trait associated variant, compared to non-SIPs (Methods) (Figure 3c). We found
similar results when considering only cell type-specific SIPs (Figure S4) and observed that the
basic characteristics of SIPs are consistent across all five cell types. Details SIP PIRs and their

overlaps with relevant variants can be found in Additional File 2.

SIP Subnetworks

By incorporating GWAS and open chromatin data with the pcHi-C data, we can determine SIP
subnetworks that may provide insight into potential functional interactions. These SIP
subnetworks are defined as having at least two PIRs that each overlap with a relevant
statistically independent SNP and a cell type-specific ATAC-seq peak (Methods). We identify 2-
15 SIP subnetworks in each cell type/phenotype combination (Methods, Additional File 2).
Details of the interactions and SNPs involved in these SIP subnetworks can be found in

Additional File 3.

We highlight two examples of SIP subnetworks in Figure 4. Figure 4a depicts the
megakaryocyte SIP with bait located at the EPHB3 gene interacting with three distinct regions
that overlap with a total of 8 independent SNPs related to platelet count. These PIRs also
overlap with megakaryocyte ATAC-seq peaks, and are near the key platelet related gene THPO
or thrombopoietin, variants in which can lead to thrombocythemia (OMIM 600044 [28]).
Thrombopoietin is essential for megakaryocyte proliferation and maturation, as well as for

production of platelets. EPHB3 encodes ephrin receptor B3, and plays roles in development,
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cell migration, and adhesion; variants in family member EPHB2, which also binds ephrin-B
family ligands, are associated with a Mendelian bleeding disorder characterized by deficiencies
in agonist-induced platelet aggregation and granule secretion (OMIM 600997 [28]). This SIP
network suggests that THPO locus variants may also play a role in regulation of EPHBS3. Figure
4b depicts the naive CD4 T-cell SIP with bait located at the ETS1 gene interacting with three
distinct PIRs that each overlap with an independent GWAS SNP related to lymphocyte count as
well as a naive CD4 T-cell ATAC-seq peak. ETS1 is a transcription factor highly expressed in
CD4 T-cells known to regulate differentiation, survival and proliferation of lymphoid cells [17];
the ETS1 locus is an important genetic regulator of risk for the autoimmune disorder systemic
lupus erythematosus [29]. These SIP networks show the complex regulation of promoters for
important hematopoietic cell type genes, with multiple distinct genetic variants and regions of

open chromatin acting together to regulate genes.

SIPs Align with Gene Expression Levels in a Cell Type-Specific Manner

SIPs can also be characterized by their genes, and each SIP bait may correspond to more than
one gene. There are 1,514, 1,093, 1,752, 1,393, and 1,201, SIP genes in erythrocyte,
macrophage/monocyte, megakaryocyte, naive CD4 T-cell, and neutrophil SIPs, respectively
(Additional File 1). Within each cell type, we ranked the genes according to their expression
levels and calculated the fold enrichment of the genes classified as SIPs for higher gene
expression (detailed in Methods). All five cell types have well-expected trends in the relationship
between SIP enrichment and gene expression (Figure 5). For example, in erythrocytes there is
1.9 fold enrichment for a gene having a SIP in the highest quintile of gene expression (1st

ranked) over the lowest (5th ranked) gene expression quintile (Chi-square p-value = 8.7e-14).

Cell Type-Specific SIP Genes
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We defined cell type-specific SIP genes as genes corresponding to cell type-specific SIP baits
that are not captured by any other cell type-specific or with any shared SIP baits (some genes
may be captured by multiple pcHi-C baits). In total, we annotate 251, 125, 385, 386, and 384
cell type-specific genes in erythrocytes, macrophages/monocytes, megakaryocytes, naive CD4
T-cells, and neutrophils, respectively (Table S1). We also annotate 234 “shared” SIP genes
(corresponding to SIPs shared across all five cell types). Note that a SIP may be a promoter for
multiple genes, and thus the number of cell type-specific SIP genes may be greater than the
number of cell type-specific SIPs. Full details of the SIP genes in each cell type can be found in

Additional File 1.

We notice some trends in the gene expression of the 234 shared SIP genes that suggests that
they have elevated expression levels in hematopoietic cell types [17]compared to the gene
expression in various other tissues (Methods, Figure S5). We find similar trends when
comparing the gene expression of cell type-specific SIP genes to the expression in various

other tissues (Figure S6).

Partitioned Heritability for Cell Type-Specific SIP Genes using GWAS Summary Statistics
We leveraged linkage disequilibrium score regression [30] (LDSC) using the cell type-specific
SIP PIRs to partition the SNP heritability using trans-ethnic GWAS summary statistics of 15
blood cell traits [31] (Methods). Enrichment scores and corresponding p-values for each cell
type and blood cell trait are displayed in Figure S7 and Figure 6. Erythrocyte-specific SIPs are
significantly enriched for red blood cell related traits including MCH, MCHC, MCV, RBC and
RDW. Further, megakaryocyte-specific SIPs are significantly enriched for PLT, naive CD4 T-
cell-specific SIPs are significantly enriched for LYM, and neutrophil-specific SIPs are
significantly enriched for NEU and WBC. These results all show expected trait enrichments for

each cell type. We also notice some less expected enrichments between erythrocyte-specific

10
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SIPs and NEU, as well as between neutrophil-specific SIP genes and MCH, for example. While
macrophage/monocyte-specific SIPs are not enriched for white blood cell related traits
(including monocyte counts), this may be due to the small number of macrophage/monocyte-
specific SIPs (107) relative to the larger number of naive CD4 T-cell- and neutrophil-specific
SIPs (283 and 274, respectively). When considering the PIRs of all SIPs, rather than only cell
type specific SIP PIRs, macrophage/monocyte SIPs are significantly enriched for MONO and

WBC (Figure S8).

Discussion

Hi-C has been widely adopted to study chromatin spatial organization. pcHi-C, a derivative of
the Hi-C technology, enables the study of the promoter interactome, specifically. Importantly,
recent studies have demonstrated the ability of pcHi-C analysis to link non-coding variants to

their target genes.

By analyzing pcHi-C data, we catalogue super-interactive promoters (SIPs) in five blood cell
types and present characteristics and analysis of SIPs in blood cell lineages. The characteristics
of SIPs identified in blood cell lineages are consistent with those described of SIPs identified in
the brain cortex [8], including enrichment for key blood lineage-specific genes, cell type
specificity for most identified SIPs, and cell type-specific SIP enrichment in cells with higher
expression of the regulated genes. We also demonstrate that SIPs share common properties
across cell types, but align with cell type-specific genes. In our analyses, we find that SIPs’
regulatory networks are more likely to overlap with relevant GWAS variants and ATAC-seq
peaks than non-SIP regulatory networks. We further find that cell type-specific SIP genes show
enriched heritability in blood cell trait GWAS summary statistics. In conjunction with other
functional genomic data, we hypothesize that SIPs in relevant hematopoietic cell types can help

identify GWAS variant target genes.
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Now that many blood cell lineage SIPs have been identified, a logical next step would be to
disrupt SIPs or SIP PIRs and evaluate the effects on hematopoiesis. SIPs driven by few super
strong interactions vs many significant (not necessarily all strong) interactions will have different
implications for the design and prioritization of functional experiments. In our study, the latter
seems to be the norm. Most SIPs are linked to multiple regulatory regions (as opposed to just
having a few very strong interactions). These multiple regulatory regions are likely key for
orchestrating fine transcriptional control of genes with SIPs. Multiple regulatory regions may
also provide a level of “redundancy”, ensuring that even in the presence of an enhancer-
disrupting genetic variant, appropriate transcriptional regulation can occur for important genes in
a given hematopoietic cell type. Many key GWAS loci show allelic heterogeneity, with multiple
rare and common variants (both coding and noncoding) impacting gene regulation (for example,
at the MPL or JAK2 locus for platelet traits [31-33]. Particularly for SIPs, genetic or epigenetic
perturbations of one of these many putative regulatory regions (some of which may be tagged
by statistically distinct GWAS SNPs) may be compensated for by other regulatory regions in the
orchestra, leading to no apparent effect in vitro even when the perturbed region is functional in
its native context. Researchers should consider this limitation when prioritizing loci and
interpreting functional validation experiment results and may want to consider approaches that
genetically or epigenetically edit multiple variants or regulatory regions simultaneously [34]. Cell
type specificity of SIPs and their PIRs should also be considered in linking GWAS variants to

genes and in design of functional experiments.

The success of SIP characterization in neuronal, and now hematopoietic lineages, suggests the
value of cataloguing SIPs in other cell types and incorporating those SIPs with results of GWAS
analysis for relevant traits. It would also be interesting to examine condition-specific SIPs, such

as different molecular environments triggered by drugs, toxic chemicals, diet, or stress, in

12
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various cell types. Doing so would allow for investigation on how gene expression varies in a
cell-type specific manner under different environmental conditions. In addition, future work may
involve exploring the relationship between super PIRs and super enhancers. Further
experimental work to validate the cell type-specific SIP genes and the connection of these
genes to corresponding blood cell traits will be required, but many attractive candidates have
been identified through our systematic evaluation of promoters and their interacting regulatory

regions in hematopoietic cell types.

Conclusions

We identified 808-1287 SIPs from major blood cell types, corresponding to 1,093-1,752 SIP
genes, among which 125-386 are cell type specific. These SIPs and SIP genes in blood cells
will be valuable not only for studying hematological traits but for many complex phenotypes.
SIPs manifest significant differences from non-SIPs in at least four aspects: (1) promoter-
interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific open
chromatin regions; (2) SIP PIRs, compared to PIRs for non-SIPs, are enriched with GWAS
variants associated with relevant hematological traits; (3) SIP genes tend to express at a higher
level in the corresponding cell type; (4) SIP genes show enriched heritability of relevant blood

cell traits.

We provide mechanistic hypotheses regarding the formation of SIPs. To be identified as a SIP,
a promoter can be driven by few super strong interactions or many significant (not necessarily
all strong) interactions. Importantly, we find that the latter seems to be the norm. This finding
sheds light regarding the formation of SIPs: to ensure the expression level of some critical gene
(here a SIP gene), multiple regulatory regions are likely key for orchestrating fine transcriptional
control. These multiple regulatory regions provide a level of “redundancy”, ensuring that even in

the presence of genetic variant(s) that disrupt some enhancer(s), appropriate transcriptional
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regulation can still be maintained in a given hematopoietic cell type. This finding also has
important implications for the interpretation and functional follow-up of hundreds of thousands of
GWAS findings. These multiple regulatory regions for one SIP gene help explain multiple
independent GWAS signals at one locus. We provide concrete examples, including the EPHB3
locus associated with platelet count where we present three distinct regulatory regions
overlapping a total of 8 independent SNPs. In addition, due to the potential redundancy,
functional experiments may also need to consider disrupting multiple regulatory regions
simultaneously rather than individually to observe palpable effects. In summary, we believe our
work presents important findings governing the orchestrated transcriptional control in blood
lineage cell types, and provides valuable insights and resources for the interpretation and

follow-up of GWAS findings of many complex traits.

Methods

Cell Types

There are eight hematopoietic cell types in the pcHi-C data [13]: MO macrophage, M1
macrophage, M2 macrophage, monocyte, neutrophil, erythrocyte, naive CD4 T-cell, and
megakaryocyte. Since monocytes circulate in the blood and exist in tissues as macrophages in
their mature form, we grouped the monocytes with the three macrophage types (by taking the
average of the gene expression in BLUEPRINT [17] and the CHICAGO [26] scores in pcHi-C

data) to form one group. Thus, we focus on five cell types throughout this paper.

Definition of Cell Type-Specific versus Shared Genes

We classified genes as cell type-specific or shared via the Shannon entropy across the five cell
types. Gene expression data was downloaded from BLUEPRINT [17]. Since this gene
expression is calculated by MMSEQ, we took exponentials so that transcript quantification was

comparable to RPKM. For each gene, we calculated the normalized gene expression as the
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gene expression in one cell type divided by the sum of the gene’s expression across all five cell
types. Next, we calculated the entropy (defined as the distance to log2(K), where K=5 is the
number of cell types) using the relative gene expression across cell types. We defined cell type-
specific genes as those with entropy > 0.5 and gene expression > 1, in the respective cell type,
and shared genes across cell types as those with entropy < 0.1. Approximately 534-1,814
genes are cell type-specific, depending on cell type (Figure S1f), and 1,476 genes meet the

shared gene criteria.

Defining SIPs

We first calculated the cumulative interaction scores for each promoter-containing anchor bin
(bait) in the pcHi-C data [13], in each cell type. For each bait, the cumulative interaction score is
the sum of the CHICAGO scores of significant interactions (CHIiCAGO score >= 5, as informed
by Cairns et al. [26]). Interactions with CHICAGO score < 5 are not included in the cumulative
interaction score. For each cell type, we ranked the cumulative interaction scores. By finding the
inflection point of the ranked baits, we defined super interactive promoters (SIPs) as those baits
with extremely high cumulative interaction scores. This approach is similar to how super-
enhancers are defined [35]. SIPs are approximately the top 7.5% of cumulative interaction

Scores.

SIP PIRs Overlap with Relevant GWAS Variants

In each cell type, for every SIP, we determined if at least one PIR overlapped with a relevant
blood cell trait variant, using summary statistics from the latest two GWAS studies on blood cell
traits, including GWAS variants identified in European samples [33] as well as non-European
and trans-ethnic analyses [31]. Phenotypes (i.e., relevant traits) considered for each cell type
are as follows: any red blood cell trait (HCT, HGB, MCH, MCHC, RBC, RDW) for erythrocytes,

MONO or WBC for macrophages/monocytes, PLT or MPV for megakaryocytes, LYM or WBC
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for naive CD4 T-cells, and NEU or WBC for neutrophils. Next, for each cell type, we randomly
sampled non-SIPs (where n sampled is the number of SIPs in the respective cell type) and
determined if at least one PIR overlapped with a relevant variant. This sampling procedure was
repeated 100 times, and the median number of non-SIPs with a PIR overlapping a relevant
variant was recorded. Fisher's exact test was then used to compute odds ratios and 95%
confidence intervals for the odds of a SIP with variant overlap compared to a non-SIP with

variant overlap. The same procedure was conducted for cell type-specific SIPs.

To construct SIP subnetworks, we only considered the conditionally independent GWAS
variants from Vuckovic et al. [33]. Consequently, each SIP subnetwork has PIRs that each
overlap with a relevant statistically independent variant, as well as a cell type-specific ATAC-seq
peak [27]. We identify SIP subnetworks for each of the following cell type/phenotype
combinations: erythrocytes (HCT (2), HGB (2), MCH (7), MCHC (3), RBC (4), RDW (11)),
macrophages/monocytes (MONO (5), WBC (1)), megakaryocytes (PLT (14), MPV (10)), and
naive CD4 T-cells (LYM (15), WBC (2)). When removing the constraint of PIR overlapping with
ATAC-seq data for neutrophil SIPs, as it is unavailable, we identify neutrophil SIP subnetworks

for NEU (16) and WBC (22).

Fold Enrichment Test for Highly Expressed Genes Among Genes with SIPs

Gene expression was ranked from highest (1st) to lowest (5th) quintile in each cell type. For
each cell type, we calculated the proportion of SIP genes with rank r out of the total number of
genes with rank r. Fold enrichment was then calculated relative to the group with the lowest
gene expression (5th) and the significance level was obtained through a Chi-square test for

proportions (for each cell type).

Comparing Gene expression Levels in Shared and Cell Type-Specific SIP Genes
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We downloaded gene expression data for all tissues from the GTEXx portal [36]. For comparison
to our blood cell types of interest, we used exponentiated BLUEPRINT gene expression [17] for
erythrocytes, macrophages/monocytes, megakaryocytes, naive CD4 T-cells, and neutrophils.
For each of the shared SIP genes, we computed the mean gene expression across all five
blood cell types and the mean gene expression across all other tissues (hon-blood cells). Next,
we partitioned the shared SIP genes into percentiles based on the ranked mean gene
expressions in blood cells (Figure S4a-b), and the ranked mean gene expressions in other
tissues (Figure S4c-d). We followed a similar computational process for the cell type-specific
SIP genes. For each set of cell type-specific SIP genes, we partitioned the genes into
percentiles based on the ranked gene expression in the respective cell type (Figure S5a-b), and

the ranked mean gene expressions in other tissues (Figure S5c-d).

Partitioned Heritability for Cell Type-Specific SIP Genes

We leveraged linkage disequilibrium score regression [30] (LDSC) using the cell type-specific
SIP PIRs to partition the SNP heritability for 15 blood cell traits from trans-ethnic GWAS
summary statistics [31]. LDSC jointly models 75 baselines annotations consisting of coding,
UTR, promoter, and intron regions, histone marks, DNase | hypersensitive sites,
ChromHMM/Segway predictions, regions that are conserved in mammals, super-enhancers,
FANTOMS enhancers, and LD-related annotations (recombination rate, nucleotide diversity

CpG content, etc.) that are not specific to any cell type.

Supplemental Note 1.

Neutrophils were excluded from the SIP and ATAC-seq peak analysis. The Ulirsch et al. [27]
ATAC-seq data used in this analysis does not include neutrophil ATAC-seqg. Chen et al. [37]
isolated neutrophils from two healthy donors' blood. Peak calling of this data (performed by

MACS2 narrow peak mode with default parameters —g 0.01 —nomodel —shift 0) resulted in
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~2,000 neutrophil ATAC-seq peaks, which is 1-2 orders of magnitude smaller than expected
based on ATAC-seq in other hematopoietic cell types and consistent with the findings of Chen
et. al who note that neutrophils have fewer chromatin accessibility peaks than do cell types with
comparable sequencing depths and alignment rates. Since neutrophils are terminally
differentiated cells with a short lifespan and the accessible chromatin peaks are not associated
with usual euchromatin marks, it is possible that ATAC-seq peaks are not enriched or relevant
for neutrophil traits. We also note that ATAC-seq data from monocytes was used for analyses

involving the macrophage/monocyte SIPs.

Abbreviations of Blood Cell Traits

HCT = Hematocrit; HGB = Hemoglobin; MCH = Mean Corpuscular Hemoglobin; MCHC = MCH
Concentration; MCV = Mean Corpuscular Volume; RBC = Red Blood Cell Count; RDW = RBC
Distribution Width; BASO = Basophil Count; EOS = Eosinophil Count; LYM = Lymphocyte
Count; MONO = Monocyte Count; NEU = Neutrophil Count; WBC = White Blood Cell Count;

PLT = Platelet Count; MPV = Mean Platelet Volume

Description of Supplemental Material and Additional Files

The supplemental material pdf includes 8 figures and 3 tables. There are three additional Excel
files: Additional File 1 details information pertaining to SIPs and SIP genes in each cell type,
Additional File 2 details SIP PIR overlaps with GWAS variants, and Additional File 3 details

information regarding the SIP subnetworks.
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Figure 1. There are few super-interactive promoters (SIPs) in the chromatin interactome.
(a)-(e) Hockey plots for each cell type show the ranked cumulative interaction scores for pcHi-C
promoter-containing anchor bins (baits). Promoters to the right of the blue vertical line are
classified as super interactive promoters (SIPs), as they exhibit unusually high levels of
chromatin interactivity. Red dots highlight the highest ranked cell type-specific SIP genes® with a
PIR overlapping a relevant GWAS identified SNP. (f) Total number of SIPs annotated per cell
type. 1 The megakaryocyte genes ATAD2B and UBXN2A correspond to the same SIP bait.
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Figure 2. SIPs are driven by a large number of interactions. (a) Distribution of the number of
significant interactions (log10 scale) between promoter bait and promoter interacting regions
(PIRs) for SIPs and non-SIPs in each cell type. (b) Distribution of the median CHICAGO score
(log10 scale) of significant interactions per promoter bait for SIPs and non-SIPs in each cell
type. The width of each violin corresponds to the frequency of interaction count (a) or median
CHICAGO score (b). The median of each distribution is marked by a black dot. (c) The
proportion of SIP and non-SIP baits with super PIRs in each cell type. SIPs interact with a larger
proportion of super PIRs than non-SIPs in each cell type (the red asterisk (*) denotes Chi-
square p-value < 3.2e-35). (d) Distribution of PIR scores for SIPs and non-SIPs in each cell
type. SIPs have significantly higher PIR scores than non-SIPs in each cell type (the red asterisk
(*) denotes Wilcoxon p-value < 1.7e-50). Details for panels (c) and (d) can be found in Table S1.
(Ery = erythrocytes; MacMon = macrophages/monocytes; MK = megakaryocytes; nCD4 = naive
CD4 T-cells; Neu = neutrophils)
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Figure 3. SIP PIRs overlap with ATAC-seq peaks and relevant GWAS variants. (a) In each
cell type, the proportion of SIPs with a PIR that overlaps a cell type-specific ATAC-seq peak is
significantly greater than the proportion of non-SIPs with a PIR that overlaps an ATAC-seq peak
(the red asterisk (*) denotes Chi-square p-value < 2.2e-16). (b) The distribution of the number of
PIRs (other ends) overlapping with ATAC-seq peaks for each pcHi-C bait (y-axis) for each cell
type (x-axis). In each cell type, significantly more SIP interactions overlap with ATAC-seq peaks
compared to non-SIP interactions (the red asterisk (*) denotes two-sided t-test p-value < 1.2e-
162). (c) In each cell type, SIPs have 3-4 times the odds of having at least one PIR overlap with
a relevant GWAS variant, compared to non-SIPs. Odds ratio estimates (purple dots) and
corresponding 95% confidence intervals are shown. (Ery = erythrocytes; MacMon =
macrophages/monocytes; MK = megakaryocytes; nCD4 = naive CD4 T-cells; Neu =
neutrophils)
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Figure 4. SIP subnetworks show the complex regulation of promoters for important
hematopoietic cell type genes. First panel: position of SNPs. Second panel: position of SIP
bait or PIR target gene(s), where the color corresponds to their exponentiated BLUEPRINT
gene expression (equivalent to RKPM) in the respective cell type. Third panel: cell type-specific
ATAC-seq peaks. Fourth panel: CHICAGO scores (blue) of the interactions (depicted by purple
arcs) between the SIP bait (dark grey) and the SIP PIRs (light grey). (a) Example of a
megakaryocyte SIP subnetwork for platelet count related variants. (b) Example of a naive CD4
T-cell SIP subnetwork for lymphocyte count related variants.
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Figure 5. SIP genes tend to express at a higher level in the corresponding cell type. In
each cell type, SIP genes with the highest (1st) ranked expression show greater fold enrichment
over the lowest (5th) ranked gene expression. The size of the circle denotes the fold-change
and the color denotes the Chi-square significance of enrichment. The Cochran-Armitage trend
test p-value (one-sided) is also reported. (Ery = erythrocytes; MacMon =
macrophages/monocytes; MK = megakaryocytes; nCD4 = naive CD4 T-cells; Neu =
neutrophils)
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Figure 6. Partitioned heritability for blood cell traits shows enrichment between cell type-
specific SIPs and relevant traits. Enrichment score p-values (-log10 scale) for cell type-
specific genes and 15 blood cell traits. Bars passing the inner ring (1.3) correspond to
statistically significant enrichment scores (p-value < 0.05). See Figure S7 for enrichment scores.
(Cell types: Ery = erythrocytes; MacMon = macrophages/monocytes; MK = megakaryocytes;
NCD4 = naive CD4 T-cells; Neu = neutrophils. Blood cell traits: HCT = Hematocrit; HGB =
Hemoglobin; MCH = Mean Corpuscular Hemoglobin; MCHC = MCH Concentration; MCV =
Mean Corpuscular Volume; RBC = Red Blood Cell Count; RDW = RBC Distribution Width;
BASO = Basophil Count; EOS = Eosinophil Count; LYM = Lymphocyte Count; MONO =
Monocyte Count; NEU = Neutrophil Count; WBC = White Blood Cell Count; PLT = Platelet
Count; MPV = Mean Platelet Volume)
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