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SUMMARY

The intestinal parasite, Cryptosporidium, is a major contributor to global child mortality
and causes opportunistic infection in immune deficient individuals. Innate resistance to
Cryptosporidium, which specifically invades enterocytes, is dependent on the production
of IFN-y, yet whether enterocytes contribute to parasite control is poorly understood. In
this study, utilizing the natural mouse pathogen, Cryptosporidium tyzzeri, we show that
epithelial-derived IL-18 synergized with IL-12 to stimulate innate lymphoid cell (ILC)
production of IFN-y. This innate IFN-y was required for early parasite control. Loss of
STAT1 in enterocytes, but not dendritic cells or macrophages, antagonized early parasite
control. Transcriptional profiling of enterocytes from infected mice identified an IFN-y
signature and enrichment of anti-microbial effectors like IDO, GBP and IRG. Deletion
experiments identified a role for Irgm1/m3 in parasite control. Thus, enterocytes promote

ILC production of IFN-y that acts on enterocytes to restrict the growth of C. tyzzeri.
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INTRODUCTION

The intestinal epithelium is an important site for nutrient uptake and a barrier to
micro-organisms. However, this barrier can be disrupted by a diverse group of viruses,
bacteria and parasites that infect the gastrointestinal tract. The enteric diseases caused
by these pathogens are of public health importance, accounting for 8-10% of deaths in
children worldwide (Collaborators, 2016). While many of these pathogens will
disseminate from the gut, a subset is restricted to the epithelial layer, where their
interactions with enterocytes are likely key determinants of disease outcome. The
epithelium is composed of enterocytes, a large population of columnar epithelial cells
necessary for nutrient uptake, as well as subsets of specialized epithelial cells including
Paneth, goblet and tuft cells that have roles in mucosal homeostasis and immune defense
(Adolph et al., 2013; Birchenough et al., 2015; Cliffe et al., 2007; Gerbe et al., 2016;
Nadjsombati et al., 2018; Nusse et al., 2018; Peterson and Artis, 2014; Schneider et al.,
2018; von Moltke et al., 2016).

How enterocytes participate in resistance to different types of infection is a
fundamental question that is particularly relevant to epithelial-restricted pathogens such
as rotavirus, norovirus, astrovirus, Shigella, Cyclospora and Cryptosporidium. The
apicomplexan parasite, Cryptosporidium, is a leading cause of severe diarrhea and death
in infants (Checkley et al., 2015; Khalil et al., 2018; Kotloff et al., 2013; Platts-Mills et al.,
2015) and a common opportunistic infection in individuals with primary and acquired
immune deficiencies (Gomez Morales et al., 2004; Levy et al., 1997). Currently, there are
no fully effective drugs or vaccines to treat or prevent cryptosporidiosis. Based on clinical

experience and animal models, effective control and clearance of Cryptosporidium is
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dependent on cell-mediated immunity and the production of IFN-y (Hayward et al., 2000;
Leav et al., 2005; Tessema et al., 2009; White et al., 2000). Cryptosporidium invasive
stages infect the apical surface of enterocytes, where they transform into the replicative
trophozoite and occupy a unique intracellular but extracytoplasmic niche (Guerin and
Striepen, 2020). The restriction of this parasite to the intestinal epithelium provides a
model to understand how the immune system senses enteric pathogens and an
opportunity to identify enterocyte-driven pathways that promote the control of intracellular
pathogens.

Because Cryptosporidium parvum, the species most widely used as an
experimental model, does not robustly infect adult immune competent mice, most studies
have used immune deficient mice to help define important pathways for resistance to this
organism. This approach has provided evidence that dendritic cell (DC) derived IL-12
promotes NK cell production of IFN-y required for innate restriction of this infection
(Barakat et al., 2009a; Bedi et al., 2014; Ehigiator et al., 2007; Potiron et al., 2019;
Rohlman et al., 1993). IL-18 is another cytokine that promotes innate resistance to C.
parvum. However, it is unclear if this is due to its ability to enhance ILC production of IFN-
v or whether IL-18 directly activates epithelial cells to limit parasite growth (Bedi et al.,
2015; Choudhry et al., 2012; McDonald et al., 2006; McNair et al., 2018). Likewise, while
IFN-y is important for parasite control, multiple cell types in the gut can respond to this
cytokine and it is unclear whether the ability of IFN-y to activate enterocytes, dendritic
cells or macrophages in vivo contributes to resistance to Cryptosporidium.

The recent description of the murine pathogen, C. tyzzeri, which is closely related

to the species that infect humans, provides a natural experimental system to dissect the
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events required for protective immunity in an immunocompetent setting (Sateriale et al.,
2019). In this study, infection with C. tyzzerirevealed that intestinal type-1 innate lymphoid
cells (ILC1s) are a rapid source of IFN-y that limits parasite growth. This protective
response was dependent on the production of IL-12 and epithelial-derived IL-18. Lineage-
specific deletion of STAT1, a critical transcription factor downstream of IFN-y signaling,
demonstrated that STAT1 was uniquely required in enterocytes—but not DCs or
macrophages—to restrict parasite growth. Transcriptional profiling of enterocytes from
infected mice highlighted an IFN-y signature, and subsequent deletion experiments
identified immune-related GTPase-m1 and -m3 (Irgm1/3) as downstream effectors of the
IFN-y-mediated response. Together, these studies establish that enterocytes have a
central role as a source of IL-18 required to stimulate local ILC responses and are key

mediators of IFN-y-mediated protection to an important enteric pathogen.
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MATERIALS & METHODS
Mice

C57BL/6 (stock no: B6NTac), Rag2—/— (stock no: RAGN12), and Rag2—/—I12rc—/—
(stock no: 4111) were purchased from Taconic. C57BL/6 (stock no: 000664), Rag2—/—
(stock no: 008449), Ifng—/— (stock no: 002287), IL-12p40 KO (stock no: 002693), Stat1—
/- (stock no: 012606), I118—/— (stock no: 004130), ldo1-/- (stock no:005867), Vil1-Cre
(stock no:021504), LysM-Cre (stock no: 004781), and Cd11c-Cre (stock no. 008068)
were purchased from Jackson Laboratory and maintained in-house. STAT1flox mice
were generated as previously described (Klover et al., 2010) and maintained in house.
Ifng/Thy1.1 BAC-In mice were provided by Dr. Phillip Scott but originated in the laboratory
of Dr. Casey Weaver (Harrington et al., 2008; Hatton et al., 2006). [118-flox mice were
provided by Dr. Jorge Henoa-Mejia. Vil1-CrefR™ were provided by Dr. Lou Ghanem at
Children’s Hospital of Philadelphia and Dr. David Artis at Cornell University. In-house
breeding was performed to obtain all Cre-lox combinations. Unless otherwise noted, mice
used in this study were males or females ranging from 7-11 weeks. We did not observe
a difference in infection burden between male and female mice. All mice were age
matched within individual experiments. All protocols for animal care were approved by
the Institutional Animal Care and Use Committee of the University of Pennsylvania

(protocol #805405 and #806292).

Parasites and infection
Transgenic C. tyzzeri expressing nanoluciferase and mCherry (Sateriale et al.,

2021; Sateriale et al., 2019) are propagated by orally infecting /fng~~ mice. Oocysts are
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purified from fecal collections of infected mice using sucrose flotation followed by a
cesium chloride gradient, as previously described (Sateriale et al., 2019). Mice were
infected with 5x10*-1x10% oocysts by oral gavage. To measure parasite burden in
intestinal tissue, 5mm biopsy punches were taken along murine small intestines and
suspended in 0.5mL lysis buffer (50mM tris HCI (pH 7.6), 2mM DTT, 2mM EDTA, 10%
glycerol, 1% TritonX in ddH20). To quantify fecal oocyst shedding, 20mg fecal material
was suspended in 1mL lysis buffer. Samples were shaken with glass beads for Smin, then
combined in a 1:1 ratio with Nano-Glo® Luciferase solution (Promega, Ref N1150). A

Promega GloMax plate reader was used to measure luminescence.

Histology

For histological analysis of the small intestine, tissue from the distal third of the
small intestine was flushed with 10% neutral buffered formalin (Sigma, St Louis, MO,
USA), then ‘swiss-rolled’ and fixed overnight. Fixed samples were paraffin-embedded,
sectioned, and stained with hematoxylin and eosin for detailed histologic evaluation.
Slides were evaluated by a board-certified veterinary pathologist in a blinded fashion for
quantitative measurements of number of parasites, villus/crypt architectural features and
inflammatory infiltrates, and semi-quantitative scores for villus epithelium lesions as

previously described (Sateriale et al., 2019).

Cytokine neutralization and measurement
To neutralize IFN-y, 1mg anti-IFN-y (XMG1.2, BioXcell Cat #: BEO055) was given

intraperitoneally (i.p.) 1 day prior and 2 days post infection with C. tyzzeri. To also
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neutralize IL-12 or IL-18, 2mg anti-IL-12p40 (C17.8 BioXcell Cat #: BE0O051) or 1mg anti-
IL-18 (YIGIF74-1G7, BioXcell Cat #: BE0237) were given i.p. on days -4, -1, and 1, while
anti-IFN-y was given on day -2 and day 2. Intestinal IFN-y levels were assessed from
5mm biopsy punches that were incubated in complete RPMI at 37°C for 24 hours. Clear,
flat-bottom 96-well plates (Immunulon 4 HBX) were coated with 0.25ug/mL anti-IFN-y
(AN-18, Invitrogen Ref #:14-7313-85) at 4°C overnight. Samples were added and IFN-y
left to bind at 37°C for 2 hours. 0.25ug/mL biotinylated anti-IFN-y (R4-6A2, eBioscience
Ref #: 13-7312-85) in PBS with 2.5% FBS and 0.05% Tween was added for 1 hour at
room temperature, followed by peroxidase-labeled streptavidin for 30 minutes. Finally,
KPL ABTS® peroxidase substrate (SeraCare Cat #: 5120-0041) was applied for

detection.

Flow cytometry and cell sorting

Single-cell suspensions were prepared from intestinal sections by shaking diced
tissue at 37C for 25 minutes in Hank’s Balanced Salt Solution with 5§ mM EDTA and 1
mM DTT. Cell pellets were then passed through 70 mm and 40 mm filters. Cells were
surface stained using the following fluorochrome-conjugated Abs: anti-EpCAM (G8.8),
anti-CD45.2 (104), anti-CD19 (MB19-1), anti-Thy1.1 (HIS51), anti-CD27 (LG.7F9), anti-
RORyt (B2D) and anti-yd TCR (eBioGL3) from eBioscience; anti-NK1.1 (PK136), anti-
NKp46 (29A1.4), anti-CD3 (17A2), anti-CD127 (SB/199), anti-CD49a (HMa.1), anti-T-bet
(4B10) and anti-CD8B (YTS156.7.7) from BioLegend; anti-Eomes (Dan11mag) and

Live/Dead Aqua from Invitrogen; and anti-CD49b (DX5) from BD Biosciences. Data were
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collected on a LSRFortessa (BD Biosciences) and analyzed with FlowJo v10 software

(TreeStar). Cell sorting was performed on a BD FACS Jazz (BD Biosciences).

RNA-seq and gene enrichment analysis

RNAseq reads were pseudo-aligned to the Ensembl Mus musculus reference
transcriptome v79 using Kallisto v0.44.0 (Bray et al.,, 2016). In R, transcripts were
collapsed to genes using Bioconductor tximport (Robinson et al., 2010), and differentially
expressed genes were identified using Limma-Voom (Law et al., 2014; Ritchie et al.,
2015). Gene set enrichment analysis was performed using the GSEA software and the
annotated gene sets of the Molecular Signatures Database (MSigDB) (Mootha et al.,
2003; Subramanian et al., 2005). From the GSEA output, enrichment maps were
generated to provide a visual representation of gene set overlap using Cytoscape v3.8.2
(Shannon et al., 2003). Data and analyses have been deposited to the GEO repository

(GSE168680).

Statistics
Statistical significance was calculated using the unpaired Student’s t-test for
comparing 2 groups, or ANOVA followed by multiple comparisons for comparing groups

of 3 or more. Analyses were performed using GraphPad Prism v.9.
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RESULTS
Localized innate IFN-y provides early constraint of C. tyzzeri infection

To assess the relationship between parasite burden and IFN-y production, WT
mice treated with an isotype control antibody (IgG) or anti-IFN-y (a-IFN-y) were infected
with a C. tyzzeri strain that expressed nanoluciferase (Sateriale et al., 2021). At 4 days
post-infection (dpi), paired biopsies were taken along the entirety of the intestine and used
to quantify nanoluciferase activity or placed in culture to assess levels of secreted IFN-y.
In control mice, parasite replication was restricted to the distal small intestine but levels
of IFN-y in ileal supernatants were not elevated above uninfected controls (Figure 1A).
However, in mice treated with anti-IFN-y, there was an 80-fold increase in parasite burden
and ex vivo IFN-y was readily detected and correlated with areas of the gut with the
highest parasite burdens (Figure 1A, filled circles). Thus, the early production of IFN-y
provides a mechanism of resistance to C. tyzzeri, but the ability to detect the infection-
induced production of IFN-y is dependent on the presence of a high tissue parasite
burden.

To assess the contribution of innate and adaptive sources of IFN-y on early
resistance to C. tyzzeri, WT and Rag2~~ mice (lacking T and B cells) were treated with a-
IFN-y or an isotype control prior to infection. No gross histological differences were
detected between mouse strains at steady state (Supplemental Figure 1A). In both WT
and Rag2”~ mice, IFN-y neutralization resulted in increased oocyst shedding by 4dpi,
which was exacerbated at 6dpi (43-fold in WT and 263-fold in Rag2'-, Figure 1B), and
correlated with histological analysis that showed enhanced parasite burden in Rag2'-

mice treated with o-IFN-y (Figure 1 C-D). In addition, there were significant infection-
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induced local changes in mucosal architecture and enterocyte morphology by 5dpi,
including reduced average villus:crypt ratio, increased crypt mitoses and a trend toward
increased epithelial dysplasia (Figure 1E-G). However, quantification of these changes
across multiple sections did not yield statistically significant changes between infected
mice and those treated with a-IFN-y. However, when observing ileal pathology at a later
timepoint, a-IFN-y treatment resulted in more severe pathological changes (12dpi
Supplemental Figure 1B). The pathology corresponds with the sustained oocyst shedding
observed after the peak parasite burden at 6dpi. Interestingly, treatment of chronically
infected Rag2’- mice with o-IFN-y at 50dpi led to a marked recrudescence in parasite
burden (Figure 1H). These data identify an innate mechanism of IFN-y-mediated
resistance to C. tyzzeri that operates during the acute and chronic phases of infection,

but which is insufficient for parasite clearance.
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Figure 1. Localized innate IFN-y provides early protection from C. tyzzeri and pathology. WT
mice were infected with 10° C. tyzzeri oocysts and treated with either a-IFN-y or isotype control.
(A) At 4dpi, two adjacent 5mm biopsies were taken along the length of the small and large intestines
(D=duodenum, J=jejunum, I=ileum, Ce=cecum, C=colon). One biopsy was evaluated for
nanoluciferase (top), the other was incubated at 37°C for 24h and IFN-y was measured from the
supernatant. Graph depicts 1 representative mouse from n=3 for each group. (B) WT C57BL/6 and
Rag2~~ mice were treated with isotype or a-IFN-y and nanoluciferase was used to measure fecal
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oocyst shedding, n=4 per group. Similar results were observed in 2 additional experiments. (C)
Representative mucosa and (D-G) cumulative histology scoring from Rag2~~ mice 5dpi that shows
a marked increase in cryptosporidia organisms (black arrows) infecting the villus enterocytes in
treated mice versus controls with a progressive increase in epithelial dysplasia (arrowheads),
reduced villus:crypt ratios with increased crypt depth (double-headed arrows) and crypt mitoses
(white arrows); scale bars = 20um. (H) Rag2”~ mice were infected with 10° C. tyzzeri oocysts and
treated with a-IFN-y at 50, 53, and 56dpi. Oocysts shedding was monitored throughout by
nanoluciferase. n=4, representative from 3 experimental replicates. Bars denote mean + SD.
ANOVA followed by multiple comparisons were performed on cumulative pathology scores, **p
<0.01, ***p < 0.001.

Innate lymphoid cells are required for control of C. tyzzeri

There are several ILC populations capable of IFN-y production that include: NK cells,
ILC1s and ILC3s. Early studies with C. parvum concluded that NK cells were a major
source of IFN-y, but the use of a-asialo-GM1 (which depletes NK cells but not other ILC
populations) indicated that there may be other innate sources of IFN-y (Rohiman et al.,
1993; Ungar et al., 1991). Indeed, when Rag2~~ mice infected with C. tyzzeri were treated
with a-asialo-GM1, there was efficient depletion of splenic NK cells but the intestinal ILCs
(CD45.2* NK1.1*NKp46*) and levels of secreted IFN-y were only reduced by
approximately half (Supplemental Figure 1C-E). Therefore, to assess the role of ILCs in
resistance to C. tyzzeri, Rag2-1I12rg”~ mice, which lack all ILCs in addition to T and B
cells, were compared to WT and Rag2”~ mice. After infection with C. tyzzeri, oocyst
shedding declined in WT mice by 9dpi, and resolved by 18dpi (Figure 2A). Parasite levels
in Rag2~"~ mice were not elevated compared to WT mice at early time points (3-9dpi), but
the infection failed to resolve in the absence of adaptive immune cells. In contrast, Rag2-
~l12rg~"- mice demonstrated little evidence of parasite control at any time examined, with
approximately 250-fold higher nanoluciferase readings by 6dpi, compared to Rag2”'-
mice, which were sustained for the duration of the experiment (Figure 2A). In uninfected

mice, there were no gross histological differences in the ileal tissues among the three
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strains (Supplemental Figure 1A). At 5dpi, consistent with the data in Fig 1B, WT and
Rag2~- mice had similar numbers of parasites and levels of infection-induced changes to
the epithelium (Figure 2D-G, white and gray bars). In contrast, Rag2~-/ll2rg”~ mice
exhibited dramatically increased parasite burden (Figure 2B-C). The absence of ILCs also
resulted in increased mitoses and crypt branching, as well as more severe villus
pathology, indicated by increased epithelial dysplasia and attenuation (Fig 2D-G, black
bars). Thus, in the absence of adaptive immunity, ILCs are required for both early and
long-term control of C. tyzzeri and the lack of these cells results in unrestricted parasite

replication and severe intestinal pathology.
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Figure 2. Innate lymphoid cells are critical components of protection against C. tyzzeri.
C57BL/6 WT, Rag2~~ and Rag2~-ll2rg”~ mice were infected and used for histological analysis or
oocyst shedding. (A) Kinetics of fecal oocyst shedding; n=3-5, representative of 3 replicates
comparing Rag2™~ and Rag2™1l2rg™. (B-G) H&E staining of representative villi (upper panels) and
crypts (lower panels), and cumulative histology scoring from WT, Rag2™~ and Rag2~"-lI2rg”~ mice
at 5dpi that show a marked increase in Cryptosporidium organisms (black arrows) infecting the
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villus enterocytes in Rag2”-II2rg”~ mice versus WT or Rag2~~ mice as well as progressive villus
epithelial dysplasia with attenuation (arrowheads), increases in crypt branching (double arrows)
and crypt mitoses (blue arrows); scale bars = 20um; n = 4-8 where each symbol denotes 1 mouse
cumulative of 3 experiments. Bars indicate mean + SD. n = 4-8 where each symbol denotes 1
mouse, cumulative of 3 experiments. Bars indicate mean + SD for uninfected (open circles) or 5dpi
(filled circles). For histology scoring, t-tests were used to compare uninfected and infected within
each mouse strain, *p < 0.05, **p < 0.01, ****p < 0.0001.

ILC1s are a major source of innate IFN-y during C. tyzzeri infection

To determine the innate cellular source(s) of IFN-y in the intestinal epithelium, mice
in which the gene for the surface-expressed protein, Thy1.1, is under the transcriptional
control of the Ifng promotor (Harrington et al., 2008) were infected with mCherry-
expressing C. tyzzeri. This approach allowed the simultaneous quantification of parasite-
infected (mCherry*) enterocytes (EpCAM*CD45") and innate lymphoid cells
(CD45.2*CD3 CD19"NK1.1*NKp46*) producing IFN-y (Thy1.1*). Based on the data in Fig
1A, groups of mice were also treated with a-IFN-y to increase the ability to detect cells
that produce IFN-y. In uninfected mice, enterocytes lack mCherry, and a low basal
percentage of ILCs express surface Thy1.1 regardless of a-IFN-y treatment (Figure 3A,
C). At 4dpi, a detectable portion of IECs were infected (mCherry*), and there was a small
increase in the frequency of Thy1.1* ILCs. Treatment with a-IFN-y resulted in a significant
increase in parasite burden (Figure 3A-B) and a 3-5-fold increase in the proportion of
Thy1.1* ILCs (Figure 3C-D). This increased production of IFN-y was specific to the
intestinal epithelium, as few cells expressed Thy1.1 in Peyer’s patches or mesenteric
lymph nodes, even with IFN-y neutralization (Figure 3E-F). Of note, in these immune
competent reporter mice, there was also infection-induced expression of Thy1.1 by

intestinal CD4"* T cells and, to a lesser extent, CD4*CD8a* T cells (Supp Fig 2A).
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To characterize the ILC subsets that produce IFN-y, expression of the transcription
factors Eomes, T-bet and RORyt was used to distinguish NK cells, ILC1s, and ILC3s,
respectively. In uninfected reporter mice, the ILC populations in the gut were composed
of 50-60% T-bet* ILC1s, 30- 40% Eomes® NK cells and 5-10% were RORyt* ILC3s
(Supplemental Figure 2B). All three of these ILC subsets were also present at 4dpi (Figure
3G and 3l). Among ILCs not expressing IFN-y (Thy1.17), the proportions of NK cells,
ILC1s and ILC3s were similar to those of uninfected mice (Figure 3G, |, bottom plots and
Figure 3H, J open circles). However, in infected mice, the proportion of Tbet+ ILCs was
significantly increased in cells expressing /fng (Thy1.1%), where approximately 80% of the
Thy1.1* cells expressed T-bet and not Eomes or RORyt (Figure 3G-J, filled circles). In
addition, while NK cells in the mesenteric lymph nodes expressed CD27 and CD49b, the
Thy1.17* cells in the intestinal epithelium showed low expression of these NK cell markers
(Supplemental Figure 2C-D). These data indicate that within days of C. tyzzeri infection,

ILC1s present in the intestine become activated and are a major source of IFN-y.
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Figure 3. ILC1s are a critical source of innate IFN-y. /fng-Thy1.1 Kl mice were infected with
mCherry-expressing C. tyzzeri and cells from the ileal epithelium were assessed by flow cytometry
at 4dpi. (A) Representative flow plots and (B) summary bar graph of C. tyzzeri-infected (mCherry*)
intestinal epithelial cells, gated on Live CD45.2-EpCAM* cells. (C) Representative flow plots and
(D) summary bar graph of Ifng* (Thy1.1%) innate lymphoid cells (NK1.1*"NKp46*), n = 7-24 from 4
experiments. (E) Representative flow plots and (F) summary bar graph of frequency of Ifng+
(Thy1.1) cells from ILCs (seeing gating strategy from (C)) taken from intestinal epithelium (IE),
Peyer’s patches (PP), or mesenteric lymph nodes (mesLN). mesLN and PP were pooled from 2-4
mice, representative of 3 experiments. (G) Representative flow plots and (H) summary bar graph
of T-bet and Eomes expression on Ifng* (Thy1.1%) or Ifng™ (Thy1.17) ILCs. (I) Representative flow
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plots and (J) summary bar graph of T-bet and RORyt expression on Ifng* (Thy1.1%) or Ifng™ (Thy 1.1~
) ILCs. All ILCs were gated on Live CD45.2*CD3-CD 19 NKp46*NK1.1* cells. Statistical significance
between a-IFN-y treated or untreated in B and D was determined by Student’s t-test. Statistical
significance in F was determined by one-way ANOVA and multiple comparisions. Student’s t-tests
were used to compare Thy1.1" and Thy1.1~ in H and J. ns = not significant (p > 0.05), *p < 0.05,
**p <0.01, ****p < 0.0001.

Epithelial-derived IL-18 synergizes with IL-12 to promote ILC production of IFN-y

IL-12 and IL-18 have roles in innate resistance to Cryptosporidium sp. (Bedi et al.,
2015; Ehigiator et al., 2007; Sateriale et al., 2021) and can synergize to stimulate ILC
production of IFN-y in other experimental systems (Fuchs et al., 2013; Hunter et al., 1997;
Takeda et al., 1998). Therefore, to evaluate their contributions to early resistance to C.
tyzzeri, the level of oocyst shedding in WT, Ifng™~, I112b~- (IL-12p40) and //18~ mice
were compared. As expected, infection was established in WT mice, and Ifng”~ mice
showed a rapid and marked increase in parasite burden. While the parasite levels in //12b~
/~ mice were comparable to Ifng”~ mice, /|18~ mice showed a phenotype that was
intermediate between WT and /fng~~ mice (Figure 4A). A recent study highlighted BATF3-
dependent CD103" DCs as a source of |IL-12 during neonatal infection with C. parvum
(Potiron et al., 2019), but the cellular source of IL-18 required to control Cryptosporidium
was unclear. To determine the importance of the intestinal epithelium as a cellular source
of IL-18 during cryptosporidiosis, oocyst shedding from mice bearing an epithelial lineage-
specific deletion of IL-18 (Villin-Cre x 1118 here referred to as //18*E€) was compared to
WT and //1787~ mice. In these studies, the levels of infection in //178*EC mice were
comparable to whole-body //787~ mice (Figure 4B), suggesting that the intestinal
epithelium is a key source of the IL-18 that mediates early resistance to C. tyzzeri.

The experiments that utilized mice with germline deletion of IL-18 or IL-12 identified

an important role for these cytokines in early resistance to C. tyzzeri. However, analyses
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of naive /112b” mice revealed a marked absence of ILC populations in the intestinal
epithelium (Supp Fig 3A-C) and previous studies have reported that germline deletion of
IL-18 impacts immune homeostasis in the gut (Harrison et al., 2015). In order to control
for these confounding effects, C57BL/6 and Rag2~~ mice were treated with antibodies
against IL-12p40, IL-18, or both beginning 4 days prior to infection with C. tyzzeri. In WT
and Rag2”~ mice, neither treatment alone dramatically impacted susceptibility to C.
tyzzeri but the simultaneous blockade of IL-12 and IL-18 led to a 14.5-fold increase in
parasite burden (Rag2~~: Figure 4C, BL/6: Supp Fig. 3D). Moreover, despite having
similar infection burdens to a-IFN-y treated mice (Figure 4D-E), Ifng-Thy1.1 reporter mice
treated with a-IL-12p40 plus a-IL-18 showed nearly complete loss of Thy1.1* ILC (Figure
4F-G). Collectively, these experiments demonstrate that epithelial-derived IL-18
synergizes with IL-12 to stimulate ILC production of IFN-y required for early restriction of

C. tyzzeri infection.
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Figure 4. IL-12 and IL-18 stimulate IFN-y production by ILCs. (A) WT C57BL/6 mice or mice
lacking IL-18 (/1187), IL-12p40 (/112b™") or IFN-y (Ifng~~) were infected with C. tyzzeri and oocyst
shedding in feces was monitored. Representative of 3 experimental replicates. (B) Control (Cre~
118", epithelial-specific IL-18-deficient (Villin®® x //18""; 11184'EC) and //187~ mice were infected
with C. tyzzeri and oocyst shedding in feces was monitored. (C-G) Rag2™~ mice (C) or Ifng-Thy1.1
Kl mice (D-G) were treated with a-IL-18, a-IL-12p40, or both and infected with C. tyzzeri. (C) Oocyst
shedding in feces was monitored. (D) Representative flow plots and (E) summary bar graph of C.
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tyzzeri-infected (mCherry+) IECs 4dpi. (F) Representative flow plots and (G) summary bar graph
of Ifng* (Thy1.1%) ILCs 4dpi (gating same as Figure 3). n = 8-11 from 3 experiments. Statistical
significance was determined by one-way ANOVA and multiple comparisions; ns = not significant (p
> 0.05) ****p < 0.0001.

Enterocytes are critical contributors to early IFN-y-mediated resistance to C.
tyzzeri infection

While IFN-y is important in acute resistance to C. tyzzeri, it is unclear whether it
acts directly on infected cells to restrict parasite growth, or indirectly via activation and
maturation of macrophages and dendritic cells (Laurent and Lacroix-Lamande, 2017).
The transcription factor STAT1 is the major mediator of IFN signaling. /fng”~ and Stat1~-
mice had similarly enhanced susceptibility to C. tyzzeri, suggesting that IFN-y is the main
driver of STAT1 signaling required for resistance to this parasite (Supplemental Figure
4A). Therefore, lineage-specific Cre-lox mediated deletion was utilized to identify cell
subsets in which STAT1 signaling was critical for early control of C. tyzzeri. Loss of STAT1
only in dendritic cells (Cd171c-Cre x Stat1"M; Stat1°PC) or macrophages (Lys2-Cre x
Stat 1%, Stat1*M®) did not enhance parasite burden over Cre™ controls. In contrast, when
STAT1 was deleted from enterocytes using a tamoxifen-inducible deletion (Villin-CreERT2
x Stat1"; Stat1*EC), oocyst shedding was greatly increased (Figure 5A) and at a level
that paralleled complete Stat7~~ mice (Figure 5B). This was not due to reduced levels of
IFN-y in the intestine (Supp Fig. 4B). Thus, IFN-y induced STAT1-mediated activity in
intestinal epithelial cells provides a cell intrinsic mechanism for the control of
Cryptosporidium.

Because the mechanism that leads to the IFN-y-mediated restriction of

Cryptosporidium in enterocytes is unknown, transcriptional profiling of sort-purified
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enterocytes from uninfected or infected mice was performed. RNA-seq analysis of
enterocytes identified a limited set of differentially expressed genes; that included several
IFN-inducible GTPases: Igitp (encoding Irgm3), ligp71 (encoding Irga6), Gm12250
(encoding Irgb10), Gbp7, Tgtp1, Ifi47 (encoding Irg-47), and Irgm1 (Figure 5C). Despite
the limited number of differentially expressed genes, GSEA showed a strong enrichment
of IFN-y signaling in enterocytes from infected ileums (Figure 5D). Enrichment mapping
software was used to define related gene functions and examine overlap between
enriched gene sets. This analysis identified 3 main clusters: IFN signatures, mitochondrial
signatures, and protein translation/ribosome signatures (Figure 5E and Supp Fig 4C-D).
The mitochondrial and ribosome signatures have been associated with enterocyte stress
(Moon, 2011; Rath et al., 2018) and likely reflect the increased mitotic index and epithelial
dysplasia associated with this infection (see Figures 1 and 2). Furthermore, while gene
sets encompassing both IFN-y and type | interferons were enriched, the degree of overlap
was greatest among the all-encompassing “interferon signaling” and the two interferon
gamma gene sets, further indicating that IFN-y signaling was the dominant response in
infected IECs.

Given the dominant IFN-y signature, the expression data sets were curated for
changes in IFN-y-induced genes associated with control of intracellular pathogens (Fig
5F). Genes strongly upregulated by C. tyzzeri infection included those encoding for f2m
and CIITA (Class Il Major Histocompatibility Complex Transactivator) which affect MHC |
and MHC Il expression, respectively (Figure 5F). Also markedly upregulated were
transcripts encoding for indolamine dioxygenase (IDO), several Guanylate Binding

Proteins (GBPs) and Immunity Related GTPases (IRGs), all of which are known to be
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important in non-hematopoietic cells for IFN-y to restrict the growth of T. gondii (Saeij and
Frickel, 2017; Yamamoto et al., 2012). However, their roles in resistance to
Cryptosporidium have not been established. To test the impact of these pathways on C.
tyzzeri, the course of infection in Ido17~, GBP"? (lacking Gbp2, Gbp3, Gbp5, Gbp7, and
Gbp2ps) and Irgm1/m3~- mice was compared with that in WT mice by fecal oocyst
shedding. Because Irgm1-deficient mice have multiple defects in immune function that
are mitigated by the loss of Irgm3, Irgm1/m3~- mice were used to study to role of Irgm1
in resistance to infections (Liu et al., 2013; Maric-Biresev et al., 2016). While /do1~- and
GBP°" mice showed no enhanced susceptibility to C. tyzzeri, Irgm1/m3~~ mice
demonstrated a greater than 5-fold increase in fecal oocyst shedding at 5dpi (Figure 5G).
We note that parasite burden in Irgm1/m3~- mice was intermediate between WT and Ifng~
= or Stat1~'E¢ mice, which argues for additional IFN-y/STAT1-mediated mechanisms for
parasite control. However, these findings provide the first evidence for a role of IRGs in

the IFN-y-mediated mechanism of resistance to Cryptosporidium.
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Figure 5. IFN-y-mediated protection is dependent on enterocyte expression of STAT1. (A-B)
Cre Stat1" (Control), Cd11cCStat1"" (Stat14P°) and Lyz2¢Stat1" (Stat 1M®), VillinceERT2.Stat 1M
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(Stat1~'EC) and Stat1~~ mice were infected with C. tyzzeri and oocyst shedding was monitored in
feces. (C-F) IEC from naive mice or mice infected with C. tyzzeri for 3 or 5 days were FACS sorted
and used for RNA-sequencing analysis. (C) Volcano plot with IFN signature genes marked in red.
DEGs that were significantly upregulated (p < 0.05) in IECs from C. tyzzeri-infected mice are
labeled. (D-E) Gene set enrichment analysis highlighting an IFN-y signature (D), a cluster of IFN
pathways (E). (F) Heatmap of pertinent IFN-stimulated genes. (G) WT C57BL/6, Ido1~-, GBP°"",
and Irgm1/m3~~ mice were infected with 5x10* C. tyzzeri oocysts and fecal shedding of oocysts
was monitored. Representative of 3 experimental replicates.
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DISCUSSION

The importance of IFN-y in resistance to Cryptosporidium is well appreciated
(Hayward et al., 2000; Leav et al., 2005; Pollok et al., 2001), but significant gaps exist in
our understanding of the specific cells that produce and respond to this central cytokine
in order to mediate parasite control. Previous studies have focused on NK cells as a
potential innate source of IFN-y in resistance to C. parvum (Barakat et al., 2009a;
Rohlman et al., 1993); however, they predate the identification of other ILC populations.
As confirmed in our studies, NK cells are largely present in secondary lymphoid tissues
and the circulation, whereas the other ILC subsets are predominately tissue resident (Kim
et al., 2016). Although there is marked phenotypic and functional plasticity for ILCs in the
intestine (Gury-BenAri et al., 2016), our studies with C. tyzzeri suggested that ILC1s were
the major early source of IFN-y in the small intestine, although NK cells likely also
contributed. In other models of intracellular infection, NK and ILC1-mediated resistance
is transient, associated with the acute phase of infection but not sufficient for long term
control (Park et al., 2019; Weizman et al., 2017). Thus, it was unexpected that although
innate production of IFN-y was not sufficient for parasite clearance in Rag™~ mice, it did
provide a significant level of long-term control of C. tyzzeri. Because of the lack of effective
therapies to treat chronic cryptosporidiosis in patients with primary or acquired defects in
T cell function (Flanigan et al., 1992; Navin et al., 1999; O'Hara et al., 2007), this model
provides an opportunity to understand how ILC responses are maintained and whether
they can be enhanced to mediate parasite clearance.

Previous studies have demonstrated that IL-12 and IL-18 are important in

resistance to C. parvum (Bedi et al., 2015; Ehigiator et al., 2007; McDonald et al., 2006;
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Tessema et al.,, 2009; Urban et al., 1996). While DCs are a major source of IL-12
(Martinez-Lopez et al., 2015; Mashayekhi et al., 2011; Potiron et al., 2019), a recent study
reported that, in vitro, C. parvum can directly activate the inflammasome and downstream
caspase-1in DCs, resulting in IL-18 secretion (McNair et al., 2018). In addition, IL-18 has
been proposed to promote parasite control independent of IFN-y in enterocyte cell lines
(McDonald et al.,, 2006). In contrast, we found that enterocyte-intrinsic NLRP6
inflammasome activation was required for IL-18 mediated resistance to C. tyzzeri in vivo
(Sateriale et al., 2021). Consistent with that observation, the studies presented here
highlight enterocytes as a critical source of IL-18 which synergized with IL-12 to stimulate
ILC1s to produce early IFN-y. During infection with Citrobacter rodentium, an extracellular
bacteria that attaches to the luminal surface of enterocytes, NLRP3 inflammasome
activation leads to enterocyte-derived IL-18, which is required for host resistance (Liu et
al., 2012; Munoz et al., 2015; Navabi et al., 2017). Thus, different sensors in enterocytes
allow these cells to respond to diverse pathogens but converge on the processing of IL-
18. In contrast, although Salmonella infects enterocytes, enteric neurons (not
enterocytes) are the relevant source of IL-18 required for protection (Jarret et al., 2020).
Intriguingly, patients with Hirschsprung disease have regions that lack distal bowel
ganglia and are susceptible to Cryptosporidium (Sellers et al., 2018; Teitelbaum et al.,
1989), but additional experiments will be required to determine whether the enteric
nervous system is also a relevant source of IL-18 required for resistance to
Cryptosporidium.

IFN-y is a cytokine with wide ranging effects relevant to Cryptosporidium that

include its ability to enhance antigen presentation and activation of anti-microbial activities
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within non-hematopoietic cells. Here, deletion of STAT1 was utilized to target the
downstream effects of IFN-y during C. tyzzeri infection. It is important to note that STAT1
is utilized by other IFNs and cytokines and there are reports that endogenous type | IFNs
(Barakat et al., 2009b) and IFN-A contribute to early resistance to C. parvum (Ferguson
et al., 2019). Nevertheless, in the experiments performed with C. tyzzeri, mice deficient
in STAT1 or IFN-y showed similar susceptibility. Furthermore, the genes most strongly
enriched in enterocytes from infected mice are more closely associated with IFN-y,
compared to IFN-o/B or IFN-A (Tretina et al., 2019). The finding that the loss of STAT1 in
macrophage and DC populations did not impact susceptibility indicated that these
populations were not important effectors of IFN-y-mediated parasite control. In contrast,
the inducible deletion of STAT1 in enterocytes established a cell-intrinsic role for STAT1
in resistance to C. tyzzeri. This pathway contrasts with Salmonella, where IFN-y is
required to restrict bacterial growth in macrophages but not enterocytes (Monack et al.,
2004; Songhet et al., 2011).

Studies using human intestinal cell lines concluded that IFN-y can inhibit growth of
Cryptosporidium, but inhibitory effects in vitro are modest and the mechanisms that
underlie parasite restriction are not understood (Khalil et al., 2018; Pollok et al.,
2001). The identification of a role for Irgm1 suggests a potential overlap with mechanisms
used to control other intracellular pathogens. Likewise, the upregulation of Irgm1, Igtp
and ligp1 in enterocytes from infected mice highlights anti-microbial effectors that
together with the GBPs can intersect with autophagy pathways involved in pathogen
restriction (Coers et al., 2018). Although the loss of the GBPs on chromosome 3 (GBP 1,

GBP2, GBP3, GBP5, and GBP7) had no detectable impact on host susceptibility, it does

29


https://doi.org/10.1101/2021.03.13.435244
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.13.435244; this version posted March 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

not rule out possible roles for the other GBPs located on chromosome 5. Of these, the
expression of GBP6 transcripts was significantly enriched in epithelial cells from infected
mice. Another possibility is that, although GBPs interact with vacuoles that contain other
intracellular pathogens, perhaps the extra-cytoplasmic location of Cryptosporidium and
the partitioning with a thick actin pedestal precludes this interaction, which would render
the canonical GBP-dependent mechanisms of protection ineffective. The recent
advances using enteroid-derived systems to culture Cryptosporidium (Heo et al., 2018;
Wilke et al., 2019) should be useful to dissect how enterocytes utilize interferon-
stimulated genes to directly clear or restrict growth of Cryptosporidium species.

The intestinal epithelium is a critical barrier where the immune system interacts
with diverse microbial communities in the gut. Enterocyte interactions with the microbiome
are central to homeostasis and the etiology of a variety of allergies and inflammatory
conditions (Dahan et al., 2007; Eberl and Lochner, 2009; Peterson and Artis, 2014). There
is an increased appreciation that different types of epithelial cells provide signals that help
to coordinate the enteric nervous system, gut physiology and mucosal immunity in order
to maintain tolerance. For extracellular pathogens, enterocytes promote clearance of the
helminth Trichuris muris (Zaph et al., 2007) and the bacteria Clostridium difficile
(Mamareli et al., 2019) and Citrobacter rodentium (Navabi et al., 2017). Less is known
about how enterocytes respond to intracellular infections, although inflammasome-
mediated extrusion of Salmonella-infected enterocytes limits bacterial spread (Rauch et
al., 2017). Indeed, expulsion of infected enterocytes represents a conserved mechanism
of pathogen resistance that is present in insects and higher vertebrates (Ayyaz and

Jasper, 2013; Chatterjee and Ip, 2009; Lee et al., 2016). The studies presented here
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identified enterocytes as a critical source of IL-18 required for ILC activation and as key
drivers of IFN-y mediated resistance to an important enteric pathogen. Thus, C. tyzzeriis
a valuable natural model of enteric infection that affects intestinal physiology and
nutritional status which can provide novel insights into the role of enterocytes in

recognition of and resistance to infection.
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SUPPLEMENTAL FIGURES
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Supplemental Figure 1. (Refers to Figures 1 and 2) (A) Representative H&E staining of ileal
sections from naive C57BL/6 (left), Rag2~~ (center), and Rag2™-lI2rc”~ mice. (B) Representative
H&E of an illeal villus from Rag2—/— mice treated with 1gG (left) or a-IFN-y (right). (C-E) Rag2™"-
were treated with a-asioloGM1 (see Methods). Total numbers of ILCs (CD45.2*CD3~
NKp46*NK1.1%) from the spleen (C) or ileum (D) are shown in cumulative bar graphs. IFN-y was
measured from the supernatants of ileal biopsies by ELISA (see Methods) and are shown in (E).
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Supplemental Figure 2. (Refers to Figure 3) (A) Representative flow plots of Thy1.1 expression
in intestinal T cell subsets from Ifng-Thy1.1 KI mice. Left: uninfected, center: 4dpi with C. tyzzeri,
right: 4dpi with C. tyzerri and treated with a-IFN-y. (B-C) Summary bar graphs of % of ileal ILC
subsets from naive mice. (D-E) Representative flow plots of ILCs 4dpi (gating same as Figure 3).
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Supplemental Figure 3. (Refers to Figure 4) (A) C57BL/6 mice treated with o-IL-18, alL-12, or
both were infected with C. tyzzeri and oocyst shedding in feces was monitored. Representative of
3 experimental replicates. (B) Representative flow data of cells from the ileum of C57BL/6 or //12rb~
= mice, gated on live cells (left), CD45.2* (center), NK1.1*NKp46* (right). (C-E) Cumulative bar
graphs of total lymphocytes (C), frequency of NK1.1*NKp46* (D) and total ILC numbers (E).

34


https://doi.org/10.1101/2021.03.13.435244
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.13.435244; this version posted March 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

69 0369 0369 03609
Days post infection

Xt“
& gt
. ¥
A 105, Stat?t*  Statt*-  Statt~~  lfng™ B 2000, Y .‘5‘”
7. ]
5 10 _1500{ o
-
& 100 L 'I ?
= g >
5 10001 pegen RT3
_a.‘ 10 Li e .o.
° 10% H so0{ [*%
0%y 0

0

C [ D —

L

' (2 W 3 |
L2} | 4 ] e
w12 [ 55 |
e ] el R
B3 3 (= NN - |
° s 2 (7 ¢

Supplemental Figure 4. (Refers to Figure 5) (A) Stat1~~ mice, littermate controls (Stat7** and
Stat1*) and Ifng~~ mice were infected with C. tyzzeri and oocyst shedding was monitored in feces.
(B) IFN-y was measured from the supernatants of ileal biopsies by ELISA. (C-D) GSEA clusters of
mitochondrial (C) and ribosomal/protein translation pathways (D).
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