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ABSTRACT

Specific features of white-matter microstructure can be investigated by using biophysical models to
interpret relaxation-diffusion MRI brain data. Although more intricate models have the potential to
reveal more details of the tissue, they also incur time-consuming parameter estimation that may con-
verge to inaccurate solutions due to a prevalence of local minima in a degenerate fitting landscape.
Machine-learning fitting algorithms have been proposed to accelerate the parameter estimation and
increase the robustness of the attained estimates. So far, learning-based fitting approaches have been
restricted to lower-dimensional microstructural models where dense sets of training data are easy to
generate. Moreover, the degree to which machine learning can alleviate the degeneracy problem is
poorly understood. For conventional least-squares solvers, it has been shown that degeneracy can be
avoided by acquisition with optimized relaxation-diffusion-correlation protocols that include tensor-
valued diffusion encoding; whether machine-learning techniques can offset these acquisition require-
ments remains to be tested. In this work, we employ deep neural networks to vastly accelerate the
fitting of a recently introduced high-dimensional relaxation-diffusion model of tissue microstructure.
We also develop strategies for assessing the accuracy and sensitivity of function fitting networks and
use those strategies to explore the impact of acquisition protocol design on the performance of the
network. The developed learning-based fitting pipelines were tested on relaxation-diffusion data ac-
quired with optimized and sub-sampled acquisition protocols. We found no evidence that machine-
learning algorithms can by themselves replace a careful design of the acquisition protocol or correct
for a degenerate fitting landscape.
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MAIN TEXT

1 INTRODUCTION

Microstructure imaging aims at using diffusion MRI (dMRI) to map salient features of the tissue
(Alexander et al., 2019; Nilsson et al., 2013; Novikov et al., 2019). A central goal in microstructure
imaging has been to estimate volume fraction of different microstructure components (Lampinen et
al., 2020; Lampinen et al., 2019; Veraart et al., 2018). Estimating volume rather than signal fractions
is however challenging because it requires the simultaneous estimation of both diffusion and relaxa-
tion properties of the different compartments. This kind of inverse problem is sensitive to degeneracy
issues (Jelescu et al., 2016; Lampinen et al., 2019), in which a multitude of different model parameters
can describe the acquired data equally well. Parameter estimation can also be computationally slow,
preventing real-time mapping. A potential solution is to employ machine learning to accelerate the
parameter estimation process. However, the current literature lacks systematic descriptions of the
gains and potential drawbacks of this approach, which is surprising considering the exponential in-
crease in interest for such methods. In this work, we use neural networks to speed up the estimation
process and investigate the veracity of the estimates as well as the potential for neural networks to
alleviate problems that stem from degeneracy.

Neural networks and other machine learning approaches have been applied before to accelerate the
estimation of microstructure parameters from dMRI data (Barbieri et al., 2020; Bertleff et al., 2017,
Golkov et al., 2016; Grussu et al., 2020a; Gyori et al., 2019; Hill et al., 2021; Nedjati-Gilani et al.,
2017; Palombo et al., 2020; Reisert et al., 2017). Examples include the use of a random forest regres-
sor to compartment models with permeability for white matter microstructure imaging in presence of
water exchange (Nedjati-Gilani et al., 2017) and the SANDI model to map gray matter properties
(Palombo et al., 2020). Reisert et al. applied machine learning to a Bayesian estimation approach
which dramatically accelerated the fitting of two- and three-compartment models (Reisert et al.,
2017). Barbieri et al applied deep neural networks to the intra-voxel incoherent motion model
(Barbieri et al., 2020). Nevertheless, an open question is what impact the training strategy has on the
fitting performance, in particular when applied to models with many model parameters. Here, we will
loosely refer to these as ‘high-dimensional models.” For such models, generation of training data is
challenging due to the poor scaling behaviour when a finite number of points are distributed across p
parameter dimensions; to sample each combination of model parameters in m steps requires m? sam-
ples. As p increases, it is unavoidable that a finite set of samples becomes sparse in the p-dimensional
space. Here, we investigate the impact that the model parameter space sampling pattern has on the
performance of the neural network.

Apart from accelerating model fitting, neural networks may in principle also reduce the requirements
on the imaging protocol by exploiting parameter correlations. For example, priors learned from the
training data have been observed to stabilise model fitting performance against substantial degrees of
data down-sampling (Alexander et al., 2017; Golkov et al., 2016; Tian et al., 2020). However, we do
not expect machine learning approaches to completely alleviate degeneracy issues. Indeed, for cases
where the acquisition protocol does not provide sufficient information to resolve between different
parameter values, the learning-based estimates will simply equal the mean of the model parameter
distribution used for training (Reisert et al., 2017).


https://doi.org/10.1101/2021.03.12.435163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435163; this version posted March 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The aim of this study was to compare training strategies, propose tools to evaluate the performance
of the neural network, and test to what degree neural networks could help solve the degeneracy prob-
lem. As a testbed, we use a high-dimensional relaxation-diffusion microstructure (Lampinen et al.,
2020; Lampinen et al., 2019; Veraart et al., 2018). The parameter estimation was enabled by the use
of state-of-the-art imaging protocols featuring so-called b-tensor encoding (Topgaard, 2017; Westin
et al., 2016), combined with diffusion-relaxation correlations (de Almeida Martins et al., 2020; de
Almeida Martins and Topgaard, 2018; Lampinen et al., 2019). We also investigated if neural network-
based estimation of model parameters could offset the need for tensor-valued diffusion encoding, to
enable this approach for data acquired with conventional diffusion encoding.

2 THEORY

White matter (WM) microstructure can be modelled by multiple compartments with different micro-
structural properties but a common orientation distribution (Alexander et al., 2019; Novikov et al.,
2019). In this description, the measured signal is the convolution between an orientation distribution
function (ODF) P(f) and a microstructural kernel K(& - i)

S@) = / P)K (@ - n) da, (D)
|a|=1

where 71 and @ are unit vectors defining the symmetry axes of the ODF and of the diffusion encoding
process, respectively. In this work, we assign an effective transverse relaxation time 7> and an appar-
ent microscopic diffusion tensor D to each microstructural component, and use exponentially decay-
ing functions to model the effect of these microstructural properties on the relaxation-diffusion-
weighted signal (Veraart et al., 2018). Under these assumptions, the microstructure kernel is written
as a weighted sum of exponentials

K@) = Sy I, f;exp( -B@: D) ) exp (- 72) )

corresponding to a mixture of J components each with signal fraction f;, transverse relaxation time
T7.j, and diffusion tensor D;. Information about 77;; and D; is encoded into the signal by the echo-time
7 and diffusion encoding tensor B(&), respectively, both of which are experimental variables. To
simplify the model, we only consider axisymmetric B(&) and additionally assume that the component-
wise D; are axially symmetric.

The convolution expressed in Eq. (1) can be simplified by factorizing both P(f2) and K(@ - f1) in their
spherical harmonic coefficients pj, and &y, respectively:

P(ﬁ) = Zl Zm plelm(ﬁ) P (3)
and
K@-h)=Y, koY@ -h), 4

where Y}, are the spherical harmonics basis functions
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Yin(©, ®) = A 7 cos ©) exp(im ) , ()
with the L}"(x) term denoting the associated Legendre polynomials. The summations in Egs. (3) are
carried out for order /=0, 1, 2, ..., and degree m = —I, —/+1, ..., . In Eq. (4), we have taken the axial
symmetry of the microstructural kernel K(@ - f1) into account (Lampinen et al., 2020; Novikov et al.,
2018). Symmetry around the polar axis implies k7, = 0 for either m’ # 0 or odd /°. Taken together,
this means that the k;,’ coefficients are reduced to their 0™ degree terms k; (typically written as k;°)
and only even-ordered spherical harmonic terms (/” =0, 2, ...) provide non-trivial contributions. Us-
ing the spherical harmonics addition theorem, Eq. (4) can be rewritten as:

K@) = 3y kyrg X Yy @y () 5 ©)

Inserting Egs. (3) and (6) into Eq. (1) and making use of the orthogonality of the spherical harmonic
basis finally yields (Driscoll and Healy, 1994; Healy et al., 1998):

N N 4 7
S(u) = Zl Zm kloplelm(u) 2141 ° ( )

where @ can be parameterized by the polar and azimuthal angles, 8 and ¢, describing the orientation
of B, & = (sinfcosg, sinfsing, cosb).

Exploiting the orthogonality of the spherical harmonic basis, the spherical harmonic coefficients of
the ODF (pin) and the microstructure kernel (kj) can be determined by multiplying either P(f1) or
K(@ - n), respectively, with the complex conjugate of Y}, and then integrating over a sphere. For the
microstructural kernel, such procedure results in:

kio= ky = Sy L1y £,/4xQ@1+ DIy exp(=bDy (1 - by D) ) exp <_EE,> . ®
where b is the conventional b-value and b, denotes the normalized anisotropy of the diffusion encod-
ing tensor B (Eriksson et al., 2015). The isotropic diffusivity and the normalized diffusion anisotropy
(Dyand D,) are related to the axial and radial diffusivities (D) and D) of the diffusion tensor accord-
ing to Dy = (D) + 2D1)/3 and Dy = (D)|— D1)/3Dy (Conturo et al., 1996). The Ij; factors are a function
of the regular Legendre polynomials, Z;, and defined as:

I; = fol exp(—a;x?) - L;(x) dx, ©)
with o; = 3bDy,jbaDa;;.
Different diffusion MRI models vary in their number of components and the constraints imposed on

their properties. Here we consider a two-compartment model (J = 2) comprising a “stick” component
(S) with zero radial diffusivity and a “zeppelin” (Z) component with Dz # 1:
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S(e,m) = S, [fs exp(—bDI;S(l - bA)>

g
Iy« + 4xl,. 2 Y, (6, -
X < 0,S+ Ttha:s - Dom 2m( ¢)> exp< T2;S> (10)
+ (1 = fs) exp(—bDyz(1 — by Dy7))

X (Toz +42lyz Y pryYan(0.$) ) exp __E
0;Z 2.7 2m*t2m\Y> TZ'Z
m 5
where the spherical harmonic summation is truncated at the second-ordered, m € {-2, -1, 0, 1, 2}.

The derivation of Eq. (10) uses the pyy = Yy = 1/\/@ ODF normalization (Lampinen et al., 2020;
Novikov et al., 2018). The vectors e and m capture the experiment-related parameters, e = (g, b, ba,
6, ¢), and scalar model parameters, m = (fs, Dr.s, D1.z, Da:z, T2:s, T2:7, p20, Re(p21), Im(p21), Re(p22),
Im(p22)). Besides setting Da.s = 1, no other constraints were imposed on the compartment properties.
We refer to the model expressed by Eq. (10) as the Relaxed Standard Model (RSM). This name is
chosen to mark its descendance from the “standard model” of WM microstructure (Novikov et al.,
2019) and to emphasize the fact that it accounts for compartment-specific 7> times.

The RSM model parameters can be determined by fitting Eq. (10) directly to the acquired signals
(Lampinen et al., 2020). An alternative strategy, followed in (Veraart et al., 2018), is to use a model
fitting framework that effectively reduces the dimensionality of the parameter space by means of
performing a hierarchical factorization of the voxel-wise ODFs (Novikov et al., 2018; Reisert et al.,
2017). The initial step of such framework consists in projecting the measured signal onto a spherical
harmonics’ basis

S@) = ) X SimYim(@) - (1)

The Si» coefficients are subsequently converted to rotational invariants S;, and fitted to the corre-
sponding rotationally invariant terms of the P(1))®K(g - 1) convolution:

S, =pik;, (12)

where k; is the 0™ degree term of the microstructural kernel as defined by Eq. (8). The rotationally
invariant coefficients, S; and p;, are computed from (Novikov et al., 2018)

o, = |47 Zmlxim|? (13)
L= @l+1)

where x;,, are the spherical harmonic coefficients, and x; = S; or x; = p;. Signal projections with /> 2
have small contributions to the measured signal (Jespersen et al., 2007), and the sum in Eq. (11) is
typically truncated at the second order term (/ = 2). The fitting framework summarized by Eqgs. (11)
and (12) is commonly referred to as the “Rotlnv” approach due to its use of rotational invariants. The
[ = 2 Rotlnv approach condenses the five p2m, me(-2,-1,0,1,2) parameters of the RSM model onto a
single p, invariant capturing the orientation coherence of the sub-voxel diffusion domains, thus re-
ducing the dimensionality of the fitting problem by four parameters.

3 METHODS

3.1 Neural network architecture and training
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In this work, we constructed a feedforward deep neural network (DNN) using the fitnet function in
MATLAB (The MathWorks, Inc.), and used it to fit vectors of scalar parameters, m = (fs, D1.s, D1.z,
Da.z, Ta:s, T2.7, p20, Re(p21), Im(p21), Re(p22), Im(p22)), to sets of S(zg, B) measurements. The net-
work was configured to have 3 fully connected hidden layers with decreasing number of nodes (180,
80, and 55) and an output layer with 11 nodes, each of which representing a dimension within the m
vectors. All hidden layers were activated by hyperbolic tangent (tanh) functions, while the output
layer uses a linear activation function. The input consisted of a vector of E signal amplitudes sampled
with a pre-defined relaxation-diffusion encoding protocol. We considered three different acquisition
protocols comprising between £ = 164 and E = 270 distinct (g, B) points. To remove the influence
of Sy from the fitting problem, we normalized the input vector to the median of the signals measured
at the point of maximal signal amplitude (minimum b and shortest 7).

The choice of a fully connected DNN follows the design of classic multilayer perceptrons (MLPs),
which are thus well-suited for regression problems (Cybenko, 1989; Hornik et al., 1989). In this work,
we employ the tanh activation function due its stronger gradients and faster convergence (LeCun et
al., 2012).

Supervised network training was performed using a scaled conjugate gradient optimiser and a mean
squared error loss

MSE = ||mtarg — mnet”% (14)

where myarg 1s the ground-truth target vector, mpet is the corresponding network output vector, and
|| - ||2 denotes the Euclidean norm. The mare parameters were rescaled between 0 and 1 using a min-
max normalization strategy before being supplied to the network. The network was trained with a set
of 5-10° voxels with randomly generated model parameters and noisy signal S(zg, B) (section 3.2
describes the training dataset generation). The training data was divided into different sub-sets before
being supplied to the network such that 65% of the original data was used to update the weights and
biases, 20% was used for cross-validation, and 15% was reserved for testing. In lieu of standard
or 7, regularizers, we prevented overfitting through an early stopping method and training was ter-
minated following an increase of the MSE of the validation data for 5 consecutive epochs.

Network GPU training took approximately 3 hours on two parallel NVIDIA GeForce RTX 2080
SUPER graphic cards, each with § GB of memory. Both graphic cards were installed on a high-end
consumer-grade desktop computer with an Intel 19-9900k 3.6 GHz CPU and 32 GB memory.

3.2 Generating training data

We generated training parameter vectors, miain, from two distinct sets:
- parameter vectors obtained by uniform random sampling within the bounds described in Ta-
ble 1, denoted mynir
- parameter vectors estimated from a NLLS fit of Eq. (10) to in vivo brain data, denoted mpyain.
Vectors derived from both sets were combined to create composite training datasets comprising a
total of #mrain vectors:

HMipain = #Mppain + #Mypir, (13)
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where #mprain and #mynir are the number of mprain and mynir vectors, respectively. To study the impact
of different training data generation strategies on the accuracy of network-derived estimates, we com-
pared the performance of networks trained with different ratios between #mprain and #mirain:

(16)

f brain — #mbrain/ #mtraina

i.e., networks trained with varying relative amounts of mprain and mynir vectors. The forain fractions
were varied between 0 and 1 in increments of 0.05, thus resulting in a total of 21 training datasets.
All sets contained a total of #main = 5-10° independent parameter vectors.

The mprain vectors comprise the solutions of a nonlinear least-squares (NLLS) fit of Eq. (10) to in
vivo signal data, mf, and an additional parameter set, mmyt, consisting of random mutations of the
fitted solutions:

1
My = X o my, (7

where ‘o’ denotes the element-wise (Hadamard) product, and X is an 11-dimensional vector of nor-
mally distributed numbers. Each element of X is an independent and identically distributed random
variable sampled from a normal distribution with mean 1 and standard deviation 0.2. The number of
mg;t vectors was kept constant (#mg ~ 8-10%), and the total of mmy vectors was defined as:

HMpue = #Mpgin—Hme;. (18)

The introduction of mutated parameters is a data augmentation technique, designed to simultaneously
compensate for the relative low number of mf;; vectors and expand the (fs, Di.s, D1.z, DAz, 12:s, T2.7,
P20, Re(p21), Im(p21), Re(p22), Im(p22)) domain of the mprain parameter targets.

Synthetic signal data were generated from mprain and mynir using Eq. (10) and one of three different
(7e, B) acquisition protocols:
- Protocol A comprises tensor-valued encoding with full relaxation-diffusion-correlation opti-
mized for minimal RSM parameter variance (Lampinen et al., 2020)
- Protocol B comprises tensor-valued encoding with relaxation-diffusion-correlations restricted
to low b-values(Lampinen et al., 2019)
- Protocol C comprises diffusion-relaxation optimized for minimal RSM parameter variance
but includes only linear B (ba = 1)(Lampinen et al., 2020).

Table 1 Relaxed standard model parameter bounds. The rationale behind the various model bounds
is detailed in (Lampinen et al., 2020).

DI;S DI;Z

Bounds fs [um?/ms] Tty Dy, T;s [ms] T3;7 [ms]
Minimum 0 0.07 @ 0.2 @ -0.46 @ 30 30
Maximum 1 1.33 @ 4.0 @ 0.86 @ 300 1000

@ From Dy;s = D);s/3 and Dy,z = (Dy;z + 2D 1,7)/3, while enforcing D;s, D),z and D, .z € [0.2, 4.0]
pm?2/ms
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Additional details on the various protocols can be found in their respective references and in Table
S1 of the Supporting Information.

Noise was sampled from the Rice distribution and added to the ground-truth synthetic signals. Be-
cause relaxation-diffusion MRI data displays spatially varying noise, the amplitude of the signal-to-
noise ratio (SNR) was uniformly varied across voxels in the interval SNR € [20, 50]. This interval
mimics characteristics observed for the brain in vivo (Lampinen et al., 2020). Finally, networks were
trained using myain vectors as targets and their corresponding in silico noisy signals as inputs.

3.3 Network evaluation

To find the optimal fprain parameter, we trained networks with varying forain, deployed them on unseen
in silico data, and compared the various networks in terms of accuracy of the resulting parameter
estimates. Network accuracy was assessed via normalized root-mean-squared errors (NRMSE) and
linear correlations with ground-truth values in terms of the Pearson correlation coefficient (p). Cor-
relation plots were used to evaluate the network trained with the optimal fyrain value in further detail.

The effects of protocols A-C on network performance were evaluated in terms of NRMSE and sen-
sitivity to parameter changes. The latter was gauged by modulating the parameters (fs, Dr.s, D1z,
Da.z, Ta:s, T2.7) of a RSM solution, one at a time by 10%, and measuring the response in all param-
eters. The original parameter set was based on in vivo data from the corona radiata where fs = 0.45,
Dr.s = 0.58 um?/ms, Dr.z = 1.36 um?/ms, Da.z = 0.44, T2.s = 69 ms, T2,z = 60 ms (Lampinen et al.,
2020). In silico datasets were subsequently generated for each of the 6 modulated datasets, noise at
SNR = 100 was added to the synthetic signals, and parameter estimates were finally retrieved with
protocol-specific networks.

To investigate if the reduced parameter space of Rotlnv fitting impacts the performance of DNN
fitting, we trained a network using rotationally invariant in silico datasets and the same optimal frain
value found for the RSM network. Rotlnv training vectors, miain:R1, Were generated from the mrain
vectors discussed in Section 3.2, using Eq. (13) to convert the full RSM parameter space to the (fs,
Drs, Drz, Dajz, T2;s, 12,7, p2) Rotlnv space. Subsequently, Eq. (12) was used to calculate S; =02
signals from mirain:r1 and noise was added at SNR e [20, 50] to the in silico data. As with the full
RSM model, training was performed using the main:r1 vectors as targets and their corresponding
synthetic noisy signals as DNN inputs. Trained RSM and RotInv networks were applied to previously
unseen Mynif/Munif:R1 and Mprain/Morain:R1 Synthetic datasets, and finally compared in terms of their
respective target-estimate correlations.

3.4 In vivo data acquisition

We analysed data from three adult volunteers previously reported in (Lampinen et al., 2020). The
study was approved by the regional ethical review board in Lund and written informed consent was
obtained from all volunteers prior to scanning. Measurements were performed on a MAGNETOM
Prisma 3T system (Siemens Healthcare, Erlangen, Germany) using a prototype spin-echo EPI se-
quence (Szczepankiewicz et al., 2019a) that facilitates user-defined gradient waveforms for diffusion
encoding (Szczepankiewicz et al., 2021). Data was collected using a 2.5 mm? isotropic spatial-reso-
lution, 40 slices, a matrix-size of 88x88, parallel imaging factor 2 (GRAPPA), partial Fourier of 3/4,
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a bandwidth = 1775 Hz/pixel, and “strong” fat saturation. Diffusion encoding was performed with
gradient waveforms numerically optimized to maximize the encoding strength per unit time (Sj6lund
et al., 2015) and to suppress concomitant field effects (Szczepankiewicz et al., 2019b). Data was
acquired for a total of 270 different combinations of zz and B, sampled according to protocol A in
Table S1 of the Supporting Information. Simultaneous multi-slice with a multiband factor of 2 was
used to accelerate the acquisition (Setsompop et al., 2012), resulting in a repetition time of 3.4 s and
a total acquisition time of 15 minutes.

3.5 In vivo data processing & parameter estimation

Prior to any DNN training or model fitting, all acquired data were corrected for eddy-currents and
subject motion using ElastiX (Klein et al., 2009) with extrapolated target volumes (Nilsson et al.,
2015). Moreover, susceptibility-induced geometric distortions were corrected using the TOPUP tool
in FMRIB software library (FSL) (Smith et al., 2004), and Gibbs ringing artefact correction was
performed according to the method described in (Kellner et al., 2016). To further improve the smooth-
ness of the sought RSM parameter maps, we followed the procedure used in (Lampinen et al., 2020)
and filtered the corrected data with a Gaussian kernel with a standard deviation of 0.45 times the
voxel size.

The RSM model parameters were estimated from a voxel-by-voxel NLLS fit of Eq. (10) to the post-
processed data. The fitting process was performed with the multidimensional dMRI toolbox
(https://github.com/markus-nilsson/md-dmri) (Nilsson et al., 2018), with MATLAB’s built-in
Isqcurvefit function being used to solve the NLLS minimization problem. To supress the frequency
of outliers, model fitting was performed twice and the result with lowest residual was retained
(Lampinen et al., 2020). The initial guesses were sampled uniformly from the broad parameter bounds
in Table 1. The voxel-wise RSM solution yielding the lowest residuals was stored and used to com-
pute in silico signal data following the procedure detailed in Section 3.2. In a previous study, the
probability of finding the global fitting solution using two initial uniformly random guesses was es-
timated to approximately 99.96% for in vivo brain data, meaning that the final RSM solution is ex-
pected to be robust in respect to the initial random guesses (Lampinen et al., 2020). NLLS fitting of
a single in vivo brain dataset took approximately 8 hours (~ 5.5 s per voxel) on the CPU described in
Section 3.1.

Finally, Eq.(10) was also fitted to the in vivo data using a DNN, which took approximately 3 seconds.
Training was performed on in silico min data with an optimal fprain fraction. The network was trained
using synthetic data generated from a single subject and deployed on the two other previously unseen
subjects. Neural network fitting provided voxel-wise parameter maps that were compared to the ones
obtained from a traditional NLLS fitting approach.

4 RESULTS

4.1 Impact of training set composition on network performance

We first investigated the influence of the firain parameter, and the result is shown in Figure 1. Large
errors—quantified by the normalized root mean squared error (RMSE)—were found between true
and estimated parameters in the WM range when the training was performed exclusively with uni-
formly distributed random samples (forain = 0). This finding can likely be attributed to the vastness of
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the 11-dimensional space of model parameters and that the model parameters associated with WM
occupy a very small part of this space. Indeed, when drawing uniformly distributed random samples
from the intervals in Table 1 only ~ 2% of the samples will resemble the expected properties of
healthy WM tissue, i.e., D1 = fs D1.s + (1-fs) D1,z € [0.8, 1.1] um?/ms and T2 =fs T2:s + (1-fs) T2.z €
[60, 120] ms. Mixing in small amounts of mpain led to a drastic reduction of the error, with near-
constant performance obtained already for fyrain > 0.1.

We now turn our attention to the correlations between estimated and ground-truth parameters. For
networks deployed on data derived from mprain vectors, higher Pearson correlation coefficients ()
are observed for higher fyrin fractions. Conversely, networks deployed on myyir data resulted in a
monotonically decreasing relationship between p and forain. The opposing trends are not surprising,
and simply indicate that better results are obtained whenever the training and test datasets are gener-
ated with comparable strategies.

Networks trained with high fprain fractions provide better estimates whenever the underlying data falls
within the expected range of WM parameters, but high performance is constrained to a relatively
small domain of model parameters. The forain hyper-parameter then controls a trade-off between ac-
curacy to WM-relevant parameters and network generalizability. To achieve a balance between ac-
curacy and generalizability, we selected the forain = 0.35, because it maximizes the sum between the
parameter-wide mean p of myrin data (solid blue line in right plot of Figure 1) and the parameter-
wide mean p of mynir data (solid red line in right plot of Figure 1). From this point onward, we
concentrate on networks trained with forain = 0.35 datasets unless stated otherwise.

4.2 Neural network parameter estimates

Network-based parameter estimation was ~10% times faster than NLLS fitting on the same computer,
and yielded parameters that are in good agreement with the ground-truth targets and preserve contrast
between regions characterized by distinct (72, D) properties (see Figure 2). For example, the esti-
mated fs and p, maps are similar to their targets, being high in WM regions and highest in orienta-
tionally coherent WM regions such as the corpus callosum. An example of a slight degradation of
contrast can however be observed in the 7>,z parameter maps, where the distinction between WM
(darker) and cortical GM (brighter) regions is more clear in the original map than in its NN estimate.
The 77,7 estimates are also characterized by considerable differences between ground-truth and esti-
mated parameters in the long 77 regions such as ventricles. The largest discrepancy between estimated
and target parameters was found for Da.z, likely because the signal is insensitive to this parameter
below values of 0.5 (Eriksson et al., 2015). Using a DNN trained on synthetic data to fit in vivo
experimental data resulted in noisier maps that nevertheless preserve anatomically plausible contrast.
The noisier appearance of the in vivo parameter maps is attributed to the relatively high residuals of
the RSM model (Lampinen et al., 2020).

Figure 3 shows that network-based estimates correlate well with the ground-truth parameter targets,
with most parameters yielding linear correlation coefficients above 0.9. The referenced figure focuses
on the performance of a network trained with in silico S(7g, B) data generated with protocol A and
Jvivo = 0.35, and distinguishes between performance on parameters obtained by uniform random sam-
pling (light blue points) and parameters derived from in vivo non-cortical brain data (dark blue
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points). Red points correspond to parameter vectors derived from low compartment-specific signal
fractions, as described in the figure caption. A considerably poor performance is observed for low
Dz values, where the network yields Da.z ~ 0.3 regardless of the underlying ground-truth. This can
be attributed to an intrinsic difficulty in distinguishing between the diffusion-weighted signals of
|Da:z| < 0.5 components (Eriksson et al., 2015). Moreover, weak correlations are observed for 72.7-
times much longer than the maximal zg of protocol A.

The errors and prediction-target correlations of the network-based estimates are compiled in Table
S2 of the Supporting Information, where they are additionally compared to the errors and correlations
obtained with a conventional NLLS solver. The NLLS approach has a higher accuracy for in silico
datasets designed to capture non-cortical (72, D) properties. By contrast, the function-fitting network
is observed to be more accurate than the NLLS approach for synthetic mynir datasets.

4.3 Effect of acquisition protocol on network accuracy and sensitivity

In this section, we focus on the relationship between acquisition protocol design and network perfor-
mance. Figure 4 shows that network-based fitting could not improve the known fit degeneracy in
protocols B and C. Indeed, networks based on the full relaxation-diffusion-correlation optimized pro-
tocol (protocol A) consistently provide lower estimation errors. Comparing protocols B and C, we
note that protocol B results in a better performance when the test data is generated from mynir and
observe a mixed performance for in silico test data based on mprain targets (protocol B yields more
accurate estimates of Dr:s, Dr.z, 12.7, and p», while protocol C yields more accurate estimates of fs,
Da.z, and T2:5).

Figure 5 shows the sensitivity of the various protocols to small parameter changes. Networks trained
on data generated with protocol A are sensitive to 10% parameter modulations, but underestimate the
magnitude of the change slightly. The parameter-specific modulations did not have a major effect on
the estimation of the remaining unmodulated parameters. An exception occurs when the underlying
T2.z is increased by 10%, which results in a 4% underestimation of the unperturbed fs. Compared to
protocol A, protocols B and C exhibit a lower sensitivity to the small parameter modulations and
appear to be unresponsive to changes in Da.z and Dy.s, respectively. Besides its lower sensitivity,
protocol C also results in less accurate estimations of the unmodulated parameters, with a 10% mod-
ulation of T2,z leading to 6% increase of the estimated fs.

4.4 Neural network fitting of Rotationally Invariant microstructural features

Figure 6A displays parameter maps of fs, Dr.s, D1.z and Da.z, obtained by applying a network trained
with rotational invariants to an unseen in vivo Si={02) dataset. The resulting maps have a smooth
appearance and exhibit anatomically plausible contrast. For example, regions with high fs correspond
to WM regions, the lateral ventricles are characterized by low fs and high Drz values, and
darker/brighter D,z regions demarcate cortical/non-cortical parenchyma. While it is tempting to fa-
vour the seductively ‘robust’ maps of Figure 6A over the noisier maps of Figure 2 (fourth column),
we note that the RotInv-based network fitting approach results in worse correlations between target
and estimated parameters (compare the scatter plots of Figure 6B with those of Figure 3). For ex-
ample, network-based estimates of Da.z might yield a smooth map that appeals to our intuition, but
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a closer look reveals that the Da.z estimates in WM and deep GM regions are equal to the mean of
the target Da.z distribution and constitute a very poor estimate of the underlying ground-truth. A
similarly poor correlation performance has been reported in a previous machine learning study of
RotInv model fitting (Reisert et al., 2017).

5 DISCUSSION & CONCLUSIONS

Replacing traditional NLLS solvers with function-fitting neural networks provides a means to vastly
reduce the time required for parameter estimation with high-dimensional microstructural models. Pa-
rameter estimation with networks trained on in silico data was achieved within seconds on a con-
sumer-grade desktop computer. The resulting parameter estimates were generally observed to be in
good agreement with both synthetic test datasets designed to simulate the relaxation-diffusion prop-
erties of healthy WM microstructure and test datasets spanning the entire space of allowed model
parameters. When deployed on unseen in vivo brain data, neural networks provide maps that are
consistent with known brain anatomy and preserve contrast between regions with different relaxation-
diffusion properties. Our findings are encouraging and in line with recent advanced dMRI modelling
studies that use machine learning techniques for parameter estimation (Barbieri et al., 2020; Bertleff
et al., 2017; Golkov et al., 2016; Grussu et al., 2020a; Gyori et al., 2019; Hill et al., 2021; Nedjati-
Gilani et al., 2017; Palombo et al., 2020; Reisert et al., 2017). A combination of simple error metrics,
correlation analysis, and sensitivity matrices was found to provide a useful set of tools for quantita-
tively assessing parameter-specific accuracy/sensitivity and for identifying the limitations of learn-
ing-based approaches. These tools allowed the identification of a heterogeneous performance across
the various dimensions of the RSM model, with Da.z estimates being consistently more inaccurate
than other parameter estimates. However, this was unsurprising given the known difficulties of accu-
rately estimating the anisotropy of microscopic D in general (Eriksson et al., 2015), and the anisotropy
of the “zeppelin” compartment in particular (Lampinen et al., 2020; Lampinen et al., 2019). By con-
trast, simple visual inspection of machine-learned parameter maps was found to provide limited in-
sight on the general performance of the networks. Indeed, smooth and anatomically plausible maps
can be achieved even if the correlation between estimation and target is weak; a deceptive pitfall that
has also been reported by (Reisert et al., 2017).

We found no evidence that learning-based fitting pipelines can by themselves navigate a degenerate
fitting landscape (Jelescu et al., 2016) or replace an exhaustive and careful probing of all relevant
experimental dimensions (Coelho et al., 2019; Lampinen et al., 2020). Comparison between networks
based on optimal protocols and networks based on sub-optimal protocols revealed clear differences
in both accuracy and sensitivity of the resulting parameter estimates. The network trained on an op-
timized protocol (Lampinen et al., 2020) consistently outperformed networks trained on less adequate
sampling schemes. Our results suggest that the learning approach cannot substitute for a rich set of
data, and learning-based fitting of diffusion-based microstructural models should be complemented
with b-tensor encoding strategies (Szczepankiewicz et al., 2021) and optimized (zg, B) sampling
schemes. In this work, we tested the learning-based approach on protocols designed via Cramer-Rao
lower-bound optimization (Alexander, 2008; Coelho et al., 2019; Lampinen et al., 2020). While not
yet tested in conjunction with learning-based fitting pipelines, alternative optimization methods based
on either efficient signal decomposition schemes (Bates et al., 2020; Song and Xiao, 2020) or deep
learning algorithms for feature selection (Grussu et al., 2020b; Pizzolato et al., 2020) are also expected
to have a positive impact on the performance of the DNN fitting approach.
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The 11-dimensional parameter space of the RSM model is hard to sample densely and thus presents
a challenge when designing training datasets that are representative of the vast fitting landscape. In
this work, we addressed this challenge by defining composite training datasets that combine varying
relative amounts of parameter vectors derived from in vivo healthy brain data (mpain) and parameter
vectors obtained from uniform random sampling of the entire model parameter space (mynir). Net-
works trained exclusively with mprin vectors display the best accuracy in terms of expected WM
properties, but their domain of validity is restricted to the relatively small space spanned by mprain
solutions. The constrained domain of mprain networks raises questions about their usefulness in prac-
tical applications focusing on WM microstructural alterations, where atypical microscopic tissue
structures may lead to significant deviations from the RSM parameters found in the healthy human
brain (Alexander et al., 2019). To define a good trade-off between accuracy and generalizability we
optimized the fraction fprain between the number of mprain and mynir. However, we expect that more
work is needed to define a truly optimal strategy network training.

While the high-dimensional model parameter space introduces difficulties in the network training
process, we found that directly reducing the model dimensionality through the computation of rota-
tional invariants resulted in a reduced performance. Indeed, learning based on a Rotlnv framework
yielded convincing parameter maps (reproducible, smooth, anatomically plausible), but closer in-
spection revealed both poor accuracy and sensitivity. Fitting an / = 0 RotInv network to “powder-
averaged” diffusion-weighted data (Jespersen et al., 2013; Kaden et al., 2016; Lasi¢ et al., 2014)
resulted in a similarly poor performance. These observations suggest that the additional orientational
information present in non-rotationally invariant data contributes valuable information to the learn-
ing-based fitting procedure.

A potential limitation of the present study is the relatively simple architecture of the trained networks,
especially when compared to the complex high-dimensional RSM model. Given the impact of net-
work design on the accuracy of its predictions (Isensee et al., 2020), future work should focus on a
more elaborate design and thorough investigation of the effects of learning rate, network depth, opti-
mization algorithms, and regularization approaches on network performance. Another improvement
can be gained from incorporating mini-batch processing methods in the training process. This would
allow training with larger datasets providing a denser sampling of the model parameter space and
hopefully improve the accuracy and generalizability of the network-based estimates. Moreover, the
supervised learning strategy used in this work should be compared against unsupervised deep learning
strategies, which, when applied to bi-exponential modelling of low-b diffusion-weighted data, have
been observed to provide more accurate estimates than NLLS or traditional Bayesian estimator
(Barbieri et al., 2020; Kaandorp et al., 2020). Alternatives or complements to the fully-connected
DNN architecture should also be explored. Promising avenues include the use of dropout (Gal and
Ghahramani, 2016; Tanno et al., 2021) or deep ensemble strategies (Lakshminarayanan et al., 2016;
Qin et al., 2021) as a means to derive uncertainty metrics, the use of network structures inspired by
non-learning-based iterative fitting frameworks (Ye, 2017), or use denoising networks (Fadnavis et
al., 2020; Wang et al., 2019) to minimize the amount of noise present in the data that is supplied to
the function-fitting DNN. However, the sensitivity analysis presented here should be applied to any
new fitting strategy to test specificity to change in single model parameters. Despite the clear room
for improvement, we note that the estimated target-estimate correlations were stronger than those
reported by Reisert ef al. (Reisert et al., 2017), where a supervised learning in terms of a Bayesian
estimator was used to fit a three-compartment diffusion model, and are equivalent to the correlations
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reported in more recent works focusing on machine-learning fitting of diffusion (Gyori et al., 2019;
Palombo et al., 2020) and diffusion-relaxation MRI models (Grussu et al., 2020a).

In conclusion, function fitting neural networks can be used to vastly accelerate parameter estimation
with high-dimensional microstructural MRI models. However, accurate estimation is achieved only
if the measurement protocol samples adequate information; we found no evidence that learning-based
approaches can replace the need for a rich set of data. Therefore, deep learning methodology in MRI
microstructure modelling should be matched with comprehensive data acquisition. The adequacy of
a given measurement protocol, in combination with a network for parameter estimation, can be eval-
uated by a suite of error metrics, estimate-target correlation plots, and sensitivity matrices. The learn-
ing-based fitting framework and the test tools developed herein may be used to evaluate network
performance.

CODE AVAILABILITY

Once the manuscript is accepted for publication, MATLAB code for training and deploying the net-
works discussed in this work will be shared in open source via a GitHub repository.
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Figure 1. Accuracy of parameters estimated from networks trained on datasets containing varying
fractions of targets derived from in vivo brain measurements (fprain). There is a marked trade-off be-
tween accuracy and generalizability dependent on fprain. For example, networks trained with high
forain provide better estimates of WM-like parameters, but are constrained to a limited domain of the
model space. The accuracy of network-based estimates is assessed by deploying the various networks
on two previously unseen datasets where one is derived from least-squared model fitting to brain data
(mprain, blue), and another obtained by uniform random sampling (munir, red). The differences and
correlations between estimated and ground-truth parameters is quantified by the normalised root
mean square error (NRMSE) and Pearson’s correlation coefficient (p). Solid lines represent the pa-
rameter-wide mean NRMSE (left plot) and the parameter-wide mean p (right plot). Computation of
parameter-wide mean metrics was performed with two steps: 1) estimate NRMSE and p for each
individual model parameter, and 2) average the parameter-specific metrics (NRMSE or p). The
dashed lines identify the maximum and minimum estimates of parameter-specific metrics, and the
shaded regions illustrate the range of metrics estimated for different model parameters.
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Figure 2. Deploying trained networks on previously unseen in silico and in vivo data provides ana-
tomically plausible parameter maps in under 10 s (including data management times). The first and
second columns compare the ground-truth targets and network predictions, respectively, of the in
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silico dataset. Difference maps are shown in the third column. Parameter maps obtained from apply-
ing a trained network on in vivo brain data are displayed in the fourth column.
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Figure 3. Scatter plots of ground-truth parameters vs. neural network predictions. Light blue points
show results when the network is deployed on uniformly distributed random model parameters. The
dark blue points correspond to an in silico dataset derived from a nonlinear least-squared fit to meas-
ured brain data where voxels within CSF and cortical GM were excluded by masking out regions
where microscopic anisotropy (Lasi€ et al., 2014), uFA, is lower than 0.6. The red points correspond
to regions where poor accuracy is expected, i.e., where the signal fraction of the relevant component
(“stick” or “zeppelin” depending on the parameter) accounts for less than 15% of the total signal or,
for the p» map, parameter vectors where the “zeppelin” component accounts for more than 85% of
the total signal fraction and |Da.z| < 0.4. The inner legends show the Pearson correlation coefficients

(p) of the blue points.
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Figure 4. Optimized acquisition protocols result in learning-based parameter estimates with lower
errors. The bar plots indicate the normalized root-mean-squared errors (NRMSE) between ground-
truth and predicted parameters, for in silico datasets generated with different acquisition protocols.
Protocol A corresponds to a tensor-valued (7g, B) protocol optimized for minimal parameter variance
(Lampinen et al., 2020), Protocol B is a sub-optimal tensor-valued ( zg, B) protocol where relaxation-
diffusion correlations are exclusively established at low b-values (Lampinen et al., 2019), and Proto-
col C is a (g, B) protocol limited to linear diffusion encoding (bx = 1) and optimized for parameter
precision (Lampinen et al., 2020). Panel A shows network performance on parameters sampled from
a uniform distribution, and panel B shows the performance on in silico data based on least-squares
fitting results to in vivo non-cortical brain tissue data.
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Figure 5. Sensitivity of acquisition protocols to 10% parameter modulations. The matrices display
the relation between an induced parameter change and the observed response. When a single param-
eter on the y-axis is modulated by 10%, the response can be read in all other parameters along the x-
axis. An ideal network would report a diagonal matrix with the value 10% on the diagonal, and zero
otherwise. Protocol A appears sensitive in all parameters, whereas Protocols B and C lack sensitivity
to Da;z and Dr:s, respectively.
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Figure 6. Neural network fitting of a rotationally invariant (Rotlnv) model results in plausible maps
but poor target-estimate correlations. A) Maps of microstructural diffusion parameters — fs, Dr:s, D1z
and Da.z — obtained from fitting a Rotlnv network to rotationally invariant in vivo brain data. The
Rotlnv network was trained using a fraction of fyivo = 0.35 between rotationally invariant myprain and
mypif training parameter vectors. B) Correlations between network-based parameter estimates and
ground-truth parameter targets. The colour-coding and legends follow the same convention as Figure
3.
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A) Selected experimental parameter maps
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