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 2 

ABSTRACT 25 

Background: Pediatric cancers typically have a distinct genomic landscape when compared to 26 

adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive 27 

tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-28 

generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be 29 

confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous 30 

computational tools are available to identify fusions from supporting RNA-Seq reads, yet each 31 

algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior 32 

approach currently exists. To overcome these challenges, we have developed an ensemble fusion 33 

calling approach to increase the accuracy of identifying fusions. 34 

Results: Our ensemble fusion detection approach utilizes seven fusion calling algorithms: Arriba, 35 

CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a 36 

fully automated pipeline using Docker and AWS serverless technology. This method uses paired 37 

end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify 38 

fusions detected by a consensus of at least three algorithms. These consensus fusion results are 39 

filtered by comparison to an internal database to remove likely artifactual fusions occurring at 40 

high frequencies in our internal cohort, while a “known fusion list” prevents failure to report 41 

known pathogenic events. We have employed the ensemble fusion-calling pipeline on RNA-Seq 42 

data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved 43 

protocol.  The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 44 

hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline 45 

and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our 46 

cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF 47 
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fusions. Following clinical confirmation and reporting in the patient’s medical record, both known 48 

and novel fusions provided medically meaningful information. 49 

Conclusions: Our ensemble fusion detection pipeline offers a streamlined approach to discover 50 

fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. 51 

Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing 52 

clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted 53 

therapies. 54 

 55 

BACKGROUND 56 

Globally, there are approximately 300,000 pediatric and adolescent cases of cancer 57 

diagnosed each year [1, 2]. While advances in medicine have led to a drastic improvement in 5-58 

year overall survival rates (up to 84% in children under 15), pediatric cancer remains the most 59 

common cause of death by disease in developed countries [3, 4]. Pediatric cancers are defined by a 60 

distinct genomic landscape when compared to adult cancers, which includes an overall low 61 

number of somatic single nucleotide variants, common driver fusions and epigenetic changes that 62 

drive a specific transcriptional program. Pediatric cancers are often considered embryonic in 63 

origin and demonstrate a significant germline predisposition component approaching 10% [5-7]. 64 

Many pediatric tumors contain gene fusions resulting from the juxtaposition of two genes 65 

(ADDITIONAL FILE 1: FIGURE S1)[6]. Fusions typically occur through chromosomal rearrangements, 66 

and often lead to dysregulated gene expression of one or both gene partners [8-11]. Fusions can 67 

also generate chimeric oncoproteins, wherein functional domains from both genes are retained, 68 

often leading to aberrant and strong activation of nonspecific downstream targets [12]. The 69 

alterations in gene expression and activation of downstream targets induced by fusions are 70 
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considered to be oncogenic events in pediatric cancer and increasingly may indicate response to 71 

specific targeted therapies. 72 

The identification of an oncogenic fusion can provide medically meaningful information in 73 

the context of diagnosis, prognosis, and treatment regimens in pediatric cancers. Fusions may 74 

provide diagnostic evidence for a specific histological subgroup. For example, EWSR1-FLI1 fusions 75 

are highly associated with Ewing sarcoma, while the presence of a C11orf95-RELA fusion aids in 76 

subgrouping supratentorial ependymomas [12]. The detection of certain fusions, such as BCR-ABL 77 

in acute lymphocytic leukemia, can be used as a surrogate for residual tumor load and treatment 78 

response [13]. Fusions may also provide prognostic indication, such as KIAA1549-BRAF in low 79 

grade astrocytomas, which have a more favorable outcome compared to non-BRAF fused tumors 80 

[14, 15]. In addition, fusions that involve kinases can present therapeutic targets, including FGFR1-81 

TACC1, FGFR3-TACC3, NPM1-ALK, and NTRK fusions [2, 12, 16-19]. 82 

However, regardless of the clear clinical benefits of characterizing fusion events in a given 83 

patient’s tumor, accurate identification of fusions from next generation sequencing DNA data 84 

alone is not straightforward and they often go undiscovered. In particular, many fusions are not 85 

detectable by exome sequencing (ES) due to breakpoint locations that frequently occur in non-86 

coding or intronic regions which may not have corresponding capture probes. Even whole genome 87 

sequencing (WGS) NGS data has proved difficult to evaluate complex rearrangements resulting in 88 

gene fusions due to a high false positive rate and due to the limitations of short read lengths [20, 89 

21]. By contrast, next-generation RNA sequencing data, or RNA-Sequencing (RNA-Seq), offers an 90 

unbiased data type suitable for fusion detection, while also providing information about the 91 

expression of fusion transcripts, including multiple isoforms, and fusions that occur due to 92 

aberrant splicing events [22, 23].  93 
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While RNA-Seq is a powerful tool for fusion detection, it is not without its limitations. 94 

Notably, there is currently a major deficit in our ability to accurately identify fusions in spite of 95 

having many computational approaches available. Here, consistently identifying gene fusion 96 

events with high sensitivity and precision using one algorithm is unlikely and this is of critical 97 

importance in a clinical diagnostic setting [12]. Computational approaches that have been tuned 98 

for high sensitivity are limited by also calling numerous false positives, requiring extensive 99 

manual review of data, while those with a low false discovery rate (FDR) often miss true positives 100 

due to over-filtering [12]. To overcome these complications of sensitivity and specificity, we have 101 

employed an ensemble pipeline, which merges results from seven algorithmic approaches to 102 

identify, filter and output prioritized fusion predictions. 103 

Another common issue encountered in fusion prediction is the identification of likely non-104 

pathogenic fusions, due both to read-through events and fusions occurring in non-disease 105 

involved (normal) genomes.[12, 24, 25] We addressed these sources of false positivity through the 106 

implementation of a filtering strategy that removes known normal fusions and RNA transcription 107 

read-through events, based on internal frequency of detection and location of chromosomal 108 

breakpoints. Lastly, to prevent over-filtering and inadvertent removal of previously described 109 

known pathogenic fusion events, we have developed and continually update a list containing 110 

known pathogenic fusion partners, that will return any data-supported fusions to the output list of 111 

prioritized fusion results for further evaluation. 112 

The ensemble fusion detection pipeline outperformed all single algorithm methods we 113 

evaluated, achieving high levels of sensitivity, while simultaneously minimizing false positive calls 114 

and non-clinically relevant fusion predictions. Here, we describe our ensemble fusion detection 115 

approach, its performance on commercial control reference standards with known fusions, and its 116 

implementation on a pediatric cohort consisting of rare, treatment refractory, or relapsed cancers 117 
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and hematologic diseases. Utilization of our ensemble approach resulted in a diagnostic yield of 118 

approximately 30% in our cohort, identified novel fusion partners, and has provided diagnostic 119 

information and/or targeted treatment options for this patient population. 120 

 121 

RESULTS 122 

Development and optimization of ensemble pipeline on a control reference standard  123 

Identification of gene fusions through the use of a single algorithm is often associated with 124 

low specificity and poor precision [12]. Given prior literature supporting multi-algorithmic 125 

approaches to improve upon these deficits, we studied the intricacies of several fusion detection 126 

algorithms, and applied a defined set of algorithms with desired properties, aimed at detecting 127 

true positive fusions while minimizing false positive fusions [25-27]. After evaluating each 128 

algorithm’s output, we developed our ensemble fusion detection pipeline that combines output 129 

consensus calls from seven different computational approaches (FIGURE 1A), calculates the 130 

concordant fusion partners and breakpoints, and filters this output list based on internal 131 

frequency, reads of evidence, and breakpoint location. A list of known pathogenic fusions rescues 132 

any known pathogenic fusion gene partners with suitable algorithmic and read support for further 133 

evaluation (ADDITIONAL FILE 1: TABLE S3). 134 

 To optimize the approach, we utilized a reference standard from a commercial provider 135 

(Seraseq Fusion RNA, SeraCare, Milford, MA), containing synthetic RNAs representing 14 cancer-136 

associated fusions in varying proportions (ADDITIONAL FILE 1: TABLES S1 AND S2). Data generated 137 

from these RNA-Seq libraries, performed as replicates for a range of dilutions, were analyzed 138 

using the ensemble pipeline. We compared the output derived from a consensus of two or more 139 

callers to that from a consensus of three or more callers by calculating sensitivity (# of Seraseq 140 

fusions identified)/(14 possible Seraseq fusions), and precision (# of Seraseq fusions 141 
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identified)/(# of total fusions identified) prior to filtering or known fusion list comparison. The 142 

undiluted reference standard with consensus of at least two callers, had a sensitivity of 100% and 143 

precision of 36.36%. Inclusion of the knowledgebase filtering step reduced the sensitivity to 144 

85.71% while increasing the precision to 77.42%, and the known fusion list rescue step increased 145 

sensitivity to 100% and precision to 80% (ADDITIONAL FILE 1: TABLE S5, FIGURE S6A). By increasing 146 

the consensus requirement to three callers, rather than just two, the prefiltered sensitivity was 147 

100% and precision was 93.33%. Inclusion of the filtering step reduced the sensitivity to 85.71% 148 

while increasing the precision to 100%, and known fusion list rescue increased sensitivity to 149 

100% and precision to 100% (TABLE 2; ADDITIONAL FILE 1: FIGURE S6A). The inclusion of the known 150 

fusion list prevented the removal of known Seraseq fusions, due to too few reads of evidence or 151 

number of callers providing support, as well as a single Seraseq fusion, EML4-ALK, which was 152 

present at an artificially high frequency in our database (24.7%) due to false positive calls by 153 

FusionCatcher. Implementation of the known fusion list led to sensitivity scores of 100% for both 154 

levels of caller consensus. The individual fusion detection algorithms ranged in sensitivity and 155 

precision, and while certain algorithms are able to maintain high levels of sensitivity in addition to 156 

moderate levels of precision, such as STAR-Fusion (sensitivity = 100%, precision = 43.75%), 157 

others such as FusionCatcher (sensitivity = 92.86%, precision = 4.34%) and CICERO (sensitivity = 158 

100%, precision 1.06%) had high levels of sensitivity with very low precision levels (TABLE 2; 159 

ADDITIONAL FILE 2: TABLE S5). When considering the overall results from undiluted and serial 160 

dilutions of the reference standard, the required overlap of at least three callers, with filtering and 161 

utilization of the known fusion list, led to significantly fewer total fusions identified compared to 162 

two consensus callers (p = 1.86E-07)(TABLE 2; ADDITIONAL FILE 1: FIGURE S6B, TABLE S6). The 163 

ensemble pipeline results obtained from various reference standard dilutions, with a minimum of 164 

three callers in consensus, using filtering and known fusion list rescue are shown (FIGURE 1B; 165 
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ADDITIONAL FILE 2: TABLE S5). The optimized ensemble pipeline, consisting of a consensus of three 166 

callers, filtering, and the known fusion list, maintained high levels of sensitivity, (at least 90.48%), 167 

while maintaining 100% precision as low as the 1:50 dilution of the reference standard 168 

(ADDITIONAL FILE 2: TABLE S5). In addition to the high levels of sensitivity and precision, the total 169 

number of fusions identified by this optimized ensemble pipeline in undiluted and diluted samples 170 

was significantly fewer than the number identified by individual fusion detection algorithms, 171 

including STAR-Fusion (p = 1.77E-12), CICERO (p = 3.39E-14) and FusionCatcher (p = 1.00E-172 

08)(ADDITIONAL FILE 1, TABLE S6). These results highlights the removal of false positive fusions, 173 

which includes artifactual and benign fusion events, and subsequent reduction in manual 174 

evaluation requirements (ADDITIONAL FILE 1: FIGURE S6C,D). Notably, we only considered the 14 175 

Seraseq synthetic fusions as true positives. While fusions may exist within the GM24385 cell line, 176 

in the optimized ensemble approach all of these fusions were filtered out due to either high 177 

frequency across our cohort or supporting read evidence below our minimum threshold, 178 

suggesting that they are likely to be artifactual in nature. 179 

 180 

Implementation of the ensemble approach on an in-house pediatric cancer and hematologic disease 181 

cohort 182 

Having demonstrated the efficacy of the optimized ensemble fusion detection pipeline 183 

using synthetic fusion samples, we further evaluated the utility of the pipeline on RNA-Seq data 184 

obtained from 229 patient samples, obtained from three prospective pediatric cancer and 185 

hematologic disease studies at Nationwide Children’s Hospital (NCH) (ADDITIONAL FILE 1: FIGURE 186 

S2). Our ensemble pipeline identified significantly fewer total predicted fusions post-filtering, 187 

compared to all other single callers (FIGURE 2A; ADDITIONAL FILE 1: TABLE S7). Applying the known 188 

fusion list rescue altered the average number of fusions identified overall, as an average of 3.88 189 
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fusions per case were identified by 3 or more callers, while an average of 3.93 fusions were 190 

identified by 3 or more callers after applying the known fusion list; a total of 11 fusions were 191 

rescued by this approach, of which 1 (KIAA1549-BRAF; ADDITIONAL FILE 3: TABLE S8) was clinically 192 

relevant . The retained KIAA1549-BRAF fusion was identified by three callers, but was initially 193 

filtered out due to too few reads of evidence, possibly due to either low expression, low tumor 194 

cellularity or clonality (FIGURE 2D). In total, 67 clinically relevant fusions, identified in 67 different 195 

cases, (33 CNS, 7 heme, and 27 solid tumor; ADDITIONAL FILE 1: FIGURE S7) were discovered using 196 

the optimized ensemble pipeline with automated filtering, including the known fusion list feature, 197 

and a consensus of three callers (29.3% of tumors contained a clinically relevant fusion). 198 

Regardless of  source material, there was a roughly a 30% yield; with clinically relevant fusion 199 

identification in 44 of 148 frozen samples (30% yield), 19 of 68 FFPE samples (28% yield), and 4 200 

of 13 other samples (31% yield), which included blood, cerebral spinal fluid, or bone marrow 201 

(ADDITIONAL FILE 1: FIGURE S7). No single fusion detection algorithm was able to identify all 67 202 

fusions. While JAFFA was the most sensitive algorithm, identifying the most clinically relevant 203 

fusions (64 out of 67), it also had one of the highest average numbers of fusions identified per 204 

sample, 1409 fusions, indicating a large number of likely false positives (FIGURE 2B; ADDITIONAL 205 

FILE 1: TABLE S7). Identified fusions were broken down into 4 types: Interchromosomal Chimeric 206 

(n= 30), Intrachromosomal Chimeric (n= 29), Loss of Function (n= 3), and Promoter Swapping (n= 207 

5)(FIGURE 2C). Of the 67 clinically relevant fusions, seven were considered novel events, defined as 208 

a gene fusion involving two partners not previously described in the literature at the time of 209 

identification (FIGURE 2D). Of the 67 fusions detected, 40 (60%) were identified by all seven 210 

callers, 55 (82%) were identified by ≥6 callers, 60 (90%) were identified by ≥5 callers, 64 (96%) 211 

were identified by ≥4 callers, and 67 (100%) were identified by ≥3 callers. (FIGURE 2E). One 212 

sample experienced an unresolvable  failure of FusionMap, likely due to high sequencing read 213 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.435013doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.435013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

number. Results from the remaining callers, which successfully completed for this sample, were 214 

still included in our analysis. These results highlight the ability of the optimized ensemble 215 

approach to identify gene fusions with a high level of confidence and a reduced number of false 216 

positive predictions, while preventing over-filtering by comparison to a list of known pathogenic 217 

fusions.  218 

 219 

Clinical Impact of Fusion Prediction 220 

An RBPMS-MET fusion in an infantile fibrosarcoma-like tumor 221 

A female infant presented with a congenital tumor of the right face. Histologically, the 222 

tumor consisted of variably cellular fascicles of spindle cells with a nonspecific 223 

immunohistochemical staining profile, suspicious for infantile fibrosarcoma. However, the tumor 224 

was negative for an ETV6-NTRK3 fusion, one of the defining features of infantile fibrosarcoma [28]. 225 

RNA-Seq of the primary tumor and optimized ensemble pipeline analysis revealed an RBPMS-MET 226 

fusion as the only consensus call. By contrast, the individual callers identified numerous fusions as 227 

follows: Arriba: 16, CICERO: 2142, FusionMap: 29, FusionCatcher: 3907, JAFFA: 1130, MapSplice: 228 

18, and STAR-Fusion: 20 (FIGURE 3A, ADDITIONAL FILE 3: TABLE S8). RBPMS, an RNA-binding 229 

protein, and MET, a proto-oncogene receptor tyrosine kinase, have been identified as fusion 230 

partners in a variety of cancers with other genes and as gene fusion partners in a patient with 231 

cholangiocarcinoma [29]. Although MET fusions are uncommon drivers of sarcoma [30], a TFG-232 

MET fusion has been reported in a patient with an infantile spindle cell sarcoma with neural 233 

features [31-33]. The interchromosomal in-frame fusion of RBPMS (NM_006867, exon 5) to MET 234 

(NM_000245, exon 15) juxtaposes the RNA recognition motif of RBPMS to the MET tyrosine kinase 235 

catalytic domain (FIGURE 3B,C). Given the therapeutic implications of this driver fusion, the fusion 236 

was confirmed and reported in the patient’s medical record. The identification of this fusion 237 
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provided the molecular driver for this tumor, which enabled definitive classification as an infantile 238 

fibrosarcoma-like tumor with a MET fusion. The patient was initially treated with VAC (vincristine, 239 

actinomycin D, and cyclophosphamide) chemotherapy which reduced tumor burden. Surgical 240 

resection of the mass was performed with positive margins. Given the presence of a targetable 241 

gene fusion, the presence of residual tumor, and the morbidity associated with additional surgery 242 

or radiation, the patient was subsequently treated with the MET inhibitor cabozantinib and 243 

demonstrated a complete pathological response (FIGURE 3D).  244 

 245 

An NTRK1 fusion in an infiltrating glioma/astrocytoma 246 

 A 6-month-old female was diagnosed with an infiltrating glioma/astrocytoma, with a 247 

mitotic index of 7 per single high-power field (HPF) and a Ki-67 labeling index averaging nearly 248 

20%, indicative of aggressive disease. RNA-Seq of the primary tumor revealed a BCAN-NTRK1 249 

fusion, identified by five callers as the only consensus fusion output from the optimized ensemble 250 

pipeline (FIGURE 4A). This fusion was clinically confirmed by RT-PCR as an in-frame event, 251 

resulting from an intrachromosomal deletion of 225kb at 1q23.1, which juxtaposes BCAN 252 

(NM_021948, exon 6) to NTRK1 (NM_002529, exon 8) (FIGURE 4B,C). This fusion results in the loss 253 

of the ligand binding domain of NTRK1, while retaining the tyrosine kinase catalytic domain, 254 

leading to a predicted activation of downstream targets in a ligand-independent manner [34]. 255 

Comparison of the normalized read counts from RNA-Seq data revealed elevated NTRK1 256 

expression, over 7 standard deviations from the mean, relative to NTRK1 expression for CNS 257 

tumors within the NCH cohort (N=138) (FIGURE 4D). This result indicates the use of first 258 

generation TRK inhibitor therapies, with recent regulatory approvals, that have exemplary 259 

response rates (75%) and are generally well tolerated by patients [34]. Although the patient has 260 

no evidence of disease following gross total resection and treatment with conventional 261 
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chemotherapy, TRK inhibitors may be clinically indicated in the setting of progressive disease 262 

given these findings (FIGURE 4E). 263 

 264 

Novel BRAF fusion in a mixed neuronal-glial tumor 265 

 A 14-year-old male with a lower brainstem tumor was diagnosed with a low-grade mixed 266 

neuronal-glial tumor of unusual morphologic appearance. Tumor histology had features of both 267 

ganglioglioma and pilocytic astrocytoma. This tumor was negative for the somatic variant BRAF 268 

p.V600E, one of the most common somatic alterations associated with gangliogliomas and 269 

pilocytic astrocytomas [35]. Both the ganglioglioma and pilocytic astrocytoma-like portions of the 270 

primary tumor were studied separately by RNA-Seq. A novel TRIM22-BRAF fusion was identified 271 

in both histologies of the tumor, with fusion overlap results from the ganglioglioma portion 272 

represented in FIGURE 5A. TRIM22-BRAF was the only consensus fusion output by the optimized 273 

fusion detection pipeline, and was clinically confirmed by RT-PCR. TRIM22 and BRAF are novel 274 

fusion partners; however, TRIM22 has been reported with other fusion partners in head/neck 275 

squamous cell carcinoma [36]. BRAF is a known oncogene that activates the RAS-MAPK signaling 276 

pathways, and has been described with numerous fusion partners, including the common 277 

KIAA1549-BRAF fusion in pediatric low-grade gliomas [35]. This fusion is an interchromosomal 278 

translocation occurring between TRIM22 (NM_006074, exon 2) at 11p15.4 and BRAF 279 

(NM_004333, exon 9) at 7q34. The resulting protein includes the TRIM22 zinc finger domains and 280 

the BRAF tyrosine kinase domain (FIGURE 5B,C). The TRIM22-BRAF fusion may lead to constitutive 281 

dimerization and activation of BRAF kinase domain, which is indicated by single sample Gene Set 282 

Enrichment Analysis (ssGSEA) and is theoretically targetable through RAF, MEK, or mTOR 283 

inhibitors (FIGURE 5D,E). 284 

 285 
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DISCUSSION 286 

Fusions play a significant role as common oncogenic drivers of pediatric cancers, and their 287 

identification may refine diagnosis, inform prognosis, or indicate potential response to 288 

molecularly targeted therapies. We have developed an optimized pipeline for fusion detection that 289 

harmonizes results from several fusion calling algorithms, filters the output to remove known 290 

false positive results, and evaluates the detected fusions compared to a list of known pathogenic 291 

fusions. Testing this pipeline on a reference standard indicated that it outperforms single fusion 292 

detection algorithms by reducing the number of false positive calls, producing a smaller number of 293 

fusions prioritized by the strength of supporting evidence, and suitable for manual inspection. As 294 

such, our pipeline greatly simplifies the interpretation process, enabling our multidisciplinary 295 

oncology teams to focus on medically relevant findings. 296 

We tested the optimized ensemble pipeline in a prospective study of 229 pediatric cancer 297 

and hematologic disease cases and identified 67 fusions. Of these, the fusions from 50 patients 298 

were selected for clinical confirmation by an orthogonal method, in our CAP-accredited, CLIA-299 

validated clinical laboratory. All 50 (100% true positive rate) were confirmed to be true fusion 300 

events, and were determined to be of clinical relevance by our multidisciplinary care team, 301 

providing a diagnostic yield of over 29% across the cohort. (ADDITIONAL FILE 3: TABLE S8). Given 302 

the high number of putative fusions observed with any single caller, it can be difficult to manually 303 

identify a pathogenic fusion amongst a list of tens, if not hundreds, of output fusions. By taking 304 

into consideration the frequency in which each fusion occurs in an internal database, as well as the 305 

level of evidence based on the number of callers and number of supporting reads by each caller, 306 

one can more confidently remove false positives and identify relevant fusions. While our approach 307 

does not remove the necessity of manual curation, which is required to determine true clinical 308 

relevance of a fusion, it is able to drastically reduce the number of fusions that must be manually 309 
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assessed, down to ~4 fusions per case, and provides annotations, including a pathogenicity gene 310 

partner score, to ease manual interpretation efforts. Our fully automated pipeline aids in 311 

prioritization, filtering, and subsequent knowledge-based analysis, providing a more streamlined 312 

and less labor-intensive approach to identify fusions, compared to current fusion identification 313 

methodologies, drastically reducing the manual workload required to sort through unfiltered or 314 

unprioritized results.  315 

The most frequent fusion identified within our pediatric cancer cohort was KIAA1549-BRAF 316 

(n=12, frequency= 5.2%; FIGURE 2B)[17]. This fusion is characteristically found in pilocytic 317 

astrocytomas, which comprise 8.7% of our pediatric cancer cohort (20 out of 229 cases)[37]. We 318 

identified five different sets of KIAA1549-BRAF breakpoints within our cohort (ADDITIONAL FILE 1:  319 

FIGURE S8A). The most common fusion patterns represented in the literature are KIAA1549 exon 320 

16-BRAF exon 9 (16-9) or KIAA1549 exon 15-BRAF exon 9 (15-9), and these two breakpoints 321 

represent 9 of the 12 KIAA1519-BRAF fusions we identified (ADDITIONAL FILE 1: FIGURE S8B) [38, 322 

39]. Three additional previously described sets of breakpoints were also identified, KIAA1549 323 

exon 16-BRAF exon 11 (16-11; n=1), KIAA1549 exon 15-BRAF exon 11 (15-11; n=1), and KIAA1549 324 

exon 13-BRAF exon 9 (13-9; n=1; ADDITIONAL FILE 1: FIGURE S8). While the 16-11 and 15-11 325 

breakpoints occur less frequently than 16-9 or 15-9, they have been well described in the 326 

literature [38]; whereas only a single case with 13-9 breakpoints was reported as part of a 327 

pilocytic astrocytoma cohort study [40]. KIAA1549-BRAF fusions often have low levels of 328 

expression, a phenomenon that has been described in the literature and is associated with 329 

difficulties in its identification through RNA-Seq based methodologies, which lack fusion product 330 

amplification [41]. The ability of the ensemble pipeline to identify KIAA1549-BRAF fusions, and 331 

others that have very low levels of expression, highlights the sensitivity of our approach. 332 

Additionally, a supplementary “singleton” file for fusions that are identified by individual 333 
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algorithms and on the known fusion list is also output by our approach, allowing users the 334 

opportunity to manually interpret singleton results. This approach ensures that fusions on the 335 

known fusion list are retained, even with minimal evidence by a single caller. 336 

Our approach has also identified other fusions commonly associated with pediatric cancer, 337 

including EWSR1-FLI1 (n=9), FGFR1-TACC1 (n=3), PAX3-FOXO1 (n=3), C11orf95-RELA (n=2), 338 

COL3A1-PLAG1 (n=2), and NPM1-ALK (n=2) (FIGURE 2B). In addition to common fusions, our 339 

ensemble pipeline also identified seven novel fusions (FIGURE 2B). Five of the seven novel fusions 340 

were confirmed by an orthogonal assay in our clinical lab (ADDITIONAL FILE 3: TABLE S8). Chimeric 341 

fusions, which include both interchromosomal (n=30) and intrachromosomal (n=29) events, were 342 

the most common type of fusion identified within the cohort, however, 5 promoter swapping and 343 

3 loss of function fusions were also identified, highlighting the range of fusions this approach is 344 

able to detect (FIGURE 2D). 345 

Running seven different fusion callers is computationally complex, as each has its own set 346 

of dependencies and environmental requirements. To overcome this, we utilize modern cloud 347 

computing technologies. Most notable, our entire pipeline has been built in an AWS serverless 348 

environment, removing the requirement for high performance computing (HPC) clusters, while 349 

producing highly reproducible results and enabling pipeline sharing. The use of a serverless 350 

environment provides flexibility to deploy and scale applications regardless of the application’s 351 

size, without needed concern for the underlying infrastructure. We are also leveraging containers 352 

to process the data within the serverless environment, as they can be easily utilized by outside 353 

institutions with little to no adjustment to their own environments. Another benefit to the current 354 

structure of our approach is the ability to assess output from the individual algorithms in real 355 

time, as the ensemble pipeline is automatically run after each individual caller completes, allowing 356 

for interpretation of at least 3 of the 7 callers within ~3.5 hours, which can be beneficial in 357 
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situations that necessitate fast turnaround times (ADDITIONAL FILE 1: FIGURE S5). Overall, our novel 358 

use of serverless technology provides a robust computational solution that is fully automatable 359 

and easy to distribute.  360 

There are numerous benefits to the utilization of this optimized pipeline, in that detected 361 

fusion events are agnostic to gene partner, allowing identification of common, rare and novel 362 

fusions. In addition, the RNA-Seq data set can be utilized for other types of downstream and 363 

correlative analyses, including evaluation of gene expression for loci disrupted by the fusion 364 

(FIGURE 4D). Utilization of cohort data to assess outlier gene expression can provide valuable 365 

insights into pathway disruptions that may occur due to the gene fusion (FIGURE 5D) and may 366 

provide information about disease subtyping.  367 

Our ensemble fusion detection pipeline is customizable, allowing users to select how many 368 

and which callers to deploy. This may impact potential cost savings, time-to-result, or permit 369 

customization that eliminates specific callers that require excessive compute requirements or run 370 

times, as suitable in a clinical diagnostic or research setting. Users can also determine the number 371 

of consensus calls required to support fusion prediction, which can reduce the number of fusions 372 

to assess manually. Callers with a higher percentage of false positives, FusionCatcher and JAFFA, 373 

often overlap in their predictions, leading to an increased average number of fusions output by the 374 

ensemble pipeline with a consensus of only two callers; a problem diminished by requiring 375 

predictions from at least three callers to overlap. In our study, precision was found to be highest in 376 

the three-caller consensus version of the ensemble pipeline (TABLE 2; ADDITIONAL FILE 2: TABLE 377 

S5). Another benefit to utilizing different algorithms is the ability to assess supplementary output 378 

data, in addition to traditional fusion calling. We have made use of this through the inclusion of the 379 

internal tandem duplication (ITD) detection which is performed by CICERO. CICERO has identified 380 
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7 clinically relevant ITDs within our cohort, 4 of which we have confirmed using orthogonal assays 381 

(ADDITIONAL FILE 1: TABLE S9).   382 

Future developments to the pipeline could include a weighting system for each caller, 383 

based on the precision and sensitivity of the algorithm and on which callers have overlapping 384 

predictions, leading to a more sophisticated prioritization strategy. Additional fusion calling 385 

algorithms may also be considered and provided as options for users. The known fusion list can 386 

also be modified and tailored to include specific gene pairs, or even single genes of interest, 387 

providing another layer of customization. Importantly, through the utilization of a proper internal 388 

database for frequency filtering purposes, considering age and/or cancer diagnosis, and with the 389 

deployment of the appropriate known fusion list, the ensemble approach could be readily 390 

implemented in adult cancer fusion detection. Lastly, not all predictors performed equally, and 391 

there was a single unresolvable failure of FusionMap to complete. This failure was likely due to the 392 

sequencing depth of the sample, however further analysis is required to determine whether 393 

parameter modification would permit completion of FusionMap in this case (ADDITIONAL FILE 3: 394 

TABLE S8). Importantly, our approach was able to circumvent this failure due to the multi-caller 395 

nature of the pipeline. Lastly, there are many modalities of RNA-seq analysis that may be 396 

harnessed in future developments of the ensemble fusion detection pipeline, which may include 397 

an integrative approach exploiting expression-based analysis and ranking. In summary, the 398 

ensemble pipeline provides a highly customizable approach to fusion detection that can be applied 399 

to numerous settings, with opportunities for future improvements based on additional features 400 

and applications.  401 

 402 

Conclusions: 403 
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The optimized ensemble fusion detection pipeline provides a highly automated and 404 

accurate approach to fusion detection, developed to identify high confidence gene fusions from 405 

RNA-Seq data produced from pediatric cancer and hematologic disease samples, and could be 406 

readily implemented in adult cancer data analysis. The clinical impact of accurately identifying 407 

gene fusions in a given patient’s tumor sample is undeniable, not only in terms of refining 408 

diagnoses but also in terms of providing prognostic information that shapes treatment decisions. 409 

Furthermore, identification of driver fusions may indicate potential response to targeted therapies 410 

for cancer patients. The code for the overlap algorithm utilized in this study is publicly available at 411 

our GitHub page (https://github.com/nch-igm/nch-igm-ensemble-fusion-detection).  412 

 413 

METHODS 414 

Description of an internal patient cohort 415 

In total, 229 patients were consented and enrolled onto one of three Institutional Review 416 

Board (IRB) approved protocols (IRB17-00206, IRB16-00777, IRB18-00786) and studied at the 417 

Institute for Genomic Medicine (IGM) at Nationwide Children’s Hospital (NCH) in Columbus, Ohio. 418 

Through the utilization of genomic and transcriptomic profiling, these protocols aim to refine 419 

diagnosis and prognosis, detect germline cancer predisposition, identify targeted therapeutic 420 

options, and/or to determine eligibility for clinical trials in patients with rare, treatment-421 

refractory, relapsed, pediatric cancers or hematologic diseases, or with epilepsy arising in the 422 

setting of a low grade central nervous system (CNS) cancer. Our in-house NCH cohort as studied 423 

here, consisted of samples from CNS tumors (n=138), hematologic diseases (n=18), and non-CNS 424 

solid tumors (n=73), as represented in ADDITIONAL FILE 1: FIGURE S2. 425 

 426 

RNA-Seq of patient tissues 427 
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RNA was extracted from snap frozen tissue, formalin-fixed paraffin-embedded (FFPE) 428 

tissue, peripheral blood, bone marrow, and cerebral spinal fluid utilizing dual RNA and DNA co-429 

extraction methods originally developed by our group for The Cancer Genome Atlas project [42]. 430 

White blood cells were isolated from peripheral blood or bone marrow using the lymphocyte 431 

separation medium Ficoll-histopauqe. Frozen tissue, white blood cells, or pelleted cells from 432 

cerebrospinal fluid were homogenized in Buffer RLT, with beta-Mercaptoethanol to denature 433 

RNases, plus Reagent DX and separated on an AllPrep (Qiagen) DNA column to remove DNA for 434 

subsequent RNA steps. The eluate was processed for RNA extraction using acid-phenol:chloroform 435 

(Sigma) and added to the mirVana miRNA (Applied Biosystems) column, washed, and RNA was 436 

eluted using DEPC-treated water (Ambion). DNAse treatment (Zymo) was performed post RNA 437 

purification. FFPE tissues were deparaffinized using heptane/methanol (VWR) and lysed with 438 

Paraffin Tissue Lysis Buffer and Proteinase K from the HighPure miRNA kit (Roche). The sample 439 

was pelleted to remove the DNA, and the supernatant was processed for RNA extraction with the 440 

HighPure miRNA column, followed by DNase treatment (Qiagen). RNA quantification was 441 

performed with Qubit (Life Sciences). 442 

RNA-Seq libraries were generated using 100 ng to 1 µg of DNase-treated RNA input, either 443 

by ribodepletion using the Ribo-Zero Globin kit (Illumina) followed by library construction using 444 

the TruSeq Stranded RNA-Seq protocol (Illumina), or by ribodepletion with NEBNext 445 

Human/Mouse/Rat rRNA Depletion kit followed by library construction using the NEBNext Ultra 446 

II Directional RNA-Seq protocol (New England BioLabs). Illumina 2x151 paired end reads were 447 

generated either on the HiSeq 4000 or NovaSeq 6000 sequencing platforms (Illumina). An average 448 

of 104 million read pairs were obtained per sample (range 37M to 380M read pairs). 449 

Following data production and post-run processing, FASTQ files were aligned to the 450 

GRCh38 human reference (hg38) using STAR aligner (version 2.6.0c)[43]. Feature counts were 451 
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calculated using HTSeq, and normalized read counts were calculated for all samples using DESeq2 452 

[44, 45]. Single sample Gene Set Enrichment Analysis (ssGSEA), v10.0.3, was performed on 453 

DESeq2 normalized read counts using Molecular Signatures Database (MSigDB) Oncogenic 454 

Signatures (c6.all.v7.2.symbols.gmt), which included MEK-upregulated genes (MEK_UP.V1_UP), 455 

RAF-upregulated genes (RAF_UP.V1_UP), and mTOR-upregulated genes 456 

(MTOR_UP.N4.V1_UP)[46].  457 

 458 

RNA-Seq of SeraCare control reference standards 459 

Seraseq Fusion RNA Mix (SeraCare Inc., Milford, MA) was utilized as a control reference 460 

standard reagent to test and optimize the ensemble fusion detection pipeline. This product 461 

contains 14 synthetic gene fusions in vitro transcribed, utilizing the GM24385 cell line RNA as a 462 

background. RNA-Seq libraries were prepared utilizing 500 ng input of neat (undiluted) Seraseq 463 

Fusion RNA v2, a non-commercially available concentrated product, as input (SeraCare). RNA-Seq 464 

libraries were also prepared using 500 ng input of diluted control reference standard (Seraseq 465 

Fusion RNA v3 (SeraCare)), which, as a neat reagent is roughly equivalent to a 1:25 dilution of the 466 

v2 product, and of total human RNA (GM24385, Coriell) for the fusion-negative controls. 467 

Concentrations of individual fusions in the control reference standard were determined by the 468 

manufacturer using a custom fluorescent probe set (based on TaqMan probe design) for each 469 

fusion and evaluation by droplet digital PCR. Digital PCR-based concentration data (copies/ul) are 470 

available in ADDITIONAL FILE 1: TABLE S1 for the undiluted sample and ADDITIONAL FILE 1: TABLE S2 471 

for the diluted sample [47]. 472 

Dilutions of the Seraseq Fusion RNA v3 reference standard were performed by mixing with 473 

control total human RNA (GM24385, Coriell) for final dilutions of 1:25, 1:50, 1:250, 1:500, 1:2500. 474 

We also evaluated undiluted Seraseq Fusion RNA v2. For neat and diluted samples, 500ng input 475 
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RNA was treated using the NEBNext Human/Mouse/Rat rRNA Depletion kit and libraries were 476 

prepared following the NEBNext Ultra II Directional RNA-Seq protocol (New England BioLabs). 477 

Paired end 2x151 bp reads were produced using the HiSeq 4000 platform (Illumina). An average 478 

of 149 million read pairs were obtained per Seraseq sample (range of 86M to 227M read pairs). 479 

 480 

Optimized Fusion Detection Pipeline  481 

Fusions were detected from paired end RNA-Seq FASTQ files utilizing an automated 482 

ensemble fusion detection pipeline that employs seven fusion-calling algorithms described in 483 

TABLE 1: Arriba (v1.2.0), CICERO (v0.3.0), FusionMap (v mono-2.10.9), FusionCatcher (v0.99.7c), 484 

JAFFA (direct v1.09), MapSplice (v2.2.1), and STAR-Fusion (v1.6.0)[25, 48-51]. STAR-Fusion 485 

parameters were altered to reduce the stringency setting for the fusion fragments per million 486 

reads (FFPM) from 0.05 to 0.02, while default parameters were retained for all other callers. After 487 

fusion calling with each independent algorithm, a custom algorithm written in the R programming 488 

language, was used to “overlap,” or align and compare, the unordered gene partners identified by 489 

individual fusion callers. The utilization of unordered gene partners allows for fusions to be 490 

compared, even if different breakpoints were identified by individual algorithms, and to include 491 

reciprocal fusions. Fusion partners identified by at least three of the seven callers are retained and 492 

prioritized based on the number of contributing algorithms first and then by the number of 493 

sequence reads providing evidence for each fusion. The overlap output retains annotations from 494 

the individual callers, including breakpoints, distance between breakpoints, donor and acceptor 495 

genes, reads of evidence, nucleotide sequence at breakpoint (if available), frequency information 496 

from the database, and whether the identified fusion contains “known pathogenic fusion 497 

partners”. If discordant breakpoints are identified across callers for a set of fusion partners, the 498 
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breakpoints with the most evidence, determined by number of supporting reads, are prioritized in 499 

the output.  500 

The fusions are filtered by the following steps (FIGURE 1A). Read-through events, which 501 

occur between neighboring genes and are typically identified in both healthy and disease states, 502 

are not expected to impact cellular functions [12, 24]. This type of fusion prediction is a source of 503 

false positive results, so we have implemented a filter that removes fusions detected between 504 

genes fewer than 200,000 bases apart, that occur on the same strand and chromosome. Recurrent 505 

fusions with uncertain biological significance have also been identified in normal tissues. To 506 

prevent the inclusion of commonly occurring, benign fusions in our output, a PostgreSQL database 507 

was used to filter commonly occurring artifactual fusions. This filter removes any expected fusion 508 

artifact with greater than a 10% frequency of detection based on our internal cohort. Lastly, to 509 

ensure a high level of confidence in the identified fusions, we utilize a minimum threshold for level 510 

of evidence, removing fusions that contain fewer than four reads of support from at least one 511 

contributing algorithm. 512 

While filtering can remove false positive results and reduces the time needed to review 513 

predicted fusions, it also can remove true positive fusions in certain circumstances. To prevent the 514 

inadvertent filtering of known fusions, a known fusion list was developed containing 325 pairs of 515 

common fusion partners associated with cancer, as identified in COSMIC and TCGA (ADDITIONAL 516 

FILE 1: TABLE S3)[27, 52]. To increase sensitivity in the identification of known pathogenic fusions, 517 

fusion partners that are on the known fusion list are retained as long as at least two callers have 518 

identified the fusion. The ensemble pipeline also outputs a supplementary singleton fusion file, 519 

containing fusions identified by a single caller that are on the known fusion list, allowing users to 520 

examine low evidence fusions that may be of interest.   521 
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To prioritize fusions that contain gene partners commonly found in the known fusion list, 522 

we developed the “Gene Partner Predicted Pathogenicity Score” based on the frequency of the 523 

individual partners in the known fusion list. Of the 325 fusions on the known fusion list, 38 genes 524 

are present as a fusion partner ≥ 3 times (ADDITIONAL FILE 1: TABLE 4, FIGURE S3). The most 525 

common partners are BRAF and KMT2A, which are present as fusion partners 28 times each. To 526 

aide prediction of novel, or not well described, pathogenic fusions, we developed a score based on 527 

known pathogenic gene partners. This score utilizes the frequency of partners present on the 528 

known fusion list. The pathogenic frequency score ranges from 10 (most frequent) to 1 (least 529 

frequent, but present at least 3 times): 530 

��������	
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� � 10  ��
���

� ��⁄  

Where f is the gene frequency and fmax is the maximum observed frequency. The following 531 

annotations are included in the ensemble results if an identified fusion contains one of the 38 532 

common pathogenic gene partners: designation as a known pathogenic gene partner, inclusion of 533 

the frequency score (1-10), and gene type based on UniProt description [53]. 534 

A knowledge-based interpretation strategy was applied to the filtered list of fusion 535 

partners output by the pipeline, including the use of FusionHub [54], to inform clinical relevance, 536 

such as diagnostic and/or prognostic information or a potential therapeutic target. Visual 537 

assessment of the fusion events was performed by examining RNA-Seq BAM files with Integrated 538 

Genome Viewer (IGV). Fusions were also assessed at the DNA level by IGV-based evaluation of 539 

gene-specific paired end read alignments from ES or WGS BAM files, for potential evidence of 540 

mapping discordance. Clinically relevant fusions were then assayed in our College of American 541 

Pathologists (CAP)-accredited clinical laboratory using RT-PCR followed by Sanger sequencing of 542 

the resulting products, and/or by Archer FusionPlex Solid Tumor panel (ArcherDx) for clinical 543 

confirmation.  544 
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 545 

AWS Implementation of the Ensemble Approach 546 

The ensemble fusion detection pipeline is implemented utilizing an Amazon Web Services 547 

(AWS) serverless environment (ADDITIONAL FILE 1: FIGURE S4). The workflow is initiated via a call 548 

to Amazon API Gateway, which passes parameters, including the location of the input FASTQ files, 549 

to an AWS Lambda function. The Lambda function initiates the AWS Batch job to load and 550 

executes a custom fusion detection Docker image, which launches Arriba, CICERO, FusionMap, 551 

FusionCatcher, JAFFA, MapSplice, and STAR-Fusion. We utilize the R5 family of instances for the 552 

fusion detection algorithms. Due to the efficiency by which different algorithms are able to multi-553 

thread, each fusion detection tool is allocated 32 virtual CPUs (vCPUs), except for CICERO which is 554 

allocated 16 vCPUs and JAFFA which is allocated 8 vCPUs. Using the described allocations, Arriba 555 

completes the fastest (~37 minutes) for the runs completed year to date in 2020, followed by 556 

FusionMap (~1 hour 12 minutes), STAR-fusion (~3 hours 25 minutes), FusionCatcher (~10 hours 557 

35 minutes), CICERO (~11 hours 49 minutes), MapSplice (~15 hours 2 minutes), and JAFFA (~27 558 

hours 16 minutes), data is summarized in ADDITIONAL FILE 1: FIGURE S5. The results from the 559 

fusion callers are sent to an AWS S3 output bucket, which invokes AWS Batch to load and execute 560 

a Docker image with our overlap script upon completion. This allows for real-time examination of 561 

results as each caller finishes, as the overlapping output is updated upon completion of each 562 

individual caller, which is particularly advantageous given the long execution times for some of 563 

the fusion callers. It is possible to examine results upon completion of the three fastest algorithms 564 

within ~3.5 hours, which is of great benefit for cases necessitating fast turnaround times, and 565 

complete results are made available by the next day.  The overlap Docker image queries and 566 

writes to an Aurora PostgreSQL database and performs all necessary filtering. The final results, 567 

including annotated filtered and unfiltered fusion lists, are stored in an AWS S3 output bucket for 568 
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subsequent interpretation. Code for the overlap algorithm is available at our GitHub repository 569 

(https://github.com/nch-igm/nch-igm-ensemble-fusion-detection), DOI: 570 

10.5281/zenodo.3950385, and Docker images used to build the pipeline are available upon 571 

request. 572 

 573 

Data Analysis and Statistics 574 

Figures were plotted using R version 4.0.2. Statistical analysis was performed by GraphPad 575 

Prism 7.0e software. Graphical representation of fusion breakpoints and products were generated 576 

using a modified version of INTEGRATE-Vis [55]. 577 

 578 

LIST OF ABBREVIATIONS 579 

AWS: Amazon Web Services 580 

CNS: Central Nervous System 581 

ES: Exome Sequencing 582 

FDR: False Discovery Rate 583 

FFPE: Formalin Fixed, Paraffin Embedded 584 

FFPM: Fusion Fragments Per Million 585 

GSNAP: Genomic Short-read Nucleotide Alignment Program 586 

Heme: Hematologic Diseases 587 

HPF: High Power Field 588 

HPC: High Performance Computing 589 

IGM: Institute for Genomic Medicine 590 
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FIGURE 1 819 

820 

Figure 1. The ensemble fusion detection pipeline identifies true positive fusions. A) 821 

ensemble approach identifies fusions in RNA-Seq data by overlapping results from  Arr822 

CICERO, FusionCatcher, FusionMap, JAFFA, MapSplice, and STAR-Fusion. It hierarchic823 

prioritizes and filters the fusions utilizing an in-house PostgreSQL database and knowledge b824 

prior to producing an output list of predicted fusions. In many cases, detected fusions w825 

orthogonally tested by clinical confirmation in order to return a medically meaningful result826 

The ensemble pipeline was tested on a dilution series of a reference control reagent (SeraCare827 

determine sensitivity and limit of detection. We optimized the pipeline using the undilu828 

reference control reagent, identifying that by requiring ≥3 callers to have overlap for a detec829 

fusion, and by utilizing filtering of known false positive fusion calls and cross-referencing a lis830 

known fusions, all 14 fusions were identified. Colors representing different fusions present in831 

SeraSeq v2 reagent are ordered by their absolute proportions. We then applied the optimi832 

pipeline to the dilution series, showing that the numbers of identified fusions were reduce833 

serial dilutions, and no fusions were identified in the negative control.  834 
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FIGURE 2 836 

837 

Figure 2. Clinically relevant fusions identified by the ensemble approach in a pedia838 

cancer and hematologic disease cohort. A) The ensemble approach, with automated filter839 

identifies significantly fewer fusions compared to individual callers. The number of fusion840 

plotted as log10(x+1) to account for 0 fusions identified in some cases. Callers are sorted by841 

lowest median number of fusions identified to highest.. B) 67 Clinically relevant fusions w842 

identified, represented as a bar graph with decreasing fusions per individual algorit843 

highlighting the sensitivity of the ensemble approach compared to individual algorithms.844 

individual algorithm was able to identify all 67 fusions. C) Of the 67 clinically relevant fusi845 

identified, 30 were interchromosomal chimeric (blue), 29 were intrachromosomal chim846 

(orange), 3 were loss of function (green), and 5 were promoter swapping (yellow) fusions. D847 

the 67 clinically relevant fusions identified, 7 are novel events (red asterisk), while the remain848 

60 fusion partners had been described previously in the literature. E) A stacked bar gr849 

represents the individual fusion callers that contributed to each clinically relevant fusion. 850 
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FIGURE 3851 

852 

Figure 3. An RBPMS-MET fusion identified in a patient with an infantile fibrosarcoma-l853 

tumor. A) RBPMS-MET fusion was identified by all seven fusion callers in the filtered ove854 

results. The number of fusions identified by each caller is in the outer VENN diagram secti855 

while internal numbers indicate overlapping fusions found post-filtering (0 overlaps betw856 

callers are not shown). B) The RBPMS-MET fusion is an interchromosomal event, occur857 

between 8p12 and 7q31.2 and joining exon 5 of RBPMS (blue) to exon 15 of MET (red). C) 858 

fusion protein product includes the RNA recognition motif domain of RBPMS and the tyro859 

kinase catalytic domain of MET. D) The RBPMS-MET fusion is predicted to cause constitu860 

phosphorylation and activation of MET, targetable using cabozanti861 
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FIGURE 4 862 

 863 

Figure 4. Targetable NTRK1 fusion identified in an infiltrating glioma. A) The BCAN-NT864 

fusion was identified by 5 of 7 fusion callers, and was the only fusion returned by the filte865 

overlap results. Total fusions identified by each caller are shown, FusionMap and MapSp866 

identified no overlapping fusions that passed filtering (0 overlaps between callers are not show867 

B) The BCAN-NTRK1 fusion is an intrachromosomal event occurring on 1q23.1, joining exon 868 

BCAN (blue) and exon 8 of NTRK1 (red). C) This fusion results in the juxtaposition of the tyro869 

kinase catalytic domain of the NTRK1 gene to the 5’ end of the BCAN gene. D) NTRK1 is hig870 

expressed in this patient (red) compared to CNS tumors (black) in the NCH cohort (CNS tumor871 

= 138), with a normalized read count that is 7.70 standard deviations above the mean (131.2)872 

The BCAN-NTRK1 fusion is predicted to increase expression and activation of the tyrosine kin873 

NTRK1, which may be inhibited by TRK inhibitor therapy (green).  874 
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FIGURE 5875 

876 

Figure 5. Identification of a novel BRAF fusion in a mixed neuronal-glial tumor. A) 877 

TRIM22-BRAF fusion was identified by all seven fusion callers and in the filtered overlap resu878 

total fusions identified by each caller and overlapping fusions are shown (0 overlaps betw879 

callers are not shown). B) The TRIM22-BRAF fusion is an interchromosomal event betw880 

11p15.4 and 7q34, joining exon 2 of TRIM22 (blue) to exon 9 of BRAF (red). C) The resul881 

fusion product contains the 5’ TRIM22 zinc finger binding domains and BRAF tyrosine kin882 

catalytic domain. D) Single sample gene set enrichment analysis (ssGSEA) indicates a tr883 

toward an enrichment of the MEK (above the 75th percentile, 0.68 standard deviations above884 

mean of 22756.87), RAF (above the 75th percentile, 0.60 standard deviations above the mea885 

22635.74), and mTOR (above the 75th percentile, 0.72 standard deviations above the mean886 

22191.50) upregulated gene sets in the TRIM22-BRAF sample (red) compared to the pan-can887 

NCH cohort (black) (pan-cancer cohort: n = 229). E) The TRIM22-BRAF fusion is predicted to ca888 

constitutive dimerization and activation of the BRAF kinase domain, shown in D), which could889 

targeted by RAF, MEK, and mTOR inhibitors (green).  890 
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TABLE 1 891 

 892 

Tool Version Aligner Reference 

Average 

Fusions Called 

per Case 

 Sensitivity 

(Clinically Relevant 

Fusions Called 

out of 67) 

Arriba v1.2.0 STAR aligner  

Haas et al., 

2019 Genome 

Biol  

54 86.6% (58) 

CICERO v0.3.0 

candidate SV (structural 

variant) breakpoints and 

splice junction 

Tian et al., 

2020 Genome 

Biol 

1915 89.6% (60) 

FusionMap 
v mono-

2.10.9 

GSNAP (Genomic Short-

read Nucleotide 

Alignment Program) - 

12mer based 

Ge et al., 2011 

Bioinformatics 
34 88.1% (59) 

FusionCatcher v0.99.7c 

4 aligners to identify 

junctions (Bowtie, BLAT, 

STAR, and Bowtie2) 

Nicorici et al., 

2014 bioRxiv 
1558 89.6% (60) 

JAFFA 
direct 

v1.09 

BLAT, uses kmers to 

selects reads that do not 

map to known transcripts 

Davidson et al., 

2015 Genome 

Med 

1141 95.5% (64) 

MapSplice v2.2.1 

approximate sequence 

alignment combined with 

a local search 

Wang et al., 

2010 Nucleic 

Acids Res 

37 83.6% (56) 

STAR-fusion v1.6.0 STAR aligner 

Haas et al., 

2019 Genome 

Biol 

72 94.0% (63) 

 893 

Table 1. Performance comparison of individual fusion calling algorithms. Fusion calling 894 

algorithms utilized by the ensemble fusion detection pipeline and their contributions to fusion 895 

calling in the NCH pediatric cancer and hematologic disease cohort. 896 

  897 
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TABLE 2 898 

Algorithm 

Total 

Fusions 

Identified 

Seraseq 

Fusions 

Identified 

Sensitivity Precision 

Arriba 23.5 13 92.9% 55.3% 

MapSplice 22 12 85.7% 54.6%  

STAR-fusion 32 14 100.0% 43.6% 

FusionMap 30 12.5 89.3% 41.7% 

FusionCatcher 299.5 13 92.9% 4.3% 

JAFFA 470.5 12.5 89.3% 2.7% 

CICERO 1323 14 100.0% 1.1% 

Ensemble 2 callers 38.5 14 100.0% 36.4% 

Ensemble 2 callers 

+ filter 
15.5 12 85.7% 77.4% 

Ensemble 2 callers 

+ filter + known fusion list 
17.5 14 100.0% 80.0% 

Ensemble 3 callers 15 14 100.0% 93.3% 

Ensemble 3 callers 

+ filter 
12 12 85.7% 100.0% 

Ensemble 3 callers 

+ filter + known fusion list 
14 14 100.0% 100.0% 

 899 

Table 2. Improved precision in fusion detection, utilizing Seraseq controls, achieved 900 

through utilization of the ensemble pipeline. Data shown is from undiluted Seraseq v3 RNA-901 

Seq, experiments performed in duplicate, averages are shown. Individual algorithms are listed by 902 

precision, in descending order. Seraseq fusions identified (true positive) are out of a possible 14 903 

fusions.  904 
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