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Abstract 

Background: The gene-specific sweep is a selection process where an advantageous 

mutation along with the nearby neutral sites in a gene region increases the frequency 

in the population. It has been demonstrated to play important roles in ecological 

differentiation or phenotypic divergence in microbial populations. Therefore, 

identifying gene-specific sweeps in microorganisms will not only provide insights 

into the evolutionary mechanisms, but also unravel potential genetic markers 

associated with biological phenotypes. However, current methods were mainly 

developed for detecting selective sweeps in eukaryotic data of sparse genotypes and 

are not readily applicable to prokaryotic data. Furthermore, some challenges have not 

been sufficiently addressed by the methods, such as the low spatial resolution of 

sweep regions and lack of consideration of the spatial distribution of mutations.  

Results: We proposed a novel gene-centric and spatial-aware approach for identifying 

gene-specific sweeps in prokaryotes and implemented it in a python tool 

SweepCluster. Our method searches for gene regions with a high level of spatial 

clustering of pre-selected polymorphisms in genotype datasets assuming a null 

distribution model of neutral selection. The pre-selection of polymorphisms is based 

on their genetic signatures, such as elevated population subdivision, excessive linkage 

disequilibrium, or significant phenotype association. Performance evaluation using 

simulation data showed that the accuracy and sensitivity of the clustering algorithm in 

SweepCluster is above 90%. The application of SweepCluster in two real datasets 

from the bacteria Streptococcus pyogenes and Streptococcus suis showed that the 

impact of pre-selection was dramatic and significantly reduced the uninformative 

signals. We validated our method using the genotype data from Vibrio cyclitrophicus, 

the only available dataset of gene-specific sweeps in bacteria, and obtained a 

concordance rate of 78%. We noted that the concordance rate could be underestimated 

due to distinct reference genomes and clustering strategies. The application to the 

human genotype datasets showed that SweepCluster is also applicable to eukaryotic 

data and recovered the known sweep regions in a wide dynamic range of pre-selection 

parameters. 

Conclusions: SweepCluster is applicable to a broad category of datasets. It will be 

valuable for detecting gene-specific sweeps in diverse genotypic data and provide 

novel insights on adaptive evolution.  

Keywords: SweepCluster, SNP clustering, Gene-specific sweep 
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Background   

A selective sweep is a process where a beneficial allelic change sweeps through the 

population and becomes fixed in a specific population, and the nearby sites in linkage 

disequilibrium will hitchhike together and also become fixed (1, 2). Those sweep 

regions containing beneficial alleles could possibly be introduced by recombination 

and rise to high frequency rapidly in the population under positive selection. If the 

increase in frequency is recent or fast relative to other recombination events, the 

mutation profile in the sweep regions across the population will be maintained 

without being interrupted. Finally, the process will imprint genetic signatures in the 

population genomes, leading to lowered within-population genetic diversity, increased 

between-population differentiation, and/or high linkage disequilibrium (3-5). When 

such selective sweeps only occur at specific gene regions under selection without 

affecting the genome-wide diversity, they are described as gene-specific sweep (6).  

   Recently, the gene-specific sweep has been demonstrated to play important roles 

in adaptive evolution in microbial populations, such as ecological differentiation in 

Prochlorococcus (7) and Synechococcus (8), speciation in marine bacterium Vibrio 

cyclitrophicus (V. cyclitrophicus) (3, 9), and phenotypic divergence in human adapted 

pathogen Streptococcus pyogenes (S. pyogenes) (10). The observation of the 

gene-specific sweeps in those scenarios in both environmental organisms and host 

pathogens suggests that the gene-specific sweep may represent one of the general 

mechanisms underlying adaptive evolution of microorganisms. Therefore, identifying 

the gene-specific sweep on the genome-wide scale will not only provide insights into 

the evolutionary mechanisms shaping the genetic diversity, but also help to unravel 

potential genetic markers associated with ecological adaptation or phenotypic 

differentiation.  
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   An array of methods have been proposed to identify the gene-specific sweeps and 

are generally fall into three categories based on the genetic signatures being captured, 

i.e., (1) composite likelihood ratio (CLR) tests of the marginal likelihood of the allele 

frequency spectrum under a model with selective sweeps in comparison with that 

under a model of selective neutrality (11-13) (Kim and Stephan-2002, Nielsen-2005, 

Huber-2016); (2) comparison of the distribution of population subdivision or linkage 

disequilibrium in a region under positive selection with that of a neutral background 

(14, 15) (Akey-2002, Kim-Nielsen-2004); (3) haplotype-based approaches for 

detecting elevated haplotype homozygosity in a locus around the selected site in 

comparison with that under a neutral model (16-20) (Sabeti-2002, Voight-2006, 

Ferrer-Admetlla-2014, Harris-2018, Harris-2020). Those methods have demonstrated 

the power for detecting genetic signatures of selective sweep in numerous cases.  

    However, those methods were mainly developed for detecting selective sweeps 

in eukaryotic data and are not readily applicable to prokaryotic data, such as the 

haplotype-based approaches (21). In addition, some challenges have not yet been 

sufficiently addressed by the currently available methods. For example, the 

gene-centric concept of the gene-specific sweep has not been taken into account 

leading to a low spatial resolution of sweep regions; the spatial distribution properties 

of the mutated sites within the sweep regions have not been fully considered.   

    In this study, we propose a new gene-centric approach for identifying the 

gene-specific sweeps in prokaryotes, which search for regions with a higher level of 

spatial clustering of single nucleotide polymorphisms (SNPs) assuming a null 

distribution model of SNPs under neutral selection. The clustering applies to the SNP 

subsets of specific interests, which can be selected based on the genetic signatures of 

sweep regions, such as elevated population subdivision, reduced within-population 
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diversity, excessive linkage disequilibrium, or significant phenotype association. Our 

approach is different from the previous methods in that: (1) it applies the gene-centric 

concept by considering the gene-specific location of SNPs; (2) it takes advantages of 

the spatial distribution properties of SNPs in the sweep region; (3) the clustering is 

performed on pre-selected target SNPs with specific genetic properties, thus 

minimizing the influences from uninformative SNPs. We offer it as an open-source 

tool “SweepCluster” and it is freely accessible at github: 

https://github.com/BaoCodeLab/SweepCluster. 

Methods 

Pre-selection of SNPs 

The pre-selection of SNPs could be based on elevated population differentiation Fst, 

extended linkage disequilibrium LD, or phenotypic association. However, the 

determination could also depend on the data property and study purposes. For 

instance, if the positive selection acting on disease markers is of interest, the 

screening of SNPs with significant association with disease phenotypes using robust 

genome-wide association analysis is preferred. In the real and simulated datasets in 

this study, we selected the SNPs associated with phenotypic divergence or population 

differentiation.   

Overview of the clustering approach 

The SNP clustering algorithm employs a gene-centric concept to mimic the biological 

process of introducing gene-specific sweeps. In the gene-specific sweep model, 

non-synonymous SNPs (the SNPs causing amino acid alterations) or upstream 

regulatory SNPs (the SNPs in the regulatory regions) are more likely to be under 

positive selection than synonymous SNPs (the SNPs without causing amino acid 

alterations) or inter-genic SNPs, and the selected non-synonymous SNPs along with 
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the nearby synonymous/inter-genic SNPs are introduced simultaneously in a single 

event. For a recent sweep event, the selected SNPs and the hitchhiking SNPs are 

tightly clustered in specific gene regions without severely ruined by other 

recombination events. Based on the gene-specific sweep model, our clustering 

strategy is illustrated in Figure 1 and described previously (10). Briefly, a 

non-synonymous or upstream regulatory SNP is randomly chosen in a specific 

gene/operon and serves as an anchor for an initial cluster. The initial cluster is then 

extended progressively by scanning and merging the neighboring SNPs or clusters. If 

the total span is shorter than the specified sweep length, then the surrounding SNPs or 

clusters are merged. Otherwise, the initial cluster is extended by merging the 

neighboring SNPs or clusters which minimize the normalized root-mean-square of 

inter-SNP distances (NRMSD): 

l
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where di is the i
th 

inter-SNP distance, n is the total number of the SNPs in the target 

cluster and l is the maximum spanning range of the SNPs in the target cluster. 

   Following merging, all clusters are re-examined and split if any inter-SNP 

distance within the cluster is longer than a given distance threshold. The distance 

threshold can be determined based on the genome-wide average inter-SNP distance. 

Under the null neutral model, the SNPs are independently and randomly distributed 

across the genome, and the significance of a cluster with m distinct SNPs spanning a 

length of l can be evaluated using the gamma distribution with the average mutation 

rate μ as the rate parameter (22):  

           𝑝(𝑛, 𝜇) = ∫𝑔(𝑥, 𝑛, 𝜇)𝑑𝑥 = ∫
𝛽𝛼
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The average mutation rate across the genome can be calculated as: μ = n/s, where n is 

the total number of SNPs in the genome and s is the length of the genome.   

Evaluation of the performance of the clustering method 

We evaluated the performance of the clustering using four metrics, i.e., CPU time, 

memory usage, accuracy and sensitivity based on simulation datasets. The evaluation 

of CPU time and memory usage was performed using real datasets with varying data 

size. The assessment of accuracy and sensitivity was conducted based on simulation 

datasets (see below). The accuracy is defined as the proportion of correctly assigned 

SNPs among the total SNPs. The sensitivity is defined as the proportion of detected 

clusters containing at least 90% of the SNPs correctly assigned. The mapping between 

detected clusters and expected clusters was determined based on reciprocal maximum 

overlapping between the two sets of clusters.    

Simulation datasets 

The simulation datasets for assessing the accuracy and sensitivity of the clustering 

algorithm were generated based on the genome and annotation of the bacterial strain S. 

pyogenes AP53, which was annotated and studied by us previously (23). The SNPs 

were artificially generated independently and randomly on the genome based on the 

Poisson process of a given mutation rate (the average mutation rate of S. pyogenes). 

SNP clusters were then created by taking the following procedures to satisfy the 

pre-defined threshold of sweep length (sweep_lg) and maximum inter-SNP distance 

(max_dist): (i) roughly a half of the SNPs in each gene region were assigned 

non-synonymous; (ii) removing the SNPs in the gene regions longer than 

sweep_lg+50; (iii) if the spanning length of the neighboring genes is longer than 

sweep_lg+50 and the inter-genic distance is greater than max_dist, then remove the 

downstream gene to create a larger inter-genic distance.     
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Real dataset of S. pyogenes genotypes 

We used the real genomic datasets from two bacterial species S. pyogenes and S. suis 

to assess the effects of the procedure of SNP pre-selection. The reason to choose the 

two species is that they are known to have a high level of genomic varibility and a 

high density of genotypes, which facilitate the manifestation of influences of SNP 

pre-selection (24, 25). S. pyogenes is a common human pathogenic bacterium causing 

diverse disease phenotypes, such as pharyngitis, skin infection, necrotizing fasciitis, 

and acute rheumatic fever. Previous studies have shown that the alleles in the gene 

regions of S. pyogenes exhibit phenotype-dependent changes, thus providing an 

excellent dataset for selecting SNPs associated with phenotype differentiation (10, 26).   

   The genomic sequences of S. pyogenes were downloaded from NCBI Genbank 

database (ftp://ftp.ncbi.nlm.nih.gov). A total of 46 genomes were chosen for this study 

with balanced distribution of phenotypes based on the known phenotypic information 

(10). The core genome is defined as the regions encoded by all studied genomes and 

was determined by aligning the shredded genomes against the reference strain AP53 

(CP013672). Finally, the core genome contains 69,171 segregating sites mutated in at 

least one of the genomes and were concatenated for downstream analysis. Both the 

whole set of SNPs at all segregating loci and a subset of selected SNPs associated 

with the phenotype of acute rheumatic fever were used for inferring sweep regions 

using SweepCluster. The SNPs associated with the disease phenotype were identified 

using the Chi-squared test. The parameters used for SweepCluster are “-sweep_lg 

1781 -max_dist 1100 -min_num 2” and the clustering significance was evaluated 

using the function “Pval” with the parameter of mutation rate “-rate 0.0362”. The 

linkage disequilibrium analysis of the SNPs was performed using Haploview (27).   

Real dataset of Streptococcus suis (S. suis) genotypes 
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S. suis is a swine pathogen that colonizes pigs asymptomatically but can also causes 

severe clinical diseases in pigs such as respiratory infection, septicemia, and 

meningitis. S. suis can be classified to 29 distinct serotypes forming complex 

population structures (28). Previous phylogenetic study showed that many serotypes 

exist in multiple subpopulations and each subpopulation may contain multiple 

serotypes (25). The complexity has been associated with extensive genetic 

recombination and genomic shuffling among and between populations. Therefore, it 

will be interesting to investigate the occurrence of selective sweeps among 

subpopulations in the highly recombining genome of S. suis.  

    A total of 1,197 genomic sequences of S. suis strains were downloaded from the 

NCBI Genbank database (ftp://ftp.ncbi.nlm.nih.gov). We removed the redundancy 

among the genomes to reduce the data size by grouping them based on the submission 

institutions and selecting the most distant genomes within each group based on the 

phylogenetic structures built by SplitsTree (29) (Figuure S1A). The selected genomes 

were further filtered based on their phylogenetic distance. The final dataset comprises 

208 non-redundant genomes (Figure S1B) and gives rise to a total of 236,860 

segregating mutation sites with BM407 as the reference (FM252033). The core 

genome was identified using the same procedures as that for S. pyogenes. The 

inference of sweep regions using SweepCluster was performed respectively for all 

segregating SNPs and for those associated with differentiation of two subpopulations 

(branch-1 and branch-2 in Figure S1C). The SNPs associated with population 

differentiation was identified using the Chi-squared test. The parameters used for 

SweepCluster and significance evaluation are “-sweep_lg 2000 -max_dist 2000 

-min_num 2” and “-rate 0.1077”, respectively.  

Real dataset of V. cyclitrophicus genotypes 
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V. cyclitrophicus is a gram-negative bacterium inhabiting seawater. Previous studies 

reported ecological differentiation of the V. cyclitrophicus population associated with 

gene-specific sweeps (9). The authors sequenced 20 strains of V. cyclitrophicus, which 

are divided into two phenotypic groups (S strains and L strains) according to their 

ecological partition. They showed that the partition is associated with the ecoSNPs, 

i.e., the dimorphic nucleotide positions with one allele present in all S strains and the 

other allele in all L strains. The authors then classified the ecoSNPs into 11 clusters 

and demonstrated the evidences of gene-specific sweeps in causing the ecoSNPs. This 

is the only available study of SNP clusters under gene-specific sweeps in bacteria.  

We used this dataset for benchmarking of our clustering method. 

    We downloaded the genomic sequences of the 20 strains from NCBI Genbank 

database (ftp://ftp.ncbi.nlm.nih.gov) and aligned them to a reference strain with 

complete genome assembly (ECSMB14105) to derive the segregating SNPs of 

139,066 and the phylogenetic structure (Figure S2). The ecoSNPs were obtained 

using the same definition as that in the reference (9). The ecoSNPs were then subject 

to cluster detection using SweepCluster with the parameters “-sweep_lg 8000 

-max_dist 5000 -min_num 2” and “-rate 0.000111”. 

Empirical datasets of human genotypes  

We employed the genotype datasets from the human 1000 Genomes project (30) to 

evaluate the ability of SweepCluster of identifying selective sweeps in eukaryotic data. 

We chose the 1000 Genomes datasets because they have been extensively used in 

previous studies of selective sweeps and a handful of gene loci have been 

well-characterized to be under selective sweep in specific subpopulations. We 

extracted the genotype data from three subpopulations, i.e., EUR (Europeans), AFR 

(Africans) and EAS (East Asians), and selected the mutation sites associated with 
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pairwise population differentiation Fst. The calculation of Fst was based on Hudson’s 

estimator in the transformed formula (31):  

            𝐹𝑠𝑡 =
(𝑝1−𝑝2)

2−𝑝1(1−𝑝1)/(𝑛1−1)−𝑝2(1−𝑝2)/(𝑛2−1)

𝑝1(1−𝑝2)+𝑝2(1−𝑝1)
            (3) 

where n1/n2 is the subpopulation size and p1/p2 is the allele frequency for the two 

paired populations. Distinct subsets of SNPs were selected using a series of Fst 

thresholds (0.7, 0.65, 0.60, 0.55, 0.50, 0.45, 0.43, and 0.4) for inferring sweep regions 

to evaluate the robustness of SweepCluster in eukaryotic data. The parameters used 

for SweepCluster are: “-sweep_lg 200000 –max_dist 40000 –min_num 2”. The sweep 

regions and SNPs were annotated based on the genome build hg19 using ANNOVAR 

(32).   

Optimization of the parameters 

We carried out the parameter simulation of sweep lengths by calculating the number 

of sweep regions inferred by SweepCluster for varying values of sweep lengths in the 

range 300-10,000 bp. The relationship between the number of sweep regions versus 

sweep length was approximated using non-linear fitting implemented in generalized 

additive models in the R package “mgcv”. The optimal estimation of the sweep length 

is calculated based on the maximum curvature in the fitting curves with the curvature 

calculated with the following formula: 

                    𝑐 = |
𝑓′′(𝑥)

(1+𝑓′(𝑥)2)3/2
|                            (4) 

where 𝑓′(𝑥) and 𝑓′′(𝑥) are the first-order and second-order derivative of the fitting 

curves, respectively. We have provided in the package a shell script 

“sweep_lg_simulation.sh” for automatic optimization of the sweep length for any 

particular genotype dataset. The parallel acceleration was implemented in the script 

for fine-grained parameter searching.  
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Results 

Overview of SweepCluster 

The package SweepCluster performs four major functions. (1) Density: calculates the 

SNP density using a window-scanning method in a specific genomic region or in the 

genome-wide scale; (2) Cluster: executes the core functionality of the package, i.e., 

gene-centric SNP clustering; (3) Pval: estimates the statistical significance of each 

SNP cluster based on a null gamma distribution of SNPs; (4) a driver script 

“sweep_lg_simulation.sh” for parameter optimization. 

Computing performance 

The computing performance of SweepCluster was evaluated using multiple real 

datasets with varying number of SNPs (designated as N). The memory usage of 

SweepCluster increases linearly with N and is fairly low even for the maximum 

datasets of 200,000 SNPs at about 260 megabytes (MB) (Figure 2A). The CPU time 

consumption of SweepCluster is on the scale O(N
2
) at the initial stage and then 

becomes nearly linear O(N) when N > 140,000 (Figure 2B). It is because the CPU 

time is governed by optimizing the boundary SNPs when N is small, but becomes 

governed by clustering the inner SNPs for large Ns, at which the ratio of boundary 

SNPs rapidly declines. Considering the linear increment of memory usage and CPU 

time, and the downsized genotype datasets upon pre-selection, we anticipate that the 

computing resources will not be limiting factors for larger datasets. In the meanwhile, 

it should also be noted that the computing performance also depends on the applied 

parameters (such as the sweep length) and the genotype data properties (such as the 

proportion of the boundary SNPs).       

Performance of accuracy and sensitivity  

We evaluated the performance of the clustering algorithm in SweepCluster in terms of 
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accuracy and sensitivity using artificially generated simulation datasets with the SNP 

distributions satisfying specific combinations of sweep lengths (sweep_lg) and 

maximum inter-SNP distances (max_dist). The performance of SweepCluster was 

compared with that of DBSCAN, a general-purpose and commonly used spatial 

clustering algorithm without considering any trait information of the data (33). The 

comparison showed that the performance of both algorithms as a function of 

maximum inter-SNP distances is highly similar, where the accuracy and sensitivity 

quickly approaches optimum when the maximum inter-SNP distance increases to 

roughly 200 bp, close to the average inter-SNP distance in the gene regions in the 

simulation datasets (Figure 3A,C). Interestingly, the performance of SweepCluster 

and DBSCAN as a function of sweep lengths differs (Figure 3B,D). DBSCAN is not 

influenced significantly by the sweep length and performs nearly equally well for a 

broad range of sweep lengths. However, the performance of SweepCluster is 

dependent on the sweep length. It gradually improves with increasing sweep lengths 

and achieves optimal results at around 800-1000 bp, coincident with the average gene 

length of our simulation datasets. The dependence of the performance of 

SweepCluster on the sweep length is a manifestation of the gene-aware concept of the 

design of the clustering method in SweepCluster. In biological contexts, the 

general-purpose clustering methods, such as DBSCAN may generate clusters 

unrelated with selective sweeps.   

Efficacy of SNP pre-selection in real datasets of S. pyogenes and S. suis 

We test the efficacy of the procedure of SNP pre-selection prior to clustering by 

employing real datasets from two bacterial species, S. pyogenes and S. suis of dense 

genotypes.  

    For the datasets of S. pyogenes, a total of 69,171 core SNPs were obtained across 
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46 representative strains and selection of SNPs based on phenotypic association with 

the disease acute rheumatic fever reduced the number of SNPs to 1,631 (Additional 

file 1: Table S1, S2 and S3). SweepCluster was subsequently applied to the two SNP 

datasets and identified 215 and 131 significant clusters (p-value 0.05), respectively 

(Figure S3, Additional file 1: Table S4 and S5). We then used linkage disequilibrium 

(LD) between SNPs within the clusters as a proxy to examine the effect of 

pre-selection. A snapshot of the comparison of the LD patterns before and after 

pre-selection is shown in Figure 4A,B. The average LD within clusters was 

significantly increased after performing SNP pre-selection (p-value < 2.2 x 10
-16

), 

indicating the significant effect of pre-selection on diminishing the spurious signals in 

inferring sweep regions (Figure 4C). 

    We carried out similar analysis for the genomic data of S. suis as that for S. 

pyogene. A total of 236,860 core SNPs were obtained across 208 non-redundant 

strains of S. suis and 349 clusters were identified using SweepCluster (p-value 0.05) 

(Figure S4A, Additional file 2: Table S6, S7 and S8). Without pre-selection of SNPs, 

we found that the clusters are densely distributed on the genome, implying that many 

of the clusters may contain false positive signals of selective sweep. Therefore, we 

selected the SNPs associated with differentiation of two subpopulations using the 

Chi-squared test (Figure S1C). A total of 2,205 SNPs satisfies the significance 

threshold (p-value 0.05) and were subject to cluster detection using SweepCluster 

(Additional file 2: Table S9). A total of 111 clusters were identified with significance 

(p-value 0.05) (Figure S4B and Additional file 2: Table S10). We examined the 

effect of SNP pre-selection by calculating the average inter-SNP LD within the 

clusters (Figure 4D,E,F). The results reveal a higher level of average LD in the 

clusters from the selected SNPs than that from the whole set of SNPs (p-value < 4.0 x 
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), reiterating the efficiency of our strategy for identification of signals of sweep 

regions.  

Application in empirical datasets of V. cyclitrophicus 

We benchmark our method using the dataset in the Ref. (9), the only available study 

of SNP clusters under gene-specific sweep in bacteria. We processed the genomic data 

from the 20 strains of V. cyclitrophicus (13 L strains and 7 S strains) to obtain 

ecoSNPs associated with ecological differentiation between the L and S population 

(Additional file 3: Table S11 and S12). Cluster detection is subsequently performed 

to the ecoSNPs using SweepCluster and 11 significant clusters were identified (Figure 

5, Table 1 and Table S13). We validated our results by comparing with all eleven but 

two clusters reported in the Ref. (9). We excluded cluster2 annotated as “Conserved 

protein” of which the equivalent gene in our reference cannot be precisely located, 

and cluster4 which contains flexible genes without falling into the core genome. 

Among the remaining nine clusters, seven were recovered by our method 

corresponding to a concordance rate of 78%. It is noted that cluster5 was not 

recovered because it does not contain non-synonymous or upstream regulatory 

mutations, reflecting different clustering strategies of the two studies. It is noticeable 

that we also identified with high significance two novel clusters cluster12 and 

cluster13 containing 6 and 36 SNPs, respectively (Table 1 and Table S13).  

   In summary, the cluster comparison shows that the differences in the identified 

clusters between our results and those in the Ref. (9) are mainly due to distinct 

clustering methods and reference genomes used in the two studies. The current study 

used the strain of V. cyclitrophicus ECSMB14105, the only strain of this bacterium 

with complete genome assembly, while the study of (9) took an alternative but closely 

related species V. splendidus (12B01) as the reference. Therefore, the concordance 
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rate between the two studies should have been underestimated.    

Application in empirical human genotype datasets 

Though SweepCluster is specifically developed for prokaryotic data of dense 

genotypes, it will be helpful to test whether it is also applicable to eukaryotic data. We 

examined three well-characterized gene regions (LCT, EDAR, and PCDH15) under 

selective sweep in pairwise populations of EUR, AFR, and EAS from the human 1000 

Genomes Project genotype datasets (30). We at first performed SNP pre-selection 

based on the population differentiation Fst at a series of cutoff values, and then 

applied SweepCluster to each dataset of selected SNPs to search for gene regions 

under potential selective sweep (Additional file 4-7). At the threshold of Fst = 0.4, all 

three gene loci were recovered as significant regions under selective sweep (Figure 6). 

The LCT gene, encoding lactase, was previously shown to be associated with lactase 

persistence in European populations and the region around it has been acknowledged 

as the target for strong selective sweep (19, 20, 34). In our cluster detection, the LCT 

locus along with the flanking gene regions (R3HDM1, UBXN4, and MCM6) forms a 

cluster of 57 variants spanning 235.6 kb with significance (p-value = 5.7 x 10
-6

), 

consistent with the strong positive selection. The gene EDAR is involved in 

ectodermal development and the missense mutation V370A showed evidences for 

association with hair thickness in East Asians (35, 36). The region around EDAR has 

been identified to be the locus undergoing strong selective sweep (19, 36, 37). We 

localized the EDAR-centered region (GCC2, LIMS1 and EDAR) of 132 variants 

(including V370A) spanning 145.8 kb with significance (p-value < 10
-8

), implying 

strong selection signals. The gene PCDH15 encodes protocadherin and previous 

studies showed evidences of positive selection in East Asian populations (37, 38). We 

recovered the PCDH15 locus as a highly significant sweep region consisting of more 
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than 300 variants spanning 369.5 kb (p-value < 10
-8

), indicating a strong signature of 

selective sweep.  

   Our results show that the size and significance of the sweep regions depend on the 

SNP selection threshold of Fst, but the detection efficiency is robust for a wide range 

of Fst. The signals of selective sweep emerge in all three gene regions at the threshold 

of Fst = 0.4, and persist until Fst ≥ 0.7. Above this threshold, the sweep signals in all 

three genes disappear. It is because a low number of mutations remain at the high 

level of Fst and are sparsely distributed across the chromosome, making spatial 

clustering of the mutations inaccessible. We conclude that SweepCluster is also 

capable of detecting sweep regions for eukaryotic genotype data and the detection 

efficiency is robust to the SNP selection criteria.     

Optimization of parameters 

The performance evaluation based on simulation data showed that the performance of 

the clustering algorithm in SweepCluster is closely related with the sweep length. 

Therefore, proper estimation of sweep lengths is critical for confident inference of 

selective sweep regions. Unfortunately, in many cases, it is not straightforward to 

derive the value of sweep lengths from genotype data. Therefore, we provided in the 

package a simulation script “sweep_lg_simulation.sh” to search for the optimal 

estimation of the sweep length for a specific genotype dataset. It is particularly 

suitable for prokaryotic data because the prokaryotes use gene conversion as the main 

vehicle for introducing selective sweeps and the sweeps are generally uniform in size 

(21).  

   We did the simulation by calculating the number of sweep regions inferred by 

SweepCluster at a series of values of sweep lengths and then fitting a non-linear 

model for the relationship between the number of sweep regions and sweep lengths. 
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The optimal estimation of sweep lengths is determined by the point of maximum 

curvature in the fitting model. Here we present the simulation results for the three real 

datasets of S. pyogenes, S. suis, and V. cyclitrophicus, respectively (Figure 7). It is 

shown that all three datasets have the maximum curvatures at the sweep length of 

~2000 bp (1638 bp for S. pyogenes, 1500 bp for S. suis, and 2157/1989 bp for the two 

chromosomes of V. cyclitrophicus). It is consistent with our previous estimation of 

1,789 bp for S. pyogenes using the alternative tool ClonalFrame (10, 39).  

Discussion 

We have proposed a gene-centric spatial clustering approach to identify gene-specific 

sweeps in bacterial polymorphism data. It targets for the mutation sites complying 

with specific genetic properties of selective sweeps and captures the regions with 

unusual clustering patterns of those mutations differing from that of a neutral 

expectation. Based on the known genetic properties of gene-specific sweeps, the 

target mutations are usually obtained by selecting those with elevated population 

differentiation, reduced within-population diversity, heightened linkage 

disequilibrium, or significant phenotype association. The selected subsets of 

mutations are subject to clustering. Therefore, our approach for inferring sweep 

regions employs two layer of information, i.e., genetic signatures and spatial 

distribution patterns of mutations under gene-specific sweeps in comparison with 

current methods focusing only on one layer of information in the genotype data 

(11-14, 16, 19, 20).  

    The purpose of the procedure of selecting target mutations of particular genetic 

signatures prior to clustering is to remove the spurious or uninformative signals and 

perform spatial clustering only for the mutations related with selective sweep. The 

impact of mutation selection was dramatic in our two example datasets from the 
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bacteria S. pyogenes and S. suis. The level of linkage disequilibrium between SNPs, 

as a signature of selective is significantly increased by selecting those mutations 

associated with disease phenotypes or population differentiation. The ultimate 

datasets upon prior selection are more sensitive to the statistical test under the neutral 

model of spatial distribution of mutations, making it more efficient to identify gene 

regions under selective sweeps. Using the only available dataset of gene-specific 

sweeps in bacteria (9), we validated our method yielding a concordance rate of 78% 

for the detected clusters even with distinct clustering strategies and reference genomes 

in the two studies.  

    Our approach is specifically designed for prokaryotic data of dense genotypes 

such that the mutations of particular genetic properties can be exhaustively obtained 

and the distribution of those mutations can be statistically distinguished from the null 

model. However, the testing showed that our method also performs well for 

eukaryotic data of sparse genotypes. We recovered the well-characterized gene 

regions (LCT, EDAR, and PCDH15) under selective sweeps in the 1000 Genomes 

Project genotype datasets. The signals of selective sweeps in the three gene loci 

persist for a wide range of mutation selection criteria, suggesting the robustness of our 

method on identifying sweep regions in sparse genotype data. Moreover, the 

spatial-aware strategy of the clustering makes the resolution of detected sweep 

regions narrowed down to single nucleotides facilitating identifying relatively old 

sweeps of low numbers of selected sites. 

    There are some limitations of our approach. It cannot distinguish explicitly 

between hard sweeps and soft sweeps, or recent sweeps and older sweeps because 

mixed sites of varying strength of selection are treated as a whole for statistical tests. 

Our method does not deal with the confounding effects of background selection, as 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435060
http://creativecommons.org/licenses/by-nc-nd/4.0/


the signatures of background selection are very similar to the real selection and it has 

been a challenge to confidently classify the background selection for many alternative 

approaches.     

Conclusion 

We proposed a novel gene-centric approach for identifying gene-specific sweeps 

implemented in the Python tool SweepCluster. It performs spatial clustering of 

polymorphisms to infer the regions with signatures of gene-specific sweeps by 

employing two layers of information, i.e., genetic properties and spatial distribution 

models of the polymorphisms. It is specifically developed for prokaryotic data of 

dense genotypes and exhibit efficiency and robustness in detecting sweep regions in 

the validation datasets. It also performs well for eukaryotic data in a wide dynamic 

range of parameters of genetic properties. We expect that our new method will be 

valuable for detecting gene-specific sweeps in diverse genotype data and provide 

novel insights on evolutionary selection.  
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Figure legends: 

Fig. 1 Outline of the clustering procedures of SweepCluster. A non-synonymous or 

upstream regulatory SNP is randomly chosen in each gene/operon and serves as an 

anchoring SNP for an initial cluster. The initial cluster is then extended by scanning 

and merging the neighboring SNPs or clusters. If the total span is shorter than the 

specified sweep length, then the surrounding SNPs or clusters are merged. Otherwise, 

the initial cluster is extended by merging the neighboring SNPs or clusters such that 

the normalized root-mean-square of inter-SNP distances (NRMSD) is minimized. All 

clusters after merging are re-examined and split if any inter-SNP distance within the 

cluster is longer than a given inter-SNP distance threshold (max_dist). 

Fig. 2 Memory usage (A) and CPU time (B) of SweepCluster for varying 

numbers of SNPs. The datasets for evaluation were obtained by subsetting the 

genotype dataset of S. suis. 

Fig. 3 The accuracy and sensitivity of the clustering algorithm in SweepCluster 

in comparison with DBSCAN. The accuracy and sensitivity were calculated for a 

series of values of sweep lengths or maximum inter-SNP distances. 

Fig. 4 Comparison of the LD patterns for the SNPs before and after pre-selection 

for the genotype datasets of S. pyogenes (A,B,C) and S. suis (D,E,F). (A,D) The 

LD pattern of SNPs in the most significant cluster for all segregating SNPs from S. 

pyogenes and S. suis, respectively. (B,E) The LD pattern of the selected SNPs with 

phenotypic association in S. pyogenes and population differentiation in S. suis. (C,F) 

Distribution of the average level of inter-SNP LD in the clusters for all segregating 

SNPs and the selected subset of SNPs from S. pyogenes and S. suis, respectively. The 

LD pattern in (A) involves 1,014 SNPs located in the genomic region 

1,273,267-1,286,739 of S. pyogenes AP53. The pattern in (B) involves the same set of 

SNPs as those used in Fig. 5E of Ref.Bao and includes 1,631 SNPs associated with 

acute rheumatic fever. The LD pattern in (D) involves 1,787 SNPs located in the 

genomic region 2,012,889-2,018,654 of S. suis BM407. The pattern in (E) includes 

2,205 SNPs associated with population differentiation of S. suis. The LD patterns 

were generated by Haploview based on the pair-wise measure of the linkage 

disequilibrium D’ and log likelihood of odds ratio LOD. The different LD levels are 

indicated in color with red for the strongest LD (D’=1 and LOD > 2), pink for the 

intermediate LD (D’ < 1 and LOD > 2) in pink, white for the weak LD (D’ < 1 and 

LOD < 2) in white, and purple for uninformative (D’ = 1 and LOD < 2). The average 

inter-SNP LD (measured as correlation coefficient r
2
) was significantly increased for 

SNPs subject to pre-selection. The between-group difference was evaluated using 

Wilcoxon rank-sum test. 

Fig. 5 SNP clusters with signatures of selective sweep identified by SweepCluster 

for ecoSNPs of V. cyclitrophicus. The clusters are represented as colored bars with 

the bar height indicating the number of ecoSNPs in the clusters. Previously reported 
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clusters in Ref.Shapiro recovered by SweepCluster are indicated in black numbering 

from 1 to 11 and those new clusters identified by SweepCluster indicated in red from 

12 to 13. 

Fig. 6 Sweep regions recovered by SweepCluster at three gene loci in the human 

1000 Genomes Project genotype datasets. (A) LCT, (B) EDAR, and (C,D) PCDH15. 

A series of SNP selection criteria of Fst were used to obtain distinct genotype datasets. 

The sweep regions are represented as colored bars with the bar height indicating the 

number of SNPs in the region (or cluster size) and the bar width indicating the 

spanning length. The significance is shown in -log10 (p-value) indicated in gradient 

colors.  

Fig. 7 Parameter optimization of sweep lengths based on non-linear fitting and 

maximum curvature in three prokaryotic datasets. (A,B) S. pyogenes. (C,D) S. 

suis. (E,F) V. cyclitrophicus. The relationship between the number of sweep regions 

and sweep lengths was fit using generalized additive models (red lines) and the 

curvature for each fitting curve was calculated using the formula (4).   

Fig. S1 The phylogenetic trees for selection of non-redundant strains. (A) The 

trees for each of the seven groups of strains. The grouping was based on the 

submission institutions. The strains selected for downstream analysis in each group 

are indicated in red square. (B) The final phylogenetic tree for 208 selected 

non-redundant genomes. (C) The two subpopulations used for identification of SNPs 

associated with population differentiation are indicated with numbers.    

Fig. S2 Phylogenetic tree of the 20 strains of V. cyclitrophicus. The ecological 

partition of the strains is indicated in color for thirteen S strains and seven L strains. 

Fig. S3 SNP clusters with signatures of selective sweep identified by 

SweepCluster for S. pyogenes genotype datasets. (A) The clusters detected from all 

segregating SNPs in the core genome. (B) The clusters detected from 1,631 selected 

SNPs with phenotypic association. The clusters are represented as colored bars with 

the bar height indicating the cluster size (the number of SNPs in the clusters) and the 

bar width indicating the spanning length. The significance of the clustering evaluated 

with -log10 (p-value) is indicated in gradient colors. The gene loci in the top clusters 

are shown.  

Fig. S4 SNP clusters with signatures of selective sweep identified by 

SweepCluster for S. suis genotype datasets. (A) The clusters detected from all 

segregating SNPs in the core genome of S. suis. (B) The clusters detected from 2,205 

selected SNPs associated with population differentiation (Chi-squared test 

p-value≤0.05). The clusters are represented as colored bars with the bar height 

indicating the cluster size (the number of SNPs) and the bar width indicating the 

spanning length. The significance of the clustering evaluated with -log10 (p-value) is 

indicated in gradient colors. The gene loci in the top clusters are shown.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435060
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. List of gene clusters identified by SweepCluster for ecoSNPs in V. cyclitrophicus. 

Chr. 
ClusterID 

in Ref. 
First SNP Last SNP 

Cluster 

size 

Cluster 

length 
P-value Gene loci range 

chr1 1 2,999,463 3,017,933 50 18471 < 10
-8

 FAZ90_RS13520-FAZ90_RS13590 

chr1 3 3,022,425 3,038,568 53 16144 < 10
-8

 

FAZ90_RS13690-FAZ90_RS13840 chr1 3 3,044,230 3,045,684 63 1455 < 10
-8

 

chr1 3 3,052,101 3,059,345 158 7245 < 10
-8

 

chr2 12 307,956 307,979 6 24 < 10
-8

 FAZ90_RS16555 

chr2 11 353,294 354,071 27 778 < 10
-8

 FAZ90_RS16800 

chr2 10 533,257 533,284 6 28 < 10
-8

 FAZ90_RS17530 

chr2 8 744,397 745,417 35 1021 < 10
-8

 FAZ90_RS18465-FAZ90_RS18470 

chr2 13 1,514,577 1,525,409 36 10833 < 10
-8

 FAZ90_RS21880-FAZ90_RS21930 

chr2 7 1,642,124 1,642,167 2 44 1.2x10
-5 

FAZ90_RS22415 

chr2 6 1,685,459 1,686,320 103 862 < 10
-8

 FAZ90_RS22615 
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