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Abstract

Background: The gene-specific sweep is a selection process where an advantageous
mutation along with the nearby neutral sites in a gene region increases the frequency
in the population. It has been demonstrated to play important roles in ecological
differentiation or phenotypic divergence in microbial populations. Therefore,
identifying gene-specific sweeps in microorganisms will not only provide insights
into the evolutionary mechanisms, but also unravel potential genetic markers
associated with biological phenotypes. However, current methods were mainly
developed for detecting selective sweeps in eukaryotic data of sparse genotypes and
are not readily applicable to prokaryotic data. Furthermore, some challenges have not
been sufficiently addressed by the methods, such as the low spatial resolution of
sweep regions and lack of consideration of the spatial distribution of mutations.

Results: We proposed a novel gene-centric and spatial-aware approach for identifying
gene-specific sweeps in prokaryotes and implemented it in a python tool
SweepCluster. Our method searches for gene regions with a high level of spatial
clustering of pre-selected polymorphisms in genotype datasets assuming a null
distribution model of neutral selection. The pre-selection of polymorphisms is based
on their genetic signatures, such as elevated population subdivision, excessive linkage
disequilibrium, or significant phenotype association. Performance evaluation using
simulation data showed that the accuracy and sensitivity of the clustering algorithm in
SweepCluster is above 90%. The application of SweepCluster in two real datasets
from the bacteria Streptococcus pyogenes and Streptococcus suis showed that the
impact of pre-selection was dramatic and significantly reduced the uninformative
signals. We validated our method using the genotype data from Vibrio cyclitrophicus,
the only available dataset of gene-specific sweeps in bacteria, and obtained a
concordance rate of 78%. We noted that the concordance rate could be underestimated
due to distinct reference genomes and clustering strategies. The application to the
human genotype datasets showed that SweepCluster is also applicable to eukaryotic
data and recovered the known sweep regions in a wide dynamic range of pre-selection
parameters.

Conclusions: SweepCluster is applicable to a broad category of datasets. It will be
valuable for detecting gene-specific sweeps in diverse genotypic data and provide
novel insights on adaptive evolution.
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Background
A selective sweep is a process where a beneficial allelic change sweeps through the
population and becomes fixed in a specific population, and the nearby sites in linkage
disequilibrium will hitchhike together and also become fixed (1, 2). Those sweep
regions containing beneficial alleles could possibly be introduced by recombination
and rise to high frequency rapidly in the population under positive selection. If the
increase in frequency is recent or fast relative to other recombination events, the
mutation profile in the sweep regions across the population will be maintained
without being interrupted. Finally, the process will imprint genetic signatures in the
population genomes, leading to lowered within-population genetic diversity, increased
between-population differentiation, and/or high linkage disequilibrium (3-5). When
such selective sweeps only occur at specific gene regions under selection without
affecting the genome-wide diversity, they are described as gene-specific sweep (6).
Recently, the gene-specific sweep has been demonstrated to play important roles
in adaptive evolution in microbial populations, such as ecological differentiation in
Prochlorococcus (7) and Synechococcus (8), speciation in marine bacterium Vibrio
cyclitrophicus (V. cyclitrophicus) (3, 9), and phenotypic divergence in human adapted
pathogen Streptococcus pyogenes (S. pyogenes) (10). The observation of the
gene-specific sweeps in those scenarios in both environmental organisms and host
pathogens suggests that the gene-specific sweep may represent one of the general
mechanisms underlying adaptive evolution of microorganisms. Therefore, identifying
the gene-specific sweep on the genome-wide scale will not only provide insights into
the evolutionary mechanisms shaping the genetic diversity, but also help to unravel
potential genetic markers associated with ecological adaptation or phenotypic

differentiation.
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An array of methods have been proposed to identify the gene-specific sweeps and
are generally fall into three categories based on the genetic signatures being captured,
I.e., (1) composite likelihood ratio (CLR) tests of the marginal likelihood of the allele
frequency spectrum under a model with selective sweeps in comparison with that
under a model of selective neutrality (11-13) (Kim and Stephan-2002, Nielsen-2005,
Huber-2016); (2) comparison of the distribution of population subdivision or linkage
disequilibrium in a region under positive selection with that of a neutral background
(14, 15) (Akey-2002, Kim-Nielsen-2004); (3) haplotype-based approaches for
detecting elevated haplotype homozygosity in a locus around the selected site in
comparison with that under a neutral model (16-20) (Sabeti-2002, Voight-2006,
Ferrer-Admetlla-2014, Harris-2018, Harris-2020). Those methods have demonstrated
the power for detecting genetic signatures of selective sweep in numerous cases.

However, those methods were mainly developed for detecting selective sweeps
in eukaryotic data and are not readily applicable to prokaryotic data, such as the
haplotype-based approaches (21). In addition, some challenges have not yet been
sufficiently addressed by the currently available methods. For example, the
gene-centric concept of the gene-specific sweep has not been taken into account
leading to a low spatial resolution of sweep regions; the spatial distribution properties
of the mutated sites within the sweep regions have not been fully considered.

In this study, we propose a new gene-centric approach for identifying the
gene-specific sweeps in prokaryotes, which search for regions with a higher level of
spatial clustering of single nucleotide polymorphisms (SNPs) assuming a null
distribution model of SNPs under neutral selection. The clustering applies to the SNP
subsets of specific interests, which can be selected based on the genetic signatures of

sweep regions, such as elevated population subdivision, reduced within-population
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diversity, excessive linkage disequilibrium, or significant phenotype association. Our
approach is different from the previous methods in that: (1) it applies the gene-centric
concept by considering the gene-specific location of SNPs; (2) it takes advantages of
the spatial distribution properties of SNPs in the sweep region; (3) the clustering is
performed on pre-selected target SNPs with specific genetic properties, thus
minimizing the influences from uninformative SNPs. We offer it as an open-source
tool  “SweepCluster” and it is  freely  accessible at  github:

https://github.com/BaoCodelL ab/SweepCluster.

Methods

Pre-selection of SNPs

The pre-selection of SNPs could be based on elevated population differentiation Fst,
extended linkage disequilibrium LD, or phenotypic association. However, the
determination could also depend on the data property and study purposes. For
instance, if the positive selection acting on disease markers is of interest, the
screening of SNPs with significant association with disease phenotypes using robust
genome-wide association analysis is preferred. In the real and simulated datasets in
this study, we selected the SNPs associated with phenotypic divergence or population
differentiation.

Overview of the clustering approach

The SNP clustering algorithm employs a gene-centric concept to mimic the biological
process of introducing gene-specific sweeps. In the gene-specific sweep model,
non-synonymous SNPs (the SNPs causing amino acid alterations) or upstream
regulatory SNPs (the SNPs in the regulatory regions) are more likely to be under
positive selection than synonymous SNPs (the SNPs without causing amino acid

alterations) or inter-genic SNPs, and the selected non-synonymous SNPs along with
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the nearby synonymous/inter-genic SNPs are introduced simultaneously in a single
event. For a recent sweep event, the selected SNPs and the hitchhiking SNPs are
tightly clustered in specific gene regions without severely ruined by other
recombination events. Based on the gene-specific sweep model, our clustering
strategy is illustrated in Figure 1 and described previously (10). Briefly, a
non-synonymous or upstream regulatory SNP is randomly chosen in a specific
gene/operon and serves as an anchor for an initial cluster. The initial cluster is then
extended progressively by scanning and merging the neighboring SNPs or clusters. If
the total span is shorter than the specified sweep length, then the surrounding SNPs or
clusters are merged. Otherwise, the initial cluster is extended by merging the
neighboring SNPs or clusters which minimize the normalized root-mean-square of

inter-SNP distances (NRMSD):

1)

where d; is the i™inter-SNP distance, n is the total number of the SNPs in the target
cluster and | is the maximum spanning range of the SNPs in the target cluster.

Following merging, all clusters are re-examined and split if any inter-SNP
distance within the cluster is longer than a given distance threshold. The distance
threshold can be determined based on the genome-wide average inter-SNP distance.
Under the null neutral model, the SNPs are independently and randomly distributed
across the genome, and the significance of a cluster with m distinct SNPs spanning a
length of | can be evaluated using the gamma distribution with the average mutation
rate p as the rate parameter (22):

1 p% 1 —
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The average mutation rate across the genome can be calculated as: x« = n/s, where n is
the total number of SNPs in the genome and s is the length of the genome.

Evaluation of the performance of the clustering method

We evaluated the performance of the clustering using four metrics, i.e., CPU time,
memory usage, accuracy and sensitivity based on simulation datasets. The evaluation
of CPU time and memory usage was performed using real datasets with varying data
size. The assessment of accuracy and sensitivity was conducted based on simulation
datasets (see below). The accuracy is defined as the proportion of correctly assigned
SNPs among the total SNPs. The sensitivity is defined as the proportion of detected
clusters containing at least 90% of the SNPs correctly assigned. The mapping between
detected clusters and expected clusters was determined based on reciprocal maximum
overlapping between the two sets of clusters.

Simulation datasets

The simulation datasets for assessing the accuracy and sensitivity of the clustering
algorithm were generated based on the genome and annotation of the bacterial strain S.
pyogenes AP53, which was annotated and studied by us previously (23). The SNPs
were artificially generated independently and randomly on the genome based on the
Poisson process of a given mutation rate (the average mutation rate of S. pyogenes).
SNP clusters were then created by taking the following procedures to satisfy the
pre-defined threshold of sweep length (sweep_lg) and maximum inter-SNP distance
(max_dist): (i) roughly a half of the SNPs in each gene region were assigned
non-synonymous; (ii) removing the SNPs in the gene regions longer than
sweep_lg+50; (iii) if the spanning length of the neighboring genes is longer than
sweep_Ig+50 and the inter-genic distance is greater than max_dist, then remove the

downstream gene to create a larger inter-genic distance.
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Real dataset of S. pyogenes genotypes
We used the real genomic datasets from two bacterial species S. pyogenes and S. suis
to assess the effects of the procedure of SNP pre-selection. The reason to choose the
two species is that they are known to have a high level of genomic varibility and a
high density of genotypes, which facilitate the manifestation of influences of SNP
pre-selection (24, 25). S. pyogenes is a common human pathogenic bacterium causing
diverse disease phenotypes, such as pharyngitis, skin infection, necrotizing fasciitis,
and acute rheumatic fever. Previous studies have shown that the alleles in the gene
regions of S. pyogenes exhibit phenotype-dependent changes, thus providing an
excellent dataset for selecting SNPs associated with phenotype differentiation (10, 26).
The genomic sequences of S. pyogenes were downloaded from NCBI Genbank
database (ftp://ftp.ncbi.nlm.nih.gov). A total of 46 genomes were chosen for this study
with balanced distribution of phenotypes based on the known phenotypic information
(10). The core genome is defined as the regions encoded by all studied genomes and
was determined by aligning the shredded genomes against the reference strain AP53
(CP013672). Finally, the core genome contains 69,171 segregating sites mutated in at
least one of the genomes and were concatenated for downstream analysis. Both the
whole set of SNPs at all segregating loci and a subset of selected SNPs associated
with the phenotype of acute rheumatic fever were used for inferring sweep regions
using SweepCluster. The SNPs associated with the disease phenotype were identified
using the Chi-squared test. The parameters used for SweepCluster are “-sweep_Ig
1781 -max_dist 1100 -min_num 2” and the clustering significance was evaluated
using the function “Pval” with the parameter of mutation rate “-rate 0.0362”. The
linkage disequilibrium analysis of the SNPs was performed using Haploview (27).

Real dataset of Streptococcus suis (S. suis) genotypes
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S. suis is a swine pathogen that colonizes pigs asymptomatically but can also causes
severe clinical diseases in pigs such as respiratory infection, septicemia, and
meningitis. S. suis can be classified to 29 distinct serotypes forming complex
population structures (28). Previous phylogenetic study showed that many serotypes
exist in multiple subpopulations and each subpopulation may contain multiple
serotypes (25). The complexity has been associated with extensive genetic
recombination and genomic shuffling among and between populations. Therefore, it
will be interesting to investigate the occurrence of selective sweeps among
subpopulations in the highly recombining genome of S. suis.

A total of 1,197 genomic sequences of S. suis strains were downloaded from the
NCBI Genbank database (ftp://ftp.ncbi.nlm.nih.gov). We removed the redundancy
among the genomes to reduce the data size by grouping them based on the submission
institutions and selecting the most distant genomes within each group based on the
phylogenetic structures built by SplitsTree (29) (Figuure S1A). The selected genomes
were further filtered based on their phylogenetic distance. The final dataset comprises
208 non-redundant genomes (Figure S1B) and gives rise to a total of 236,860
segregating mutation sites with BM407 as the reference (FM252033). The core
genome was identified using the same procedures as that for S. pyogenes. The
inference of sweep regions using SweepCluster was performed respectively for all
segregating SNPs and for those associated with differentiation of two subpopulations
(branch-1 and branch-2 in Figure S1C). The SNPs associated with population
differentiation was identified using the Chi-squared test. The parameters used for
SweepCluster and significance evaluation are “-sweep_lg 2000 -max_dist 2000
-min_num 2” and “-rate 0.1077”, respectively.

Real dataset of V. cyclitrophicus genotypes
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V. cyclitrophicus is a gram-negative bacterium inhabiting seawater. Previous studies
reported ecological differentiation of the V. cyclitrophicus population associated with
gene-specific sweeps (9). The authors sequenced 20 strains of V. cyclitrophicus, which
are divided into two phenotypic groups (S strains and L strains) according to their
ecological partition. They showed that the partition is associated with the ecoSNPs,
i.e., the dimorphic nucleotide positions with one allele present in all S strains and the
other allele in all L strains. The authors then classified the ecoSNPs into 11 clusters
and demonstrated the evidences of gene-specific sweeps in causing the ecoSNPs. This
is the only available study of SNP clusters under gene-specific sweeps in bacteria.
We used this dataset for benchmarking of our clustering method.

We downloaded the genomic sequences of the 20 strains from NCBI Genbank
database (ftp://ftp.ncbi.nlm.nih.gov) and aligned them to a reference strain with
complete genome assembly (ECSMB14105) to derive the segregating SNPs of
139,066 and the phylogenetic structure (Figure S2). The ecoSNPs were obtained
using the same definition as that in the reference (9). The ecoSNPs were then subject
to cluster detection using SweepCluster with the parameters “-sweep_lg 8000
-max_dist 5000 -min_num 2" and “-rate 0.000111”.

Empirical datasets of human genotypes

We employed the genotype datasets from the human 1000 Genomes project (30) to
evaluate the ability of SweepCluster of identifying selective sweeps in eukaryotic data.
We chose the 1000 Genomes datasets because they have been extensively used in
previous studies of selective sweeps and a handful of gene loci have been
well-characterized to be under selective sweep in specific subpopulations. We
extracted the genotype data from three subpopulations, i.e., EUR (Europeans), AFR

(Africans) and EAS (East Asians), and selected the mutation sites associated with
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pairwise population differentiation Fst. The calculation of Fst was based on Hudson’s

estimator in the transformed formula (31):

F. = (P1—P2)*—p1(1-p1)/(n1—1)—p(1-p;) /(n,—1)
st P1(1-p2)+p2(1-p4)

©)

where ni/n; is the subpopulation size and pi/p, is the allele frequency for the two
paired populations. Distinct subsets of SNPs were selected using a series of Fst
thresholds (0.7, 0.65, 0.60, 0.55, 0.50, 0.45, 0.43, and 0.4) for inferring sweep regions
to evaluate the robustness of SweepCluster in eukaryotic data. The parameters used
for SweepCluster are: “-sweep_lg 200000 —max_dist 40000 —min_num 2”. The sweep
regions and SNPs were annotated based on the genome build hg19 using ANNOVAR
(32).

Optimization of the parameters

We carried out the parameter simulation of sweep lengths by calculating the number
of sweep regions inferred by SweepCluster for varying values of sweep lengths in the
range 300-10,000 bp. The relationship between the number of sweep regions versus
sweep length was approximated using non-linear fitting implemented in generalized
additive models in the R package “mgcv”. The optimal estimation of the sweep length
is calculated based on the maximum curvature in the fitting curves with the curvature
calculated with the following formula:

_ | fri(x) ()

(A+f1()?)?

where f'(x) and f''(x) are the first-order and second-order derivative of the fitting
curves, respectively. We have provided in the package a shell script
“sweep lg simulation.sh” for automatic optimization of the sweep length for any
particular genotype dataset. The parallel acceleration was implemented in the script

for fine-grained parameter searching.
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Results

Overview of SweepCluster

The package SweepCluster performs four major functions. (1) Density: calculates the
SNP density using a window-scanning method in a specific genomic region or in the
genome-wide scale; (2) Cluster: executes the core functionality of the package, i.e.,
gene-centric SNP clustering; (3) Pval: estimates the statistical significance of each
SNP cluster based on a null gamma distribution of SNPs; (4) a driver script
“sweep_lg_simulation.sh” for parameter optimization.

Computing performance

The computing performance of SweepCluster was evaluated using multiple real
datasets with varying number of SNPs (designated as N). The memory usage of
SweepCluster increases linearly with N and is fairly low even for the maximum
datasets of 200,000 SNPs at about 260 megabytes (MB) (Figure 2A). The CPU time
consumption of SweepCluster is on the scale O(N?) at the initial stage and then
becomes nearly linear O(N) when N > 140,000 (Figure 2B). It is because the CPU
time is governed by optimizing the boundary SNPs when N is small, but becomes
governed by clustering the inner SNPs for large Ns, at which the ratio of boundary
SNPs rapidly declines. Considering the linear increment of memory usage and CPU
time, and the downsized genotype datasets upon pre-selection, we anticipate that the
computing resources will not be limiting factors for larger datasets. In the meanwhile,
it should also be noted that the computing performance also depends on the applied
parameters (such as the sweep length) and the genotype data properties (such as the
proportion of the boundary SNPs).

Performance of accuracy and sensitivity

We evaluated the performance of the clustering algorithm in SweepCluster in terms of
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accuracy and sensitivity using artificially generated simulation datasets with the SNP
distributions satisfying specific combinations of sweep lengths (sweep_lg) and
maximum inter-SNP distances (max_dist). The performance of SweepCluster was
compared with that of DBSCAN, a general-purpose and commonly used spatial
clustering algorithm without considering any trait information of the data (33). The
comparison showed that the performance of both algorithms as a function of
maximum inter-SNP distances is highly similar, where the accuracy and sensitivity
quickly approaches optimum when the maximum inter-SNP distance increases to
roughly 200 bp, close to the average inter-SNP distance in the gene regions in the
simulation datasets (Figure 3A,C). Interestingly, the performance of SweepCluster
and DBSCAN as a function of sweep lengths differs (Figure 3B,D). DBSCAN is not
influenced significantly by the sweep length and performs nearly equally well for a
broad range of sweep lengths. However, the performance of SweepCluster is
dependent on the sweep length. It gradually improves with increasing sweep lengths
and achieves optimal results at around 800-1000 bp, coincident with the average gene
length of our simulation datasets. The dependence of the performance of
SweepCluster on the sweep length is a manifestation of the gene-aware concept of the
design of the clustering method in SweepCluster. In biological contexts, the
general-purpose clustering methods, such as DBSCAN may generate clusters
unrelated with selective sweeps.

Efficacy of SNP pre-selection in real datasets of S. pyogenes and S. suis

We test the efficacy of the procedure of SNP pre-selection prior to clustering by
employing real datasets from two bacterial species, S. pyogenes and S. suis of dense
genotypes.

For the datasets of S. pyogenes, a total of 69,171 core SNPs were obtained across
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46 representative strains and selection of SNPs based on phenotypic association with
the disease acute rheumatic fever reduced the number of SNPs to 1,631 (Additional
file 1: Table S1, S2 and S3). SweepCluster was subsequently applied to the two SNP

datasets and identified 215 and 131 significant clusters (p-value<0.05), respectively

(Figure S3, Additional file 1: Table S4 and S5). We then used linkage disequilibrium
(LD) between SNPs within the clusters as a proxy to examine the effect of
pre-selection. A snapshot of the comparison of the LD patterns before and after
pre-selection is shown in Figure 4A,B. The average LD within clusters was
significantly increased after performing SNP pre-selection (p-value < 2.2 x 10%),
indicating the significant effect of pre-selection on diminishing the spurious signals in
inferring sweep regions (Figure 4C).

We carried out similar analysis for the genomic data of S. suis as that for S.
pyogene. A total of 236,860 core SNPs were obtained across 208 non-redundant

strains of S. suis and 349 clusters were identified using SweepCluster (p-value<0.05)

(Figure S4A, Additional file 2: Table S6, S7 and S8). Without pre-selection of SNPs,
we found that the clusters are densely distributed on the genome, implying that many
of the clusters may contain false positive signals of selective sweep. Therefore, we
selected the SNPs associated with differentiation of two subpopulations using the
Chi-squared test (Figure S1C). A total of 2,205 SNPs satisfies the significance
threshold (p-value<0.05) and were subject to cluster detection using SweepCluster
(Additional file 2: Table S9). A total of 111 clusters were identified with significance
(p-value<0.05) (Figure S4B and Additional file 2: Table S10). We examined the

effect of SNP pre-selection by calculating the average inter-SNP LD within the
clusters (Figure 4D,E,F). The results reveal a higher level of average LD in the

clusters from the selected SNPs than that from the whole set of SNPs (p-value < 4.0 x
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10), reiterating the efficiency of our strategy for identification of signals of sweep
regions.

Application in empirical datasets of V. cyclitrophicus

We benchmark our method using the dataset in the Ref. (9), the only available study
of SNP clusters under gene-specific sweep in bacteria. We processed the genomic data
from the 20 strains of V. cyclitrophicus (13 L strains and 7 S strains) to obtain
ecoSNPs associated with ecological differentiation between the L and S population
(Additional file 3: Table S11 and S12). Cluster detection is subsequently performed
to the ecoSNPs using SweepCluster and 11 significant clusters were identified (Figure
5, Table 1 and Table S13). We validated our results by comparing with all eleven but
two clusters reported in the Ref. (9). We excluded cluster2 annotated as “Conserved
protein” of which the equivalent gene in our reference cannot be precisely located,
and cluster4 which contains flexible genes without falling into the core genome.
Among the remaining nine clusters, seven were recovered by our method
corresponding to a concordance rate of 78%. It is noted that cluster5 was not
recovered because it does not contain non-synonymous or upstream regulatory
mutations, reflecting different clustering strategies of the two studies. It is noticeable
that we also identified with high significance two novel clusters clusterl2 and
cluster13 containing 6 and 36 SNPs, respectively (Table 1 and Table S13).

In summary, the cluster comparison shows that the differences in the identified
clusters between our results and those in the Ref. (9) are mainly due to distinct
clustering methods and reference genomes used in the two studies. The current study
used the strain of V. cyclitrophicus ECSMB14105, the only strain of this bacterium
with complete genome assembly, while the study of (9) took an alternative but closely

related species V. splendidus (12B01) as the reference. Therefore, the concordance
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rate between the two studies should have been underestimated.

Application in empirical human genotype datasets

Though SweepCluster is specifically developed for prokaryotic data of dense
genotypes, it will be helpful to test whether it is also applicable to eukaryotic data. We
examined three well-characterized gene regions (LCT, EDAR, and PCDH15) under
selective sweep in pairwise populations of EUR, AFR, and EAS from the human 1000
Genomes Project genotype datasets (30). We at first performed SNP pre-selection
based on the population differentiation Fst at a series of cutoff values, and then
applied SweepCluster to each dataset of selected SNPs to search for gene regions
under potential selective sweep (Additional file 4-7). At the threshold of Fst = 0.4, all
three gene loci were recovered as significant regions under selective sweep (Figure 6).
The LCT gene, encoding lactase, was previously shown to be associated with lactase
persistence in European populations and the region around it has been acknowledged
as the target for strong selective sweep (19, 20, 34). In our cluster detection, the LCT
locus along with the flanking gene regions (R3HDM1, UBXN4, and MCM6) forms a
cluster of 57 variants spanning 235.6 kb with significance (p-value = 5.7 x 10®),
consistent with the strong positive selection. The gene EDAR is involved in
ectodermal development and the missense mutation V370A showed evidences for
association with hair thickness in East Asians (35, 36). The region around EDAR has
been identified to be the locus undergoing strong selective sweep (19, 36, 37). We
localized the EDAR-centered region (GCC2, LIMS1 and EDAR) of 132 variants
(including V370A) spanning 145.8 kb with significance (p-value < 107, implying
strong selection signals. The gene PCDH15 encodes protocadherin and previous
studies showed evidences of positive selection in East Asian populations (37, 38). We

recovered the PCDH15 locus as a highly significant sweep region consisting of more
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than 300 variants spanning 369.5 kb (p-value < 10'®), indicating a strong signature of
selective sweep.

Our results show that the size and significance of the sweep regions depend on the
SNP selection threshold of Fst, but the detection efficiency is robust for a wide range
of Fst. The signals of selective sweep emerge in all three gene regions at the threshold
of Fst = 0.4, and persist until Fst > 0.7. Above this threshold, the sweep signals in all
three genes disappear. It is because a low number of mutations remain at the high
level of Fst and are sparsely distributed across the chromosome, making spatial
clustering of the mutations inaccessible. We conclude that SweepCluster is also
capable of detecting sweep regions for eukaryotic genotype data and the detection
efficiency is robust to the SNP selection criteria.

Optimization of parameters

The performance evaluation based on simulation data showed that the performance of
the clustering algorithm in SweepCluster is closely related with the sweep length.
Therefore, proper estimation of sweep lengths is critical for confident inference of
selective sweep regions. Unfortunately, in many cases, it is not straightforward to
derive the value of sweep lengths from genotype data. Therefore, we provided in the
package a simulation script “sweep_lg_simulation.sh” to search for the optimal
estimation of the sweep length for a specific genotype dataset. It is particularly
suitable for prokaryotic data because the prokaryotes use gene conversion as the main
vehicle for introducing selective sweeps and the sweeps are generally uniform in size
(22).

We did the simulation by calculating the number of sweep regions inferred by
SweepCluster at a series of values of sweep lengths and then fitting a non-linear

model for the relationship between the number of sweep regions and sweep lengths.
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The optimal estimation of sweep lengths is determined by the point of maximum
curvature in the fitting model. Here we present the simulation results for the three real
datasets of S. pyogenes, S. suis, and V. cyclitrophicus, respectively (Figure 7). It is
shown that all three datasets have the maximum curvatures at the sweep length of
~2000 bp (1638 bp for S. pyogenes, 1500 bp for S. suis, and 2157/1989 bp for the two
chromosomes of V. cyclitrophicus). It is consistent with our previous estimation of

1,789 bp for S. pyogenes using the alternative tool ClonalFrame (10, 39).

Discussion
We have proposed a gene-centric spatial clustering approach to identify gene-specific
sweeps in bacterial polymorphism data. It targets for the mutation sites complying
with specific genetic properties of selective sweeps and captures the regions with
unusual clustering patterns of those mutations differing from that of a neutral
expectation. Based on the known genetic properties of gene-specific sweeps, the
target mutations are usually obtained by selecting those with elevated population
differentiation, reduced  within-population  diversity, heightened linkage
disequilibrium, or significant phenotype association. The selected subsets of
mutations are subject to clustering. Therefore, our approach for inferring sweep
regions employs two layer of information, i.e., genetic signatures and spatial
distribution patterns of mutations under gene-specific sweeps in comparison with
current methods focusing only on one layer of information in the genotype data
(11-14, 16, 19, 20).

The purpose of the procedure of selecting target mutations of particular genetic
signatures prior to clustering is to remove the spurious or uninformative signals and
perform spatial clustering only for the mutations related with selective sweep. The

impact of mutation selection was dramatic in our two example datasets from the
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bacteria S. pyogenes and S. suis. The level of linkage disequilibrium between SNPs,
as a signature of selective is significantly increased by selecting those mutations
associated with disease phenotypes or population differentiation. The ultimate
datasets upon prior selection are more sensitive to the statistical test under the neutral
model of spatial distribution of mutations, making it more efficient to identify gene
regions under selective sweeps. Using the only available dataset of gene-specific
sweeps in bacteria (9), we validated our method yielding a concordance rate of 78%
for the detected clusters even with distinct clustering strategies and reference genomes
in the two studies.

Our approach is specifically designed for prokaryotic data of dense genotypes
such that the mutations of particular genetic properties can be exhaustively obtained
and the distribution of those mutations can be statistically distinguished from the null
model. However, the testing showed that our method also performs well for
eukaryotic data of sparse genotypes. We recovered the well-characterized gene
regions (LCT, EDAR, and PCDH15) under selective sweeps in the 1000 Genomes
Project genotype datasets. The signals of selective sweeps in the three gene loci
persist for a wide range of mutation selection criteria, suggesting the robustness of our
method on identifying sweep regions in sparse genotype data. Moreover, the
spatial-aware strategy of the clustering makes the resolution of detected sweep
regions narrowed down to single nucleotides facilitating identifying relatively old
sweeps of low numbers of selected sites.

There are some limitations of our approach. It cannot distinguish explicitly
between hard sweeps and soft sweeps, or recent sweeps and older sweeps because
mixed sites of varying strength of selection are treated as a whole for statistical tests.

Our method does not deal with the confounding effects of background selection, as
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the signatures of background selection are very similar to the real selection and it has
been a challenge to confidently classify the background selection for many alternative

approaches.

Conclusion

We proposed a novel gene-centric approach for identifying gene-specific sweeps
implemented in the Python tool SweepCluster. It performs spatial clustering of
polymorphisms to infer the regions with signatures of gene-specific sweeps by
employing two layers of information, i.e., genetic properties and spatial distribution
models of the polymorphisms. It is specifically developed for prokaryotic data of
dense genotypes and exhibit efficiency and robustness in detecting sweep regions in
the validation datasets. It also performs well for eukaryotic data in a wide dynamic
range of parameters of genetic properties. We expect that our new method will be
valuable for detecting gene-specific sweeps in diverse genotype data and provide

novel insights on evolutionary selection.
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Figure legends:

Fig. 1 Outline of the clustering procedures of SweepCluster. A non-synonymous or
upstream regulatory SNP is randomly chosen in each gene/operon and serves as an
anchoring SNP for an initial cluster. The initial cluster is then extended by scanning
and merging the neighboring SNPs or clusters. If the total span is shorter than the
specified sweep length, then the surrounding SNPs or clusters are merged. Otherwise,
the initial cluster is extended by merging the neighboring SNPs or clusters such that
the normalized root-mean-square of inter-SNP distances (NRMSD) is minimized. All
clusters after merging are re-examined and split if any inter-SNP distance within the
cluster is longer than a given inter-SNP distance threshold (max_dist).

Fig. 2 Memory usage (A) and CPU time (B) of SweepCluster for varying
numbers of SNPs. The datasets for evaluation were obtained by subsetting the
genotype dataset of S. suis.

Fig. 3 The accuracy and sensitivity of the clustering algorithm in SweepCluster
in comparison with DBSCAN. The accuracy and sensitivity were calculated for a
series of values of sweep lengths or maximum inter-SNP distances.

Fig. 4 Comparison of the LD patterns for the SNPs before and after pre-selection
for the genotype datasets of S. pyogenes (A,B,C) and S. suis (D,E,F). (A,D) The
LD pattern of SNPs in the most significant cluster for all segregating SNPs from S.
pyogenes and S. suis, respectively. (B,E) The LD pattern of the selected SNPs with
phenotypic association in S. pyogenes and population differentiation in S. suis. (C,F)
Distribution of the average level of inter-SNP LD in the clusters for all segregating
SNPs and the selected subset of SNPs from S. pyogenes and S. suis, respectively. The
LD pattern in (A) involves 1,014 SNPs located in the genomic region
1,273,267-1,286,739 of S. pyogenes AP53. The pattern in (B) involves the same set of
SNPs as those used in Fig. 5E of Ref.Bao and includes 1,631 SNPs associated with
acute rheumatic fever. The LD pattern in (D) involves 1,787 SNPs located in the
genomic region 2,012,889-2,018,654 of S. suis BM407. The pattern in (E) includes
2,205 SNPs associated with population differentiation of S. suis. The LD patterns
were generated by Haploview based on the pair-wise measure of the linkage
disequilibrium D’ and log likelihood of odds ratio LOD. The different LD levels are
indicated in color with red for the strongest LD (D’=1 and LOD > 2), pink for the
intermediate LD (D’ < 1 and LOD > 2) in pink, white for the weak LD (D’ <1 and
LOD < 2) in white, and purple for uninformative (D’ = 1 and LOD < 2). The average
inter-SNP LD (measured as correlation coefficient r?) was significantly increased for
SNPs subject to pre-selection. The between-group difference was evaluated using
Wilcoxon rank-sum test.

Fig. 5 SNP clusters with signatures of selective sweep identified by SweepCluster
for ecoSNPs of V. cyclitrophicus. The clusters are represented as colored bars with
the bar height indicating the number of ecoSNPs in the clusters. Previously reported
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clusters in Ref.Shapiro recovered by SweepCluster are indicated in black numbering
from 1 to 11 and those new clusters identified by SweepCluster indicated in red from
12 to 13.

Fig. 6 Sweep regions recovered by SweepCluster at three gene loci in the human
1000 Genomes Project genotype datasets. (A) LCT, (B) EDAR, and (C,D) PCDH15.
A series of SNP selection criteria of Fst were used to obtain distinct genotype datasets.
The sweep regions are represented as colored bars with the bar height indicating the
number of SNPs in the region (or cluster size) and the bar width indicating the
spanning length. The significance is shown in -log10 (p-value) indicated in gradient
colors.

Fig. 7 Parameter optimization of sweep lengths based on non-linear fitting and
maximum curvature in three prokaryotic datasets. (A,B) S. pyogenes. (C,D) S.
suis. (E,F) V. cyclitrophicus. The relationship between the number of sweep regions
and sweep lengths was fit using generalized additive models (red lines) and the
curvature for each fitting curve was calculated using the formula (4).

Fig. S1 The phylogenetic trees for selection of non-redundant strains. (A) The
trees for each of the seven groups of strains. The grouping was based on the
submission institutions. The strains selected for downstream analysis in each group
are indicated in red square. (B) The final phylogenetic tree for 208 selected
non-redundant genomes. (C) The two subpopulations used for identification of SNPs
associated with population differentiation are indicated with numbers.

Fig. S2 Phylogenetic tree of the 20 strains of V. cyclitrophicus. The ecological
partition of the strains is indicated in color for thirteen S strains and seven L strains.

Fig. S3 SNP clusters with signatures of selective sweep identified by
SweepCluster for S. pyogenes genotype datasets. (A) The clusters detected from all
segregating SNPs in the core genome. (B) The clusters detected from 1,631 selected
SNPs with phenotypic association. The clusters are represented as colored bars with
the bar height indicating the cluster size (the number of SNPs in the clusters) and the
bar width indicating the spanning length. The significance of the clustering evaluated
with -log10 (p-value) is indicated in gradient colors. The gene loci in the top clusters
are shown.

Fig. S4 SNP clusters with signatures of selective sweep identified by
SweepCluster for S. suis genotype datasets. (A) The clusters detected from all
segregating SNPs in the core genome of S. suis. (B) The clusters detected from 2,205
selected SNPs associated with population differentiation (Chi-squared test
p-value<0.05). The clusters are represented as colored bars with the bar height
indicating the cluster size (the number of SNPs) and the bar width indicating the
spanning length. The significance of the clustering evaluated with -log10 (p-value) is
indicated in gradient colors. The gene loci in the top clusters are shown.
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Table 1. List of gene clusters identified by SweepCluster for ecoSNPs in V. cyclitrophicus.

ClusterID Cluster Cluster

Chr. in Ref. First SNP  Last SNP size length P-value Gene loci range

chrl 1 2,999,463 3,017,933 50 18471 <10°® FAZ90 RS13520-FAZ90 RS13590
chrl 3 3,022,425 3,038,568 53 16144 <10°

chrl 3 3,044,230 3,045,684 63 1455 <107 FAZ90_RS13690-FAZ90_RS13840
chrl 3 3,052,101 3,059,345 158 7245  <10°®

chr2 12 307,956 307,979 6 24 <10® FAZ90_RS16555

chr2 11 353,294 354,071 27 778 <10® FAZ90_RS16800

chr2 10 533,257 533,284 6 28 <10® FAZ90 RS17530

chr2 8 744,397 745,417 35 1021 <10® FAZ90_RS18465-FAZ90_RS18470
chr2 13 1514577 1,525,409 36 10833 <10® FAZ90_RS21880-FAZ90_RS21930
chr2 7 1,642,124 1,642,167 2 44 1.2x107 FAZ90_RS22415

chr2 6 1685459 1,686,320 103 862 <10° FAZ90 RS22615
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