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The notion that germline cells do not age goes back to the 19th century ideas of August Weismann. 

However, being in a metabolically active state, they accumulate damage and other age-related 

changes over time, i.e., they age. For new life to begin in the same young state, they must be 

rejuvenated in the offspring. Here, we developed a new multi-tissue epigenetic clock and applied 

it, together with other aging clocks, to track changes in biological age during mouse and human 

prenatal development. This analysis revealed a significant decrease in biological age, i.e.  

rejuvenation, during early stages of embryogenesis, followed by an increase in later stages. We 

further found that pluripotent stem cells do not age even after extensive passaging and that the 

examined epigenetic age dynamics is conserved across species. Overall, this study uncovers a 

natural rejuvenation event during embryogenesis and suggests that the minimal biological age (the 

ground zero) marks the beginning of organismal aging.   
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Aging is characterized by a progressive accumulation of damage, leading to loss of physiological 

integrity, impaired function and increased vulnerability to death (1). While the aging process affects the 

entire organism, it is often discussed that the germline does not age, because this lineage is immortal in 

the sense that the germline has reproduced indefinitely since the beginning of life (2–4). This notion dates 

to the 19th century when August Weismann proposed the separation of ageless germline and aging soma. 

However, being in the metabolically active state for two decades or more before its contribution to the 

offspring, human germline accumulates molecular damage, such as modified long-lived proteins, 

epimutations, metabolic by-products, and other age-related deleterious changes (5, 6). It was shown that 

sperm cells exhibit a distinct pattern of age-associated changes (7–9). Accordingly, it was recently 

proposed that germline cells may age and be rejuvenated in the offspring after conception (10, 11). If this 

is the case, there must be a point (or period) of the lowest biological age (here, referred to as the ground 

zero) during the initial phases of embryogenesis (Fig. 1A). Here, we carried out a quantitative, data-

driven test of this idea. 

Due to recent advances in technology, machine learning is flourishing and has led to 

breakthroughs in many areas of science by discovering multivariate relationships (12). Aging and 

developmental biology areas also exploited the potential of machine learning by developing algorithms 

(“aging clocks”) that can estimate chronological age or biological age (i.e. the age based on molecular 

markers) of an organism from a given data (13, 14). As epigenomic changes, which result in 

dysregulation of transcriptional and chromatin networks, are crucial components of aging (15), 

epigenetic clocks, based on methylation levels of certain CpG sites, emerged as a promising molecular 

estimator of biological age (16, 17). These clocks were shown to quantitatively measure numerous 

aspects of human aging (17–22). For example, epigenetic age acceleration was associated with age-

related conditions, such as all-cause mortality (23, 24), cognitive performance (25), frailty (26), 

Parkinson’s disease (27), Down syndrome (28), and Werner syndrome (29). Epigenetic aging clocks were 

also developed for mice and could be used to evaluate longevity interventions, such as calorie restriction 
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and growth hormone receptor knockout (30–36). Most importantly, the clocks developed based on aging 

patterns of mostly adult tissues report the effects of cell rejuvenation upon complete- or partial 

reprogramming of adult fibroblasts into induced pluripotent stem cells (iPSCs) as demonstrated in both 

human and mouse (33, 35, 37–39). Even though iPSCs correspond to an embryonic state and the 

transition to these cells involves major molecular changes, including changes in the epigenome, this 

rejuvenation event can be assessed by epigenetic clocks. Most recently, universal mammalian clocks 

have been developed based on conserved cytosines, whose methylation levels change with age across 

mammalian species (40).  

Considering that epigenetic clocks track the aging process, they may be applied to early 

development to characterize biological age dynamics during that period of life. Recent studies showed 

that clocks may be successfully applied to human fetal development using brain, retina, and cord blood 

samples (41–43). However, epigenetic age dynamics during entire prenatal development for the entire 

organism remained unexplored. Here, we developed a new multi-tissue epigenetic clock using machine 

learning and applied it, together with other existing aging clocks, to assess prenatal development in 

mammals from the perspective of aging. This approach uncovered a rejuvenation period during early 

embryogenesis and the timing of the beginning of aging in mammals. 

 

A rejuvenation event during early embryogenesis. To assess epigenetic age dynamics during 

embryogenesis, we collected available human and mouse DNA methylation datasets (Table 1) and 

subjected them to various epigenetic aging clocks (Table 2). We also developed a multi-tissue ribosomal 

DNA methylation clock (rDNAm) (fig. S1, S2). The rDNA is characterized by a large number of age-

associated CpG sites that exhibit high sequence coverage due to the multiplicity of rDNA in the genome 

(35, 44). The new clock is capable of predicting the epigenetic age of RRBS (reduced representation 

bisulfite sequencing), WGBS (whole-genome bisulfite sequencing) and even pseudo-bulk single cell 

sequencing samples in various tissues. All clocks we employed showed high accuracy (r >= 0.8) in age 
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prediction of test samples and were sensitive to age-related conditions and longevity interventions (Table 

2).  

First, we examined the behavior of rDNAm clocks when applied to five independent mouse early 

embryonic datasets. We found that the mean epigenetic age of E6.5/E7.5 embryos was consistently lower 

than in earlier stages of embryogenesis (Fig. 1B, fig. S3AB, fig. S4AB). We also applied four genome-

wide RRBS-based epigenetic aging clocks to RRBS datasets (datasets 1 and 2). This again revealed that 

the epigenetic age of E6.5/E7.5 embryos is lower than during the period from zygote to blastocyst (Fig. 

1C, fig. S3CD, fig. S4CD). Thus, epigenetic age decreases during early embryogenesis, and therefore 

embryonic cells not only do not age during this period but at some point get rejuvenated.  

Previously, a near-zero epigenetic age of human embryonic stem cells and iPSCs was 

demonstrated by the Horvath multi-tissue clock even after extensive passaging (18). We analyzed iPSCs 

and ESCs based on several currently available datasets to further assess whether these cells, which 

correspond to early embryogenesis, age (Fig. 1D). The epigenetic age of cells was very low (mostly 

below zero) even after more than 100 passages. Even under artificial culture conditions, at the level of 

oxygen above physiological, and with the number of passages well beyond physiological (which may 

lead to the accumulation of deleterious mutations), either no or very little increase in epigenetic age was 

observed. These findings support the notion that cells corresponding to the early stages of embryogenesis 

essentially do not age. 

 

Organismal aging begins during mid-embryonic development in mouse and human. We quantified 

the epigenetic age by applying rDNA clocks to the only available mouse dataset that contains both early- 

and late embryonic samples (Fig. 2A). The epigenetic age at E6.5 and E7.5 was significantly lower than 

at E13.5 (primordial germline cells that are the direct progenitors of sperm and oocytes).  

We also assessed the epigenetic age of mouse embryos across 9 time points from embryonic day 

10.5 to birth (dataset 6) by genome-wide methylation clocks. A consistent increase in epigenetic age was 
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observed during this period both when considering all data (Fig. 2B) and when separated by tissue (Fig. 

2C). In addition, we analyzed human prenatal datasets by applying the Horvath multi-tissue DNAm clock 

to four independent human 450K methylation array datasets (datasets 7-9). An increase (or in some cases 

no change) in epigenetic age was observed both when considering all data (Fig. 2D) and tissue-by-tissue 

(Fig. 2E). Thus, at a certain point during embryonic development in mouse and human the biological age 

begins to increase in most or all tissues. Considering that epigenetic clocks track the aging process, the 

data suggest that by then organisms already age.   

 

Epigenetic age of mouse ESCs during early passaging. We assessed the epigenetic age of mouse 

embryonic stem cells after outgrowth (passage 0) and early passaging (passage 5) under three different 

culture conditions (Fig. 3AB). In the absence of two inhibitors (PD0325901 that causes blockade of 

differentiation and CHIR99021 that supports self-renewal (45)), we observed a lower epigenetic age after 

outgrowth compared to the condition when the two inhibitors were included. The data suggest that ESCs 

under incomplete self-renewal culture conditions may continue their development (without self-renewal) 

and rejuvenate, similar to what we observed in vivo (Fig. 1).  

 

Localization of the epigenetic age minimum (ground zero) during mouse embryonic development. 

We concatenated the results for early and later stages of embryogenesis by applying genome-wide mouse 

epigenetic clocks (Fig. 4). The variable number of overlapped clock sites across all stages caused a batch 

effect that resulted in a shift of the actual predicted age between early and late stages. However, the 

epigenetic age dynamics showed a clear U-shaped pattern in every case, with the minimum at E7.5 in 

three cases and E10.5 in one case. The exact localization of the minimum was not possible with the data 

currently available, and it may lie in the range from E4.5 to E10.5. The data suggest that organismal 

aging begins at that period after the rejuvenation event.  
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Concluding comments. Back in the 19th century, August Weismann proposed the idea of heritable non-

aging germline and disposable aging soma. Yet, the germline shows molecular changes characteristic of 

aging (7–9). Our study suggests that the germline ages but is rejuvenated in the offspring at some point 

during early embryogenesis. This rejuvenation occurs during early post-implantation stages when the 

offspring reaches its minimal biological age. We propose that this minimum, the ground zero, marks the 

beginning of aging of an organism. The offspring proceeds naturally to ground zero from the zygote 

stage, but somatic cells may also be forced to this young stage, e.g. by reprogramming with Yamanaka 

factors (or by other methods), generating iPSCs. In vivo amelioration of age-associated hallmarks was 

already demonstrated by partial reprogramming (46). Most recently, partial reprogramming restored 

vision in mice by resetting youthful epigenetic information (47). Thus, both soma and germline may 

age and be rejuvenated. 

 Early embryogenesis, where we observed a rejuvenation period, is also accompanied by other 

molecular changes in preparation for organismal life, such as a gradual extension of telomeres (48), 

waves of global demethylation and methylation (49), transition from the use of maternal gene products 

to those of the embryo, inactivation of chromosome X, and development of monoallelic gene expression 

(50). Rejuvenation should also involve a decrease in molecular damage and other deleterious age-related 

changes that accumulate in the parental germline (51, 52). The data indicate that ground zero lies between 

E4.5 and E10.5 in mice, and the current estimates suggest that it is close to E6.5/E7.5. This period 

approximately corresponds to gastrulation, where three germ layers are formed. However, further studies 

are needed to precisely localize ground zero in humans and mice.  

The beginning of aging is a subject to debate. It is often discussed that aging begins after 

completion of development, at the onset of reproduction, and at the time when strength of natural 

selection begins to decrease. However, our recent analysis of deleterious age-related changes revealed 

that aging begins early in life, even before birth (53). Our current work now pinpoints the beginning of 

aging to ground zero.   
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 CpG sites associated with aging and lifespan may be both hypomethylated and hypermethylated 

upon aging (54). An attractive possibility is that rejuvenation may be supported by remethylation rather 

than by demethylation. Indeed, global remethylation was reported between E3.5 and E7.5 (49, 55–57), 

which is the same period where we observe rejuvenation. If global remethylation is indeed associated 

with epigenetic age decrease, ground zero and global methylation maximum should correspond to the 

same developmental stage. This would make sense from the perspective that, in order to remove 

“epigenetic damage”, the genome should be first partially demethylated and then remethylated again.  

 We also found that cells corresponding to early embryogenesis, i.e. ESCs and iPSCs, do not age 

when cultured and passaged. However, early passaging seems to result in epigenetic age reduction. 

Consistent with this age reduction, it was found that initial passaging induces telomere extension, and 

that mice generated from these rejuvenated cells live longer and are better protected from age-related 

diseases than the mice from the same cells that were not passaged (58). This suggests an exciting 

possibility that the natural rejuvenation event we uncover in this work may be targeted, such that 

organisms may begin aging at a lower biological age and therefore may achieve longer lifespan and 

extended healthspan. This may also be useful during in vitro fertilization, wherein embryos with a lower 

biological age may be prioritized.  

 Global cytosine methylation (average methylation level of CpG sites representing the whole 

genome) changes in waves during mammalian embryogenesis: an initial decrease from zygote to E3.5 is 

followed by an increase to E6.5/E7.5 (49), and unique tissue-specific dynamics during/after 

organogenesis (59). However, global cytosine methylation shows very little change after birth (60), and 

therefore is not highly predictive of biological age or its reduction. In contrast, the age predicted by 

epigenetic aging clocks (usually based on several hundred CpG sites) shows strong correlation with age 

(r >= 0.8), indicating it can be used to predict biological aging and rejuvenation (Table 2).  

Overall, this work identifies a natural rejuvenation event during early life and suggests that 

organismal aging begins during embryogenesis, approximately at the time of gastrulation. These findings 
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provide opportunities for understanding what this early rejuvenation process entails, whether it is similar 

to the Yamanaka reprogramming, and whether it may be induced in somatic cells in order to rejuvenate 

them. 
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Table 1. Embryonic DNA methylation datasets used in this study.   

Name Reference Accession Platform Species Samples (number of biological replicates) 

Dataset 1 (56) GSE34864 RRBS mouse Zygote (5), 2-cell (4), 4-cell (5), 8-cell (3), ICM (5) 

E6.5 (4), E7.5 (5) 

Dataset 2 (49) GSE56697 WGBS mouse 2-cell (2), 4-cell (2), E3.5 (3), E6.5 (2), E7.5 (2), 

E13.5 (2) 

Dataset 3 (57) GSE98151 WGBS mouse Zygote (1), early 2 cell (1), late 2 cell (1), 4 cell (1), 

8 cell (1), morula (1), ICM (1), trophoblast (1), 

E6.5 epiblast (1), E6.5 ext ect (1), E7.5 epiblast (1), 

E7.5 ext ect (1) 

Dataset 4 (55) GSE121690 scNMT-seq mouse 758 single cells from E4.5, E5.5, E6.5, E7.5 

Dataset 5 (61) GSE51239 RRBS mouse ICM (2), trophectoderm (2), E6.5 epiblast (2), E6.5 

ext end (2), ESC P0-P5 (17) 

Dataset 6 (59) ENCSR486XIX WGBS mouse Various tissues from E10.5 to birth (139) 

Dataset 7 (62) GSE56515 450K array human Various tissues from GW 9 to GW 22 (34) 

Dataset 8 (63) GSE31848 450K array human Various tissues from GW 14 to GW 20 (37) 

Dataset 9 (64) GSE69502 450K array human Various tissues from GW 14.5 to 23. (49) 

Dataset 10 (63) GSE31848 450K array human ESC P9 - P105 (19), iPSC P5 - P37 (29) 

Dataset 11 (65) GSE34869 450K array human ESC P32 - P114 (19), iPSC P12 - P21 (5) 

Dataset 12 (66) GSE40909 450K array human ESC P41 - P49 (3), iPSC P6 (2) 

Dataset 13 (67) GSE44424 27K array human ESC P29 - P87 (8), iPSC P9-P21 (21) 

Dataset 14 (68) GSE51747 27K array human ESC P52 - P64 (3), iPSC P9-P17 (6) 

Dataset 15 (63) GSE30653 27K array human ESC P9 – P114 (116), iPSC P4-P69 (46) 

Dataset 16 (69) GSE54848 450K array human iPSC P1-P3 (9) 

E, gestational day; ESC, embryonic stem cell; P, passage; ext ect, extraembryonic ectoderm; ext end, extraembryonic endoderm; GW, 

gestational weeks; iPSC, induced pluripotent stem cell; RRBS, Reduced representation bisulfite sequencing; WGBS, whole genome 

bisulfite sequencing  
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Table 2. Epigenetic aging clocks used in this study. 

Clock Reference Species Tissue Method Age 

range 

 

Gender Model no. 

clock 

sites 

Acc. on 

test 

Age related condition 

sensitive for 

Human multi-t.  (18) human multi 27K array Full  

lifespan 

F & M EN 353 r=0.96 E.g. mortality, cogn.  

perform., frailty, AD, 

PD, WD, centenarian 

status, iPSC 

Petkovich blood (30) mouse 

C57BL/6 

blood RRBS Full  

lifespan 

M EN 90 R2=0.9 CR, GHRKO, SD, iPSC 

Stubbs multi-t. (31) mouse 

C57BL/6 

multi RRBS 1w-41w M EN 329 r=0.84 Low fat diet 

Meer multi-t. (33) mouse 

C56BL/6 

multi RRBS Full  

lifespan 

F & M EN 435 R2=0.89 GHRKO, iPSC 

Thompson  

multi-t. EN 

(34) mouse 

mostly 

C57BL/6J, 

BALB/cBy 

multi RRBS Full  

lifespan 

F & M EN 582 r=0.89 CR, Ames dwarf 

Blood rDNA (35) mouse 

C57BL/6 

blood RRBS   

only rDNA  

Full  

lifespan 

M EN 72 r=0.92 CR, GHRKO, iPSC 

Multi-t. rDNA This study mouse 

C57BL/6 

multi RRBS only 

rDNA 

1.7m-

21.3m 

F & M EN 355 r=0.94 CR, GHRKO, iPSC 

AD, Alzheimer-disease; CR, calorie-restriction; GHRKO, growth hormone receptor knockout; iPSC, induced pluripotent stem cell; PD, 

Parkinson-disease; WD, Werner-syndrome 
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Fig. 1. A rejuvenation event during early embryogenesis revealed by aging clocks. (A) Overview of 

the model, which posits that germline cells age during development and adulthood and are rejuvenated 

in the offspring after conception. The model also suggests that there is a time point corresponding to the 

lowest biological age (ground zero). (B) Multi-tissue and blood rDNA clocks applied to five datasets 

spanning the first 8 days of mouse embryogenesis (Table 1, datasets 1-5). We rescaled epigenetic age of 

each dataset to the interval [0,1] for comparison (‘relative rDNA age’). 0 represents the lowest epigenetic 

age and 1 represent the highest epigenetic age of each dataset. Blue lines indicate the mean of each group; 

p-values of two-sided t-test comparing the means of the two groups (before and after E6) are displayed. 

(C) Application of four genome-wide epigenetic aging clocks to two available mouse RRBS datasets.  

(D)  Epigenetic age of human ESCs and iPSCs as a function of passage number. Horvath human multi-

tissue clocks were applied.  
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Fig. 2. Organismal aging begins in mid-embryonic development in mouse and human. (A) 

Epigenetic age (multi-tissue and blood rDNA clocks) analysis of the dataset that contains both early and 

late mouse embryo samples (E13.5 samples are based on primordial germline cells). (B) Application of 

genome-wide epigenetic clocks to later stages of mouse embryogenesis (r, Pearson correlation 

coefficient; p, p-value of the correlation). (C) The same data as above, but separated by tissue. An 

increasing trend is observed for almost all tissues, with few non-significant exceptions. (D) Epigenetic 

age dynamics of four independent prenatal human 450k methylation array datasets based on the Horvath 

human multi-tissue clock. (E) The same data as above, but separated by tissue (5 significant increases, 9 

non-significant increases, 4 non-significant decreases, 0 significant decreases).  
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Fig. 3. Epigenetic age of mouse ESCs during early passaging under different culture conditions. 

(A) Epigenetic age (by rDNA clocks) of mouse embryonic stem cells after outgrowth (passage 0) and 

passage 5 under three different culture conditions (2i, both self-renewal supporting inhibitors used; only 

one inhibitor; mES, no inhibitor). (B) Application of genome-wide mouse epigenetic clocks to the same 

data. 
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Fig. 4. Localization of the epigenetic age minimum (ground zero) during mouse embryonic 

development. We concatenated results for entire embryogenesis by using the genome-wide mouse 

epigenetic clocks indicated. In all cases, the epigenetic age minimum is observed during embryogenesis.     
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Supplementary Information 

 

Acquisition and processing of sequencing datasets 

Raw sequences were downloaded and extracted using SRA Toolkit. Reads were trimmed and quality 

filtered by TrimGalore! v0.6.4 using the --rrbs option for RRBS. Methylation levels were extracted using 

Bismark v0.22.2(70) in two separate processes: (i) for rDNA clocks, reads were mapped to the mouse 

rDNA sequence (BK000964.3), (ii) for genomic clocks, reads were mapped to the complete mouse 

genome sequence (mm10/GRCm38.p6). Methylated and unmethylated cytosines of technical repeats 

were summed for each position. In the case of dataset 6, we directly used the available BED files (URLs 

were extracted from GEO files).  

 

CpG site filtering and imputation of RRBS/WGBS datasets 

Our filtering strategy was optimized for three competing goals: (i) highest possible read coverage; (ii) 

highest possible clock site overlap; and (iii) best (unbiased) sample comparison. We used only the CpG 

sites that are covered by at least 5 reads (or 50 in the two highest covered cases when rDNA clocks were 

applied on datasets 2 and 3) in at least 90% of the samples of a given dataset. In the case of dataset 6, we 

just used the CpG sites that are covered by at least 5 reads without any other restriction (to avoid too 

many missing values).  We omitted the two lowest quality samples (both were oocytes) of dataset 1 for 

genomic analysis. Missing values of clock sites were imputed by the average methylation levels of the 

covered clock sites for all samples. Our imputation strategy resulted in a single number for each clock 

and dataset and this allowed a less biased comparison of the samples compared to a method that imputes 

different values for each sample. We used a clock-site-wise average instead of all-site-wise average 

because we supposed that methylation levels of clock CpG sites are closer to each other than to other 

ones.  
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Application of mouse epigenetic clocks to RRBS/WGBS datasets 

In the application of previously developed clocks, we followed the descriptions of authors. All available 

mouse clocks that we applied were based on linear regression (Table 2). We used the intercept and 

weights provided by the authors. Transformation was also applied in the case of Petkovich blood clock 

(30), Stubbs multi-tissue clock (31) and blood rDNA clock (35). In the case of the Stubbs multi-tissue 

clock, an initial normalization was applied by the published training set. Applying RRBS-based clocks 

with sites scattered across the genome is often challenging, because of a varying number of covered clock 

sites, leading to missing values. Therefore, we required the clock site coverage to be at least 25%. RRBS-

based clock sites had no sufficient coverage when we applied them to datasets 2, 3 and 4 (all of them are 

WGBS datasets).  

 

Single cell clock workflow 

Methylation levels were obtained by the rDNA mapping workflow described above. In the end, we 

obtained methylation data for each of the 758 cells separately. We used only the CpG sites that were 

covered by at least 5 reads and showed consistent methylation levels (higher than 0.8 or lower than 0.2). 

Then, we randomly assigned cells to two groups, for each embryo stage (8 cell groups total). We 

calculated the average methylation status for each CpG site of each of the 8 groups (previously, 

methylation status was re-assigned to 0 or 1). Finally, we applied rDNA clocks to the 8 groups as it would 

be 8 samples from bulk sequencing.   

 

Application of human DNAm clock to 450K methylation array datasets 

Datasets were downloaded from GEO database. We re-indexed data to the 27K array and used the R 

script of the Horvath DNAm calculator as described in the tutorial 

(https://horvath.genetics.ucla.edu/html/dnamage/TUTORIAL1.pdf). In the case of PSC datasets, we only 
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analyzed ESCs derived from normal fertilized blastocysts and iPSCs derived from normal cells (i.e. 

immortalized cells were excluded). 

 

Development of a mouse multi-tissue rDNA clock 

A multi-tissue mouse RRBS dataset (GSE120132) was used for training and testing the clock by cross-

validation. An additional blood mouse RRBS dataset (GSE80672) was used for testing samples of an 

independent study. Raw sequences were downloaded from the SRA database. Reads were trimmed and 

quality filtered by TrimGalore! v0.6.4, and methylation levels were extracted using Bismark v0.22.2. by 

mapping to the mouse rDNA sequence (BK000964.3). Fastq files of technical repeats were concatenated. 

We used only the CpG sites (and only positive-strand cytosines) that are covered in at least 50 reads in 

all of the samples of both datasets. We used only the C57BL/6J of the GSE120132 dataset and omitted 

muscle samples because we observed low age correlation of the CpG sites of muscle rDNA (fig. S5). 

After filtering, 166 samples remained for training and testing (fig. S2A). Then, 5-fold cross-validations 

were performed on all of the 166 samples for different lambda parameters of ElasticNet (Scikit-learn 

v0.23.2) to find the optimal lambda parameter (fig. S1B). We re-trained a final model (the actual clock) 

on the same dataset with the optimal parameter (lambda=0.0001) on the random 80% of all samples and 

tested on the remaining samples (fig. S1C, table S1). Our final model showed a similar performance to  

the average performance of the cross-validation. However, testing a model on the dataset of the cross-

validation may lead to inflated performance. To resolve this issue, we also examined our model in an 

independent test. That is, we tested the multi-tissue clock on 153 of normal (control-fed, wild type) 

C57BL/6J blood samples (fig. S1C). We also applied it for age-related conditions (fig. S2).  
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Figure S1. Development of a mouse multi-tissue ribosomal DNA methylation (rDNA) clock. (A) 

Sample distribution used for training and testing. (B) Finding the optimal lambda parameter (0.0001) of 

ElasticNet using 5-fold cross-validation. (C) Performance of the multi-tissue rDNA clock on a multi-

tissue test set and a blood test set, both with normal/control conditions. 
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Figure S2. Application of the multi-tissue rDNA clock to various models of aging and to longevity 

interventions. (A) Calorie restricted (orange) vs standard diet fed (blue) C57BL/6 mice. (B) Calorie 

restricted 21 months old vs standard diet fed 20 months old B6D2F1 mice. (C) Calorie restricted 27 

months old vs standard diet fed 27 months old B6D2F1 mice. (D) Growth hormone receptor knockout 

mice (6 months old) vs wild type mice (6 months old). (E) Snell dwarf 5-6 months old vs control mice. 

(F) Mouse lung and kidney fibroblasts vs fibroblast-derived induced pluripotent stem cells (iPSCs). 
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Figure S3. Aging clocks reveal a rejuvenation event during early embryogenesis. (A) Multi-tissue 

and blood rDNA clocks applied to five datasets spanning the first 8 days of mouse embryogenesis (Table 

1, datasets 1-5). Predicted epigenetic age is displayed (no rescaling is applied). For each plot, we indicate 

the number of clock CpG sites that were covered in the application dataset (‘overlap’). Blue lines indicate 

the mean of each groups; p-value of two-sided t-test compares the mean of the two groups. (B) Blood 

rDNA methylation clock applied to the same five datasets. (C) Application of four genome-wide 

epigenetic aging clocks to dataset 1. (D) Application of four genome-wide epigenetic aging clocks to 

dataset 5. 
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Figure S4. Aging clocks reveal a rejuvenation event during early embryogenesis. (A) - (D), The same 

analysis as shown in fig. S3, but separated by sample type (instead of embryonic day). Epigenetic age of 

gametes and adult samples (heart, brain and liver) are also displayed. 
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Figure S5. Ribosomal DNA methylation is associated with age in different tissues of C57BL/6J 

mice. Spearman’s rank correlation coefficients with age (Rho) for CpGs sites of the rDNA sequence. 

Significant correlations after Bonferroni correction (p <= 0.05 / n) are indicated by orange color.   
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Figure S6. Average methylation level of CpG sites of mouse ribosomal DNA measured in different 

datasets. (A) Samples are separated by embryonic day. (B) Samples are separated by type. 
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