

1 **Genomic Surveillance of *Acinetobacter baumannii* in the Philippines, 2013-**

2 **2014**

3

4 Jeremiah Chilam^{a†}, Silvia Argimón^{b†}, Marilyn T. Limas^a, Melissa L. Masim^a, June M.

5 Gayeta^a, Marietta L. Lagrada^a, Agnettah M. Olorosa^a, Victoria Cohen^b, Lara T.

6 Hernandez^a, Benjamin Jeffrey^b, Khalil Abudahab^b, Charmian M. Hufano^a, Sonia B.

7 Sia^a, Matthew T.G. Holden^c, John Stelling^d, David M. Aanensen^{b,e*}, and Celia C.

8 Carlos^{a*} on behalf of the Philippines Antimicrobial Resistance Surveillance Program

9

10 ^a Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for

11 Tropical Medicine, Muntinlupa, Philippines. ^b Centre for Genomic Pathogen

12 Surveillance, Wellcome Genome Campus, Hinxton, UK. ^c University of St Andrews

13 School of Medicine, St Andrews, UK. ^d Brigham and Women's Hospital, Boston,

14 MA, USA. ^e Big Data Institute, University of Oxford, Oxford, UK.

15

16 [†]These authors contributed equally to this work

17 * These authors contributed equally to this work.

18 email: david.aanensen@sanger.ac.uk, ccarlosphl@gmail.com

19

20

21 **Abstract**

22 *Acinetobacter baumannii* is an opportunistic nosocomial pathogen that has
23 increasingly become resistant to carbapenems worldwide. In the Philippines,
24 carbapenem resistance and multi-drug resistance (MDR) rates are above 50%. We

1 undertook a genomic study of carbapenem resistant *A. baumannii* in the Philippines
2 to characterize the population diversity and antimicrobial resistance (AMR)
3 mechanisms.

4 We sequenced the whole genomes of 117 *A. baumannii* isolates recovered by
5 16 hospitals in the Philippines between 2013 and 2014. We determined the multi-locus
6 sequence type (MLST), presence of acquired AMR determinants and relatedness
7 between isolates from the genome sequences. We also compared the phenotypic and
8 genotypic resistance results.

9 Carbapenem resistance was mainly explained by the acquisition of class-D
10 beta-lactamase gene *bla*_{OXA-23}. The concordance between phenotypic and genotypic
11 resistance to imipenem was 98.15% and 94.97% overall for the seven antibiotics
12 analysed. Twenty-two different sequence types (ST) were identified, including 7
13 novel STs. The population was dominated by high-risk international clone 2 (i.e.,
14 clonal complex 92), in particular by ST195 and ST208 and their single locus variants.
15 With WGS we identified local clusters representing potential undetected nosocomial
16 outbreaks, as well as multi-hospital clusters indicating inter-hospital transmission.
17 Comparison with global genomes suggested that the establishment of carbapenem-
18 resistant IC2 clones in the Philippines is likely the result of clonal expansion and
19 geographical dissemination and at least partly explained by inadequate hospital
20 infection control and prevention.

21 This study is the first extensive genomic study of carbapenem-resistant *A.*
22 *baumannii* in the Philippines and underscores the importance of hospital infection
23 control and prevention to contain high-risk clones.

1 **Introduction**

2 *Acinetobacter baumannii* is one of the most challenging hospital-acquired infections
3 due to its ability to acquire resistance to different groups of antimicrobials and to
4 survive long periods of time on dry surfaces, making eradication in healthcare facilities
5 difficult once it has become endemic.¹ A previous surveillance study in the Asia-Pacific
6 region showed that *Acinetobacter* spp. was the most frequently isolated organism from
7 ventilator-associated pneumonia,² while in recent years the Philippine Antimicrobial
8 Resistance Surveillance Program (ARSP) has been consistently reporting *A.*
9 *baumannii* as the second and third most commonly isolated organism from
10 cerebrospinal fluid and respiratory specimens, respectively.³

11 Over the past two decades, *A. baumannii* has become increasingly resistant to
12 carbapenems worldwide, with resistance rates of >40% reported across several Asia-
13 Pacific countries, the highest prevalence of carbapenem resistance amongst important
14 nosocomial gram-negative pathogens.^{4, 5} This trend is also observed in the
15 Philippines, where the annual resistance rates for several antibiotics, including
16 carbapenems, have been increasing, reaching 56 and 57% in 2017 for meropenem
17 and imipenem, respectively (Figure 1A-C). In addition, the ARSP has reported multi-
18 drug resistant (MDR) rates of 63% and 47% for all isolates and blood isolates,
19 respectively, with combined resistance to aminoglycosides, fluoroquinolones,
20 carbapenems and ampicillin-sulbactam.⁶ Importantly, bacteremia due to MDR *A.*
21 *baumannii* has been shown to result in additional hospitalization and costs, compared
22 with bacteremia due to non-MDR *A. baumannii*.⁷

23 Molecular typing methods have shown that clinical isolates of *A. baumannii* with an
24 MDR phenotype belong mostly to two globally disseminated lineages, global clone
25 (GC) 1 and GC2, also known as International Clones (IC)1 and 2. Clonal complex 92

1 (CC92), corresponding to GC2, was the most prevalent in a previous study across
2 nine Asian countries and including two isolates from the Philippines.⁸
3 The ARSP concentrates on phenotypic detection methods for bacterial identification
4 and antimicrobial susceptibility testing. A good understanding on the molecular
5 epidemiology and resistance mechanisms of *A. baumannii* in the country may aid in
6 the control of AMR spread by monitoring the presence of international clones and the
7 emergence of novel lineages. Whole-genome sequencing (WGS) can provide
8 information on antimicrobial resistance and genotyping using a single assay, with
9 added resolution to aid outbreak investigations.⁹ The current report aims to gather
10 baseline data on the molecular epidemiology of *A. baumannii* with a focus on the
11 predominant circulating lineages and antimicrobial resistance mechanisms.

12

13 **Methods**

14 *Bacterial Isolates*

15 A total of 5254 *A. baumannii* isolates were collected and tested for resistance by the
16 ARSP during the period of January 2013 to December 2014. Isolates found to be
17 resistant to carbapenems were subsequently referred to the Antimicrobial Resistance
18 Surveillance Reference Laboratory (ARSRL) for confirmation. Out of the 455 *A.*
19 *baumannii* isolates referred to the ARSRL in 2013 and 2014 (155 and 290,
20 respectively), a total of 117 isolates representing 16 sentinel sites were selected for
21 whole-genome sequencing (Table 1) according to the following criteria described in
22 detail previously:¹⁰ (1) referred to ARSRL in 2013–2014; (2) complete antimicrobial
23 susceptibility data (resistance profile); (3) overall prevalence of the resistance profile
24 in the ARSP data (including both referred and non-referred isolates); (4) geographical

1 representation of different sentinel sites; (5) invasive isolates (i.e., from blood, or
2 cerebrospinal, joint, pleural and pericardial fluids) were selected when both invasive
3 and non-invasive isolates were available for a combination of resistance profile,
4 sentinel site and year of collection. We utilized a proxy definition for “infection origin”
5 whereby patient first isolates collected in the community or on either of the first two
6 days of hospitalization were categorized as community-acquired infection isolates
7 (CA), while isolates collected on hospital day three or later were categorized as
8 hospital-acquired (HA) infection isolates.¹¹

9

10 *Antimicrobial Susceptibility Testing (AST)*

11 All *A. baumannii* isolates from this study were tested for antimicrobial susceptibility
12 to nine antibiotics representing six different classes, namely ceftazidime (CAZ),
13 ceftriaxone (CRO), imipenem (IPM), ampicillin-sulbactam (SAM), piperacillin-
14 tazobactam (TZP), gentamicin (GEN), amikacin (AMK), ciprofloxacin (CIP), and
15 trimethoprim-sulfamethoxazole (SXT) (Table 1). Antimicrobial susceptibility of the
16 isolates was determined at the ARSRL using one or a combination of the following
17 methods, Kirby-Bauer disk diffusion method, gradient methods such as E-Test and/or
18 Vitek 2 Compact automated system (BioMérieux, Marcy-l'Étoile, France). The zone of
19 inhibition and minimum inhibitory concentration obtained were interpreted according
20 to the 26th edition of the Clinical and Laboratory Standard Institute (CLSI) guidelines
21¹² to determine the resistance profile of the isolates as the list of antimicrobials to which
22 the organism is non-susceptible. Multi-drug resistant (MDR) and extensively drug
23 resistant (XDR) phenotypes were classified as per standard definitions.¹³

24

1 *DNA Extraction and Whole-Genome Sequencing*

2 DNA was extracted from a single colony of each of 117 *A. baumannii* isolates with the
3 QIAamp 96 DNA QIAcube HT kit and a QIAcube HT (Qiagen; Hilden, Germany). DNA
4 extracts were multiplexed and sequenced on the Illumina HiSeq platform (Illumina,
5 CA, USA) with 100-bp paired-end reads. Raw sequence data were deposited in the
6 European Nucleotide Archive (ENA) under the study accession PRJEB17615. Run
7 accessions are provided on the Microreact projects.

8 *Bioinformatics analysis*

9 Genome quality was assessed based on metrics produced for assemblies, annotation
10 files, and the alignment of the reads to the reference genome *A. baumannii* strain
11 ATCC 17978 (accession CP000521), as previously described.¹⁰ Annotated
12 assemblies were produced from short-read Illumina data as previously described.¹⁴
13 We derived *in silico* the multi-locus sequence type (MLST) of the isolates from the
14 whole genome sequences. The sequence types (ST) were determined from
15 assemblies with Pathogenwatch (<https://pathogen.watch/>) or from sequence reads
16 with ARIBA¹⁵ and the *A. baumannii* database hosted at PubMLST.¹⁶ The isolates
17 were assigned to international clones (IC) based on their ST as previously indicated.

18 17-20

19 Evolutionary relationships between isolates were inferred from single-nucleotide
20 polymorphisms (SNPs) by mapping the paired-end reads to the reference genomes of
21 *A. baumannii* strains A1 (accession CP010781) or AC29 (ST195, CC92, accession
22 CP007535), as described in detail previously.¹⁰ Mobile genetic elements (MGEs) were
23 masked in the alignment of pseudogenomes with a script available at
24 https://github.com/sanger-pathogens/remove_blocks_from_aln. Alignments of SNP

1 positions were inferred with snp-sites v2.4.1.²¹ For the phylogenies of CC92 genomes,
2 recombination regions detected with Gubbins²² in the alignment of pseudogenomes
3 were also removed. Maximum likelihood phylogenetic trees were generated with
4 RAxML v8.28²³ based on the generalised time reversible (GTR) model with GAMMA
5 method of correction for among-site rate variation and 100 bootstrap replications.
6 Pairwise SNP differences between primary isolates belonging to the same or to
7 different hospitals were calculated from alignments of SNP positions with a script
8 available at https://github.com/simonrharris/pairwise_difference_count.
9 To contextualize the Philippine genomes, global *A. baumannii* genomes with
10 geolocation and isolation date mainly between 2007 and 2017 for which raw Illumina
11 paired-end sequence data were available at the European Nucleotide Archive were
12 downloaded, assembled and quality controlled as above. Evolutionary relationships
13 between global genomes and those from this study were inferred from an alignment
14 of SNP positions obtained after mapping the reads to the complete genome of strain
15 A1 and masking regions with mobile genetic elements as described above. The tree
16 of 977 genomes was obtained using an approximately-maximum likelihood
17 phylogenetic method with FastTree²⁴. The tree of 573 global CC92 genomes was
18 inferred with RAxML from an alignment of SNP sites obtained after mapping the
19 genomes to the complete genome of strain AC29 and removing mobile genetic
20 elements and recombination regions, as described above.
21 Known AMR determinants were identified from raw sequence reads using ARIBA¹⁵
22 and two different AMR databases, a curated database of acquired resistance genes
23²⁵, and the Comprehensive Antibiotic Resistance Database (CARD²⁶). Point mutations
24 were identified on gyrase and topoisomerase genes with CARD and ARIBA, and
25 corroborated with a literature search. The presence of the insertion sequences ISAb1

1 (accession AY758396) and IS*Aba*125 (accession AY751533) upstream of the *ampC*
2 gene was examined with ISMapper v 2.0.1²⁷ using the reference genome of *A.*
3 *baumannii* A1 (accession CP010781) and default parameters. Genomic predictions of
4 resistance were derived from the presence of known antimicrobial resistance genes
5 and mutations identified in the genome sequences. The genomic predictions of AMR
6 (test) were compared to the phenotypic results (reference) and the concordance
7 between the two methods was computed for each of 7 antibiotics (756 total
8 comparisons). Isolates with either a resistant or an intermediate phenotype were
9 considered non-susceptible for comparison purposes. An isolate with the same
10 outcome for both the test and reference (i.e., both susceptible or both non-susceptible)
11 was counted as a concordant isolate. The concordance was the number of concordant
12 isolates over the total number of isolates assessed (expressed as percent).
13 All project data, including inferred phylogenies, AMR predictions and metadata were
14 made available through the web application Microreact (<http://microreact.org>).

15

16 **Results**

17 **Demographic and Clinical Characteristics of the *A. baumannii* Isolates**

18 Out of the 117 *A. baumannii* genomes sequenced (Table 1), 7 genomes were
19 excluded based on quality, while 2 genomes were identified *in silico* as *Acinetobacter*
20 *pitti*. The demographic and clinical characteristics of the remaining 108 *A. baumannii*
21 isolates with high-quality genomes are summarized on Table 2. The age of the patients
22 ranged from less than 1 year to 92 years old, with 31% of the isolates (*n*=34) from
23 patients 65 years old and above. Sixty-two per cent of the isolates (*n*=67) were from
24 males. The majority of the isolates (99.1%, *n*=107) were from in-patients, and

1 classified as from a hospital-acquired infection (76.85%, $n=83$). Respiratory samples
2 (tracheal aspirates and sputum) accounted for 55.56% of the specimens ($n=60$).

3 **Concordance between phenotypic and genotypic AMR results**

4 The genotypic predictions of AMR were highly concordant with the phenotypic results
5 (overall concordance was 94.97%, Table 3). The concordance for imipenem was
6 98.15% and, of the 104 resistant isolates, 97 isolates from 14 hospitals (93.26%)
7 carried the class D beta-lactamase gene *bla*_{OXA-23}, alone or in combination with *bla*_{OXA-}
8 ₂₃₅ ($n=1$). The remaining isolates carried *bla*_{NDM-6} ($n=3$), *bla*_{NDM-1} ($n=2$) or *bla*_{OXA-72}
9 ($n=2$). One isolate had no known acquired carbapenemase. Of the 104 isolates
10 resistant to imipenem 89 (85.58%) were classified as XDR and 13 (12.50%) as MDR,
11 with the notable presence of the *armA* gene encoding a 16S rRNA methyltransferase
12 conferring broad-spectrum resistance to aminoglycosides in 54 isolates, and the co-
13 occurrence of mutations in *gyrA* and *parC* conferring resistance to fluoroquinolones in
14 95 isolates (Table 3). Acquired colistin resistance genes (*mcr*) were not detected.

15 Isolates non-susceptible to third generation cephalosporins ceftazidime ($n=99$) and/or
16 ceftriaxone ($n=104$) carried either the insertion sequence *ISAb1* upstream of the
17 chromosomal *bla*_{ampC} gene ($n=67$), two or three copies of the *bla*_{ampC} gene ($n=22$), the
18 extended-spectrum beta-lactamase (ESBL) genes *bla*_{PER-1} ($n=4$) and *bla*_{CTX-M-15} ($n=1$),
19 or the carbapenemase gene *bla*_{NDM} ($n=5$). Most of the false negative calls for
20 ceftazidime ($n=3$) and ceftriaxone ($n=8$, Table 3) for which no resistance mechanism
21 was detected, coincided with intermediate susceptibility ($n=2$ and $n=5$, respectively).

22

23 **Genotypic findings**

24 *In silico genotyping*

1 Multi-locus sequence type was predicted *in silico* from the whole-genome sequence
2 data of the 108 *A. baumannii* isolates. A total of 22 different STs were identified from
3 this data set as per the Oxford scheme, seven of which were novel and now identified
4 as ST2197, 2199, 2220, 2317, 2318, 2319 and 2320. The population was dominated
5 by clonal complex (CC)92 ($n=61$), represented mainly by ST195 ($n=29$) and ST208
6 ($n=23$). CC92 was found in 13 out of the 16 sentinel sites, with ST195 and ST208
7 spread geographically across 8 and 7 sentinel sites, respectively. In contrast, ST369
8 ($n=5$) was found in only one site. The *armA* gene was found only in isolates belonging
9 to CC92 ($n=54$) from 11 hospitals. Seven of the eight hospitals represented by six or
10 more sequenced isolates showed clonal diversity, with at least two different circulating
11 STs (Table 4). In the remaining hospital (Baguio General Hospital, BGH) all 10 isolates
12 belonged to the same ST (208).

13

14 *Population structure of A. baumannii in the Philippines*

15 The phylogenetic tree of 108 *A. baumannii* genomes showed that the population was
16 composed of well-defined clades that matched the distribution of the STs. The two
17 main clonal groups were international clones IC1 and IC2 (i.e., CC91, Figure 2A), with
18 a minor representation of IC8 and IC7. Isolates belonging to international clones were
19 mostly XDR and are known to be responsible for disseminating AMR globally. The
20 carbapenemase gene *blaOXA-23* was found consistently in IC1 and IC2 genomes, and
21 more sporadically in IC8 and non-clonal genomes. In contrast, the carbapenemase
22 gene *blaNDM-6* was found exclusively in three IC8 genomes from Corazon Locsin
23 Montelibano Memorial Regional Hospital (MMH), while *blaNDM-1* and *blaOXA-72* were
24 only found sporadically. Notably, isolates carrying *ISAb1* inserted in the promoter of
25 *blaampC* belonged to ST449 (IC1) or to CC92 (IC2), while isolates carrying two or three

1 copies of the *bla_{ampC}* gene all belonged to a novel ST (now ST2199) found in the
2 Vicente Sotto Memorial Medical Center (VSM) in the Visayas region and the
3 Zamboanga Medical Center (ZMC) in the Mindanao region (Figure 2A).

4 The phylogenetic tree of 61 genomes from the prevalent XDR CC92 clone showed
5 that most isolates grouped into two clades represented by ST208 and single locus
6 variant (SLV) ST425 (bootstrap support 96%) and by ST195 and SLV ST369
7 (bootstrap support 100%, Figure 2B). Both ST208-ST425 and ST195-ST369 were
8 found in hospitals from all three island groups (Luzon in the north, Visayas in the
9 center, and Mindanao in the south), but their geographical distributions showed little
10 overlap. The phylogeographic signal suggested both local outbreaks and inter-hospital
11 dissemination (Figure 2B). We investigated this further by counting the number of
12 pairwise, non-recombinant SNP differences between primary isolates from the same
13 or different hospitals. First, we identified three intra-hospital clusters (100% bootstrap
14 support) of closely related isolates from Baguio General Hospital (BGH, ST208, 2-35
15 pairwise SNPs, *n*=9), Southern Philippines Medical Center (DMC, ST208-425, 1-6
16 pairwise SNPs, *n*=8), and Mariano Marcos Memorial Hospital and Medical Center
17 (MAR, ST195, 0-3 pairwise SNPs, *n*=6). The isolates within each of the three clusters
18 carried identical or almost identical repertoires of resistance determinants, further
19 supporting their clonal relationship. The isolation dates spanning over 12 months,
20 suggested that these clonal lineages are possibly endemic to the hospitals, although
21 regular introduction by colonized patients cannot be ruled out. Second, we identified
22 two clusters of closely related isolates from two or more hospitals. One cluster
23 contained nine ST195 genomes from two hospitals in the Visayas region (MMH and
24 VSM) with a median of only 5 pairwise SNP differences (range 1-17) between isolates
25 from different hospitals. The second one contained 18 ST195-ST369 genomes from

1 six hospitals across three different regions, with a median of 25 pairwise SNP
2 differences (range 1-53). The clonal relationship between isolates from different
3 hospitals within these two clusters is also supported by a similar complement of
4 resistance determinants.

5

6 *A. baumannii from the Philippines in global context*

7 To place the retrospective collection of *A. baumannii* isolates from the Philippines in
8 the context of the global population of this pathogen, we compared our genomes to
9 931 public genomes available from sequence data archives with linked geographic
10 and temporal information. The isolates were collected between 1982 and 2016, with
11 94.7% of the isolates collected on 2007 onwards. The public genomes belonged to 16
12 countries and were assigned to 154 STs in the Oxford scheme. The population
13 represented by the global genomes was substantially skewed towards genomes from
14 the USA (40.5% of the genomes), and belonging to CC92 (58.6%). The Philippine
15 genomes were found in multiple branches of the tree as expected by the diversity of
16 STs, but mostly forming discreet clusters within each branch without genomes from
17 other countries interspersed (Figure 3A). This suggests that the establishment of each
18 clone in the Philippines is the result of one or few founding events.

19 To investigate in more detail the relationship to global genomes within CC92, a tree of
20 573 genomes was inferred from the alignment of non-recombinant SNPs. The ST195-
21 ST369 genomes from the Philippines were related to genomes from Singapore,
22 Vietnam, Malaysia, China and USA, while the ST208-ST425 genomes were related to
23 genomes from China, USA and Puerto Rico. However, the strong phylogeographic

1 signal displayed by both the ST195-ST369 and the ST208-ST425 subtrees suggested
2 a single founder event in the Philippines for each clone, followed by their expansion.

3

4 **Discussion**

5 In the present study we report on the combined genomic and laboratory-based
6 surveillance of *A. baumannii* in the Philippines during 2013-2014. The prevalence of
7 carbapenem-resistant *A. baumannii* during this period was above 40%, and we
8 therefore focused on the characterization of these organisms. In *A. baumannii*, only
9 low-level carbapenem resistance is mediated by the chromosomal OXA-51-like
10 carbapenemase. The class D OXA-23 carbapenemase was the most prevalent
11 acquired carbapenem resistance mechanism identified in this study, in line with global
12 trends.²⁸ We also detected representatives from the OXA-235-like (*bla*_{OXA-235}) and the
13 OXA-40-like groups (*bla*_{OXA-72}) albeit in low frequency. No OXA-58-like
14 carbapenemases were detected, as previously reported from other Asia Pacific
15 nations.²⁹ Importantly, we also detected the presence of class B metallo-beta-
16 lactamases NDM-1 and NDM-6 which, unlike OXA-23, confer resistance to extended-
17 spectrum cephalosporins as well as carbapenems. *A. baumannii* harbouring NDM-1
18 has been sporadically reported previously from other countries³⁰⁻³², but NDM-6-
19 carrying *A. baumannii* has only recently been reported from Spain.³³ Resistance to
20 extended-spectrum cephalosporins was mainly explained by the insertion of ISAb_{a1}
21 in the promoter of the intrinsic gene *bla*_{ampC}, which has been shown to lead to
22 increased expression of the encoded cephalosporinase.³⁴ Identification of this
23 mechanism represents an additional *in silico* query of the genomes, which is
24 burdensome in the context of a public health reference laboratory, but omitting it would

1 lead to high very major error rates for genomic predictions of resistance to extended-
2 spectrum cephalosporins.

3 Both IC1 and IC2 were found in the Philippines, both of which are prevalent worldwide
4 and responsible for the spread of MDR and XDR phenotypes.^{28, 35} However, IC2 was
5 the predominant clonal type of *A. baumannii* in our study population, with ST195 and
6 ST208 and respective SLVs found throughout the country. The global phylogenetic
7 tree showed that these two lineages diverged before their establishment in the
8 Philippines. The genetic relatedness of isolates from different hospitals and their
9 similar complement of resistance determinants supports the notion that their
10 subsequent success was the result of clonal expansion and in-country geographic
11 dissemination, rather than multiple introductions, and highlights the need for concerted
12 infection prevention and control measures to contain the spread of high-risk clones.
13 However, the limited number and disparate sampling of genomes from other countries
14 in the region limits our ability to capture the dynamics of these clones.

15 We also identified three ST195 and ST208 intra-hospital clusters spanning over twelve
16 months each. Resistance to antimicrobial drugs and to desiccation contribute to the
17 survival of *A. baumannii* in the hospital environment,¹ and cross-contamination of
18 hospital surfaces with MDR strains has been documented, in particular the areas
19 surrounding colonized or infected patients.^{36, 37} The ARSP surveillance does not
20 currently include environmental samples and thus it was not possible to connect the
21 persistence of the intra-hospital clusters to environmental contamination. Outbreaks
22 of *A. baumannii* with *bla*_{OXA-23}, including of ST195 and ST208, have been reported
23 from several countries,³⁸⁻⁴⁰ and our study identified potential hospital outbreaks
24 retrospectively. The resolution afforded by WGS was in stark contrast with the uniform
25 resistance profiles of the isolates in our study, thus making cluster detection based on

1 WGS rather than resistance profiles of particular utility for carbapenem-resistant *A.*
2 *baumannii*.
3 Assignment of isolates to an outbreak based on their genetic distance is key for
4 effective patient containment and infection control during an ongoing investigation. Out
5 of the three intra-hospital IC2 clusters detected, the ST208 cluster from BGH displayed
6 more genetic diversity than the other two based on the number of pairwise SNP
7 differences, opening the possibility that more than one closely related strains were
8 circulating in the hospital. However, the absence of data on patient movement
9 precluded epidemiological investigation to aid the delineation of outbreaks. In addition,
10 while the pairwise SNP differences are similar to those reported in other studies,^{39, 41-}
11 ⁴³ SNP thresholds are difficult to assess by comparison, due to methodological
12 differences, such as the use of core- vs whole-genome SNPs, the choice of reference
13 genome for reference-based mapping of short reads, and the inclusion or exclusion of
14 SNPs associated with recombination regions.
15 In conclusion, our retrospective genomic epidemiology study of carbapenem-resistant
16 *A. baumannii* in the Philippines revealed IC2 with OXA-23 is the main culprit behind
17 the increasing carbapenem resistance rates in the Philippines, and that breaches in
18 infection control and prevention likely contributed to its dissemination. WGS proved a
19 useful tool to improve surveillance of *A. baumannii*.

1 References

2

- 3 1. Peleg AY, Seifert H, Paterson DL. *Acinetobacter baumannii*: emergence of a
4 successful pathogen. *Clin Microbiol Rev.* 2008;21(3):538-82.
- 5 2. Chung DR, Song JH, Kim SH, Thamlikitkul V, Huang SG, Wang H, et al. High
6 prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. *Am
7 J Respir Crit Care Med.* 2011;184(12):1409-17.
- 8 3. Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for
9 Tropical Medicine, Department of Health. Antimicrobial Resistance Surveillance Program
10 2018 annual report. 2019. Available from: <https://arsp.com.ph/download/> Accessed February
11 19, 2021
- 12 4. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA.
13 Carbapenem-Resistant *Acinetobacter baumannii* and Enterobacteriaceae in South and
14 Southeast Asia. *Clin Microbiol Rev.* 2017;30(1):1-22.
- 15 5. Kiratisin P, Chongthaleong A, Tan TY, Lagamayo E, Roberts S, Garcia J, et al.
16 Comparative in vitro activity of carbapenems against major Gram-negative pathogens:
17 results of Asia-Pacific surveillance from the COMPACT II study. *Int J Antimicrob Agents.*
18 2012;39(4):311-6.
- 19 6. Antimicrobial Resistance Surveillance Reference Laboratory RIfTM, Department of
20 Health. ARSP 2017 Annual Report Data Summary. 2018.
- 21 7. Lee NY, Lee HC, Ko NY, Chang CM, Shih HI, Wu CJ, et al. Clinical and economic
22 impact of multidrug resistance in nosocomial *Acinetobacter baumannii* bacteremia. *Infect
23 Control Hosp Epidemiol.* 2007;28(6):713-9.
- 24 8. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR, Peck KR, et al. Spread of
25 carbapenem-resistant *Acinetobacter baumannii* global clone 2 in Asia and AbaR-type
26 resistance islands. *Antimicrob Agents Chemother.* 2013;57(11):5239-46.
- 27 9. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al. The
28 role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report
29 from the EUCAST Subcommittee. *Clin Microbiol Infect.* 2017;23(1):2-22.
- 30 10. Argimon S, Masim MAL, Gayeta JM, Lagrada ML, Macaranas PKV, Cohen V, et al.
31 Integrating whole-genome sequencing within the National Antimicrobial Resistance
32 Surveillance Program in the Philippines. *Nat Commun.* 2020;11(1):2719.
- 33 11. World Health Organization. Global antimicrobial resistance surveillance system
34 (GLASS) report: early implementation 2016-2017. 2017.
- 35 12. Clinical and Laboratory Standards Institute. M100-S26 Performance Standards for
36 Antimicrobial Susceptibility Testing. 26th Edition. 2016.
- 37 13. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al.
38 Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an
39 international expert proposal for interim standard definitions for acquired resistance. *Clin
40 Microbiol Infect.* 2012;18(3):268-81.
- 41 14. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-
42 throughput prokaryote de novo assembly and improvement pipeline for Illumina data. *Microb
43 Genom.* 2016;2(8):e000083.
- 44 15. Hunt M, Mather AE, Sanchez-Buso L, Page AJ, Parkhill J, Keane JA, et al. ARIBA:
45 rapid antimicrobial resistance genotyping directly from sequencing reads. *Microb Genom.*
46 2017;3(10):e000131.
- 47 16. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics:
48 BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Res.*
49 2018;3:124.
- 50 17. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of
51 *Acinetobacter baumannii*: expanding multiresistant clones from an ancestral susceptible
52 genetic pool. *PLoS One.* 2010;5(4):e10034.

1 18. Gaiarsa S, Batisti Biffignandi G, Esposito EP, Castelli M, Jolley KA, Brisse S, et al.
2 Comparative Analysis of the Two *Acinetobacter baumannii* Multilocus Sequence Typing
3 (MLST) Schemes. *Front Microbiol.* 2019;10:930.

4 19. Higgins PG, Prior K, Harmsen D, Seifert H. Development and evaluation of a core
5 genome multilocus typing scheme for whole-genome sequence-based typing of
6 *Acinetobacter baumannii*. *PLoS One.* 2017;12(6):e0179228.

7 20. Tomaschek F, Higgins PG, Stefanik D, Wisplinghoff H, Seifert H. Head-to-Head
8 Comparison of Two Multi-Locus Sequence Typing (MLST) Schemes for Characterization of
9 *Acinetobacter baumannii* Outbreak and Sporadic Isolates. *PLoS One.* 2016;11(4):e0153014.

10 21. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites:
11 rapid efficient extraction of SNPs from multi-FASTA alignments. *Microb Genom.*
12 2016;2(4):e000056.

13 22. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid
14 phylogenetic analysis of large samples of recombinant bacterial whole genome sequences
15 using Gubbins. *Nucleic Acids Res.* 2015;43(3):e15.

16 23. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
17 large phylogenies. *Bioinformatics.* 2014;30(9):1312-3.

18 24. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees
19 for large alignments. *PLoS One.* 2010;5(3):e9490.

20 25. David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of
21 carbapenem-resistant *Klebsiella pneumoniae* in Europe is driven by nosocomial spread. *Nat
22 Microbiol.* 2019;4(11):1919-29.

23 26. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The
24 comprehensive antibiotic resistance database. *Antimicrob Agents Chemother.*
25 2013;57(7):3348-57.

26 27. Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, et al.
27 ISMapper: identifying transposase insertion sites in bacterial genomes from short read
28 sequence data. *BMC Genomics.* 2015;16:667.

29 28. Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-
30 resistant *Acinetobacter baumannii* clonal lineages. *Int J Antimicrob Agents.* 2013;41(1):11-9.

31 29. Mendes RE, Bell JM, Turnidge JD, Castanheira M, Jones RN. Emergence and
32 widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among
33 *Acinetobacter* spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. *J
34 Antimicrob Chemother.* 2009;63(1):55-9.

35 30. García-Betancur JC, Appel TM, Esparza G, Gales AC, Levy-Hara G, Cornistein W, et
36 al. Update on the epidemiology of carbapenemases in Latin America and the Caribbean.
37 Expert Review of Anti-infective Therapy. 2021;19(2):197-213.

38 31. Tran DN, Tran HH, Matsui M, Suzuki M, Suzuki S, Shibayama K, et al. Emergence of
39 New Delhi metallo-beta-lactamase 1 and other carbapenemase-producing *Acinetobacter*
40 calcoaceticus-baumannii complex among patients in hospitals in Ha Noi, Viet Nam. *Eur J
41 Clin Microbiol Infect Dis.* 2017;36(2):219-25.

42 32. Wang J, Ning Y, Li S, Wang Y, Liang J, Jin C, et al. Multidrug-resistant *Acinetobacter
43 baumannii* strains with NDM-1: Molecular characterization and in vitro efficacy of
44 meropenem-based combinations. *Exp Ther Med.* 2019;18(4):2924-32.

45 33. Xanthopoulou K, Urrutikoetxea-Gutierrez M, Vidal-Garcia M, Diaz de Tuesta Del Arco
46 JL, Sanchez-Urtaza S, Wille J, et al. First Report of New Delhi Metallo-beta-Lactamase-6
47 (NDM-6) in a Clinical *Acinetobacter baumannii* Isolate From Northern Spain. *Front Microbiol.*
48 2020;11:589253.

49 34. Heritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from
50 insertion of ISAb1 in *Acinetobacter baumannii*. *Clin Microbiol Infect.* 2006;12(2):123-30.

51 35. Higgins PG, Dammhahn C, Hackel M, Seifert H. Global spread of carbapenem-
52 resistant *Acinetobacter baumannii*. *J Antimicrob Chemother.* 2010;65(2):233-8.

53 36. Levin AS, Gobara S, Mendes CM, Cursino MR, Sinto S. Environmental
54 contamination by multidrug-resistant *Acinetobacter baumannii* in an intensive care unit.
55 *Infect Control Hosp Epidemiol.* 2001;22(11):717-20.

1 37. Thom KA, Johnson JK, Lee MS, Harris AD. Environmental contamination because of
2 multidrug-resistant *Acinetobacter baumannii* surrounding colonized or infected patients. Am
3 J Infect Control. 2011;39(9):711-5.

4 38. Lopes BS, Al-Agamy MH, Ismail MA, Shibli AM, Al-Qahtani AA, Al-Ahdal MN, et al.
5 The transferability of blaOXA-23 gene in multidrug-resistant *Acinetobacter baumannii*
6 isolates from Saudi Arabia and Egypt. Int J Med Microbiol. 2015;305(6):581-8.

7 39. Makke G, Bitar I, Salloum T, Panossian B, Alousi S, Arabaghian H, et al. Whole-
8 Genome-Sequence-Based Characterization of Extensively Drug-Resistant *Acinetobacter*
9 *baumannii* Hospital Outbreak. mSphere. 2020;5(1).

10 40. Qu J, Du Y, Yu R, Lu X. The First Outbreak Caused by *Acinetobacter baumannii*
11 ST208 and ST195 in China. Biomed Res Int. 2016;2016:9254907.

12 41. Feng Y, Ruan Z, Shu J, Chen CL, Chiu CH. A glimpse into evolution and
13 dissemination of multidrug-resistant *Acinetobacter baumannii* isolates in East Asia: a
14 comparative genomics study. Sci Rep. 2016;6:24342.

15 42. Fitzpatrick MA, Ozer EA, Hauser AR. Utility of Whole-Genome Sequencing in
16 Characterizing *Acinetobacter* Epidemiology and Analyzing Hospital Outbreaks. J Clin
17 Microbiol. 2016;54(3):593-612.

18 43. Gramatniece A, Silamikelis I, Zahare I, Urtans V, Zahare I, Dimina E, et al. Control of
19 *Acinetobacter baumannii* outbreak in the neonatal intensive care unit in Latvia: whole-
20 genome sequencing powered investigation and closure of the ward. Antimicrob Resist Infect
21 Control. 2019;8:84.

22

Tables

Table 1. Total number of *A. baumannii* isolates analyzed by the Antimicrobial Resistance Surveillance Program (ARSP) and referred to the Antimicrobial Resistance Surveillance Reference Laboratory (ARSRL) during 2013 and 2014, isolates submitted for whole-genome sequencing, and high-quality *A. baumannii* genomes obtained, discriminated by sentinel site and AMR profile.

	Number of Isolates		
	2013	2014	Total
<i>A. baumannii</i> Total ARSP	2327	2927	5254
<i>A. baumannii</i> Referred to ARSRL	155	290	445
<i>A. baumannii</i> submitted for WGS	59	58	117
<i>A. baumannii</i> high-quality genomes	58	50	108
<i>By sentinel site^a</i>			
BGH	4	6	10
CMC	0	1	1
CVM	1	0	1
DMC	6	2	8
FEU	0	1	1
GMH	5	1	6
JLM	0	2	2
MAR	11	3	14
MMH	2	4	6
NKI	1	1	2
NMC	1	1	2
RMC	1	0	1
SLH	0	2	2
STU	3	3	6
VSM	13	19	32
ZMC	10	4	14
<i>By AMR profile^b</i>			
CAZ CRO IPM SAM TZP GEN AMK CIP SXT	48	36	84
CAZ CRO IPM SAM TZP GEN AMK CIP	0	6	6
CRO IPM SAM TZP AMK	3	1	4
CAZ CRO IPM SAM TZP GEN CIP	0	3	3
Susceptible	1	1	2
CAZ CRO SAM TZP GEN CIP SXT	1	0	1
IPM	0	1	1
CAZ CRO IPM SAM TZP AMK CIP SXT	1	0	1
CRO IPM TZP AMK	1	0	1
CAZ CRO SAM TZP GEN AMK	1	0	1
IPM TZP	0	1	1
CAZ CRO IPM SAM TZP GEN CIP SXT	1	0	1
CAZ CRO IPM SAM TZP	1	0	1
CAZ CRO IPM TZP	0	1	1

^aBGH: Baguio General Hospital and Medical Center; CMC: Cotabato Regional Hospital and Medical Center; CVM: Cagayan Valley Medical Center; DMC: Southern Philippines Medical Center; FEU: Far Eastern University Hospital; GMH: Governor Celestino Gallares Memorial Hospital; JLM: Jose B. Lingad Memorial Regional Hospital; MAR: Mariano Marcos Memorial Hospital and Medical Center; MMH: Corazon Locsin Montelibano Memorial Regional Hospital; NKI: National Kidney and Transplant Institute; NMC: Northern Mindanao Medical Center; RMC: Rizal Medical Center; SLH: San Lazaro

1 Hospital; STU: University of Sto. Tomas Hospital; VSM: Vicente Sotto Memorial Medical Center; ZMC:
2 Zamboanga City Medical Center.

3 ^bAMK: Amikacin; CAZ: Ceftazidime; CIP: Ciprofloxacin; CRO: Ceftriaxone; GEN: Gentamicin; IPM:
4 Imipenem; SAM: Ampicillin-Sulbactam; SXT: Trimethoprim-sulfamethoxazole; TZP: Piperacillin-
5 tazobactam.

6
7
8
9
10
11

Table 2. Demographic and clinical characteristics of 108 sequenced and confirmed *A. baumannii* isolates collected from 16 ARSP sites.

Characteristic	No. Isolates
Sex	
Male	67
Female	41
Age (in years)	
<1	6
1-4	11
5-14	3
15-24	6
25-34	7
35-44	9
45-54	12
55-64	20
65-80	26
>=81	8
Patient Type	
In-patient	107
Out-patient	1
Specimen Origin	
Community-acquired	25
Hospital-acquired	83
Submitted As*	
Carbapenem-resistant	104
Non carbapenem-resistant	4
Specimen Type	
Aspirate	1
Blood**	21
Bone	1
Catheter	1
Catheter, central	1
Cerebrospinal fluid**	13
Sputum	10

Tracheal aspirate	50
Ulcer	1
Urine	4
Wound	5

1 * Specimen Origin is computed based on admission date of the patient
 2 ** Specimen types considered as Invasive isolates.

3
 4
 5 **Table 3.** Comparison between antimicrobial susceptibility testing results and genotypic resistance for
 6 108 *A. baumannii* isolates.
 7

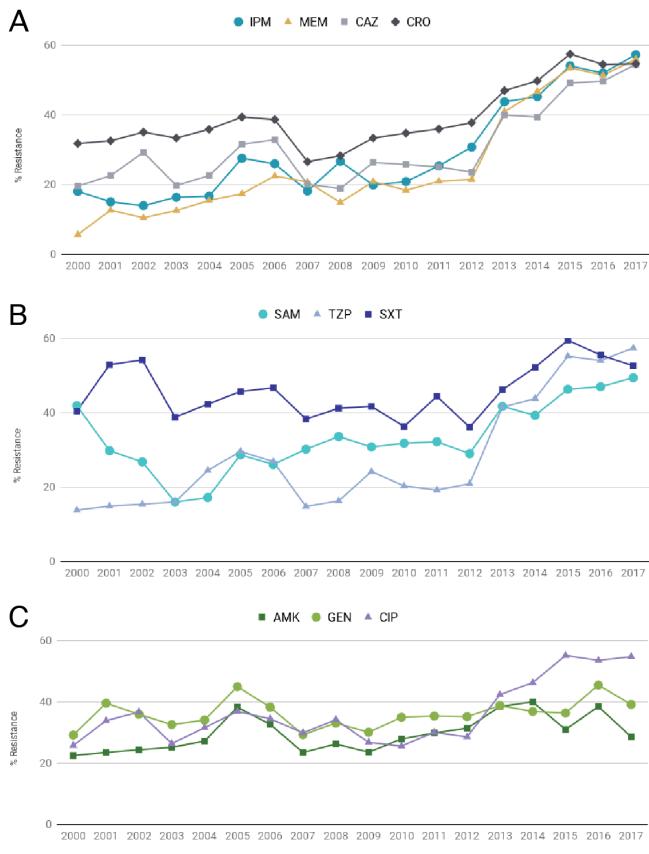
Antibiotic Class	Antibiotic	Isolates Tested	Resistant Isolates	False Positive	False Negative	% Concordance	Resistance Genes/SNPs
3 rd Gen Cephalosporin	Ceftazidime	108	99	0	3	97.22	ISAb1- <i>bla</i> _{ampC} , 2+ copies of <i>bla</i> _{ampC} , <i>bla</i> _{CTX-M-15} , <i>bla</i> _{PER-1} , <i>bla</i> _{NDM-1/6}
3 rd Gen Cephalosporin	Ceftriaxone	108	104	0	8	92.59	
Carbapenem	Imipenem	108	104	1	1	98.15	<i>bla</i> _{OXA-23} , <i>bla</i> _{NDM-1/6} , <i>bla</i> _{OXA-235} , <i>bla</i> _{OXA-72}
Aminoglycoside	Gentamicin	108	96	0	10	90.74	<i>aac</i> (3')-Ia, <i>aac</i> (3')-II, <i>ant</i> (2')-Ia, <i>armA</i>
Aminoglycoside	Amikacin	108	97	6	0	94.44	<i>aac</i> (6')-Ib, <i>aph</i> (3')-VI, <i>armA</i>
Fluoroquinolone	Ciprofloxacin	108	96	0	1	99.07	<i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>qnrA1</i>
Folate Pathway Antagonist	Trimethoprim-Sulfamethoxazole	108	87	1	7	92.59	<i>sul1</i> , <i>sul2</i> , <i>dfrA14</i> , <i>dfrA18</i>

8
 9
 10
 11 **Table 4.** The summary of distribution, sequence types (ST), resistance profiles and Antimicrobial
 12 Resistance genes and mutations of the 108 isolates collected from 17 Antimicrobial Resistance
 13 Surveillance Program sentinel sites.
 14

Site ^a	No. of Isolates	No. of STs	ST (n)	Resistance Profiles ^b (n)	Acquired Resistance Mechanisms (n)
BGH	10	1	208 (10)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (9)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aac</i> (6')-Ib, <i>aph</i> (3')-VI, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul1</i> , <i>sul2</i> (6)
					ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aac</i> (6')-Ib, <i>aph</i> (3')-VI, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul1</i> (2)
					ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aac</i> (6')-Ib, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul1</i> ,

					<i>sul2</i> (1)
			CAZ CRO IPM SAM TZP AMK CIP SXT (1)		ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul2</i> (1)
CMC	1	1	2319 (1)	CAZ CRO IPM TZP (1)	<i>bla</i> _{OXA-72} (1)
CVM	1	1	957 (1)	CAZ CRO SAM TZP GEN AMK (1)	<i>bla</i> _{PER-1} , <i>aac</i> (3)-II, <i>aph</i> (3')-VI, <i>sul1</i> (1)
DMC	8	2	208 (7)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (7)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aac</i> (6')-Ib, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul1</i> (7)
			425 (1)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aac</i> (6')-Ib, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul1</i> (1)
FEU	1	1	208	CAZ CRO IPM SAM TZP GEN CIP (1)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>gyrA</i> _S81L, <i>parC</i> _S84L (1)
GMH	6	6	2174 (1)	CRO IPM SAM TZP AMK (1)	<i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI (1)
			2197 (1)	CRO IPM SAM TZP AMK	<i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI (1)
			2318 (1)	CRO IPM SAM TZP AMK	<i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI (1)
			2320 (1)	CRO IPM SAM TZP AMK	<i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI (1)
			2317 (1)	CRO IPM TZP AMK	<i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI (1)
			ND (1)	CAZ CRO IPM SAM TZP	<i>bla</i> _{NDM-1} , <i>aph</i> (3')-VI (1)
JLM	2	2	195 (1)	CAZ CRO IPM SAM TZP GEN AMK CIP (1)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L (1)
			208 (1)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aac</i> (6')-Ib, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul1</i> (1)
MAR	14	5	195 (6)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (6)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul2</i> (5)
					ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L (1)
			449 (5)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (5)	ISAb1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>ant</i> (2")-Ia, <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>sul1</i> (5)
			447 (1)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>bla</i> _{NDM-1} , <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul2</i> (1)
			391* (1)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>bla</i> _{CTX-M-15} , <i>bla</i> _{PER-1} , <i>bla</i> _{OXA-23} , <i>aac</i> (3)-II, <i>aac</i> (6')-Ib, <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>qnrA1</i> , <i>sul1</i> , <i>sul2</i> , <i>dfrA14</i> (1)

			2197 (1) Susceptible	<i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI (1)
MMH	6	2	195 (3) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (3)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L (3)
			642 (3) CAZ CRO IPM SAM TZP GEN AMK CIP (2)	<i>bla</i> _{NDM-6} , <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>gyrA</i> _S81L, <i>parC</i> _S84L (2)
			CAZ CRO IPM SAM TZP GEN CIP	<i>bla</i> _{NDM-6} , <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L
NKI	2	2	195 (1) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 2 (1)
			208 (1) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 2 (1)
NMC	2	1	208 CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 2 (1)
			CAZ CRO SAM TZP GEN CIP SXT (1)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>aac</i> (3)-la, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 1, <i>sul</i> 2 (1)
RMC	1	1	1128 CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aph</i> (3')-VI, <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 1, <i>sul</i> 2 (1)
SLH	2	2	195 (1) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 2 (1)
			642 (1) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>bla</i> _{OXA-23} , <i>bla</i> _{OXA-235} , <i>aac</i> (6')-lb, <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 1, <i>sul</i> 2, <i>dfrA</i> 18 (1)
STU	6	3	195 (3) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (3)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 2 (2)
				<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>armA</i> , <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 1, <i>sul</i> 2 (1)
			1289 (2) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (2)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{PER-1} , <i>bla</i> _{OXA-23} , <i>aac</i> (3)-la, <i>aac</i> (6')-lb, <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 1, <i>sul</i> 2, <i>dfrA</i> 18 (1)
				<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{PER-1} , <i>bla</i> _{OXA-23} , <i>aac</i> (3)-la, <i>aac</i> (6')-lb, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 1, <i>sul</i> 2, <i>dfrA</i> 18 (1)
			449 (1) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>ISAb</i> 1- <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>ant</i> (2")-la, <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>sul</i> 1 (1)
VSM	32	6	2199 (20) CAZ CRO IPM SAM TZP GEN AMK CIP SXT (19)	2 copies of <i>bla</i> _{ampC} , <i>bla</i> _{OXA-23} , <i>aac</i> (3)-la, <i>aph</i> (3')-VI, <i>gyrA</i> _S81L, <i>parC</i> _S84L, <i>sul</i> 1 (15)


ZMC	14	3	195 (7)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	2 copies of <i>bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>aac(3)-Ia</i> , <i>aph(3')-VI</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> , <i>sul1</i> (2)
			195 (7)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (4)	2 copies of <i>bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>aac(3)-Ia</i> , <i>aph(3')-VI</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> , <i>sul1</i> (1)
			195 (7)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (4)	<i>ISAb1-bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>armA</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> (2)
			195 (7)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (4)	<i>ISAb1-bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>aac(3)-Ia</i> , <i>armA</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> , <i>sul1</i> (1)
310 (2)			CAZ CRO IPM SAM TZP GEN AMK CIP (2)	<i>ISAb1-bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>armA</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> (2)	
			CAZ CRO IPM SAM TZP GEN CIP (1)	<i>ISAb1-bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>armA</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> (1)	
			310 (2)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>bla_{OXA-23}</i> , <i>aph(3')-VI</i> (1)
				IPM TZP (1)	<i>bla_{OXA-23}</i> , <i>aph(3')-VI</i> (1)
208 (1)			208 (1)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (1)	<i>ISAb1-bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>aph(3')-VI</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> , <i>sul2</i> (1)
			229 (1)	IPM (1)	<i>bla_{OXA-72}</i> (1)
			1418 (1)	CAZ CRO IPM SAM TZP GEN AMK CIP (1)	2 copies of <i>bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>ant(2')-Ia</i> , <i>aph(3')-VI</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> (1)
2199 (1)			195 (7)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (7)	<i>ISAb1-bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>armA</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> , <i>sul2</i> (7)
			369 (5)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT (5)	<i>ISAb1-bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>armA</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> , <i>sul2</i> (5)
			2199 (1)	CAZ CRO IPM SAM TZP GEN AMK CIP SXT	2 copies of <i>bla_{ampC}</i> , <i>bla_{OXA-23}</i> , <i>aac(3)-Ia</i> , <i>aph(3')-VI</i> , <i>gyrA_S81L</i> , <i>parC_S84L</i> , <i>sul1</i>
			2220 (1)	Susceptible	None detected

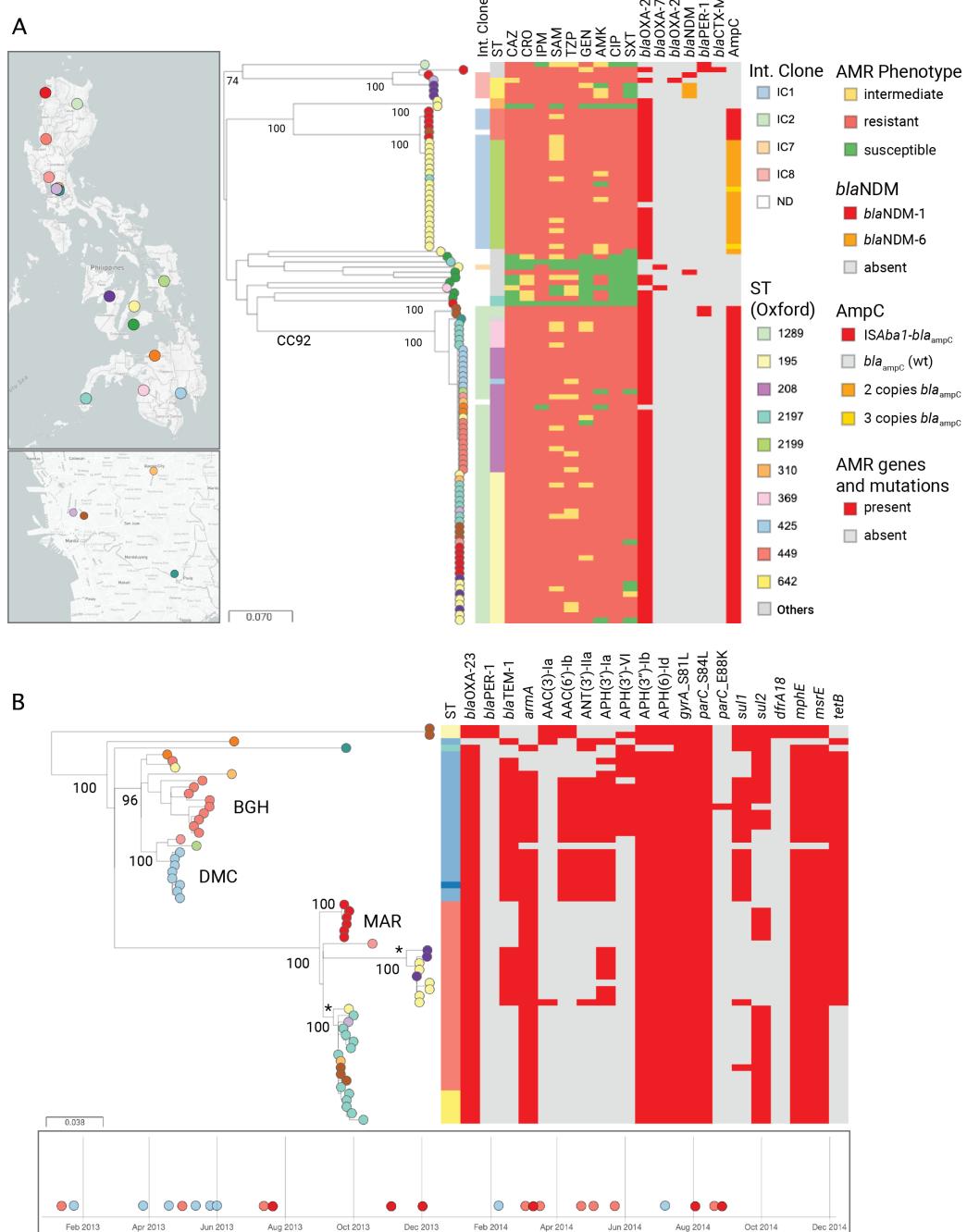
1 ^aBGH: Baguio General Hospital and Medical Center; CMC: Cotabato Regional Hospital and Medical
2 Center; CVM: Cagayan Valley Medical Center; DMC: Southern Philippines Medical Center; FEU: Far
3 Eastern University Hospital; GMH: Governor Celestino Gallares Memorial Hospital; JLM: Jose B.
4 Lingad Memorial Regional Hospital; MAR: Mariano Marcos Memorial Hospital and Medical Center;
5 MMH: Corazon Locsin Montelibano Memorial Regional Hospital; NKL: National Kidney and Transplant
6 Institute; NMC: Northern Mindanao Medical Center; RMC: Rizal Medical Center; SLH: San Lazaro
7 Hospital; STU: University of Sto. Tomas Hospital; VSM: Vicente Sotto Memorial Medical Center; ZMC:
8 Zamboanga City Medical Center.

9 ^bAMK: Amikacin; CAZ: Ceftazidime; CIP: Ciprofloxacin; CRO: Ceftriaxone; GEN: Gentamicin; IPM:
10 Imipenem; SAM: Ampicillin-Sulbactam; SXT: Trimethoprim-sulfamethoxazole; TZP: Piperacillin-
11 tazobactam.

1 **Figures**

2

3


4

5 **Figure 1.** Annual resistance rates of *A. baumannii* between 2000 and 2017. **A)** IPM: imipenem; MEM:
6 meropenem; CAZ: ceftazidime; CRO: ceftriaxone. **B)** SAM: ampicillin-sulbactam; TZP:
7 piperacillin-tazobactam; SXT: sulfamethoxazole-trimethoprim. **C)** AMK: amikacin; GEN:
8 gentamicin; CIP: ciprofloxacin.

9

10

11

Figure 2. Genomic surveillance of *A. baumannii* from the Philippines 2013–2014. A) Phylogenetic tree of 108 isolates inferred from an alignment of 168,916 SNP sites obtained after mapping the genomes to the complete genome of strain A1 and masking MGEs from the alignment. The tree leaves are coloured by sentinel site and indicated on the map (left panels, top: Philippines, bottom: detail of the National Capital Region). The tree is annotated with the isolates assignment to international clones and sequence type, the susceptibility testing results and the presence of acquired carbapenemase genes (ST). The full data are available at https://microreact.org/project/ARSP_ABA_2013-2014. **B)** Phylogenetic tree of 61 CC92 genomes, inferred from an alignment of 618 SNP sites after mapping the genomes to reference AC29 and removing MGEs and recombination regions. The tree leaves are coloured by sentinel site, as indicated on the map from Fig. 2A. The tree blocks represent the distribution of sequence types (STs) and of acquired resistance genes and mutations. Three hospital clusters are annotated on the tree with the hospital code (BGH, DMC, MAR) and their isolation dates are indicated on the timeline. Two multi-hospital clusters are annotated with an asterisk. The full data are available at https://microreact.org/project/ARSP_ABA_CC92_2013-2014. The scale bars represent the number of single nucleotide polymorphisms per variable site.

1
2

3
4

5 **Figure 3. *A. baumannii* from the Philippines in global context. A)** Phylogenetic tree of 977
6 isolates from the Philippines (blue nodes) and from 15 other countries inferred from 305,031 SNP
7 positions. The major STs and CCs are labelled in black if represented by genomes of this study, or in
8 grey if they are not. The data are available at https://microreact.org/project/ARSP_ABA_Global. **B)**
9 Phylogenetic tree of 573 CC92 isolates inferred from an alignment of 5,890 SNP positions. The tree
10 leaves are coloured by country as indicated on the map. The tree is annotated with the distribution of
11 acquired carbapenemase genes (red: present, grey: absent). The data are available at
12 https://microreact.org/project/ARSP_CC92_Global. The scale bars represent the number of single
13 nucleotide polymorphisms (SNPs) per variable site.

14