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Epigenetic clocks reveal a rejuvenation event during

embryogenesis followed by aging
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The notion that germline cells do not age goes back to the 19" century ideas of August Weismann.
However, being in a metabolically active state, they accumulate damage and other age-related
changes over time, i.e., they age. For new life to begin in the same young state, they must be
rejuvenated in the offspring. Here, we developed a new multi-tissue epigenetic clock and applied
it, together with other aging clocks, to track changes in biological age during mouse and human
prenatal development. This analysis revealed a significant decrease in biological age, i.e.
rejuvenation, during early stages of embryogenesis, followed by an increase in later stages. We
further found that pluripotent stem cells do not age even after extensive passaging and that the
examined epigenetic age dynamics is conserved across species. Overall, this study uncovers a
natural rejuvenation event during embryogenesis and suggests that the minimal biological age (the

ground zero) marks the beginning of organismal aging.
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Aging is characterized by a progressive accumulation of damage, leading to loss of physiological
integrity, impaired function and increased vulnerability to death (7). While the aging process affects the
entire organism, it is often discussed that the germline does not age, because this lineage is immortal in
the sense that the germline has reproduced indefinitely since the beginning of life (2—4). This notion dates
to the 19th century when August Weismann proposed the separation of ageless germline and aging soma.
However, being in the metabolically active state for two decades or more before its contribution to the
offspring, human germline accumulates molecular damage, such as modified long-lived proteins,
epimutations, metabolic by-products, and other age-related deleterious changes (3, 6). It was shown that
sperm cells exhibit a distinct pattern of age-associated changes (7-9). Accordingly, it was recently
proposed that germline cells may age and be rejuvenated in the offspring after conception (10, 11). If this
is the case, there must be a point (or period) of the lowest biological age (here, referred to as the ground
zero) during the initial phases of embryogenesis (Fig. 1A). Here, we carried out a quantitative, data-
driven test of this idea.

Due to recent advances in technology, machine learning is flourishing and has led to
breakthroughs in many areas of science by discovering multivariate relationships (/2). Aging and
developmental biology areas also exploited the potential of machine learning by developing algorithms
(“aging clocks™) that can estimate chronological age or biological age (i.e. the age based on molecular
markers) of an organism from a given data (/3, /4). As epigenomic changes, which result in
dysregulation of transcriptional and chromatin networks, are crucial components of aging (/5),
epigenetic clocks, based on methylation levels of certain CpG sites, emerged as a promising molecular
estimator of biological age (/6, /7). These clocks were shown to quantitatively measure numerous
aspects of human aging (/7-22). For example, epigenetic age acceleration was associated with age-
related conditions, such as all-cause mortality (23, 24), cognitive performance (25), frailty (26),
Parkinson’s disease (27), Down syndrome (28), and Werner syndrome (29). Epigenetic aging clocks were

also developed for mice and could be used to evaluate longevity interventions, such as calorie restriction
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and growth hormone receptor knockout (30—36). Most importantly, the clocks developed based on aging
patterns of mostly adult tissues report the effects of cell rejuvenation upon complete- or partial
reprogramming of adult fibroblasts into induced pluripotent stem cells (iPSCs) as demonstrated in both
human and mouse (33, 35, 37-39). Even though iPSCs correspond to an embryonic state and the
transition to these cells involves major molecular changes, including changes in the epigenome, this
rejuvenation event can be assessed by epigenetic clocks. Most recently, universal mammalian clocks
have been developed based on conserved cytosines, whose methylation levels change with age across
mammalian species (40).

Considering that epigenetic clocks track the aging process, they may be applied to early
development to characterize biological age dynamics during that period of life. Recent studies showed
that clocks may be successfully applied to human fetal development using brain, retina, and cord blood
samples (4/—43). However, epigenetic age dynamics during entire prenatal development for the entire
organism remained unexplored. Here, we developed a new multi-tissue epigenetic clock using machine
learning and applied it, together with other existing aging clocks, to assess prenatal development in
mammals from the perspective of aging. This approach uncovered a rejuvenation period during early

embryogenesis and the timing of the beginning of aging in mammals.

A rejuvenation event during early embryogenesis. To assess epigenetic age dynamics during
embryogenesis, we collected available human and mouse DNA methylation datasets (Table 1) and
subjected them to various epigenetic aging clocks (Table 2). We also developed a multi-tissue ribosomal
DNA methylation clock (rDNAm) (fig. S1, S2). The rDNA is characterized by a large number of age-
associated CpG sites that exhibit high sequence coverage due to the multiplicity of rDNA in the genome
(35, 44). The new clock is capable of predicting the epigenetic age of RRBS (reduced representation
bisulfite sequencing), WGBS (whole-genome bisulfite sequencing) and even pseudo-bulk single cell

sequencing samples in various tissues. All clocks we employed showed high accuracy (r >= 0.8) in age
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prediction of test samples and were sensitive to age-related conditions and longevity interventions (Table
2).

First, we examined the behavior of TDNAm clocks when applied to five independent mouse early
embryonic datasets. We found that the mean epigenetic age of E6.5/E7.5 embryos was consistently lower
than in earlier stages of embryogenesis (Fig. 1B, fig. S3AB, fig. S4AB). We also applied four genome-
wide RRBS-based epigenetic aging clocks to RRBS datasets (datasets 1 and 2). This again revealed that
the epigenetic age of E6.5/E7.5 embryos is lower than during the period from zygote to blastocyst (Fig.
1C, fig. S3CD, fig. S4CD). Thus, epigenetic age decreases during early embryogenesis, and therefore
embryonic cells not only do not age during this period but at some point get rejuvenated.

Previously, a near-zero epigenetic age of human embryonic stem cells and iPSCs was
demonstrated by the Horvath multi-tissue clock even after extensive passaging (/8). We analyzed iPSCs
and ESCs based on several currently available datasets to further assess whether these cells, which
correspond to early embryogenesis, age (Fig. 1D). The epigenetic age of cells was very low (mostly
below zero) even after more than 100 passages. Even under artificial culture conditions, at the level of
oxygen above physiological, and with the number of passages well beyond physiological (which may
lead to the accumulation of deleterious mutations), either no or very little increase in epigenetic age was
observed. These findings support the notion that cells corresponding to the early stages of embryogenesis

essentially do not age.

Organismal aging begins during mid-embryonic development in mouse and human. We quantified
the epigenetic age by applying rDNA clocks to the only available mouse dataset that contains both early-
and late embryonic samples (Fig. 2A). The epigenetic age at E6.5 and E7.5 was significantly lower than
at E13.5 (primordial germline cells that are the direct progenitors of sperm and oocytes).

We also assessed the epigenetic age of mouse embryos across 9 time points from embryonic day

10.5 to birth (dataset 6) by genome-wide methylation clocks. A consistent increase in epigenetic age was
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observed during this period both when considering all data (Fig. 2B) and when separated by tissue (Fig.
2C). In addition, we analyzed human prenatal datasets by applying the Horvath multi-tissue DNAm clock
to four independent human 450K methylation array datasets (datasets 7-9). An increase (or in some cases
no change) in epigenetic age was observed both when considering all data (Fig. 2D) and tissue-by-tissue
(Fig. 2E). Thus, at a certain point during embryonic development in mouse and human the biological age
begins to increase in most or all tissues. Considering that epigenetic clocks track the aging process, the

data suggest that by then organisms already age.

Epigenetic age of mouse ESCs during early passaging. We assessed the epigenetic age of mouse
embryonic stem cells after outgrowth (passage 0) and early passaging (passage 5) under three different
culture conditions (Fig. 3AB). In the absence of two inhibitors (PD0325901 that causes blockade of
differentiation and CHIR99021 that supports self-renewal (45)), we observed a lower epigenetic age after
outgrowth compared to the condition when the two inhibitors were included. The data suggest that ESCs
under incomplete self-renewal culture conditions may continue their development (without self-renewal)

and rejuvenate, similar to what we observed in vivo (Fig. 1).

Localization of the epigenetic age minimum (ground zero) during mouse embryonic development.
We concatenated the results for early and later stages of embryogenesis by applying genome-wide mouse
epigenetic clocks (Fig. 4). The variable number of overlapped clock sites across all stages caused a batch
effect that resulted in a shift of the actual predicted age between early and late stages. However, the
epigenetic age dynamics showed a clear U-shaped pattern in every case, with the minimum at E7.5 in
three cases and E10.5 in one case. The exact localization of the minimum was not possible with the data
currently available, and it may lie in the range from E4.5 to E10.5. The data suggest that organismal

aging begins at that period after the rejuvenation event.
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Concluding comments. Back in the 19" century, August Weismann proposed the idea of heritable non-
aging germline and disposable aging soma. Yet, the germline shows molecular changes characteristic of
aging (7—9). Our study suggests that the germline ages but is rejuvenated in the offspring at some point
during early embryogenesis. This rejuvenation occurs during early post-implantation stages when the
offspring reaches its minimal biological age. We propose that this minimum, the ground zero, marks the
beginning of aging of an organism. The offspring proceeds naturally to ground zero from the zygote
stage, but somatic cells may also be forced to this young stage, e.g. by reprogramming with Yamanaka
factors (or by other methods), generating iPSCs. In vivo amelioration of age-associated hallmarks was
already demonstrated by partial reprogramming (46). Most recently, partial reprogramming restored
vision in mice by resetting youthful epigenetic information (47). Thus, both soma and germline may
age and be rejuvenated.

Early embryogenesis, where we observed a rejuvenation period, is also accompanied by other
molecular changes in preparation for organismal life, such as a gradual extension of telomeres (48),
waves of global demethylation and methylation (49), transition from the use of maternal gene products
to those of the embryo, inactivation of chromosome X, and development of monoallelic gene expression
(50). Rejuvenation should also involve a decrease in molecular damage and other deleterious age-related
changes that accumulate in the parental germline (51, 52). The data indicate that ground zero lies between
E4.5 and E10.5 in mice, and the current estimates suggest that it is close to E6.5/E7.5. This period
approximately corresponds to gastrulation, where three germ layers are formed. However, further studies
are needed to precisely localize ground zero in humans and mice.

The beginning of aging is a subject to debate. It is often discussed that aging begins after
completion of development, at the onset of reproduction, and at the time when strength of natural
selection begins to decrease. However, our recent analysis of deleterious age-related changes revealed
that aging begins early in life, even before birth (53). Our current work now pinpoints the beginning of

aging to ground zero.
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CpG sites associated with aging and lifespan may be both hypomethylated and hypermethylated
upon aging (54). An attractive possibility is that rejuvenation may be supported by remethylation rather
than by demethylation. Indeed, global remethylation was reported between E3.5 and E7.5 (49, 55-57),
which is the same period where we observe rejuvenation. If global remethylation is indeed associated
with epigenetic age decrease, ground zero and global methylation maximum should correspond to the
same developmental stage. This would make sense from the perspective that, in order to remove
“epigenetic damage”, the genome should be first partially demethylated and then remethylated again.

We also found that cells corresponding to early embryogenesis, i.e. ESCs and iPSCs, do not age
when cultured and passaged. However, early passaging seems to result in epigenetic age reduction.
Consistent with this age reduction, it was found that initial passaging induces telomere extension, and
that mice generated from these rejuvenated cells live longer and are better protected from age-related
diseases than the mice from the same cells that were not passaged (58). This suggests an exciting
possibility that the natural rejuvenation event we uncover in this work may be targeted, such that
organisms may begin aging at a lower biological age and therefore may achieve longer lifespan and
extended healthspan. This may also be useful during in vitro fertilization, wherein embryos with a lower
biological age may be prioritized.

Global cytosine methylation (average methylation level of CpG sites representing the whole
genome) changes in waves during mammalian embryogenesis: an initial decrease from zygote to E3.5 is
followed by an increase to E6.5/E7.5 (49), and unique tissue-specific dynamics during/after
organogenesis (59). However, global cytosine methylation shows very little change after birth (60), and
therefore is not highly predictive of biological age or its reduction. In contrast, the age predicted by
epigenetic aging clocks (usually based on several hundred CpG sites) shows strong correlation with age
(r>=0.8), indicating it can be used to predict biological aging and rejuvenation (Table 2).

Overall, this work identifies a natural rejuvenation event during early life and suggests that

organismal aging begins during embryogenesis, approximately at the time of gastrulation. These findings
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provide opportunities for understanding what this early rejuvenation process entails, whether it is similar
to the Yamanaka reprogramming, and whether it may be induced in somatic cells in order to rejuvenate

them.
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Table 1. Embryonic DNA methylation datasets used in this study.

Name Reference Accession Platform Species Samples (number of biological replicates)

Dataset 1 (56) GSE34864 RRBS mouse Zygote (5), 2-cell (4), 4-cell (5), 8-cell (3), ICM (5)
E6.5 (4), E7.5(5)

Dataset2  (49) GSE56697 WGBS mouse 2-cell (2), 4-cell (2), E3.5 (3), E6.5 (2), E7.5 (2),
E13.5(2)

Dataset 3 57 GSE98151 WGBS mouse Zygote (1), early 2 cell (1), late 2 cell (1), 4 cell (1),
8 cell (1), morula (1), ICM (1), trophoblast (1),
E6.5 epiblast (1), E6.5 ext ect (1), E7.5 epiblast (1),
E7.5 extect (1)

Dataset4  (55) GSE121690 scNMT-seq mouse 758 single cells from E4.5, E5.5, E6.5, E7.5

Dataset 5 (61) GSE51239 RRBS mouse ICM (2), trophectoderm (2), E6.5 epiblast (2), E6.5
ext end (2), ESC PO-P5 (17)

Dataset 6 59 ENCSR486XIX WGBS mouse Various tissues from E10.5 to birth (139)

Dataset 7 (62) GSE56515 450K array human Various tissues from GW 9 to GW 22 (34)

Dataset 8  (63) GSE31848 450K array human Various tissues from GW 14 to GW 20 (37)

Dataset 9 (64) GSE69502 450K array human Various tissues from GW 14.5 to 23. (49)

Dataset 10 (63) GSE31848 450K array human ESC P9 - P105 (19), iPSC P5 - P37 (29)

Dataset 11 (65) GSE34869 450K array human ESC P32 -P114 (19), iPSC P12 - P21 (5)

Dataset 12 (66) GSE40909 450K array human ESC P41 - P49 (3), iPSC P6 (2)

Dataset 13 (67) GSE44424 27K array human ESC P29 - P87 (8), iPSC P9-P21 (21)

Dataset 14 (68) GSE51747 27K array human ESC P52 - P64 (3), iPSC P9-P17 (6)

Dataset 15 (63) GSE30653 27K array human ESC P9 —P114 (116), iPSC P4-P69 (46)

Dataset 16 (69) GSE54848 450K array human iPSC P1-P3 (9)

E, gestational day; ESC, embryonic stem cell; P, passage; ext ect, extraembryonic ectoderm; ext end, extraembryonic endoderm; GW,

gestational weeks; iPSC, induced pluripotent stem cell; RRBS, Reduced representation bisulfite sequencing; WGBS, whole genome

bisulfite sequencing
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Table 2. Epigenetic aging clocks used in this study.

Clock Reference Species Tissue Method Age Gender Model no.  Acc.on Age related condition
range clock test sensitive for
sites
Human multi-t.  (/8) human multi 27K array Full F&M EN 353 =096 E.g. mortality, cogn.
lifespan perform., frailty, AD,
PD, WD, centenarian
status, iPSC
Petkovich blood (30) mouse blood RRBS Full M EN 90 R?>=0.9 CR, GHRKO, SD, iPSC
C57BL/6 lifespan
Stubbs multi-t.  (31) mouse multi RRBS Iw-41lw M EN 329 r=0.84 Low fat diet
C57BL/6
Meer multi-t. 33 mouse multi RRBS Full F&M EN 435 R?=0.89 GHRKO,iPSC
C56BL/6 lifespan
Thompson 349 mouse multi  RRBS Full F&M EN 582 r=0.89 CR, Ames dwarf
multi-t. EN mostly lifespan
C57BL/6J,
BALB/cBy
Blood rDNA 35) mouse blood RRBS Full M EN 72 r=0.92 CR, GHRKO, iPSC
C57BL/6 only rDNA lifespan
Multi-t. 'tDNA  This study mouse multi RRBSonly 1.7m- F&M EN 355 1r=0.94 CR, GHRKO, iPSC
C57BL/6 rDNA 21.3m

AD, Alzheimer-disease; CR, calorie-restriction; GHRKO, growth hormone receptor knockout; iPSC, induced pluripotent stem cell; PD,

Parkinson-disease; WD, Werner-syndrome
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Fig. 1. A rejuvenation event during early embryogenesis revealed by aging clocks. (A) Overview of

the model, which posits that germline cells age during development and adulthood and are rejuvenated

in the offspring after conception. The model also suggests that there is a time point corresponding to the

lowest biological age (ground zero). (B) Multi-tissue and blood rDNA clocks applied to five datasets

spanning the first 8§ days of mouse embryogenesis (Table 1, datasets 1-5). We rescaled epigenetic age of

each dataset to the interval [0,1] for comparison (‘relative rDNA age’). 0 represents the lowest epigenetic

age and 1 represent the highest epigenetic age of each dataset. Blue lines indicate the mean of each group;

p-values of two-sided t-test comparing the means of the two groups (before and after E6) are displayed.

(C) Application of four genome-wide epigenetic aging clocks to two available mouse RRBS datasets.

(D) Epigenetic age of human ESCs and iPSCs as a function of passage number. Horvath human multi-

tissue clocks were applied.
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Fig. 2. Organismal aging begins in mid-embryonic development in mouse and human. (A)
Epigenetic age (multi-tissue and blood rDNA clocks) analysis of the dataset that contains both early and
late mouse embryo samples (E13.5 samples are based on primordial germline cells). (B) Application of
genome-wide epigenetic clocks to later stages of mouse embryogenesis (r, Pearson correlation
coefficient; p, p-value of the correlation). (C) The same data as above, but separated by tissue. An
increasing trend is observed for almost all tissues, with few non-significant exceptions. (D) Epigenetic
age dynamics of four independent prenatal human 450k methylation array datasets based on the Horvath
human multi-tissue clock. (E) The same data as above, but separated by tissue (5 significant increases, 9

non-significant increases, 4 non-significant decreases, 0 significant decreases).
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Fig. 3. Epigenetic age of mouse ESCs during early passaging under different culture conditions.
(A) Epigenetic age (by rDNA clocks) of mouse embryonic stem cells after outgrowth (passage 0) and
passage 5 under three different culture conditions (21, both self-renewal supporting inhibitors used; only
one inhibitor; mES, no inhibitor). (B) Application of genome-wide mouse epigenetic clocks to the same

data.


https://doi.org/10.1101/2021.03.11.435028
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435028; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Stubbs multi-t. clock, dataset 1 and 6 Thompson multi-t. clock, dataset 1 and 6
f Dataset 40 - ..i.% Dataset
T 1.0 4 ee . ® Datasetl = 8% sn ® Datasetl
% 5 © Dataset6 % 30 A - ® Dataset6
(=] (o]
E ‘ o E 201 .
2 051 o, ® ® - > e
@ ot ®a C) S 10 H
c e © Py £ ]
< ®es e 3 :
Z 00,7 s® Z  0- 4
[a) ) ® &} 3 ®
se s
° —~10 A S
T T T T T T T T T T T T T T
o Is] n mn o un n o (=] wn n n un n o
=] m O 0B o < S =} m © &8 o < =}
— — ~ — — o~
Embryonic day Embryonic day
Meer multi-t. clock, dataset 1 and 6 Petkovich blood clock, dataset 1 and 6
§ Dataset 12 1 ¢ Dataset
3 25 7 H E ¢ ® Datasetl 3 s ® Datasetl
2 : 28 % e Datasets £ 104 oe ¢ o Datasets
g 0s® _o%¢ 2 o, 0 s
£ Se 8 .= o® = 10.' é
-
o £ [ J ° [}
£
< 10 1 ‘.'n:.: < :
% 3:.3 - ° g 6 - °
54 a® .: :
3 o9 o8 e
T T T T T T T T T T T T T T
o m @ © S < o [S) m © © o < o
— — o~ — — o~
Embryonic day Embryonic day

Fig. 4. Localization of the epigenetic age minimum (ground zero) during mouse embryonic
development. We concatenated results for entire embryogenesis by using the genome-wide mouse

epigenetic clocks indicated. In all cases, the epigenetic age minimum is observed during embryogenesis.
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Supplementary Information

Acquisition and processing of sequencing datasets

Raw sequences were downloaded and extracted using SRA Toolkit. Reads were trimmed and quality
filtered by TrimGalore! v0.6.4 using the --rrbs option for RRBS. Methylation levels were extracted using
Bismark v0.22.2(70) in two separate processes: (i) for rDNA clocks, reads were mapped to the mouse
rDNA sequence (BK000964.3), (ii) for genomic clocks, reads were mapped to the complete mouse
genome sequence (mm10/GRCm38.p6). Methylated and unmethylated cytosines of technical repeats
were summed for each position. In the case of dataset 6, we directly used the available BED files (URLs

were extracted from GEO files).

CpG site filtering and imputation of RRBS/WGBS datasets

Our filtering strategy was optimized for three competing goals: (i) highest possible read coverage; (ii)
highest possible clock site overlap; and (ii1) best (unbiased) sample comparison. We used only the CpG
sites that are covered by at least 5 reads (or 50 in the two highest covered cases when rDNA clocks were
applied on datasets 2 and 3) in at least 90% of the samples of a given dataset. In the case of dataset 6, we
just used the CpG sites that are covered by at least 5 reads without any other restriction (to avoid too
many missing values). We omitted the two lowest quality samples (both were oocytes) of dataset 1 for
genomic analysis. Missing values of clock sites were imputed by the average methylation levels of the
covered clock sites for all samples. Our imputation strategy resulted in a single number for each clock
and dataset and this allowed a less biased comparison of the samples compared to a method that imputes
different values for each sample. We used a clock-site-wise average instead of all-site-wise average
because we supposed that methylation levels of clock CpG sites are closer to each other than to other

ones.
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Application of mouse epigenetic clocks to RRBS/WGBS datasets

In the application of previously developed clocks, we followed the descriptions of authors. All available
mouse clocks that we applied were based on linear regression (Table 2). We used the intercept and
weights provided by the authors. Transformation was also applied in the case of Petkovich blood clock
(30), Stubbs multi-tissue clock (37) and blood rDNA clock (35). In the case of the Stubbs multi-tissue
clock, an initial normalization was applied by the published training set. Applying RRBS-based clocks
with sites scattered across the genome is often challenging, because of a varying number of covered clock
sites, leading to missing values. Therefore, we required the clock site coverage to be at least 25%. RRBS-
based clock sites had no sufficient coverage when we applied them to datasets 2, 3 and 4 (all of them are

WGBS datasets).

Single cell clock workflow

Methylation levels were obtained by the rDNA mapping workflow described above. In the end, we
obtained methylation data for each of the 758 cells separately. We used only the CpG sites that were
covered by at least 5 reads and showed consistent methylation levels (higher than 0.8 or lower than 0.2).
Then, we randomly assigned cells to two groups, for each embryo stage (8 cell groups total). We
calculated the average methylation status for each CpG site of each of the 8 groups (previously,
methylation status was re-assigned to 0 or 1). Finally, we applied rDNA clocks to the 8 groups as it would

be 8 samples from bulk sequencing.

Application of human DNAm clock to 450K methylation array datasets
Datasets were downloaded from GEO database. We re-indexed data to the 27K array and used the R
script ~of the Horvath DNAm  calculator as  described in  the  tutorial

(https://horvath.genetics.ucla.edu/html/dnamage/ TUTORIALT1.pdf). In the case of PSC datasets, we only
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analyzed ESCs derived from normal fertilized blastocysts and iPSCs derived from normal cells (i.e.

immortalized cells were excluded).

Development of a mouse multi-tissue rDNA clock

A multi-tissue mouse RRBS dataset (GSE120132) was used for training and testing the clock by cross-
validation. An additional blood mouse RRBS dataset (GSE80672) was used for testing samples of an
independent study. Raw sequences were downloaded from the SRA database. Reads were trimmed and
quality filtered by TrimGalore! v0.6.4, and methylation levels were extracted using Bismark v0.22.2. by
mapping to the mouse rDNA sequence (BK000964.3). Fastq files of technical repeats were concatenated.
We used only the CpG sites (and only positive-strand cytosines) that are covered in at least 50 reads in
all of the samples of both datasets. We used only the C57BL/6J of the GSE120132 dataset and omitted
muscle samples because we observed low age correlation of the CpG sites of muscle rDNA (fig. S5).
After filtering, 166 samples remained for training and testing (fig. S2A). Then, 5-fold cross-validations
were performed on all of the 166 samples for different lambda parameters of ElasticNet (Scikit-learn
v0.23.2) to find the optimal lambda parameter (fig. S1B). We re-trained a final model (the actual clock)
on the same dataset with the optimal parameter (lambda=0.0001) on the random 80% of all samples and
tested on the remaining samples (fig. S1C, table S1). Our final model showed a similar performance to
the average performance of the cross-validation. However, testing a model on the dataset of the cross-
validation may lead to inflated performance. To resolve this issue, we also examined our model in an
independent test. That is, we tested the multi-tissue clock on 153 of normal (control-fed, wild type)

C57BL/6J blood samples (fig. SIC). We also applied it for age-related conditions (fig. S2).
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Figure S1. Development of a mouse multi-tissue ribosomal DNA methylation (rDNA) clock. (A)

Sample distribution used for training and testing. (B) Finding the optimal lambda parameter (0.0001) of

ElasticNet using 5-fold cross-validation. (C) Performance of the multi-tissue rDNA clock on a multi-

tissue test set and a blood test set, both with normal/control conditions.
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Figure S2. Application of the multi-tissue rDNA clock to various models of aging and to longevity
interventions. (A) Calorie restricted (orange) vs standard diet fed (blue) C57BL/6 mice. (B) Calorie
restricted 21 months old vs standard diet fed 20 months old B6D2F1 mice. (C) Calorie restricted 27
months old vs standard diet fed 27 months old B6D2F1 mice. (D) Growth hormone receptor knockout
mice (6 months old) vs wild type mice (6 months old). (E) Snell dwarf 5-6 months old vs control mice.

(F) Mouse lung and kidney fibroblasts vs fibroblast-derived induced pluripotent stem cells (iPSCs).
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Figure S3. Aging clocks reveal a rejuvenation event during early embryogenesis. (A) Multi-tissue
and blood rDNA clocks applied to five datasets spanning the first 8 days of mouse embryogenesis (Table
1, datasets 1-5). Predicted epigenetic age is displayed (no rescaling is applied). For each plot, we indicate
the number of clock CpG sites that were covered in the application dataset (‘overlap’). Blue lines indicate
the mean of each groups; p-value of two-sided t-test compares the mean of the two groups. (B) Blood
rDNA methylation clock applied to the same five datasets. (C) Application of four genome-wide
epigenetic aging clocks to dataset 1. (D) Application of four genome-wide epigenetic aging clocks to

dataset 5.
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Figure S4. Aging clocks reveal a rejuvenation event during early embryogenesis. (A) - (D), The same

Epigenetic age of

analysis as shown in fig. S3, but separated by sample type (instead of embryonic day)

gametes and adult samples (heart, brain and liver) are also displayed.
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Figure S5. Ribosomal DNA methylation is associated with age in different tissues of C57BL/6J

mice. Spearman’s rank correlation coefficients with age (Rho) for CpGs sites of the rDNA sequence

Significant correlations after Bonferroni correction (p <= 0.05 / n) are indicated by orange color.
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Figure S6. Average methylation level of CpG sites of mouse ribosomal DNA measured in different

datasets. (A) Samples are separated by embryonic day. (B) Samples are separated by type.
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