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ABSTRACT

Background: Pediatric cancers typically have a distinct genomic landscape when compared to
adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive
tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-
generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be
confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous
computational tools are available to identify fusions from supporting RNA-Seq reads, yet each
algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior
approach currently exists. To overcome these challenges, we have developed an ensemble fusion
calling approach to increase the accuracy of identifying fusions.

Results: Our ensemble fusion detection approach utilizes seven fusion calling algorithms: Arriba,
CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a
fully automated pipeline using Docker and AWS serverless technology. This method uses paired
end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify
fusions detected by a consensus of at least three algorithms. These consensus fusion results are
filtered by comparison to an internal database to remove likely artifactual fusions occurring at
high frequencies in our internal cohort, while a “known fusion list” prevents failure to report
known pathogenic events. We have employed the ensemble fusion-calling pipeline on RNA-Seq
data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved
protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18
hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline
and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our

cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIMZ22-BRAF
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fusions. Following clinical confirmation and reporting in the patient’s medical record, both known
and novel fusions provided medically meaningful information.

Conclusions: Our ensemble fusion detection pipeline offers a streamlined approach to discover
fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods.
Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing
clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted

therapies.

BACKGROUND

Globally, there are approximately 300,000 pediatric and adolescent cases of cancer
diagnosed each year [1, 2]. While advances in medicine have led to a drastic improvement in 5-
year overall survival rates (up to 84% in children under 15), pediatric cancer remains the most
common cause of death by disease in developed countries [3, 4]. Pediatric cancers are defined by a
distinct genomic landscape when compared to adult cancers, which includes an overall low
number of somatic single nucleotide variants, common driver fusions and epigenetic changes that
drive a specific transcriptional program. Pediatric cancers are often considered embryonic in
origin and demonstrate a significant germline predisposition component approaching 10% [5-7].

Many pediatric tumors contain gene fusions resulting from the juxtaposition of two genes
(ADDITIONAL FILE 1: FIGURE $1)[6]. Fusions typically occur through chromosomal rearrangements,
and often lead to dysregulated gene expression of one or both gene partners [8-11]. Fusions can
also generate chimeric oncoproteins, wherein functional domains from both genes are retained,
often leading to aberrant and strong activation of nonspecific downstream targets [12]. The

alterations in gene expression and activation of downstream targets induced by fusions are
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considered to be oncogenic events in pediatric cancer and increasingly may indicate response to
specific targeted therapies.

The identification of an oncogenic fusion can provide medically meaningful information in
the context of diagnosis, prognosis, and treatment regimens in pediatric cancers. Fusions may
provide diagnostic evidence for a specific histological subgroup. For example, EWSR1-FLI1 fusions
are highly associated with Ewing sarcoma, while the presence of a C110rf95-RELA fusion aids in
subgrouping supratentorial ependymomas [12]. The detection of certain fusions, such as BCR-ABL
in acute lymphocytic leukemia, can be used as a surrogate for residual tumor load and treatment
response [13]. Fusions may also provide prognostic indication, such as KIAA1549-BRAF in low
grade astrocytomas, which have a more favorable outcome compared to non-BRAF fused tumors
[14, 15]. In addition, fusions that involve kinases can present therapeutic targets, including FGFR1-
TACC1, FGFR3-TACC3, NPM1-ALK, and NTRK fusions [2,12, 16-19].

However, regardless of the clear clinical benefits of characterizing fusion events in a given
patient’s tumor, accurate identification of fusions from next generation sequencing DNA data
alone is not straightforward and they often go undiscovered. In particular, many fusions are not
detectable by exome sequencing (ES) due to breakpoint locations that frequently occur in non-
coding or intronic regions which may not have corresponding capture probes. Even whole genome
sequencing (WGS) NGS data has proved difficult to evaluate complex rearrangements resulting in
gene fusions due to a high false positive rate and due to the limitations of short read lengths [20,
21]. By contrast, next-generation RNA sequencing data, or RNA-Sequencing (RNA-Seq), offers an
unbiased data type suitable for fusion detection, while also providing information about the
expression of fusion transcripts, including multiple isoforms, and fusions that occur due to

aberrant splicing events [22, 23].
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While RNA-Seq is a powerful tool for fusion detection, it is not without its limitations.
Notably, there is currently a major deficit in our ability to accurately identify fusions in spite of
having many computational approaches available. Here, consistently identifying gene fusion
events with high sensitivity and precision using one algorithm is unlikely and this is of critical
importance in a clinical diagnostic setting [12]. Computational approaches that have been tuned
for high sensitivity are limited by also calling numerous false positives, requiring extensive
manual review of data, while those with a low false discovery rate (FDR) often miss true positives
due to over-filtering [12]. To overcome these complications of sensitivity and specificity, we have
employed an ensemble pipeline, which merges results from seven algorithmic approaches to
identify, filter and output prioritized fusion predictions.

Another common issue encountered in fusion prediction is the identification of likely non-
pathogenic fusions, due both to read-through events and fusions occurring in non-disease
involved (normal) genomes.[12, 24, 25] We addressed these sources of false positivity through the
implementation of a filtering strategy that removes known normal fusions and RNA transcription
read-through events, based on internal frequency of detection and location of chromosomal
breakpoints. Lastly, to prevent over-filtering and inadvertent removal of previously described
known pathogenic fusion events, we have developed and continually update a list containing
known pathogenic fusion partners, that will return any data-supported fusions to the output list of
prioritized fusion results for further evaluation.

The ensemble fusion detection pipeline outperformed all single algorithm methods we
evaluated, achieving high levels of sensitivity, while simultaneously minimizing false positive calls
and non-clinically relevant fusion predictions. Here, we describe our ensemble fusion detection
approach, its performance on commercial control reference standards with known fusions, and its

implementation on a pediatric cohort consisting of rare, treatment refractory, or relapsed cancers
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and hematologic diseases. Utilization of our ensemble approach resulted in a diagnostic yield of
approximately 30% in our cohort, identified novel fusion partners, and has provided diagnostic

information and/or targeted treatment options for this patient population.

RESULTS
Development and optimization of ensemble pipeline on a control reference standard

Identification of gene fusions through the use of a single algorithm is often associated with
low specificity and poor precision [12]. Given prior literature supporting multi-algorithmic
approaches to improve upon these deficits, we studied the intricacies of several fusion detection
algorithms, and applied a defined set of algorithms with desired properties, aimed at detecting
true positive fusions while minimizing false positive fusions [25-27]. After evaluating each
algorithm’s output, we developed our ensemble fusion detection pipeline that combines output
consensus calls from seven different computational approaches (FIGURE 1A), calculates the
concordant fusion partners and breakpoints, and filters this output list based on internal
frequency, reads of evidence, and breakpoint location. A list of known pathogenic fusions rescues
any known pathogenic fusion gene partners with suitable algorithmic and read support for further
evaluation (ADDITIONAL FILE 1: TABLE S3).

To optimize the approach, we utilized a reference standard from a commercial provider
(Seraseq Fusion RNA, SeraCare, Milford, MA), containing synthetic RNAs representing 14 cancer-
associated fusions in varying proportions (ADDITIONAL FILE 1: TABLES S1 AND $2). Data generated
from these RNA-Seq libraries, performed as replicates for a range of dilutions, were analyzed
using the ensemble pipeline. We compared the output derived from a consensus of two or more
callers to that from a consensus of three or more callers by calculating sensitivity (# of Seraseq

fusions identified)/(14 possible Seraseq fusions), and precision (# of Seraseq fusions
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identified)/(# of total fusions identified) prior to filtering or known fusion list comparison. The
undiluted reference standard with consensus of at least two callers, had a sensitivity of 100% and
precision of 36.36%. Inclusion of the knowledgebase filtering step reduced the sensitivity to
85.71% while increasing the precision to 77.42%, and the known fusion list rescue step increased
sensitivity to 100% and precision to 80% (ADDITIONAL FILE 1: TABLE S5, FIGURE S6A). By increasing
the consensus requirement to three callers, rather than just two, the prefiltered sensitivity was
100% and precision was 93.33%. Inclusion of the filtering step reduced the sensitivity to 85.71%
while increasing the precision to 100%, and known fusion list rescue increased sensitivity to
100% and precision to 100% (TABLE 2; ADDITIONAL FILE 1: FIGURE S6A). The inclusion of the known
fusion list prevented the removal of known Seraseq fusions, due to too few reads of evidence or
number of callers providing support, as well as a single Seraseq fusion, EML4-ALK, which was
present at an artificially high frequency in our database (24.7%) due to false positive calls by
FusionCatcher. Implementation of the known fusion list led to sensitivity scores of 100% for both
levels of caller consensus. The individual fusion detection algorithms ranged in sensitivity and
precision, and while certain algorithms are able to maintain high levels of sensitivity in addition to
moderate levels of precision, such as STAR-Fusion (sensitivity = 100%, precision = 43.75%),
others such as FusionCatcher (sensitivity = 92.86%, precision = 4.34%) and CICERO (sensitivity =
100%, precision 1.06%) had high levels of sensitivity with very low precision levels (TABLE 2;
ADDITIONAL FILE 2: TABLE $5). When considering the overall results from undiluted and serial
dilutions of the reference standard, the required overlap of at least three callers, with filtering and
utilization of the known fusion list, led to significantly fewer total fusions identified compared to
two consensus callers (p = 1.86E-07)(TABLE 2; ADDITIONAL FILE 1: FIGURE S6B, TABLE S6). The
ensemble pipeline results obtained from various reference standard dilutions, with a minimum of

three callers in consensus, using filtering and known fusion list rescue are shown (FIGURE 1B,;
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ADDITIONAL FILE 2: TABLE S5). The optimized ensemble pipeline, consisting of a consensus of three
callers, filtering, and the known fusion list, maintained high levels of sensitivity, (at least 90.48%)),
while maintaining 100% precision as low as the 1:50 dilution of the reference standard
(ADDITIONAL FILE 2: TABLE S5). In addition to the high levels of sensitivity and precision, the total
number of fusions identified by this optimized ensemble pipeline in undiluted and diluted samples
was significantly fewer than the number identified by individual fusion detection algorithms,
including STAR-Fusion (p = 1.77E-12), CICERO (p = 3.39E-14) and FusionCatcher (p = 1.00E-
08)(ADDITIONAL FILE 1, TABLE S$6). These results highlights the removal of false positive fusions,
which includes artifactual and benign fusion events, and subsequent reduction in manual
evaluation requirements (ADDITIONAL FILE 1: FIGURE S6C,D). Notably, we only considered the 14
Seraseq synthetic fusions as true positives. While fusions may exist within the GM24385 cell line,
in the optimized ensemble approach all of these fusions were filtered out due to either high
frequency across our cohort or supporting read evidence below our minimum threshold,

suggesting that they are likely to be artifactual in nature.

Implementation of the ensemble approach on an in-house pediatric cancer and hematologic disease
cohort

Having demonstrated the efficacy of the optimized ensemble fusion detection pipeline
using synthetic fusion samples, we further evaluated the utility of the pipeline on RNA-Seq data
obtained from 229 patient samples, obtained from three prospective pediatric cancer and
hematologic disease studies at Nationwide Children’s Hospital (NCH) (ADDITIONAL FILE 1: FIGURE
$2). Our ensemble pipeline identified significantly fewer total predicted fusions post-filtering,
compared to all other single callers (FIGURE 2A; ADDITIONAL FILE 1: TABLE $7). Applying the known

fusion list rescue altered the average number of fusions identified overall, as an average of 3.88
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fusions per case were identified by 3 or more callers, while an average of 3.93 fusions were
identified by 3 or more callers after applying the known fusion list; a total of 11 fusions were
rescued by this approach, of which 1 (KIAA1549-BRAF; ADDITIONAL FILE 3: TABLE $8) was clinically
relevant . The retained KIAA1549-BRAF fusion was identified by three callers, but was initially
filtered out due to too few reads of evidence, possibly due to either low expression, low tumor
cellularity or clonality (FIGURE 2D). In total, 67 clinically relevant fusions, identified in 67 different
cases, (33 CNS, 7 heme, and 27 solid tumor; ADDITIONAL FILE 1: FIGURE $7) were discovered using
the optimized ensemble pipeline with automated filtering, including the known fusion list feature,
and a consensus of three callers (29.3% of tumors contained a clinically relevant fusion).
Regardless of source material, there was a roughly a 30% yield; with clinically relevant fusion
identification in 44 of 148 frozen samples (30% yield), 19 of 68 FFPE samples (28% yield), and 4
of 13 other samples (31% yield), which included blood, cerebral spinal fluid, or bone marrow
(ADDITIONAL FILE 1: FIGURE S7). No single fusion detection algorithm was able to identify all 67
fusions. While JAFFA was the most sensitive algorithm, identifying the most clinically relevant
fusions (64 out of 67), it also had one of the highest average numbers of fusions identified per
sample, 1409 fusions, indicating a large number of likely false positives (FIGURE 2B; ADDITIONAL
FILE 1: TABLE S7). Identified fusions were broken down into 4 types: Interchromosomal Chimeric
(n=30), Intrachromosomal Chimeric (n= 29), Loss of Function (n= 3), and Promoter Swapping (n=
5)(F1GURE 2C). Of the 67 clinically relevant fusions, seven were considered novel events, defined as
a gene fusion involving two partners not previously described in the literature at the time of
identification (FIGURE 2D). Of the 67 fusions detected, 40 (60%) were identified by all seven
callers, 55 (82%) were identified by =6 callers, 60 (90%) were identified by =5 callers, 64 (96%)
were identified by 24 callers, and 67 (100%) were identified by =3 callers. (FIGURE 2E). One

sample experienced an unresolvable failure of FusionMap, likely due to high sequencing read


https://doi.org/10.1101/2021.03.11.435013
http://creativecommons.org/licenses/by-nc-nd/4.0/

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435013; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

number. Results from the remaining callers, which successfully completed for this sample, were
still included in our analysis. These results highlight the ability of the optimized ensemble
approach to identify gene fusions with a high level of confidence and a reduced number of false
positive predictions, while preventing over-filtering by comparison to a list of known pathogenic

fusions.

Clinical Impact of Fusion Prediction
An RBPMS-MET fusion in an infantile fibrosarcoma-like tumor

A female infant presented with a congenital tumor of the right face. Histologically, the
tumor consisted of variably cellular fascicles of spindle cells with a nonspecific
immunohistochemical staining profile, suspicious for infantile fibrosarcoma. However, the tumor
was negative for an ETV6-NTRK3 fusion, one of the defining features of infantile fibrosarcoma [28].
RNA-Seq of the primary tumor and optimized ensemble pipeline analysis revealed an RBPMS-MET
fusion as the only consensus call. By contrast, the individual callers identified numerous fusions as
follows: Arriba: 16, CICERO: 2142, FusionMap: 29, FusionCatcher: 3907, JAFFA: 1130, MapSplice:
18, and STAR-Fusion: 20 (FIGURE 3A, ADDITIONAL FILE 3: TABLE S8). RBPMS, an RNA-binding
protein, and MET, a proto-oncogene receptor tyrosine kinase, have been identified as fusion
partners in a variety of cancers with other genes and as gene fusion partners in a patient with
cholangiocarcinoma [29]. Although MET fusions are uncommon drivers of sarcoma [30], a TFG-
MET fusion has been reported in a patient with an infantile spindle cell sarcoma with neural
features [31-33]. The interchromosomal in-frame fusion of RBPMS (NM_006867, exon 5) to MET
(NM_000245, exon 15) juxtaposes the RNA recognition motif of RBPMS to the MET tyrosine kinase
catalytic domain (FIGURE 3B,C). Given the therapeutic implications of this driver fusion, the fusion

was confirmed and reported in the patient’s medical record. The identification of this fusion

10


https://doi.org/10.1101/2021.03.11.435013
http://creativecommons.org/licenses/by-nc-nd/4.0/

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435013; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

provided the molecular driver for this tumor, which enabled definitive classification as an infantile
fibrosarcoma-like tumor with a MET fusion. The patient was initially treated with VAC (vincristine,
actinomycin D, and cyclophosphamide) chemotherapy which reduced tumor burden. Surgical
resection of the mass was performed with positive margins. Given the presence of a targetable
gene fusion, the presence of residual tumor, and the morbidity associated with additional surgery
or radiation, the patient was subsequently treated with the MET inhibitor cabozantinib and

demonstrated a complete pathological response (FIGURE 3D).

An NTRK1 fusion in an infiltrating glioma/astrocytoma

A 6-month-old female was diagnosed with an infiltrating glioma/astrocytoma, with a
mitotic index of 7 per single high-power field (HPF) and a Ki-67 labeling index averaging nearly
20%, indicative of aggressive disease. RNA-Seq of the primary tumor revealed a BCAN-NTRK1
fusion, identified by five callers as the only consensus fusion output from the optimized ensemble
pipeline (FIGURE 4A). This fusion was clinically confirmed by RT-PCR as an in-frame event,
resulting from an intrachromosomal deletion of 225kb at 1q23.1, which juxtaposes BCAN
(NM_021948, exon 6) to NTRK1 (NM_002529, exon 8) (FIGURE 4B,C). This fusion results in the loss
of the ligand binding domain of NTRK1, while retaining the tyrosine kinase catalytic domain,
leading to a predicted activation of downstream targets in a ligand-independent manner [34].
Comparison of the normalized read counts from RNA-Seq data revealed elevated NTRKI
expression, over 7 standard deviations from the mean, relative to NTRK1 expression for CNS
tumors within the NCH cohort (N=138) (FIGURE 4D). This result indicates the use of first
generation TRK inhibitor therapies, with recent regulatory approvals, that have exemplary
response rates (75%) and are generally well tolerated by patients [34]. Although the patient has

no evidence of disease following gross total resection and treatment with conventional
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chemotherapy, TRK inhibitors may be clinically indicated in the setting of progressive disease

given these findings (FIGURE 4E).

Novel BRAF fusion in a mixed neuronal-glial tumor

A 14-year-old male with a lower brainstem tumor was diagnosed with a low-grade mixed
neuronal-glial tumor of unusual morphologic appearance. Tumor histology had features of both
ganglioglioma and pilocytic astrocytoma. This tumor was negative for the somatic variant BRAF
p.V600OE, one of the most common somatic alterations associated with gangliogliomas and
pilocytic astrocytomas [35]. Both the ganglioglioma and pilocytic astrocytoma-like portions of the
primary tumor were studied separately by RNA-Seq. A novel TRIM22-BRAF fusion was identified
in both histologies of the tumor, with fusion overlap results from the ganglioglioma portion
represented in FIGURE 5A. TRIM22-BRAF was the only consensus fusion output by the optimized
fusion detection pipeline, and was clinically confirmed by RT-PCR. TRIM22 and BRAF are novel
fusion partners; however, TRIM22 has been reported with other fusion partners in head/neck
squamous cell carcinoma [36]. BRAF is a known oncogene that activates the RAS-MAPK signaling
pathways, and has been described with numerous fusion partners, including the common
KIAA1549-BRAF fusion in pediatric low-grade gliomas [35]. This fusion is an interchromosomal
translocation occurring between TRIMZ22 (NM_006074, exon 2) at 11pl15.4 and BRAF
(NM_004333, exon 9) at 7q34. The resulting protein includes the TRIM22 zinc finger domains and
the BRAF tyrosine kinase domain (FIGURE 5B,C). The TRIM22-BRAF fusion may lead to constitutive
dimerization and activation of BRAF kinase domain, which is indicated by single sample Gene Set
Enrichment Analysis (ssGSEA) and is theoretically targetable through RAF, MEK, or mTOR

inhibitors (FIGURE 5D,E).
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DISCUSSION

Fusions play a significant role as common oncogenic drivers of pediatric cancers, and their
identification may refine diagnosis, inform prognosis, or indicate potential response to
molecularly targeted therapies. We have developed an optimized pipeline for fusion detection that
harmonizes results from several fusion calling algorithms, filters the output to remove known
false positive results, and evaluates the detected fusions compared to a list of known pathogenic
fusions. Testing this pipeline on a reference standard indicated that it outperforms single fusion
detection algorithms by reducing the number of false positive calls, producing a smaller number of
fusions prioritized by the strength of supporting evidence, and suitable for manual inspection. As
such, our pipeline greatly simplifies the interpretation process, enabling our multidisciplinary
oncology teams to focus on medically relevant findings.

We tested the optimized ensemble pipeline in a prospective study of 229 pediatric cancer
and hematologic disease cases and identified 67 fusions. Of these, the fusions from 50 patients
were selected for clinical confirmation by an orthogonal method, in our CAP-accredited, CLIA-
validated clinical laboratory. All 50 (100% true positive rate) were confirmed to be true fusion
events, and were determined to be of clinical relevance by our multidisciplinary care team,
providing a diagnostic yield of over 29% across the cohort. (ADDITIONAL FILE 3: TABLE $8). Given
the high number of putative fusions observed with any single caller, it can be difficult to manually
identify a pathogenic fusion amongst a list of tens, if not hundreds, of output fusions. By taking
into consideration the frequency in which each fusion occurs in an internal database, as well as the
level of evidence based on the number of callers and number of supporting reads by each caller,
one can more confidently remove false positives and identify relevant fusions. While our approach
does not remove the necessity of manual curation, which is required to determine true clinical

relevance of a fusion, it is able to drastically reduce the number of fusions that must be manually
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assessed, down to ~4 fusions per case, and provides annotations, including a pathogenicity gene
partner score, to ease manual interpretation efforts. Our fully automated pipeline aids in
prioritization, filtering, and subsequent knowledge-based analysis, providing a more streamlined
and less labor-intensive approach to identify fusions, compared to current fusion identification
methodologies, drastically reducing the manual workload required to sort through unfiltered or
unprioritized results.

The most frequent fusion identified within our pediatric cancer cohort was KIAA1549-BRAF
(n=12, frequency= 5.2%; FIGURE 2B)[17]. This fusion is characteristically found in pilocytic
astrocytomas, which comprise 8.7% of our pediatric cancer cohort (20 out of 229 cases)[37]. We
identified five different sets of KIAA1549-BRAF breakpoints within our cohort (ADDITIONAL FILE 1:
FIGURE S8A). The most common fusion patterns represented in the literature are KIAA1549 exon
16-BRAF exon 9 (16-9) or KIAA1549 exon 15-BRAF exon 9 (15-9), and these two breakpoints
represent 9 of the 12 KIAA1519-BRAF fusions we identified (ADDITIONAL FILE 1: FIGURE S8B) [38,
39]. Three additional previously described sets of breakpoints were also identified, KIAA1549
exon 16-BRAF exon 11 (16-11; n=1), KIAA1549 exon 15-BRAF exon 11 (15-11; n=1), and KIAA1549
exon 13-BRAF exon 9 (13-9; n=1; ADDITIONAL FILE 1: FIGURE $8). While the 16-11 and 15-11
breakpoints occur less frequently than 16-9 or 15-9, they have been well described in the
literature [38]; whereas only a single case with 13-9 breakpoints was reported as part of a
pilocytic astrocytoma cohort study [40]. KIAA1549-BRAF fusions often have low levels of
expression, a phenomenon that has been described in the literature and is associated with
difficulties in its identification through RNA-Seq based methodologies, which lack fusion product
amplification [41]. The ability of the ensemble pipeline to identify KIAA1549-BRAF fusions, and
others that have very low levels of expression, highlights the sensitivity of our approach.

Additionally, a supplementary “singleton” file for fusions that are identified by individual
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algorithms and on the known fusion list is also output by our approach, allowing users the
opportunity to manually interpret singleton results. This approach ensures that fusions on the
known fusion list are retained, even with minimal evidence by a single caller.

Our approach has also identified other fusions commonly associated with pediatric cancer,
including EWSRI1-FLI1 (n=9), FGFR1-TACC1 (n=3), PAX3-FOX01 (n=3), C11orf95-RELA (n=2),
COL3A1-PLAG1 (n=2), and NPM1-ALK (n=2) (FIGURE 2B). In addition to common fusions, our
ensemble pipeline also identified seven novel fusions (FIGURE 2B). Five of the seven novel fusions
were confirmed by an orthogonal assay in our clinical lab (ADDITIONAL FILE 3: TABLE $8). Chimeric
fusions, which include both interchromosomal (n=30) and intrachromosomal (n=29) events, were
the most common type of fusion identified within the cohort, however, 5 promoter swapping and
3 loss of function fusions were also identified, highlighting the range of fusions this approach is
able to detect (FIGURE 2D).

Running seven different fusion callers is computationally complex, as each has its own set
of dependencies and environmental requirements. To overcome this, we utilize modern cloud
computing technologies. Most notable, our entire pipeline has been built in an AWS serverless
environment, removing the requirement for high performance computing (HPC) clusters, while
producing highly reproducible results and enabling pipeline sharing. The use of a serverless
environment provides flexibility to deploy and scale applications regardless of the application’s
size, without needed concern for the underlying infrastructure. We are also leveraging containers
to process the data within the serverless environment, as they can be easily utilized by outside
institutions with little to no adjustment to their own environments. Another benefit to the current
structure of our approach is the ability to assess output from the individual algorithms in real
time, as the ensemble pipeline is automatically run after each individual caller completes, allowing

for interpretation of at least 3 of the 7 callers within ~3.5 hours, which can be beneficial in
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situations that necessitate fast turnaround times (ADDITIONAL FILE 1: FIGURE S5). Overall, our novel
use of serverless technology provides a robust computational solution that is fully automatable
and easy to distribute.

There are numerous benefits to the utilization of this optimized pipeline, in that detected
fusion events are agnostic to gene partner, allowing identification of common, rare and novel
fusions. In addition, the RNA-Seq data set can be utilized for other types of downstream and
correlative analyses, including evaluation of gene expression for loci disrupted by the fusion
(FIGURE 4D). Utilization of cohort data to assess outlier gene expression can provide valuable
insights into pathway disruptions that may occur due to the gene fusion (FIGURE 5D) and may
provide information about disease subtyping.

Our ensemble fusion detection pipeline is customizable, allowing users to select how many
and which callers to deploy. This may impact potential cost savings, time-to-result, or permit
customization that eliminates specific callers that require excessive compute requirements or run
times, as suitable in a clinical diagnostic or research setting. Users can also determine the number
of consensus calls required to support fusion prediction, which can reduce the number of fusions
to assess manually. Callers with a higher percentage of false positives, FusionCatcher and JAFFA,
often overlap in their predictions, leading to an increased average number of fusions output by the
ensemble pipeline with a consensus of only two callers; a problem diminished by requiring
predictions from at least three callers to overlap. In our study, precision was found to be highest in
the three-caller consensus version of the ensemble pipeline (TABLE 2; ADDITIONAL FILE 2: TABLE
$5). Another benefit to utilizing different algorithms is the ability to assess supplementary output
data, in addition to traditional fusion calling. We have made use of this through the inclusion of the

internal tandem duplication (ITD) detection which is performed by CICERO. CICERO has identified
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7 clinically relevant ITDs within our cohort, 4 of which we have confirmed using orthogonal assays
(ADDITIONAL FILE 1: TABLE S9).

Future developments to the pipeline could include a weighting system for each caller,
based on the precision and sensitivity of the algorithm and on which callers have overlapping
predictions, leading to a more sophisticated prioritization strategy. Additional fusion calling
algorithms may also be considered and provided as options for users. The known fusion list can
also be modified and tailored to include specific gene pairs, or even single genes of interest,
providing another layer of customization. Importantly, through the utilization of a proper internal
database for frequency filtering purposes, considering age and/or cancer diagnosis, and with the
deployment of the appropriate known fusion list, the ensemble approach could be readily
implemented in adult cancer fusion detection. Lastly, not all predictors performed equally, and
there was a single unresolvable failure of FusionMap to complete. This failure was likely due to the
sequencing depth of the sample, however further analysis is required to determine whether
parameter modification would permit completion of FusionMap in this case (ADDITIONAL FILE 3:
TABLE $8). Importantly, our approach was able to circumvent this failure due to the multi-caller
nature of the pipeline. Lastly, there are many modalities of RNA-seq analysis that may be
harnessed in future developments of the ensemble fusion detection pipeline, which may include
an integrative approach exploiting expression-based analysis and ranking. In summary, the
ensemble pipeline provides a highly customizable approach to fusion detection that can be applied
to numerous settings, with opportunities for future improvements based on additional features

and applications.

Conclusions:

17


https://doi.org/10.1101/2021.03.11.435013
http://creativecommons.org/licenses/by-nc-nd/4.0/

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435013; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The optimized ensemble fusion detection pipeline provides a highly automated and
accurate approach to fusion detection, developed to identify high confidence gene fusions from
RNA-Seq data produced from pediatric cancer and hematologic disease samples, and could be
readily implemented in adult cancer data analysis. The clinical impact of accurately identifying
gene fusions in a given patient’s tumor sample is undeniable, not only in terms of refining
diagnoses but also in terms of providing prognostic information that shapes treatment decisions.
Furthermore, identification of driver fusions may indicate potential response to targeted therapies
for cancer patients. The code for the overlap algorithm utilized in this study is publicly available at

our GitHub page (https://github.com/nch-igm/nch-igm-ensemble-fusion-detection).

METHODS
Description of an internal patient cohort

In total, 229 patients were consented and enrolled onto one of three Institutional Review
Board (IRB) approved protocols (IRB17-00206, IRB16-00777, IRB18-00786) and studied at the
Institute for Genomic Medicine (IGM) at Nationwide Children’s Hospital (NCH) in Columbus, Ohio.
Through the utilization of genomic and transcriptomic profiling, these protocols aim to refine
diagnosis and prognosis, detect germline cancer predisposition, identify targeted therapeutic
options, and/or to determine eligibility for clinical trials in patients with rare, treatment-
refractory, relapsed, pediatric cancers or hematologic diseases, or with epilepsy arising in the
setting of a low grade central nervous system (CNS) cancer. Our in-house NCH cohort as studied
here, consisted of samples from CNS tumors (n=138), hematologic diseases (n=18), and non-CNS

solid tumors (n=73), as represented in ADDITIONAL FILE 1: FIGURE S2.

RNA-Seq of patient tissues
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RNA was extracted from snap frozen tissue, formalin-fixed paraffin-embedded (FFPE)
tissue, peripheral blood, bone marrow, and cerebral spinal fluid utilizing dual RNA and DNA co-
extraction methods originally developed by our group for The Cancer Genome Atlas project [42].
White blood cells were isolated from peripheral blood or bone marrow using the lymphocyte
separation medium Ficoll-histopauge. Frozen tissue, white blood cells, or pelleted cells from
cerebrospinal fluid were homogenized in Buffer RLT, with beta-Mercaptoethanol to denature
RNases, plus Reagent DX and separated on an AllPrep (Qiagen) DNA column to remove DNA for
subsequent RNA steps. The eluate was processed for RNA extraction using acid-phenol:chloroform
(Sigma) and added to the mirVana miRNA (Applied Biosystems) column, washed, and RNA was
eluted using DEPC-treated water (Ambion). DNAse treatment (Zymo) was performed post RNA
purification. FFPE tissues were deparaffinized using heptane/methanol (VWR) and lysed with
Paraffin Tissue Lysis Buffer and Proteinase K from the HighPure miRNA kit (Roche). The sample
was pelleted to remove the DNA, and the supernatant was processed for RNA extraction with the
HighPure miRNA column, followed by DNase treatment (Qiagen). RNA quantification was
performed with Qubit (Life Sciences).

RNA-Seq libraries were generated using 100 ng to 1 ug of DNase-treated RNA input, either
by ribodepletion using the Ribo-Zero Globin kit (Illumina) followed by library construction using
the TruSeq Stranded RNA-Seq protocol (Illumina), or by ribodepletion with NEBNext
Human/Mouse/Rat rRNA Depletion kit followed by library construction using the NEBNext Ultra
II Directional RNA-Seq protocol (New England BioLabs). [llumina 2x151 paired end reads were
generated either on the HiSeq 4000 or NovaSeq 6000 sequencing platforms (Illumina). An average
of 104 million read pairs were obtained per sample (range 37M to 380M read pairs).

Following data production and post-run processing, FASTQ files were aligned to the

GRCh38 human reference (hg38) using STAR aligner (version 2.6.0c)[43]. Feature counts were
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calculated using HTSeq, and normalized read counts were calculated for all samples using DESeq?2
[44, 45]. Single sample Gene Set Enrichment Analysis (ssGSEA), v10.0.3, was performed on
DESeq2 normalized read counts using Molecular Signatures Database (MSigDB) Oncogenic
Signatures (c6.all.v7.2.symbols.gmt), which included MEK-upregulated genes (MEK_UP.V1_UP),
RAF-upregulated genes (RAF_UP.V1_UP), and mTOR-upregulated genes

(MTOR_UP.N4.V1_UP)[46].

RNA-Seq of SeraCare control reference standards

Seraseq Fusion RNA Mix (SeraCare Inc., Milford, MA) was utilized as a control reference
standard reagent to test and optimize the ensemble fusion detection pipeline. This product
contains 14 synthetic gene fusions in vitro transcribed, utilizing the GM24385 cell line RNA as a
background. RNA-Seq libraries were prepared utilizing 500 ng input of neat (undiluted) Seraseq
Fusion RNA v2, a non-commercially available concentrated product, as input (SeraCare). RNA-Seq
libraries were also prepared using 500 ng input of diluted control reference standard (Seraseq
Fusion RNA v3 (SeraCare)), which, as a neat reagent is roughly equivalent to a 1:25 dilution of the
vZ2 product, and of total human RNA (GM24385, Coriell) for the fusion-negative controls.
Concentrations of individual fusions in the control reference standard were determined by the
manufacturer using a custom fluorescent probe set (based on TagMan probe design) for each
fusion and evaluation by droplet digital PCR. Digital PCR-based concentration data (copies/ul) are
available in ADDITIONAL FILE 1: TABLE S1 for the undiluted sample and ADDITIONAL FILE 1: TABLE S2
for the diluted sample [47].

Dilutions of the Seraseq Fusion RNA v3 reference standard were performed by mixing with
control total human RNA (GM24385, Coriell) for final dilutions of 1:25, 1:50, 1:250, 1:500, 1:2500.

We also evaluated undiluted Seraseq Fusion RNA v2. For neat and diluted samples, 500ng input
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RNA was treated using the NEBNext Human/Mouse/Rat rRNA Depletion kit and libraries were
prepared following the NEBNext Ultra II Directional RNA-Seq protocol (New England BioLabs).
Paired end 2x151 bp reads were produced using the HiSeq 4000 platform (Illumina). An average

of 149 million read pairs were obtained per Seraseq sample (range of 86M to 227M read pairs).

Optimized Fusion Detection Pipeline

Fusions were detected from paired end RNA-Seq FASTQ files utilizing an automated
ensemble fusion detection pipeline that employs seven fusion-calling algorithms described in
TABLE 1: Arriba (v1.2.0), CICERO (v0.3.0), FusionMap (v mono-2.10.9), FusionCatcher (v0.99.7c),
JAFFA (direct v1.09), MapSplice (v2.2.1), and STAR-Fusion (v1.6.0)[25, 48-51]. STAR-Fusion
parameters were altered to reduce the stringency setting for the fusion fragments per million
reads (FFPM) from 0.05 to 0.02, while default parameters were retained for all other callers. After
fusion calling with each independent algorithm, a custom algorithm written in the R programming
language, was used to “overlap,” or align and compare, the unordered gene partners identified by
individual fusion callers. The utilization of unordered gene partners allows for fusions to be
compared, even if different breakpoints were identified by individual algorithms, and to include
reciprocal fusions. Fusion partners identified by at least three of the seven callers are retained and
prioritized based on the number of contributing algorithms first and then by the number of
sequence reads providing evidence for each fusion. The overlap output retains annotations from
the individual callers, including breakpoints, distance between breakpoints, donor and acceptor
genes, reads of evidence, nucleotide sequence at breakpoint (if available), frequency information
from the database, and whether the identified fusion contains “known pathogenic fusion

partners”. If discordant breakpoints are identified across callers for a set of fusion partners, the
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breakpoints with the most evidence, determined by number of supporting reads, are prioritized in
the output.

The fusions are filtered by the following steps (FIGURE 1A). Read-through events, which
occur between neighboring genes and are typically identified in both healthy and disease states,
are not expected to impact cellular functions [12, 24]. This type of fusion prediction is a source of
false positive results, so we have implemented a filter that removes fusions detected between
genes fewer than 200,000 bases apart, that occur on the same strand and chromosome. Recurrent
fusions with uncertain biological significance have also been identified in normal tissues. To
prevent the inclusion of commonly occurring, benign fusions in our output, a PostgreSQL database
was used to filter commonly occurring artifactual fusions. This filter removes any expected fusion
artifact with greater than a 10% frequency of detection based on our internal cohort. Lastly, to
ensure a high level of confidence in the identified fusions, we utilize a minimum threshold for level
of evidence, removing fusions that contain fewer than four reads of support from at least one
contributing algorithm.

While filtering can remove false positive results and reduces the time needed to review
predicted fusions, it also can remove true positive fusions in certain circumstances. To prevent the
inadvertent filtering of known fusions, a known fusion list was developed containing 325 pairs of
common fusion partners associated with cancer, as identified in COSMIC and TCGA (ADDITIONAL
FILE 1: TABLE $3)[27, 52]. To increase sensitivity in the identification of known pathogenic fusions,
fusion partners that are on the known fusion list are retained as long as at least two callers have
identified the fusion. The ensemble pipeline also outputs a supplementary singleton fusion file,
containing fusions identified by a single caller that are on the known fusion list, allowing users to

examine low evidence fusions that may be of interest.
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To prioritize fusions that contain gene partners commonly found in the known fusion list,
we developed the “Gene Partner Predicted Pathogenicity Score” based on the frequency of the
individual partners in the known fusion list. Of the 325 fusions on the known fusion list, 38 genes
are present as a fusion partner > 3 times (ADDITIONAL FILE 1: TABLE 4, FIGURE S$3). The most
common partners are BRAF and KMTZ2A, which are present as fusion partners 28 times each. To
aide prediction of novel, or not well described, pathogenic fusions, we developed a score based on
known pathogenic gene partners. This score utilizes the frequency of partners present on the
known fusion list. The pathogenic frequency score ranges from 10 (most frequent) to 1 (least
frequent, but present at least 3 times):

Pathogenic Frequency Score = 10 / (fnax — f)

Where f'is the gene frequency and fimax is the maximum observed frequency. The following
annotations are included in the ensemble results if an identified fusion contains one of the 38
common pathogenic gene partners: designation as a known pathogenic gene partner, inclusion of
the frequency score (1-10), and gene type based on UniProt description [53].

A knowledge-based interpretation strategy was applied to the filtered list of fusion
partners output by the pipeline, including the use of FusionHub [54], to inform clinical relevance,
such as diagnostic and/or prognostic information or a potential therapeutic target. Visual
assessment of the fusion events was performed by examining RNA-Seq BAM files with Integrated
Genome Viewer (IGV). Fusions were also assessed at the DNA level by IGV-based evaluation of
gene-specific paired end read alignments from ES or WGS BAM files, for potential evidence of
mapping discordance. Clinically relevant fusions were then assayed in our College of American
Pathologists (CAP)-accredited clinical laboratory using RT-PCR followed by Sanger sequencing of
the resulting products, and/or by Archer FusionPlex Solid Tumor panel (ArcherDx) for clinical

confirmation.

23


https://doi.org/10.1101/2021.03.11.435013
http://creativecommons.org/licenses/by-nc-nd/4.0/

545

546

547

548

549

550

551

552

553

554

555

556

957

558

559

560

561

562

563

564

565

566

567

568

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435013; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

AWS Implementation of the Ensemble Approach

The ensemble fusion detection pipeline is implemented utilizing an Amazon Web Services
(AWS) serverless environment (ADDITIONAL FILE 1: FIGURE $S4). The workflow is initiated via a call
to Amazon API Gateway, which passes parameters, including the location of the input FASTQ files,
to an AWS Lambda function. The Lambda function initiates the AWS Batch job to load and
executes a custom fusion detection Docker image, which launches Arriba, CICERO, FusionMap,
FusionCatcher, JAFFA, MapSplice, and STAR-Fusion. We utilize the R5 family of instances for the
fusion detection algorithms. Due to the efficiency by which different algorithms are able to multi-
thread, each fusion detection tool is allocated 32 virtual CPUs (vCPUs), except for CICERO which is
allocated 16 vCPUs and JAFFA which is allocated 8 vCPUs. Using the described allocations, Arriba
completes the fastest (~37 minutes) for the runs completed year to date in 2020, followed by
FusionMap (~1 hour 12 minutes), STAR-fusion (~3 hours 25 minutes), FusionCatcher (~10 hours
35 minutes), CICERO (~11 hours 49 minutes), MapSplice (~15 hours 2 minutes), and JAFFA (~27
hours 16 minutes), data is summarized in ADDITIONAL FILE 1: FIGURE S5. The results from the
fusion callers are sent to an AWS S3 output bucket, which invokes AWS Batch to load and execute
a Docker image with our overlap script upon completion. This allows for real-time examination of
results as each caller finishes, as the overlapping output is updated upon completion of each
individual caller, which is particularly advantageous given the long execution times for some of
the fusion callers. It is possible to examine results upon completion of the three fastest algorithms
within ~3.5 hours, which is of great benefit for cases necessitating fast turnaround times, and
complete results are made available by the next day. The overlap Docker image queries and
writes to an Aurora PostgreSQL database and performs all necessary filtering. The final results,

including annotated filtered and unfiltered fusion lists, are stored in an AWS S3 output bucket for
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subsequent interpretation. Code for the overlap algorithm is available at our GitHub repository
(https://github.com/nch-igm/nch-igm-ensemble-fusion-detection), DOI:
10.5281/zenodo0.3950385, and Docker images used to build the pipeline are available upon

request.

Data Analysis and Statistics
Figures were plotted using R version 4.0.2. Statistical analysis was performed by GraphPad
Prism 7.0e software. Graphical representation of fusion breakpoints and products were generated

using a modified version of INTEGRATE-Vis [55].

LIST OF ABBREVIATIONS
AWS: Amazon Web Services
CNS: Central Nervous System
ES: Exome Sequencing
FDR: False Discovery Rate
FFPE: Formalin Fixed, Paraffin Embedded
FFPM: Fusion Fragments Per Million
GSNAP: Genomic Short-read Nucleotide Alignment Program
Heme: Hematologic Diseases
HPF: High Power Field
HPC: High Performance Computing
IGM: Institute for Genomic Medicine
IGV: Integrated Genome Viewer

ITD: Internal Tandem Duplication
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NCH: Nationwide Children’s Hospital

QC: Quality Control

RNA-Seq: RNA-Sequencing

ssGSEA: Single Sample Gene Set Enrichment Analysis
vCPU: virtual central processing unit

WGS: Whole Genome sequencing
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The Docker image used to run previously published fusion detection algorithms is also available

upon request for running the ensemble pipeline in an AWS serverless environment.
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Figure 1. The ensemble fusion detection pipeline identifies true positive fusions. A) The
ensemble approach identifies fusions in RNA-Seq data by overlapping results from Arriba,
CICERO, FusionCatcher, FusionMap, JAFFA, MapSplice, and STAR-Fusion. It hierarchically
prioritizes and filters the fusions utilizing an in-house PostgreSQL database and knowledge base,
prior to producing an output list of predicted fusions. In many cases, detected fusions were
orthogonally tested by clinical confirmation in order to return a medically meaningful result. B)
The ensemble pipeline was tested on a dilution series of a reference control reagent (SeraCare) to
determine sensitivity and limit of detection. We optimized the pipeline using the undiluted
reference control reagent, identifying that by requiring =3 callers to have overlap for a detected
fusion, and by utilizing filtering of known false positive fusion calls and cross-referencing a list of
known fusions, all 14 fusions were identified. Colors representing different fusions present in the
SeraSeq v2 reagent are ordered by their absolute proportions. We then applied the optimized
pipeline to the dilution series, showing that the numbers of identified fusions were reduced in

serial dilutions, and no fusions were identified in the negative control.
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Figure 2. Clinically relevant fusions identified by the ensemble approach in a pediatric
cancer and hematologic disease cohort. A) The ensemble approach, with automated filtering,
identifies significantly fewer fusions compared to individual callers. The number of fusions is
plotted as logio(x+1) to account for 0 fusions identified in some cases. Callers are sorted by the
lowest median number of fusions identified to highest.. B) 67 Clinically relevant fusions were
identified, represented as a bar graph with decreasing fusions per individual algorithm,
highlighting the sensitivity of the ensemble approach compared to individual algorithms. No
individual algorithm was able to identify all 67 fusions. C) Of the 67 clinically relevant fusions
identified, 30 were interchromosomal chimeric (blue), 29 were intrachromosomal chimeric
(orange), 3 were loss of function (green), and 5 were promoter swapping (yellow) fusions. D) Of
the 67 clinically relevant fusions identified, 7 are novel events (red asterisk), while the remaining
60 fusion partners had been described previously in the literature. E) A stacked bar graph

represents the individual fusion callers that contributed to each clinically relevant fusion.
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Figure 3. An RBPMS-MET fusion identified in a patient with an infantile fibrosarcoma-like

tumor. A) RBPMS-MET fusion was identified by all seven fusion callers in the filtered overlap

results. The number of fusions identified by each caller is in the outer VENN diagram sections,

while internal numbers indicate overlapping fusions found post-filtering (0 overlaps between

callers are not shown). B) The RBPMS-MET fusion is an interchromosomal event, occurring

between 8p12 and 7q31.2 and joining exon 5 of RBPMS (blue) to exon 15 of MET (red). C) The

fusion protein product includes the RNA recognition motif domain of RBPMS and the tyrosine

kinase catalytic domain of MET. D) The RBPMS-MET fusion is predicted to cause constitutive

phosphorylation and

activation

MET, targetable using cabozantinib.
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864  Figure 4. Targetable NTRK1 fusion identified in an infiltrating glioma. A) The BCAN-NTRK1
865 fusion was identified by 5 of 7 fusion callers, and was the only fusion returned by the filtered
866 overlap results. Total fusions identified by each caller are shown, FusionMap and MapSplice
867 identified no overlapping fusions that passed filtering (0 overlaps between callers are not shown).
868 B) The BCAN-NTRK] fusion is an intrachromosomal event occurring on 1q23.1, joining exon 6 of
869  BCAN (blue) and exon 8 of NTRK1 (red). C) This fusion results in the juxtaposition of the tyrosine
870  kinase catalytic domain of the NTRK1 gene to the 5’ end of the BCAN gene. D) NTRK1 is highly
871  expressed in this patient (red) compared to CNS tumors (black) in the NCH cohort (CNS tumors: n
872  =138), with a normalized read count that is 7.70 standard deviations above the mean (131.2). E)
873 The BCAN-NTRKI1 fusion is predicted to increase expression and activation of the tyrosine kinase

874  NTRK1, which may be inhibited by TRK inhibitor therapy (green).
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FIGURE 5
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Figure 5. Identification of a novel BRAF fusion in a mixed neuronal-glial tumor. A) The
TRIMZ22-BRAF fusion was identified by all seven fusion callers and in the filtered overlap results,
total fusions identified by each caller and overlapping fusions are shown (0 overlaps between
callers are not shown). B) The TRIM22-BRAF fusion is an interchromosomal event between
11p15.4 and 7q34, joining exon 2 of TRIMZ2Z2 (blue) to exon 9 of BRAF (red). C) The resulting
fusion product contains the 5" TRIM22 zinc finger binding domains and BRAF tyrosine kinase
catalytic domain. D) Single sample gene set enrichment analysis (ssGSEA) indicates a trend
toward an enrichment of the MEK (above the 75t percentile, 0.68 standard deviations above the
mean of 22756.87), RAF (above the 75t percentile, 0.60 standard deviations above the mean of
22635.74), and mTOR (above the 75% percentile, 0.72 standard deviations above the mean of
22191.50) upregulated gene sets in the TRIM22-BRAF sample (red) compared to the pan-cancer
NCH cohort (black) (pan-cancer cohort: n = 229). E) The TRIM22-BRAF fusion is predicted to cause
constitutive dimerization and activation of the BRAF kinase domain, shown in D), which could be
targeted by RAF, MEK, and mTOR inhibitors (green).
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891 TaABLE1
892
Average Sensitivity
Tool Version Aligner Reference Fusions Called (Clmlc_ally Relevant
er Case Fusions Called
p out of 67)
Haas et al,,
Arriba v1.2.0 STAR aligner 2019 Genome 54 86.6% (58)
Biol
candidate SV (structural Tian et al,
CICERO v0.3.0 variant) breakpointsand 2020 Genome 1915 89.6% (60)
splice junction Biol
GSNAP (Genomic Short-
. vV mono- read Nucleotide Geetal, 2011 o
FusionMap 2109 Alignment Program) - Bioinformatics 34 88.1% (59)
12mer based
4 aligners to identify Nicorici et al
FusionCatcher  v0.99.7c junctions (Bowtie, BLAT, 2014 biORXi\.; 1558 89.6% (60)
STAR, and Bowtie2)
direct BLAT, uses kmers to Davidson et al.,
JAFFA selects reads thatdonot 2015 Genome 1141 95.5% (64)
v1.09 ;
map to known transcripts Med
approximate sequence Wangetal.,
MapSplice v2.2.1 alignment combined with 2010 Nucleic 37 83.6% (56)
alocal search Acids Res
Haas et al,,
STAR-fusion v1.6.0 STAR aligner 2019 Genome 72 94.0% (63)
Biol
893
894  Table 1. Performance comparison of individual fusion calling algorithms. Fusion calling
895  algorithms utilized by the ensemble fusion detection pipeline and their contributions to fusion
896 calling in the NCH pediatric cancer and hematologic disease cohort.
897
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898 TABLE2
Total Seraseq
Algorithm Fusions Fusions Sensitivity  Precision
Identified Identified
Arriba 23.5 13 92.9% 55.3%
MapSplice 22 12 85.7% 54.6%
STAR-fusion 32 14 100.0% 43.6%
FusionMap 30 12.5 89.3% 41.7%
FusionCatcher 299.5 13 92.9% 4.3%
JAFFA 470.5 12.5 89.3% 2.7%
CICERO 1323 14 100.0% 1.1%
Ensemble 2 callers 38.5 14 100.0% 36.4%
Ensemble 2 callers 15.5 12 85.7% 77.4%
+ filter
_Ensemble 2 callers 17.5 14 100.0% 80.0%
+ filter + known fusion list
Ensemble 3 callers 15 14 100.0% 93.3%
Ensembl_e 3 callers 12 12 85.7% 100.0%
+ filter
Ensemble 3 callers 14 14 100.0% 100.0%

+ filter + known fusion list

899

900 Table 2. Improved precision in fusion detection, utilizing Seraseq controls, achieved

901 through utilization of the ensemble pipeline. Data shown is from undiluted Seraseq v3 RNA-

902  Seq, experiments performed in duplicate, averages are shown. Individual algorithms are listed by

903 precision, in descending order. Seraseq fusions identified (true positive) are out of a possible 14

904 fusions.
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