

1 **Massively parallel characterization of CYP2C9 variant enzyme activity and**
2 **abundance**

3

4 Clara J. Amorosi¹, Melissa A. Chiasson¹, Matthew G. McDonald², Lai Hong Wong¹,
5 Katherine A. Sitko¹, Gabriel Boyle¹, John P. Kowalski², Allan E. Rettie², Douglas M.
6 Fowler^{1,3*}, and Maitreya J. Dunham^{1*}

7

8 ¹Department of Genome Sciences, University of Washington, Seattle, WA

9 ²Department of Medicinal Chemistry, University of Washington, Seattle, WA

10 ³Department of Bioengineering, University of Washington, Seattle, WA

11 *Co-corresponding

12 **ABSTRACT**

13 *CYP2C9* encodes a cytochrome P450 enzyme responsible for metabolizing up to
14 15% of small molecule drugs, and *CYP2C9* variants can alter the safety and efficacy of
15 these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15
16 million people annually and polymorphisms in *CYP2C9* can affect patient response
17 leading to an increased risk of hemorrhage. We developed Click-seq, a pooled yeast-
18 based activity assay to test thousands of variants. Using Click-seq, we measured the
19 activity of 6,142 missense variants expressed in yeast. We also measured the steady-
20 state cellular abundance of 6,370 missense variants expressed in a human cell line
21 using Variant Abundance by Massively Parallel sequencing (VAMP-seq). These data
22 revealed that almost two-thirds of *CYP2C9* variants showed decreased activity, and that
23 protein abundance accounted for half of the variation in *CYP2C9* function. We also
24 measured activity scores for 319 previously unannotated human variants, many of
25 which may have clinical relevance.

26

27 **INTRODUCTION**

28 Recent sequencing efforts have resulted in an avalanche of new variants, many
29 of which are variants of uncertain significance (VUS) - variants identified through
30 genetic testing whose functional significance is unknown. VUS hamper the
31 implementation of precision medicine as they must be classified as pathogenic or
32 benign before they can be used to inform clinical decisions. Over half of the missense
33 variants in ClinVar¹ are VUS². VUS are a particular problem in the field of
34 pharmacogenomics, which seeks to understand the genetic sources of inter-individual
35 variation in drug response. Functionally annotated pharmacogene variants can be used
36 to guide dosing decisions and predict adverse drug reactions (ADRs), which cost U.S.

37 hospitals up to 30 billion dollars annually and are a leading cause of hospitalization and
38 death^{3,4}. 30% of ADRs are predicted to be caused by inter-individual variability in drug
39 metabolizing enzymes and other drug related genes⁵. Genetic variants predict drug
40 response for a subset of important drugs, and implementing genotype-guided drug
41 dosing can improve patient outcomes⁶. However, the vast majority of pharmacogene
42 variants discovered so far are of unclear functional effect.

43 One important group of pharmacogenes is the Cytochromes P450 (CYPs).
44 CYPs are a superfamily of monooxygenase enzymes that use heme as a cofactor, and
45 there are 57 CYP genes in humans⁷. CYP2C9 in particular is the primary metabolic
46 enzyme for a wide range of drugs including drugs that must be dosed carefully such as
47 phenytoin (for seizures) and the widely prescribed oral anticoagulant warfarin^{8,9}.
48 CYP2C9 polymorphisms contribute to an estimated 15% of the variation in warfarin
49 dose¹⁰, and some common coding variants have large effects. For example, the
50 CYP2C9 I359L missense allele results in substantially diminished S-warfarin clearance
51 leading to warfarin sensitivity¹¹. Genotype-guided warfarin dosing based on CYP2C9
52 and VKOR alleles can improve patient treatment in some situations¹², but relies on
53 knowing the function of alleles to guide dosing decisions.

54 Only a subset of CYP alleles have been studied adequately for genotype-guided
55 dosing. As human CYP alleles are discovered, they are named according to the star (*)
56 system¹³ and curated by the PharmVar consortium¹⁴. There are 70 documented
57 CYP2C9 star alleles in the PharmVar database (pharmvar.org). The Clinical
58 Pharmacogenetics Implementation Consortium (CPIC) reviews *in vitro* and *in vivo*
59 evidence and provides clinical functional recommendations for CYP2C9 and other
60 pharmacogenes¹⁵. CPIC has provided clinical allele functional annotations for 36 of the
61 70 CYP2C9 star alleles^{16,17}. However, there are many more CYP2C9 alleles than those

62 documented in PharmVar. *CYP2C9* has 8 common alleles (MAF > 1%)¹⁸ and hundreds
63 of documented rare alleles (MAF < 1%)^{19,20}. In the population database gnomAD²⁰,
64 there are 466 missense alleles in *CYP2C9*, half of which are singletons. The vast
65 majority of variation in *CYP2C9* is unannotated, and so knowing the functional
66 consequence of existing and yet-to-be discovered alleles will help improve dosing of
67 drugs cleared by *CYP2C9*. Thus, there is a need for a large-scale experimental effort to
68 comprehensively characterize *CYP2C9* variants.

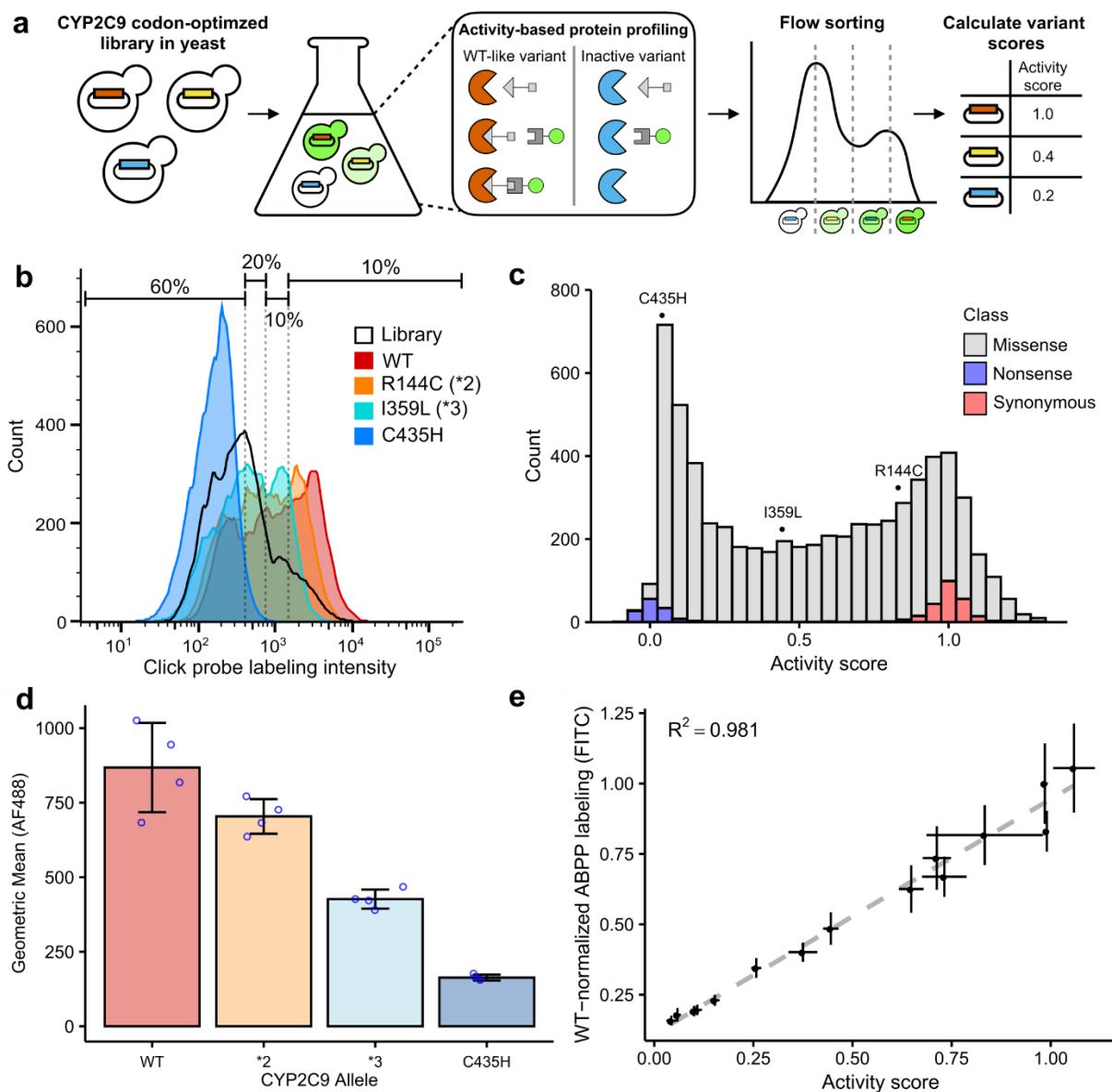
69 We used deep mutational scanning (DMS) to measure the enzyme activity and
70 steady-state cellular abundance of thousands of *CYP2C9* missense variants. DMS is a
71 high-throughput method for probing variant function by applying a functional selection,
72 enriching variants with high function and depleting variants with low function²¹. High-
73 throughput DNA sequencing is then used to quantify the change in each variant's
74 frequency during the selection, yielding a functional score for every variant in the library.
75 Selections can take many forms, but often couple variant function to cell growth or
76 measure protein or ligand binding, and rarely measure enzyme activity directly (e.g. ²²).
77 DMS approaches have the potential to transform pharmacogenomic
78 implementation^{23,24}, but so far have been applied to only a handful of pharmacogenes,
79 including *TPMT*, *NUDT15*, and *VKORC1*^{25–27}. No multiplexed method for quantifying
80 enzyme activity directly in cells exists currently, precluding the quantification of variant
81 effects on human CYP enzyme despite the clear need for such comprehensive
82 functional data.

83 To meet this challenge, we developed Click-seq, a multiplexed, sequencing-
84 based method for quantifying protein variant activity, and used it to measure the activity
85 of 6,142 *CYP2C9* missense variants expressed heterologously in yeast cells.
86 Additionally, we leveraged the Variant Abundance by Massively Parallel sequencing

87 assay we developed previously (VAMP-seq)²⁵, which uses a fluorescent protein reporter
88 coupled with FACS, to measure the abundance of 6,370 CYP2C9 missense variants
89 expressed in cultured human cells. Comparison of both activity and abundance
90 revealed that the mechanism behind variant loss of function could be attributed to
91 reduced abundance for at least 50% of variants. Additionally, these data highlighted key
92 regions of CYP2C9 crucial to function, including many residues involved in heme
93 binding. Finally, our experimental functional scores are concordant with existing
94 CYP2C9 functional annotations. We used our activity scores to annotate 319 previously
95 unannotated human CYP2C9 missense variants in gnomAD, two-thirds of which had
96 reduced activity. In addition to annotating these 319 variants, we provide activity scores
97 for 5,797 additional variants. This information will be of great utility to clinicians as a key
98 source of evidence when presented with VUS and will aid in improving dosing efficacy
99 of drugs metabolized by CYP2C9.

100

101 **RESULTS**

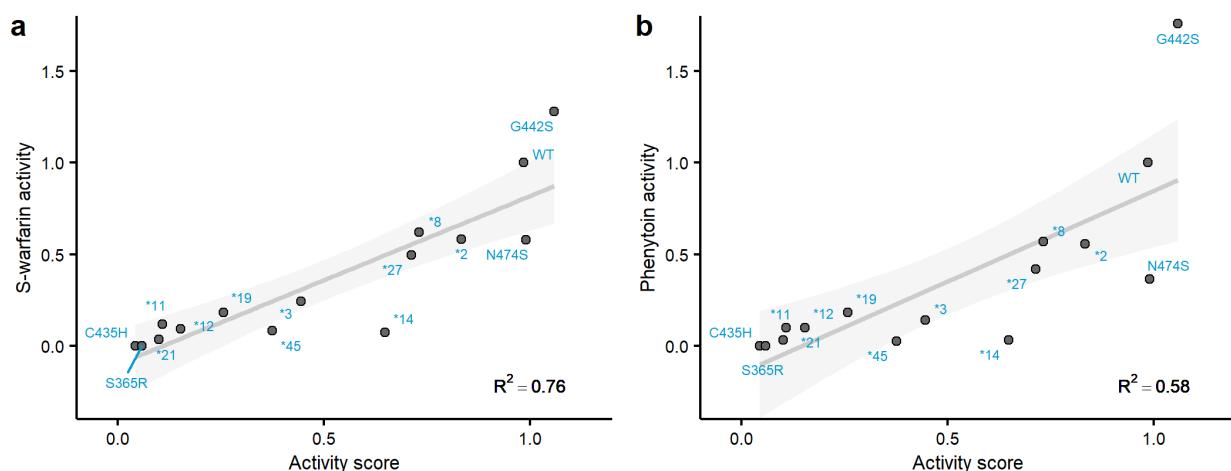

102 **Click-seq, a multiplexed assay for CYP2C9 enzymatic activity**

103 We developed a multiplexed assay of CYP activity, Click-seq that uses a CYP-
104 selective, activity-based probe to modify CYP variant enzymes heterologously
105 expressed in the budding yeast *S. cerevisiae*. Following probe attachment via
106 mechanism-based adduction, click chemistry is used to label the enzyme-bound probe
107 with a fluorophore, FACS separates cells according to their degree of labeling, and
108 high-throughput sequencing of the sorted cells is used to score each variant (Figure 1a).
109 Click-seq directly measures enzyme activity by quantifying the amount of mechanism-
110 based inhibitor covalently attached to the CYP enzymes in a cell after a period of
111 incubation; thus labeling is activity-dependent. CYP-specific activity-based probes have

112 been developed previously^{28,29}, but prior work has focused on *in vitro* assays
113 (commonly CYP-rich microsomal preparations), rather than cell-based methods. We
114 modified existing assays to work with intact yeast cells in a pooled format. We also
115 synthesized a new activity-based probe, tienilic acid hexynyl amide (TAHA), that is an
116 analog of tienilic acid, a known covalent inhibitor of CYP2C9³⁰. TAHA showed better
117 labeling than a generic P450 probe²⁹ (Supplementary Figure 1). Additionally, to improve
118 recombinant CYP activity, human P450 accessory proteins were integrated into a
119 modified laboratory strain (see Methods) resulting in a humanized yeast strain.

120 In order to demonstrate that Click-seq accurately reflects enzyme activity, we
121 cloned individual CYP2C9 variants of known activity and compared probe labeling
122 levels to wild type CYP2C9. We found that, as expected, CYP2C9 *2 (R144C) and *3
123 (I359L) had decreasing levels of labeling, and a catalytically inactive variant, C435H,
124 had labeling comparable to background levels (Figure 1b, d). We then constructed a
125 barcoded, site-saturation mutagenesis library of CYP2C9 codon optimized for yeast
126 expression and encompassing positions 2 to 490. This library covers 6,542 of the 9,780
127 possible single amino acid variants (67%), with 105,372 barcodes (mean of 5.8 and
128 median of 3 for single amino acid variants; see Supplementary Table 3 for details). The
129 CYP2C9 activity library was labeled using the TAHA probe and flow sorted into bins;
130 DNA collected from each bin was amplified, sequenced, and analyzed to determine
131 relative variant activity. We calculated activity scores (see Methods) for 6,524 single
132 variants, of which 6,142 were missense, 131 were nonsense, and 250 were
133 synonymous (Figure 1c). Activity scores were normalized to median nonsense and
134 synonymous variant scores such that a score of 0 represented nonsense-like activity
135 and a score of 1 represented wild-type-like activity. Variant activity scores correlated
136 very well between the four replicate sorts we performed from four separate library

137 outgrowths (mean Pearson's $r = 0.92$, mean Spearman's $\rho = 0.919$, Supplementary
138 Figure 3). We binned activity scores into activity classes (Methods and Supplementary
139 Figure 4) and found that a 64.9% (3,987) of missense variants showed significantly
140 decreased activity compared to wild type. As further confirmation that our classifications
141 align with existing standards, the boundary between "WT-like" activity and "decreased"
142 activity is very close to the activity score for CYP2C9 *2, a known decreased activity
143 allele.



144
145 **Figure 1. Multiplexed measurement of CYP2C9 activity using Click-seq.** (a) A
146 humanized yeast strain is transformed with a library of codon optimized CYP2C9
147 variants, labeled using activity-based protein profiling (ABPP), resulting in a range of
148 fluorescence levels, and sorted into four bins using fluorescence-activated cell sorting.
149 Bins are sequenced to calculate relative variant activity. (b) Flow cytometry of ABPP
150 labeled yeast expressing CYP2C9 WT (red), reduced activity alleles (*2 and *3, orange
151 and turquoise), null allele (C435H, blue) and CYP2C9 variant library (black outline).
152 Smoothed histograms shown, each sample represents ~20,000 cells. Note that some

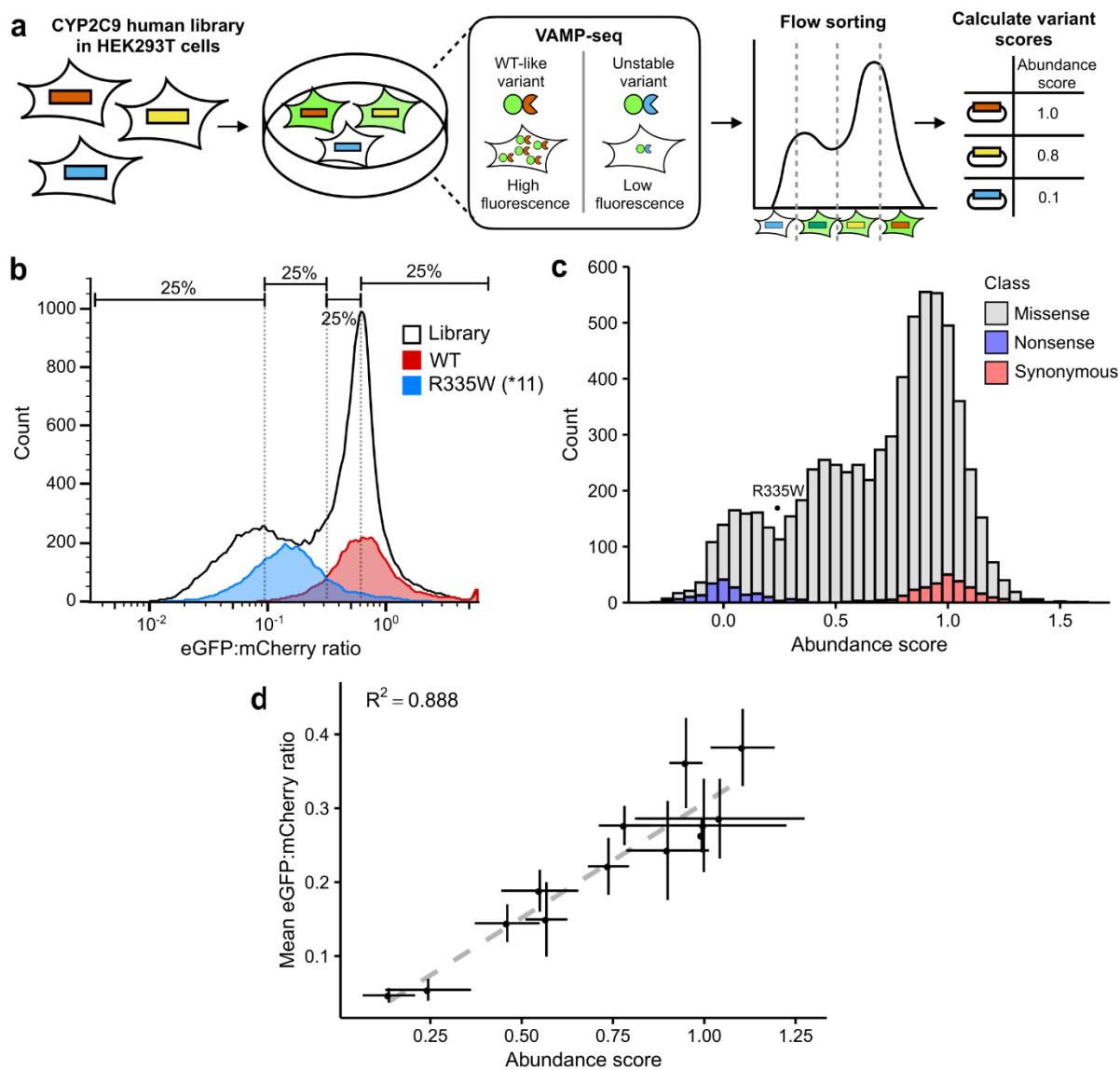
153 cells with low intensity are the result of plasmid loss and thus do not contribute to the
154 downstream sequencing results. (c) Stacked histogram of activity score colored by type
155 of variant. Individual scores of C435H, *2, and *3 shown on top. (d) Geometric mean of
156 ABPP-labeled CYP2C9 alleles. Individual replicates shown as blue points, and error
157 bars show standard deviation. (e) WT-normalized ABPP labeling (FITC normalized
158 fluorescence) for 14 CYP2C9 variants, expressed in the humanized yeast strain and
159 labeled separately. Individual variants were labeled using the same ABPP protocol as
160 the pooled assay. Scatter plot and linear regression of activity score (pool score) versus
161 individual variant ABPP labeling (n = 3 replicates). Error bars show standard error for
162 activity scores and standard error for ABPP labeling.

163 To internally validate our Click-seq derived activity data, we generated 14
164 CYP2C9 variants that spanned the full range of activity scores, labeled them
165 individually, and found that individually tested and Click-seq derived activity scores were
166 well correlated (Pearson's $r = 0.991$, Figure 1e). To show that our large-scale activity
167 scores determined with the TAHA probe were representative of CYP2C9 variant activity
168 towards important CYP2C9 drug substrates, we performed gold-standard LC-MS
169 assays of S-warfarin 7-hydroxylation and phenytoin 4-hydroxylation using microsomal
170 preparations derived from yeast expressing the same 14 CYP2C9 variants generated
171 for internal validation (Figure 2). Activity scores were well correlated with individual
172 variant S-warfarin turnover (Pearson's $r = 0.874$, Spearman's $\rho = 0.895$) and phenytoin
173 turnover (Pearson's $r = 0.764$, Spearman's $\rho = 0.87$). Both of these CYP2C9 drug
174 substrates had highly similar activity levels across the variants tested (Pearson's $r =$
175 0.965 , Spearman's $\rho = 0.979$, Supplementary Figure 5). Additionally, we found that
176 individual variant activity scores correlated well with an assay based on a fluorogenic
177 substrate, BOMCC (Supplementary Figure 6), indicating consistency across methods,
178 as fluorogenic substrate assays are another standard method of measuring CYP
179 activity³¹.

180 Overall, Click-seq yielded a map relating variant sequence to activity, but did not
181 provide information on the mechanisms underlying variant loss of function. Thus, we
182 performed a second CYP2C9 DMS, scoring variants for their abundance in cells in
183 order to determine to what degree decreases in variant activity could be explained by
184 decreases in abundance.

185
186

Figure 2. Comparison of CYP2C9 activity scores with gold-standard activity


187 **assays on yeast microsomes.** Scatterplots of CYP2C9 activity scores plotted against
188 individually tested CYP2C9 alleles. Individual alleles were expressed in the humanized
189 yeast strain used in the pooled assay, and yeast microsomes were harvested from
190 these individual strains. In a), LC-MS was used to determine the rate of S-warfarin 7-
191 hydroxylation. In b), LC-MS was used to determine the rate of phenytoin 4-
192 hydroxylation. The grey line is the regression line, and shaded area shows the 95%
193 confidence interval. All activities are shown normalized to wild type rates.

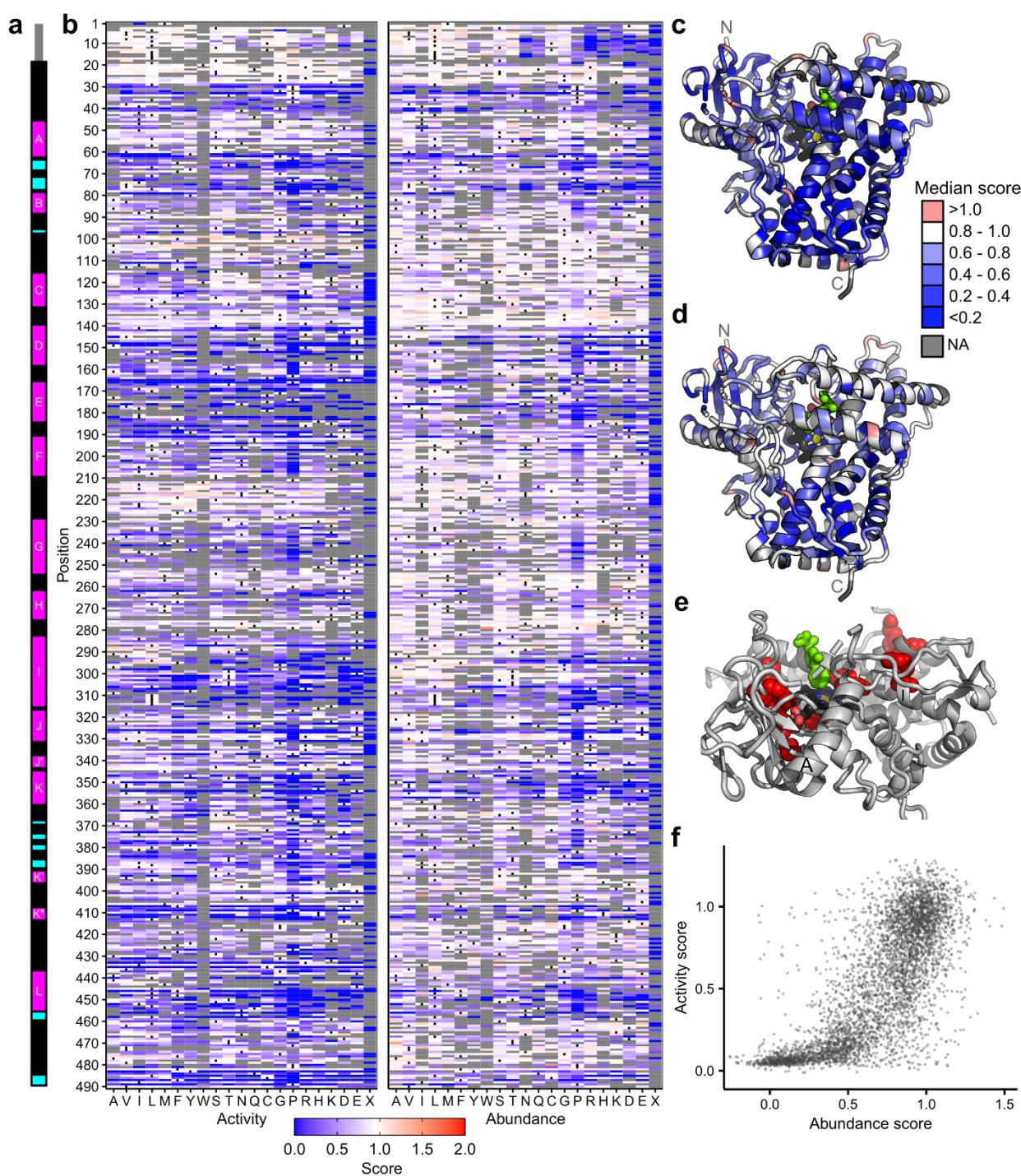
194 **A multiplexed assay for CYP2C9 abundance in cultured human cells**

195 We recently developed a method, VAMP-seq²⁵, that enables measurement of
196 steady-state protein abundance in cultured human cell lines using fluorescent reporters
197 (Figure 3a). We applied VAMP-seq to CYP2C9, fusing eGFP C-terminally
198 (Supplementary Figure 7), and from the same construct expressing mCherry via an
199 internal ribosomal entry site (IRES) to control for cell-to-cell differences in expression.
200 The fluorescent reporters accurately quantified the loss of abundance of a known
201 destabilized CYP2C9 variant³², R335W (*11), relative to wild type as measured by the
202 ratio of eGFP to mCherry (Figure 3b). We constructed a barcoded, site-saturation
203 mutagenesis library of CYP2C9, encompassing positions 2 to 490. This library covered
204 8,310 of the 9,780 possible single amino acid variants (85%), with 78,740 barcodes
205 (mean of 5.9 and median of 4 for single amino acid variants; see Supplementary Table
206 3 for details).

207 We expressed this library in HEK 293T cells using a serine integrase landing
208 pad^{25,33}. Successfully recombined cells expressing CYP2C9 variants were selected with
209 a small molecule, AP1903, and then sorted into quartile bins based on eGFP:mCherry
210 ratio (Figure 3a). Bins were deeply sequenced, and the resulting sequencing reads
211 were used to calculate frequencies across bins for each variant. Abundance scores
212 were calculated using weighted averages of variant frequencies and normalized to the
213 scores of synonymous and nonsense variants as for the activity scores (see Methods).
214 Variant abundance scores showed distinct, separable distributions of synonymous and
215 nonsense variants, with missense variants spanning the range between them (Figure
216 3c). After filtering, we assigned variant scores to 6,821 single variants, of which 6,370
217 were missense, 189 were nonsense, and 261 were synonymous. Three replicate sorts
218 from two separate transfections were performed on this library and the replicates

219 correlated well (mean Pearson's $r = 0.789$, mean Spearman's $\rho = 0.754$, Supplementary
220 Figure 3). To internally validate our VAMP-seq derived abundance data, we generated
221 12 CYP2C9 variants, expressed them individually, and found that individually measured
222 and VAMP-seq derived abundance scores were well correlated (Pearson's $r = 0.942$,
223 Figure 3d). In contrast to the activity classes, only 36.8% of missense variants (2,347
224 variants) had a significantly decreased abundance class. This fraction is similar to other
225 VAMP-seq studies of pharmacogene abundance, as 34% of VKOR missense variants
226 showed significantly decreased abundance²⁷.

227
228 **Figure 3. Multiplexed measurement of CYP2C9 activity using VAMP-seq.** (a) Using
229 VAMP-seq²⁵, a CYP2C9 library was expressed in HEK 293T cells such that each
230 variant was expressed as an eGFP fusion, resulting in a range of fluorescence
231 according to variant stability. Cells were then flow sorted into bins and sequenced to
232 determine relative variant abundance. (b) Flow cytometry of CYP2C9 WT (red),
233 destabilizing allele (*11, blue), and CYP2C9 eGFP fusion library expressed in HEK293T
234 cells (black outline). Smoothed histograms of eGFP:mCherry ratios shown. Approximate
235 quartile bins for sorting shown at the top. (c) Stacked histogram of abundance score
236 colored by type of variant. Abundance score of *11 shown as a point. (d) Scatterplot and


237 linear regression of individually measured cell eGFP:mCherry ratios for 12 CYP2C9
238 variants vs VAMP-seq derived abundance scores for the same variants. Error bars
239 show standard error for abundance scores and standard error for individually
240 determined eGFP:mCherry ratio (n = 2 replicates).

241 **Mechanism of CYP2C9 variant loss of function**

242 Between the Click-seq and VAMP-seq datasets, 8,091 missense variants had at
243 least one functional score, and 4,421 variants had both activity and abundance scores
244 (Figure 4). Among these variants, activity and abundance were strongly correlated
245 (Pearson's $r = 0.748$, Spearman's $\rho = 0.749$) (Figure 4f). We observed an abundance
246 threshold at a score of ~ 0.5 , below which variants had very low activity (median activity
247 score ~ 0.098), suggesting that for variants with abundance below this level, differences
248 in Click-seq signal are too small to detect. Conversely, variants with abundance scores
249 greater than 0.5 had a wider range of activity scores. The overall positive trend between
250 abundance and activity scores revealed that 1) using engineered yeast as a
251 heterologous CYP expression system largely recapitulates protein behavior in human
252 cells, and 2) a substantial number of variants had low activity because they were less
253 abundant. We estimated that approximately half of the variation in activity could be
254 explained by abundance ($R^2 = 0.56$, Figure 4f). Since there was no normalization to
255 protein expression per cell, the yeast activity scores reported are each a combination of
256 both variant activity and variant stability.

257 By comparing activity and abundance, we were able to identify variants that
258 abolish activity but not abundance. We hypothesized that functionally important regions
259 such as the active site and binding pocket of CYP2C9 would be enriched for such low
260 activity, high abundance variants. To find such variants, we calculated variant specific
261 activity by dividing the activity score by the abundance score (see Methods). We found
262 that the positions with the lowest median specific activity were not active site positions,
263 but instead mainly positions likely involved in heme binding (Figure 4e). This finding
264 implies that these positions are crucial for activity but did not strongly destabilize the
265 protein when mutated. The positions with the lowest 2.5% median specific activity

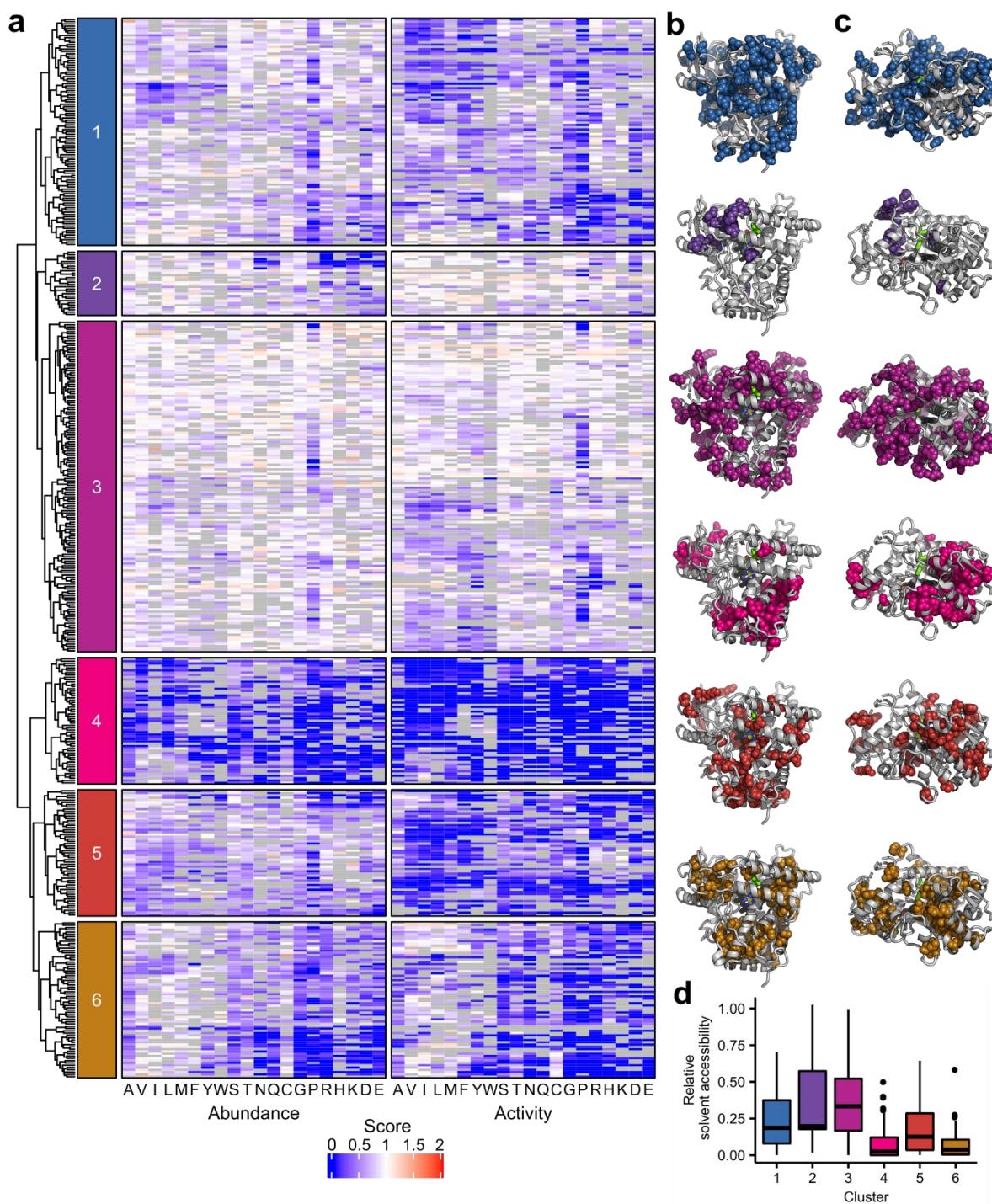
266 scores included the heme-binding motif residues Gly431, Arg433, Cys435, and
267 Gly437³⁴ (Supplementary Figure 8) as well as Arg97, which is important for heme
268 propionate binding in CYP2C9³⁵. Finally, we found that variants in the active site³⁶ had
269 median activity scores of 0.61 and median abundance scores of 0.91, indicating that
270 these variants were generally not destabilizing and also only had moderate effects on
271 activity. This active site mutational tolerance is surprising, at least in contrast to VKOR,
272 where active site positions had the lowest specific activity scores²⁷. However, CYPs
273 have well-documented conformational flexibility, especially in the active site³⁷.
274 Moreover, in CYP2C9 the BC loop which frames the substrate access channel is also
275 highly flexible³⁸, with median activity and abundance scores of 0.81 and 0.88
276 respectively. Thus, CYP2C9 is apparently able to tolerate active site mutations without
277 loss of abundance.

278

279 **Figure 4. Click-seq activity scores and VAMP-seq abundance scores for CYP2C9.**

280 (a) Secondary structure of CYP2C9, with alpha helices in magenta and beta sheets in
281 cyan. Helix names labeled in white. (b) Heatmaps of CYP2C9 activity (left) and
282 abundance (right) scores. WT amino acids denoted with a dot, and missing data are
283 shown in grey. Scores range from nonfunctional (blue) to WT-like (white) to increased

284 (red). In (c) and (d), CYP2C9 structure (PDB: 1r9o) colored by median activity and
285 abundance, respectively, at each position. Median scores are binned as depicted in
286 legend, and missing positions shown in grey. Heme colored by element (carbon:black,
287 nitrogen:blue, oxygen:red, iron:yellow), and substrate (flurbiprofen) colored bright green.
288 Median activity scores shown in (c) and median abundance scores shown in (d). (e)
289 Zoomed view of partial CYP2C9 structure. Positions with the lowest 2.5% specific
290 activity scores shown as red spheres. F and G helices hidden, A and I helices labeled,
291 and heme and substrate colored as in (c) and (d). (f) Scatter plot of CYP2C9 activity
292 and abundance scores from a total of 4,421 missense variants.


293 **Structural insights from CYP2C9 functional scores**

294 ER-localized CYP enzymes are composed of an N-terminal ER-transmembrane
295 domain and a large, cytoplasmic catalytic domain³⁹. The CYP enzyme superfamily is
296 diverse at the sequence level but members share a common structure including 12
297 major helices, labeled A through L, and four beta sheets, labeled β 1 through β 4⁴⁰
298 (Figure 4a). CYP2C9 has been crystallized with warfarin⁴¹ and flurbiprofen⁴² as well as
299 with other substrates⁴³, and also without a ligand⁴¹. These structures are generally
300 comparable and show small differences in substrate-interacting regions. We used the
301 flurbiprofen-bound CYP2C9 structure for our analysis as the substrate is bound in a
302 catalytically favorable orientation in this structure. Three positions are almost completely
303 conserved across all CYPs: Glu354 and Arg357 in the ExxR motif involved in heme
304 binding and core-stabilizing⁴⁴, and also the invariant heme-coordinating cysteine,
305 Cys435⁴⁵. In our activity assay, the 36 missense variants at these three positions all had
306 activity scores of < 0.1. In our abundance assay, Arg357 was also extremely intolerant
307 to substitution with a median abundance score of 0.077, indicating that Arg357 is crucial
308 for both activity and abundance. In addition to these highly conserved residues, our
309 activity scores recapitulated the importance of the heme binding motif at positions 428 -
310 437³⁴, and the proline-rich PPGP motif in the linker (or hinge) region after the
311 transmembrane domain⁴⁶ which is necessary for proper folding⁴⁷ (Supplementary
312 Figure 8).

313 We mapped median positional activity and abundance scores onto the CYP2C9
314 structure (Figure 4c,d) to identify key regions important for activity and abundance. To
315 determine the characteristic mutation patterns in different regions of CYP2C9, we
316 performed hierarchical clustering of positions based on both activity and abundance
317 scores and identified six main clusters of positions (Figure 5). We found that

318 substitutions in Cluster 3 were universally not tolerated, and positions in this Cluster
319 generally grouped into two distinct regions: core-facing positions in helices D, E, I, J, K,
320 and L comprising the highly conserved heme binding structural core of the protein, and
321 positions in and directly abutting β sheet 1. Both of these regions are highly conserved
322 across CYPs and are composed of buried, hydrophobic residues^{44,48}, in which
323 substitution leads to destabilization and degradation. In addition, substitutions in β sheet
324 1 may disrupt distal side chains that coordinate with the central heme iron⁴⁹. Clusters 1
325 and 2 were slightly more tolerant to substitution than Cluster 3 and are also found in the
326 core of the protein.

327 Conversely, positions comprising Clusters 4 and 6 were tolerant to substitution
328 and were located on the surface of the protein, though Cluster 6 was more sensitive to
329 charged and proline amino acid substitutions. Cluster 5 contained many positions in the
330 transmembrane domain, not shown in the crystal structure. Cluster 5 also included part
331 of the F-G loop, which defines a portion of the CYP2C9 substrate access channel and
332 interacts with the membrane⁵⁰. Substitutions in the transmembrane domain (positions 1-
333 20) had little effect on activity, but had a larger effect on abundance. The largest effects
334 in the transmembrane domain were from charged substitutions, which rarely occur in
335 transmembrane domains. CYP2C9 is co-translationally inserted into the ER and the N-
336 terminal transmembrane domain is involved in ER retention⁵¹, so substitutions in the
337 transmembrane domain that impacted abundance may have caused mislocalization.

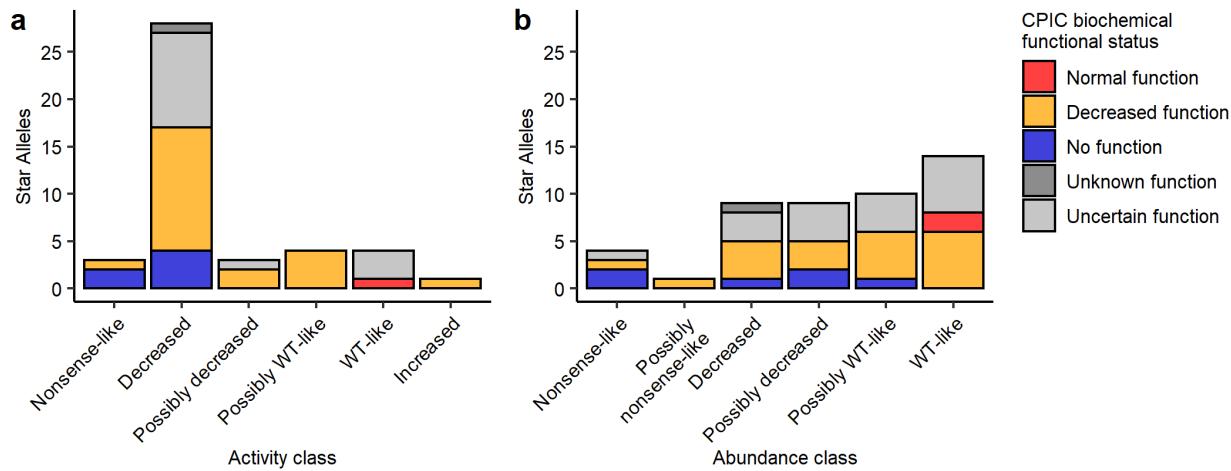
338

339 **Figure 5. Hierarchical clustering of activity and abundance scores and cluster**

340 **accessibility.** In (a), dendrogram and heatmaps of CYP2C9 activity and abundance

341 score clustered by position. Heatmaps colored as in Figure 4. Only positions that had at

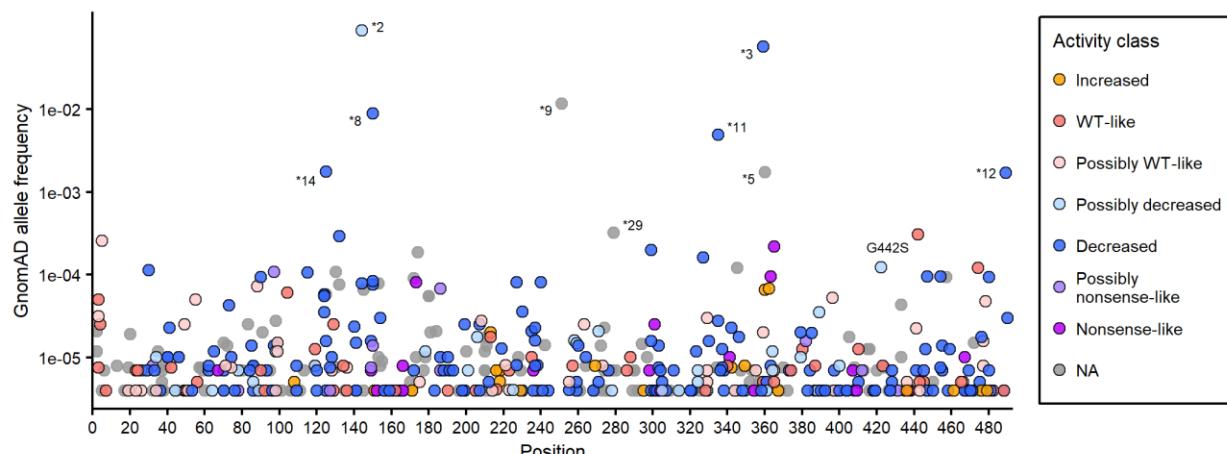
342 least 26 total mutations were included in this analysis. Colored boxes on the left indicate


343 the six major clusters and correspond to the colors shown in (b), (c), and (d). In (b) and

344 (c), the positions that correspond to each of the six clusters are shown as spheres in the
345 corresponding color on the CYP2C9 crystal structure (PDB: 1r9o). Alternate viewpoint
346 shown in (c). In (d), relative solvent accessibility of each cluster shown as a box plot.

347 **Predicting the clinical impact of human CYP2C9 variants**

348 Genetic variation in CYP2C9 can drive variable drug response, but most
349 CYP2C9 variants documented in humans so far have unknown functional
350 consequences. The best-studied set of CYP2C9 variants are the 70 star alleles in
351 PharmVar, some of which have been functionally characterized. The Clinical
352 Pharmacogenetics Implementation Consortium (CPIC) reviews functional evidence and
353 has made clinical recommendations for 35 of the 63 CYP2C9 single amino acid star
354 alleles^{16,17}. We compared CPIC recommendations to our activity classes and found that
355 CPIC allele function classes were largely concordant with our CYP2C9 activity classes
356 (Figure 6). The few cases where our activity classes did not match CPIC classes were
357 generally due to alleles with limited or inadequate functional evidence, as determined by
358 CPIC (Supplementary Table 7).


359

360

361 **Figure 6. Comparison of activity and abundance scores with clinical**
362 **pharmacogenomic recommendations.** Stacked bar plot of number of CYP2C9 star
363 alleles vs a) activity or b) abundance class, colored by clinical pharmacogenomic
364 recommendation (CPIC biochemical functional class status). CPIC classes are taken
365 from NSAID clinical functional status recommendations¹⁶.

366 We additionally curated 629 synonymous, missense, and nonsense CYP2C9
367 variants from the gnomAD database²⁰, 559 of these with at least one functional score
368 from our datasets. Most of these variants lack functional annotations, as only 27 of them
369 are star alleles with an associated CPIC functional recommendation. All 8 nonsense
370 variants had very low activity and/or abundance scores, all 119 synonymous variants
371 had high activity and/or abundance scores, and missense variants spanned the range of
372 activity and abundance scores (Supplementary Figure 9). Of the 466 total missense
373 variants in gnomAD, 340 had an activity score (319 of these lack a CPIC functional
374 recommendation), and a majority of these had significantly decreased activity. 58.8% of
375 missense variants (200 variants) had “decreased” or “possibly decreased” activity, and
376 9.7% (33 variants) had “nonsense-like” or “possibly nonsense-like” activity (Figure 7).
377 168 of the missense variants were singletons in gnomAD, and these had the same
378 activity score pattern as the other missense variants where 60.1% (101 variants) had
379 “decreased” or “possibly decreased” activity, and 11.9% (20 variants) had “nonsense-
380 like” or “possibly nonsense-like” activity. Finally, we compared our scores to several
381 widely used computational predictors and found only moderate correlation between
382 predicted functional status and experimentally derived activity scores (mean absolute
383 Pearson’s $r=0.494$, Supplementary Figure 10). The fact that many human CYP2C9
384 variants have significantly decreased function is striking, highlighting that a large
385 proportion of all possible CYP2C9 variants have the potential to impact the metabolism
386 of warfarin and other drugs.

387

388 **Figure 7. Classification of human CYP2C9 variants using activity data.** Frequency
389 and protein position of CYP2C9 missense variants in human population database
390 gnomAD, colored by Click-seq activity class. Allele frequencies were calculated from
391 combined v2 and v3 gnomAD allele frequencies. Variants at population frequency
392 greater than 3×10^{-4} are labeled by star allele (if applicable) or amino acid change.
393 Human variants lacking an activity class are shown in grey.

394

395 **DISCUSSION**

396 CYP2C9 is a well-studied metabolic enzyme, and many small-scale functional
397 characterizations of CYP2C9 have been performed⁵²⁻⁵⁴, with the largest of these
398 comprising 109 CYP2C9 variants profiled for abundance using a VAMP-seq style
399 assay⁵⁵. Abundance scores from this study correlate well with our abundance scores
400 (Pearson's $r=0.74$). Collectively, previous studies of CYP2C9 variant function have
401 tested only a small fraction of the possible single mutations, focusing only on already
402 observed alleles. Therefore, we developed a high-throughput yeast activity assay,
403 applied VAMP-seq, and generated activity and abundance scores for a combined total
404 of 8,091 missense variants, or 87% of the possible missense variants in CYP2C9. Our
405 results were highly reproducible across biological replicates and validated well when
406 tested against individual variants and clinical substrates of CYP2C9. Additionally, our

407 activity scores were concordant with CYP2C9 star allele functional status
408 recommendations from CPIC¹⁶. In addition to CYP2C9 alleles of known function, we
409 generated functional scores for over 300 CYP2C9 missense alleles present in gnomAD
410 that currently lack functional annotation.

411 Our functional scores reflected known structural features of CYPs, including
412 heme-binding residues and the highly conserved core regions of the protein. In general,
413 residues involved in heme coordination and binding were crucial for activity, but were
414 less important to protein abundance, indicating that heme insertion, a process which is
415 not fully understood, is not necessarily stabilizing⁵⁶. Somewhat surprisingly, residues in
416 the active site were fairly tolerant to substitution and largely did not result in large
417 decreases in activity. Instead, we found that substitutions in the hydrophobic core of the
418 protein comprising helices D, E, I, J, K, and L were crucial for protein abundance and
419 activity, and substitutions in these regions likely most affect protein stability.

420 We observed a strong correlation between activity and abundance scores, which
421 is in contrast to other deep mutational scans. Paired activity and abundance data has
422 been collected for VKOR and NUDT15^{26,27}, and for these proteins activity and
423 abundance scores were much less well correlated (VKOR: Pearson's $r = 0.261$,
424 Spearman's $\rho = 0.25$; NUDT15: Pearson's $r = 0.384$, Spearman's $\rho = 0.34$). The strong
425 correlation of CYP2C9 activity and abundance scores is partially due to the design of
426 the Click-seq vector, which does not include an expression control. Overall, we
427 estimated that protein abundance could explain about 50% of the variation in CYP2C9
428 variant activity.

429 The variant functional datasets we generated are a resource for improving
430 genotype-based dosing and also for improving our understanding of CYP biology.
431 However, there are limitations to keep in mind. First, in both systems we expressed

432 CYP2C9 as a cDNA using an inducible promoter, so our assays did not capture splicing
433 defects or transcriptional regulation. CYP2C9 is constitutively expressed in the liver, but
434 is also inducible via a number of substrates⁹. We also cannot discern the impact of
435 protein interactions such as with CYP accessory proteins cytochrome P450 reductase
436 (CPR) and cytochrome b5, or with other CYP enzymes. Additionally, due to our flow
437 cytometry binning strategy, we suspect that Click-seq labeling was saturated at
438 increased activity levels, so we would likely need to re-sort our library with a modified
439 binning strategy to detect variants with significantly increased activity. An example of
440 this is the G442S variant, which had a “WT-like” activity score but showed 130% and
441 180% wild type activity in individual tests (Figure 2), although this could also be
442 explained by a substrate-dependent effect. Despite our binning strategy, we observed
443 240 variants with increased function, and 20 of these were also present in gnomAD.
444 One increased activity variant, I434F (*59), was also present in the PharmVar database,
445 warranting further investigation, especially since there are no documented CYP2C9
446 increased activity alleles¹⁴, so the clinical impact of an increased activity variant is
447 unknown.

448 Finally, Click-seq measures CYP2C9 activity using a single substrate, so we
449 cannot say how many variants may exhibit substrate-dependent effects, for which there
450 is some evidence⁵⁷. As an example, Arg108 has been shown to be critical for binding
451 negatively charged substrates³⁵ and for binding flurbiprofen in particular⁴², but
452 substitutions at this position had little effect on activity as measured by Click-seq or
453 abundance. This is likely because the TAHA probe is an amide and not acidic, so is
454 able to bind regardless of a strong electrostatic interaction with Arg108. Despite this, our
455 activity scores correlate well with S-warfarin and phenytoin activity overall, indicating
456 that they are generally informative of a larger set of substrates. In the future, we plan to

457 re-test our library with a range of activity-based probes to identify variants that result in
458 substrate-dependent changes in function.

459 We also anticipate that Click-seq can be leveraged to examine other CYPs
460 important to human drug metabolism such as CYP2D6 and CYP2C19, both of which
461 have also been successfully expressed in yeast previously and for which activity-based
462 click probes have been designed²⁹. Expanding the repertoire of CYP deep mutational
463 scans will allow us to investigate differences between CYP isoforms that are key to
464 human drug metabolism and pharmacogenomics. Moreover, activity-based click probes
465 are available for a variety of enzyme activities, so Click-seq is likely to be useful beyond
466 CYPs.

467 In addition to revealing details of how CYP2C9 sequence relates to its structure
468 and function, we hope that the variant functional data presented here will be useful for
469 informing drug dosing. In particular, we hope that the data will empower CPIC to provide
470 functional classifications for additional variants, perhaps preemptively. Such preemptive
471 classification could be extremely powerful, as clinical genotyping efforts are increasing,
472 guaranteeing we will continue to find new variants that may have consequences for
473 drug dosing.

474 **BIBLIOGRAPHY**

475 1. Landrum, M. J. *et al.* ClinVar: Public archive of relationships among sequence
476 variation and human phenotype. *Nucleic Acids Res.* **42**, D980–D985 (2014).

477 2. Starita, L. M. *et al.* Variant Interpretation: Functional Assays to the Rescue. *Am. J.*
478 *Hum. Genet.* **101**, 315–325 (2017).

479 3. Sultana, J., Cutroneo, P. & Trifirò, G. Clinical and economic burden of adverse
480 drug reactions. *Journal of Pharmacology and Pharmacotherapeutics* **4**, S73–S77
481 (2013).

482 4. Lazarou, J., Pomeranz, B. H. & Corey, P. N. Incidence of adverse drug reactions
483 in hospitalized patients: A meta- analysis of prospective studies. *Journal of the*
484 *American Medical Association* **279**, 1200–1205 (1998).

485 5. Budnitz, D. S. *et al.* National surveillance of emergency department visits for
486 outpatient adverse drug events. *J. Am. Med. Assoc.* **296**, 1858–1866 (2006).

487 6. Goulding, R., Dawes, D., Price, M., Wilkie, S. & Dawes, M. Genotype-guided drug
488 prescribing: A systematic review and meta-analysis of randomized control trials.
489 *British Journal of Clinical Pharmacology* **80**, 868–877 (2015).

490 7. Zanger, U. M. & Schwab, M. Cytochrome P450 enzymes in drug metabolism:
491 Regulation of gene expression, enzyme activities, and impact of genetic variation.
492 *Pharmacol. Ther.* **138**, 103–141 (2013).

493 8. Rettie, A. E. & Jones, J. P. Clinical and toxicological relevance of CYP2C9: Drug-
494 drug interactions and pharmacogenetics. *Annu. Rev. Pharmacol. Toxicol.* **45**,
495 477–494 (2005).

496 9. Daly, A. K., Rettie, A. E., Fowler, D. M. & Miners, J. O. Pharmacogenomics of
497 CYP2C9: Functional and clinical considerations. *Journal of Personalized Medicine*
498 **8**, (2018).

499 10. Li, X. *et al.* Precision dosing of warfarin: open questions and strategies.
500 *Pharmacogenomics Journal* **19**, 219–229 (2019).

501 11. Steward, D. J. *et al.* Genetic association between sensitivity to warfarin and
502 expression of CYP2C9*3. *Pharmacogenetics* **7**, 361–367 (1997).

503 12. Pirmohamed, M., Kamali, F., Daly, A. K. & Wadelius, M. Oral anticoagulation: A
504 critique of recent advances and controversies. *Trends in Pharmacological
505 Sciences* **36**, 153–163 (2015).

506 13. Sim, S. C. & Ingelman-Sundberg, M. The Human Cytochrome P450 (CYP) Allele
507 Nomenclature website: a peer-reviewed database of CYP variants and their
508 associated effects. *Hum. Genomics* **4**, 278–281 (2010).

509 14. Gaedigk, A. *et al.* The Pharmacogene Variation (PharmVar) Consortium:
510 Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature
511 Database. *Clin. Pharmacol. Ther.* **103**, 399–401 (2018).

512 15. Relling, M. V. & Klein, T. E. CPIC: Clinical pharmacogenetics implementation
513 consortium of the pharmacogenomics research network. *Clinical Pharmacology
514 and Therapeutics* **89**, 464–467 (2011).

515 16. Theken, K. N. *et al.* Clinical Pharmacogenetics Implementation Consortium
516 Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. *Clin.
517 Pharmacol. Ther.* **108**, 191–200 (2020).

518 17. Karnes, J. H. *et al.* Clinical Pharmacogenetics Implementation Consortium (CPIC)
519 Guideline for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing: 2020
520 Update. *Clinical Pharmacology and Therapeutics* (2020). doi:10.1002/cpt.2008

521 18. Zhou, Y., Ingelman-Sundberg, M. & Lauschke, V. M. Worldwide Distribution of
522 Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing
523 Projects. *Clin. Pharmacol. Ther.* **102**, 688–700 (2017).

524 19. Gordon, A. S. *et al.* Quantifying rare, deleterious variation in 12 human
525 cytochrome P450 drug-metabolism genes in a large-scale exome dataset. *Hum.*
526 *Mol. Genet.* **23**, 1957–1963 (2014).

527 20. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from
528 variation in 141,456 humans. *Nature* **581**, 434–443 (2020).

529 21. Fowler, D. M. & Fields, S. Deep mutational scanning: A new style of protein
530 science. *Nat. Methods* **11**, 801–807 (2014).

531 22. Romero, P. A., Tran, T. M. & Abate, A. R. Dissecting enzyme function with
532 microfluidic-based deep mutational scanning. *Proc. Natl. Acad. Sci. U. S. A.* **112**,
533 7159–7164 (2015).

534 23. Relling, M. V. *et al.* New Pharmacogenomics Research Network: An Open
535 Community Catalyzing Research and Translation in Precision Medicine. *Clin.*
536 *Pharmacol. Ther.* **102**, 897–902 (2017).

537 24. Chiasson, M., Dunham, M. J., Rettie, A. E. & Fowler, D. M. Applying Multiplex
538 Assays to Understand Variation in Pharmacogenes. *Clin. Pharmacol. Ther.* **106**,
539 290–294 (2019).

540 25. Matreyek, K. A. *et al.* Multiplex assessment of protein variant abundance by
541 massively parallel sequencing. *Nat. Genet.* **50**, 874–882 (2018).

542 26. Suiter, C. C. *et al.* Massively parallel variant characterization identifies NUDT15
543 alleles associated with thiopurine toxicity. *Proc. Natl. Acad. Sci. U. S. A.* **117**,
544 5394–5401 (2020).

545 27. Chiasson, M. A. *et al.* Multiplexed measurement of variant abundance and activity
546 reveals VKOR topology, active site and human variant impact. *Elife* **9**, 1–25
547 (2020).

548 28. Wright, A. T. & Cravatt, B. F. Chemical Proteomic Probes for Profiling

549 Cytochrome P450 Activities and Drug Interactions In Vivo. *Chem. Biol.* **14**, 1043–
550 1051 (2007).

551 29. Wright, A. T., Song, J. D. & Cravatt, B. F. A suite of activity-based probes for
552 human cytochrome P450 enzymes. *J. Am. Chem. Soc.* **131**, 10692–10700
553 (2009).

554 30. Jean, P., Lopez-Garcia, P., Dansette, P., Mansuy, D. & Goldstein, J. L. Oxidation
555 of tienilic acid by human yeast-expressed cytochromes P-450 2C8, 2C9, 2C18
556 and 2C19. Evidence that this drug is a mechanism-based inhibitor specific for
557 cytochrome P-450 2C9. *Eur. J. Biochem.* **241**, 797–804 (1996).

558 31. Donato, T., Jimenez, N., Castell, J. V & Gomez-Lechon, M. J. Fluorescence-
559 based assays for screening nine cytochrome P450 (P450) activities in intact cells
560 expressing individual human P450 enzymes. *Pharmacology* **32**, 699–706 (2004).

561 32. Tai, G. *et al.* In-vitro and in-vivo effects of the CYP2C9*11 polymorphism on
562 warfarin metabolism and dose. *Pharmacogenet. Genomics* **15**, 475–481 (2005).

563 33. Matreyek, K. A., Stephany, J. J., Chiasson, M. A., Hasle, N. & Fowler, D. M. An
564 improved platform for functional assessment of large protein libraries in
565 mammalian cells. *Nucleic Acids Res.* **48**, (2020).

566 34. P.B. Danielson, B. S. P. The Cytochrome P450 Superfamily: Biochemistry,
567 Evolution and Drug Metabolism in Humans. *Curr. Drug Metab.* **3**, 561–597 (2002).

568 35. Dickmann, L. J., Locuson, C. W., Jones, J. P. & Rettie, A. E. Differential Roles of
569 Arg97, Asp293, and Arg108 in Enzyme Stability and Substrate Specificity of
570 CYP2C9. *Mol. Pharmacol.* **65**, 842–850 (2004).

571 36. Reynald, R. L., Sansen, S., Stout, C. D. & Johnson, E. F. Structural
572 characterization of human cytochrome P450 2C19: Active site differences
573 between P450s 2C8, 2C9, and 2C19. *J. Biol. Chem.* **287**, 44581–44591 (2012).

574 37. Nair, P. C., McKinnon, R. A. & Miners, J. O. Cytochrome P450 structure–function:
575 insights from molecular dynamics simulations. *Drug Metabolism Reviews* **48**,
576 434–452 (2016).

577 38. Roberts, A. G. *et al.* Intramolecular heme ligation of the cytochrome P450 2C9
578 R108H mutant demonstrates pronounced conformational flexibility of the B-C loop
579 region: Implications for substrate binding. *Biochemistry* **49**, 8700–8708 (2010).

580 39. Johnson, E. F. & Stout, C. D. Structural diversity of eukaryotic membrane
581 cytochrome P450s. *Journal of Biological Chemistry* **288**, 17082–17092 (2013).

582 40. Gay, S. C., Roberts, A. G. & Halpert, J. R. Structural features of cytochromes
583 P450 and ligands that affect drug metabolism as revealed by X-ray
584 crystallography and NMR. *Future Medicinal Chemistry* **2**, 1451–1468 (2010).

585 41. Williams, P. A. *et al.* Crystal structure of human cytochrome P450 2C9 with bound
586 warfarin. *Nature* **424**, 464–468 (2003).

587 42. Wester, M. R. *et al.* The structure of human cytochrome P450 2C9 complexed
588 with flurbiprofen at 2.0-Å resolution. *J. Biol. Chem.* **279**, 35630–35637 (2004).

589 43. Maekawa, K. *et al.* Structural Basis of Single-Nucleotide Polymorphisms in
590 Cytochrome P450 2C9. *Biochemistry* **56**, 5476–5480 (2017).

591 44. Hasemann, C. A., Kurumbail, R. G., Boddupalli, S. S., Peterson, J. A. &
592 Deisenhofer, J. Structure and function of cytochromes P450:a comparative
593 analysis of three crystal structures. *Structure* **3**, 41–62 (1995).

594 45. Sirim, D., Widmann, M., Wagner, F. & Pleiss, J. Prediction and analysis of the
595 modular structure of cytochrome P450 monooxygenases. *BMC Struct. Biol.* **10**, 34
596 (2010).

597 46. Kemper, B. Structural basis for the role in protein folding of conserved proline-rich
598 regions in cytochromes P450. *Toxicol. Appl. Pharmacol.* **199**, 305–315 (2004).

599 47. Chen, C. Di, Doray, B. & Kemper, B. A conserved proline-rich sequence between
600 the N-terminal signal-anchor and catalytic domains is required for assembly of
601 functional cytochrome P450 2C2. *Arch. Biochem. Biophys.* **350**, 233–238 (1998).

602 48. Mustafa, G., Yu, X. & Wade, R. C. Structure and Dynamics of Human Drug-
603 Metabolizing Cytochrome P450 Enzymes. in *Drug Metabolism Prediction* 75–102
604 (Wiley Blackwell, 2014). doi:10.1002/9783527673261.ch04

605 49. Arendse, L. B. & Blackburn, J. M. Effects of polymorphic variation on the
606 thermostability of heterogenous populations of CYP3A4 and CYP2C9 enzymes in
607 solution. *Sci. Rep.* **8**, (2018).

608 50. Cojocaru, V., J. Winn, P. & C. Wade, R. Multiple, Ligand-dependent Routes from
609 the Active Site of Cytochrome P450 2C9. *Curr. Drug Metab.* **13**, 143–154 (2012).

610 51. Szczesna-Skorupa, E., Chen, C. I. D. I., Rogers, S. & Kemper, B. Mobility of
611 cytochrome P450 in the endoplasmic reticulum membrane. *Proc. Natl. Acad. Sci.*
612 *U. S. A.* **95**, 14793–14798 (1998).

613 52. Niinuma, Y. *et al.* Functional characterization of 32 CYP2C9 allelic variants.
614 *Pharmacogenomics J.* **14**, 107–114 (2014).

615 53. Wang, Y. H. *et al.* Effect of 36 CYP2C9 variants found in the Chinese population
616 on losartan metabolism in vitro. *Xenobiotica* **44**, 270–275 (2014).

617 54. Dai, D. P. *et al.* In vitro functional characterization of 37 CYP2C9 allelic isoforms
618 found in Chinese Han population. *Acta Pharmacol. Sin.* **34**, 1449–1456 (2013).

619 55. Zhang, L. *et al.* CYP2C9 and CYP2C19: Deep Mutational Scanning and
620 Functional Characterization of Genomic Missense Variants. *Clin. Transl. Sci.* **13**,
621 727–742 (2020).

622 56. Correia, M. A., Sinclair, P. R. & De Matteis, F. Cytochrome P450 regulation: The
623 interplay between its heme *and apoprotein moieties in synthesis,

624 assembly, repair, and disposal. *Drug Metab. Rev.* **43**, 1–26 (2011).

625 57. Lee, C. R., Goldstein, J. A. & Pieper, J. A. Cytochrome P450 2C9 polymorphisms:
626 A comprehensive review of the in-vitro and human data. *Pharmacogenetics* **12**,
627 251–263 (2002).

628 58. Rademacher, P. M., Woods, C. M., Huang, Q., Szklarz, G. D. & Nelson, S. D.
629 Differential oxidation of two thiophene-containing regioisomers to reactive
630 metabolites by cytochrome P450 2C9. *Chem. Res. Toxicol.* **25**, 895–903 (2012).

631 59. Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the
632 LiAc/SS carrier DNA/PEG method. *Nat. Protoc.* **2**, 31–34 (2007).

633 60. McDonald, M. G. *et al.* Expression and functional characterization of breast
634 cancer-associated cytochrome P450 4Z1 in *saccharomyces cerevisiae*. *Drug*
635 *Metab. Dispos.* **45**, 1364–1371 (2017).

636 61. Dong, J. *et al.* A two-step integration method for seamless gene deletion in
637 baker's yeast. *Anal. Biochem.* **439**, 30–36 (2013).

638 62. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains
639 designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*.
640 *Genetics* **122**, 19–27 (1989).

641 63. Mumberg, D., Muller, R. & Funk, M. Regulatable promoters of *saccharomyces*
642 *cerevisiae*: Comparison of transcriptional activity and their use for heterologous
643 expression. *Nucleic Acids Res.* **22**, 5767–5768 (1994).

644 64. Mumberg, D., Müller, R. & Funk, M. Yeast vectors for the controlled expression of
645 heterologous proteins in different genetic backgrounds. *Gene* **156**, 119–122
646 (1995).

647 65. Güldener, U., Heck, S., Fiedler, T., Beinhauer, J. & Hegemann, J. H. A new
648 efficient gene disruption cassette for repeated use in budding yeast. *Nucleic Acids*

649 *Res.* **24**, 2519–2524 (1996).

650 66. Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred
651 kilobases. *Nat. Methods* **6**, 343–345 (2009).

652 67. Jain, P. C. & Varadarajan, R. A rapid, efficient, and economical inverse
653 polymerase chain reaction-based method for generating a site saturation mutant
654 library. *Anal. Biochem.* **449**, 90–98 (2014).

655 68. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate
656 Illumina Paired-End reAd mergeR. *Bioinformatics* **30**, 614–620 (2014).

657 69. Rubin, A. F. *et al.* A statistical framework for analyzing deep mutational scanning
658 data. *Genome Biol.* **18**, (2017).

659 70. Chen, D. C., Yang, B. C. & Kuo, T. T. One-step transformation of yeast in
660 stationary phase. *Curr. Genet.* **21**, 83–84 (1992).

661 71. García-Nafría, J., Watson, J. F. & Greger, I. H. IVA cloning: A single-tube
662 universal cloning system exploiting bacterial In Vivo Assembly. *Sci. Rep.* **6**,
663 (2016).

664 72. Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and
665 plant P450s in optimized redox environments. *Methods Enzymol.* **272**, 51–64
666 (1996).

667

668 **METHODS**

669 **General Reagents**

670 Unless otherwise noted, all chemicals were obtained from Sigma Aldrich
671 Chemical Co. (St. Louis, MO) and all enzymes were obtained from New England
672 Biolabs. Tienilic acid, 6-hydroxywarfarin-d₅, 7-hydroxywarfarin-d₅ and 4-
673 hydroxyphenytoin-d₅ were synthesized according to published protocols⁵⁸. Hex-5-yn-1-
674 amine was purchased from GFS Chemicals (Powell, OH).

675 **Strains, plasmids, and oligonucleotides**

676 All yeast strains are listed in Supplementary Table 1. All plasmids and
677 oligonucleotides are listed in Supplementary Table 4

678 **Growth media and culturing techniques**

679 *E. coli* were cultured at 37°C in Luria broth. Yeast were cultured at 30°C. Yeast
680 culture media was prepared according to the following recipes. YP: 1% yeast extract,
681 2% peptone. YPD: 1% yeast extract, 2% peptone, 2% (w/v) glucose. C-ura: Yeast
682 nitrogen base without amino acids and ammonium sulfate: 0.17%, ammonium sulfate:
683 0.5%, dropout mix lacking uracil: 0.2%, 2% (w/v) glucose. C-trp: Yeast nitrogen base
684 without amino acids and ammonium sulfate: 0.17%, ammonium sulfate: 0.5%, dropout
685 mix lacking tryptophan: 0.2%, 2% (w/v) glucose. Unless otherwise specified, all yeast
686 transformations were performed using the LiAc/SS carrier DNA/PEG method⁵⁹.

687 Yeast cells carrying *CYP2C9* wild type or variant plasmid were induced as
688 follows: a single colony was inoculated into 5 mL YPD media supplemented with 200
689 µg/mL G418 and grown overnight with rotation. This culture was diluted 1:50 into fresh
690 YP media containing 2% (w/v) raffinose and supplemented with 200 µg/mL G418 and
691 grown for at least two cell doublings. Cultures were then inoculated to OD 0.0125 into

692 fresh YP media containing 2% (w/v) galactose and 200 µg/mL G418 and collected after
693 7 doublings the following day.

694 All cell culture reagents were purchased from ThermoFisher Scientific unless
695 otherwise noted. HEK 293T cells (ATCC CRL-3216) and derivatives thereof were
696 cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine
697 serum, 100 U/mL penicillin, and 0.1 mg/mL streptomycin. Cells were induced with 2.5
698 µg/mL doxycycline. Cells were passaged by detachment with trypsin-EDTA 0.25%, and
699 cells were prepared for sorting by detachment with versene. All cell lines tested
700 negative for mycoplasma.

701 **Yeast strain engineering**

702 A previously generated S288C derivative strain YMD3289 (*MATa HAP1+ ura3Δ0*
703 *leu2Δ1 his3Δ1 trp1Δ63*)⁶⁰ was engineered to have improved human P450 activity by
704 increasing protein expression and by expressing human CYP accessory proteins
705 cytochrome P450 reductase (CPR) and cytochrome b5. First, the vacuolar protease
706 genes *PEP4* and *PRB1* were sequentially knocked out to improve protein expression
707 using the pop-in pop-out method⁶¹ using the vector pRS406⁶² with flanking sequences
708 cloned in, resulting in the strain YMD4253. Next, *S. cerevisiae* codon-optimized *POR*
709 sequence (human CPR) (Uniprot: P16435) was synthesized (Integrated DNA
710 Technologies) with a C-terminal FLAG tag (sequence: DYKDDDDK) and cloned into a
711 low-copy p416GAL1 vector⁶³, resulting in the plasmid p416GAL1-*hCPR-FLAG*. The
712 auxotrophic marker *TRP1* was amplified from pRS414⁶² and cloned into this vector, and
713 the fragment containing both *GAL1pr::hCPR-FLAG* and *TRP1* was amplified, digested
714 with DpnI (NEB R0176), and used to transform the yeast strain YMD4253, resulting in
715 strain YMD4254. Transformants were selected for growth on synthetic media lacking
716 tryptophan (C-trp). Finally, *S. cerevisiae* codon-optimized cytochrome *b5* sequence

717 (Uniprot: P00167) was synthesized (Integrated DNA Technologies) with an N-terminal
718 MYC tag (sequence: EQKLISEEDL) and cloned into a low-copy p416GPD vector⁶⁴. A
719 portion of the vector containing both *GPDpr::MYC-hb5* and *URA3* was amplified via
720 PCR, digested with DpnI, and used to transform yeast strain YMD4254, resulting in
721 strain YMD4255. Transformants were selected for growth on synthetic media lacking
722 uracil (C-ura). The fully humanized strain YMD4255 was backcrossed twice with
723 YMD4252, resulting in the strain YMD4256 with genotype *MATa ura3Δ0::GPDpr::MYC-*
724 *hb5::URA3 leu2Δ1 his3Δ1 trp1Δ63 HAP1+ pep4Δ0 prb1Δ0 ho::GAL1pr::hCPR-*
725 *FLAG::TRP1* (strain details in Supplementary Table 1).

726 The low-copy p41KGAL1 vector was constructed from the p416GAL1 vector⁶³
727 and the pUG6 vector⁶⁵ using Gibson assembly⁶⁶ to clone KanMX into p416GAL1. *S.*
728 *cerevisiae* codon-optimized *CYP2C9* sequence (Uniprot: P11712) was synthesized
729 (Integrated DNA Technologies) with a C-terminal HA tag (sequence: YPYDVPDYA) and
730 cloned into p41KGAL1 using Gibson assembly. Yeast strain YMD4256 was transformed
731 with p41KGAL1-*hCYP2C9-HA* using the standard LiAc protocol referenced above and
732 transformants were selected on YPD media supplemented with 200 µg/mL G418 to
733 maintain the plasmid.

734 ***CYP2C9* yeast codon-optimized variant library construction in *S. cerevisiae***

735 The yeast *CYP2C9* variant library was generated using an inverse PCR-based
736 site-directed saturation mutagenesis approach⁶⁷. Saturation mutagenesis primers were
737 designed for each codon in *CYP2C9* from positions 2 to 490 such that the forward
738 primer contained an NNK at the 5' end of the sequence. Primers were ordered
739 resuspended from IDT. Forward and reverse primers for each codon position were
740 mixed and inverse PCR was performed using 2.5 µM primers, 5% DMSO, 125 pg of
741 *CYP2C9* template sequence, and KAPA HiFi Hotstart 2X ReadyMix (KAPA Biosystems

742 KK2601). To generate the template *CYP2C9* vector, the *S. cerevisiae* codon-optimized
743 *CYP2C9* sequence from p41KGAL1-*hCYP2C9-HA* was cloned into pHSG298
744 (Clontech) using restriction sites Sall and XbaI.

745 After inverse PCR was performed for every position, amplified variant constructs
746 were verified by gel electrophoresis, quantified by Qubit fluorometry (Life Technologies),
747 and pooled at equimolar ratios. Variant fragments were then treated with T4
748 polynucleotide kinase (NEB M0201) and ligated with T4 DNA ligase (NEB M0202)
749 before transforming electrocompetent *E. coli* cells (NEB C2989K) with the ligated
750 products, selecting for kanamycin resistance, and midiprepping (Qiagen). Next, the
751 library was transferred from the pHSG298 vector used for saturation mutagenesis to the
752 p41KGAL1 yeast expression vector using an antibiotic switching strategy. The library
753 was subcloned back into the low-copy p41KGAL1 vector using restriction sites Spel and
754 Sall and ligated products were used to transform electrocompetent *E. coli* cells (NEB
755 C2989K), selecting for growth on LB + ampicillin, and midiprepped (Qiagen).

756 To barcode the library, plasmid harvested from midiprep was digested with Sall
757 at 37°C for 1 hour, and heat inactivated at 65°C for 20 minutes. Barcode oligos with 18
758 bp random sequences were ordered from IDT, resuspended at 100 μM, and then
759 annealed by combining 1 μL each of primer with 4 μL CutSmart Buffer and 34 μL
760 ddH2O and running at 98°C for 3 minutes followed by ramping down to 25°C
761 at -0.1°C/second. After annealing, 0.8 μL of Klenow polymerase (exonuclease negative,
762 NEB) and 1.35 μL of 1 mM dNTPS was then combined with the 40 μL of product to fill in
763 the barcode oligo (cycling conditions: 25°C for 15 minutes, 70°C for 20 minutes, ramp
764 down to 37°C at -0.1°C/s). Digested vector and barcode oligo were then ligated
765 overnight at 16°C. The barcoded library was used to transform electrocompetent *E. coli*
766 cells (NEB C2989K) and midiprepped (Qiagen). The size of the barcoded library was

767 estimated using colony counts to be 280,000. To reduce library size, the barcoded
768 library was again used to transform electrocompetent *E. coli* cells (NEB C2989K),
769 bottlenecked, and midiprepped (Qiagen). The size of the barcoded library was
770 estimated using colony counts to be 42,000.

771 To determine more accurate library barcode counts, 2 PCR replicates each using
772 1.5 µg of plasmid extracted library were amplified using custom barseq primers
773 CJA120/CJA138 using KAPA2G Robust HotStart ReadyMix (Sigma 2GRHRSRMKB) with
774 the following conditions: 95°C for 3 m, 5 cycles of 95°C for 15 s, 60°C for 15 s, 72°C for
775 15 s, and 72°C for 1 m, then purified using AMPure XP beads (Beckman Coulter
776 A63880) at 1:1 ratio (beads:DNA). The purified products were amplified using primers
777 CJA135 and JS486 or JS487 using KAPA2G Robust HotStart ReadyMix with the
778 following PCR conditions: 95°C for 3 m, 10 cycles of 95°C for 15 s, 65°C for 15 s, 72°C
779 for 15 s, and 72°C for 1 m, and then gel extracted using the QIAquick Gel Extraction Kit
780 (Qiagen) and quantified by Qubit fluorometry (Life Technologies). PCR replicates were
781 pooled at equimolar ratios and deep sequenced on an Illumina NextSeq500 to
782 determine the number of barcodes present. Briefly, forward and reverse reads were
783 merged with Pear⁶⁸, barcodes were counted with Enrich2⁶⁹, and barcodes with less than
784 10 reads were removed, resulting in a total of ~160,000 unique barcodes in the
785 CYP2C9 library, for an average of 17x coverage.

786 The barcoded CYP2C9 library was used to transform the humanized yeast strain
787 YMD4256, using the standard high-efficiency LiAc procedure mentioned above. Four
788 independent transformations were pooled to generate a library stock of OD₆₀₀ 5.7,
789 equivalent to an average of 11x coverage (independent transformants) for each of the
790 160,000 independent barcoded variants. The latter estimate assumes that each yeast

791 cell harbors one *CYP2C9* variant and that all growth rates are similar. Library stocks
792 were stored at -80°C in 25% (v/v) glycerol.

793 ***CYP2C9* human library construction in HEK293T cells**

794 *CYP2C9* sequence (Uniprot: P11712) codon-optimized for human expression
795 was synthesized (Integrated DNA Technologies) and cloned into the vector pHSG298.
796 As with the yeast activity library, saturation mutagenesis primers were designed for
797 each codon in *CYP2C9* from positions 2 to 490 and ordered resuspended from IDT.
798 Forward and reverse primers for each position were mixed at 2.5 µM and used in a PCR
799 reaction with 125 pg of template, 5% DMSO, and 5 µL of KAPA HiFi Hotstart 2X
800 ReadyMix. PCR products were visualized on a 0.7% agarose gel to confirm
801 amplification of the correct product. PCR products were then quantified using the
802 Quant-iT PicoGreen dsDNA Assay kit (Invitrogen) using DNA control curves done in
803 triplicate and pooled at equimolar ratios. Pooled PCR products were cleaned and
804 concentrated using Zymogen Clean and Concentrate kit and then gel extracted. The
805 pooled library was phosphorylated with T4 PNK (NEB), incubated at 37°C for 30
806 minutes, and heat inactivated at 65°C for 20 minutes. 8.5 µL of this phosphorylated
807 product was combined with 1 µL of 10X T4 ligase buffer (NEB) and 0.5 µL of T4 DNA
808 ligase (NEB) to make a 10 µL overnight ligation reaction. This reaction was incubated at
809 16°C overnight.

810 The overnight ligation was then cleaned and concentrated (Zymogen) and eluted
811 in 6 µL of ddH2O. 1 µL of this ligation was then used to transform high efficiency *E. coli*
812 (NEB C3020K) using electroporation (settings: 2 kV). Each reaction contained 1 µL of
813 ligation (or ligation control or pUC19 10 pg/µL) and 25 µL of *E. coli*. 975 µL of pre-
814 warmed SOC media was added to each cuvette after electroporation, transferred to a
815 culture tube, and recovered at 37°C, shaking for 1 hour. At 1 hour, 1 and 10 µL samples

816 from all cultures were taken and plated on appropriate media (LB + kanamycin for
817 ligation and ligation control; LB + ampicillin for pUC19), the remaining 989 μ L was used
818 to inoculate a 50 mL culture (LB + kanamycin). Plates and 50 mL culture were
819 incubated at 37°C overnight (shaking for 50 mL culture). Colonies on plates were then
820 counted, and counts were used to calculate how many unique molecules were
821 transformed to gauge coverage of the library. 50 mL culture was spun down and
822 midiprepped.

823 To transfer the library from pHSG298 to the recombination vector (attB-CYP2C9-
824 EGFP-IRES-mCherry), the pHSG298 library and recombination vector were digested
825 with MluI and SphI for 1 hour at 65°C. The library and cut vector were then gel
826 extracted. The library was then ligated with the cut vector at 5:1 using NEB T4 ligase,
827 overnight at 16°C. The ligation was heat inactivated the next morning, and cleaned and
828 concentrated with the Zymo kit. Another high efficiency transformation was performed
829 the same as described above, except this ligation was plated on LB + ampicillin
830 (antibiotic switching strategy). Plates and 50 mL culture were incubated at 37°C
831 overnight (shaking for 50 mL culture). Colonies on plates were then counted, and
832 counts were used to calculate how many unique molecules were transformed to gauge
833 coverage of the library. 50 mL culture was spun down and midiprepped.

834 The library was barcoded using the same method as the yeast activity library but
835 using the AgeI site for barcode insertion. The overnight barcode ligation was cleaned
836 and concentrated and eluted in 6 μ L of ddH₂O. 1 μ L of this ligation was then
837 transformed into high efficiency *E. coli* using electroporation at 2 kV. Each reaction
838 contained 1 μ L of ligation (or ligation control or pUC19 10 pg/ μ L) and 25 μ L of *E. coli*.
839 975 μ L of pre-warmed SOC media was added to each cuvette after electroporation,
840 transferred to a culture tube, and recovered at 37°C, shaking for 1 hour. At 1 hour, 1

841 and 10 μ L samples from water and pUC19 cultures were taken and plated on LB
842 supplemented with ampicillin. For ligation and ligation control, four flasks were prepared
843 with 50 mL of LB and ampicillin, and then 500 μ L, 250 μ L, 125 μ L, and 62.5 μ L was
844 sampled from the 1 mL of recovery and transferred into a corresponding flask. From
845 those flasks, 1 μ L, 10 μ L, and 100 μ L, were sampled and plated onto LB ampicillin
846 plates. Plates and 50 mL culture were incubated at 37°C overnight. Colonies on plates
847 were then counted, and counts were used to calculate how many unique molecules
848 were transformed to gauge the number of barcodes. Flask with the target number of
849 barcodes was then spun down and midiprepped.

850 **PacBio sequencing of CYP2C9 libraries for barcode-variant mapping**

851 PacBio libraries were generated using the SMRTbell Express Template Prep Kit
852 2.0 (Pacific Biosciences) according to manufacturer's directions with the following
853 modifications. Barcoded variant sequences were excised using Spel-HF and PspXI
854 (activity library) or Nhel and Smal (abundance library) restriction enzymes and purified
855 using AMPure PB beads (Pacific Biosciences 100-265-900) at 1:1 ratio (beads:DNA).
856 Following end-repair and blunt end adaptor ligation, according to manufacturer's
857 instructions, PacBio libraries were subject to 2 additional rounds of restriction digestion
858 to remove any backbone plasmid contamination present in the library. Finally, libraries
859 were cleaned in 3 consecutive rounds of AMPure PB beads (Pacific Biosciences 100-
860 265-900) at 0.6:1 ratio (beads:DNA). The purity and size of Pacbio libraries were
861 confirmed by Tapestation (Agilent) and Bioanalyzer 2100 (Agilent) before proceeding
862 with the sequencing run. Samples were submitted to University of Washington PacBio
863 Sequencing Services and sequenced on two SMRT cells per library in a Sequel run.
864 The yeast activity library was sequenced using two replicate library preparations from

865 the same miniprep, while the human abundance library was sequenced from two
866 replicate samplings of the same *E. coli* ligation transformation.

867 Long reads were filtered for at least 10 passes and analyzed using a custom
868 analysis pipeline to identify and link gene and barcode regions
869 (<https://github.com/shendurelab/AssemblyByPacBio>). The activity library contained
870 66,958 unique nucleotide variants (22,421 of these full-length, aka without indels),
871 tagged by 105,372 unique barcodes, while the abundance library contained 37,758
872 unique nucleotide variants (22,669 of these full-length), tagged by 78,740 unique
873 barcodes (Supplementary Table 3).

874 **Tienilic Acid Hexynyl Amide (TAHA) synthesis (activity-based probe)**

875 Tienilic Acid (50 mg, 0.15 mmol), EDC (36 mg, 0.18 mmol) and 1-
876 hydroxybenzotriazole hydrate (25 mg, 0.18 mmol), stirring under a nitrogen atmosphere
877 at room temperature, were dissolved in 1 mL of anhydrous acetonitrile and 0.5 mL of
878 anhydrous N,N-dimethylformamide. N-Methylmorpholine (56 μ L, 0.45 mmol) was added
879 and the reaction was stirred 15 minutes prior to the addition of hex-5-yn-1-amine (27 μ L,
880 0.18 mmol). The reaction was then stirred another 4 hours after which it was diluted with
881 ethyl acetate and successively washed with 10 % saturated sodium bicarbonate, water,
882 and brine. The organic phase was dried over MgSO₄ and solvent was evaporated. The
883 final product was purified by flash chromatography, using a hexane/ethyl acetate
884 gradient, and was obtained as a clear oil (52 mg, 84 % yield).

885 ¹H NMR spectra was recorded at 25°C in deuterated methanol (CD₃OD) on a
886 500 MHz Agilent DD2 (Santa Clara, CA) spectrometer, (500 MHz, CD₃OD): δ 8.00 (d, J
887 = 4.40 Hz, 1H), 7.48 (d, J = 4.40 Hz, 1H), 7.46 (d, J = 8.79 Hz, 1H), 7.21 (t, J = 4.40 Hz,
888 1H), 7.14 (d, J = 8.79 Hz, 1H), 4.74 (s, 2H), 3.35 (t, J = 6.83 Hz, 2H), 2.26-2.21 (m, 3H),
889 1.70 (quin, J = 6.83 Hz, 2H), 1.56 (quin, J = 6.83, 2H). ¹H-decoupled ¹³C NMR (¹³C{¹H})

890 spectra was recorded at 25°C in acetone-d₆ (C₃D₆O) on a 500 MHz Bruker Avance
891 DRX-500 (Billerica, MA) spectrometer, equipped with a Bruker triple resonance TXO
892 probehead. Chemical shifts are reported below relative to the solvent peaks in C₃D₆O at
893 206.7 and 29.9 ppm. ¹³C{¹H} NMR (125 MHz, C₃D₆O) δ 186.0, 167.3, 156.9, 144.5,
894 137.0, 136.9, 133.9, 131.3, 129.6, 128.6, 123.4, 112.8, 84.7, 70.1, 69.4, 39.0, 29.5,
895 26.6, 18.4.

896 High resolution mass spectrometry (HRMS) was determined via UPLC-MS on a
897 Waters Acquity UPLC (Milford, MA) coupled to an AB Sciex TripleTOF 5600 mass
898 spectrometer (Framingham, MA). Data analysis was performed with AB Sciex Analyst
899 TF 1.7.1. HRMS (ESI+) m/z [M + H] calculated (C₁₉H₁₈Cl₂NO₃S) 410.0379, observed
900 410.0374, δ ppm 1.22. All NMR and mass spectra have been provided in the
901 Supplementary Information section (Supplementary Figure 12 and Supplementary
902 Figure 13).

903 **FACS-based deep mutational scan of activity library (Click-seq)**

904 *CYP2C9 activity assay with CYP2C9-specific probe (activity-based protein profiling)*

905 CYP2C9 enzymatic activity was probed using a flow-cytometry based method
906 with a click chemistry compatible probe TAHA-ABP (synthesis described above) that
907 has specificity for CYP2C9 activity with minimum reactivity towards other yeast proteins.
908 Yeast cultures were grown as described above to induce CYP expression, and for each
909 sample, 1 OD of overnight yeast culture was collected via centrifugation at 4000 rpm for
910 2 min, washed with 0.5 mL of PBS by resuspension and centrifugation at 4000 rpm for 2
911 min, and resuspended in 100 μL PBS:0.1% saponin (w/v). Each sample was pre-
912 incubated with 2 mM NADPH (Sigma N1630) at 37°C for 20 mins. All samples except a
913 'No probe' control were treated with 10 μM TAHA-ABP and incubated with rotation at
914 37°C for 20 hrs to form activity-dependent CYP2C9-probe adducts. Samples were

915 collected via centrifugation at 4000 rpm for 2 min and washed three times with 0.5 mL
916 PBS as above. Samples were resuspended in 100 μ L PBS:0.1% saponin (w/v) and
917 incubated at room temperature for 20 mins. 100 μ L 2x copper-catalyzed azide-alkyne
918 cycloaddition (CuAAC) reaction buffer was added to cells to append a fluorophore
919 reporter (2x concentrations: 10 μ M CF488A picolyl azide (Biotium #92187), 2 mM
920 CuSO₄ (Sigma C8027), 4 mM THPTA (Sigma 762342), 6 mM ascorbic acid (Sigma
921 A7631) in PBS) and vortexed vigorously to mix. Samples were incubated in the dark at
922 room temperature for 30 minutes and collected by centrifugation as above. Cells were
923 washed five times in 0.5 mL PBS, resuspended in 1 mL PBS, and stored at 4°C up to 1
924 day.

925 *CYP2C9 library labeling and FACS*

926 To label and sort the CYP2C9 yeast library, isogenic humanized yeast strains
927 expressing control CYP2C9 variants (wild type, R144C, I359L, and C435H) were
928 induced in galactose as described above. The barcoded CYP2C9 variant library was
929 thawed at room temperature and ~8 OD of library was inoculated into 25 mL YPD media
930 supplemented with 200 μ g/mL G418 and grown overnight at 150 rpm. The rest of the
931 induction was performed as described above, with 5x culture volumes and shaking
932 instead of rotation. For each control variant, one sample was collected (1 OD), and for
933 the library, 4 samples (1 OD each) were collected. A “no probe” sample was included as
934 a control. All samples were labeled using the activity assay described above with
935 CYP2C9-specific activity-based probe TAHA-ABP.

936 Labeled cells were run on a BD AriaII sorter (BD Bioscience, San Jose, CA) and
937 a standard yeast singlet gate was used. For this population, data were collected on the
938 AF488A channel (488 nm excitation; 530/30 nm detection filter), and gates were drawn
939 to contain 10%, 10%, 20%, and 60% of events from the library sample, from most

940 fluorescent (AF488A channel) to least fluorescent. Gates were sorted into 5 mL tubes,
941 harvested by centrifugation and stored at -20°C before library preparation. Flow
942 cytometry data were collected using FACSDiva version 8.0.1 (BD Biosciences). See
943 Supplementary Table 2 for details of numbers of cells collected. Four biological
944 replicates of the FACS-based deep mutational scan were performed.

945 *CYP2C9 sorted activity library amplification and sequencing*

946 For the yeast activity library, sorted samples were harvested by centrifugation
947 and stored at -20°C. Plasmids were extracted from sorted cell pellets using the
948 Zymoprep Yeast Plasmid Miniprep I kit (Zymo Research D2001). Each sorted sample
949 was split into two for PCR replicates. For each sample, the barcode region was
950 amplified and an 18bp unique molecular identifier (UMI) sequence was added using
951 primers CJA120/CJA124 using KAPA2G Robust HotStart ReadyMix with the following
952 conditions: 95°C for 3 m, 2 cycles of 95°C for 20 s, 60°C for 15 s, 72°C for 30 s, and
953 72°C for 1 m, then purified using AMPure XP beads (Beckman Coulter A63880) at 1:1
954 ratio (beads:DNA). Purified products were amplified using various forward (CJA135,
955 CJA139, or CJA144) and reverse indexing primers (JS409-412,JS470-477) using
956 KAPA2G Robust HotStart ReadyMix with 0.5x SYBR green (Roche #04707516001) on
957 a miniOpticon (Bio-Rad) with the following PCR conditions: 95°C for 3 m, up to 30
958 cycles of 95°C for 20 s, 65°C for 15 s, 72°C for 30 s, and removed from the
959 thermocycler when the relative fluorescence units (RFU) was between 0.5 and 1. These
960 products were again purified using AMPure XP beads (Beckman Coulter A63880) at 1:1
961 ratio (beads:DNA), and were then gel extracted using the QIAquick Gel Extraction Kit
962 (Qiagen) and quantified by Qubit fluorometry (Life Technologies). Samples were pooled
963 at equimolar ratios and deep sequenced on an Illumina NextSeq500. Within each sort

964 there was a good correlation of barcode frequencies from PCR replicates (mean
965 Pearson's $r = 0.859$, mean Spearman's $\rho = 0.694$, Supplementary Figure 2).

966 **FACS-based deep mutational scan of abundance library**

967 *CYP2C9 abundance library transfection and FACS*

968 HEK293T cells with a serine integrase landing pad integrated via lentivirus with a
969 selectable inducible Caspase 9 cassette (HEK293T-LLP-iCasp9)³³ were used for all
970 human cell experiments, enabling expression of a single variant per cell. To recombine
971 variants into HEK293T cells, cells were transfected in 10 cm plates, 3,500,000 cells per
972 plate (4 plates per replicate). 7.1 μ g of library plasmid was mixed with 0.48 μ g of Bxb1
973 plasmid in 710 μ L of OptiMEM. In a separate tube, 28.5 μ L of Fugene was diluted in
974 685 μ L of OptiMEM. The tubes were then combined and incubated at room temperature
975 for 15 minutes. After incubation period, Fugene/DNA mixture was added to cells
976 dropwise, and plates were placed in incubator at 37°C. A minimum of 48 hours after
977 transfection, cells were induced with doxycycline at a final concentration of 2.5 μ g/mL.
978 24 hours after induction with doxycycline, small molecule AP1903 was added to select
979 from recombinant cells, which causes inducible Caspase 9 in unrecombined landing
980 pads to dimerize and activate.

981 Recombined HEK293T cells were run on a BD AriaIII sorter. Cells were gated for
982 live, recombined singlets. For this population, a ratio of eGFP/mCherry was calculated,
983 and the histogram of this ratio was divided into four quartiles. Each quartile was sorted
984 into a 5 mL tube. Sorted cells were grown out for 2-4 days post sorting to ensure
985 enough DNA for sequencing. Three biological replicates of the FACS-based deep
986 mutational scan were performed.

987 *CYP2C9 sorted abundance library amplification and sequencing*

988 For the abundance library, cells were collected, pelleted by centrifugation and
989 stored at -20°C. Genomic DNA was prepared using a DNEasy kit, according to the
990 manufacturer's instructions (Qiagen), with the addition of a 30 min incubation at 37 °C
991 with RNase in the re-suspension step. Eight 50 µL first-round PCR reactions were each
992 prepared with a final concentration of ~50 ng/µL input genomic DNA, 1 × Q5 High-
993 Fidelity Master Mix and 0.25 µM of the KAM499/VKORampR 1.1 primers. The reaction
994 conditions were 98°C for 30 s, 98°C for 10 s, 65°C for 20 s, 72°C for 60 s, repeat 5
995 times, 72°C for 2 min, 4°C hold. Eight 50 µL reactions were combined, bound to AMPure
996 XP (Beckman Coulter), cleaned and eluted with 21 µL water. Forty percent of the eluted
997 volume was mixed with Q5 High-Fidelity Master Mix; VKOR_indexF_1.1 and one of the
998 indexed reverse primers, JS385 through JS388, were added at 0.25 µM each. These
999 reactions were run with Sybr Green I on a BioRad MiniOpticon; reactions were
1000 denatured for 3 minutes at 95°C and cycled 20 times at 95°C for 15 s, 60°C for 15 s,
1001 72°C for 15 s with a final 3 min extension at 72°C. The indexed amplicons were mixed
1002 based in relative fluorescence units and run on a 1% agarose gel with Sybr Safe and
1003 gel extracted using a freeze and squeeze column (Bio-Rad). The product was quantified
1004 using KAPA Library Quant kit (KAPA Biosystems).

1005 **Library sequence analysis**

1006 *Activity library sequence analysis*

1007 For the activity library, barcode and UMI sequences were trimmed and filtered for
1008 minimum base quality Q20 using FASTX-toolkit
1009 (http://hannonlab.cshl.edu/fastx_toolkit/). Barcodes were collapsed according to UMIs
1010 by pasting the UMI sequence after the barcode sequence for each read, then identifying
1011 unique combinations of barcode-UMI (sort | uniq -c). The barcode from each unique
1012 barcode-UMI pair was used to generate a FASTQ files that was then input into

1013 Enrich2⁶⁹ to count variants. Barcodes assigned to variants containing insertion,
1014 deletions, or multiple amino-acid alterations were removed from the analysis, and
1015 barcode counts were collapsed into variant counts. Variants were kept if they had a total
1016 (across bin) frequency greater than 1e-5 in each replicate (see Supplementary Figure
1017 11). For each replicate, a weighted average of variant frequency across bins was used
1018 to determine activity score. To determine optimal bin weights, a linear regression on
1019 activity score (pool score) versus individual variant TAHA labeling was performed with
1020 14 variants. Bin weights were varied to determine the best fit regression between pool
1021 score and individual score, resulting in the following bin weights: $w_1 = 0.05$ (bin1), $w_2 =$
1022 0.2 , $w_3 = 0.25$, $w_4 = 1$ (bin4), $R^2 = 0.986$. Scores were normalized to the median
1023 synonymous weighted average (set to a score of 1), and the median nonsense
1024 weighted average of nonsense variants in the first 90% of the protein (score set to 0),
1025 and scores were averaged across replicates. Variants with less than two replicates were
1026 removed. Scores for missense variants range from -0.046 to 1.305 and have a bimodal
1027 distribution with peaks approximately matching the synonymous and nonsense
1028 distributions.

1029 *Abundance library sequence analysis*

1030 For the abundance library, barcode sequences were trimmed and filtered for
1031 minimum base quality Q20 using FASTX-toolkit
1032 (http://hannonlab.cshl.edu/fastx_toolkit/). As with the activity library, barcodes were
1033 counted with Enrich2. Barcodes assigned to variants containing insertion, deletions, or
1034 multiple amino-acid alterations were removed from the analysis, and barcode counts
1035 were collapsed into variant counts. Variants were kept if they had a total (across bin)
1036 frequency greater than 1e-4 in each replicate (Supplementary Figure 11). Abundance
1037 scores were calculated as above, but with the following weights: $w_1 = 0.25$ (bin1), $w_2 =$

1038 $0.5, w_3 = 0.75, w_4 = 1$ (bin4). Scores were normalized to the synonymous and nonsense
1039 distributions as above, but only normalizing to nonsense scores in the middle 80% of
1040 positions, excluding the first and last 10% of the protein. Variants with less than two
1041 replicates were removed. Scores for missense variants range from -0.29 to 1.59 and
1042 have a trimodal distribution with upper and lower peaks approximately matching the
1043 synonymous and nonsense distributions.

1044 *Specific activity score calculations*

1045 To calculate specific activity score, activity and abundance scores were
1046 normalized such that the lowest and highest scores in the dataset were set to 0 and 1,
1047 respectively, and a ratio of normalized activity score to normalized abundance score
1048 was calculated (specific activity). Specific activity scores were only calculated for
1049 variants that had both activity and abundance scores.

1050 *Classification of functional scores*

1051 Activity and abundance classes were determined as follows, based on a method
1052 modified from Matreyek et al. 2018 (Supplementary Figure 4). A synonymous score
1053 threshold was used to discriminate between 'WT-like' and 'decreased' scores. This
1054 threshold was set at the 5th percentile of synonymous scores (0.879 for activity score
1055 and 0.77 for abundance score). Variants were classified as 'WT-like' if their score and
1056 lower confidence interval were greater than the synonymous threshold, or 'possibly WT-
1057 like' if just their score was greater than the threshold. Variants were classified as
1058 'decreased' if their score and upper confidence interval were less than the synonymous
1059 threshold, or 'possibly decreased' if just their score was less than the threshold. A
1060 nonsense score threshold was used to discriminate between 'decreased' and
1061 'nonsense-like' scores. This threshold was the 95th percentile of nonsense scores
1062 (0.093 for activity score and 0.282 for abundance score). Variants were classified as

1063 'nonsense-like' if their score and upper confidence interval were less than the nonsense
1064 threshold, or 'possibly nonsense-like' if just their score was less than the threshold.
1065 Finally, an upper synonymous threshold was used to discriminate between 'WT-like'
1066 and 'increased' scores, set at the 95th percentile of synonymous scores (1.102 for
1067 activity score and 1.212 for abundance score). Scores were classified as 'increased' if
1068 their score and lower confidence interval were greater than the upper synonymous
1069 threshold.

1070 Analysis scripts are available at <http://github.com/dunhamlab/CYP2C9>. The
1071 Illumina and PacBio raw sequencing files and barcode–variant maps can be accessed
1072 at the NCBI Gene Expression Omnibus (GEO) repository under accession number
1073 GSE165412. The data presented in the manuscript are available as Supplementary
1074 Data files.

1075 **Click-seq internal validation with individual CYP2C9 variants**

1076 14 individual CYP2C9 variants were generated using an inverse PCR site-
1077 directed mutagenesis. Oligonucleotide pairs for each of the 14 variants are listed in
1078 Supplementary Table 4. With these, point mutations were generated using a KAPA HiFi
1079 DNA Polymerase (KAPA Biosystems KK2601) and 500 pg of CYP2C9 template
1080 sequence p41KGAL1-*h*CYP2C9-HA. After performing inverse PCR for each variant,
1081 products were run on a 0.7% agarose gel, gel extracted using the QIAquick Gel
1082 Extraction Kit (Qiagen), treated with T4 polynucleotide kinase (NEB M0201) at 37°C for
1083 30min, and ligated with T4 DNA ligase (NEB M0202) at 16°C overnight. Ligated
1084 products were used to transform chemically competent *E. coli* cells (NEB C2987 or
1085 Bioline BIO-85027). Bacterial clones were prepared for plasmid extraction using the
1086 QIAprep Spin Miniprep Kit (Qiagen) and variant sequences were confirmed with Sanger
1087 sequencing. Plasmids containing missense variants were individually transformed into

1088 YMD4256 using the 1-step transformation protocol⁷⁰ and selection for growth in YPD
1089 supplemented with 200 µg/mL G418. Individual clones from each transformation were
1090 stored at -80°C.

1091 Individual CYP2C9 yeast-expressed variants were grown and induced in
1092 galactose as described above, and 1 OD/mL of culture was collected for each variant.
1093 All samples were labeled using the CYP2C9 functional assay described above with
1094 CYP2C9-specific activity-based probe TAHA-ABP. Labeled cells were analyzed using a
1095 BD LSRII and a standard yeast singlet gate was used. For this population, data were
1096 collected on the FITC channel (488 nm excitation; 530/30 nm detection filter) for 20,000
1097 events. Flow cytometry data were collected using FACSDiva version 8.0.1 (BD
1098 Biosciences) and analyzed using FlowJo version 10.7.1 (Ashland, OR). Fluorescence
1099 (FITC geometric mean of gated single cells) was normalized to background labeling ('no
1100 probe' control) and variant ABPP labeling relative to wild type was calculated. Three
1101 biological replicates of CYP2C9 individual variant validation were performed.

1102 **VAMP-seq internal validation with individual CYP2C9 variants**

1103 12 of the 14 variants used for Click-seq validation that also had VAMP-seq
1104 abundance score were cloned using the IVA cloning⁷¹ site-directed mutagenesis
1105 method into the VAMP-seq recombination vector (attB-CYP2C9-EGFP-IRES-mCherry)
1106 using primers in Supplementary Table 4 (MAC379 through MAC403). Point mutations
1107 were generated using a KAPA HiFi DNA Polymerase (KAPA Biosystems KK2601) and
1108 40 ng of CYP2C9 template sequence attB-CYP2C9-EGFP-IRES-mCherry. After
1109 performing inverse PCR for each variant, products were digested with DpnI and were
1110 used to transform chemically competent *E. coli* cells (NEB C2987 or Bioline BIO-
1111 85027). Bacterial clones were prepped using a midiprep kit, validated by Sanger
1112 sequencing, and HEK293T-LLP-iCasp9 cells with landing pad were transfected with

1113 these preps. To recombine variants into HEK293T cells, cells were transfected in 6-well
1114 plates, 400,000 cells per well. 2.7 μ g of library plasmid was mixed with 0.300 μ g of Bxb1
1115 plasmid in 125 μ L of OptiMEM and 5 μ L P3000 reagent. In a separate tube, 2.25 μ L of
1116 Lipofectamine was diluted in 125 μ L of OptiMEM. The tubes were then combined and
1117 incubated at room temperature for 15 minutes. After incubation period,
1118 Lipofectamine/DNA mixture was added to cells dropwise, and plates were placed in
1119 incubator at 37°C. A minimum of 48 hours after transfection, cells were induced with
1120 doxycycline at a final concentration of 2.5 μ g/mL. 24 hours after induction with
1121 doxycycline, small molecule AP1903 was added to select for recombinant cells, which
1122 causes inducible Caspase 9 in unrecombined landing pads to dimerize and activate.

1123 Recombined HEK293T cells were analyzed using a BD LSRII flow cytometer.
1124 Cells were gated for live, recombined singlets. For this population, a ratio of
1125 eGFP/mCherry was calculated, and the geometric mean of the histogram of this ratio
1126 was reported. Flow cytometry data were collected using FACSDiva version 8.0.1 (BD
1127 Biosciences) and analyzed using FlowJo version 10.7.1 (Ashland, OR). Two biological
1128 replicates of CYP2C9 individual variant validation were performed.

1129 Yeast microsomal preparations

1130 A large-scale induction of yeast cells expressing CYP2C9 wild type or variant
1131 plasmid was done as described above with a final culture volume of 0.5 L. After
1132 switching cells to galactose culture, cells were collected after 18-22 hrs. Cells were
1133 pelleted and stored at -80°C until ready for microsome preparations.

1134 Yeast microsomes were prepared as described previously^{60,72} with slight
1135 modifications. Harvested cells were thawed at room temperature for at least 10 minutes,
1136 washed with 25 mL of TEK buffer (50 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.1 M KCl),
1137 recovered at 3200 x g, resuspended in 30 mL of TEM buffer (50 mM Tris-HCl, pH 7.4, 1

1138 mM EDTA, 70 mM 2-mercaptoethanol), and incubated at room temperature for 10
1139 minutes. Cells were recovered by centrifugation (3200 x g) and resuspended in 1.5 mL
1140 of TMS buffer (1.5 M sorbitol; 20 mM Tris-MES, pH 6.3; 2 mM EDTA), and 20 mg of 20T
1141 Zymolyase (Amsbio) was added. Cells were incubated for ~1 hour at 30°C with agitation
1142 until digested. Further steps were performed on ice. Spheroplasts were pelleted at 6732
1143 x g and washed with 25 mL of TES-A buffer (50 mM Tris-HCl, pH 7.4, 1 mM EDTA, 1.5
1144 M sorbitol), and the centrifugation step was repeated. Spheroplasts were resuspended
1145 in 10 mL of TES-B buffer (50 mM Tris-HCl, pH 7.4; 1 mM EDTA; 0.6 M sorbitol) and
1146 lysed using a Misonix S4000 by performing 4 x 15 second pulses at maximum
1147 amplitude (40-45 W). After 5 minutes on ice, lysed cells were centrifuged for 4 minutes
1148 at 1700 x g. The supernatant was then centrifuged at 110,000 x g for 70 minutes. The
1149 microsomal pellet was resuspended in 1 mL of TEG buffer (50 mM Tris-HCl pH 7.4, 1
1150 mM EDTA, 20% (v/v) glycerol), homogenized, and frozen at -80°C.

1151 **Warfarin metabolism validation assay**

1152 S-Warfarin (50 µM) was mixed together with yeast lysate (microsomes), prepared
1153 from CYP2C9 variant-expressing cells, at 5 mg/mL total protein in 100 mM KPi buffer,
1154 pH 7.4 (100 µL final incubation volume). After 3 minutes pre-incubation at 37°C in a
1155 water bath, NADPH was added to initiate (to 1 mM final concentration). Reactions were
1156 incubated for 20 minutes and were then quenched with the addition of 5 µL of ice-cold
1157 70% HClO₄. An internal standard solution, containing 5 ng each of 6-hydroxywarfarin-d₅
1158 and 7-hydroxywarfarin-d₅, was added and the reaction products were vortexed and
1159 centrifuged to remove protein. Supernatants were analyzed by LC-MS/MS. Three
1160 technical replicates were carried out for each CYP2C9 variant lysate. Calibration curves
1161 were prepared by spiking variable amounts of unlabeled 6- and 7-hydroxywarfarins into
1162 100 µL volumes of KPi buffer to generate standard mixtures with final concentrations

1163 ranging from 1 nM to 1 μ M. These standard solutions were worked up and analyzed in
1164 an identical fashion to that described for the incubation samples.

1165 **Phenytoin metabolism validation assay**

1166 Phenytoin (100 μ M) was mixed together with yeast lysate (microsomes),
1167 prepared from CYP2C9 variant-expressing cells, at 5 mg/mL total protein in 100 mM
1168 KPi buffer, pH 7.4 (200 μ L final incubation volume). After 3 minutes pre-incubation at
1169 37°C in a water bath, NADPH stock was added (to 1 mM final concentration) to initiate
1170 the reactions. Reactions were incubated for 20 minutes and were then quenched with
1171 the addition of 20 μ L of ice-cold 15% ZnSO₄. 4-Hydroxyphenytoin-d₅ (p-HPPH-d₅, 10
1172 ng) was added as the internal standard and the reactions were vortexed, then
1173 centrifuged to remove protein, and the supernatants were analyzed by LC-MS/MS.
1174 Again, three technical replicates were carried out for each CYP2C9 variant lysate.
1175 Calibration curves were prepared by spiking variable amounts of unlabeled 4-
1176 hydroxyphenytoin (p-HPPH) into 200 μ L volumes of KPi buffer, generating standard
1177 mixtures with final concentrations ranging from 1 nM to 1 μ M. These standard solutions
1178 were worked up and analyzed in an identical fashion to that described for the incubation
1179 samples.

1180 **LC-MS/MS of Warfarin and Phenytoin Metabolites**

1181 LC-MS/MS analyses of warfarin and phenytoin metabolic reactions were
1182 conducted on a Waters Xevo TQ-S Tandem Quadrupole Mass Spectrometer (Waters
1183 Co., Milford, MA) coupled to an ACQUITY Ultra Performance LC™ (UPLC™) System
1184 with integral autoinjector (Waters). The Xevo was operated in ESI⁺-MS/MS (SRM) mode
1185 at a source temperature of 150°C and a desolvation temperature of 350°C. The
1186 following mass transitions were monitored in separate ion channels for the various
1187 oxidative warfarin metabolites/standards: *m/z* 325 > 179 (6- and 7-hydroxywarfarins-d₀)

1188 and *m/z* 330 > 179 (6- and 7-hydroxywarfarins-d₅); and phenytoin metabolite and
1189 standard: *m/z* 269 > 198 (p-HPPH-d₀) and *m/z* 274 > 203 (p-HPPH-d₅). Optimized cone
1190 voltages and collision energies were set to 25 V and 15 eV for all metabolites and
1191 standards of warfarin, while the cone voltage was set to 35 V with a collision energy of
1192 15 eV for the phenytoin metabolite p-HPPH (both d₀ and d₅-labeled). Metabolic products
1193 from the warfarin incubations were separated on an Acquity BEH Phenyl, 1.7 μ , 2.1 x
1194 150 mm UPLC column (Waters, Corp) using an isocratic gradient of 45% solvent A
1195 (0.1% aqueous formic acid) and 55% solvent B (methanol), with a constant flow rate of
1196 0.35 mL/min. Phenytoin metabolites were separated using this same BEH Phenyl UPLC
1197 column with a solvent gradient of water (solvent A) and acetonitrile (solvent B), both of
1198 which contained 0.1% formic acid, running at a flow rate of 0.3 mL/min. Initially, solvent
1199 B was set to 28%, where it was maintained for 4.5 minutes, then increased linearly to
1200 95% over 0.5 minutes where it was left for an additional 1.5 minutes. Metabolites were
1201 quantified through comparison of their peak area ratios (relative to either the 6- and 7-
1202 hydroxywarfarin-d₅ or p-HPPH-d₅ internal standard peak areas) to calibration curves
1203 using linear regression analysis. The limits of detection for all of the metabolites were
1204 below 5 fmol injected on column. Mass spectral data analyses for the Xevo TQ-S were
1205 performed on Windows XP-based Micromass MassLynxNT, v. 4.1, software (Waters).

1206 **BOMCC fluorogenic assay with yeast microsomes**

1207 7-Benzylxymethoxy-3-cyanocoumarin (BOMCC) (50 μ M) was mixed with 200
1208 μ M NADPH and yeast lysate at 50 μ g total protein, prepared from CYP2C9 variant-
1209 expressing cells, in 50 mM KPi buffer, pH 8 (150 μ L final incubation volume). Each
1210 sample was done in parallel with a no NADPH control. Three technical replicates were
1211 carried out for each CYP2C9 variant lysate. Sample fluorescence (excitation: 410 nm,
1212 emission: 460 nm, gain: 60) was recorded every 5 minutes on a BioTek Synergy H1

1213 microplate reader at 37°C for 200 min with shaking. To determine relative activity, the
1214 fluorescence from each sample was normalized by subtracting the no NADPH control,
1215 and the slope of the normalized fluorescence signal during the linear range (5 mins to
1216 50 mins) was calculated. Slopes were averaged across technical replicates and
1217 normalized by wild type average slope to determine relative BOMCC metabolism.

1218

1219 **ACKNOWLEDGEMENTS**

1220 We thank D. Prunkard of the UW Pathology Flow Cytometry Core Facility for
1221 assistance with cell sorting; K. Munson of the UW PacBio Sequencing Services for
1222 assistance with long-read sequencing; A. Wright, C. Whidbey, and E. Stoddard for
1223 reagents and helpful discussion; J. Stephany for assistance with amplicon design and
1224 sequencing analysis; D. Nickerson for valuable advice in analyzing the data, B. Dunn for
1225 useful comments in writing the manuscript; and all members of the Dunham lab for
1226 helpful feedback on figures. Research reported in this publication was supported by the
1227 National Institute of General Medical Sciences of the National Institutes of Health under
1228 award numbers R24GM115277 and R01GM132162 to DMF, MJD, and AER. CJA was
1229 supported by the National Human Genome Research Institute of the NIH under award
1230 T32 HG00035. The research of MJD was supported in part by a Faculty Scholar grant
1231 from the Howard Hughes Medical. MJD acknowledges prior support as a Senior Fellow
1232 in the Genetic Networks program at the Canadian Institute for Advanced Research.