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ABSTRACT 
Specific features of white-matter microstructure can be investigated by using biophysical models to 
interpret relaxation-diffusion MRI brain data. Although more intricate models have the potential to 
reveal more details of the tissue, they also incur time-consuming parameter estimation that may con-
verge to inaccurate solutions due to a prevalence of local minima in a degenerate fitting landscape. 
Machine-learning fitting algorithms have been proposed to accelerate the parameter estimation and 
increase the robustness of the attained estimates. So far, learning-based fitting approaches have been 
restricted to lower-dimensional microstructural models where dense sets of training data are easy to 
generate. Moreover, the degree to which machine learning can alleviate the degeneracy problem is 
poorly understood. For conventional least-squares solvers, it has been shown that degeneracy can be 
avoided by acquisition with optimized relaxation-diffusion-correlation protocols that include tensor-
valued diffusion encoding; whether machine-learning techniques can offset these acquisition require-
ments remains to be tested. In this work, we employ deep neural networks to vastly accelerate the 
fitting of a recently introduced high-dimensional relaxation-diffusion model of tissue microstructure. 
We also develop strategies for assessing the accuracy and sensitivity of function fitting networks and 
use those strategies to explore the impact of acquisition protocol design on the performance of the 
network. The developed learning-based fitting pipelines were tested on relaxation-diffusion data ac-
quired with optimized and sub-sampled acquisition protocols. We found no evidence that machine-
learning algorithms can by themselves replace a careful design of the acquisition protocol or correct 
for a degenerate fitting landscape.  
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MAIN TEXT  

1 INTRODUCTION 
 
Microstructure imaging aims at using diffusion MRI (dMRI) to map salient features of the tissue 
(Alexander et al., 2019; Nilsson et al., 2013; Novikov et al., 2019). A central goal in microstructure 
imaging has been to estimate volume fraction of different microstructure components (Lampinen et 
al., 2020; Lampinen et al., 2019; Veraart et al., 2018). Estimating volume rather than signal fractions 
is however challenging because it requires the simultaneous estimation of both diffusion and relaxa-
tion properties of the different compartments. This kind of inverse problem is sensitive to degeneracy 
issues (Jelescu et al., 2016; Lampinen et al., 2019), in which a multitude of different model parameters 
can describe the acquired data equally well. Parameter estimation can also be computationally slow, 
preventing real-time mapping. A potential solution is to employ machine learning to accelerate the 
parameter estimation process. However, the current literature lacks systematic descriptions of the 
gains and potential drawbacks of this approach, which is surprising considering the exponential in-
crease in interest for such methods. In this work, we use neural networks to speed up the estimation 
process and investigate the veracity of the estimates as well as the potential for neural networks to 
alleviate problems that stem from degeneracy. 
 
Neural networks and other machine learning approaches have been applied before to accelerate the 
estimation of microstructure parameters from dMRI data (Barbieri et al., 2020; Bertleff et al., 2017; 
Golkov et al., 2016; Grussu et al., 2020a; Gyori et al., 2019; Hill et al., 2021; Nedjati-Gilani et al., 
2017; Palombo et al., 2020; Reisert et al., 2017). Examples include the use of a random forest regres-
sor to compartment models with permeability for white matter microstructure imaging in presence of 
water exchange (Nedjati-Gilani et al., 2017) and the SANDI model to map gray matter properties 
(Palombo et al., 2020). Reisert et al. applied machine learning to a Bayesian estimation approach 
which dramatically accelerated the fitting of two- and three-compartment models (Reisert et al., 
2017). Barbieri et al applied deep neural networks to the intra-voxel incoherent motion model 
(Barbieri et al., 2020). Nevertheless, an open question is what impact the training strategy has on the 
fitting performance, in particular when applied to models with many model parameters. Here, we will 
loosely refer to these as ‘high-dimensional models.’ For such models, generation of training data is 
challenging due to the poor scaling behaviour when a finite number of points are distributed across p 
parameter dimensions; to sample each combination of model parameters in m steps requires mp sam-
ples. As p increases, it is unavoidable that a finite set of samples becomes sparse in the p-dimensional 
space. Here, we investigate the impact that the model parameter space sampling pattern has on the 
performance of the neural network.  
 
Apart from accelerating model fitting, neural networks may in principle also reduce the requirements 
on the imaging protocol by exploiting parameter correlations. For example, priors learned from the 
training data have been observed to stabilise model fitting performance against substantial degrees of 
data down-sampling (Alexander et al., 2017; Golkov et al., 2016; Tian et al., 2020). However, we do 
not expect machine learning approaches to completely alleviate degeneracy issues. Indeed, for cases 
where the acquisition protocol does not provide sufficient information to resolve between different 
parameter values, the learning-based estimates will simply equal the mean of the model parameter 
distribution used for training (Reisert et al., 2017).   
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The aim of this study was to compare training strategies, propose tools to evaluate the performance 
of the neural network, and test to what degree neural networks could help solve the degeneracy prob-
lem. As a testbed, we use a high-dimensional relaxation-diffusion microstructure (Lampinen et al., 
2020; Lampinen et al., 2019; Veraart et al., 2018). The parameter estimation was enabled by the use 
of state-of-the-art imaging protocols featuring so-called b-tensor encoding (Topgaard, 2017; Westin 
et al., 2016), combined with diffusion-relaxation correlations (de Almeida Martins et al., 2020; de 
Almeida Martins and Topgaard, 2018; Lampinen et al., 2019). We also investigated if neural network-
based estimation of model parameters could offset the need for tensor-valued diffusion encoding, to 
enable this approach for data acquired with conventional diffusion encoding. 

2 THEORY 
 
White matter (WM) microstructure can be modelled by multiple compartments with different micro-
structural properties but a common orientation distribution (Alexander et al., 2019; Novikov et al., 
2019). In this description, the measured signal is the convolution between an orientation distribution 
function (ODF) P(𝒏̂) and a microstructural kernel K(𝒖̂ ⋅ 𝒏̂)  

𝑆(𝒖̂) = ∫ 𝑃 (𝒏̂)𝐾(𝒖̂ ⋅ 𝒏̂) d𝒏̂
 

|𝒏̂|=1
 , (1) 

where 𝒏̂ and 𝒖̂ are unit vectors defining the symmetry axes of the ODF and of the diffusion encoding 
process, respectively. In this work, we assign an effective transverse relaxation time T2 and an appar-
ent microscopic diffusion tensor D to each microstructural component, and use exponentially decay-
ing functions to model the effect of these microstructural properties on the relaxation-diffusion-
weighted signal (Veraart et al., 2018). Under these assumptions, the microstructure kernel is written 
as a weighted sum of exponentials 

𝐾(𝒖̂ ⋅ 𝒏̂) = 𝑆0  ∑ 𝑓𝑗 exp(−B(𝒖̂): 𝐃𝑗(𝒏̂)) exp (− 𝜏E
𝑇2;𝑗)

𝐽
𝑗=1  , (2) 

corresponding to a mixture of J components each with signal fraction fj, transverse relaxation time 
T2;j, and diffusion tensor Dj. Information about T2;j and Dj is encoded into the signal by the echo-time 
tE and diffusion encoding tensor B(𝒖̂), respectively, both of which are experimental variables. To 
simplify the model, we only consider axisymmetric B(𝒖̂) and additionally assume that the component-
wise Dj are axially symmetric. 
 
The convolution expressed in Eq. (1) can be simplified by factorizing both P(𝒏̂) and K(𝒖̂ ⋅ 𝒏̂) in their 
spherical harmonic coefficients plm and klm, respectively: 

𝑃 (𝒖̂) = ∑ ∑ 𝑝𝑙𝑚𝑌𝑙𝑚(𝒖̂)𝑚𝑙  , (3) 

and 

𝐾(𝒖̂ ⋅ 𝒏̂) = ∑ 𝑘𝑙′0𝑌𝑙′0(𝒖̂ ⋅ 𝒏̂)𝑙′  , (4) 

where Ylm are the spherical harmonics basis functions 
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𝑌𝑙𝑚(Θ, Φ) = √
2𝑙+1
4𝜋

(𝑙−𝑚)!
(𝑙+𝑚)! 𝐿𝑙

𝑚(cos Θ) exp(𝑖𝑚Φ) ,  (5) 

with the 𝐿𝑙
𝑚(x) term denoting the associated Legendre polynomials. The summations in Eqs. (3) are 

carried out for order l = 0, 1, 2, …, and degree m = -l, -l+1, …, l. In Eq. (4), we have taken the axial 
symmetry of the microstructural kernel K(𝒖̂ ⋅ 𝒏̂) into account (Lampinen et al., 2020; Novikov et al., 
2018). Symmetry around the polar axis implies kl’m’ = 0 for either m’ ¹ 0 or odd l’. Taken together, 
this means that the kl’m’ coefficients are reduced to their 0th degree terms kl’0 (typically written as kl’) 
and only even-ordered spherical harmonic terms (l’ = 0, 2, …) provide non-trivial contributions. Us-
ing the spherical harmonics addition theorem, Eq. (4) can be rewritten as: 

𝐾(𝒖̂ ⋅ 𝒏̂) = ∑ 𝑘𝑙′0𝑙′ ∑ 𝑌𝑙′𝑚′(𝒖̂)𝑌𝑙′𝑚′(𝒏̂)√
4𝜋

2𝑙′+1
𝑙′

𝑚′=−𝑙′  . (6) 

Inserting Eqs. (3) and (6) into Eq. (1) and making use of the orthogonality of the spherical harmonic 
basis finally yields (Driscoll and Healy, 1994; Healy et al., 1998): 

𝑆(𝒖̂) = ∑ ∑ 𝑘𝑙0𝑝𝑙𝑚𝑌𝑙𝑚(𝒖̂)√
4𝜋

2𝑙+1𝑚𝑙  , (7) 

where 𝒖̂ can be parameterized by the polar and azimuthal angles, q and f, describing the orientation 
of B, 𝒖̂  º (sinq cosf, sinq sinf, cosq). 
 
Exploiting the orthogonality of the spherical harmonic basis, the spherical harmonic coefficients of 
the ODF (plm) and the microstructure kernel (kl0) can be determined by multiplying either P(𝒏̂) or 
K(𝒖̂ ⋅ 𝒏̂), respectively, with the complex conjugate of Ylm and then integrating over a sphere. For the 
microstructural kernel, such procedure results in:  

𝑘𝑙0 ≡ 𝑘𝑙 = 𝑆0  ∑ 𝑓𝑗√4𝜋(2𝑙 + 1)I𝑙𝑗 exp(−𝑏𝐷I;𝑗(1 − 𝑏Δ𝐷Δ;𝑗)) exp (− 𝜏E
𝑇2;𝑗)

𝐽
𝑗=1  , (8) 

where b is the conventional b-value and bD denotes the normalized anisotropy of the diffusion encod-
ing tensor B (Eriksson et al., 2015). The isotropic diffusivity and the normalized diffusion anisotropy 
(DI and DD) are related to the axial and radial diffusivities (D|| and D^) of the diffusion tensor accord-
ing to DI = (D|| + 2D^)/3 and DD = (D|| - D^)/3DI (Conturo et al., 1996). The Ilj factors are a function 
of the regular Legendre polynomials, Ll, and defined as: 

𝐼𝑙𝑗 = ∫ exp(−𝛼𝑗𝑥2) ⋅ 𝐿𝑙(𝑥) d𝑥1
0  , (9) 

with aj = 3bDI;jbDDD;j. 
 
Different diffusion MRI models vary in their number of components and the constraints imposed on 
their properties. Here we consider a two-compartment model (J = 2) comprising a “stick” component 
(S) with zero radial diffusivity and a “zeppelin” (Z) component with DD;Z ¹ 1: 
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𝑆(𝒆, 𝒎) = 𝑆0 [ 𝑓S exp(−𝑏𝐷I;S(1 − 𝑏Δ))

× (I0;S + 4πI2;S ∑ 𝑝2𝑚𝑌2𝑚(𝜃, 𝜙)
𝑚 ) exp (−

𝜏E
𝑇2;S)

+ (1 − 𝑓S) exp(−𝑏𝐷I;Z(1 − 𝑏Δ𝐷Δ;Z))

× (I0;Z + 4πI2;Z ∑ 𝑝2𝑚𝑌2𝑚(𝜃, 𝜙)
𝑚 ) exp (−

𝜏E
𝑇2;Z)]

  (10) 

where the spherical harmonic summation is truncated at the second-ordered, m Î {-2, -1, 0, 1, 2}. 
The derivation of Eq. (10) uses the 𝑝00 = 𝑌00 = 1 √4𝜋⁄  ODF normalization (Lampinen et al., 2020; 
Novikov et al., 2018). The vectors e and m capture the experiment-related parameters, e = (tE, b, bD, 
q, f), and scalar model parameters, m = (fS, DI;S, DI;Z, DD;Z, T2;S, T2;Z, p20, Re(p21), Im(p21), Re(p22), 
Im(p22)). Besides setting DD;S = 1, no other constraints were imposed on the compartment properties. 
We refer to the model expressed by Eq. (10) as the Relaxed Standard Model (RSM). This name is 
chosen to mark its descendance from the “standard model” of WM microstructure (Novikov et al., 
2019) and to emphasize the fact that it accounts for compartment-specific T2 times. 
 
The RSM model parameters can be determined by fitting Eq. (10) directly to the acquired signals 
(Lampinen et al., 2020). An alternative strategy, followed in (Veraart et al., 2018), is to use a model 
fitting framework that effectively reduces the dimensionality of the parameter space by means of 
performing a hierarchical factorization of the voxel-wise ODFs (Novikov et al., 2018; Reisert et al., 
2017). The initial step of such framework consists in projecting the measured signal onto a spherical 
harmonics’ basis 

𝑆(𝒖̂) = ∑ ∑ 𝑆𝑙𝑚𝑌𝑙𝑚(𝒖̂)𝑚𝑙  . (11) 

The Slm coefficients are subsequently converted to rotational invariants Sl, and fitted to the corre-
sponding rotationally invariant terms of the P(𝐮̂)ÄK(𝐠̂ ⋅ 𝐮̂) convolution: 

𝑆" = 𝑝"𝑘" , (12) 

where kl is the 0th degree term of the microstructural kernel as defined by Eq. (8). The rotationally 
invariant coefficients, Sl and pl, are computed from (Novikov et al., 2018) 

𝑥" = '()∑ |,-.|/.
(1"23)

 , (13) 

where xlm are the spherical harmonic coefficients, and xl º Sl or xl º pl. Signal projections with l > 2 
have small contributions to the measured signal (Jespersen et al., 2007), and the sum in Eq. (11) is 
typically truncated at the second order term (l = 2). The fitting framework summarized by Eqs. (11) 
and (12) is commonly referred to as the “RotInv” approach due to its use of rotational invariants. The 
l = 2 RotInv approach condenses the five p2m, mÎ{-2,-1,0,1,2} parameters of the RSM model onto a 
single p2 invariant capturing the orientation coherence of the sub-voxel diffusion domains, thus re-
ducing the dimensionality of the fitting problem by four parameters. 

3 METHODS 

3.1 Neural network architecture and training 
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In this work, we constructed a feedforward deep neural network (DNN) using the fitnet function in 
MATLAB (The MathWorks, Inc.), and used it to fit vectors of scalar parameters, m = (fS, DI;S, DI;Z, 
DD;Z, T2;S, T2;Z, p20, Re(p21), Im(p21), Re(p22), Im(p22)), to sets of S(tE, B) measurements. The net-
work was configured to have 3 fully connected hidden layers with decreasing number of nodes (180, 
80, and 55) and an output layer with 11 nodes, each of which representing a dimension within the m 
vectors. All hidden layers were activated by hyperbolic tangent (tanh) functions, while the output 
layer uses a linear activation function. The input consisted of a vector of E signal amplitudes sampled 
with a pre-defined relaxation-diffusion encoding protocol. We considered three different acquisition 
protocols comprising between E = 164 and E = 270 distinct (tE, B) points. To remove the influence 
of S0 from the fitting problem, we normalized the input vector to the median of the signals measured 
at the point of maximal signal amplitude (minimum b and shortest tE).  
 
The choice of a fully connected DNN follows the design of classic multilayer perceptrons (MLPs), 
which are thus well-suited for regression problems (Cybenko, 1989; Hornik et al., 1989). In this work, 
we employ the tanh activation function due its stronger gradients and faster convergence (LeCun et 
al., 2012).  
 
Supervised network training was performed using a scaled conjugate gradient optimiser and a mean 
squared error loss 

MSE = ‖𝒎targ − 𝒎net‖2
2 (14) 

where mtarg is the ground-truth target vector, mnet is the corresponding network output vector, and  
|| × ||2 denotes the Euclidean norm. The mtarg parameters were rescaled between 0 and 1 using a min-
max normalization strategy before being supplied to the network. The network was trained with a set 
of 5×105 voxels with randomly generated model parameters and noisy signal S(tE, B) (section 3.2 
describes the training dataset generation). The training data was divided into different sub-sets before 
being supplied to the network such that 65% of the original data was used to update the weights and 
biases, 20% was used for cross-validation, and 15% was reserved for testing. In lieu of standard ℓ1 
or ℓ2 regularizers, we prevented overfitting through an early stopping method and training was ter-
minated following an increase of the MSE of the validation data for 5 consecutive epochs. 
 
Network GPU training took approximately 3 hours on two parallel NVIDIA GeForce RTX 2080 
SUPER graphic cards, each with 8 GB of memory. Both graphic cards were installed on a high-end 
consumer-grade desktop computer with an Intel i9-9900k 3.6 GHz CPU and 32 GB memory.  
 

3.2 Generating training data 
 
We generated training parameter vectors, mtrain, from two distinct sets: 

- parameter vectors obtained by uniform random sampling within the bounds described in Ta-
ble 1, denoted munif 

- parameter vectors estimated from a NLLS fit of Eq. (10) to in vivo brain data, denoted mbrain. 
Vectors derived from both sets were combined to create composite training datasets comprising a 
total of #mtrain vectors: 

#𝑚train = #𝑚brain + #𝑚unif , (15) 
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where #mbrain and #munif are the number of mbrain and munif vectors, respectively. To study the impact 
of different training data generation strategies on the accuracy of network-derived estimates, we com-
pared the performance of networks trained with different ratios between #mbrain and #mtrain:    

𝑓brain = #𝑚brain/#𝑚train,	 (16) 

i.e., networks trained with varying relative amounts of mbrain and munif vectors. The fbrain fractions 
were varied between 0 and 1 in increments of 0.05, thus resulting in a total of 21 training datasets. 
All sets contained a total of #mtrain = 5×105 independent parameter vectors.  
 
The mbrain vectors comprise the solutions of a nonlinear least-squares (NLLS) fit of Eq. (10) to in 
vivo signal data, mfit, and an additional parameter set, mmut, consisting of random mutations of the 
fitted solutions:  

𝒎mut = 𝑿 ∘ 𝒎fit , (17) 

where ‘∘’ denotes the element-wise (Hadamard) product, and X is an 11-dimensional vector of nor-
mally distributed numbers. Each element of X is an independent and identically distributed random 
variable sampled from a normal distribution with mean 1 and standard deviation 0.2. The number of 
mfit vectors was kept constant (#mfit ~ 8×104), and the total of mmut vectors was defined as:  

#𝑚mut = #𝑚brain−#𝑚fit . (18) 

The introduction of mutated parameters is a data augmentation technique, designed to simultaneously 
compensate for the relative low number of mfit vectors and expand the (fS, DI;S, DI;Z, DD;Z, T2;S, T2;Z, 
p20, Re(p21), Im(p21), Re(p22), Im(p22)) domain of the mbrain parameter targets. 
 
Synthetic signal data were generated from mbrain and munif using Eq. (10) and one of three different 
(tE, B) acquisition protocols: 

- Protocol A comprises tensor-valued encoding with full relaxation-diffusion-correlation opti-
mized for minimal RSM parameter variance (Lampinen et al., 2020) 

- Protocol B comprises tensor-valued encoding with relaxation-diffusion-correlations restricted 
to low b-values(Lampinen et al., 2019) 

- Protocol C comprises diffusion-relaxation optimized for minimal RSM parameter variance 
but includes only linear B (bD = 1)(Lampinen et al., 2020).  

 
 
Table 1 Relaxed standard model parameter bounds. The rationale behind the various model bounds 
is detailed in (Lampinen et al., 2020).  

Bounds fS  
DI;S 

[µm2/ms] 
DI;Z 

[µm2/ms] DD;Z  T2;S [ms] T2;Z [ms] 

Minimum 0 0.07 (a) 0.2 (a) -0.46 (a) 30 30 

Maximum 1 1.33 (a) 4.0 (a) 0.86 (a) 300 1000 

(a) From DI;S = D||;S/3 and DI;Z = (D||;Z + 2D^;Z)/3, while enforcing D||;S, D||;Z and D^;Z Î [0.2, 4.0] 
µm2/ms 
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Additional details on the various protocols can be found in their respective references and in Table 
S1 of the Supporting Information.  
 
Noise was sampled from the Rice distribution and added to the ground-truth synthetic signals. Be-
cause relaxation-diffusion MRI data displays spatially varying noise, the amplitude of the signal-to-
noise ratio (SNR) was uniformly varied across voxels in the interval SNR Î [20, 50]. This interval 
mimics characteristics observed for the brain in vivo (Lampinen et al., 2020). Finally, networks were 
trained using mtrain vectors as targets and their corresponding in silico noisy signals as inputs.  
 

3.3 Network evaluation 
 
To find the optimal fbrain parameter, we trained networks with varying fbrain, deployed them on unseen 
in silico data, and compared the various networks in terms of accuracy of the resulting parameter 
estimates. Network accuracy was assessed via normalized root-mean-squared errors (NRMSE) and 
linear correlations with ground-truth values in terms of the Pearson correlation coefficient (r). Cor-
relation plots were used to evaluate the network trained with the optimal fbrain value in further detail. 
 
The effects of protocols A-C on network performance were evaluated in terms of NRMSE and sen-
sitivity to parameter changes. The latter was gauged by modulating the parameters (fS, DI;S, DI;Z, 
DD;Z, T2;S, T2;Z) of a RSM solution, one at a time by 10%, and measuring the response in all param-
eters. The original parameter set was based on in vivo data from the corona radiata where fS = 0.45, 
DI;S = 0.58 µm2/ms, DI;Z = 1.36 µm2/ms, DD;Z = 0.44, T2;S = 69 ms, T2;Z = 60 ms (Lampinen et al., 
2020). In silico datasets were subsequently generated for each of the 6 modulated datasets, noise at 
SNR = 100 was added to the synthetic signals, and parameter estimates were finally retrieved with 
protocol-specific networks. 
 
To investigate if the reduced parameter space of RotInv fitting impacts the performance of DNN 
fitting, we trained a network using rotationally invariant in silico datasets and the same optimal fbrain 
value found for the RSM network. RotInv training vectors, mtrain;RI, were generated from the mtrain 
vectors discussed in Section 3.2, using Eq. (13) to convert the full RSM parameter space to the (fS, 
DI;S, DI;Z, DD;Z, T2;S, T2;Z, p2) RotInv space. Subsequently, Eq. (12) was used to calculate Sl, l={0,2} 
signals from mtrain;RI and noise was added at SNR Î [20, 50] to the in silico data. As with the full 
RSM model, training was performed using the mtrain;RI vectors as targets and their corresponding 
synthetic noisy signals as DNN inputs. Trained RSM and RotInv networks were applied to previously 
unseen munif/munif;RI and mbrain/mbrain;RI synthetic datasets, and finally compared in terms of their 
respective target-estimate correlations. 

3.4 In vivo data acquisition 
 
We analysed data from three adult volunteers previously reported in (Lampinen et al., 2020). The 
study was approved by the regional ethical review board in Lund and written informed consent was 
obtained from all volunteers prior to scanning. Measurements were performed on a MAGNETOM 
Prisma 3T system (Siemens Healthcare, Erlangen, Germany) using a prototype spin-echo EPI se-
quence (Szczepankiewicz et al., 2019a) that facilitates user-defined gradient waveforms for diffusion 
encoding (Szczepankiewicz et al., 2021). Data was collected using a 2.5 mm3 isotropic spatial-reso-
lution, 40 slices, a matrix-size of 88´88, parallel imaging factor 2 (GRAPPA), partial Fourier of 3/4, 
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a bandwidth = 1775 Hz/pixel, and “strong” fat saturation. Diffusion encoding was performed with 
gradient waveforms numerically optimized to maximize the encoding strength per unit time (Sjölund 
et al., 2015) and to suppress concomitant field effects (Szczepankiewicz et al., 2019b). Data was 
acquired for a total of 270 different combinations of tE and B, sampled according to protocol A in 
Table S1 of the Supporting Information. Simultaneous multi-slice with a multiband factor of 2 was 
used to accelerate the acquisition (Setsompop et al., 2012), resulting in a repetition time of 3.4 s and 
a total acquisition time of 15 minutes. 

3.5 In vivo data processing & parameter estimation 
 
Prior to any DNN training or model fitting, all acquired data were corrected for eddy-currents and 
subject motion using ElastiX (Klein et al., 2009) with extrapolated target volumes (Nilsson et al., 
2015). Moreover, susceptibility-induced geometric distortions were corrected using the TOPUP tool 
in FMRIB software library (FSL) (Smith et al., 2004), and Gibbs ringing artefact correction was 
performed according to the method described in (Kellner et al., 2016). To further improve the smooth-
ness of the sought RSM parameter maps, we followed the procedure used in (Lampinen et al., 2020) 
and filtered the corrected data with a Gaussian kernel with a standard deviation of 0.45 times the 
voxel size. 
 
The RSM model parameters were estimated from a voxel-by-voxel NLLS fit of Eq. (10) to the post-
processed data. The fitting process was performed with the multidimensional dMRI toolbox 
(https://github.com/markus-nilsson/md-dmri) (Nilsson et al., 2018), with MATLAB’s built-in 
lsqcurvefit function being used to solve the NLLS minimization problem. To supress the frequency 
of outliers, model fitting was performed twice and the result with lowest residual was retained 
(Lampinen et al., 2020). The initial guesses were sampled uniformly from the broad parameter bounds 
in Table 1. The voxel-wise RSM solution yielding the lowest residuals was stored and used to com-
pute in silico signal data following the procedure detailed in Section 3.2. In a previous study, the 
probability of finding the global fitting solution using two initial uniformly random guesses was es-
timated to approximately 99.96% for in vivo brain data, meaning that the final RSM solution is ex-
pected to be robust in respect to the initial random guesses (Lampinen et al., 2020). NLLS fitting of 
a single in vivo brain dataset took approximately 8 hours (~ 5.5 s per voxel) on the CPU described in 
Section 3.1. 
 
Finally, Eq.(10) was also fitted to the in vivo data using a DNN, which took approximately 3 seconds. 
Training was performed on in silico mtrain data with an optimal fbrain fraction. The network was trained 
using synthetic data generated from a single subject and deployed on the two other previously unseen 
subjects. Neural network fitting provided voxel-wise parameter maps that were compared to the ones 
obtained from a traditional NLLS fitting approach.  

4 RESULTS 

4.1 Impact of training set composition on network performance 
 
We first investigated the influence of the fbrain parameter, and the result is shown in Figure 1. Large 
errors—quantified by the normalized root mean squared error (RMSE)—were found between true 
and estimated parameters in the WM range when the training was performed exclusively with uni-
formly distributed random samples (fbrain = 0). This finding can likely be attributed to the vastness of 
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the 11-dimensional space of model parameters and that the model parameters associated with WM 
occupy a very small part of this space. Indeed, when drawing uniformly distributed random samples 
from the intervals in Table 1 only ~ 2% of the samples will resemble the expected properties of 
healthy WM tissue, i.e., DI = fS DI;S + (1–fS) DI;Z Î [0.8, 1.1] µm2/ms and T2 = fS T2;S + (1–fS) T2;Z Î 
[60, 120] ms. Mixing in small amounts of mbrain led to a drastic reduction of the error, with near-
constant performance obtained already for fbrain  ³ 0.1. 
 
We now turn our attention to the correlations between estimated and ground-truth parameters. For 
networks deployed on data derived from mbrain vectors, higher Pearson correlation coefficients (r) 
are observed for higher fbrain fractions. Conversely, networks deployed on munif data resulted in a 
monotonically decreasing relationship between r and fbrain. The opposing trends are not surprising, 
and simply indicate that better results are obtained whenever the training and test datasets are gener-
ated with comparable strategies.  
 
Networks trained with high fbrain fractions provide better estimates whenever the underlying data falls 
within the expected range of WM parameters, but high performance is constrained to a relatively 
small domain of model parameters. The fbrain hyper-parameter then controls a trade-off between ac-
curacy to WM-relevant parameters and network generalizability. To achieve a balance between ac-
curacy and generalizability, we selected the fbrain = 0.35, because it maximizes the sum between the 
parameter-wide mean r of mbrain data (solid blue line in right plot of Figure 1) and the parameter-
wide mean r of munif data (solid red line in right plot of Figure 1). From this point onward, we 
concentrate on networks trained with fbrain = 0.35 datasets unless stated otherwise. 
 

4.2 Neural network parameter estimates 
 
Network-based parameter estimation was ~104 times faster than NLLS fitting on the same computer, 
and yielded parameters that are in good agreement with the ground-truth targets and preserve contrast 
between regions characterized by distinct (T2, D) properties (see Figure 2). For example, the esti-
mated fS and p2 maps are similar to their targets, being high in WM regions and highest in orienta-
tionally coherent WM regions such as the corpus callosum. An example of a slight degradation of 
contrast can however be observed in the T2;Z parameter maps, where the distinction between WM 
(darker) and cortical GM (brighter) regions is more clear in the original map than in its NN estimate. 
The T2;Z estimates are also characterized by considerable differences between ground-truth and esti-
mated parameters in the long T2 regions such as ventricles. The largest discrepancy between estimated 
and target parameters was found for DD;Z, likely because the signal is insensitive to this parameter 
below values of 0.5 (Eriksson et al., 2015). Using a DNN trained on synthetic data to fit in vivo 
experimental data resulted in noisier maps that nevertheless preserve anatomically plausible contrast. 
The noisier appearance of the in vivo parameter maps is attributed to the relatively high residuals of 
the RSM model (Lampinen et al., 2020). 
 
Figure 3 shows that network-based estimates correlate well with the ground-truth parameter targets, 
with most parameters yielding linear correlation coefficients above 0.9. The referenced figure focuses 
on the performance of a network trained with in silico S(tE, B) data generated with protocol A and 
fvivo = 0.35, and distinguishes between performance on parameters obtained by uniform random sam-
pling (light blue points) and parameters derived from in vivo non-cortical brain data (dark blue 
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points). Red points correspond to parameter vectors derived from low compartment-specific signal 
fractions, as described in the figure caption. A considerably poor performance is observed for low 
DD;Z values, where the network yields DD;Z ~ 0.3 regardless of the underlying ground-truth. This can 
be attributed to an intrinsic difficulty in distinguishing between the diffusion-weighted signals of 
|DD;Z| < 0.5 components (Eriksson et al., 2015). Moreover, weak correlations are observed for T2;Z-
times much longer than the maximal tE of protocol A. 
 
The errors and prediction-target correlations of the network-based estimates are compiled in Table 
S2 of the Supporting Information, where they are additionally compared to the errors and correlations 
obtained with a conventional NLLS solver. The NLLS approach has a higher accuracy for in silico 
datasets designed to capture non-cortical (T2, D) properties. By contrast, the function-fitting network 
is observed to be more accurate than the NLLS approach for synthetic munif datasets.  
 

4.3 Effect of acquisition protocol on network accuracy and sensitivity 
 
In this section, we focus on the relationship between acquisition protocol design and network perfor-
mance. Figure 4 shows that network-based fitting could not improve the known fit degeneracy in 
protocols B and C. Indeed, networks based on the full relaxation-diffusion-correlation optimized pro-
tocol (protocol A) consistently provide lower estimation errors. Comparing protocols B and C, we 
note that protocol B results in a better performance when the test data is generated from munif and 
observe a mixed performance for in silico test data based on mbrain targets (protocol B yields more 
accurate estimates of DI;S, DI;Z, T2;Z, and p2, while protocol C yields more accurate estimates of fS, 
DD;Z, and T2;S). 
 
Figure 5 shows the sensitivity of the various protocols to small parameter changes. Networks trained 
on data generated with protocol A are sensitive to 10% parameter modulations, but underestimate the 
magnitude of the change slightly. The parameter-specific modulations did not have a major effect on 
the estimation of the remaining unmodulated parameters. An exception occurs when the underlying 
T2;Z is increased by 10%, which results in a 4% underestimation of the unperturbed fS. Compared to 
protocol A, protocols B and C exhibit a lower sensitivity to the small parameter modulations and 
appear to be unresponsive to changes in DD;Z and DI;S, respectively. Besides its lower sensitivity, 
protocol C also results in less accurate estimations of the unmodulated parameters, with a 10% mod-
ulation of T2;Z leading to 6% increase of the estimated fS.  
 

4.4 Neural network fitting of Rotationally Invariant microstructural features 
  
Figure 6A displays parameter maps of fS, DI;S, DI;Z and DD;Z, obtained by applying a network trained 
with rotational invariants to an unseen in vivo Sl={0,2} dataset. The resulting maps have a smooth 
appearance and exhibit anatomically plausible contrast. For example, regions with high fS correspond 
to WM regions, the lateral ventricles are characterized by low fS and high DI;Z values, and 
darker/brighter DD;Z regions demarcate cortical/non-cortical parenchyma. While it is tempting to fa-
vour the seductively ‘robust’ maps of Figure 6A over the noisier maps of Figure 2 (fourth column), 
we note that the RotInv-based network fitting approach results in worse correlations between target 
and estimated parameters (compare the scatter plots of Figure 6B with those of Figure 3). For ex-
ample, network-based estimates of DD;Z might yield a smooth map that appeals to our intuition, but 
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a closer look reveals that the DD;Z estimates in WM and deep GM regions are equal to the mean of 
the target DD;Z distribution and constitute a very poor estimate of the underlying ground-truth. A 
similarly poor correlation performance has been reported in a previous machine learning study of 
RotInv model fitting (Reisert et al., 2017).  

5 DISCUSSION & CONCLUSIONS 
 
Replacing traditional NLLS solvers with function-fitting neural networks provides a means to vastly 
reduce the time required for parameter estimation with high-dimensional microstructural models. Pa-
rameter estimation with networks trained on in silico data was achieved within seconds on a con-
sumer-grade desktop computer. The resulting parameter estimates were generally observed to be in 
good agreement with both synthetic test datasets designed to simulate the relaxation-diffusion prop-
erties of healthy WM microstructure and test datasets spanning the entire space of allowed model 
parameters. When deployed on unseen in vivo brain data, neural networks provide maps that are 
consistent with known brain anatomy and preserve contrast between regions with different relaxation-
diffusion properties. Our findings are encouraging and in line with recent advanced dMRI modelling 
studies that use machine learning techniques for parameter estimation (Barbieri et al., 2020; Bertleff 
et al., 2017; Golkov et al., 2016; Grussu et al., 2020a; Gyori et al., 2019; Hill et al., 2021; Nedjati-
Gilani et al., 2017; Palombo et al., 2020; Reisert et al., 2017). A combination of simple error metrics, 
correlation analysis, and sensitivity matrices was found to provide a useful set of tools for quantita-
tively assessing parameter-specific accuracy/sensitivity and for identifying the limitations of learn-
ing-based approaches. These tools allowed the identification of a heterogeneous performance across 
the various dimensions of the RSM model, with DD;Z estimates being consistently more inaccurate 
than other parameter estimates. However, this was unsurprising given the known difficulties of accu-
rately estimating the anisotropy of microscopic D in general (Eriksson et al., 2015), and the anisotropy 
of the “zeppelin” compartment in particular (Lampinen et al., 2020; Lampinen et al., 2019). By con-
trast, simple visual inspection of machine-learned parameter maps was found to provide limited in-
sight on the general performance of the networks. Indeed, smooth and anatomically plausible maps 
can be achieved even if the correlation between estimation and target is weak; a deceptive pitfall that 
has also been reported by (Reisert et al., 2017). 
 
We found no evidence that learning-based fitting pipelines can by themselves navigate a degenerate 
fitting landscape (Jelescu et al., 2016) or replace an exhaustive and careful probing of all relevant 
experimental dimensions (Coelho et al., 2019; Lampinen et al., 2020). Comparison between networks 
based on optimal protocols and networks based on sub-optimal protocols revealed clear differences 
in both accuracy and sensitivity of the resulting parameter estimates. The network trained on an op-
timized protocol (Lampinen et al., 2020) consistently outperformed networks trained on less adequate 
sampling schemes. Our results suggest that the learning approach cannot substitute for a rich set of 
data, and learning-based fitting of diffusion-based microstructural models should be complemented 
with b-tensor encoding strategies (Szczepankiewicz et al., 2021) and optimized (tE, B) sampling 
schemes. In this work, we tested the learning-based approach on protocols designed via Cramer-Rao 
lower-bound optimization (Alexander, 2008; Coelho et al., 2019; Lampinen et al., 2020). While not 
yet tested in conjunction with learning-based fitting pipelines, alternative optimization methods based 
on either efficient signal decomposition schemes (Bates et al., 2020; Song and Xiao, 2020) or deep 
learning algorithms for feature selection (Grussu et al., 2020b; Pizzolato et al., 2020) are also expected 
to have a positive impact on the performance of the DNN fitting approach. 
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The 11-dimensional parameter space of the RSM model is hard to sample densely and thus presents 
a challenge when designing training datasets that are representative of the vast fitting landscape. In 
this work, we addressed this challenge by defining composite training datasets that combine varying 
relative amounts of parameter vectors derived from in vivo healthy brain data (mbrain) and parameter 
vectors obtained from uniform random sampling of the entire model parameter space (munif). Net-
works trained exclusively with mbrain vectors display the best accuracy in terms of expected WM 
properties, but their domain of validity is restricted to the relatively small space spanned by mbrain 
solutions. The constrained domain of mbrain networks raises questions about their usefulness in prac-
tical applications focusing on WM microstructural alterations, where atypical microscopic tissue 
structures may lead to significant deviations from the RSM parameters found in the healthy human 
brain (Alexander et al., 2019). To define a good trade-off between accuracy and generalizability we 
optimized the fraction fbrain between the number of mbrain and munif. However, we expect that more 
work is needed to define a truly optimal strategy network training.  
 
While the high-dimensional model parameter space introduces difficulties in the network training 
process, we found that directly reducing the model dimensionality through the computation of rota-
tional invariants resulted in a reduced performance. Indeed, learning based on a RotInv framework 
yielded convincing parameter maps (reproducible, smooth, anatomically plausible), but closer in-
spection revealed both poor accuracy and sensitivity. Fitting an l = 0 RotInv network to “powder-
averaged” diffusion-weighted data (Jespersen et al., 2013; Kaden et al., 2016; Lasič et al., 2014) 
resulted in a similarly poor performance. These observations suggest that the additional orientational 
information present in non-rotationally invariant data contributes valuable information to the learn-
ing-based fitting procedure. 
 
A potential limitation of the present study is the relatively simple architecture of the trained networks, 
especially when compared to the complex high-dimensional RSM model. Given the impact of net-
work design on the accuracy of its predictions (Isensee et al., 2020), future work should focus on a 
more elaborate design and thorough investigation of the effects of learning rate, network depth, opti-
mization algorithms, and regularization approaches on network performance. Another improvement 
can be gained from incorporating mini-batch processing methods in the training process. This would 
allow training with larger datasets providing a denser sampling of the model parameter space and 
hopefully improve the accuracy and generalizability of the network-based estimates. Moreover, the 
supervised learning strategy used in this work should be compared against unsupervised deep learning 
strategies, which, when applied to bi-exponential modelling of low-b diffusion-weighted data, have 
been observed to provide more accurate estimates than NLLS or traditional Bayesian estimator 
(Barbieri et al., 2020; Kaandorp et al., 2020). Alternatives or complements to the fully-connected 
DNN architecture should also be explored. Promising avenues include the use of dropout (Gal and 
Ghahramani, 2016; Tanno et al., 2021) or deep ensemble strategies (Lakshminarayanan et al., 2016; 
Qin et al., 2021) as a means to derive uncertainty metrics, the use of network structures inspired by 
non-learning-based iterative fitting frameworks (Ye, 2017), or use denoising networks (Fadnavis et 
al., 2020; Wang et al., 2019) to minimize the amount of noise present in the data that is supplied to 
the function-fitting DNN. However, the sensitivity analysis presented here should be applied to any 
new fitting strategy to test specificity to change in single model parameters. Despite the clear room 
for improvement, we note that the estimated target-estimate correlations were stronger than those 
reported by Reisert et al. (Reisert et al., 2017), where a supervised learning in terms of a Bayesian 
estimator was used to fit a three-compartment diffusion model, and are equivalent to the correlations 
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reported in more recent works focusing on machine-learning fitting of diffusion (Gyori et al., 2019; 
Palombo et al., 2020) and diffusion-relaxation MRI models (Grussu et al., 2020a).  
 
In conclusion, function fitting neural networks can be used to vastly accelerate parameter estimation 
with high-dimensional microstructural MRI models. However, accurate estimation is achieved only 
if the measurement protocol samples adequate information; we found no evidence that learning-based 
approaches can replace the need for a rich set of data. Therefore, deep learning methodology in MRI 
microstructure modelling should be matched with comprehensive data acquisition. The adequacy of 
a given measurement protocol, in combination with a network for parameter estimation, can be eval-
uated by a suite of error metrics, estimate-target correlation plots, and sensitivity matrices. The learn-
ing-based fitting framework and the test tools developed herein may be used to evaluate network 
performance. 

CODE AVAILABILITY 
Once the manuscript is accepted for publication, MATLAB code for training and deploying the net-
works discussed in this work will be shared in open source via a GitHub repository. 
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FIGURES 
 

 

 
Figure 1. Accuracy of parameters estimated from networks trained on datasets containing varying 
fractions of targets derived from in vivo brain measurements (fbrain). There is a marked trade-off be-
tween accuracy and generalizability dependent on fbrain. For example, networks trained with high 
fbrain provide better estimates of WM-like parameters, but are constrained to a limited domain of the 
model space. The accuracy of network-based estimates is assessed by deploying the various networks 
on two previously unseen datasets where one is derived from least-squared model fitting to brain data 
(mbrain, blue), and another obtained by uniform random sampling (munif, red). The differences and 
correlations between estimated and ground-truth parameters is quantified by the normalised root 
mean square error (NRMSE) and Pearson’s correlation coefficient (r). Solid lines represent the pa-
rameter-wide mean NRMSE (left plot) and the parameter-wide mean r (right plot). Computation of 
parameter-wide mean metrics was performed with two steps: 1) estimate NRMSE and r for each 
individual model parameter, and 2) average the parameter-specific metrics (NRMSE or r). The 
dashed lines identify the maximum and minimum estimates of parameter-specific metrics, and the 
shaded regions illustrate the range of metrics estimated for different model parameters.  
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Figure 2. Deploying trained networks on previously unseen in silico and in vivo data provides ana-
tomically plausible parameter maps in under 10 s (including data management times). The first and  
second columns compare the ground-truth targets and network predictions, respectively, of the in 
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silico dataset. Difference maps are shown in the third column. Parameter maps obtained from apply-
ing a trained network on in vivo brain data are displayed in the fourth column.  

 

 
Figure 3. Scatter plots of ground-truth parameters vs. neural network predictions. Light blue points 
show results when the network is deployed on uniformly distributed random model parameters. The 
dark blue points correspond to an in silico dataset derived from a nonlinear least-squared fit to meas-
ured brain data where voxels within CSF and cortical GM were excluded by masking out regions 
where microscopic anisotropy (Lasič et al., 2014), µFA, is lower than 0.6. The red points correspond 
to regions where poor accuracy is expected, i.e., where the signal fraction of the relevant component 
(“stick” or “zeppelin” depending on the parameter) accounts for less than 15% of the total signal or, 
for the p2 map, parameter vectors where the “zeppelin” component accounts for more than 85% of 
the total signal fraction and |DD;Z| < 0.4. The inner legends show the Pearson correlation coefficients 
(r) of the blue points. 
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Figure 4. Optimized acquisition protocols result in learning-based parameter estimates with lower 
errors. The bar plots indicate the normalized root-mean-squared errors (NRMSE) between ground-
truth and predicted parameters, for in silico datasets generated with different acquisition protocols. 
Protocol A corresponds to a tensor-valued (tE, B) protocol optimized for minimal parameter variance 
(Lampinen et al., 2020), Protocol B is a sub-optimal tensor-valued (tE, B) protocol where relaxation-
diffusion correlations are exclusively established at low b-values (Lampinen et al., 2019), and Proto-
col C is a (tE, B) protocol limited to linear diffusion encoding (bD = 1) and optimized for parameter 
precision (Lampinen et al., 2020). Panel A shows network performance on parameters sampled from 
a uniform distribution, and panel B shows the performance on in silico data based on least-squares 
fitting results to in vivo non-cortical brain tissue data. 

 

 

 
Figure 5. Sensitivity of acquisition protocols to 10% parameter modulations. The matrices display 
the relation between an induced parameter change and the observed response. When a single param-
eter on the y-axis is modulated by 10%, the response can be read in all other parameters along the x-
axis. An ideal network would report a diagonal matrix with the value 10% on the diagonal, and zero 
otherwise. Protocol A appears sensitive in all parameters, whereas Protocols B and C lack sensitivity 
to DD;Z and DI;S, respectively. 
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Figure 6. Neural network fitting of a rotationally invariant (RotInv) model results in plausible maps 
but poor target-estimate correlations. A) Maps of microstructural diffusion parameters – fS, DI;S, DI;Z 
and DD;Z – obtained from fitting a RotInv network to rotationally invariant in vivo brain data. The 
RotInv network was trained using a fraction of fvivo = 0.35 between rotationally invariant mbrain and 
munif training parameter vectors.  B) Correlations between network-based parameter estimates and 
ground-truth parameter targets. The colour-coding and legends follow the same convention as Figure 
3. 
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B) Target-Prediction correlation plots

A) Selected experimental parameter maps
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