

1 **Replication kinetic, cell tropism and associated immune responses**
2 **in SARS-CoV-2 and H5N1 virus infected human iPSC derived neural**
3 **models**

4

5 Lisa Bauer^{1#}, Bas Lendemeijer^{2#}, Lonneke Leijten¹, Carmen W. E. Embregts¹, Barry
6 Rockx¹, Steven A. Kushner², Femke M.S. de Vrij^{2,*}, Debby van Riel^{1,*}

7 **Affiliations**

8 ¹ Department of Viroscience, Erasmus Medical Center, Rotterdam, The
9 Netherlands

10 ² Department of Psychiatry, Erasmus Medical Center, Rotterdam, The
11 Netherlands

12

13 #contributed equally

14 *contributed equally & corresponding authors: f.devrij@erasmusmc.nl and
15 d.vanriel@erasmusmc.nl

16

17 **Keywords:**

18 neurotropism, hiPSC neurons, coronavirus, SARS-CoV-2, COVID-19, influenza A
19 virus, H5N1 virus, IL-8, interferon

20

21 **Abstract (181 words)**

22 Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with
23 a wide variety of neurological complications. Even though SARS-CoV-2 is rarely detected in
24 the central nervous system (CNS) or cerebrospinal fluid, evidence is accumulating that SARS-
25 CoV-2 might enter the CNS via the olfactory nerve. However, what happens after SARS-CoV-
26 enters the CNS is poorly understood. Therefore, we investigated the replication kinetics, cell
27 tropism, and associated immune responses of SARS-CoV-2 infection in different types of
28 neural cultures derived from human induced pluripotent stem cells (hiPSCs). SARS-CoV-2
29 was compared to the neurotropic and highly pathogenic H5N1 influenza A virus. SARS-CoV-
30 2 infected a minority of individual mature neurons, without subsequent virus replication and
31 spread, despite ACE2, TMPRSS2 and NPR1 expression in all cultures. However, this sparse
32 infection did result in the production of type-III-interferons and IL-8. In contrast, H5N1 virus
33 replicated and spread very efficiently in all cell types in all cultures. Taken together, our
34 findings support the hypothesis that neurological complications might result from local immune
35 responses triggered by virus invasion, rather than abundant SARS-CoV-2 replication in the
36 CNS.

37

38 **Introduction**

39

40 Neurological manifestations are present in a substantial proportion of patients suffering from
41 the respiratory coronavirus disease 2019 (COVID-19). Symptoms comprise loss of smell
42 (anosmia), loss of taste (hypogeusia), headache, fatigue, nausea and vomiting¹⁻³.
43 Additionally, more severe neurological complications such as seizures, confusion,
44 cerebrovascular injury, stroke, encephalitis, encephalopathies and altered mental status are
45 being increasingly reported in hospitalized patients⁴⁻⁶.

46

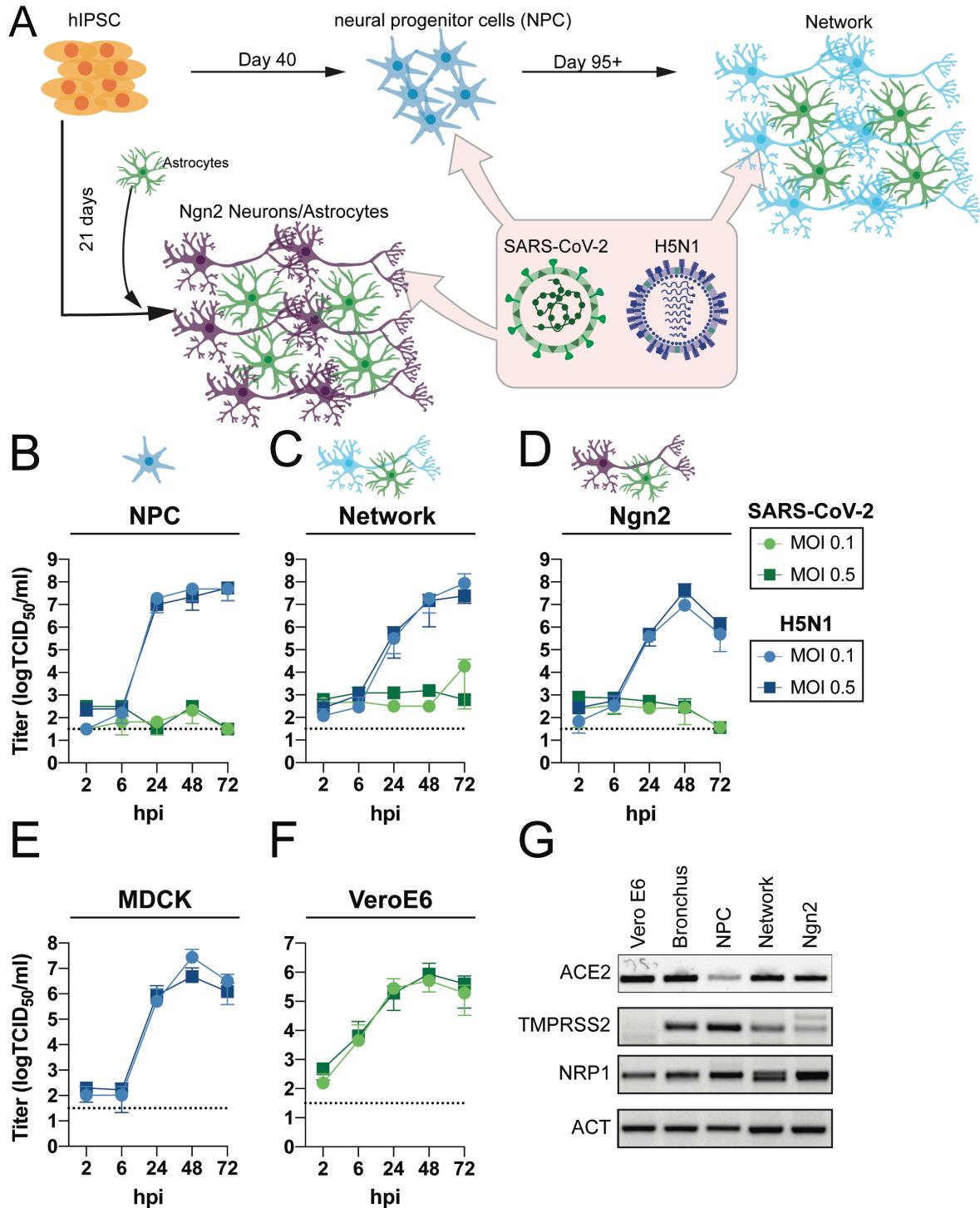
47 It remains to be established whether the reported neurological manifestations are a direct
48 consequence of local invasion of severe acute respiratory syndrome coronavirus-2 (SARS-
49 CoV-2) into the central nervous system (CNS), an indirect consequence of the associated
50 systemic immune responses, or a combination of both. In human and animal models, it has
51 been shown that SARS-CoV-2 is able to replicate in the olfactory mucosa^{7,8}, suggesting that
52 the olfactory nerve could function as an important route of entry into the CNS⁹, as observed
53 previously for other respiratory viruses¹⁰. Post-mortem brain tissue analyses of fatal COVID-
54 19 cases has revealed mild neuropathological changes which might be related to hypoxia-and
55 pronounced neuroinflammation in different regions of the brain¹¹. In the majority of cases,
56 neither SARS-CoV-2 viral RNA, nor virus antigen, could be detected in the CNS^{5,12}. In line
57 with this, SARS-CoV-2 viral RNA has rarely been detected in the cerebrospinal fluid (CSF) of
58 COVID-19-patients with neurological symptoms¹³⁻¹⁵. Together, this suggests that SARS-CoV-
59 2 might enter the CNS but unable to replicate there efficiently.

60

61 In the brain, viruses encounter a variety of different cell types such as neurons, astrocytes and
62 microglia. Investigations of CNS cell-type specific infection of SARS-CoV-2 have been
63 inconsistent¹⁶⁻²³. Most of studies have investigated virus replication by detection of viral RNA,
64 but have not reported whether infectious progeny viruses are produced. Therefore, in order to
65 investigate replication and infection efficiency, cell tropism and associated immune responses

66 of SARS-CoV-2, we differentiated human induced pluripotent stem cells (hiPSCs) along a
67 variety of different neural lineage specifications, which afforded a unique and flexible platform
68 to study the neurotropism of viruses *in vitro*. Specifically, we directed hiPSC-colonies towards
69 embryoid bodies with differentiation into neural progenitor cells (NPCs) and subsequently
70 mature neural networks²⁴. In addition, we also utilized a rapid neuronal differentiation protocol
71 based on forced overexpression of the transcription factor Ngn2 in hiPSCs (Figure 1A) ^{25,26} to
72 generate pure populations of neurons that we co-cultured with hiPSC-derived astrocytes.
73 Using these specified CNS cell types, we directly compared the characteristics of SARS-CoV-
74 2 with the highly pathogenic H5N1 influenza A virus, a virus with zoonotic potential which is
75 known to efficiently replicate in neural cells *in vivo*²⁷⁻³² and *in vitro*³³⁻³⁶.

76


77 **Results**

78 **SARS-CoV-2 does not replicate efficiently in hiPSC neural cell types, despite the**
79 **presence of ACE2, TMPRSS2 and NRP1**

80 To investigate the replication efficiency of SARS-CoV-2, we utilized hiPSC-derived NPCs and
81 differentiated these to mature neural cultures (Figure 1A). NPCs and fully differentiated neural
82 cultures were infected with SARS-CoV-2 and H5N1 virus at a multiplicity of infection (MOI) of
83 0.1 and 0.5. At 2, 6, 24 48 and 72 hours post infection (hpi), infectious virus titers in the
84 supernatants were determined by endpoint titration. In contrast to H5N1 virus, no productive
85 infection in SARS-CoV-2 inoculated NPC and mature neural cultures was detected (Figure 1B
86 and Figure 1C). As an alternative to the laborious and time-consuming differentiation of mature
87 neural networks through embryoid bodies and NPC stages, we also employed a rapid
88 differentiation protocol that yields a pure culture of iPSC-derived glutamatergic cortical
89 neurons by overexpressing the transcription factor neurogenin-2 (Ngn2)²⁵. We further
90 supplemented the Ngn2-induced neurons with hiPSC-derived astrocytes to support their
91 survival and maturation (Figure 1A). SARS-CoV-2 did not replicate efficiently in the Ngn2 co-
92 cultures, in contrast to H5N1 virus (Figure 1D). As a positive control for virus replication, Vero-
93 E6 and MDCK cells were infected with SARS-CoV-2 and H5N1 virus, respectively (Figure 1E
94 and 1F).

95

96 Next, we evaluated the presence of important SARS-CoV-2 entry factors, such as angiotensin-
97 converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2) and neuropilin-
98 1 (NRP1). In all cultures, there was clear evidence for ACE2, TMPRSS2 and NRP1
99 expression, suggesting cellular susceptibility to SARS-CoV-2 virus infection (Figure 1G,
100 Supplement Figure 1).

101

102 **Figure 1. SARS-CoV-2 does not replicate in hiPSC derived neural (co-)cultures in**
103 **contrast to H5N1 virus.** (A) A schematic depiction of the different hiPSC-derived

104 differentiation strategies of the neural cultures. hiPSC are differentiated into neural progenitor

105 cells (NPC) and subsequently into mixed neural cultures containing mixed neurons and

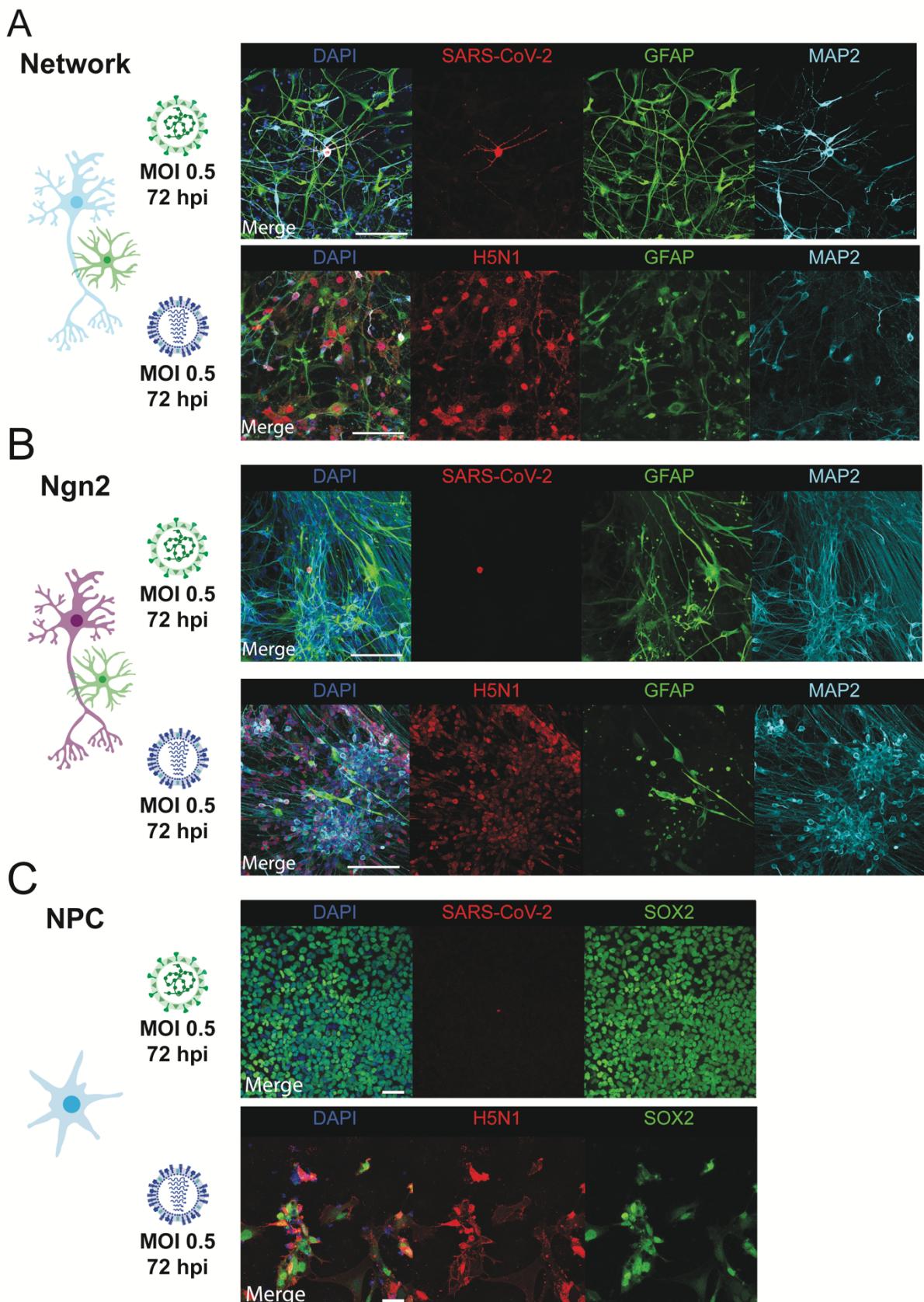
106 astrocytes. Alternatively, hiPSC are differentiated into excitatory neurons by inducing

107 overexpression of Ngn2, these are grown in a co-culture with hiPSC-derived astrocytes.

108 Growth kinetics of SARS-CoV-2 or H5N1 virus, in hiPSC-derived (B) NPCs, (C) mature neural

109 networks, or (D) Ngn2 co-cultures using a MOI of 0.1 and 0.5. As positive controls (E) MDCK

110 and (F) VeroE6 cells were infected with H5N1 virus or SARS-CoV2, respectively. Data
111 represent mean \pm standard deviation (SD) from three independent experiments. Every growth
112 curve was performed either in biological duplicates or triplicates. (G) Presence of the host
113 factors angiotensin-converting enzyme 2 (ACE2), Transmembrane protease serine 2
114 (TMPRSS2) and neuropilin-1 (NRP1) of the neural cultures was determined with PCR. As
115 controls for the expression of ACE2 and TMPRSS2 bronchus bronchiole organoids were used.
116 The uncropped agarose gels are displayed in Supplement figure 1.


117

118 **SARS-CoV-2 infects MAP2-expressing neurons and does not induce caspase-3
119 expression**

120 To determine whether SARS-CoV-2 was able to infect individual cells, we stained for virus
121 antigen 72 hpi after infection with a MOI of 0.5. SARS-CoV-2 sparsely infected cells in neural
122 cultures at 72 hpi. Infection was observed in single scattered MAP2-positive neurons (Figure
123 2A and 2B). In one experiment, we identified a cluster of MAP2-positive cells that stained
124 positively for SARS-CoV-2 nuclear protein (NP) at 72 hpi (Supplement Figure 2A). In the Ngn2
125 co-cultures, we were only able to detect MAP2/NEUN⁺ neurons positive for SARS-CoV-2 NP,
126 suggesting that SARS-CoV-2 infects only mature neurons and does so only sparsely
127 (Supplement Figure 2B). We found no convincing evidence of SARS-CoV-2 NP-positive cells
128 among SOX2⁺ NPCs or GFAP⁺ astrocytes (Figure 2A-2C). H5N1 virus abundantly infected
129 SOX2⁺ NPCs, GFAP⁺ astrocytes and MAP2⁺ neurons (Figure 2A-C).

130

131 Next, we wanted to investigate whether SARS-CoV-2 infection induced neuronal apoptosis.
132 Therefore, we infected Ngn2 co-cultures with SARS-CoV-2 and stained for the apoptosis
133 marker caspase-3. We again observed that SARS-CoV-2 infected only MAP2⁺ neurons.
134 Neurons expressing SARS-CoV-2 NP did not exhibit caspase-3 expression (Figure 3A and
135 3B and Supplement Figure 2C).

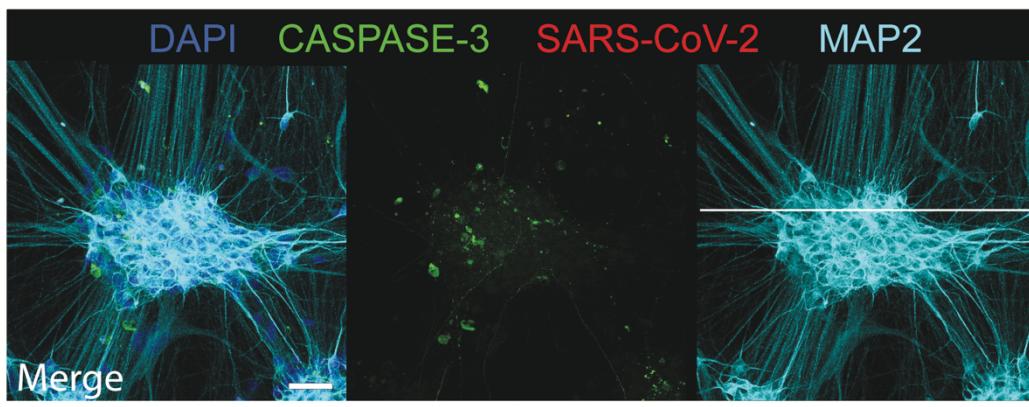
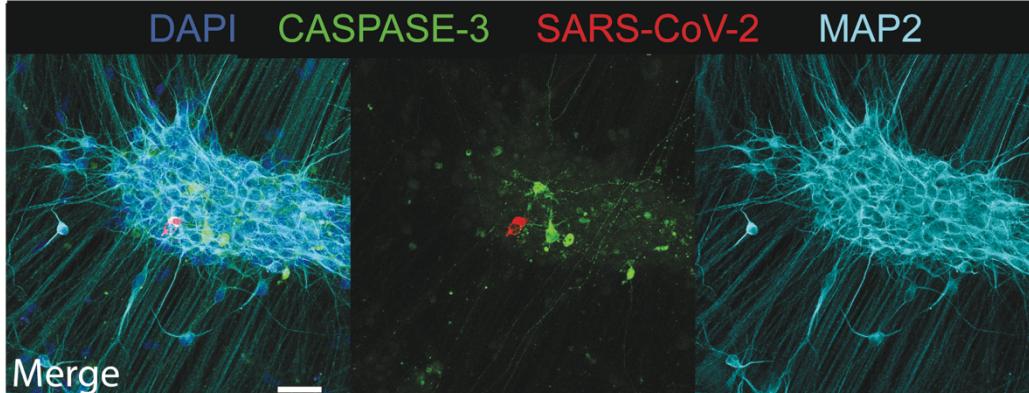

136

Figure 2. SARS-CoV-2 infects MAP2⁺ neurons. (A) Mixed neural culture (scale bar = 100 μ m), (B) Ngn2 co-cultures (scale bar = 100 μ m) and (C) NPCs (scale bar = 50 μ m) were infected with a MOI of 0.5 with SARS-CoV-2 or H5N1 virus, respectively. 72 hours post

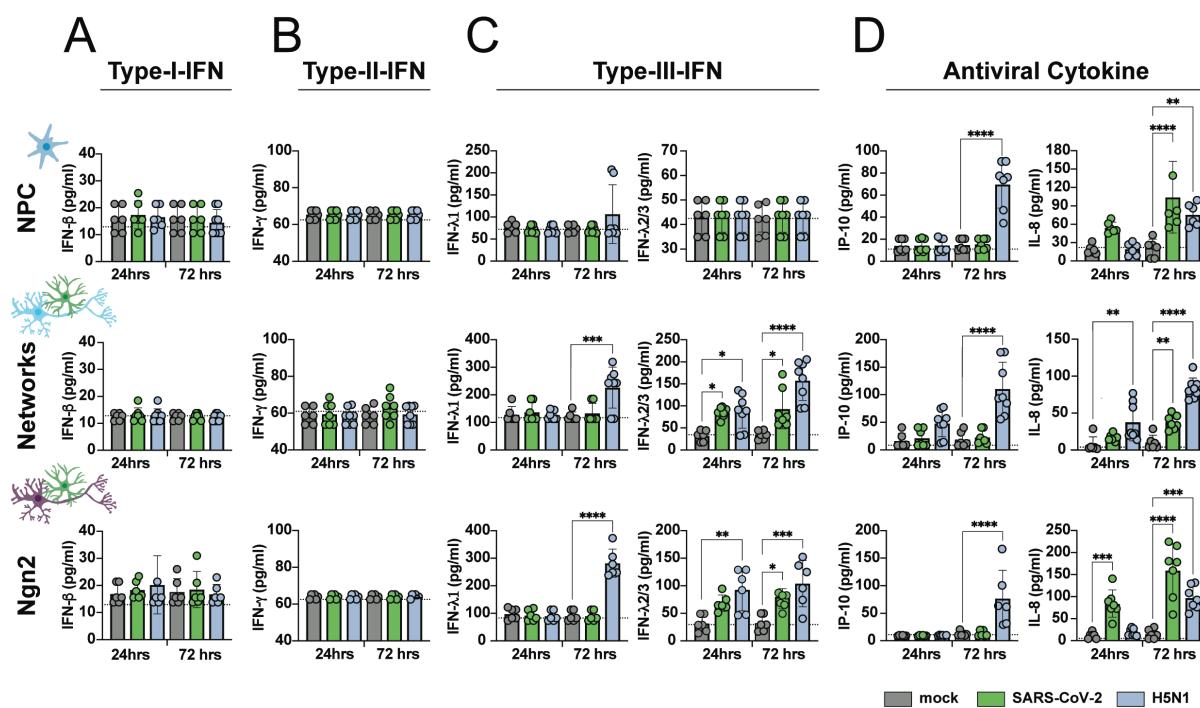

140 infection, the cells were fixed, stained for the presence of viral antigen (SARS-CoV-2 NP or
141 H5N1 NP in red). MAP2 (cyan) was used as a marker for neurons, astrocytes were identified
142 by staining for glial fibrillary acidic protein (GFAP) (green) and SOX2 (green) was used as a
143 marker for NPCs. Cells were counterstained with DAPI (blue) to visualize the nuclei. Data
144 shown are representative examples from three independent experiments for each culture
145 condition.

146

A

B

147


148 **Figure 3. SARS-CoV-2 infections does not result in upregulation of caspase-3.** Ngn2 co-
149 cultures were either (A) mock infected or infected with (B) SARS-CoV-2 at a MOI 0.5 (scale
150 bar = 50 μ m). 72 hours post infection, the cells were fixed and stained for the presence of
151 SARS-CoV-2 antigen (red) or for the apoptosis marker caspase-3 (green). Data shown are
152 representative examples from two independent experiments.

153

154 **SARS-CoV-2 infection induces IFN λ 2/3 and IL-8**

155 To determine the immune response of the neural cultures towards SARS-CoV-2 and H5N1
156 virus infection, we measured a panel of antiviral cytokines in the supernatant of infected neural
157 cultures at 24 and 72 hours post infection. Even though SARS-CoV-2 infection was scarce,
158 IFN λ 2/3 was induced in both the mixed neural culture and Ngn2 co-cultures, but not in NPC
159 cultures. Increased secretion of IL-8 was observed in NPC cultures, mixed neural culture and

160 Ngn2 co-cultures. H5N1 virus infection induced both type-III-IFN -IFN λ 1 and -IFN λ 2/3 in mixed
161 neural cultures and Ngn2 co-cultures, but not among NPCs. Furthermore, increased levels of
162 IP-10 were detected only in the H5N1 virus infected neural cultures. Similar to SARS-CoV2,
163 H5N1 virus was also able to induce IL-8 in all neural cultures. Neither SARS-CoV-2, nor H5N1,
164 virus infection induced type-I-interferon (IFN α /IFN β) or type-II-IFN (IFN γ) or IL-1b, TNF-a, IL-
165 12p70, GM-CSF or IL-10 (Supplement Figure 3).

179 **Discussion**

180 SARS-CoV-2 replicated poorly in all three hiPSC-derived neural cultures used in our
181 experiments, which contrasts largely to H5N1 virus, which replicated efficiently to high titers.
182 Even though important entry factors for SARS-CoV-2 are expressed in all of the cultures used,
183 SARS-CoV-2 infected a very small proportion of cells without evidence of subsequent spread
184 or cellular apoptosis. However, SARS-CoV-2 infection did induce type-III-IFN and IL-8
185 production.

186

187 Evidence is accumulating that SARS-CoV-2 enters the CNS via the olfactory nerve⁷⁻⁹, a
188 pathway that is also used by influenza A viruses to enter the CNS in many mammals including
189 humans^{10,37}. H5N1 virus spreads efficiently to the CNS via the olfactory nerve in
190 experimentally inoculated ferrets and subsequently replicates very efficiently in the CNS^{27,29,38}.
191 Unlike H5N1 virus infection, SARS-CoV-2 is rarely detected in the CNS of fatal COVID-19
192 patients or experimentally inoculated animals¹¹⁻¹⁵. In addition, only a handful of case reports
193 of SARS-CoV-2 induced encephalitis have been reported^{39,40}. Altogether, these observations
194 are consistent with our findings of poor SARS-CoV-2 replication in hiPSC-derived NPCs,
195 neurons and astrocytes, and supports a pathophysiological model whereby SARS-CoV-2
196 invades the CNS, but does not replicate efficiently in CNS cell types. However, one caveat of
197 our study is that other cells such as microglia, oligodendrocytes and vascular cells (pericytes,
198 endothelial cells) are not present. Therefore, we cannot exclude that SARS-CoV-2 can infect
199 and possibly replicate efficiently in other cells of the CNS or neuronal cell types such as cortical
200 PV interneurons, midbrain or hindbrain cell types.

201

202 Despite the low proportion of SARS-CoV-2 infected cells and the fact that infection seemed to
203 be abortive in the hiPSC derived neural cultures, we found evidence for cellular immune
204 activation. In particular, SARS-CoV-2 infection of the neural cultures resulted in the induction
205 of type-III-IFN and IFNλ2/3, but not type-I-IFN or type-II-IFN. This result is in accordance with

206 earlier reports suggesting that SARS-CoV-2 triggers only very mild type-I and type-II-IFN
207 responses, but does trigger a robust type-III-IFN response in cell culture, human airway
208 epithelial cells, ferrets and SARS-CoV-2 infected individuals^{41,42}. In addition, IL-8—a
209 chemotactic factor that attracts leukocytes—was induced in all hiPSC-derived cultures. In lung
210 tissue and peripheral venous blood serum of SARS-CoV-2 infected patients, elevated levels
211 of IL-8 are associated with severe COVID-19^{43–45}. Furthermore, IL-8 has been detected in the
212 CSF of SARS-CoV-2 patients who developed encephalitis, which might be induced by the
213 SARS-CoV-2 associated brain immune response, since SARS-CoV-2 RNA could not be
214 detected in the CSF⁴⁶. However, how exactly these cytokines contribute to the *in vivo*
215 neuroinflammatory process, and if they are directly triggered by SARS-CoV-2 entry into the
216 CNS needs further investigations

217

218 Highly pathogenic H5N1 virus replication has been reported *in vivo*^{27,29,31,32,47} and *in vitro*
219 across several different types of human and mouse neural cell cultures^{34–36}, including the
220 human neuroblastoma line SK-N-SH²⁶, suggesting this virus is neurotropic. This fits with our
221 observation that H5N1 virus replicates productively and spreads throughout hiPSC-derived
222 neural cultures, infecting NPCs as well as mature neurons and astrocytes. H5N1 virus
223 infection also results in the upregulation of type-III-IFN, IFNλ1 and IFNλ2/3, as well as the
224 antiviral cytokines IL-8 and IP-10. IP-10 has been detected in the CSF of influenza A virus
225 infected patients and was found to be elevated in the brains of mice experimentally infected
226 with H5N1 virus⁴⁸. However, the mechanism by which H5N1 virus achieves abundant virus
227 replication and robust induction of pro-neuroinflammatory cytokines remains poorly
228 understood.

229

230 Altogether, our findings reveal that replication of SARS-CoV-2 in CNS cell types is very limited,
231 which is in contrast to the efficient replication and spread of H5N1 virus. Although the
232 mechanistic pathogenesis of SARS-CoV-2 associated CNS disease remains poorly

233 understood, this study supports the hypothesis that SARS-CoV-2 entry into the CNS and direct
234 infection of a small subset of neurons might trigger inflammation in the brain

235 **Material and Methods**

236

237 **Cell Lines**

238 VeroE6 (ATCC® CRL 1586TM) cells were maintained in Dulbecco's modified Eagle's medium
239 (DMEM, Lonza, Breda, the Netherlands) supplemented with 10% fetal calf serum (FCS,
240 Sigma-Aldrich, St. Louis, MO, USA), 10mM HEPES, 1.5 mg/ml sodium bicarbonate, 100 IU/ml
241 penicillin (Lonza, Basel, Switzerland) and 100 µg/ml streptomycin (Lonza). Madin-Darby
242 Canine Kidney (MDCK) cells were maintained in Eagle minimal essential medium (EMEM;
243 Lonza) supplemented with 10% FCS, 100 IU/ml penicillin, 100 µg/ml streptomycin, 2 mM
244 glutamine, 1.5 mg/ml sodium bicarbonate, 1 mM, 10 mM HEPES and 0.1 mM nonessential
245 amino acids. All cell lines were grown at 37 °C in 5% CO₂. The medium was refreshed every
246 3–4 days, and cells were passaged at >90% confluence with the use of PBS and trypsin-EDTA
247 (0.05%). The cells were routinely checked for the presence of mycoplasma.

248

249 **Differentiation of iPSCs to NPCs and mature neural cultures**

250 Human induced pluripotent stem cells (iPSCs) [WTC-11 Coriell #GM25256, obtained from the
251 Gladstone Institute, San Francisco, USA] were differentiated to NPCs as previously described²
252 with slight modifications. After passage 3, NPC cultures were purified using fluorescence-
253 activated cell sorting (FACS) as described previously⁴⁹. Briefly, NPCs were detached from the
254 culture plate and resuspended into a single cell solution. CD184+/CD44-/CD271-/CD24+ cells
255 were collected using a FACSaria III (BD bioscience) and expanded in NPC medium (Table 2).
256 NPCs were used for experiments between passage 3 and 7 after sorting or differentiated to
257 neural networks. For differentiation towards mature neural cultures, NPCs were grown in
258 neural differentiation medium (Table 2) for 6–8 weeks to achieve mature neural networks²⁴
259 and subsequently used for experiments, after week 4 only half of the medium was refreshed.
260 Cultures were kept at 37 °C/5%CO₂ throughout the entire differentiation process.

261

262 **Differentiation of iPSCs to Ngn2 co-cultures**

263 iPSCs were directly differentiated into excitatory cortical layer 2/3 neurons by forcibly
264 overexpressing the neuronal determinant Neurogenin 2 (Ngn2)^{25,50}. To support neuronal
265 maturation, hiPSC-derived astrocytes were added to the culture in a 1:1 ratio. At day 3, the
266 medium was changed to Ngn2-medium (Table 2). Cytosine b-D-arabinofuranoside (Ara-C)
267 (2 µM; Sigma, C1768) was added once to remove proliferating cells from the culture and
268 ensure long-term recordings of the cultures. From day 6 onwards, half of the medium was
269 refreshed three times per week. Cultures were kept at 37 °C/5%CO2 throughout the entire
270 differentiation process.

271

272 **Viruses**

273 The SARS-CoV-2 isolate (isolate BetaCoV/Munich/BavPat1/2020; European Virus Archive
274 Global #026V-03883; kindly provided by Dr. C. Drosten) was previously described by *Lamers*
275 *et al.*^{51,52} The zoonotic HPAI H5N1 virus (A/Indonesia/5/2005) was isolated from a human
276 patient and the virus was propagated once in embryonated chicken eggs and twice in MDCK
277 cells.

278

279 **Virus Titrations**

280 The SARS-CoV-2 titers were determined by endpoint dilution on VeroE6 cells, calculated
281 according to the method of Spearman & Kärber and expressed as 50% tissue culture
282 infectious dose/ml (TCID₅₀/ml). SARS-CoV-2 virus titers were determined by preparing 10-fold
283 serial dilutions in triplicates of supernatants in Opti-MEM containing GlutaMAX. Dilutions
284 supernatants were added to a monolayer of 40.000 VeroE6 cells/ well in a 96-well plate and
285 incubate at 37°C. After 5 days the plates were examined for the presence of cytopathic effect
286 (CPE). Virus titers of HPAI H5N1 were determined by endpoint dilution on MDCK as described
287 previously⁵³. In short, 10-fold serial dilutions of cell supernatant in triplicates were prepared in
288 Influenza infection medium which consists of EMEM supplemented with 100 IU/ml penicillin,
289 100 µg/ml streptomycin, 2 mM glutamine, 1.5 mg/ml sodium bicarbonate, 10 mM HEPES, 1×

290 (0.1 mM) nonessential amino acids, and 1 μ g/ μ l TPCK-treated trypsin (Sigma-Aldrich). Prior
291 to adding the virus dilutions to the MDCK cells, the cells were washed once with plain EMEM-
292 medium to remove residual FCS. 100 μ l of the diluted supernatants was used to inoculate
293 30.000 MDCK cells/well in a 96-well plate. After one hour, the inoculum was removed and
294 200 μ l fresh influenza infection medium was added. Four days after infection, supernatants of
295 the infected MDCK cells were tested for agglutination. 25 μ l of the supernatant were mixed
296 with 75 μ l 0.33% turkey red blood cells and incubated for one hour at 4°C. The titers of
297 infectious virus were calculated according to the method of Spearman & Kärber and
298 expressed as TCID₅₀/ml. All experiment with infectious SARS-CoV-2 and H5N1 virus were
299 performed in a Class II Biosafety Cabinet under BSL-3 conditions at the Erasmus Medical
300 Center. The initial 1:10 dilution of cell supernatant resulted in a detection limit of
301 10^{1.5} TCID₅₀/ml.

302

303 **Replication Kinetic**

304 Before infection of neural progenitors, network neurons and NGN2 neurons, supernatant was
305 removed and cells were infected with SARS-CoV-2 and H5N1 virus at the indicated multiplicity
306 of infection (MOI). As control for active virus replication, VeroE6 and MDCK cells were infected
307 with SARS-CoV-2 and H5N1 virus, respectively. Before virus infection, the VeroE6 cells were
308 washed with SARS-CoV-2 infection medium (DMEM supplemented with 2% FBS and 100
309 IU/ml penicillin, 100 μ g/ml streptomycin) and MDCK cells were washed with influenza infection
310 medium. After 1 hours of incubation at 37°C, the inoculum was removed and replaced with
311 fresh medium and old medium in a 1:1 ratio. After removing the inoculum from VeroE6 and
312 MDCK cells, SARS-CoV-2 infection medium and influenza infection medium, respectively,
313 were added to the cells. At the indicated timepoints an aliquot of the supernatant was collected
314 for subsequent virus titration. All experiments were performed in biological triplicates and
315 either in technical duplicates or triplicates.

316

317 **PCR Validation of ACE2, TMPRSS2 and NRP1 expression**

318 RNA was isolated from the neural cultures and VeroE6 cells using the High Pure RNA Isolation
319 Kit (Roche). The concentration of RNA was determined using Nanodrop. 2.5µg of RNA was
320 reverse transcribed into cDNA using the SuperScript III reverse transcriptase (Invitrogen)
321 according to the manufacturers' protocol. cDNA of bronchus-bronchiol organoids were kindly
322 provided by Anna Z. Mykytyn. Presence of ACE2, TMPRSS2, NRP1 and ACT was evaluated
323 by amplified these genes with gene specific primers (Table 1) by PCR. Gene products were
324 visualized on a 2% agarose gel which was stained with SYBR Safe. PCR products of the
325 genes were sequenced to validate that the right product was amplified.

326

327 Table 1.

Species	Genes	Sequence (5' > 3')	Annealing	Amplicon	References	
					Temp (°C)	(bp)
human	ACE2-FWD	GGGATCAGAGATCGGAAGAAGAAA	60	124	1	
human	ACE2-REV	AGGAGGTCTGAACATCATCAGTG			1	
human	b-ACTIN-FWD	CCCTGGACTTCGAGCAAGAG	60	153	1	
human	b-ACTIN-REV	ACTCCATGCCAGGAAGGAA			1	
human	TMPRSS2-FWD	AATCGGTGTGTTCGCCTCTAC	60	106	1	
human	TMPRSS2-REV	CGTAGTTCTCGTTCCAGTCGT			1	
human	NRP1-FWD	GACTGGGGCTCAGAATGGAG	60	187		
human	NRP1-REV	ATGACCGTGGCTTTCTGT				

328

329 **Multiplexed bead-assay for Cytokine Profiling**

330 Cytokines were measured using the LEGENDplex™ Human Anti-Virus Response
331 Panel (BioLegend). The kit was used according to manufacturer's manual with an additional
332 fixing step. After adding the SA-PE and performing the washing steps, the supernatant and
333 the beads were fixed with formalin for 15 minutes at room temperature and washed twice with
334 the provided wash buffer. This ensures that all pathogens are not infectious.

335

336 **Immunofluorescent labeling**

337 Cells were fixed using 4% formalin in PBS and labeled using immunocytochemistry. Primary
338 antibody incubation was performed overnight at 4°C. Secondary antibody incubation was
339 performed for 2 hours at room temperature. Both primary and secondary antibody incubation
340 was performed in staining buffer [0.05 M Tris, 0.9% NaCl, 0.25% gelatin, and 0.5% Triton X-
341 100 (Sigma, T8787) in PBS (pH 7.4)]. Primary antibodies and their dilutions can be found in
342 Table 2. Secondary antibodies conjugated to Alexa-488, Alexa-647 or Cy3 were used at a
343 dilution of 1:400 (Jackson ImmunoResearch). Nuclei were visualised using DAPI
344 (ThermoFisher Scientific, D1306). Samples were embedded in Mowiol 4-88 (Sigma-Aldrich,
345 81381) and imaged using a Zeiss LSM 800 confocal microscope (Oberkochen, Germany).

346

347 Table 2. Overview of media and reagents used

Name	Reagents	Manufacturer, catalogue number
NPC Medium	Advanced DMEM/F12	ThermoFisher Scientific, 1634010
	1% N-2 Supplement	ThermoFisher Scientific, 17502048
	2% B-27 minus RA Supplement	ThermoFisher Scientific, 12587010
	1 µg/ml Laminin	Sigma-Aldrich, L2020
	1% Penicillin-Streptomycin	ThermoFisher Scientific, 15140122
	20 ng/ml basic Fibroblast Growth Factor	Merck, GF003AF

Neural differentiation	Advanced DMEM/F12	ThermoFisher Scientific, 1634010
medium	1% N-2 Supplement	ThermoFisher Scientific, 17502048
	2% B-27 minus RA Supplement	ThermoFisher Scientific, 12587010
	2 µg/ml Laminin	Sigma-Aldrich, L2020
	1% Penicillin-Streptomycin	ThermoFisher Scientific, 15140122
	10 ng/ml BDNF	Prospecbio, CYT-207
	10 ng/ml GDNF	Prospecbio CYT-305
	1 µM db-cAMP	Sigma, D0627
	200 uM ascorbic acid	Sigma, A5960
Ngn2 Medium	Neurobasal Medium	ThermoFisher Scientific, 21103049
	2% B-27 minus RA Supplement	ThermoFisher Scientific, 12587012
	1% Glutamax	ThermoFisher Scientific, 35050061
	10 ng/ml NT3	PeproTech, 450-03
	10 ng/ml BDNF	ProSpec, CYT 207
	1% Penicillin-Streptomycin	ThermoFisher Scientific, 15140122
	1% Penicillin-Streptomycin	ThermoFisher Scientific, 15140122

348

349

350 Table 3. Antibodies

Antibody	Dilution	Manufacturer, catalogue number
SARS-CoV-2- Anti NP	1:500	Sino Biological, 40143-MM05
SOX2	1:250	Millipore, AB5603
NEUN	1:100	Merck, ABN78

GFAP	1:200	Millipore, AB5804
MAP2	1:200	Synaptic Systems, 188004
H5N1- Anti NP	1:1000	EVL, EBS-I-047, Clone Hb65
Caspase-3	1:100	Cell Signaling Technologies, 9661S

352 **Acknowledgments**

353 We thank Anna Z. Mykytyn and Mart M. Lamers for sharing reagents, cDNA of the airway
354 organoids, SARS-CoV-2 virus stocks and for technical advice and scientific discussions. This
355 work was funded by a fellowship to D.V.R. from the Netherlands Organization for Scientific
356 Research (VIDI contract 91718308) and a EUR fellowship. This work was also supported by
357 the Netherlands Organ-on-Chip Initiative, an NWO Gravitation project (024.003.001) funded
358 by the Ministry of Education, Culture and Science of the government of the Netherlands (S.K,
359 F.D.V., B.L.) and by an Erasmus MC Human Disease Model Award to F.D.V.

360

361

362

363

364

365 The authors declare no conflict of interest.

366

367 **References**

- 368 1. Varatharaj, A. *et al.* Neurological and neuropsychiatric complications of COVID-19 in
369 153 patients: a UK-wide surveillance study. *The Lancet Psychiatry* **7**, 875–882 (2020).
- 370 2. Bryche, B. *et al.* Massive transient damage of the olfactory epithelium associated with
371 infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. *Brain.*
372 *Behav. Immun.* **89**, 579–586 (2020).
- 373 3. Harapan, B. N. & Yoo, H. J. Neurological symptoms, manifestations, and
374 complications associated with severe acute respiratory syndrome coronavirus 2
375 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). *J. Neurol.* **2**, (2021).
- 376 4. Guadarrama-Ortiz, P. *et al.* Neurological Aspects of SARS-CoV-2 Infection:
377 Mechanisms and Manifestations. *Front. Neurol.* **11**, 1–14 (2020).
- 378 5. Solomon, I. H. *et al.* Neuropathological Features of Covid-19. *N. Engl. J. Med.* (2020)
379 doi:10.1056/nejmc2019373.
- 380 6. Pennisi, M. *et al.* Sars-cov-2 and the nervous system: From clinical features to
381 molecular mechanisms. *Int. J. Mol. Sci.* **21**, 1–21 (2020).
- 382 7. Zou, L. *et al.* SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected
383 Patients. *N. Engl. J. Med.* **382**, 1175–1177 (2020).
- 384 8. Sia, S. F. *et al.* Pathogenesis and transmission of SARS-CoV-2 in golden hamsters.
385 *Nature* **583**, 834–838 (2020).
- 386 9. Meinhardt, J. *et al.* Olfactory transmucosal SARS-CoV-2 invasion as a port of central
387 nervous system entry in individuals with COVID-19. *Nat. Neurosci.* **24**, 168–175
388 (2021).
- 389 10. Riel, D. Van, Verdijk, R. & Kuiken, T. The olfactory nerve: A shortcut for influenza and
390 other viral diseases into the central nervous system. *J. Pathol.* **235**, 277–287 (2015).
- 391 11. Matschke, J. *et al.* Neuropathology of patients with COVID-19 in Germany: a post-
392 mortem case series. *Lancet Neurol.* **19**, 919–929 (2020).
- 393 12. Schurink, B. *et al.* Viral presence and immunopathology in patients with lethal COVID-
394 19: a prospective autopsy cohort study. *The Lancet Microbe* **1**, e290–e299 (2020).

395 13. Edén, A. *et al.* CSF Biomarkers in Patients With COVID-19 and Neurologic
396 Symptoms: A Case Series. *Neurology* **96**, e294–e300 (2021).

397 14. Neumann, B. *et al.* Cerebrospinal fluid findings in COVID-19 patients with neurological
398 symptoms. *J. Neurol. Sci.* **418**, (2020).

399 15. Destras, G. *et al.* Systematic SARS-CoV-2 screening in cerebrospinal fluid during the
400 COVID-19 pandemic. *The Lancet Microbe* **1**, e149 (2020).

401 16. Dobrindt, K. *et al.* Common genetic variation in humans impacts in vitro susceptibility
402 to SARS-CoV-2 infection. *Stem Cell Reports* **16**, 1–14 (2021).

403 17. Pellegrini, L. *et al.* SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the
404 Blood-CSF Barrier in Human Brain Organoids. *Cell Stem Cell* **27**, 951-961.e5 (2020).

405 18. Zhang, B. Z. *et al.* SARS-CoV-2 infects human neural progenitor cells and brain
406 organoids. *Cell Res.* **30**, 928–931 (2020).

407 19. Bullen, C. K. *et al.* Infectability of human BrainSphere neurons suggests neurotropism
408 of SARS-CoV-2. *ALTEX* **37**, 665–671 (2020).

409 20. Wang, C. *et al.* ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular
410 Response. *Cell Stem Cell* **28**, 331-342.e5 (2021).

411 21. Song, E. *et al.* Neuroinvasion of SARS-CoV-2 in human and mouse brain. *J. Exp.*
412 *Med.* **218**, (2021).

413 22. Ramani, A. *et al.* SARS-CoV-2 targets neurons of 3D human brain organoids .
414 *EMBO J.* **39**, 1–14 (2020).

415 23. Jacob, F. *et al.* Human Pluripotent Stem Cell-Derived Neural Cells and Brain
416 Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus
417 Epithelium. *Cell Stem Cell* **27**, 937-950.e9 (2020).

418 24. Gunhanlar, N. *et al.* A simplified protocol for differentiation of electrophysiologically
419 mature neuronal networks from human induced pluripotent stem cells. *Mol. Psychiatry*
420 **23**, 1336–1344 (2018).

421 25. Zhang, Y. *et al.* Rapid single-step induction of functional neurons from human
422 pluripotent stem cells. *Neuron* **78**, 785–798 (2013).

423 26. Frega, M. *et al.* Rapid Neuronal Differentiation of Induced Pluripotent Stem Cells for
424 Measuring Network Activity on Micro-electrode Arrays. *J. Vis. Exp.* (2017)
425 doi:10.3791/54900.

426 27. Schrauwen, E. J. A. *et al.* The Multibasic Cleavage Site in H5N1 Virus Is Critical for
427 Systemic Spread along the Olfactory and Hematogenous Routes in Ferrets. *J. Virol.*
428 **86**, 3975–3984 (2012).

429 28. Shinya, K. *et al.* Subclinical Brain Injury Caused by H5N1 Influenza Virus Infection. *J.*
430 *Virol.* **85**, 5202–5207 (2011).

431 29. Bodewes, R. *et al.* Pathogenesis of influenza A/H5N1 virus infection in ferrets differs
432 between intranasal and intratracheal routes of inoculation. *Am. J. Pathol.* **179**, 30–36
433 (2011).

434 30. Park, C. H. *et al.* The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1)
435 influenza virus into the central nervous system after respiratory infection in mice.
436 *Arch. Virol.* **147**, 1425–1436 (2002).

437 31. Jang, H. *et al.* Highly pathogenic H5N1 influenza virus can enter the central nervous
438 system and induce neuroinflammation and neurodegeneration. *Proc. Natl. Acad. Sci.*
439 *U. S. A.* **106**, 14063–14068 (2009).

440 32. Shinya, K. *et al.* Systemic Dissemination of H5N1 Influenza A Viruses in Ferrets and
441 Hamsters after Direct Intragastric Inoculation. *J. Virol.* **85**, 4673–4678 (2011).

442 33. Siegers, J. Y. *et al.* Viral Factors Important for Efficient Replication of Influenza A
443 Viruses in Cells of the Central Nervous System. *J. Virol.* **93**, 1–12 (2019).

444 34. Ng, Y. P. *et al.* Avian influenza H5N1 virus induces cytopathy and proinflammatory
445 cytokine responses in human astrocytic and neuronal cell lines. *Neuroscience* **168**,
446 613–623 (2010).

447 35. Pringproa, K. *et al.* Tropism and induction of cytokines in human embryonic-stem
448 cells-derived neural progenitors upon inoculation with highly-pathogenic avian H5N1
449 influenza virus. *PLoS One* **10**, 1–14 (2015).

450 36. Lin, X. *et al.* Insights into human astrocyte response to H5N1 infection by microarray

451 analysis. *Viruses* **7**, 2618–2640 (2015).

452 37. Van Riel, D. *et al.* Evidence for influenza virus CNS invasion along the olfactory route
453 in an immunocompromised infant. *J. Infect. Dis.* **210**, 419–423 (2014).

454 38. Shinya, K. *et al.* Avian influenza virus intranasally inoculated infects the central
455 nervous system of mice through the general visceral afferent nerve. *Arch. Virol.* **145**,
456 187–195 (2000).

457 39. Casez, O. *et al.* Teaching NeurolImages: SARS-CoV-2-Related Encephalitis: MRI
458 Pattern of Olfactory Tract Involvement. *Neurology* **96**, e645–e646 (2021).

459 40. Vandervorst, F. *et al.* Encephalitis associated with the SARS-CoV-2 virus: A case
460 report. *Interdiscip. Neurosurg. Adv. Tech. Case Manag.* **22**, 0–2 (2020).

461 41. Vanderheiden, A. *et al.* Type I and Type III Interferons Restrict SARS-CoV-2 Infection
462 of Human Airway Epithelial Cultures. *J. Virol.* **94**, 1–16 (2020).

463 42. Blanco-Melo, D. *et al.* Imbalanced Host Response to SARS-CoV-2 Drives
464 Development of COVID-19. *Cell* **181**, 1036-1045.e9 (2020).

465 43. Del Valle, D. M. *et al.* An inflammatory cytokine signature predicts COVID-19 severity
466 and survival. *Nat. Med.* **26**, 1636–1643 (2020).

467 44. van Riel, D. *et al.* Temporal kinetics of RNAemia and associated systemic cytokines in
468 hospitalized COVID-19 patients. *bioRxiv* (2020) doi:10.1101/2020.12.17.423376.

469 45. Chen, L. *et al.* Scoring cytokine storm by the levels of MCP-3 and IL-8 accurately
470 distinguished COVID-19 patients with high mortality. *Signal Transduct. Target. Ther.*
471 **5**, 8–10 (2020).

472 46. Benamer, K. *et al.* Encephalopathy and encephalitis associated with cerebrospinal
473 fluid cytokine alterations and coronavirus disease, atlanta, georgia, usa, 2020. *Emerg.*
474 *Infect. Dis.* **26**, 2016–2021 (2020).

475 47. Park, C. H. *et al.* Persistence of viral RNA segments in the central nervous system of
476 mice after recovery from acute influenza A virus infection. *Vet. Microbiol.* **97**, 259–268
477 (2003).

478 48. Jang, H. *et al.* Inflammatory effects of highly pathogenic H5N1 influenza virus

479 infection in the CNS of mice. *J. Neurosci.* **32**, 1545–1559 (2012).

480 49. Yuan, S. H. *et al.* Cell-surface marker signatures for the Isolation of neural stem cells,
481 glia and neurons derived from human pluripotent stem cells. *PLoS One* (2011)
482 doi:10.1371/journal.pone.0017540.

483 50. Frega, M. *et al.* Rapid neuronal differentiation of induced pluripotent stem cells for
484 measuring network activity on micro-electrode arrays. *J. Vis. Exp.* (2017)
485 doi:10.3791/54900.

486 51. Lamers, M. M. *et al.* SARS-CoV-2 productively infects human gut enterocytes.
487 *Science* (80-). **3**, 50–54 (2020).

488 52. Lamers, M. M. *et al.* Human airway cells prevent SARS-CoV-2 multibasic cleavage
489 site cell culture adaptation 1 2. *bioRxiv* (2021).

490 53. Rimmelzwaan, G. F., Baars, M., Claas, E. C. J. & Osterhaus, A. D. M. E. Comparison
491 of RNA hybridization, hemagglutination assay, titration of infectious virus and
492 immunofluorescence as methods for monitoring influenza virus replication in vitro. *J.*
493 *Virol. Methods* (1998) doi:10.1016/S0166-0934(98)00071-8.

494