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Abstract

The effects of the microbiome on the host’s metabolism are core to understanding the role of the
microbiome in health and disease. Herein, we develop the paradigm of in silico in vivo association
pattern analyses, entailing a methodology to combine microbiome metabolome association
studies with in silico constraint-based microbial community modelling. By dissecting confounding and
causal paths, we show that in silico in vivo association pattern analyses allows for causal inference on
microbiome-metabolome relations in observational data. Then, we demonstrate the feasibility and
validity of our approach on a published multi-omics dataset (n=346), demonstrating causal microbiome-
metabolite relations for 43 out of 53 metabolites from faeces. Finally, we utilise the identified in silico
in vivo association pattern to estimate the microbial component of the faecal metabolome, revealing that
the retrieved metabolite prediction scores correlate with the measured metabolite concentrations, and
they also reflect the multivariate structure of the faecal metabolome. Concluding, we integrate with
hypothesis free screening association studies and knowledge-based in silico modelling two major
paradigms of systems biology, generating a promising new paradigm for causal inference in metabolic
host-microbe interactions.

Introduction

The determination of the microbiome’s metabolic functions is a key challenge in understanding the
contribution of the gut microbiome to health and disease [1-3]. As metabolic functions are shared across
phylogenetic classes [4], differences in composition do not necessarily translate in differences in
metabolic output. Therefore, analyses of the microbiome composition alone cannot give conclusive
insights into the collective metabolic output of a community. In the light of this challenge, researchers
have repeatedly tried to shine a light on metabolic functions of microbes via integrating microbial
abundance data with metabolome data via statistical association studies [5-8]. Especially faecal
metabolomics, being closest to a direct functional readout, has been used for statistical screening for
associations [6, 8, 9]. However, statistical screenings can easily result in false positives [10], and recent
modelling has shown that microbe-metabolite associations are prone to be the result of confounding,
especially due to the multivariate nature of both types of omics datasets [11]. Moreover, from the
viewpoint of causal statistics, extracting causal models correctly from observational data requires full
information on all relevant confounding variables [12]. However, measuring and conceptualising all
relevant confounders poses conceptual and practical problems for a concrete microbiome-metabolome
study, partly due to limited knowledge on relevant confounding factors [13]. Hence, results of statistical
hypothesis free screening approaches are often difficult to interpret and to embed into the knowledge
already gathered about microbial biology [13, 14].

Integrating the genetic content of the microbial community with knowledge of microbial biology while
respecting basic laws of nature, such as conservation of mass and charge, constraint-based modelling
and reconstruction analysis (COBRA) [15] allows a fine-graded mapping of metabolic functions of
microbial communities [ 16]. Thus, COBRA is optimally suited to complement microbiome-metabolome
association studies by delivering biological context in a quantitative way [17]. COBRA community
models offer quantifications of the feasible range of metabolic fluxes given a diet, allowing
consequently the calculation of, for instance, the metabolite secretion potential into a simulated faecal
compartment of a given microbial community in silico [16]. In contrast to species metabolome
association analysis, COBRA microbial community modelling allows the direct deterministic
calculation of the contribution of a species to the output of the whole community [17]. As such, COBRA
modelling results are not impacted in the same way as statistical associations by confounding caused by
physiological and behavioural attributes of the host. However, while COBRA microbial community
modelling has already been applied to investigate metabolic functions in Parkinson’s disease [18, 19]
and inflammatory bowel disease [17], the predictions of the COBRA microbial community models have
not been integrated systematically with metabolomic in vivo data to validate the predicted metabolic
functions.

Here, we develop first the theoretical frameworks to combine COBRA microbial community modelling
with microbiome metabolome association studies, outlining the causal and confounding paths effective
in species-metabolite associations in vivo and in silico. Building on these theoretical considerations
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rooted in causal inference theory, we develop a methodological paradigm, which we call ‘in silico in
vivo association pattern analyses’, allowing for causal inference on microbiome-metabolite relations in
theory. Using published metagenomic data in conjunction with faccal metabolome data from [8], we
then demonstrate that community modelling systematically predicts the statistical associations pattern
between microbiome measurements and faecal metabolome measurements, justifying the proposed
methodology. Finally, we show that our framework can be used to derive predictions scores for faecal
metabolite concentrations from microbiome composition data, characterising the microbial component
of the faecal metabolome. Our work highlights how metabolomics and metagenomics in combination
with COBRA microbial community modelling can be utilised to improve mechanistic understanding,
generate hypotheses, and identify and validate biomarkers for metabolic functions in human health and
disease.

Results

Theoretical frameworks

The challenge presented by in vivo species-metabolite association studies, especially in observational
data, is to disentangle the various sources of correlation. To this end, we classify the various sources of
correlation between species and faecal metabolite concentrations in vivo. In a second step, we examine
how these sources of correlation influence in silico species-flux associations derived from COBRA
community models. Finally, to integrate species-metabolite association studies utilising faecal
metabolome data with COBRA modelling, we introduce herein a theoretical framework of how in silico
calculations refer to in vivo correlations, resulting in an analysis paradigm that allows for causal
inference on metabolome-microbiome relations.

Causal and confounding paths in species-metabolite associations in vivo

Statistical correlation between species abundances and metabolite concentrations in observational data
can result either of confounding or causation. We discuss first the causal paths by utilising directed
acyclic graphs [12] leading to species-metabolite association by physiological, biochemical, or
ecological mechanisms (Fig 1). First, a species can produce or consume a metabolite, directly
influencing the metabolite’s concentration (direct metabolic causation). Second, a species may produce
an intermediate, which is then converted by another microbe into the metabolite under consideration
(indirect metabolic causation); an effect, which can, for example, be seen in microbial bile acid
metabolism [17]. Third, a microbe can influence the abundance of another microbe via competition or
cooperation [20], which in return is causally linked to the metabolite (ecological causation). Fourth, a
microbe may modulate a physiological factor of the host (for example, inflammation [21]), which in
return may influence the concentration of the metabolite under consideration. Fifth, a microbe may also
modulate a behavioural factor, for example, dietary habits [22], which then impacts the metabolite’s
concentration (behavioural causation) (Fig 1).

However, confounding plays an equally important role as a source of correlation (Fig 1). Physiological
factors of the host, for example, constipation [23], may impact the abundance of a microbial species,
while also affecting a metabolite (physiological confounding), inducing correlation between the species
abundance and the metabolite, which are unrelated otherwise. Second, behavioural traits of the host, for
example, diet [24], may also influence microbial abundances and metabolite concentrations
(behavioural confounding). Additionally, another species may be causally related to the species of
interest, while impacting the levels of a metabolite (direct ecological confounding). Alternatively, a third
factor (microbial, physiological, or behavioural) may induce correlation between the species under
consideration and another species, which is causally linked to the metabolite’s concentration (indirect
ecological confounding). In all these scenarios of confounding, we would observe a correlation between
species abundance and metabolite concentrations without any underlying causal relation.

When determining associations by integrating metabolomic and metagenomic data, the various causal
and confounding paths are added up to one single association statistic (e.g., the regression coefficient),
making statistically significant associations difficult to interpret. Therefore, we need to integrate further
information into the interpretation of species-metabolite association to allow for causal inference. Next,
we show that COBRA community models can provide the necessary, additional context on the nature
of metabolite-species associations to allow for a more refined interpretation of association statistics.
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Causal and confounding paths in species-metabolite associations in silico

An individual COBRA microbial community model provides the metabolic secretion profile of the
microbial community under consideration by calculating maximal net production fluxes from a set of
diet constraints [16], the underlying genome scale reconstructions of the individual microbes, and the
measured composition of the microbial community. If we have a population of microbial communities
and their corresponding COBRA microbial community models, we can derive an in silico flux-species
correlation pattern by correlating the species abundances with the overall community net metabolite
production capacities. These association patterns, expressed in fluxes rather than concentrations, can be
seen as theoretical counterparts to the in vivo species metabolite association patterns from metabolome-
microbiome association studies. Importantly, as multiple studies have shown, variance in microbial
abundance, and thereby variance in metabolic secretion and consumption, influence the metabolic
profiles of the host [6, 8, 9]. Thus, if COBRA microbial community models are valid descriptions of the
actual microbial activity, then the variation in the in silico net secretion pattern translates into in vivo
variation in metabolite concentrations in the host. However, this assumption needs further theoretical
considerations, as COBRA microbial community models do not reflect all causal and confounding paths
effective in in vivo species-metabolite associations (Fig 1).

COBRA microbial community modelling allows calculating the direct contribution of a species to the
metabolic net production profile of a community, thereby quantifying the direct and indirect metabolic
causal effects [17]. Additionally, it allows for quantifying the ecological effects as well, although no
inference on the nature (i.e., causal vs. confounding) of the ecological effects can be made from
community modelling alone [25]. In essence, all confounding and causal pathways, which lead to
correlation among species abundances, impact the output of COBRA microbial community models,
explicitly including ecological causality and the two types of ecological confounding (Fig 1). Crucially,
if the diet is held constant across the interrogated population of the computational microbial community
models as done in [18, 19], in silico flux-species associations are independent of the concrete
physiological or behavioural attributes of the host, which means that neither physiological, or
respectively behavioural, confounding nor causality are represented. In conclusion, for in silico species-
metabolite associations derived from computational microbial community models, all sources for
species-metabolite correlation lay within the composition of the microbiome, while for in vivo species-
metabolite associations causal and confounding paths linked to physiological and behavioural variation
are also shaping the associating pattern.

Integrating in silico modelling with metabolome-microbiome association statistics

Based on these arguments, we can conclude that in the case of an in silico species-metabolite association,
the microbiome, at least in the computational model, is causally related to the metabolite under
consideration, while no conclusion about causality can be drawn for an in vivo association. However, as
in silico species-metabolite associations are model-based predictions, in silico associations alone
without empirical evidence remain hypothetical. Hence, combining metabolome microbiome
association studies with COBRA community modelling holds promise for overcoming the limitations
of each paradigm alone. In essence, for a given metabolite, if the species-metabolite associations in
silico and in vivo systematically correlate, we can conclude that the microbiome is causally related to
the metabolite and that the microbial community model is indicative of the net secretion or consumption
of the metabolite through the microbiome. If no systematic correlation between in silico and in vivo
association statistics is found, no conclusion can be drawn, as there are many reasons for missing
correlation, from a lack of statistical power over measurement error to physiological and behavioural
confounding or incomplete metabolic reconstructions of the microbes. For the same reasons, we should
not expect perfect correlation between the two classes of associations, as they do not share all causal
and confounding paths.

In silico in vivo association pattern analyses

These considerations lead to a methodological paradigm, called ‘in silico in vivo association pattern
analyses’, which integrates population statistics with constraint-based modelling. This paradigm
requires metagenomic data quantifying the microbiome at a body site, corresponding metabolomic
measurements from the host, a collection of microbial genome-scale metabolic reconstructions, such as
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provided by AGORA [4, 26], for generating the microbial community models, and adequate metadata
for controlling for important covariates, e.g., age, sex, and body mass index (BMI). Conceptually, in
silico in vivo association pattern analyses can be defined by three steps (Fig 2).
1) Step 1 (in vivo association pattern):
Calculate association statistics for the associations of metabolite concentrations with
and the species abundances conditional on a set of covariates.
2) Step 2 (in silico association pattern):
Calculate association statistics for the associations of community net metabolite secretion fluxes
as determined by COBRA microbial community modelling and the species abundances
conditional on a set of covariates
3) Step 3 (in silico in vivo pattern analyses):
Calculate regressions for each metabolite with the significant in vivo metabolite-species
association statistics as response variable and the corresponding in silico association statistics
as predictor. Test the resulting regression coefficients on zero. A significant regression
coefficient, and thus a significant in silico in vivo association pattern, indicates that the
microbiome is causally related to the metabolite under consideration.

The concrete statistical operationalisation (i.e., which covariates to include, questions of statistical
model parametrisations, and so on) is dependent on the concrete study design. The most canonical way
to retrieve association statistics is via a set on linear regression models (Fig 2). However, other statistical
paradigms could be used as well. For example, beyond correlating in vivo and in silico association
statistics in Step 3, one may compare the sign of the two types of association statistics via simple
hypergeometrical tests.

Summary of the theoretical part

In summary, we have established that in vivo species-concentration association statistics and in silico
species-flux association statistics theoretically share certain sources of variance, while they do not
completely overlap. Our theoretical considerations led consequentially to the hypothesis that for
metabolites, whose concentrations in the host are systemically influenced by variance of the gut
microbiome composition, we should see a substantial correlation between in vivo species concentration
association statistics and in silico species flux association statistics.

This hypothesis of correlating association statistics is testable via integrating metabolome data with
microbial community models based on metagenomic quantifications of the microbiome, as outlined in
the section on in silico in vivo association pattern analysis. The most direct test can be performed by
integrating computational community models of the gut microbiome with faecal metabolome data, being
physiologically closest to the gut microbiome, but the outlined principles hold for other compartments
and body sites as well (e.g., the oral microbiome and the saliva metabolome). Importantly, the
hypothesis requires COBRA microbial community models to be fundamentally valid in their capability
to predict actual metabolic activity. Testing the correlation of in vivo and in silico species-metabolite
association statistics delivers a fundamental model test of COBRA community modelling regarding its
ability to reflect the real metabolic activity of the gut microbiome.

Empirical results

For testing the theoretical framework outlined above, we utilised faecal metabolome and metagenomic
data from Yachida et al. [8]. First, we mapped the measured faecal metabolome data, reporting the
absolute concentrations for 450 metabolites, onto the AGORA collection of 818 microbial genome-scale
reconstructions [4]. We found that 106 metabolites were measured by the metabolome data and had an
exchange reaction in at least one microbial reconstruction. Of these 106 metabolites, 53 had values
above the limit of detection in the faecal metabolome for at least 50% of all observations and thus, they
were included into the subsequent analyses (Fig 2A, 2B). Second, we mapped the relative metagenomic
quantifications that had been reported by Yachida et al. [27]onto the AGORA collection. From 623
measured species, 363 were included in AGORA (2C). Next, applying personalised COBRA microbial
community modelling [16], we derived for each of the 53 metabolites the net production capacity under
an in silico average Japanese diet for 347 individuals, who had metabolome measurements (n=220
colorectal cancer cases; n=127 healthy controls). One observation from the cancer group was dropped
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for having zero net secretion for all metabolites due to an infeasible model configuration. Consequently,
the analysis sample consisted of n=346 individuals (Fig 2D). We then calculated the in vivo species-
concentration associations using the faecal metabolite measurements via multivariable regressions,
deriving the full faecal species-concentration association pattern (Step 1). Using the in silico metabolic
profile, we correlated the abundance of each species with the overall net community production capacity
analogously (Step 2), giving rise to an in silico species-flux association pattern (Step 3). The species-
association patterns were generated for all 148 microbial species (Fig 2C), which were found at least in
10% of all samples, resulting overall in 7844 species-metabolite associations. We generated two types
of in silico in vivo association pattern, i) one pattern with respect to the species presence, and ii) one
pattern with respect to the species abundance. For both patterns, we analysed the agreement in the sign
and the value of the in silico and in vivo association statistics, resulting overall in four sets of in silico
in vivo comparisons.

In vivo species presence metabolite association patterns are predicted by COBRA community models
In total, we found 2099 associations between faecal metabolite concentrations and species presence with
p<0.05, and 1208 associations with a false discovery rate <0.05 (FDR) with glutarate and glutamate
having the highest amount of significant species presence associations (Supplementary Table S1). For
adenosine, spermidine, riboflavin, and dodecanoic acid, we found less than 10 species presence
associations with p<0.05 (Supplementary Table S1). These four metabolites were dropped for missing
a clear statistical in vivo pattern. From the remaining 49 metabolites included into the analysis, in silico
species presence association pattern significantly predicted the sign of in vivo species-metabolite
associations for 25 metabolites with an FDR<0.05 (Fig 4, Supplementary Table S3). Regarding the value
of the in vivo association statistics, COBRA-based in silico association statistics correlated significantly
(FDR<0.05) for 27 metabolites with their corresponding in vivo association statistics (Fig 4,
Supplementary Table S3). Noteworthy, sign prediction has low statistical power if there is little variance
in the signs of the in vivo associations (e.g., all or nearly all associations are positive, respectively
negative). Still, for 23 metabolites, in silico associations predicted significantly (both FDR<0.05) sign
and size of in vivo species presence metabolite associations (Fig 4).

Importantly, for six metabolites (glutamate, methionine, N-acetyl-glucosamine, glutarate, uridine, and
5-methylthioadenosine) in silico associations were systematically inversed to the in vivo associations
(Fig. 4, Supplementary Table S4). In all these cases, microbial exchange directions were noted to be
bidirectional in the AGORA resource. The easiest explanation for this pattern is therefore to interpret
the secretion potential as a metric of net consumption. In an earlier work [25], the validity of this
interpretation was demonstrated for glutarate.

In vivo species abundance metabolite association patterns are predicted by COBRA community
models

Calculating the in vivo abundance faecal concentration association pattern via regressions, we found
1305 abundance concentration associations with an FDR<0.05 and 2267 associations with p<0.05 with
putrescine, alanine, and choline showing the largest numbers of species associations (Supplementary
Table S2). No metabolite showed less than ten associations with at least p<0.05, and thus all metabolites
were retained in the analysis. In respect to the sign of the association, the in silico association pattern
predicted significantly the sign for 12 metabolites with an FDR<0.05 (Fig 4, Supplementary Table S4).
However, in respect to the value of the association statistics, 44 out 53 metabolites showed a significant
correlation between in vivo and in silico association statistics with an FDR<0.05 (Fig 4, Supplementary
Table S4). As with the species presence association pattern analyses, we observed systematically
inversed associations for a range of metabolites, indicating that maximal net secretion fluxes represent
net consumption in these cases.

In silico in vivo association pattern analyses reveals broad causal microbiome-metabolome relations
Overall, in silico and in vivo association statistics significantly related to each other for 46 out of the 53
metabolites in at least one domain (i.e., value or sign for species abundance or species presence
association patterns, respectively). For threonine, glycerol-3-phosphate, succinate, hypoxanthine,
inosine, guanosine, and adenosine, we could not identify any significant in silico in vivo association
pattern. Importantly, from 46 association patterns, 14 were consistently discordant (negative correlations
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between in vivo and in silico association statistics), 29 consistently concordant (positive correlations
between in vivo and in silico association statistics), while histamine, adenine, and uridine showed mixed
concordant and discordant patterns (Fig 4A, Supplementary Table S3, S4). For illustration, Figure 5
displays examples of significant and insignificant, concordant and discordant association patterns,
showing the various degrees of correlations across the metabolites between in silico and in vivo
association statistics. In general, all significant pattern per metabolite should be consistent, as the
computed fluxes cannot indicate net consumption (discordant pattern) and net secretion (concordant
pattern) at the same time. Thus, these inconsistencies hint at model misspecifications at the statistical
level or at the level of COBRA community modelling, and the corresponding pattern for uridine,
histamine, and adenine cannot be rated as evidence for causal relations. In conclusion, as we found clear
pattern of correlation between in silico and in vivo association statistics, in silico in vivo association
pattern analyses revealed substantial causal contributions through the gut microbiome for the faecal
concentrations of 43 metabolites from a wide range of classes (Fig 4). However, in silico in vivo
association patterns were more pronounced for amino acids and amines than for nucleotides, hinting at
a higher variance contribution of the microbiome to the faecal metabolome in the domain of amino acid
metabolism than in nucleotide metabolism.

Prediction of the microbial component of the faecal metabolome

For certain metabolites, such as isoleucine (Fig 5), we found a very high correlation (r=0.95) between
in silico and in vivo association statistics, indicating that there is a linear function between changes in
community secretion fluxes and changes in log faecal concentrations. Note that this high correlation
was achieved without training the community models to predict the in vivo associations. The empirical
finding of such clear functional relationships between fluxes and concentrations indicates that it may be
possible to predict the microbial component of the faecal metabolome from the microbial abundances
via community modelling.

To further explore this possibility, we calculated in silico net concentration contributions based on the
retrieved linear relationships between fluxes and concentrations from the in silico in vivo association
pattern analyses (see Methods section for details). Therefore, we assumed that a change in species
abundance, respectively species presence, would result in a change of log metabolite concentration in
the faeces proportional to the corresponding change in the community net metabolite secretion flux. The
latter represents a strong assumption, although the assumption seems to be plausible for those
metabolites with a significant linear in vivo in silico association pattern.

We derived two set of prediction scores, one derived from the abundance association patterns and the
second from the presence association patterns. These two prediction scores can be seen as estimates of
the net concentration contribution of the microbiome to the faecal metabolome and therefore can be
conceptualised as the microbial part of the faecal metabolome. The species abundance metabolite
concentration prediction scores predicted significantly (FDR<0.05) the measured metabolite
concentrations for 27 metabolites (Supplementary Table S5). Notably, the metabolite concentration
prediction from species presence pattern was more successful with 50 metabolites being significantly
predicted (FDR<0.05) and with putrescine, isoleucine, and leucine being the top hits (Fig. 6A). R-
squared values reached maximally 25% in the metabolite concentration prediction from species presence
pattern (Fig. 6A) and 22% in the abundance species metabolite concentration prediction, indicating that
most of the variegation in the faecal metabolome is not causally related to the microbiome
(Supplementary Table S5). However, the multivariate structure of the in silico faccal metabolite
concentrations was partly reflective of the empirical correlation patterns (Fig. 6B). Especially, in silico
faecal concentration prediction scores from species presence patterns were able to reconstruct the
correlation structure for proteinogenic amino acids (Fig. 6C). Once again, the species presence
metabolite prediction scores outperformed visually the species abundance metabolite prediction scores.
In conclusion, in silico in vivo association pattern analysis allows for a characterisation of the microbial
component in the faecal metabolome, partly mirroring the multivariate structure of the faecal
metabolome. In this specific analysis, metabolite prediction based on species presence gave the best
results.
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Discussion

The microbiome contributes essentially to the human metabolism providing essential nutrients such as
vitamins and short chain fatty acids, which would be inaccessible otherwise [28]. Numerous studies
have been conducted to shine a light on the complex metabolic host-microbiome interplay, generating
insights from a diverse range of paradigms spanning experimental work [29-31], computational and
theoretical studies [11, 32] and statistical interrogation into the dependence patterns of observational
multi-omics data-sets [13, 33]. Herein, we bridge the gap between population statistics and in silico
COBRA community modelling to facilitate causal inference regarding metabolome-microbiome
relations in observational data.

For identifying causal relationships in observational data, either full information on relevant covariates
[34] or plausible instrumental variables (e.g., as utilised in Mendelian Randomisation [35]) must be
available. In the case of microbiome-metabolome association studies, information on relevant
covariates, such as diet, is typically missing and often difficult to assess reliably [13]. Moreover, while
certain genetic variants have been shown to be associated with the microbiome [36], the host genetic
signature is modest at best [37], making the identification of suitable genetic instrument variables to
perform Mendelian Randomisation difficult. Therefore, metabolome-microbiome associations are
difficult to interpret in causal terms, and indeed, simulation studies of microbial communities suggest
that naive interpretation would lead to a high level of false positives [11]. However, we demonstrate
that we can overcome these difficulties by systematically integrating in silico COBRA microbial
community modelling into statistical analyses of metabolome-microbiome datasets. On a conceptual
level, COBRA microbial community modelling delivers the additional biological context needed to
disentangle whether the microbiome is causally related to a metabolite or not.

Systematic in silico in vivo association pattern analyses revealed that most of the examined metabolites
are causally related to the microbiome (81.1 %, Fig. 4). The causal signature was especially clear for
amines and proteinogenic amino acids, while, relatively spoken, less pronounced for nucleotides. In a
previous study, we had modelled the microbiomes of paediatric inflammatory bowel disease patients
and healthy controls and predicted an increased amino acid potential in IBD microbiomes with dysbiosis
that was directly linked to the presence of Gammaproteobacteria [38]. Interestingly, metabolomic
measurements from the same samples had demonstrated increased faecal amino acid concentrations in
IBD patients that correlated with Proteobacteria abundances [39]. While in our previous study [38], we
could only indirectly compare in silico fluxes with metabolomic measurements, we here demonstrate
the value of such an integrated analysis and showcase that the availability of multiple types of omics
data for the same individuals can result in novel insight through re-analysis. The weak signature for
nucleotides could indicate a higher amount of contribution of the host to the faecal nucleotide
concentrations but may also point towards incomplete representation of microbial nucleotides
metabolism in the genome-scale reconstructions. Importantly, the predictive power of COBRA
microbial community modelling regarding in vivo species metabolite associations delivers a strong proof
of concept that community models based on genome-scale reconstructions indeed result in
quantifications of the actual metabolic activity of microbial communities.

We understand “causally related” in terms of the frameworks of Pearl [12]. It should not go unnoticed
that the theory of causal statistics, built on the backbone of directed acyclic graphs, is based on strong
assumptions, which can be justifiably challenged [40], especially in dynamic systems [41]. Moreover,
the chosen operationalisation of causal relation can be contra-intuitive. For example, it can be that a
microbial community produces a metabolite and that alterations in the community composition changes
the production rate without affecting substantially the concentration in the host for various reasons (i.e.,
saturated transport kinetics). In this case, the microbiome would not be causal for variation in the host,
while being causal for the production of the metabolite. This observation is also a reason, why in silico
modelling alone is not sufficient for determining causal relations between metabolite concentrations in
the host and species abundances. To give another example, in the case of the faecal metabolome, we
only saw a weak, yet significant in silico in vivo association pattern regarding propionate, a short chain
fatty acid known to be produced by the gut microbiome. In the case of strong intra- and interpersonal
variation in absorption of propionate, which is mainly metabolised by the liver, the influence of the gut
microbiome on faecal concentrations may be minor. This result indicates additionally that faecal
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propionate concentrations may not be good proxies for microbial propionate secretion. In contrast, in
silico in vivo association pattern analysis was remarkably successful regarding butyrate (Supplemental
Tables S3, S4), another short chain fatty acid produced by the microbiome, highlighting that faecal
butyrate pools are good indicators of the microbial community butyrate production. The examples of
propionate and butyrate show the value of in vivo in silico association pattern analyses to determine
which faecal concentrations can serve as good biomarkers of microbial metabolic activity. In future
studies, the influence of the host on faecal metabolite levels could be explored in simulations by
integrating the microbiome models with a whole-body model of human [42].

It is worth noting that in silico in vivo pattern analyses, strictly spoken, allows only for an inference on
whether the microbial community as a whole is causally related to a metabolite. As COBRA microbial
community modelling, at least in the herein applied form, cannot differentiate between ecological
causation and ecological confounding [25], causal inference on the species level, strictly spoken, is not
possible. One also may argue that causal inference on single species is not sensible due to systems nature
of microbial communities, making the concepts of causal inference on the species level more difficult
to apply. Nevertheless, in silico in vivo association pattern analyses can give insights into individual
species-metabolite relations. First, one can compute the direct contribution of a species to the total
community’s net secretion potential [17, 38]. If the species under consideration also shows a significant
species-concentration association, one may argue with some justification that a causal relationship was
identified. However, one must be careful, as a species can have a positive direct contribution to the net
secretion potentials, while displaying large negative ecological effects. An example of this was given in
Hertel et al. [25], where Fusobacterium sp. were demonstrated to contribute small amounts of butyrate
to faecal butyrate pools, while having large deleterious effects on community butyrate production. In
this case, low abundance of prominent butyrate producers, such as F. prausnitzii, in Fusobacterium sp.
containing communities resulted in an overall negative impact of Fusobacterium sp. on community
butyrate production [25].

Other potential insights in future studies could be won by analysing outliers in the in silico in vivo
association pattern. Outlier species (e.g., species having for example very strong in vivo associations,
while having low in silico associations values) may indicate physiological and behavioural influences
on metabolite-species associations not reflected in the in silico modelling. Thus, they could be target for
further investigations in the direction of the host’s physiology and behaviour. On the other hand, outliers
may also indicate incomplete genome-scale reconstructions. Thus, outlier analyses within in silico in
vivo association pattern analysis holds promise for increasing the knowledge base and pointing towards
species indicative of underlying physiological or behavioural processes.

For ten metabolites (Fig 4A), we could not identify significant or consistent in silico in vivo association
pattern. As already sketched in the theoretical results part, the reasons for missing in silico in vivo
association pattern can be manifold, making it impossible to disentangle the various possibilities and to
conclude that the microbiome has no systematic influence on those metabolites. Table 1 categorises the
different factors leading to missing association pattern into i) statistical, ii) biological, and iii) model-
based factors. Importantly, we are dealing with two types of modelling (statistical modelling and
COBRA modelling), each entailing their own set of assumptions. In particular, the need of sufficient
statistical power to detect in vivo metabolite-species associations means that in silico in vivo association
pattern analyses is bound to studies with medium to large sample sizes. Concrete sample size
requirements are difficult to give, as they depend on data quality and study design, but the presented
sample including 346 individuals with metabolome and metagenome data was sufficient for
comprehensive analyses of in silico in vivo association pattern.

Finally, we utilised the in silico in vivo association pattern to derive prediction scores for faecal
metabolite concentrations. The derived scores were able to reflect individual metabolite concentrations
as well as mirrored the multivariate structure of the faecal metabolome. Hence, one can conclude that
the microbiome is a large determining factor for the correlation structure of the faecal microbiome.

In contrast to pure machine learning approaches to predict metabolite concentrations from microbial
community composition, our approach includes through genome-scale metabolic reconstructions a
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wealth of knowledge into the construction of the prediction scores, avoiding “conceptual overfitting”
[43]. Basically, conceptual overfitting means that machine learning is blind to whether a source of
covariation is due to confounding or due to causality. Maximising statistical model fit can therefore lead
to parametrisations and statistical models, which may technically show the best fit, but do not
approximate what we are interested in on a conceptual level in terms of biology. In the case of
metabolome-microbiome studies, we are often interested in the part of the metabolome, which is
causally influenced by the microbiome. As our work shows, in silico in vivo association pattern analyses
is capable to characterise the microbial part of the faeccal metabolome. In contrast, machine learning
algorithms will deliver on the question, which part of the metabolome covariates with the microbiome
regardless of whether the covariation is caused by confounding or causation. Notably, the concrete
metabolome prediction scores are likely not to generalise to other human cohorts, as they are built on
the covariance structure of a specific case-control study researching colorectal cancer. This problem of
generalisability is common to machine learning studies and in silico in vivo association pattern analysis.
However, applied to a large representative, general population sample, in silico in vivo association
pattern analysis may present generalisable metabolite prediction scores, enabling to estimate the
metabolic contribution of the microbiome directly from the microbial composition in a replicable
manner.

Interestingly, the metabolome prediction via species presence association patterns was more successful
than the prediction via species abundance association pattern. This finding is paradoxical in the first
place, as species presence pattern carry less information than species abundance pattern since species
are treated as binary variables (present vs. not present). The worse performance of the species abundance
association pattern in predicting metabolite concentrations can have multiple reasons, both of biological
and of statistical nature. While the herein applied algorithm assumes linear functions between
abundances, change in fluxes, and change in log concentrations, the biologically true functions may look
very different, and the functional relationships may also be species dependent. In this case, it can be that
including the abundance information leads to worse performance, as it introduces substantial bias
because of false parametrisations. Another methodological problem could be seen in the compositional
nature of the abundance data, which is ignored in the applied prediction algorithm. Integrating
compositional approaches into the prediction from in silico in vivo association pattern analyses may
improve the performance in the future.

Regardless of future improvements, the successful prediction of metabolite concentration from
association patterns shows promise for applications, where biomarkers of microbial functions are
needed. For example, in pre- and probiotic interventions aiming at improving the butyrate production
may be supported by such butyrate prediction scores, delivering a direct proxy of community butyrate
secretion. Importantly, those scores can be superior to using butyrate quantification in the faeces, as
butyrate measurements in the host are also influenced by microbiome unrelated factors, lowering
arguably the statistical power to detect intervention effects.

Conclusions

We presented a theoretical framework integrating population statistics with COBRA community
modelling for causal inference on microbiome-metabolome relations. We then showed the feasibility
and validity of our approach on an empirical dataset, consisting of 346 individuals with faecal
metabolome data and faecal metagenomics. Conceptually, we validated thereby a methodological
framework to incorporate formalised knowledge about microbial biology in the form of genome-scale
models into statistical association analyses, bridging two major paradigms of systems biology. The
successful identification of significant in silico in vivo association pattern for 43 metabolites highlights
the validity of COBRA community models as theoretical model for actual microbial metabolic activity.
Importantly, the prediction of in vivo species metabolite associations was achieved without training the
COBRA community models on the given metabolome dataset. Limitations of the introduced
methodology lay within the limited possibilities to perform causal inference on the level of individual
species, and in the non-representation of behavioural and physiological causality, where the microbiome
influences physiological or behavioural attributes of the host and thereby the metabolome. The latter
aspect may be partially rectified in future studies by introducing personalised diet constraints and
comprehensive whole-body modelling [42] for a more holistic picture of host-microbiome metabolic
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interactions. Overall, this study highlights the value of integrating knowledge-based and data-driven
procedures to overcome the limitations of each paradigm alone.
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Methods

Study sample

The study sample consisted of the Japanese colorectal cancer cohort data obtained from [8], which
included for 347 individuals (220 colorectal cancer cases and 127 healthy controls) shot-gun sequencing
data for faecal metagenomics and mass spectrometric metabolome data including quantifications for
450 metabolites. Sequencing reads and taxonomic assignments had been performed using the
MetaPhlAn2 pipeline [27] Furthermore, meta-data on age, sex, and BMI were available and included
into the re-analyses of the data. For details on metagenomic and metabolomic measurements, refer to

[8].

Construction of sample-specific gut microbiota models

Relative abundances on the species level for the 347 samples were obtained from the supplementary
material (https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-019-0458-
7/MediaObjects/41591 2019 458 MOESM3 ESM.xlsx) [8]. In the first step, the quantified species
were mapped onto the reference set of 818 microbial metabolic reconstructions (AGORA) [4] utilising
the translateMetagenomeToAGORA.m function of the Microbiome Modelling Toolbox [16]. Next,
personalised microbial community models were generated via the mgPipe module of the Microbiome
Modelling Toolbox. First, pan-species models were built from AGORA version 1.03. For each
metagenomic sample, the AGORA pan-species models corresponding to the species present in the
metagenome were joined into one constraint-based microbial community reconstruction [16]. Next, the
flux through the reactions of each pan-species model was coupled with to the flux through the respective
biomass objective function (for details see [44]). Then, the community biomass reaction was
parametrised via the relative abundances as stoichiometric values for each individual microbe biomass
reaction. Finally, the community models were contextualised with constraints corresponding to an
average Japanese Diet constraints as described previously (see below, Table S6) [16]. Finally, the
community biomass reaction flux was set to be between 0.4 and 1 mmol/person/day, representing faecal
excretion of once every three days to daily.

Definition of an average Japanese diet

We used an average Japanese, as described in [26]. Briefly, the in silico Japanese diet was formulated
based on the average daily food consumption of 106 Japanese individuals extracted from food frequency
questionnaires and 28 days weighed diet records [45] (Table S6a). To convert the dietary information
into constraints (given in mmol/person/day) suitable for COBRA microbial community modelling, we
used the Diet Designer of the VMH database (https://vmh.life), which lists the composition of >8,000
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food items [46]. In the absence of a perfect match, the closest food item entry was retrieved (Table S6a).
The obtained uptake flux values were then applied to the uptake reactions present in each microbial
community model using the Microbiome Modelling Toolbox [16] (see below). Ensuring the growth of
all pan-species models under the defined diet, we refined the uptake fluxes as necessary (Table S6b).

Simulations

The net community secretion flux values were determined as described in [17], [18]. Briefly, for each
metabolite that could be transported by at least one AGORA model included in the community models,
flux variability analysis [47] was performed for the respective dietary and faecal secretion exchanges.
The net secretion fluxes, which correspond to the absolute value of the difference between the maximal
flux through the faecal secretion exchange reaction and the minimal flux through the corresponding
dietary uptake exchange reaction, were subsequently retrieved for each personalised model. All
simulations were performed in MATLAB (Mathworks, Inc.) version R2018b with IBM CPLEX (IBM)
as the linear and quadratic programming solver. The simulations were carried out using the COBRA
Toolbox [15] and the Microbiome Modelling Toolbox [16].

Statistical operationalisation of in vivo in silico association pattern analyses

In silico in vivo association pattern analyses consists of three steps. First, the in vivo association pattern
was determined by calculating the associations between species and metabolite concentration. Second,
the in silico association pattern between species and community net secretion fluxes was determined.
Third, the pattern of in silico association was analysed together with the pattern of in vivo associations.
The in silico in vivo association pattern analyses was performed on all 346 cases with valid COBRA
community models. All statistical analysis was performed within STATA 16/MP (Stata Inc., College
Station, Texas).

Species presence in vivo association studies

To generate the in vivo association pattern for species presence, we performed linear regressions with
the log faecal concentration as response variable, the species presence (binary: present vs. not present)
as predictor of interest, while including age, BMI, sex, and study group (binary: colorectal cancer vs.
healthy controls) as covariates. To account for potential heteroscedasticity, heteroscedastic robust
standard errors were used. This regression model was performed for each microbial species found in at
least 10% of the samples, resulting in 148 included species, and for all metabolites having non-zero
measurements in at least 50% of the cases, resulting into 53 metabolites included in the analyses. Note
that, by using log transformations for the faecal concentrations, we treated zero concentration measures
as missing values. We then retrieved the regression coefficient of the species presence variable, which
referred in this case to the difference in mean log concentration between the individuals having a certain
species in their gut microbiome and those not having this species conditional on the included vector of
covariates. To assess significance, FDR correction [48] was applied correcting for 148*53=7844 tests.
The regression model is given in equation (1) with ¥ ¢concentration; denoting the faecal concentration of

metabolite 7, ij the species presence of species j. The regression coefficient me,- is the coefficient of

interest.
(1) log(YConcentrationi) = bOij + bCpinpj + bzl-jAge + b3”BMI + b4i]-Sex + b5i]-Gr0up.

Full results can be found in the Supplementary Table S1.

Species presence in silico association studies

To derive the in silico species presence association pattern, community net secretion fluxes for the 53
metabolites measured in more than 50% of the cases were calculated as described above. Then, an
analogous series of regressions to the in vivo species presence metabolite association models were
performed exchanging the log faecal concentration with the net community secretion flux values. The
net community secretion flux values were not log transformed, because their distributions were not
consistently right-skewed as it was the case for the faecal concentrations. Then, the regression
coefficients of the microbial species presence variable were extracted. The corresponding regression
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model is shown in (2) with ¥y, denoting the faecal concentration of metabolite 7, X,,. the species
¢ J

presence of species j. The regression coefficient prL.]. is the coefficient of interest.
(2) YFluxi = bOij + prinp]' + bzi]-Age + bgl]BMI + b4ijSex + b5ijGroup

Full results can be found in the supplementary material (Table S3).

Species abundance in vivo association studies

To calculate the species abundance in vivo association pattern, we formulated analogous models to (1)
by exchanging the microbial species presence variable with the species abundance. All other aspects
remained the same. Full results can be found in Table S2.

Species abundance in silico association studies

The species presence in silico association pattern were derived via equation (2), exchanging the
microbial species presence variable for the species abundance. Once, again all other aspects of
regression modelling remained the same. Again, full results can be found in Table S4.

In silico in vivo association pattern analyses

We retrieved two pairs of association statistics (species presence pattern and species abundance pattern).
To analyse the in silico in vivo association pattern, we calculated for each of the 53 metabolites a linear
regression with the in vivo regression species metabolite regression coefficients as response variable and
the corresponding in silico regression coefficient as predictor using once again heteroscedastic robust
standard errors. Only microbial species-metabolite association pairs were included where the in vivo
association statistics were at least nominally significant (p<0.05). Metabolites with less than ten
nominally significant in vivo associations were excluded as they were missing a robust in vivo
association pattern. The utilised regression equation is displayed in (3) and the corresponding slope
B1i; was then tested on being zero. Note that bg; and bg; are now vectors of regression coefficients,
originating from the in silico and in vivo association studies of the metabolite i.

3 b¢ci = Boi + P1ibri

Significance of regression model (3) was determined after correction for multiple testing by using the
FDR accounting for 53 tests in the case of the abundance association pattern and for 50 tests in the case
of the species presence association pattern analysis.

In a second step, we analysed the agreement in sign of in silico and in vivo association statistics. This
analysis was done via hypergeometrical tests, where the sign of the in vivo association statistics was
tabulated against the sign of the in silico association statistics per metabolite. Once again, significance
was assessed after correction for multiple testing using the FDR. Note that the statistical power to detect
significant sign agreement depends on variation in the signs of the associations. Statistical power will
be low if nearly all associations have the same sign.

Prediction of the microbial component of the faecal metabolome

We derived prediction scores for the 53 metabolites utilising the in silico in vivo association pattern.
Two set of scores were derived: i) metabolite prediction scores based on the species presence in silico
in vivo association pattern, and ii) metabolite prediction scores based on the species abundance in silico
in vivo association pattern. The corresponding equations are given in (4) and (5).

4) Y, = Z§=1 anpj where a; = ﬁlibppij
(%) Yo = Z§=1 X, where a; = ﬁlibpaij
To validate the scores, we fitted linear regressions using the actual faecal concentrations as response
variables and the prediction scores as predictor of interest, resulting in two sets of 53 regressions.
Significance of prediction scores were evaluated after correction for multiple testing via the FDR.
Additionally, we calculated the correlation matrices of the net metabolite secretion capacities, the log

13


https://doi.org/10.1101/2021.03.15.435397
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435397; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

faecal concentrations, the metabolite prediction scores, comparing the in vivo correlations with the three
types of in silico correlation matrices via correlation heatmaps.
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Figures and Tables

Table 1: Classification of reasons for missing in silico in vivo association pattern

Statistical

Biological

COBRA modelling-based

Low Sample Size

Measurement error

Neglected nonlinearity

Violations against
assumptions, such as the
IID or normality
assumptions

Neglected interaction
terms

Low/zero net contribution of
the microbiome to metabolite
pools

Large variance in metabolite
levels due to the host‘s

physiology

Large variance in metabolite
levels due to diet variation

Systematic confounding by
behavioural or physiological
factors

Host-microbiome feedback
loops

Incomplete reconstructions

Gene mis-annotations

Wrong directionality of
transport reactions

Mis-specified constraints

Systematic error due to the
steady state assumptions

Optimisation problem solved
by flux balance analysis does
not reflect community
behaviour

[ID=independent and identically distributed
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Sources of correlation for microbe metabolite associations in vivo and in silico community modelling

Schematic directed acyclic graph for the source of correlation

Description

Effective in metabolite
species associations in vivo

Effective in community
production species associations
in silico

Types of confounding

Physiological confounding

Physiological
Factor

Metabolite

A physiological factor influences
the microbial abundance and the
metabolite concentration

YES

NO

Behavioral confounding

<>

Species A

A behavioural factor influences the
microbial abundance and the
metabolite concentration

YES

NO

Direct ecological confounding

Metabolite

|

A second species influences the
species under consideration the
microbial abundance and the
metabolite concentration

YES

YES

Indirect ecological confounding

= O]

Avariable
(physiological/behavioral/microbial)
causes correlation between the
microbe under consideration and a
causative microbe.

YES

YES

Types of causation

Direct metabolic causation

Metabolite

The microbes produces/consumes
the metabolite

YES

YES

Indirect metabolic causation

Metabolite B Species A

The microbes produces/consumes
a precursor to the metabolite

YES

YES

Ecological causation

Species B H Species A

|

The microbe influences the
abundance of biochemically
causative microbes .

YES

YES

Physiological causation

Physiological
Factor

Metabolite

Species A

The microbe changes a
causative physiological factor in
the host.

YES

NO

Behavioral causation

Behavioural
Factor

Species A

The microbe changes a
causative behavioural factor in
the host.

YES

NO

Figure 1: Causal and confounding paths in in vivo and in silico species metabolite association studies
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Calculate association statistics bg;; of faecal concentrations of the metabolites ¥; ] Change in faecal concentration
and the species abundances X; conditional on a set of covariates 5 per change in abundance
o
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E Each dot represents an individual.
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Step 3 (in silico in vivo pattern analyses): - L
3 IR L - s slope for metabolite /
Calculate regressions for each metabolite with the in vivo statistics b¢; as response 2 3 N .
Variable and the in silico statistics b, as predictor. 3 Change in species-concentration
B correlation per change in species-
(3) bei = Boi + Pribri 1 flux correlation
[
§ Each dot represents a species.
s
£

In silico regression slope

Figure 2: The three steps of in silico in vivo association pattern analyses operationalised in terms of
linear regression modelling.
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A Mapping of the measured faecal metabolome onto AGORA1 C Mapping of the detected species onto AGORA1

450 623

Species detected
Via MetaPhlAn2

Metabolites measured
In faecal metabolome

LOD=limit of detection

B Compounds included into in silico in vivo pattern analyses D Sample characteristics of the study
CRC Patients Healthy controls p-value
(n=219) (n=127)
Age, mean (SD) 62.4(10.06) 64.65(10.55) 0.026°
BMI, mean (SD) 23.05 (3.42) 22.96(2.78) 0.808°
W Proteinogenic amino acids Female, % 39.73% 44.09% 0.431°
. - Species richness, mean (SD) 70.37(17.51) 66.22 (16.04) 0.026°
o Nucleotide derivatives N
# metabolites produced, mean 157.28 (6.31) 157.48(6.50) 0.1232
 Amines (sD)
W Fatty acids # Reactions in community models, 83676.02 79181.86 0.030?
 Vitamins mean (SD) (19.761.21) (18226.52)

= Nonproteinogenic amino acids ~ CRC=Colorectal cancer, SD=Standard deviation,
B Organic acids ap-value from Welch t-tests, ®p-value from Fisher’s exact test
 Alcohol derivatives

= Aminosugar

B Amides

Figure 3: Overview on the utilised empirical dataset. A Mapping of the measured faecal metabolome
onto the AGORA resource of gut microbial metabolic reconstructions [4]. B Compounds included in
the in silico in vivo pattern analyses. C Mapping of the detected microbial species onto AGORA. D
Sample characteristics of the utilised study dataset.
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A Discordant and concordant in silico in vivo association pattern across all 53 metabolites

Proteinogenic Species Species Species Species Species Species
amino acids [ Other p Amines abundance | presence
Size Sign | Size _Sign Size Sign | Size  Sign Size  Sign | Size _Sign

Spermidine
Histamine

N-acetyl-D-glucosamine
Glutaric acid

L-Glutamic acid
L-Aspartic acid

L-Serine Urea . Choline. Significant concordant in silico
L-Methionine Dodecanoic acid Putrescine - N

L-Threonine Pantothenic acid Betaine in vivo pattern (FDR<0.05)
Glycine Propionic acid 1,5-Diaminopentane

L-Valine Butyric acid Nucleotide derivatives - SIgn{flcant discordant in silico
L-Leucine Tyramine in vivo pattern (FDR<0.05)

Hypoxanthine
Thymidine
Guanine

L-Lactic acid
Glycerol 3-phosphate

L-Isoleucine
L-Alanine

No significant in silico

L-Tyrosine Isovaleric acid oviidi
L-Phenylalanine| Niacinamide A;" ',"e in vivo pattern
L-Arginine Riboflavin 5 ;’“(':f"h ’
L-Tryptophan Thiamine ~Methylthioadenosine)
. L Uridine
L-Glutamine Ornithine 5-Thymidylic acid
L-Proline Succinic acid -Thymidyllc acl

. Guanosine
L-Asparagine .
Inosine

LLysine Adenosine
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Red and labelled: Significant concordant or discordant prediction of in vivo metabolite-species association pattern by in silico association pattern.

Figure 4: Overview on the in vivo in silico pattern association analyses for 53 faecal metabolites. A
Discordance (significant, inverse association between in vivo and in silico association statistics) and
concordance (significant, positive association between in vivo and in silico association statistics) for the
53 metabolites separated by metabolite class. Inconsistent pattern (uridine and thymidine) point towards
model misspecifications, either in the statistical models or in the COBRA modelling. B Vulcan plots for
the modelled metabolites displaying the strength of association (correlation and sign agreement,
respectively) against the -logl0 FDR. All significant patterns are labelled with the corresponding
metabolites.
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Figure 5: Examples for in silico in vivo association pattern with regression line and 95%-confidence
intervals. Each dot represents a species with the X-axis denoting the in silico association statistic and
the Y-axis denoting the in vivo association statistics. Association pattern for isoleucine (concordant),
N-acetyl-D-glucosamine (discordant) are significant, while for succinate no significant pattern could
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be identified. Significance of pattern is determined by a significant slope of the regression line and
significant sign (dis)agreement.
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Figure 6: Results of the prediction of the microbial part of the faecal metabolome. A Scatter plots with
regression lines and 95% confidence intervals for the three metabolites with highest R-squared values
after prediction from the species presence in silico in vivo association pattern. B Correlation heatmaps
for the 53 measured faecal metabolites, the corresponding metabolite prediction scores from species
presence in silico in vivo association patterns, the metabolite prediction scores from species abundance
in silico in vivo association patterns, and the raw net metabolite secretion capacities from community
modelling. Rows and columns of the correlation heatmaps refer to the 53 metabolites included into
modelling and the colour codes refer to the strength of the correlation between pairs of metabolites. C
Correlation heatmaps for the 19 measured proteinogenic amino acids included into modelling, the
corresponding metabolite prediction scores from species presence in silico in vivo association patterns,
the metabolite prediction scores from species abundance in silico in vivo association patterns, and the
raw net metabolite secretion capacities from community modelling. Rows and columns of the
correlation heatmaps refer to the 19 proteinogenic amino acids included into modelling and the colour
codes refer to the strength of the correlation between pairs of amino acids.
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