

1 Phagocytic “teeth” and myosin-II “jaw” power target constriction during phagocytosis

2

3

4 Daan Vorselen^{1*}, Sarah R. Barger^{2, 5*}, Yifan Wang³, Wei Cai³, Julie A. Theriot¹, Nils C. Gauthier⁴
5 & Mira Krendel²

6

7

8 ¹Department of Biology and Howard Hughes Medical Institute, University of Washington,
9 Seattle, WA, 98195, USA

10 ²Department of Cell and Developmental Biology, State University of New York Upstate Medical
11 University, Syracuse, NY, 13210, USA

12 ³Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA

13 ⁴IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy

14 ⁵Current address: Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT,
15 06511, USA

16

17 *These two authors contributed equally.

18 Correspondence: jtheriot@uw.edu and krendelm@upstate.edu

19 **Abstract**

20 **Phagocytosis requires rapid actin reorganization and spatially controlled force generation**
21 **to ingest targets ranging from pathogens to apoptotic cells. How actomyosin activity**
22 **directs membrane extensions to engulf such diverse targets remains unclear. Here, we**
23 **combine lattice light-sheet microscopy (LLSM) with microparticle traction force**
24 **microscopy (MP-TFM) to quantify actin dynamics and subcellular forces during**
25 **macrophage phagocytosis. We show that spatially localized forces leading to target**
26 **constriction are prominent during phagocytosis of antibody-opsonized targets. This**
27 **constriction is largely mediated by Arp2/3-mediated assembly of discrete actin protrusions**
28 **containing myosin 1e and 1f (“teeth”) that are interconnected in a ring-like organization.**
29 **Contractile myosin-II activity contributes to late-stage phagocytic force generation and**
30 **progression, suggesting a specific role in phagocytic cup closure. Observations of partial**
31 **target eating attempts and sudden target release via a popping mechanism suggest that**
32 **constriction may be critical for resolving complex *in vivo* target encounters. Overall, our**
33 **findings suggest a phagocytic cup-shaping mechanism that is distinct from cytoskeletal**
34 **remodeling in 2D cell motility and may contribute to mechanosensing and phagocytic**
35 **plasticity.**

36

37 **Introduction**

38 Phagocytic uptake of microbial pathogens, apoptotic cells, and debris are essential processes for
39 human health^{1,2}. Given the variety of phagocytic targets, ranging widely in shape, size and
40 mechanical stiffness, this process requires remarkable plasticity. Phagocytosis is initiated when
41 phagocytic receptors recognize distinct molecular patterns coating the target^{3,4}. Downstream
42 signalling from phagocytic receptors then leads to the formation of membrane protrusions, guided
43 around the target through sequential ligand engagement in a zipper-like fashion⁵⁻⁷, to make the
44 phagocytic cup. Mechanically, progression of the phagocytic cup is powered by F-actin
45 polymerization that pushes the plasma membrane forward and culminates in the eventual closure
46 of the cup and the formation of a membrane-enclosed phagosome⁸.

47 Previously, F-actin within the phagocytic cup was generally considered to be homogenous and
48 the membrane extensions around the target were frequently likened to lamellipodia at the leading
49 edge of a migrating cell^{7,9-11}. Yet recent studies have identified dynamic adhesions or podosome-
50 like structures within the phagocytic cup that appear to be sites of actin polymerization^{12,13}.

51 Podosomes are specialized F-actin adhesive structures that are prominent in myeloid cells and
52 capable of generating traction forces and degrading extracellular matrix^{14,15}. This suggests a
53 fundamentally different mechanism for cup shaping (assembly of individual actin-based
54 protrusions vs. a uniform actin meshwork), and since podosomes are mechanosensitive¹⁵⁻¹⁷, they
55 may contribute to the mechanosensitivity observed in phagocytosis, whereby phagocytes engulf
56 stiffer targets more readily than softer ones^{8,18-21}.

57 Moreover, the mechanism of cup closure and the involvement of myosin motor proteins therein
58 has remained elusive. Based on observations of phagocytes deforming red blood cells during
59 internalization²²⁻²⁴, it has been hypothesized that closure of the phagocytic cup involves myosin-
60 II mediated "purse-string" contractility^{25,26}. However, the limited effect of myosin-II inhibition on
61 phagocytic uptake efficiency^{27,28} and on traction forces tangential to the target surface has led to
62 the view that myosin-II likely does not contribute to phagocytic internalization⁷.

63 It is clear that phagocytosis is driven by mechanical forces, but examining these forces has been
64 challenging due to the limitations of experimental approaches. Changes in cellular tension during
65 phagocytosis measured by micropipette aspiration have been well studied^{29,30}, but this technique
66 fails to capture cell-target forces and the spatial variation within the phagocytic cup. Recently,
67 traction force microscopy (TFM) combined with a 2D spreading assay known as frustrated
68 phagocytosis has been used to measure cell-target forces^{12,20,25,31}, however, this assay fails to
69 capture the biologically relevant geometry of the phagocytic cup, which very likely affects
70 cytoskeletal dynamics and force generation. Moreover, TFM only measures forces tangential to
71 the target surface, neglecting forces normal to the target surface, which may be critical. With the
72 recent introduction of particle-based force sensing methods^{32,33}, particularly microparticle traction
73 force microscopy (MP-TFM)²¹, both normal and shear force components can now be studied
74 throughout phagocytosis.

75 Here, we utilize live-cell imaging combining MP-TFM and lattice light-sheet microscopy (LLSM)
76 to reveal how mechanical forces generated by actin polymerization and myosin contractility drive
77 phagocytic engulfment mediated by Fc receptors (FcRs). We show that phagocytes assemble F-
78 actin "teeth" that mediate target constriction throughout phagocytosis. Analysis of forces shows a
79 unique signature, in which target constriction, or squeezing, is balanced by pulling forces at the
80 base of the phagocytic cup at early stages and target compression throughout the cup at later
81 stages. Together, normal forces far exceed shear forces at the cell-target interface, pointing to a
82 mechanism fundamentally distinct from lamellipodial spreading in cell motility. We find that target
83 constriction is mediated by Arp2/3-mediated actin polymerization throughout phagocytosis.

84 Moreover, based on both force analysis and precise quantitative measurement of cup
85 progression, we establish a clear role for myosin-II purse string contractility, specifically in
86 phagocytic cup closure. Finally, we present how this force signature might be critical for target
87 selection and ingestion in more complex physiological settings.

88

89 **Results**

90 **Lattice light-sheet microscopy (LLSM) reveals sequence of target deformations induced 91 during live phagocytic engulfment**

92 Given the fast, 3D and light-sensitive nature of phagocytosis, we used lattice light-sheet
93 microscopy (LLSM) for high-speed volumetric imaging with minimal phototoxicity to investigate
94 cytoskeletal dynamics and phagocytic forces. To monitor internalization in real time, RAW264.7
95 macrophages were transfected with mEmerald-Lifeact for labelling of filamentous actin and were
96 fed deformable acrylamide-co-acrylic acid-microparticles (DAAMPs) (Fig. 1a). To investigate
97 FcR-mediated phagocytosis, DAAMPs were functionalized with BSA and anti-BSA IgG, as well
98 as AF647-Cadaverine for visualization²¹ (Fig. 1b). RAW macrophages fed DAAMPs with a
99 diameter of 9 μ m and a Young's modulus of 1.4 or 6.5 kPa typically formed a chalice-shaped
100 phagocytic cup and completed phagocytosis in similar timeframe (~3 minutes) as previously
101 reported for polystyrene particles³⁴ (Fig. 1a, Supplementary Video 1, Supplementary Fig. 1e). 3D
102 shape reconstructions of the DAAMPs enabled us to examine target deformations as a direct
103 readout of phagocytic forces in real time (Fig. 1b-c). Interestingly, we observed target constriction
104 defined by discrete spots of deformation that appeared around the circumference of the DAAMP
105 at the rim of the phagocytic cup (Fig. 1d, Supplementary Video 2). While these deformations were
106 more apparent using the softer 1.4 kPa DAAMPs, the same force pattern was observed using
107 stiffer 6.5 kPa targets (Supplementary Fig. 1a-b, Supplementary Video 3). These indentations
108 travelled parallel to the direction of phagocytic cup elongation, along the length of the DAAM
109 particle until cup closure and were associated with ~400 nm maximum target constriction for 1.4
110 kPa DAAMPs (Supplementary Fig. 1c). In addition, we observed bulk compression during
111 phagocytic cup progression (~ 0.5 kPa) and after complete internalization of the DAAMPs (up to
112 1.5 kPa), leading to a dramatic reduction in DAAMP diameter (Supplementary Fig. 1f-h). The
113 spherical appearance of targets and the gradual monotonic increase in compression after
114 completion of engulfment suggests that this compression may relate to the recently observed
115 shrinkage of internalized macropinosomes by osmotic pressure changes regulated by ion flux³⁵.
116 However, we sometimes observed the appearance of an F-actin shell around the target, similar

117 to previous reports³⁶, suggesting that cytoskeletal forces may also contribute to such compression
118 (Supplementary Fig. 1i, Supplementary Video 4).

119

120 **Forces normal to the target surface are dominant during phagocytic engulfment and lead**
121 **to strong target constriction**

122 To more closely investigate the role of the actin cytoskeleton in force generation during FcR-
123 mediated engulfment, we performed MP-TFM measurements on cells fixed during the process of
124 phagocytosis. RAW macrophages were exposed to 9 μ m, 1.4 kPa DAAMPs, after which they
125 were fixed and stained for F-actin (Fig. 2a). Immunostaining of the exposed particle surface
126 allowed precise determination of the stage of engulfment (Supplementary Fig. 2a). Confocal Z-
127 stacks of phagocytic cups enabled 3D target shape reconstructions with super-resolution
128 accuracy and inference of cellular traction forces (Fig. 2b,c). The deformation patterns and
129 magnitudes for the fixed samples were similar to those observed in living cells by the LLSM
130 imaging of live cells (Fig. 2b, Supplementary Fig. 1d & 2b). Specifically, we noted a ring of
131 inhomogeneous F-actin localized along the rim of the phagocytic cup, where high F-actin intensity
132 strongly correlated with inward target deformation.

133 Force analysis revealed compressive stresses up to 400 Pa at these sites, which is substantially
134 greater than our previous findings of stresses of \sim 100 Pa using softer targets with Young's
135 modulus 0.3 kPa²¹, and suggests that force exertion during phagocytosis may be regulated based
136 on target rigidity. The total compressive forces in the phagocytic rim, which lead to target
137 constriction, increased from \sim 1 nN in early-stage phagocytosis (fraction engulfed \sim 22%) to \sim 10
138 nN in later stages (fraction engulfed $>$ 50%) (Fig. 2c). The shear forces (Fig. 2c) were consistent
139 in magnitude with reported values using TFM during frustrated phagocytosis on planar gels of
140 similar rigidity³¹ and were \sim 7-fold lower than the observed normal forces, independent of the stage
141 of phagocytic engulfment (Fig. 2d). This suggests that normal forces dominate the mechanical
142 interaction in phagocytosis, which is in stark contrast with lamellipodial extension during cell
143 migration where shear forces dominate^{37,38}.

144

145

146

147 **Target constriction coincides with the sites of F-actin accumulation and increases with**
148 **uptake progression**

149 To identify overall trends in F-actin distribution and location of target deformations within the
150 phagocytic cup, we aligned the 3D images of phagocytic cups and analyzed profiles along the
151 phagocytic axis, defined as the axis from the centroid of the cell-target contact area through the
152 target centroid to the opposing target surface (Fig. 2e). This analysis confirmed a clear
153 accumulation of F-actin near the front of the phagocytic cup (~ 5-fold higher than at the cup base),
154 which precisely colocalized with the site of maximal applied inward normal forces regardless of
155 engulfment stage, as illustrated by quantifying the surface mean curvature (Fig. 2f).

156 To investigate how phagocytic forces change during phagocytic progression, we arranged cups
157 in order by the fraction of their particle surface engulfed, which allowed us to reconstruct
158 phagocytic engulfment over time from fixed cell images (Fig. 2g, Supplementary Fig. 2b). Since
159 DAAMPs cause little optical distortion, measurable features of the phagocytic cups could be
160 analyzed independent of cup orientation and engulfment stage²¹. We found no marked
161 accumulation of cups at any specific stage, suggesting no bottle-neck or rate-limiting steps, which
162 had been previously reported around 50% engulfment³⁹. However, we did observe a strong
163 increase in global target deformation, measured as the inverse of target sphericity, with
164 phagocytic progression (Spearman's $\rho = -0.62$, $p = 5.0 \times 10^{-8}$) (Fig. 2h). This decrease in target
165 sphericity was, at least partially, due to a $4 \pm 1\%$ ($p = 1.9 \times 10^{-7}$) average increase in DAAMP
166 elongation along the phagocytic axis (Fig. 2h), which is consistent with constriction in the direction
167 orthogonal to the phagocytic axis. Direct analysis of target constriction and F-actin peak intensity
168 for each phagocytic cup (Fig. 2i, Supplementary Fig. 6a) revealed an apparent contractile ring in
169 almost all (~96%) of cups. The location of this actin contractile ring along the phagocytic axis
170 correlated extremely well with phagocytic progression ($\rho = 0.93$, $p = 3.2 \times 10^{-29}$) and led to target
171 constriction increasing from ~80 nm in early-stage (fraction engulfed < 40%) to ~210 nm in late-
172 stage cups (fraction engulfed >70%), which is a direct effect of increasing normal forces at the
173 cup rim (Fig. 2j). Strikingly, in early stages of phagocytosis net pulling (or outward normal) forces
174 were observed throughout the phagocytic cup and particularly at the base (~ 3 nN total force, >
175 100 Pa tensile stresses) (Fig. 2j), whereas in late-stage phagocytosis strong net compressive
176 stresses were observed.

177

178 **Arp2/3-mediated actin polymerization drives force generation throughout phagocytosis,**
179 **whereas myosin-II powers cup closure**

180 The striking observations of target constriction becoming more pronounced later in engulfment
181 inspired us to consider distinct contributions of actin assembly and myosin-mediated contractility
182 to force generation during phagocytosis. In order to separate the effects of these two actin-
183 dependent processes, we inhibited Arp2/3-mediated and formin-mediated actin polymerization,
184 as well as myosin-II activity using the small molecule inhibitors CK666, SMIFH2 and blebbistatin,
185 respectively (Fig. 3a, Supplementary Fig. 3-5). Target deformation analysis and force calculations
186 revealed that target constriction was strikingly diminished upon inhibition of the Arp2/3 complex
187 and myosin-II activity, while formin inhibition had a relatively modest effect (Fig. 3c-d,
188 Supplementary Fig. 6b, 6d). The loss of target constriction coincided with a strong reduction
189 (~40%) in F-actin accumulation at the rim of the cup, as well as a 50% broadening of the typical
190 narrow (~ 2 μ m) F-actin band observed in the DMSO control (Fig. 3b,d,e, Supplementary Fig. 6c).
191 Of note, upon myosin-II inhibition, the loss of F-actin at the rim of the cup was complemented by
192 a small, but significant ($p = 0.04$), increase in F-actin density at the base of the cup (Fig. 3d,f).
193 This observation suggests that myosin-II may be promoting actin disassembly at the base of the
194 phagocytic cup during internalization, similar to the role of myosin-II in disassembling the F-actin
195 network at the cell rear during cell motility⁴⁰.

196 We next investigated whether the activity of these molecular players may be associated with
197 specific phagocytic stages. Our analysis revealed a significant change in the observed distribution
198 of cup stages upon myosin-II inhibition, but not Arp2/3 or formin perturbation, compared to DMSO-
199 treated control cells (Fig. 3g). Specifically, in the blebbistatin-treated cells, we found a > 6-fold
200 enrichment of cups that were beyond 90% engulfment, but not yet closed ($p = 1.9 \times 10^{-4}$). This high
201 prevalence of late-stage phagocytic cups suggests a specific role for myosin-II in cup closure.
202 Throughout phagocytosis, general particle deformations, as measured by the decrease in target
203 sphericity, were strongly reduced upon both CK666 and blebbistatin treatment (Fig. 3h). Inhibition
204 of formins generally reduced target deformations, but also increased the cell-to-cell variability in
205 particle deformation, suggesting that formins may play a role in fine-tuning phagocytic force
206 production (Fig. 3h). Whereas overall target deformations were reduced in all stages of
207 phagocytosis upon Arp2/3 inhibition, myosin-II inhibition only significantly affected phagocytic
208 force generation at later stages, after 50% engulfment (Fig. 3h). A similar effect was observed
209 when quantifying target constriction specifically (Fig. 3i). Thus, in contrast to the prevailing view

210 that myosin-II is dispensable for phagocytosis^{7, 27,28}, this analysis strongly suggests that there is
211 a specific role for myosin-II in contributing to the efficiency of late-stage phagocytosis.

212

213 **Actin-based protrusive teeth drive target constriction and are mechanosensitive**

214 Based on our observations of discrete spots of inward deformation using MP-TFM (Fig. 1a,b, Fig.
215 2a,b), and the significant reduction in target deformation after treatment of cells with the Arp2/3
216 inhibitor CK666, we hypothesized that these local deformations were the result of actin-based
217 protrusions pushing against the surface of the phagocytic target. Indeed, we frequently observed
218 actin rich puncta that appeared as oblong or triangular tooth-like projections locally indenting the
219 target surface along the internal rim of the phagocytic cup (Fig. 4a) and sometimes deeper within
220 the cup (Fig. 4b). Similar actin “teeth” were formed by primary murine bone-marrow derived
221 macrophages (BMDM), bone marrow-derived dendritic cells (BMDC) and HL-60 human
222 neutrophils when challenged with IgG-functionalized DAAMPs, suggesting that these structures
223 are a common feature of phagocytosis (Fig. 4c).

224 To investigate the nature and biological function of these actin “teeth” more carefully, we identified
225 them on individual particles based on their protrusive nature and high F-actin intensity
226 (Supplementary Fig. 7a,b). According to these criteria, teeth were found in almost all phagocytic
227 cups, with ~10 distinct teeth per cup (Fig. 4d). Typically ~1 μ m in diameter, and protruding ~200
228 nm into the 1.4 kPa DAAMP targets, they resembled podosomes in size and protrusive nature¹⁶.
229 Cells treated with the Arp2/3 inhibitor CK666, and to a lesser extent cells treated with the formin
230 inhibitor SMIFH2, exhibited a reduction in the number of actin teeth per cup (80% and 40%
231 reduction, respectively) compared to control cells treated with DMSO (Fig. 4d). This result
232 suggests that, like podosomes¹⁷, target-deforming phagocytic teeth include both Arp2/3- and
233 formin-nucleated actin filaments. Surprisingly, a strong decrease (~50%) in the number of actin
234 teeth was also observed upon myosin-II inhibition. For all treatments, the reduced number of
235 individual teeth that still formed were remarkably similar to those formed by control cells. Although
236 tooth size and depth were reduced upon CK666 or blebbistatin treatment, the effect size was
237 small (< 15%), suggesting that “teeth” are resilient structures that, once formed, have well-defined
238 properties (Fig. 4d).

239 LLSM allowed us to track the dynamics of actin teeth during phagocytosis (Fig. 4e), which
240 revealed clear forward movement over the target surface. A few teeth that we initially detected
241 near the rim stayed in place, remaining where they had assembled during early-stage

242 phagocytosis, suggesting that teeth located deeper within the phagocytic cup (as observed in the
243 fixed cell images) may have originated earlier from the cup rim and been left behind as the cup
244 progressed (Fig. 4b, Supplementary Fig. 7e). More commonly, however, teeth moved forward
245 with a speed of ~5.6 $\mu\text{m}/\text{min}$, similar to the previously reported values for podosome-like
246 structures on very stiff substrates during frustrated phagocytosis⁴¹. Strikingly, teeth within the
247 same phagocytic cup appeared to move in a coordinated fashion, with similar speed and direction,
248 and even with observed collective speed changes (Fig. 4e, Supplementary Fig. 7d). This suggests
249 that phagocytic teeth, like podosomes^{42,43}, are mechanically interlinked at the mesoscale.

250 To test whether the actin teeth were mechanosensitive, we challenged RAW macrophages to
251 ingest 9 μm DAAMPs of 1.4 or 6.5 kPa and fixed and stained cells to examine actin teeth
252 formation. Interestingly, RAW macrophages assembled actin teeth more frequently when fed
253 softer targets (Fig. 4i), suggesting that phagocytic teeth may play a role in the overall
254 mechanosensitivity of phagocytosis^{8,18–21}.

255 Given the ring-like organization of phagocytic teeth in the cup rim, combined with their individual
256 protrusive activity, we questioned whether they were sufficient to explain our observations of
257 target constriction orthogonal to the phagocytic axis, or if a separate contractile mechanism is
258 required. We first distinguished the teeth positioned at the rim of the cup (~70% of teeth), which
259 likely contribute to target constriction, from those deeper in the cup, based on their distance from
260 the cup rim (Fig. 4f, Supplementary Fig. 7c). We then determined whether the properties of teeth
261 near the rim correlated with the overall target constriction. Indeed, the number of teeth per cup
262 and tooth size correlated with overall constriction in DMSO treated cells and between groups
263 treated with actomyosin activity inhibitors CK666, SMIFH2 and Blebbistatin (Fig. 4g,
264 Supplementary Fig. 7f). We further examined whether changes in the teeth could be related to
265 increasing target constriction with phagocytic cup progression. Teeth numbers increased only
266 slightly with phagocytic progression, which suggests that they are formed quickly early on in
267 phagocytosis and are then typically maintained at constant numbers throughout engulfment (Fig.
268 4h). Teeth size and depth increased significantly but modestly during phagocytic progression (Fig.
269 4h, Supplementary Fig. 7g). Elasticity theory simulations of teeth-like indentations of a spherical
270 target allowed us to test whether teeth protrusive activity is sufficient to explain the extent of
271 overall target constriction in different stages of phagocytosis (Supplementary Fig. 8).
272 Remarkably, this revealed that teeth activity is indeed sufficient to account for total target
273 constriction in early-stage phagocytosis (< 50% engulfment), but insufficient to explain the greater
274 degree of target constriction later in the process (Fig. 4j). This is consistent with additional myosin-

275 II based contractile forces in late-stage phagocytosis, as suggested by our observations using
276 Blebbistatin.

277

278 **Regulators of branched actin assembly (Arp2/3 and WASP) and myosin-I isoforms**
279 **localize to actin teeth while myosin-II forms contractile rings within the phagocytic cup**

280 Due to the resemblance of the phagocytic actin teeth to podosomes in size, protrusive activity
281 (Fig. 4d) and dynamics (Fig. 4e), we naturally questioned whether these structures were similar
282 in protein composition as well. Given technical challenges with immunohistochemical staining and
283 MP-TFM (see methods), we transfected the RAW macrophages with fluorescently tagged
284 proteins to assess tagged protein localization relative to the actin teeth using 3D reconstructions
285 of the DAAMP (Fig. 5a-b). Consistent with our earlier results showing a decrease in the number
286 of teeth after treating cells with the Arp2/3 inhibitor, we found that the Arp2/3 complex and its
287 activator, WASP, colocalized with the actin teeth. Moreover, cortactin and cofilin, actin-binding
288 proteins that are frequently found in association with densely branched actin networks, also
289 localized to the phagocytic teeth (Supplementary Fig. 9a). In contrast, myosin-II often appeared
290 distinctly behind the actin teeth in an anti-correlated fashion (Fig. 5b). In particular, rings
291 composed of myosin-II filaments could be seen within the phagocytic cup (Fig. 5a). In phagocytic
292 cups that were further along the engulfment process, myosin-II coalesced into a ring behind the
293 actin rim (Supplementary Fig. 9b) and clearly localized at sites of target constriction in cases of
294 extreme target deformation (Fig. 5c). Meanwhile, the two long-tailed myosin-I isoforms, myo1e
295 and myo1f, localized specifically to the tips of the actin teeth, consistent with our previous
296 observations (Fig. 5a)¹². Two formins tested, mDia2 and FHOD1, did not localize to phagocytic
297 actin teeth (Supplementary Fig. 9c).

298 Given both recent and older observations identifying adhesion adaptor proteins at the phagocytic
299 cup^{18,44}, we were particularly interested in the localization of paxillin and vinculin. In comparison
300 to the branched actin-binding proteins, both paxillin and vinculin localized behind the phagocytic
301 teeth in a punctate-like pattern (Supplementary Fig. 9d). Altogether, these studies support a
302 model where the actin teeth are composed of branched actin filaments guided by myosin-I motor
303 proteins. The localization of myosin-II and paxillin/vinculin behind the teeth suggests that these
304 proteins may contribute to the mechanical interconnection of the teeth, similar to podosomes on
305 2D surfaces^{17,43}.

306

307 **Contractile activity may enable resolution of phagocytic conflicts via partial target eating**
308 **(“nibbling”) or forfeit of uptake (“popping”)**

309 While we have found that target constriction is a signature mechanical feature of FcR-mediated
310 phagocytic progression, it is unclear what functional role target constriction might play during
311 phagocytosis, since actin-driven membrane advancement along the target surface should in
312 principle be sufficient for internalization^{45,46}. In addition to the many successful internalization
313 events we observed using LLSM, we also observed some strikingly different target encounters in
314 which RAW macrophages assembled large amounts of F-actin, only to squeeze futilely at the
315 base of the target without completing engulfment. In these cases, the contractile activity resulted
316 in dramatic deformations and even dumbbell-like appearance of the target (Fig. 6a,b,
317 Supplementary Video 5). In addition to this kind of internalization failure by single cells, we also
318 observed incidents where two macrophages engaged one DAAMP target. Similar to previous
319 observations of red blood cells (RBCs) being squeezed into multilobed shapes when attacked by
320 two macrophages simultaneously²², these conflicts were also observed using primary BMDMs
321 challenged with DAAMPs (Supplementary Video 6). Although the polymeric targets used in this
322 study prohibit partial target eating because each particle is effectively one single crosslinked
323 macromolecule that cannot easily be severed by cell-scale forces, this behavior may be
324 reminiscent of trogocytosis, the process which has been observed during immune cell attack of
325 cancer cells whereby phagocytes ingest small bits of their target⁴⁷⁻⁴⁹. By imaging RAW
326 macrophages transfected with GFP-NMMIIA, we observed highly enriched rings of myosin-II
327 signal at DAAMP deformations during attempts of partial target eating (Fig. 6c, Supplementary
328 Video 7). Target encounters involving extreme deformations of the DAAMP also revealed the
329 existence of a “popping” mechanism that could lead to a sudden release of the target
330 (Supplementary Video 8) or, conversely, a sudden completion of engulfment (Supplementary
331 Video 9, Supplementary Fig. 10). During such events, targets were first gradually deformed to a
332 dumbbell-like shape, followed by a sudden translocation of the particle, as well as an immediate
333 recovery of its original spherical shape and volume (Fig. 6d, Supplementary Video 7). The rapid
334 timescale of this process suggests that it is likely purely mechanical, representing an elastic recoil
335 of the DAAMP. Importantly, these encounters were rather common, with the attempted partial
336 eating attempts (~14%) and popping (~24%) making up almost 40% off all recorded events (Fig.
337 6e). Furthermore, such events, and specifically popping, were mechanosensitive and occurred
338 much less frequently for stiffer 6.5 kPa targets (~1%, n = 89, p = 1.5 × 10⁻⁶), resulting in the overall
339 more frequent failure of phagocytosis for soft particles (Fig. 6f).

340 **Discussion**

341 Through the combination of LLSM and MP-TFM, we report here a detailed analysis of the
342 mechanical progression of phagocytosis and the contributions of several key molecular players.
343 Most importantly, we have discovered that FcR-mediated phagocytosis occurs through a unique
344 mechanism in which normal forces dominate over shear forces in the cell-target interaction. This
345 is in contrast to the current view that the phagocytic cup is equivalent to the leading edge of a
346 migrating cell, where shear forces typically predominate at the cell-substrate interface^{37,38}. In
347 addition, the fast forward movement of actin teeth, which underlie target constriction, concomitant
348 with phagocytic cup progression across the target is in stark contrast to lamellipodial focal
349 adhesion complexes (FAs), which are fixed relative to the substratum³⁸. The strong target
350 constriction recently observed in complement-mediated phagocytosis by peritoneal macrophages
351 *in vitro*⁵⁰, and in phosphatidylserine-mediated phagocytosis by epithelial cells in zebrafish
352 embryos⁵¹ suggests that strong normal forces and target constriction are likely a general feature
353 of phagocytosis.

354 We show that normal forces are primarily generated by protrusive phagocytic actin “teeth” and
355 myosin-II contractility, which make distinct contributions to target constriction. While actin-based
356 puncta have been previously observed during phagocytosis of stiffer polystyrene beads^{12,13}, their
357 presence in multiple phagocytic cell types (Fig. 4c) suggests a common role in phagocytosis.
358 These structures are podosome-like in protein composition, consisting of mostly branched F-actin
359 and actin regulatory proteins. Accordingly, inhibition of the Arp2/3 complex dramatically reduces
360 tooth number and size and consequently reduces target constriction. Unexpectedly, myosin-II
361 motor inhibition also reduces tooth number and size, albeit to a lesser extent than Arp2/3
362 inhibition, and also alters tooth spatial distribution (Supplementary Fig. 7c). In podosomes,
363 myosin-II filaments interconnect radial actin fibers of individual podosomes to create a coherent
364 network⁴³. The localization of myosin-II behind and in between teeth, as well as the coordinated
365 movement of teeth, suggests that actin teeth in phagocytosis are similarly interconnected by
366 actomyosin structures. This molecular arrangement of actin teeth (Fig. 7a) bears similarity to the
367 organization of podosome rosettes¹⁴, and we show that they possess a similar mechanosensitivity
368 (Fig. 4j)¹⁵⁻¹⁷. We find that individual teeth grow larger and stronger with phagocytic progression,
369 correlating with increasing myosin-II constriction observed in late-stage phagocytosis (Fig. 7a).
370 These observations may relate to the force feedback mechanism observed in Arp2/3 mediated
371 branched actin networks *in vitro* showing that mechanical resistance makes self-assembling actin
372 networks stronger⁵². Thus, increased myosin-II contraction in late-stage phagocytosis may

373 promote stronger actin teeth. This rapid structural reinforcement by myosin-II has not been
374 described for actin cores of podosomes on 2D, making this feature unique to phagocytosis.

375 We further show that myosin-II plays an important role in phagocytic cup closure – a stage in
376 phagocytosis that has been notoriously difficult to study experimentally⁵³ (Fig. 7a). Generally,
377 myosin-II is not deemed important for cup closure or phagocytic progression^{7,22}, yet we observe
378 myosin-II enrichment at the rim of phagocytic cups (Fig. 5c). Moreover, blebbistatin treatment
379 specifically affects late-stage contractile force generation (Fig. 3h) causing cup closure to become
380 a bottle-neck step as evidenced by the accumulation of late-stage phagocytic cups (Fig. 3g).
381 Because these forces are exerted normal to the target surface, the contribution of myosin-II
382 activity to phagocytic progression has likely gone unnoticed in previous studies using regular TFM
383 on a planar substrate, which only measures forces that are tangential to the surface (shear)^{12,20,25}.

384 We show that phagocytosis is hallmarked by a unique force balance, where before 50%
385 engulfment, target constriction results in an outward force balanced by pulling forces throughout
386 the base of the phagocytic cup (Fig. 7b). Given the reduced presence of cytoskeletal components
387 at the base of the cup (Supplementary Fig. 2b)^{4,7}, these pulling forces are most likely not due to
388 actin polymerization forces or actomyosin contractility, but instead a result of the target being held
389 in place through receptor-ligand bonds throughout the base of the cup. Hence, the forces acting
390 on receptor-ligand bonds within the cup are likely dependent on the target physical properties and
391 the local geometry at the rim of the cup (Fig. 7b). Since the lifetime of such bonds is tension-
392 dependent^{54,55}, this push-and-lock mechanism may enable sensing of physical target properties
393 through a proofreading mechanism and thereby aid macrophages in target selection. Indeed, we
394 observe that forfeit of uptake via popping, in which the outward-directed forces likely overcome
395 the strength of the receptor-ligand interactions, depends on the local target geometry and target
396 rigidity. In addition, for non-spherical targets (e.g. ellipsoidal), this force balance would result in a
397 net torque aligning the target's long axis along the phagocytic axis, which has been observed
398 previously and is reported to lead to enhanced uptake efficiency of ellipsoidal targets^{19,56,57}.

399 We observed that actin teeth formed more frequently when cells were challenged with softer
400 targets, yet we also associated softer targets with more instances of failed internalization. This
401 calls into question the effectiveness of actin teeth, and, more generally, target constriction, in
402 driving phagocytic internalization. Aside from a role in cup closure, target constriction could be
403 important for creating a tight apposition between the cell and target, which is essential for receptor
404 engagement⁵⁸. Surprisingly though, we noticed that overly strong target constriction leads to
405 failure of attempted phagocytosis, expressed either as partial eating or a popping mechanism

406 leading in forfeit of uptake. Although these mechanisms may lead to reduced uptake efficiency in
407 isolated phagocyte-target interaction, we suspect they may be critical in more complex phagocytic
408 encounters that occur *in vivo*, e.g. when multiple macrophages approach a single target (Fig. 6g),
409 or attempt to engulf adherent and hard-to-reach targets^{8,11,59}. Altogether, our findings show that
410 actin polymerization-dependent protrusive forces and myosin-II-dependent contractile forces
411 contribute to driving target deformation and phagocytic internalization, and likely both participate
412 in the mechanosensation required for phagocytic plasticity.

413 **Code availability**

414 The Matlab code for analysing confocal images and deriving particle shape is publicly available
415 on https://gitlab.com/dvorselen/DAAMparticle_Shape_Analysis. The Python code used for
416 analysing tractions is provided on https://gitlab.com/micronano_public/ShElastic.

417

418 **Acknowledgements**

419 This work was supported by American Heart Association (18PRE34070066) grant to S.R.B., the
420 National Institute of Diabetes and Digestive and Kidney Diseases of the NIH under Award
421 R01DK083345 to M.K., the Italian Association for Cancer Research (AIRC), Investigator Grant
422 (IG) 20716 to N.C.G., and the Howard Hughes Medical Institute (J.A.T.). D.V. further
423 acknowledges the Cancer Research Institute for support through a CRI Irvington fellowship. LLSM
424 imaging was performed at the Advanced Imaging Center (AIC)—Howard Hughes Medical Institute
425 (HHMI) Janelia Research Campus. We thank John M. Heddleston and Jesse Aaron of the AIC
426 for helpful discussion. The AIC is jointly funded by the Gordon and Betty Moore Foundation and
427 the Howard Hughes Medical Institute. We thank Lorenzo L. Labitigan for critical review of the
428 manuscript and Sharon Chase for help with animal experiments.

429

430 **Author Contributions**

431 S.R.B., D.V., N.C.G., J.A.T. and M.K. conceived of and designed the study. S.R.B performed
432 experiments and D.V. generated reagents, wrote the image analysis software and analyzed the
433 data. Y.W. and W.C. performed the force analysis. J.A.T., N.C.G. and M.K. supervised the
434 project. S.R.B., D.V., N.C.G., J.A.T., and M.K. wrote the manuscript.

435

436 **Declaration of Interests**

437 The authors declare no conflicts of interest.

438

Methods

439

440 Cell culture

441 RAW264.7 (ATCC; male murine cells) were cultured in DMEM, high glucose, containing 10% FBS
442 and 1% antibiotic-antimycotic (Gibco) (cDMEM) at 37 °C with 5% CO₂. HL-60 cells (ATCC; CCL-
443 240) were cultured in RPMI plus L-glutamine supplemented with 20% FBS and 1% antibiotic-
444 antimycotic (cRPMI). HL-60 cells were differentiated into neutrophil-like cells in culture media
445 containing 1.5% DMSO and used at day 5-6 post-differentiation and plated on 20 µg/mL
446 fibronectin. For the collection of primary murine bone marrow progenitor cells, femurs and tibias
447 of C57BL/6 mice were removed and flushed with cDMEM. Red blood cells were lysed using ACK
448 buffer (0.15 M NH₄Cl) and bone marrow progenitor cells were recovered by centrifugation (250×g,
449 5 min, 4 °C), washed once with sterile PBS and plated on tissue culture dishes in cDMEM at 37 °C
450 with 5% CO₂. For differentiation into bone-marrow derived macrophages (BMDM), non-adherent
451 cells were moved to bacteriological Petri dishes the next day and differentiated over 1 week in
452 cDMEM containing 20 ng/mL recombinant murine M-CSF (Biolegend, 576404). Generation of
453 murine bone-marrow derived dendritic cells (BMDC) has been previously described⁶⁰. In brief,
454 bone marrow progenitor cells were collected in cRPMI and replated in cRPMI containing 20 ng/mL
455 recombinant murine GM-CSF (Peprotech, 315-03) (DC media). On day 3, DC media was
456 supplemented. On days 6 and 8, half of the culture supernatant and nonadherent cells were spun
457 down and resuspended in cRPMI containing 5 ng/mL GM-CSF. DC maturation was assessed on
458 day 10 by flow cytometry using PE-Cd11c (Biolegend, 117307) and FITC-MHC-II (Biolegend,
459 107605) staining. Cells were used on Day 12. All procedures utilizing mice were performed
460 according to animal protocols approved by the IACUC of SUNY Upstate Medical University and
461 in compliance with all applicable ethical regulations.

462

463 Chemicals and drugs

464 Blebbistatin, CK-666, and SMIFH2, and fibronectin were purchased from EMD Millipore. Alexa
465 Fluor-488, Alexa Fluor-568, Alexa Fluor-647 conjugated phalloidin were purchased from Life
466 Technologies. Janelia Fluor 549 (JF549) HaloTag Ligand was a generous gift from Luke Lavis.

467

468

469 **Constructs and transfection**

470 Human myo1e and myo1f constructs tagged with EGFP, mEmerald-C1, or mScarlet-C1 have
471 been previously described¹². mEmerald-Lifeact was a gift from Michael Davidson (Addgene
472 #54148). Chicken regulatory light chain (RLC) tagged with EGFP was a gift from Klaus Hahn.
473 WASP tagged with myc was a gift from Dianne Cox, and was subcloned into pUB-Halo-C1 vector.
474 CMV-GFP-NMHCII-A was a gift from Robert Adelstein (Addgene #11347). ARP3-mCherry
475 (Addgene #27682) and mCherry-cortactin (Addgene #27676) were gifts from Christien Merrifield
476 that were subcloned into EGFP-C1 and mEmerald-C1, respectively. Chicken paxillin was a gift
477 from Chris Turner, which was subcloned into mScarlet-i-C1. Chicken vinculin was a gift from
478 Kenneth Yamada (Addgene #50513) and subcloned into pUB-mEmerald-C1.
479 Immunohistochemical staining to determine localization of select podosome-related proteins in
480 relation to the actin teeth did not produce good results, which may be due to the adhesive and
481 porous nature of the IgG-functionalized DAAMPs. As an alternative, we transfected the RAW
482 macrophages with fluorescently tagged proteins. All transfections were accomplished by
483 electroporation (Neon) using the manufacturer's instructions.

484

485 **Microparticle synthesis**

486 DAAM-particles were synthesized as previously described²¹. First, acrylamide mixtures containing
487 100 mg/mL acrylic components, 150 mM NaOH, 0.3% (v/v) tetramethylethylenediamine
488 (TEMED), 150 mM MOPS (prepared from MOPS sodium salt, pH 7.4) were prepared. Mass
489 fraction of acrylic acid was 10% and crosslinker mass fraction was 0.65% or 2.3%, for 1.4 kPa
490 and 6.5 kPa particles, respectively. Prior to extrusion, the gel mixture was degassed for 15
491 minutes and then kept under nitrogen atmosphere until the extrusion process was complete.
492 Tubular hydrophobic Shirasu porous glass (SPG) were sonicated under vacuum in n-heptane,
493 mounted on an internal pressure micro kit extruder (SPG Technology Co.) and immersed into the
494 oil phase (~125 mL) consisting of hexanes (99%) and 3% (v/v) Span 80 (Fluka, 85548 or Sigma-
495 Aldrich, S6760). 10 mL of gel mixture was extruded through SPG membranes under nitrogen
496 pressure of approximately 7 kPa, 15 kPa, for membranes with pore size 1.9 μ m and 1.4 μ m,
497 respectively. 9 mm, 1.4 kPa particles were synthesized using 1.4 μ m pore size membranes,
498 whereas 9 μ m, 6.5 kPa particles and 11 μ m, 1.4 kPa particles were made using 1.9 μ m pore size
499 membranes. The oil phase was continuously stirred at 300 rpm and kept under nitrogen
500 atmosphere. After completion of extrusion, the emulsion temperature was increased to 60 °C and

501 polymerization was induced by addition of ~225 mg 2,2'-Azobisisobutyronitrile (AIBN) (1.5 mg/mL
502 final concentration). The polymerization reaction was continued for 3 h at 60 °C and then at 40
503 °C overnight. Polymerized particles were subsequently washed (5x in hexanes, 1x in ethanol),
504 dried under nitrogen flow for approximately 30 minutes, and resuspended in PBS (137 NaCl, 2.7
505 mM KCl, 8.0 mM Na₂HPO₄, 1.47 mM KH₂PO₄, pH 7.4) and stored at 4 °C.

506

507 **Microparticle functionalization**

508 DAAM-particles were functionalized as previously described²¹. In brief, DAAMPs were diluted to
509 5% (v/v) concentration and washed twice in activation buffer (100 mM MES, 200 mM NaCl, pH
510 6.0). They were then incubated for 15 min in activation buffer supplemented with 40 mg/mL 1-
511 ethyl-3-(3-dimethylaminopropyl) carbodiimide, 20 mg/mL N-hydroxysuccinimide (NHS) and 0.1%
512 (v/v) Tween 20, while rotating. Afterwards they were spun down (16,000 x g, 2 min) and washed
513 4X in PBS, pH 8 (adjusted with NaOH) with 0.1% Tween 20. Immediately after the final wash the
514 particles were resuspended in PBS, pH 8 with BSA (Sigma, A3059) and incubated, rocking for 1
515 h. Then cadaverine-conjugate was added: either Alexa Fluor 488 Cadaverine (Thermo Fischer
516 Scientific, A-30679) or Alexa Fluor 647 Cadaverine (Thermo Fischer Scientific, A-30676) to a final
517 concentration of 0.2 mM. After 30 min, unreacted NHS groups were blocked with 100 mM TRIS;
518 100 mM ethanolamine (pH 9). DAAM-particles were then spun down (16,000 x g, 2 min) and
519 washed 4X in PBS, pH 7.4 with 0.1% Tween 20. Finally, BSA-functionalized DAAMPs were
520 resuspended in PBS, pH 7.4 without Tween.

521

522 **Phagocytosis assay**

523 DAAM particles were washed 3X in sterile PBS and opsonized with rabbit anti-BSA antibody (MP
524 Biomedicals, 0865111) for 1 h at room temperature. DAAMPs were then washed three times
525 (16000 x g, 2 min) with PBS and resuspended in sterile PBS. DAAM particles were added to a
526 total volume of 400 µl of serum-free DMEM, briefly sonicated in a bath sonicator, and applied to
527 phagocytes in a 12-well plate. To synchronize phagocytosis and initiate DAAMP-phagocyte
528 contact, the plate was spun at 300 x g for 3 min at 4°C. Cells were incubated at 37°C to initiate
529 phagocytosis for a period of 3-5 min. Media was then removed and cells were fixed with 4%
530 PFA/PBS for 15 min. Any unbound DAAMPs were then washed away with 3X washes of PBS and
531 cells were stained with goat anti-rabbit-Alexa Fluor-405 antibodies (Invitrogen, A31556, 1:400) for

532 30 min to visualize exposed DAAM area. Cells were then washed with PBS (3 × 5 min) and
533 permeabilized with 0.1% Triton X-100/PBS for 3 min, then stained with Alexa Fluor-568 or -488
534 conjugated phalloidin (1:300). Coverslips were then mounted using VECTASHIELD Antifade
535 Mounting Medium (Vector Laboratories, H-1000) and sealed with nail polish. For drug treatments,
536 cells were exposed to the indicated drug concentration for 30 min prior to the assay and DAAM
537 particles were resuspended and exposed to cells in the same drugged media.

538

539 **Microscopy**

540 Confocal images were taken using a PerkinElmer UltraView VoX Spinning Disc Confocal system
541 mounted on a Nikon Eclipse Ti-E microscope equipped with a Hamamatsu C9100-50 EMCCD
542 camera, a 100 × (1.4 N.A.) PlanApo objective, and controlled by Volocity software. Images for
543 protein localization were taken using a Leica TCS SP8 laser scanning confocal microscope with
544 a HC PI APO 63×/1.4 NA oil CS2 objective at Upstate/Leica Center of Excellence for Advanced
545 Light Microscopy. Confocal image data were less prone to artifacts than the LLSM images
546 (Supplementary Fig. 1j), and therefore chosen for accurate force analysis.

547 The lattice light-sheet microscope⁶¹ utilized was developed by E. Betzig and operated/maintained
548 in the Advanced Imaging Center at the Howard Hughes Medical Institute Janelia Research
549 Campus (Ashburn, VA). 488, 560, or 642 nm diode lasers (MPB Communications) were operated
550 between 40 and 60 mW initial power, with 20–50% acousto-optic tunable filter (AOTF)
551 transmittance. The microscope was equipped with a Special Optics 0.65 NA/3.75 mm water
552 dipping lens, excitation objective and a Nikon CFI Apo LWD 25 × 1.1 NA water dipping collection
553 objective, which used a 500 mm focal length tube lens. Live cells were imaged in a 37 °C-heated,
554 water-coupled bath in FluoroBrite medium (Thermo Scientific) with 0–5% FBS and Pen/Strep.
555 Images were acquired with a Hamamatsu Orca Flash 4.0 V2 sCMOS cameras in custom-written
556 LabView Software. Post-image deskewing and deconvolution was performed using HHMI Janelia
557 custom software and 10 iterations of the Richardson-Lucy algorithm.

558

559 **Microparticle 3D shape reconstruction and force analysis**

560 Image analysis was performed with custom software in Matlab, similar to described previously²¹.
561 Briefly, images were thresholded to estimate the volume and centroid of individual microparticles.
562 Cubic interpolation was then used to calculate the intensity values along lines originating from the

563 particle centroid and crossing the particle edge. Edge coordinates were then directly localized
564 with super-resolution accuracy by fitting a Gaussian to the discrete derivative of these line profiles.
565 This is significantly faster than using pre-processing of the image stacks with the 3D Sobel
566 operator as used previously²¹. Before calculation of particle properties, such as sphericity, relative
567 elongation and surface curvature, as well as traction forces, edge coordinates were smoothed
568 using the equivalent of a 2D moving average for a spherical surface, operating on the radial
569 component of the edge coordinates. Great circle distances (d) between edge coordinates with
570 indices i and j were calculated along a perfect sphere: $d = \arccos(\sin \theta_i \sin \theta_j +$
571 $\cos \theta_i \cos \theta_j \cos(\varphi_i - \varphi_j)) R$, where R is the equivalent radius of a sphere to the particle. The radial
572 component of the edge coordinates was then averaged within the given window size ($1 \mu\text{m}^2$). A
573 triangulation between edge coordinates was generated, and the particle surface area S and
574 volume V calculated. Sphericity was calculated as $\Psi = (6\pi^{1/3} V^{2/3} S^{-1})$. For surface curvature
575 calculations, first principal curvatures (k_1 and k_2) of the triangulated mesh were determined as
576 described previously^{62,63}. The mean curvature was calculated $H = (k_1 + k_2)/2$. Force calculations
577 were performed using the spherical harmonics method within custom Python package ShElastic
578 as described in detail previously^{21,64}. Chosen values for the weighing parameter α for residual
579 traction and β for anti-aliasing were both 1.

580

581 **Fluorescent mapping on particle surface and determination of fraction engulfed**

582 Mapping of fluorescent proteins, phalloidin and immunostaining to the particle surface was done
583 by determination of the fluorescent intensity along radial lines originating from the particle centroid
584 and passing through each edge coordinate (Fig. 1c). Linear interpolation was used to determine
585 the intensity along each line, and the maximum value within a $1 \mu\text{m}$ distance of the edge
586 coordinate was projected onto the surface. The calculation of the fraction engulfed, alignment of
587 particles using the centroid of the contact area, and obtaining of a stress-free boundary for force
588 calculations was done as described previously²¹, with the exception that here both the phalloidin
589 stain and the immunostaining of the free particle surface were used to determine the mask
590 (Supplementary Fig. 2a). For LLSM data, where no staining of the free particle surface was
591 present, alignment was done manually.

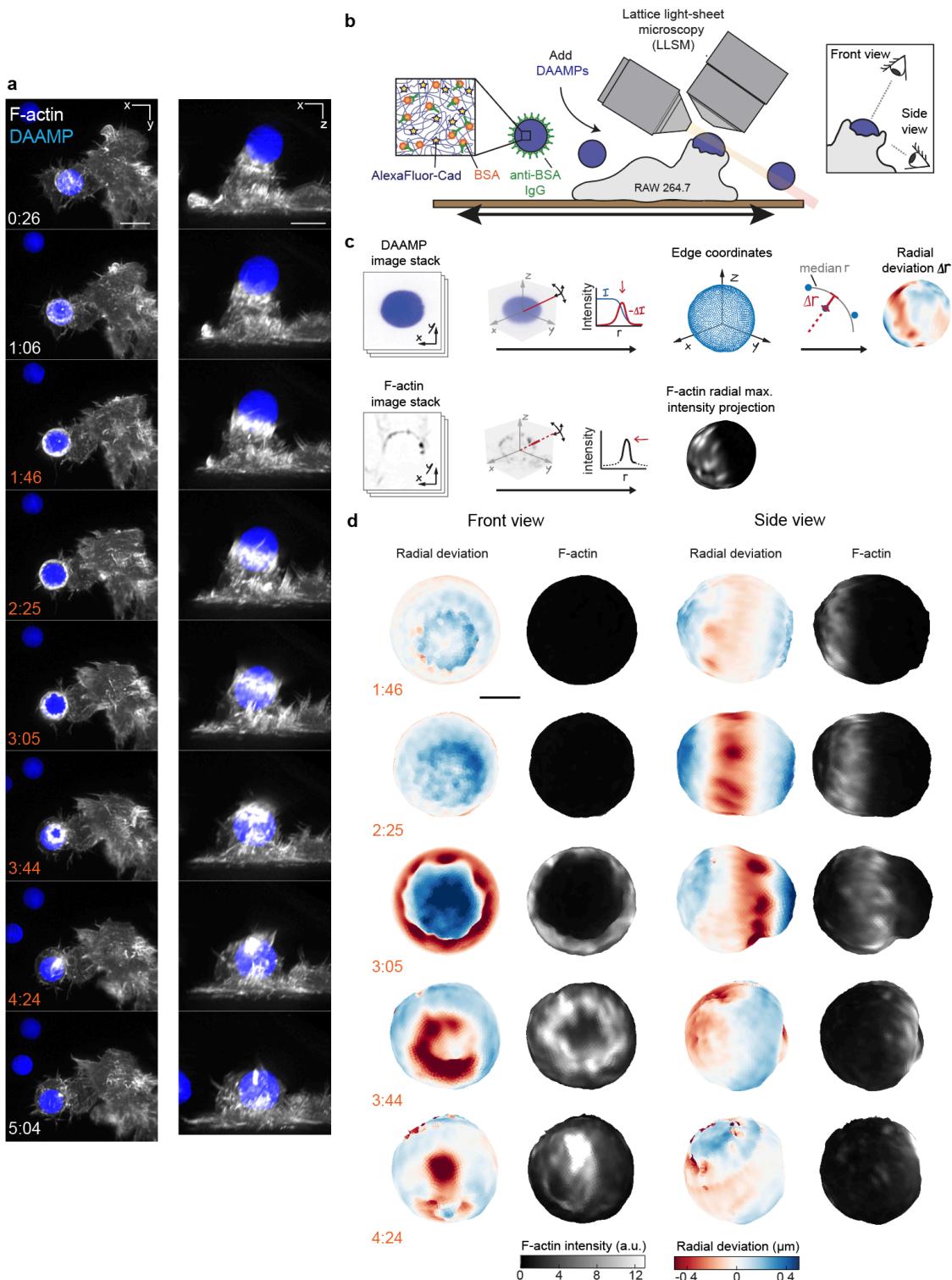
592

593

594 **Indentation simulations:**

595 Indentation simulations of teeth on a spherical target particle were based on the Hertz contact
596 model⁶⁵. Parameters of the model were estimated from experimental data: the undeformed radius
597 of the target particle was set at $R_{\text{target}} = 3.7\mu\text{m}$; the teeth are considered as rigid spherical
598 indenters with radius $R_{\text{teeth}} \approx 0.5 \mu\text{m}$; and 10 teeth were simulated for each target, which were
599 equally distributed around the equator of the target sphere (Supplementary Fig. 8a). The force F
600 and the contact area radius a produced by indentation to absolute depth d for each individual
601 indenter were then evaluated:

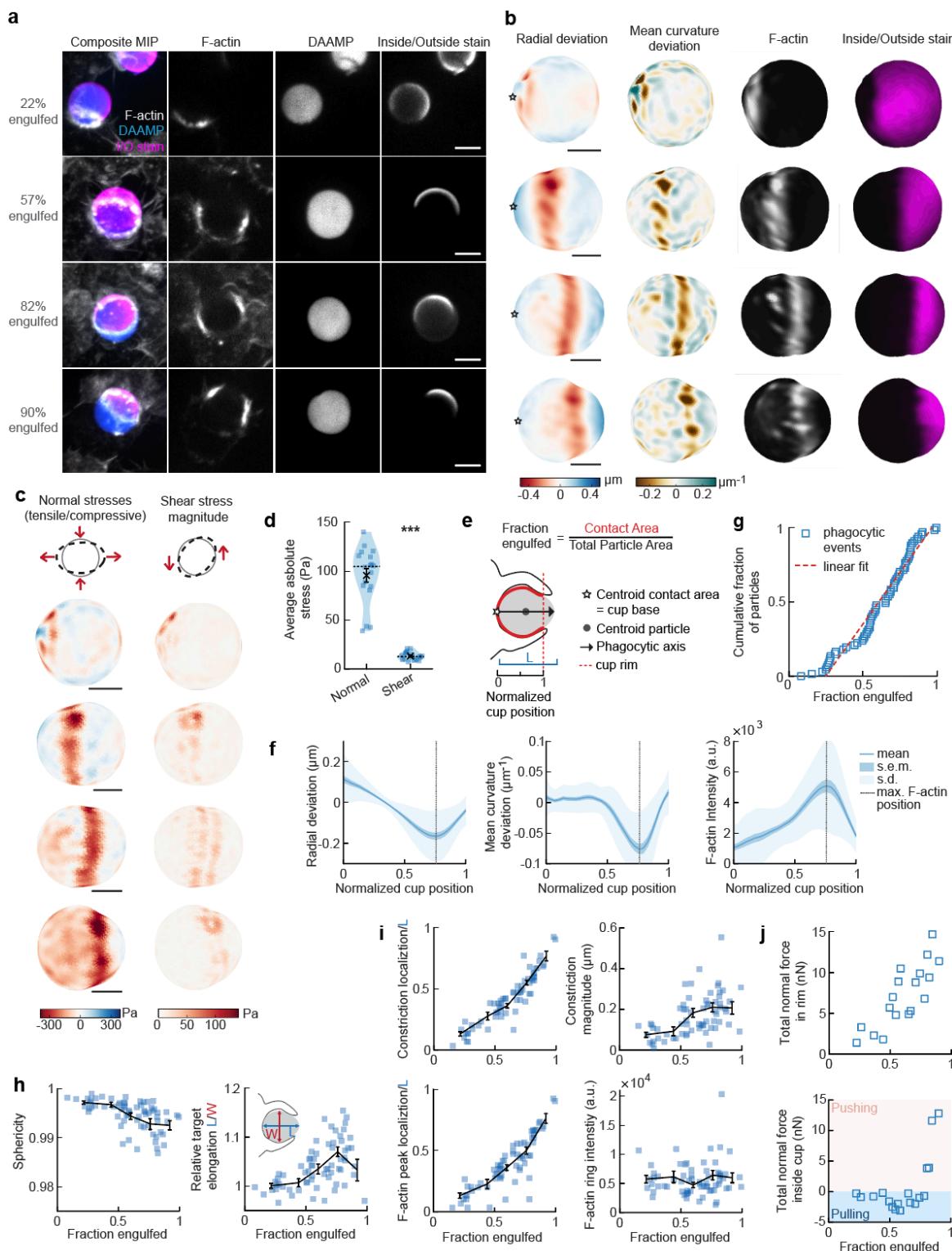
$$602 F = \frac{4}{3} E^* R^{*2} d^{\frac{3}{2}}, \quad a = \sqrt[3]{\frac{3FR^*}{4E^*}},$$


603 where the effective Young's modulus E^* and effective radius R^* are

$$604 \frac{1}{E^*} = \frac{1 - \nu_{\text{tooth}}^2}{E_{\text{tooth}}} + \frac{1 - \nu_{\text{target}}^2}{E_{\text{target}}} = \frac{3}{4E_{\text{target}}}, \quad \frac{1}{R^*} = \frac{1}{R_{\text{teeth}}} + \frac{1}{R_{\text{target}}}$$

605 given that the target particle is near incompressible ($\nu_{\text{target}} = 0.5$) and the teeth are rigid
606 compared to the target ($E_{\text{tooth}} \gg E_{\text{target}}$). Considering non-friction contact, the force distribution
607 on the target sphere in the contact area of each tooth can be written as,

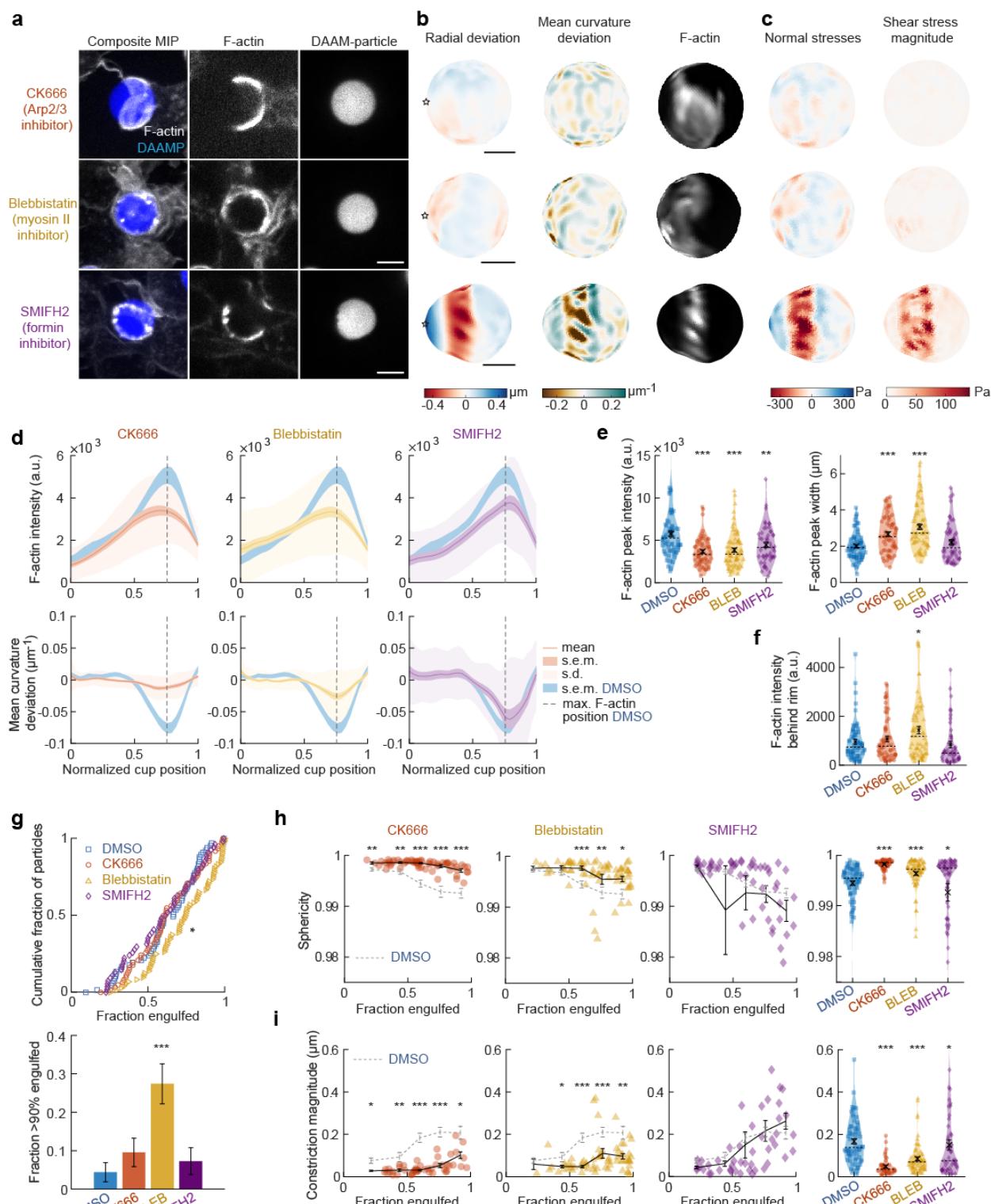
$$608 p(r) = p_0 \sqrt{1 - \left(\frac{r}{a}\right)^2}, \quad p_0 = \frac{3F}{2\pi a^2}, \quad r \in [0, a],$$


609 where r is the radius to the initial contact point, and p_0 is the maximum pressure on the contact
610 plane. Given the resulting traction force map $T(\theta, \varphi)$ as the boundary condition on the target
611 sphere surface, we solved the elasticity problem, and obtained the displacement map $u(\theta, \varphi)$
612 using our ShElastic package (Supplementary Fig. 8b)⁶⁴. The (θ, φ) map on the spherical
613 surface has the size of 61x121, which is defined by Gauss-Legendre quadrature⁶⁶. Simulations
614 were carried out for a range of tooth radii R_{teeth} and absolute depth d to obtain the effective tooth
615 depth and the average constriction along the equator (Supplementary Fig. 8b), which are
616 directly comparable with experimentally obtained data.

617

618 **Figure 1. Combined MP-TFM and LLSM reveals phagocytic force-induced deformations in**
619 **real time.** RAW macrophages transfected with mEmerald-Lifeact were fed DAAM-particles (9
620 μm , 1.4 kPa) functionalized with AF647-Cadaverine, BSA and anti-BSA IgG and imaged using

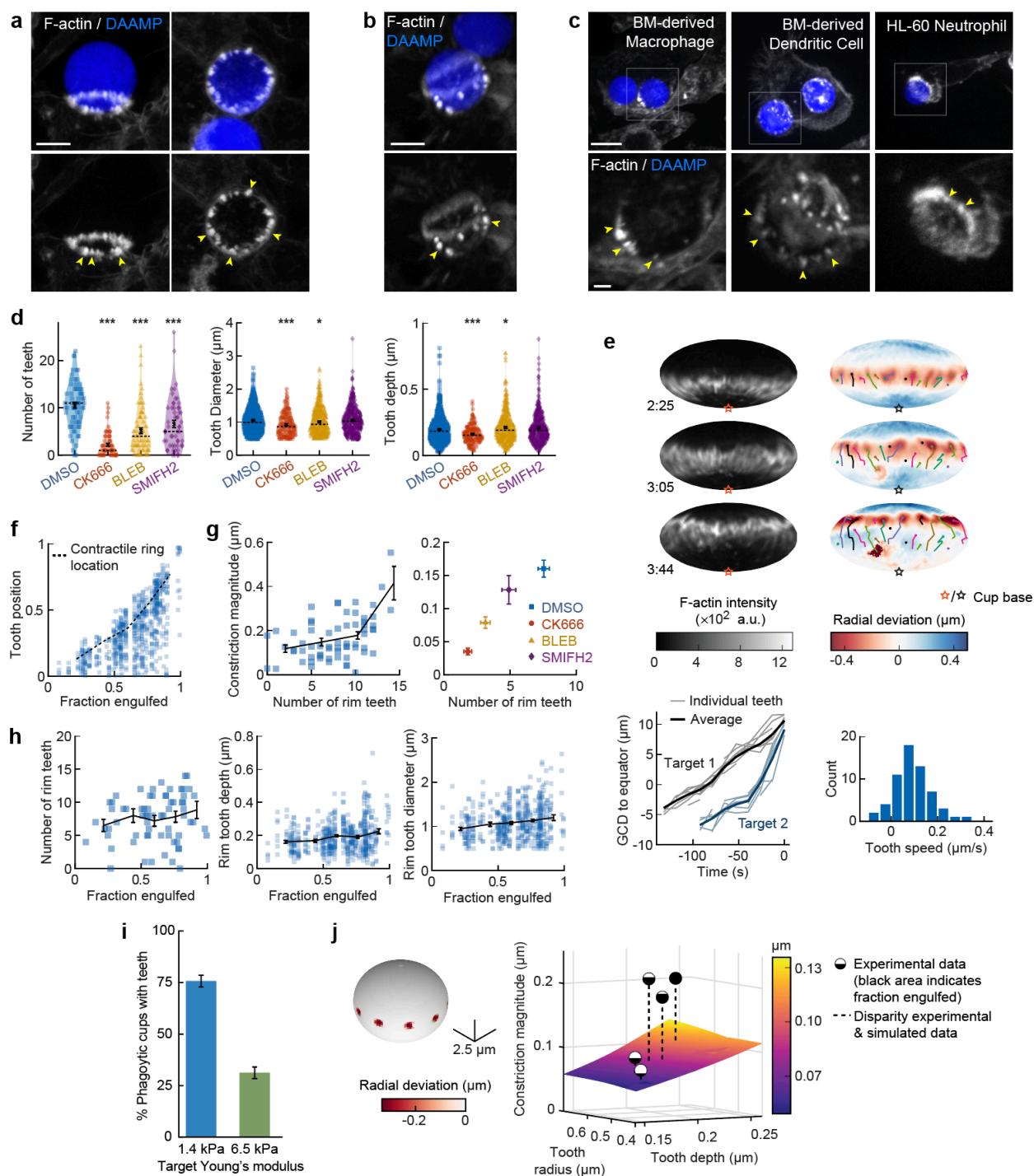
621 lattice light-sheet microscopy (LLSM). **a**, Time lapse montage (min:s) of maximum intensity
622 projections in x/y and x/z. Scale bar, 5 μm **b,c** Schematic of the combined LLSM and MP-TFM
623 experimental approach and analysis, respectively. **d**, Front and side view of reconstructed DAAM-
624 particle internalized in **a** showing target deformations and F-actin localization on particle surface.
625 Colorscale represents the deviation of each vertex from a perfect sphere with radius equal to the
626 median radial distance of all edge coordinates to the particle centroid. Scale bar, 3 μm .



627

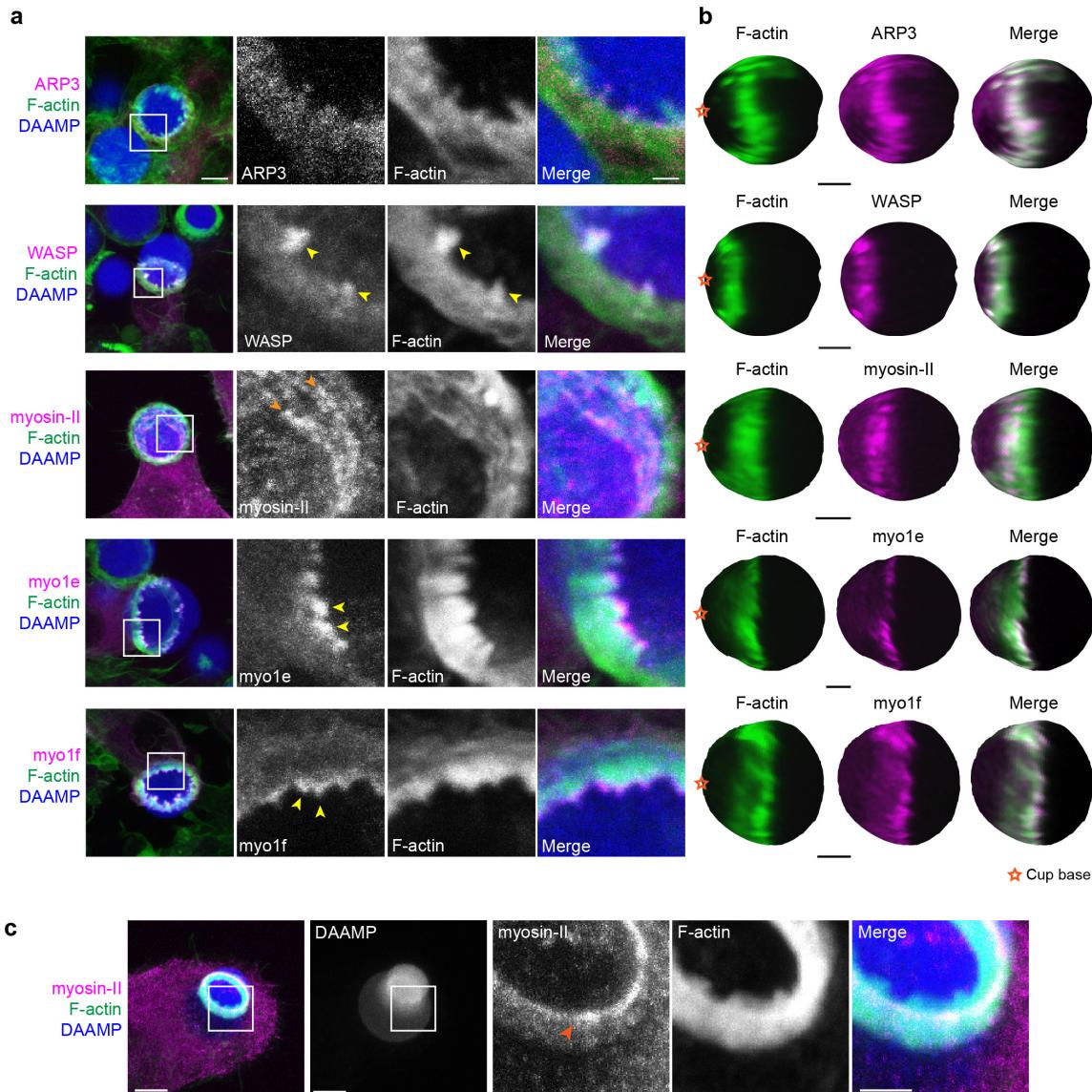
628 **Figure 2. Phagocytic forces include strong actin-mediated constriction and increase with**
 629 **phagocytic progression.** a, Confocal images of fixed RAW macrophages phagocytosing DAAM-
 630 particles functionalized with AF488-Cadaverine, BSA and anti-BSA IgG. Cells were stained for F-

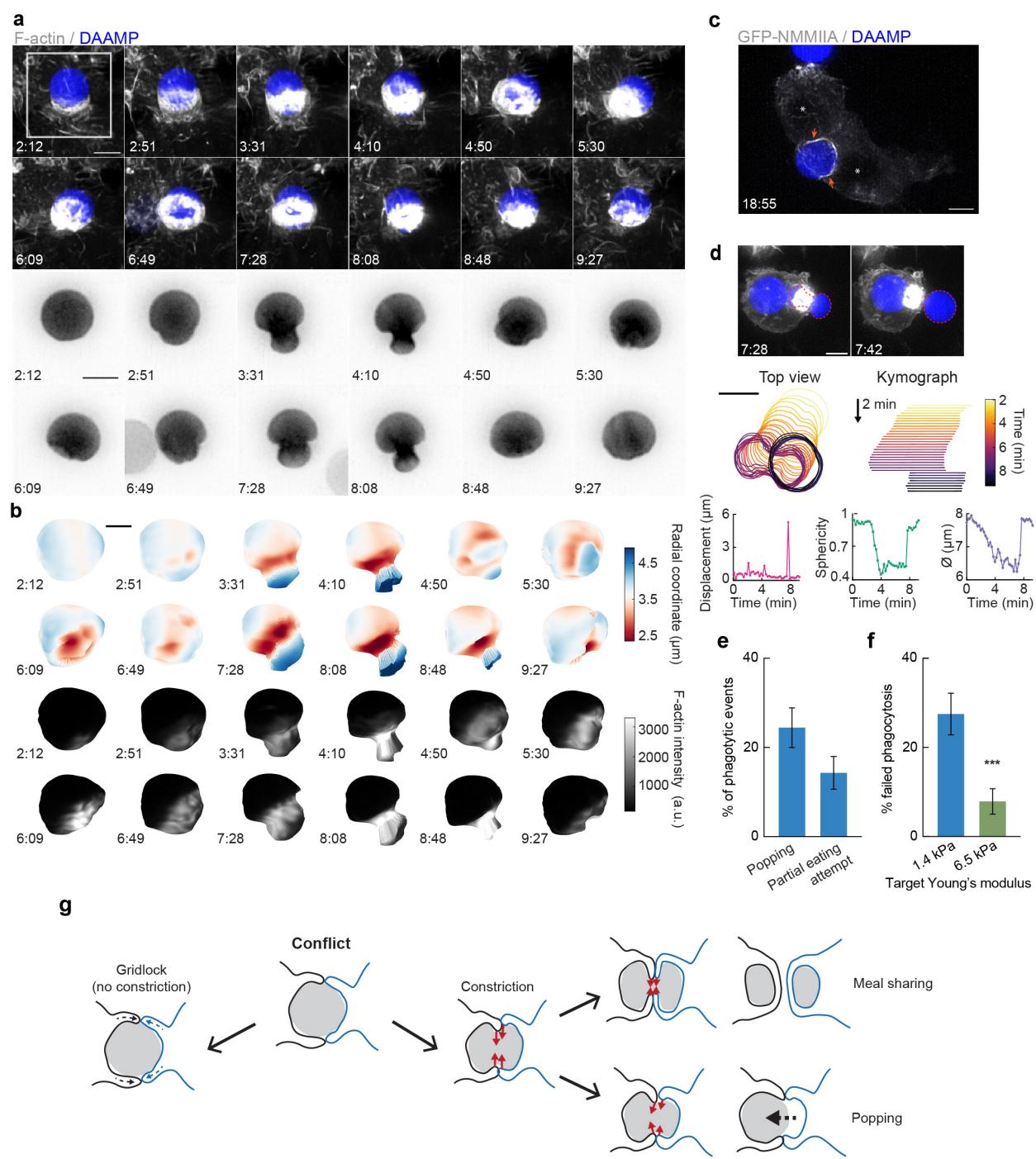
631 actin, and particles with a fluorescent secondary antibody to reveal the exposed surface. Left
632 column: composite maximum intensity projections (MIP) of confocal z-stacks, 2nd to 4th column:
633 single confocal slices through particle centroid. Scale bar, 5 μm . **b**, 3D shape reconstructions of
634 particle in **a** revealing detailed target deformations and localization of F-actin over the particle
635 surface. Scale bars are 3 μm . Stars mark the base of the phagocytic cup, and the phagocytic axis
636 is horizontal (see **e**). **c**, Normal and shear stresses exerted on the targets in **a,b**. Negative normal
637 forces denote (inward) compressive forces. **d**, Averages of absolute magnitudes of compressive
638 and shear stresses for 18 phagocytic cups spread over various stages of engulfment. Violin plots
639 show individual phagocytic events (blue markers), mean (black cross) and median (dashed line).
640 *Two-side Wilcoxon rank sum test: $p = 2.0 \times 10^{-4}$. **e**, Schematic representation of phagocytic
641 parametrization. Normalized cup position indicates the position along the phagocytic axis relative
642 to the rim of the cup, with 0 the cup base and 1 the rim of the phagocytic cup regardless of
643 engulfment stage. **f**, Average deformation and F-actin intensity profiles along the phagocytic axis
644 to the cup rim. Signals were first processed on a per-particle basis by averaging over the surface
645 along the phagocytic targets in 30 bins. Targets beyond 40% engulfment were included (54 out
646 of 68 events in total). **g**, Cumulative distribution function of the engulfment stage of randomly
647 selected phagocytic events ($n = 68$). Dashed red line indicates a linear fit. **h**, Target sphericity and
648 elongation depend on phagocytic stage. Blue squares indicate individual measurements, black
649 lines indicate averages within 5 bins. Middle graph inset schematic shows how relative elongation
650 was determined. **i**, Analysis of particle deformation and F-actin fluorescence along the phagocytic
651 axis for all phagocytic events ($n = 68$). Marker and line styles as in **h**. All error bars indicate s.e.m.
652 unless indicated otherwise. **j**, Analysis of forces in the contractile ring at the cup rim and
653 throughout the remainder of the cup for 18 cups selected for force analysis.


654

655

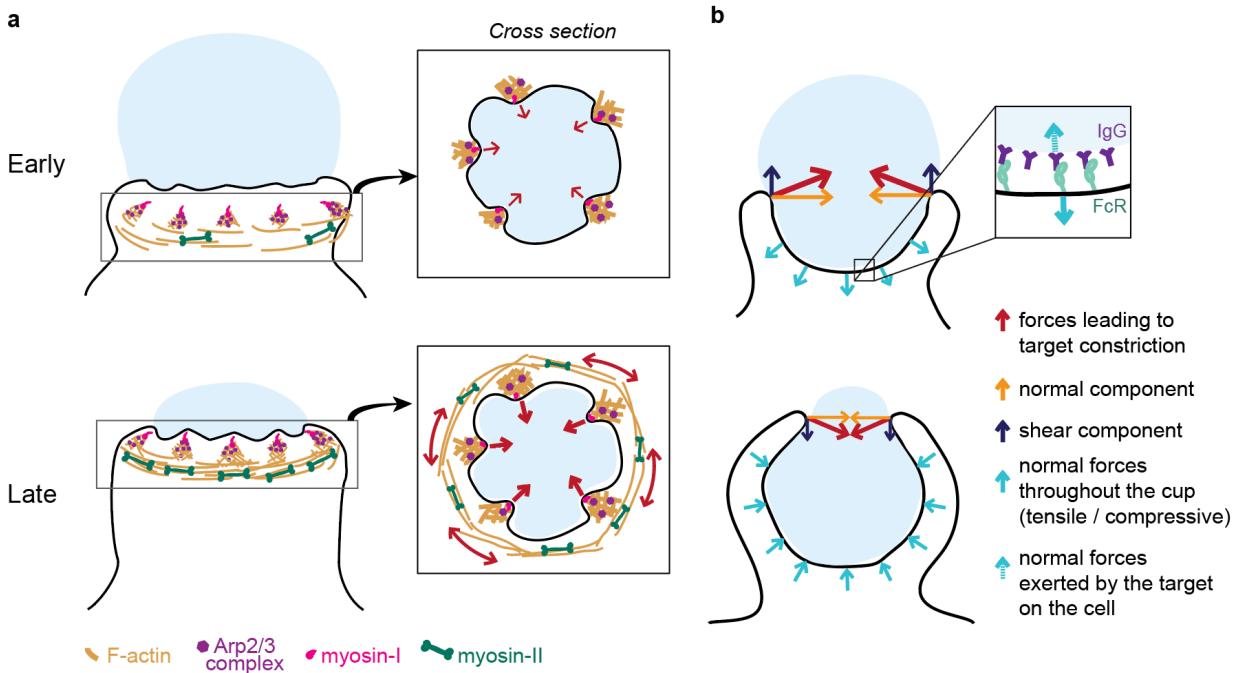
656 **Figure 3: Arp2/3-mediated actin polymerization and myosin-II have distinct roles in**
 657 **phagocytic force generation and progression. a, Confocal images of drug-treated fixed RAW**
 658 **cells phagocytosing DAAM-particles functionalized with AF488-Cadaverine, BSA and anti-BSA**


659 IgG. Cells were treated with DMSO, CK666 (150 μ M), Blebbistatin (15 μ M) and SMIFH2 (10 μ M)
660 for 30 minutes prior to phagocytic challenge. Each target is approximately 60% engulfed. Fixed
661 cells were stained for F-actin, and particles were labelled with a fluorescent secondary antibody
662 to reveal the exposed surface. Left column: composite maximum intensity projections (MIP) of
663 confocal z-stacks, 2nd-3rd column: single confocal slices through particle centroid. Scale bar, 5
664 μ m. **b**, Particle shape reconstructions from **a**, revealing detailed target deformations and
665 localization of F-actin over the particle surface. Stars mark the base of the phagocytic cup, and
666 the phagocytic axis is horizontal. Scale bars, 3 μ m. **c**, Normal and shear stresses exerted on the
667 target. Negative normal forces denote (inward) compressive forces. **d**, Average deformation and
668 F-actin intensity profiles along the phagocytic axis to the cup rim. Signals were first processed on
669 a per-particle basis by averaging over the surface along the phagocytic targets in 30 bins. Targets
670 before 40% engulfment were excluded. **e**, **f**, Violin plots of all measured particles, showing
671 individual phagocytic events (colored markers), mean (black cross) and median (dashed line). **e**,
672 F-actin peak intensity and width. **f**, F-actin intensity in the cup (behind the rim), measured right (3
673 μ m) behind the main peak for each particle. **g**, Upper panel, cumulative distribution function of
674 the engulfment stage of randomly selected phagocytic events (n = 68, 63, 73 & 55 respectively)
675 from 3 independent experiments. Two sample Kolmogorov-Smirnov test was used (p = 0.016*).
676 Lower panel, fraction late-stage cups. Error bars indicate st.d. estimated by treating phagocytosis
677 as a Bernoulli process. Fisher's exact test was used to compare fractions (p = 1.9 \times 10⁻⁴)***. **h**,
678 Sphericity and **i**, constriction magnitude of DAAM particle changes with phagocytic progression
679 upon drug treatment. Colored markers indicate individual events, black lines indicate averages
680 within 5 bins. Right column, violin plots of all events. Marker and line styles as in **e**. All statistical
681 tests were two-side Wilcoxon rank sum test comparing with the DMSO control (gray) over the
682 same bin with significance levels: p < 0.05*; p < 0.01**; p < 0.001***, unless otherwise indicated.
683 All error bars indicate s.e.m. unless indicated otherwise.


684

685 **Figure 4. Actin-based teeth are dynamic interconnected structures whose protrusive**
 686 **activity contributes to target constriction. a,b,** RAW macrophages were fed 1.4 kPa DAAMPs
 687 and stained for F-actin. Images represent maximum intensity projections of confocal Z-stacks.
 688 Yellow arrows point to actin-based “teeth”. **a**, representative images of teeth at the rim of the
 689 phagocytic cup deforming the target. Scale bar, 5 μm . **b**, Example of actin-based teeth observed

690 within the phagocytic cup. Scale bar, 5 μm . **c**, Primary murine bone-marrow derived macrophage
691 (BMDM), as well as primary bone-marrow derived dendritic cell (BMDC) and HL-60 neutrophil-
692 like cells also form actin teeth in response to DAAMP internalization. Scale bar, 5 μm . zoom scale
693 bar, 2 μm . **d**, CK666, blebbistatin, and SMIFH2 treatments reduce formation of actin-based teeth
694 within the phagocytic cup. Teeth size and shape are also modestly affected. Violin plots with
695 individual particles (colored markers), means (black cross), median (dashed line) **e**, Manually
696 tracked actin teeth trajectories from DAAMP internalization imaged by LLSM. Particle surface is
697 shown using Mollweide projection (Supplementary Fig. 2c). Three timepoints of a single
698 phagocytic event are shown, with different colors representing unique teeth. Circles indicate
699 current or final position of a tracked tooth. Lines connect the previous positions of tracked teeth.
700 Lower left; great circle distance (GCD) of teeth to the equator for 2 events. Target one is visualized
701 above, time 0 corresponds to the time at which engulfment was completed. Lower right;
702 distribution of tooth speeds with average $0.094 \pm 0.08 \mu\text{m/s}$ ($= 5.6 \mu\text{m/min}$) from 3 phagocytic
703 events (60 teeth in total from target 1& 2 in this panel, and from Supplementary Fig. 7d). Tooth
704 speeds were averaged over the trajectory of individual teeth. **f**, Teeth are mostly located at the
705 rim of the cup. Markers represent individual teeth ($n = 716$) **g**, Constriction magnitude correlates
706 with the number of teeth with Spearman's rank correlation coefficient (r) = 0.42 ($p = 4.4 \times 10^{-4}$) for
707 individual DMSO phagocytic events (left) and between drug treatments (right). **h**, Teeth number
708 and features change with phagocytic progression, with, from left to right, $r = 0.2$ ($p = 0.11$ n.s.), r
709 = 0.17 ($p = 1.0 \times 10^{-4}$), $r = 0.16$ ($p = 2.1 \times 10^{-4}$). **i**, Phagocytic cups with actin teeth appear more
710 frequently when cells are challenged with softer targets. RAW macrophages were challenged with
711 9 μm DAAMPs of 1.4 kPa or 6.5 kPa, fixed and stained for F-actin. **j**, Elasticity theory simulations
712 of the relation between tooth size and depth and overall constriction magnitude. Inset shows teeth,
713 simulated as spherical indenters on a spherical target. Bar graph represents pooled data ($n =$
714 >150 cups) from 3 independent experiments. Error bars indicate st.d. estimated by treating
715 phagocytosis as a Bernoulli process. Pooled data was compared using Fisher's exact test to
716 compare fractions ($p = 1.5 \times 10^{-24}***$). All error bars indicate s.e.m unless otherwise indicated.


718 **Figure 5. Multiple actin regulatory proteins localize to phagocytic teeth.** **a**, RAW
719 macrophages were transfected with fluorescently tagged actin binding proteins and challenged to
720 ingest DAAMPs (11 μ m, 1.4 kPa) functionalized with AF647-Cadaverine, BSA and anti-BSA IgG
721 to assess localization to actin teeth (yellow arrowheads). Images are maximum intensity
722 projections of confocal Z-stacks. White boxes in leftmost panels indicate the site of the zoomed
723 images to the right. Scale bar, 5 μ m. Zoom scale bar, 1 μ m. **b**, DAAM-particle reconstructions for
724 examples shown in **a**, showing target deformations and localization of fluorescent proteins with
725 respect to actin teeth. Scale bar, 3 μ m. **c**, Myosin-II condensing into thick concentric rings (marked
726 by orange arrowheads) during late-stage phagocytosis of a highly deformed target. Images are
727 maximum intensity projections of confocal Z-stacks. Scale bar, 5 μ m. Zoom scale bar, 1 μ m.

728

729 **Figure 6. Contractile activity may enable resolving conflicts by partial target eating and a**
 730 **poping release mechanism. a, Maximum intensity projections (MIP) of LLSM stacks showing**
 731 **failed internalization attempt of RAW macrophage with IgG-functionalized 1.4 kPa DAAMP.**
 732 **Zoomed images of the area marked by the white box showing only the DAAMP channel (inverse**
 733 **grayscale LUT) are shown below. b, 3D reconstructions showing both the particle shape and F-**
 734 **actin signal over the particle surface corresponding to the event in a. Scale bar, 3 μm. c, MIP of**

735 LLSM stacks showing myosin-II accumulation (orange arrows) during a partial eating event. RAW
736 macrophages (marked by *) were transfected with EGFP-NMMIIA and challenged with IgG-
737 functionalized 1.4 kPa DAAMP. **d**, Top: MIPs of LLSM stacks of RAW macrophage suddenly
738 releasing heavily deformed target. Red dashed line outlines DAAMP. Middle, particle position and
739 outline (left), and kymograph of particle position (right). Bottom, Particle displacement, sphericity
740 and apparent diameter over time of the same event shows the sudden nature of the release. **e**,
741 Sudden forfeit by a popping mechanism and attempted partial eating are common for 1.4 kPa
742 targets, with ~24% and ~14% occurrence of all phagocytic events, respectively. **f**, Percentage of
743 failed phagocytic events is dependent on particle rigidity. Data from 2-4 independent experiments
744 was pooled (n = 89, 91 phagocytic events) and compared using Fisher's exact test (p = 7.4×10⁻⁴). **g**, Schematic representation of the multiple ways in which target constriction may enable
745 resolving macrophage conflicts in which two cells attempt a single target. All scale bars are 5 μ m,
746 unless otherwise indicated. All error bars indicate s.d. estimated by treating phagocytosis as a
747 Bernoulli process.

750 **Figure 7. Model of the molecular players and force balance during phagocytosis. a,**
751 Graphical model: Arp2/3 mediated actin teeth, guided by myosin-I motors, and organized in a ring
752 drive phagocytic progression and inward target deformation. Teeth are interconnected through
753 myosin-II filaments located behind the actin teeth. **b**, Ring-like target constriction by protrusive
754 actin teeth and myosin II activity (red arrows) can be decomposed in forces orthogonal to the
755 phagocytic axis, which are balanced within the ring (yellow arrows) and along the phagocytic axis,
756 which result in a net force exerted by the ring (purple arrows). The local target geometry at the
757 protruding rim of the cup determines the direction of the net force. Before 50% engulfment, this
758 force points outward and is balanced by pulling forces throughout the base of the phagocytic cup
759 (push and lock). Inset, the pulling forces from the cell (dashed arrow) on the target and paired
760 forces from the target on the cell (solid arrow) likely put the receptor-ligand interactions under
761 tension. After 50% engulfment, the net ring force points inward, and is balanced by compressive
762 forces (cyan arrows) throughout the phagocytic cup.

763 **References**

- 764 1. Lim, J. J., Grinstein, S. & Roth, Z. Diversity and Versatility of Phagocytosis: Roles in
765 Innate Immunity, Tissue Remodeling, and Homeostasis. *Front. Cell. Infect. Microbiol.* **7**,
766 1–12 (2017).
- 767 2. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead
768 cells by efferocytosis. *Nat. Rev. Mol. Cell Biol.* **21**, 398–414 (2020).
- 769 3. Uribe-Querol, E. & Rosales, C. Phagocytosis: Our Current Understanding of a Universal
770 Biological Process. *Front. Immunol.* **11**, 1–13 (2020).
- 771 4. Freeman, S. A. & Grinstein, S. Phagocytosis: receptors, signal integration, and the
772 cytoskeleton. *Immunol. Rev.* **262**, 193–215 (2014).
- 773 5. Griffin, F. M. & Silverstein, S. C. Segmental Response of the Macrophage Plasma
774 Membrane to a Phagocytic Stimulus. *J. Exp. Med.* **139**, 323–336 (1974).
- 775 6. Swanson, J. A. & Hoppe, A. D. The coordination of signaling during Fc receptor-mediated
776 phagocytosis. *J. Leukoc. Biol.* **76**, 1093–1103 (2004).
- 777 7. Jaumouillé, V. & Waterman, C. M. Physical Constraints and Forces Involved in
778 Phagocytosis. *Front. Immunol.* **11**, 1–20 (2020).
- 779 8. Vorselen, D., Labitigan, R. L. D. & Theriot, J. A. A mechanical perspective on phagocytic
780 cup formation. *Curr. Opin. Cell Biol.* **66**, 112–122 (2020).
- 781 9. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin Dynamics,
782 Architecture, and Mechanics in Cell Motility. *Physiol. Rev.* **94**, 235–263 (2014).
- 783 10. Small, J. V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins.
784 *Trends Cell Biol.* **12**, 112–120 (2002).
- 785 11. Davidson, A. J. & Wood, W. Macrophages Use Distinct Actin Regulators to Switch
786 Engulfment Strategies and Ensure Phagocytic Plasticity In Vivo. *Cell Rep.* (2020).
787 doi:10.1016/j.celrep.2020.107692
- 788 12. Barger, S. R. *et al.* Membrane-cytoskeletal crosstalk mediated by myosin-I regulates
789 adhesion turnover during phagocytosis. *Nat Commun* **10**, 1249 (2019).
- 790 13. Ostrowski, P. P., Freeman, S. A., Fairn, G. & Grinstein, S. Dynamic Podosome-Like
791 Structures in Nascent Phagosomes Are Coordinated by Phosphoinositides. *Dev. Cell* **50**,
792 397-410.e3 (2019).
- 793 14. Linder, S. The matrix corroded: podosomes and invadopodia in extracellular matrix
794 degradation. *Trends Cell Biol.* **17**, 107–117 (2007).
- 795 15. van den Dries, K., Linder, S., Maridonneau-Parini, I. & Poincloux, R. Probing the
796 mechanical landscape – new insights into podosome architecture and mechanics. *J. Cell*
797 *Sci.* **132**, jcs236828 (2019).
- 798 16. Labernadie, A. *et al.* Protrusion force microscopy reveals oscillatory force generation and
799 mechanosensing activity of human macrophage podosomes. *Nat. Commun.* **5**, 5343
800 (2014).
- 801 17. van den Dries, K. *et al.* Modular actin nano-architecture enables podosome protrusion
802 and mechanosensing. *Nat. Commun.* **10**, 1–16 (2019).

803 18. Beningo, K. A. & Wang, Y. Fc-receptor-mediated phagocytosis is regulated by
804 mechanical properties of the target. *J. Cell Sci.* **115**, 849–56 (2002).

805 19. Sosale, N. G. *et al.* Cell rigidity and shape override CD47's 'self'-signaling in
806 phagocytosis by hyperactivating myosin-II. *Blood* **125**, 542–552 (2015).

807 20. Jaumouillé, V., Cartagena-Rivera, A. X. & Waterman, C. M. Coupling of β 2 integrins to
808 actin by a mechanosensitive molecular clutch drives complement receptor-mediated
809 phagocytosis. *Nat. Cell Biol.* **21**, 1357–1369 (2019).

810 21. Vorselen, D. *et al.* Microparticle traction force microscopy reveals subcellular force
811 exertion patterns in immune cell–target interactions. *Nat. Commun.* **11**, 20 (2020).

812 22. Swanson, J. A. *et al.* A contractile activity that closes phagosomes in macrophages. *J.*
813 *Cell Sci.* **112** (Pt 3), 307–16 (1999).

814 23. Araki, N., Hatae, T., Furukawa, A. & Swanson, J. A. Phosphoinositide-3-kinase-
815 independent contractile activities associated with Fcgamma-receptor-mediated
816 phagocytosis and macropinocytosis in macrophages. *J Cell Sci* **116**, 247–257 (2003).

817 24. Ikeda, Y. *et al.* Rac1 switching at the right time and location is essential for Fcy receptor-
818 mediated phagosome formation. *J. Cell Sci.* **130**, 2530–2540 (2017).

819 25. Kovari, D. T. *et al.* Frustrated Phagocytic Spreading of J774A-1 Macrophages Ends in
820 Myosin II-Dependent Contraction. *Biophys. J.* **111**, 2698–2710 (2016).

821 26. Barger, S. R., Gauthier, N. C. & Krendel, M. Squeezing in a Meal: Myosin Functions in
822 Phagocytosis. *Trends Cell Biol.* **30**, 157–167 (2020).

823 27. Rotty, J. D. *et al.* Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is
824 Dispensable for FcR Phagocytosis and In Vivo Motility. *Dev. Cell* **42**, 498–513.e6 (2017).

825 28. Olazabal, I. M. *et al.* Rho-kinase and myosin-II control phagocytic cup formation during
826 CR, but not FcgammaR, phagocytosis. *Curr Biol* **12**, 1413–1418 (2002).

827 29. Heinrich, V. Controlled One-on-One Encounters between Immune Cells and Microbes
828 Reveal Mechanisms of Phagocytosis. *Biophys. J.* **109**, 469–476 (2015).

829 30. Herant, M. Mechanics of neutrophil phagocytosis: behavior of the cortical tension. *J. Cell*
830 *Sci.* **118**, 1789–1797 (2005).

831 31. Rougerie, P. & Cox, D. Spatio-temporal mapping of mechanical force generated by
832 macrophages during Fc γ R-dependent phagocytosis reveals adaptation to target stiffness.
833 *bioRxiv* (2020). doi:10.1101/2020.04.14.041335

834 32. Mohagheghian, E. *et al.* Quantifying compressive forces between living cell layers and
835 within tissues using elastic round microgels. *Nat. Commun.* **9**, 1878 (2018).

836 33. Träber, N. *et al.* Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale
837 Stress in Zebrafish Development. *Sci. Rep.* **9**, 17031 (2019).

838 34. Horsthemke, M. *et al.* Multiple roles of filopodial dynamics in particle capture and
839 phagocytosis and phenotypes of Cdc42 and Myo10 deletion. *J. Biol. Chem.* **292**, 7258–
840 7273 (2017).

841 35. Freeman, S. A. *et al.* Lipid-gated monovalent ion fluxes regulate endocytic traffic and
842 support immune surveillance. *Science* (80-.). (2020). doi:10.1126/science.aaw9544

843 36. Liebl, D. & Griffiths, G. Transient assembly of F-actin by phagosomes delays phagosome
844 fusion with lysosomes in cargo-overloaded macrophages. *J. Cell Sci.* (2009).
845 doi:10.1242/jcs.048355

846 37. Legant, W. R. *et al.* Multidimensional traction force microscopy reveals out-of-plane
847 rotational moments about focal adhesions. *Proc. Natl. Acad. Sci.* **110**, 881–886 (2013).

848 38. Case, L. B. & Waterman, C. M. Integration of actin dynamics and cell adhesion by a
849 three-dimensional, mechanosensitive molecular clutch. *Nat. Cell Biol.* **17**, 955–963
850 (2015).

851 39. van Zon, J. S., Tzircotis, G., Caron, E. & Howard, M. A mechanical bottleneck explains
852 the variation in cup growth during FcgammaR phagocytosis. *Mol. Syst. Biol.* **5**, 298
853 (2009).

854 40. Wilson, C. A. *et al.* Myosin II contributes to cell-scale actin network treadmilling through
855 network disassembly. *Nature* **465**, 373–377 (2010).

856 41. Ostrowski, P. P., Freeman, S. A., Fairn, G. & Grinstein, S. Dynamic Podosome-Like
857 Structures in Nascent Phagosomes Are Coordinated by Phosphoinositides. *Dev. Cell* **50**,
858 397-410.e3 (2019).

859 42. Proag, A. *et al.* Working together: Spatial synchrony in the force and actin dynamics of
860 podosome first neighbors. *ACS Nano* **9**, 3800–3813 (2015).

861 43. Meddens, M. B. M. *et al.* Actomyosin-dependent dynamic spatial patterns of cytoskeletal
862 components drive mesoscale podosome organization. *Nat. Commun.* **7**, 1–17 (2016).

863 44. Greenberg, S., Burridge, K. & Silverstein, S. C. Colocalization of F-actin and talin during
864 Fc receptor-mediated phagocytosis in mouse macrophages. *J Exp Med* **172**, 1853–1856
865 (1990).

866 45. Herant, M., Heinrich, V. & Dembo, M. Mechanics of neutrophil phagocytosis: experiments
867 and quantitative models. *J. Cell Sci.* **119**, 1903–13 (2006).

868 46. Tollis, S., Dart, A. E., Tzircotis, G. & Endres, R. G. The zipper mechanism in
869 phagocytosis: energetic requirements and variability in phagocytic cup shape. *BMC Syst.*
870 *Biol.* **4**, 149 (2010).

871 47. Matlung, H. L. *et al.* Neutrophils Kill Antibody-Opsonized Cancer Cells by Tropoptosis.
872 *Cell Rep.* **23**, 3946-3959.e6 (2018).

873 48. Velmurugan, R., Challa, D. K., Ram, S., Ober, R. J. & Ward, E. S. Macrophage-mediated
874 tropocytosis leads to death of antibody-opsonized tumor cells. *Mol. Cancer Ther.* **15**,
875 1879–1889 (2016).

876 49. Morrissey, M. A. *et al.* Chimeric antigen receptors that trigger phagocytosis. *Elife* **7**,
877 e36688 (2018).

878 50. Walbaum, S. *et al.* Complement receptor 3 mediates both sinking phagocytosis and
879 phagocytic cup formation via distinct mechanisms. *J. Biol. Chem.* **296**, 100256 (2021).

880 51. Hoijman, E. *et al.* Cooperative epithelial phagocytosis enables error correction in the early
881 embryo. *Nature* **590**, 618–623 (2021).

882 52. Bieling, P. *et al.* Force Feedback Controls Motor Activity and Mechanical Properties of
883 Self-Assembling Branched Actin Networks. *Cell* **164**, 115–127 (2016).

884 53. Marie-Anaïs, F., Mazzolini, J., Bourdoncle, P. & Niedergang, F. 'Phagosome Closure
885 Assay' to Visualize Phagosome Formation in Three Dimensions Using Total Internal
886 Reflection Fluorescent Microscopy (TIRFM). *J. Vis. Exp.* **2016**, 1–8 (2016).

887 54. Nishi, H. *et al.* Neutrophil Fc γ RIIA promotes IgG-mediated glomerular neutrophil capture
888 via Abl/Src kinases. *J. Clin. Invest.* **127**, 3810–3826 (2017).

889 55. Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through
890 immunoreceptors. *Nat. Immunol.* **20**, 1269–1278 (2019).

891 56. Schuerle, S. *et al.* Robotically controlled microprey to resolve initial attack modes
892 preceding phagocytosis. *Sci. Robot.* **2**, eaah6094 (2017).

893 57. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. *Proc. Natl.*
894 *Acad. Sci. U. S. A.* **103**, 4930–4 (2006).

895 58. Bakalar, M. H. *et al.* Size-Dependent Segregation Controls Macrophage Phagocytosis of
896 Antibody-Opsonized Targets. *Cell* **174**, 131-142.e13 (2018).

897 59. Colucci-Guyon, E., Tinevez, J.-Y., Renshaw, S. A. & Herbomel, P. Strategies of
898 professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-
899 associated microbes. *J. Cell Sci.* **124**, 3053–3059 (2011).

900 60. Gosavi, R. A. *et al.* Optimization of Ex Vivo Murine Bone Marrow Derived Immature
901 Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c
902 Positive Selection Kit Method. *Bone Marrow Res.* (2018). doi:10.1155/2018/3495086

903 61. Chen, B. C. *et al.* Lattice light-sheet microscopy: Imaging molecules to embryos at high
904 spatiotemporal resolution. *Science* (80-). (2014). doi:10.1126/science.1257998

905 62. Rusinkiewicz, S. Estimating curvatures and their derivatives on triangle meshes. in
906 *Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and*
907 *Transmission, 2004. 3DPVT 2004.* 486–493 (IEEE, 2004).
908 doi:10.1109/TDPVT.2004.1335277

909 63. Ben Shabat, Y. & Fischer, A. Design of Porous Micro-Structures Using Curvature
910 Analysis for Additive-Manufacturing. *Procedia CIRP* **36**, 279–284 (2015).

911 64. Wang, Y., Zhang, X. & Cai, W. Spherical harmonics method for computing the image
912 stress due to a spherical void. *J. Mech. Phys. Solids* **126**, 151–167 (2019).

913 65. Johnson, K. L. *Contact Mechanics.* (Cambridge University Press, 1985).

914 66. Wieczorek, M. A. & Meschede, M. SHTools: Tools for Working with Spherical Harmonics.
915 *Geochemistry, Geophys. Geosystems* **19**, 2574–2592 (2018).

916