
THINGSvision: a Python toolbox for streamlining the
extraction of activations from deep neural networks

Lukas Muttenthaler ∗†, Martin N. Hebart ∗

*Vision and Computational Cognition Group,

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

† Machine Learning Group, Technical University of Berlin, Germany

Corresponding authors: Lukas, L.M., Muttenthaler; muttenthaler@cbs.mpg.de

Martin, M.N.H, Hebart; hebart@cbs.mpg.de

Abstract

Over the past decade, deep neural network (DNN) models have received a lot
of attention due to their near-human object classification performance and their
excellent prediction of signals recorded from biological visual systems. To better
understand the function of these networks and relate them to hypotheses about
brain activity and behavior, researchers need to extract the activations to images
across different DNN layers. The abundance of different DNN variants, however, can
often be unwieldy, and the task of extracting DNN activations from different layers
may be non-trivial and error-prone for someone without a strong computational
background. Thus, researchers in the fields of cognitive science and computational
neuroscience would benefit from a library or package that supports a user in the
extraction task. THINGSvision is a new Python module that aims at closing this
gap by providing a simple and unified tool for extracting layer activations for a wide
range of pretrained and randomly-initialized neural network architectures, even for
users with little to no programming experience. We demonstrate the general utility
of THINGsvision by relating extracted DNN activations to a number of functional
MRI and behavioral datasets using representational similarity analysis, which can
be performed as an integral part of the toolbox. Together, THINGSvision enables
researchers across diverse fields to extract features in a streamlined manner for their
custom image dataset, thereby improving the ease of relating DNNs, brain activity,
and behavior, and improving the reproducibility of findings in these research fields.

Keywords: Deep Neural Networks, Computational Neuroscience, Computer Vision, Feature
extraction, Artificial Intelligence, Python

Author roles: Conceptualization: L.M. & M.N.H; Funding acquisition: M.N.H.; Resources:
L.M. & M.N.H.; Software: L.M.; Supervision: M.N.H.; Visualization: L.M.; Writing – original
draft: L.M.; Writing – final manuscript: L.M. & M.N.H.

1 Introduction

In recent years, deep neural networks (DNNs) have sparked a lot of interest in the connected
fields of cognitive science, computational neuroscience, and artificial intelligence. This is mainly

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

owing to their power as arbitrary function approximators (LeCun, Bengio, & Hinton, 2015),
their near-human performance on object recognition and natural language understanding tasks
(e.g., Russakovsky et al. (2015); Wang et al. (2019, 2018)), and, most crucially, the fact that
their latent representations often show a close correspondence to brain recordings and behavioral
measurements (Güçlü & van Gerven, 2014; Khaligh-Razavi & Kriegeskorte, 2014; Kietzmann,
McClure, & Kriegeskorte, 2018; King, Groen, Steel, Kravitz, & Baker, 2019; Kriegeskorte, 2015;
Schrimpf et al., 2018; Schrimpf, Kubilius, et al., 2020; Yamins et al., 2014).

One important limiting factor for a much broader interdisciplinary adoption of DNNs as
computational models lies in the difficulty of extracting layer activations for DNNs. This difficulty
is twofold. First, the number of existing models is enormous and increases by the day. Due to
this diversity, an extraction strategy that is suited for one model may not apply to any other
model. Second, for users without a strong programming background it can be non-trivial to
extract features while being confident that no mistakes were made in the process, for example
during image preprocessing, layer selection, or making sure that images corresponded to extracted
activations. Beyond these difficulties, even experienced programmers would benefit from an
efficient and validated toolbox to streamline the extraction process and prevent errors in the
process. Together, this demonstrates that researchers in cognitive science and computational
neuroscience would benefit from a readily-available package for a streamlined extraction of neural
network activation.

With THINGSvision, we provide a Python toolbox that enables researchers to extract features
for most state-of-the-art neural network models for existing or custom image datasets with just a
few lines of code. While feature extraction may not seem to be a difficult task for someone with a
strong computational background, this toolbox is primarily aimed at supporting those researchers
who are inexperienced with Python programming and deep neural network architectures, but
interested in the analysis of their representations. However, we believe that even computer
scientists will benefit from a publicly available toolbox that is well maintained and efficiently
written. Thus, we regard THINGSvision as a tool that can be used across research domains.

In the remainder of this article, we introduce and motivate the main functionalities of the
library and how to use them. We start by providing an overview of the collection of neural
network models for which features can be extracted. The code for THINGSvision is publicly
available and readily available as a Python package under the MIT license https://github.com/
ViCCo-Group/THINGSvision.

1.1 Model collection

All neural network models that are part of THINGSvision are built in PyTorch (Paszke et al.,
2019) or TensorFlow (Abadi et al., 2015), which are the two most commonly used deep learning
frameworks. We include every neural network model that is part of PyTorch’s publicly available
model-zoo, torchvision, and TensorFlow’s model zoo, including many DNN models commonly
used in research such as AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), VGG-16 and VGG-19
(Simonyan & Zisserman, 2015), and ResNet (He, Zhang, Ren, & Sun, 2016). Whenever a
new vision architecture is added to torchvision or TensorFlow’s model zoo, THINGSvision is
designed to automatically make it available, as well.

In addition to models from the torchvision and TensorFlow library, we provide both
feedforward and recurrent variants of CORnet, a recent DNN model that was inspired by the
architecture of the non-human primate visual system and that leverages recurrence to more
closely resemble biological processing mechanisms (Kubilius et al., 2019, 2018). At the time of
writing, CORnet-S is the best performing computational model on the BrainScore benchmark
(Schrimpf et al., 2018; Schrimpf, Kubilius, et al., 2020), a composition of various neural and
behavioral benchmarks aimed at assessing the degree to which a DNN is a good model of cortical

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://github.com/ViCCo-Group/THINGSvision
https://github.com/ViCCo-Group/THINGSvision
https://pytorch.org/vision/0.8/models.html
https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

visual object processing.
Moreover, we include both versions of CLIP (Radford et al., 2021), a multimodal DNN model

developed by OpenAI that is based on the Transformer architecture (Vaswani et al., 2017), which
has surpassed the performance of previous recurrent and convolutional neural networks on a
wide range of core natural language processing and image recognition tasks. CLIP’s training
procedure makes it possible to simultaneously extract both image and text features for visual
concepts and their natural language counterparts. CLIP exists as an advanced, multimodal
version of ResNet50 (He et al., 2016) and the so-called Vision-Transformer, ViT (Dosovitskiy et
al., 2021). We additionally provide the possibility to upload model weights pretrained on custom
image datasets beyond ImageNet.

To facilitate the reproducibility of computational analyses across research groups and fields,
it is crucial to not only make code pertaining to the proposed analysis pipeline publicly available
but additionally offer a general and well documented framework that can easily be adopted by
others (Esteban et al., 2018; Peng, 2011; Rush, 2018; Van Lissa et al., 2020). This is why we
aspired to follow high software engineering principles such as PEP8 guidelines during development.
We regard THINGSvision as a toolbox that aims at promoting both the interpretability and
comparability of research at the intersection of cognitive science, computational neuroscience, and
artificial intelligence. Instead of simply providing an unwieldy collection of existing computational
models, we decided to focus on models whose functional composition has been demonstrated to
be similar to the primate visual system (Kietzmann et al., 2018; Kriegeskorte, 2015) and models
that are widely adopted by the research community.

2 Method

THINGSvision is a toolbox that was written in the high-level programming language Python and,
therefore, requires Python version 3.7 or later to be installed on a user’s machine. The toolbox
leverages three of the most widely used packages in the context of machine learning research and
numerical analysis, namely PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2015) and
NumPy (Harris et al., 2020). Since all relevant NumPy operations were made an integral part of
THINGSvision, it is not necessary to import NumPy or any other Python package explicitly.

To extract features from a neural network model for a custom set of images, users are first
required to select a model and additionally define whether the model’s weights were pretrained
on ImageNet (Deng et al., 2009; Russakovsky et al., 2015), randomly initialized or whether the
user wants to upload weights that were pretrained on a custom image dataset. If the comparison
is aimed at investigating the correspondence between learned representations of a model and
brain or behavior, we recommend to use pretrained weights. If the comparison is aimed at
investigating how architectural constraints alone can lead to similar representations in models
and brain or behavior, then representations from randomly initialized weights carry valuable
additional information irrespective of learning (Güçlü & van Gerven, 2015; Schrimpf, Blank,
et al., 2020; Storrs, Kietzmann, Walther, Mehrer, & Kriegeskorte, 2020; Yamins et al., 2014).
Second, input and output folders as well as the number of samples to be processed in parallel in
so-called mini-batches are passed to a function that converts the user’s images into an iterator
over mini-batches. This data loader subsequently serves as the input to a function that extracts
features for the selected module (e.g., the penultimate layer). The above operations are performed
with the following lines of code, which essentially encompass the basic flow of THINGSvisions’s
extraction pipeline

import torch

import thingsvision.vision as vision

from thingsvision.model_class import Model

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model = Model(

model_name='alexnet',

pretrained=True,

model_path=None,

device=device,

backend='pt',

)

dl = vision.load_dl(

root='./images/',

out_path='./alexnet/features.10/features/',

batch_size=64,

transforms=model.get_transformations(),

backend='pt',

)

features, targets = model.extract_features(

data_loader=dl,

module_name='features.10',

batch_size=64,

flatten_acts=True,

device=device,

)

vision.save_features(features, out_path='./alexnet/features.10/features/', 'npy')

Note that at this point it appears crucial to stress the difference between a layer and a module.
Module is a more general reference to the individual parts of a model. A module can refer to
non-linearities, pooling operations, batch normalization and convolutional or fully-connected
layers, whereas a layer usually refers to an entire model block, such as the composition of the
latter set of modules or a single layer (e.g., fully-connected or convolutional). We will, however,
use the two terms interchangeably in the remainder of this article whenever a module refers to a
layer. Moreover, extracting features is used interchangeably with extracting network activations.

Figure 1 depicts a high-level overview of how feature extraction is streamlined in THINGSvision.
Given that a user provides the system path to an image dataset, the input to a neural network
model is a three-dimensional matrix, I ∈ RH×W×C , which is the numerical representation of any
image. Assuming that a user wants to apply the flattening operation to the activations from the
selected module, the output corresponding to each input is a one-dimensional vector, z ∈ RKHW .

In the following paragraphs, we will explain both operations and the variables necessary for
feature extraction in more detail. We start by introducing variables that we deem helpful for
structuring the extraction workflow.

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: THINGSvision feature extraction pipeline for an example convolutional neural network architecture. Images and
activations in early layers of the model are represented as four-dimensional arrays. The first dimension
represents the batch size, i.e., the number of images in a subsample of the data. For simplicity, in this example
this number is set to two. The second dimension refers to the channel-dimension, and the last two dimensions
represent the height and width of an image or feature map, respectively.

2.1 Variables

Variable Example assignment Short description

root (str) './images/' system directory where a user’s
image set is stored

model_name (str) 'alexnet' name of the neural network model

pretrained (bool) True pretrained or random weights

batch_size (int) 64 number of image samples per
mini-batch

module_name (str) 'features.10' part of the model from which to
extract features

out_path (str) f'./{root}/{model_name}/{module_name}/' location on machine where to
store features

�le_format (str) '.npy' format in which to store features

device (str) 'cuda' whether to perform feature extraction on GPU
or CPU

Table 1: Overview of the variables that are relevant for THINGSvision’s feature extraction pipeline and that facilitate a
user’s workflow.

Before leveraging THINGSvision’s full functionality, a user is advised to assign values to
seven variables, which, for simplicity, we define as their corresponding keyword argument names:
root, model name, pretrained, batch size, out path, file format, and device. Note that
this is not a necessity, since the values pertaining to those variables can simply be passed as
input arguments to the respective functions. It does, however, facilitate the ease of reading,
and in our opinion clearly contributes to a better workflow. Moreover, there is the option to
additionally assign a value to the variable module name whose significance we will explain in
Section 2.2.2. The above variables, their data types, example assignments, and short descriptions
are displayed in Table 1. We will explain the details of these variables in the remainder of this

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

section. We want to stress that our variable assignments are arbitrary examples rather than a
general recommendation. The exact values are depending on the specific needs of a user. More
advanced users can simply jump to Section 2.2.

2.1.1 Root

We recommend starting with the assignment of the root variable. This variable is supposed to
correspond to the system directory where a user’s image set is stored.

root = './images/'

2.1.2 Model name

Next, a user is required to specify the name of the neural network model whose features
corresponding to the images in root ought to be extracted. The model’s name can be defined
as one of the available neural network models in torchvision or TensorFlow. Conveniently,
as soon as a new model is added to torchvision or TensorFlow, it will also be included in
THINGSvision, since we inherit from both torchvision and TensorFlow. For simplicity, we use
alexnet and the PyTorch backend throughout the remainder of the article, as shown in Table 1.

model_name = 'alexnet'

2.1.3 Pretrained

As a subsequent step, a user needs to specify whether to load a pretrained model (i.e., pretrained
on ImageNet) into memory, or whether to solely load the parameters of a model that has not
yet been trained on any publicly available dataset (so-called randomly initialized networks).
The latter may be relevant for architectural comparisons when one is concerned not with the
knowledge of a model but with its architecture. In the current example, we assume that the user
is interested in a model’s knowledge and not its function composition, which is why we set the
variable pretrained to true. Note that pretrained must be assigned with a Boolean value
(see Table 1).

pretrained = True

2.1.4 Batch size

Modern neural network architectures process several images at a time in batches. To make the
extraction of neural network activations more time efficient, THINGSvision follows this processing
choice, sampling B images in parallel. Thus, the choice of the user lies in the trade-off between
processing time and memory usage (GPU memory or RAM). For users who are not concerned
with extraction speed, we recommend setting B to 32. In our example B is set to 64 (see Table 1)

batch_size = 64

2.1.5 Backend

A user can specify whether to load a neural network model built in PyTorch (’pt’) or TensorFlow
(’tf’).

backend = 'pt'

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://pytorch.org/vision/0.8/models.html
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.1.6 Device

A user can choose between using a CPU and a GPU if a GPU is available. The advantage of
leveraging a GPU lies in its faster computation. Note that GPU usage is possible only if a
machine is equipped with an NVIDIA GPU.

device = 'cuda' if torch.cuda.is_available() else 'cpu'

2.1.7 Module name

Module name refers to the part of the model from which network activations should be extracted.
In case a user is familiar with the architecture of the neural network model for which features
should be extracted, the variable module name can be set manually (e.g., features.10). There
is, however, the possibility to first inspect the model architecture through an additional function
call, and subsequently select a module based on the output of this function. The function prompts
a user to select a module, which is then assigned to module name in the form of a string. In
Section 2.2.2, we will explain in more detail how this can be done.

module_name = 'features.10'

2.1.8 Output directory

Before saving features to disk, a user is required to specify the directory where image features
should be stored. For simplicity, in Table 1 we define out path as a succession of previously
defined variables.

out_path = f'./{root}/{model_name}/{module_name}/'

2.1.9 File format

A user can specify the file format in which the image features are stored. This variable can
be set either to hdf5, txt, mat or npy. If subsequent analyses are performed in Python, we
recommend to set file format to npy, as storing large matrices in npy format is both more
memory and time efficient than doing the same in txt format. This is due to the fact that the
npy format was specifically designed to accommodate the storing of large matrices to NumPy

(Harris et al., 2020).

out_path = 'npy'

2.2 Model & modules

2.2.1 Loading models

With the previously defined variables in place, a user can now start loading a model into a
computer’s memory. Since model name is set to alexnet, backend to pt and pretrained to
true, we load an AlexNet model, built in PyTorch and pretrained on ImageNet into memory
with the following line,

model = Model(model_name, pretrained=pretrained, model_path=None, device=device, backend=backend)

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.2.2 Selecting modules

Before extracting DNN features for an image dataset, a user is required to select the part of the
model for which features should be extracted. In case a user is familiar with the architecture of
a specific neural network model, they can simply assign a value to the variable module name (see
Section 2.1.7). If a user is, however, unfamiliar with the specific architecture of a neural network
model, we recommend visualizing the composition of the model’s modules through the following
function call,

module_name = model.show()

The output of this call, in the case of alexnet, looks as follows,

AlexNet(

(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))

(1): ReLU(inplace=True)

(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)

(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(4): ReLU(inplace=True)

(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)

(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(7): ReLU(inplace=True)

(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(9): ReLU(inplace=True)

(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU(inplace=True)

(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)

)

(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))

(classifier): Sequential(

(0): Dropout(p=0.5, inplace=False)

(1): Linear(in_features=9216, out_features=4096, bias=True)

(2): ReLU(inplace=True)

(3): Dropout(p=0.5, inplace=False)

(4): Linear(in_features=4096, out_features=4096, bias=True)

(5): ReLU(inplace=True)

(6): Linear(in_features=4096, out_features=1000, bias=True)

)

)

For users unfamiliar with details of neural network architectures, this output may look
confusing, given that it is well known that AlexNet consists only of 8 layers. Note, however,
that the above terminal output displays the individual modules of AlexNet as well as their
specific attributes, such as how many features their inputs and outputs have, or whether a layer
is followed by a rectifier non-linearity or pooling operation. Note further that the modules are
enumerated in the order in which they appear within the model’s composition. This is crucial
for the module selection step. During this step, THINGSvision prompts a user to ”enter the
part of the model for which a user would like to extract image features”. The user’s input is
automatically assigned to the variable module name in the form of a string. In order to extract
features from layers that correspond to early areas of the primate visual system, we recommend
selecting convolutional or pooling modules, and linear layers for later areas that encode high-level
features.

It is important to stress that each model in PyTorch or TensorFlow is represented by a tree
structure, where the name of the model refers to the root of the tree (e.g., AlexNet). To access a
module, a user is required to compose the string variable module name by both the name of one

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

of the leaves that directly follow the tree’s root (e.g., features, avgpool, classifier) and the
number of the module to be selected, separated by a period (e.g., features.5). This approach
to module selection accounts for all models that are part of THINGSvision. How to compose the
string variable module name differs between PyTorch and TensorFlow. We use PyTorch module
naming.

In this example, we select the 10th module of AlexNet’s leaf features (i.e., features.10),
which corresponds to the fifth convolutional layer in AlexNet (see above). Hence, features will be
extracted exclusively for this module.

2.3 Dataset & Data loader

Through a dedicated dataset class, THINGSvision can deal with various types of image data
(.eps, .jpg, .jpeg, .png, .PNG, .tif, .tiff) and is able to transform the images into a ready-
to-use PyTorch or TensorFlow dataset. System paths to images can follow the folder structure
./root/class/img xy.png or ./root/img xy.png, where the former directory contains sub-
folders for the respective image classes. A dataset is subsequently wrapped with a PyTorch or
TensorFlow iterator to enable batch-wise feature extraction. The above is done with,

dl = vision.load_dl(root, out_path=out_path, batch_size=batch_size, \

transforms=model.get_transformations(), backend=backend)

THINGSvision automatically sorts image files alphabetically (i.e., A-Z or 0-9). Sorting,
however, depends on a machine’s operating system. An alphabetic sort differs across Windows,
macOS, and Ubuntu, which is why we provide the possibility to sort the data according to a list
of file names, manually defined by the user. The features will, subsequently, be extracted in the
order of the provided file names.

This list must follow the List[str] data structure (i.e., containing strings), such as
[aardvark/aardvark 01.jpg, aardvark/aardvark 02.jpg, ...] or [aardvark.jpg, anchor.jpg,

...], depending on whether the dataset tree consists of subfolders for classes (see above). The
list of file names can be passed as an optional argument as follows,

dl = vision.load_dl(root, out_path=out_path, batch_size=batch_size, \

transforms=model.get_transformations(), backend=backend, \

file_names=file_names)

We use the variable dl here since it is a commonly used abbreviation for ”data loader”. It is,
moreover, necessary to pass out path to the above function to save a txt to out path consisting
of the image names in the order in which features are extracted. This is done to ensure that
a user can easily correspond the rows of a feature matrix to the image names, as shown in Figure 1.

2.4 Features

The following section is meant for readers curious to understand what is going on under the hood
of THINGSvision’s feature extraction pipeline and, additionally, who aim to get a better grasp
of the dimensions depicted in Figure 1. Readers who are familiar with matrices and tensors may
want to skip this section and jump directly to Section 2.4.2, since the following paragraphs are
not crucial for using the toolbox. We use mathematical notation to denote images (inputs) and
features (outputs).

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.4.1 Extracting features

When all variables necessary for feature extraction are set, the user can extract image features
for a specific (here, the fifth convolutional) layer in AlexNet (i.e., features.10) . Figure 1
shows THINGSvision’s feature extraction pipeline for two example images. The algorithm first
searches for the images in the root folder, subsequently converts them into a ready-to-use dataset,
and then passes sub-samples of the data in the form of mini-batches as inputs to the network.
For simplicity and to demonstrate the extraction procedure, Figure 1 displays an example of
a simplified convolutional neural network architecture. Recall that an image is numerically
represented as a three-dimensional array, usually in the following format

I ∈ RH×W×C , (1)

where H = height, W = width, C = channels. C = 1 or 3, depending on whether images are
represented in grayscale or RGB format. In PyTorch, however, image batches, denoted as X, are
represented as four-dimensional tensors,

X ∈ RB×C×H×W , (2)

where B = batch size, and all other dimensions are permuted. Note, that this is not the
case for TensorFlow, where image dimensions are not permuted. In the example in Figure 1,
B = 2, since two images are concurrently processed. The channel dimension, now, represents
the tensor’s second dimension (inside the toolbox, it is the first dimension, since Python starts
indexing at 0) to more easily apply convolutions to input images. Hence, features at the level of
the selected module, denoted as Z, are represented as four-dimensional tensors in the format,

Z ∈ RB×K×H×W , (3)

where the channel parameter C is replaced with K referring to the number of feature maps
within a representation. Here, K = 256, and H and W are significantly smaller than at the input
level. For most analyses in computational neuroscience, researchers are required to flatten this
four-dimensional tensor into a two-dimensional matrix of the format,

Zflat ∈ RB×KHW , (4)

i.e. one vector per image representation in a batch, which is what we demonstrate in the
following example. We provide a keyword argument, called flatten acts, that communicates
to the function to automatically perform the previous step during feature extraction (see the
flatten operation in Figure 1). A user must simply set the argument to True as follows,

features, targets = model.extract_features(dl, module_name, batch_size=batch_size, \

flatten_acts=True, device=device)

The final, two-dimensional, feature matrix is of the form,

Zflat ∈ RN×KHW , (5)

where N corresponds to the number of images in the dataset. In addition to the feature
matrix, extract features returns a target vector of size N × 1 corresponding to the image
classes. A user can decide whether to save or ignore this target vector, depending on the
subsequent analyses. Note that flattening a tensor is not necessary for feature extraction to work.
If a user wants the original four-dimensional tensor, flatten acts must be set to False. A
flattened representation may be desirable when the neural network representations are supposed
to be compared against representations extracted from brain or behavior, which are typically
compared using multiple linear regression or by computing correlation coefficients, which cannot

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

operate on multidimensional arrays directly. However, if the goal is to compare activations
between different model architectures or leverage interpretability techniques to inspect feature
maps, then the tensor should be left in its original four-dimensional shape.

To offer a user more flexibility and control over the feature extraction procedure, we do
not provide a default value for this keyword argument. Since a user may want store a four-
dimensional tensor in txt format to disk, THINGSvision comes (1) with a function that slices a
four-dimensional tensor into multiple two-dimensional matrices, and (2) a corresponding function
that merges the slices back into their original shape at the time of loading the features back into
memory.

2.4.2 Saving features

To save network activations (no matter from which part of the model) in a flattened format, the
following function can be called,

vision.save_features(features, out_path, file_format)

When features are extracted from any of the convolutional layers of the model, the output is a
four-dimensional tensor. Since it is not trivial to save four-dimensional tensors in txt format to
be readily used for subsequent analyses of a model’s feature maps, a user is required to set the
file format argument to hdf5, npy, or mat, of which all enable the saving of four-dimensional
tensors in their original shape.
When storing network activations from convolutional layers in their flattened format, it is possible
to run into MemoryErrors. We account for that potential caveat with splitting two-dimensional
matrices into k equally large splits, whenever that happens. The default value of k is set to 10.
If 10 splits are not sufficient to counteract the memory issues, a user can change this value to a
larger number. We recommend trying multiples of 10, such as

vision.save_features(features, out_path, file_format, n_splits=20)

To merge the array splits back into a single, two-dimensional, feature matrix, a user can call,

features = vision.merge_features(out_path, file_format)

2.5 Representational Similarity Analysis

Representational Similarity Analysis (RSA), a technique that originated in cognitive compu-
tational neuroscience, can be used to relate object representations from different measure-
ment modalities (e.g., fMRI or behavior) and different computational models with each other
(Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al., 2008). RSA is based on
representational dissimilarity matrices (RDMs), which capture the representational geometry
present in a given system (e.g., in the brain or a DNN), thereby abstracting away from the
underlying multivariate pattern. Rather than directly comparing measurements, RDMs compare
representational similarities between two systems. RDMs are symmetric, square matrices, where
the rows and columns are indexed by the different conditions or objects. Hence, RSA is a
convenient analysis tool to compare visual object representations obtained from different DNNs.

The dissimilarity between each object pair (e.g., two images) is computed within the row
space of an RDM. Dissimilarity is quantified as the distance between two objects in the measured
representational space, defined by the chosen distance metric. The user can choose between the
Euclidean distance (euclidean), the correlation distance (correlation), the cosine distance
(cosine) and a radial basis function applied to pairwise distances (gaussian). Equivalent object
representations show a dissimilarity score close to 0. For the correlation and cosine distances,

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

the maximum dissimilarity score is bounded to 2, whereas there is no theoretical upper limit for
the euclidean distance.

Since RDMs are symmetric around their main diagonal, it is simple to compare them by
correlating their lower or upper triangles. We include both the possibility to compute and
visualize an RDM and to correlate the upper triangles of two distinct RDMs. Computing an
RDM based on a Pearson correlation distance matrix is as simple as calling

rdm = vision.compute_rdm(features, method='correlation'),

Note that similarities are computed between conditions or objects, not features. To compute
the representational similarity between two distinct RDMs, a user can make the following call,

rdm_correlation = vision.correlate_rdms(rdm_1, rdm_2, correlation='pearson')

The default correlation value is the Pearson correlation coefficient, but this can be changed
to spearman if a user assumes that the similarities are not ratio scale and require the computation
of a Spearman rank correlation (Arbuckle, Yokoi, Pruszynski, & Diedrichsen, 2019; Nili et al.,
2014). To visualize an RDM and automatically save the output image (in .png or .jpg format)
to disk, one may call

vision.plot_rdm(out_path, features, method='correlation',\

format='.png', colormap='cividis', show_plot=True)

The default value of format is set to .png but can easily be changed to .jpg. Note that .jpg
is a lossy image compression, whereas .png is lossless, and, hence, with .png no information gets
lost during compression. Therefore, the format argument influences both the size and the final
resolution of the RDM image representation. The dpi value is set to 200 to guarantee for a high
image resolution, even if .jpg is selected.

3 Results & Applications

To demonstrate the usefulness of THINGSvision, in the following, we present analyses of the
image representations of different deep neural network architectures and compare them against
representations obtained from behavioral experiments (3.1.1) and functional MRI responses to
higher visual cortex (3.1.2). To qualitatively inspect the DNN representations, we compute and
visualize representational dissimilarity matrices (RDMs) within the framework of representational
similarity analysis (RSA), as introduced in Section 2.5. Moreover, we calculate the Pearson
correlation coefficients between human and DNN representations to quantify their similarities, and
show how this can easily be done with THINGSvision. We measure the correspondence between
layer activations and human brain or behavioral representations as the Pearson’s correlation
coefficient, in line with the recent finding that the linearity assumption holds for functional MRI
data which validates the use of an interval rather than an ordinal scale (Arbuckle et al., 2019).

In addition to results for pretrained models, we compare randomly initialized models against
human brain and behavioral representations. This reveals the degree to which the architecture
by itself, without any prior knowledge (e.g. through training), may perform above chance and
which model achieves the highest correspondence to behavioral or brain representations under
these circumstances. Indeed, a comparison to randomly-initialized networks is increasingly used
as a baseline for comparisons(e.g., Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Güçlü & van
Gerven, 2015; Schrimpf, Blank, et al., 2020; Storrs, Kietzmann, et al., 2020; Yamins et al., 2014).

Note that this section should not be regarded as an investigation in its own right. It is
supposed to demonstrate the usefulness and versatility of the toolbox. This is the main reason
for why we do not make any claims about hypotheses and how to test them. RSA is just one out
of many potential applications, of which a subset is mentioned in the Discussion section.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.1 The penultimate layer

Figure 2: a. RDMs for penultimate layer representations of different pretrained neural network models, for group
averages of behavioral judgments, and for fMRI responses to higher visual cortex. For Mohsenzadeh et al.
(2019), no behavioral experiments had been conducted. For both datasets in Bankson et al. (2018), and for
Hebart et al. (2020), no fMRI recordings were available. For display purposes, Hebart et al. (2020) was
downsampled to 200 conditions. RDMs were reordered according to an unsupervised clustering. b/c. Pearson
correlation coefficients for comparisons between neural network representations extracted from the penultimate
layer and behavioral representations (b) and representations corresponding to fMRI responses of higher visual
cortex (c). Activations were extracted from pretrained and randomly initialized models.

The correspondence of a DNN’s penultimate layer to human behavioral representations has
been studied extensively and is therefore often used when investigating the representations
of abstract visual concepts in neural network models (e.g., Bankson et al., 2018; Battleday,
Peterson, & Griffiths, 2019; Cichy, Kriegeskorte, Jozwik, van den Bosch, & Charest, 2019; Jozwik,
Kriegeskorte, Cichy, & Mur, 2018; Mur et al., 2013; Peterson, Abbott, & Griffiths, 2018). To the
best of our knowledge, our study is the first to compare visual object representations extracted

13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

from CLIP (Radford et al., 2021) against the representations of well known vision models
that have previously shown a close correspondence to neural recordings of the primate visual
system. We computed RDMs based on the Pearson correlation distance for seven models, namely
AlexNet (Krizhevsky et al., 2012), VGG16 and VGG19 with batch normalization (Simonyan
& Zisserman, 2015), which show a close correspondence to brain and behavior (Schrimpf et
al., 2018; Schrimpf, Kubilius, et al., 2020), ResNet50 (He et al., 2016), BrainScore’s current
leader CORnet-S (Kubilius et al., 2019, 2018; Schrimpf, Kubilius, et al., 2020), and OpenAI’s
CLIP variants CLIP-RN and CLIP-ViT (Radford et al., 2021). The comparison was done for six
different image datasets that included functional MRI of the human visual system and behavior
(Bankson et al., 2018; Cichy et al., 2019; Hebart et al., 2020; Mohsenzadeh et al., 2019; Mur
et al., 2013). For the neuroimaging datasets, participants viewed different images of objects
while performing an oddball detection task in an MRI scanner. For the behavioral datasets,
participants completed similarity judgments using the multiarrangement task Bankson et al.
(2018); Mur et al. (2013) or a triplet odd-one-out task Hebart et al. (2020).

Note that Bankson et al. (2018) exploited two different datasets which we label with ”(1)”
and ”(2)” in Figure 2. The number of images per dataset are as follows: (Cichy, Pantazis, &
Oliva, 2014; Kriegeskorte, Mur, Ruff, et al., 2008; Mur et al., 2013): 92; (Bankson et al., 2018)
84 each; (Cichy et al., 2016, 2019): 118; (Mohsenzadeh et al., 2019): 156; (Hebart et al., 2019,
2020): 1854. For each of these datasets except for Mohsenzadeh et al. (2019), we additionally
computed RDMs for group averages obtained from behavioral experiments. Furthermore, we
computed RDMs for brain voxel activities obtained from fMRI recordings for the datasets used
in Cichy et al. (2014), Cichy et al. (2016), and Mohsenzadeh et al. (2019), based on voxels inside
a mask covering higher visual cortex.

Figure 2 (a) visualizes all RDMs. We clustered RDMs pertaining to group averages of
behavioral judgments into five object clusters and sorted the RDMs corresponding to object
representations extracted from DNNs according to the obtained cluster labels. The image
datasets used in Cichy et al. (2014); Kriegeskorte, Mur, Ruff, et al. (2008); Mur et al. (2013) and
Mohsenzadeh et al. (2019) were already sorted according to object categories, which is why we
did not perform a clustering on RDMs for those datasets. The number of clusters was chosen
arbitrarily. The reordering was done to highlight the similarities and differences in RDMs.

3.1.1 Behavioral correspondences

Pretrained weights Across all compared DNN models, CORnet-S and CLIP-RN showed
the overall closest correspondence to behavioral representations. CORnet-S, however, was the
only model that performed well across all datasets. CLIP-RN showed a high Pearson correlation
(ranging from 0.40 to 0.60) with behavioral representations across most datasets, with Mur et al.
(2013) being the only exception, for which both CLIP versions performed poorly. Interestingly,
for one of the datasets in Bankson et al. (2018), VGG16 with batch normalization (Simonyan
& Zisserman, 2015) outperformed both CORnet-S and CLIP-RN (see Figure 2 (b)). AlexNet
consistently performed the worst for behavioral fits. Note that the broadest coverage of visual
stimuli is provided by Hebart et al. (2019, 2020), which should therefore be seen as the most
representative result (rightmost column in Figure 2 (b)).

Random weights Another interesting finding is that for randomly-initialized weights, CLIP-
RN is the poorest performing model in four out of five datasets (see bars in Figure 2 (b)
corresponding to lower correlation coefficients). Here, AlexNet seems to be the best performing
model across datasets, although it achieved the lowest correspondence to behavioral representa-
tions when leveraging a pretrained version (see Figure 2 (b))). This indicates the possibility of
complex interactions between model architectures and training objectives that require further
investigations which THINGSvision may facilitate.

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.1.2 Brain correspondences

We performed a similar analysis as above, but this time leveraging RDMs corresponding to fMRI
responses to examine the correlation between model and brain representations of higher visual
cortex. We first report results obtained from analyses with pretrained models.

Pretrained weights While AlexNet (Krizhevsky et al., 2012) showed the worst correspon-
dence to human behavior in four out of five datasets (see Figure 2 (c)), AlexNet correlated strongly
with representations extracted from fMRI responses to higher visual cortex, except for the dataset
used in Cichy et al. (2016) (see Figure 2 (c)). This is interesting, given that among the entire set
of analyzed deep neural network models AlexNet shows the poorest performance on ImageNet
(Russakovsky et al., 2015). This result contradicts findings from previous studies arguing that
object recognition performance is correlated with correspondences to fMRI recordings (Schrimpf,
Kubilius, et al., 2020; Yamins et al., 2014). This time, CORnet-S and CLIP-RN performed well
for the datasets used in Cichy et al. (2016) and in Mohsenzadeh et al. (2019), but were among
the poorest performing DNNs for Cichy et al. (2014). Note, however, that the dataset used in
Cichy et al. (2014) is highly structured and contains a large number of faces and similar images,
something AlexNet might pick up more easily in its image features but something that is not
reflected in human behavior (Grootswagers & Robinson, 2021).

Random weights When comparing representations corresponding to network activations
from models with random weights, there appears to be no consistent pattern as to which model
correlated most strongly with brain representations of higher visual cortex, although VGG16
and CORnet-S were the only two models that yielded a Pearson correlation coefficient > 0
across datasets. Note, however, that for each model we extracted network activations from the
penultimate layer. Results might look different when extracting activations from earlier layers
of the networks or when reweighting the DNN features prior to RSA (Kaniuth & Hebart, 2020;
Storrs, Khaligh-Razavi, & Kriegeskorte, 2020). We leave further investigations to future studies,
as our analyses should only demonstrate the applicability of our toolbox.

3.1.3 Model comparison

Although CORnet-S and CLIP-RN achieved the overall highest correspondence to both behavioral
and human brain representations, our results indicate that more recent, deeper neural network
models are not necessarily preferred over previous, shallower models, at least when exclusively
leveraging the penultimate layer of a network. Their correspondences appear to be highly dataset-
dependent. Although a pretrained version of AlexNet correlated poorly with representations
obtained from behavioral experiments (see Figure 2 (b)), there are datasets where AlexNet
showed close correspondence to brain representations (see Figure 2 (c)). Similarly, VGG16 was
mostly outperformed by CLIP-RN, but in one out of five datasets it yielded a higher correlation
with behavioral representations than CLIP-RN.

4 Discussion

Here we introduce THINGSvision, a Python toolbox for extracting activations from hidden layers
of a wide range of deep neural network models. We designed THINGSvision to facilitate research
at the intersection of cognitive science, computational neuroscience, and artificial intelligence.

Recently, an API was released (Mehrer, Spoerer, Jones, Kriegeskorte, & Kietzmann, 2021)
that enables the extraction of image features from AlexNet and vNet without the requirement
to install any library, making it a highly user-friendly contribution to the field. Apart from
requiring an installation of Python, THINGSvision provides a comparably simple way to extract

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

network activations, yet for a much broader set of DNNs, for PyTorch and TensorFlow backends,
and with a higher degree of flexibility and control over the extraction procedure. THINGSvision
can easily be integrated with any other computational analysis pipeline performed in Python
or Matlab. We additionally allow for a streamlined comparison of visual object representations
obtained from various DNNs employing representational similarity analysis.

We demonstrated the usefulness of THINGSvision through the application of RSA and the
quantification of correspondences between representations extracted from models and human
behavior (or brains). Please note that the extracted network activations are not only useful for
visualizing and comparing network activations through frameworks such as RSA, but for any
downstream application, including regression onto brain data, (Güçlü & van Gerven, 2015; Yamins
et al., 2014), feature selectivity analysis (e.g., Xu, Zhang, Zhen, & Liu, 2021), or fine-tuning of
individual layers for external tasks (e.g., Khaligh-Razavi & Kriegeskorte, 2014; Tajbakhsh et al.,
2016).

THINGSvision enabled us to investigate object representations of CLIP (Radford et al., 2021)
against representations extracted from other neural network models as well as representations
from behavioral experiments and fMRI responses to higher visual cortex. To understand why
Transformer layers and multimodal training objectives help to achieve strong correspondences
to behavioral representations (see Figure 2 (b)), further studies are encouraged to investigate
the representations of CLIP and its differences to previous DNN architectures with unimodal
objectives.

We hope that THINGSvision will serve as a useful tool that supports researchers in carrying
out such analyses, and we intend to extend the set of models and functionalities that are integral
to THINGSvision over the coming years as a function of advancements and demands in the field.

Author Contributions

LM designed the toolbox. LM programmed the software. LM and MNH collected the data. LM
and MNH analyzed and visualized the data. MNH supervised the study. MNH acquired funding.
LM and MNH wrote the manuscript. All authors agreed with the final version of the manuscript.

Acknowledgments

The authors would like to thank Katja Seeliger, Oliver Contier and Philipp Kaniuth for useful
comments on earlier versions of this paper, and in particular Hannes Hansen, who helped running
all sorts of tests and enhancing continuous integration of the toolbox.

Funding Statement

This work was supported by a Max Planck Research Group grant of the Max Planck Society
awarded to MNH.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from
https://www.tensorflow.org/ (Software available from tensorflow.org)

Arbuckle, S. A., Yokoi, A., Pruszynski, J. A., & Diedrichsen, J. (2019). Stability of
representational geometry across a wide range of fmri activity levels. NeuroImage,
186 , 155-163. DOI: https://doi.org/10.1016/j.neuroimage.2018.11.002

Bankson, B., Hebart, M., Groen, I., & Baker, C. (2018). The temporal evo-
lution of conceptual object representations revealed through models of be-
havior, semantics and deep neural networks. NeuroImage, 178 , 172-182.
DOI: https://doi.org/10.1016/j.neuroimage.2018.05.037

Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2019). Capturing human categorization
of natural images at scale by combining deep networks and cognitive models. CoRR,
abs/1904.12690 .

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Comparison of
deep neural networks to spatio-temporal cortical dynamics of human visual object
recognition reveals hierarchical correspondence. Scientific reports , 6 (1), 1–13.

Cichy, R. M., Kriegeskorte, N., Jozwik, K. M., van den Bosch, J. J.,
& Charest, I. (2019). The spatiotemporal neural dynamics underly-
ing perceived similarity for real-world objects. NeuroImage, 194 , 12-24.
DOI: https://doi.org/10.1016/j.neuroimage.2019.03.031

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in
space and time. Nature neuroscience, 17 (3), 455.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Li, F. (2009). Imagenet: A large-scale
hierarchical image database. , 248–255. DOI: 10.1109/CVPR.2009.5206848

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
. . . Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image
recognition at scale. In 9th international conference on learning representations,
ICLR 2021, virtual event, austria, may 3-7, 2021. OpenReview.net. Retrieved from
https://openreview.net/forum?id=YicbFdNTTy

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., . . .
Gorgolewski, K. J. (2018, December). fMRIPrep: a robust preprocessing pipeline for
functional MRI. Nature Methods , 16 (1), 111–116. DOI: 10.1038/s41592-018-0235-4

Grootswagers, T., & Robinson, A. K. (2021). Overfitting the literature to one set
of stimuli and data. Frontiers in Human Neuroscience, 15 , 386. Retrieved
from https://www .frontiersin .org/article/10 .3389/fnhum .2021 .682661

DOI: 10.3389/fnhum.2021.682661
Güçlü, U., & van Gerven, M. A. J. (2014, august). Unsupervised feature learning

improves prediction of human brain activity in response to natural images. PLoS
Computational Biology , 10 (8), e1003724. DOI: 10.1371/journal.pcbi.1003724

Güçlü, U., & van Gerven, M. A. J. (2015). Deep neural networks reveal a gradient
in the complexity of neural representations across the ventral stream. Journal of
Neuroscience, 35 (27), 10005–10014. Retrieved from https://www.jneurosci.org/

content/35/27/10005 DOI: 10.1523/JNEUROSCI.5023-14.2015
Harris, C. R., Millman, K. J., van der Walt, S., Gommers, R., Virtanen, P., Cournapeau,

D., . . . Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585 (7825),
357–362. DOI: 10.1038/s41586-020-2649-2

17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://www.tensorflow.org/
https://openreview.net/forum?id=YicbFdNTTy
https://www.frontiersin.org/article/10.3389/fnhum.2021.682661
https://www.jneurosci.org/content/35/27/10005
https://www.jneurosci.org/content/35/27/10005
https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recogni-
tion. In 2016 IEEE conference on computer vision and pattern recognition, CVPR
2016, las vegas, nv, usa, june 27-30, 2016 (pp. 770–778). IEEE Computer Society.
DOI: 10.1109/CVPR.2016.90

Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y., Corriveau, A., Van Wicklin, C.,
& Baker, C. I. (2019). Things: A database of 1,854 object concepts and more than
26,000 naturalistic object images. PloS one, 14 (10), e0223792.

Hebart, M. N., Zheng, C. Y., Pereira, F., & Baker, C. I. (2020, October). Revealing the mul-
tidimensional mental representations of natural objects underlying human similarity
judgements. Nature Human Behaviour , 4 (11), 1173–1185. DOI: 10.1038/s41562-020-
00951-3

Jozwik, K. M., Kriegeskorte, N., Cichy, R. M., & Mur, M. (2018). Deep convolutional neural
networks, features, and categories perform similarly at explaining primate high-level
visual representations. In 2018 conference on cognitive computational neuroscience
(pp. 1–4). Cognitive Computational Neuroscience. DOI: 10.32470/ccn.2018.1232-0

Kaniuth, P., & Hebart, M. N. (2020, October). Tuned representational similarity analysis:
Improving the fit between computational models of vision and brain data. Journal
of Vision, 20 (11), 1076. DOI: 10.1167/jov.20.11.1076

Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014, November). Deep supervised, but not
unsupervised, models may explain IT cortical representation. PLoS Computational
Biology , 10 (11), e1003915. DOI: 10.1371/journal.pcbi.1003915

Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2018). Deep neural networks in
computational neuroscience. bioRxiv . Retrieved from https://www.biorxiv.org/

content/early/2018/06/05/133504 DOI: 10.1101/133504
King, M. L., Groen, I. I., Steel, A., Kravitz, D. J., & Baker, C. I. (2019). Simi-

larity judgments and cortical visual responses reflect different properties of ob-
ject and scene categories in naturalistic images. NeuroImage, 197 , 368-382.
DOI: https://doi.org/10.1016/j.neuroimage.2019.04.079

Kriegeskorte, N. (2015). Deep neural networks: A new framework for modeling biological
vision and brain information processing. Annual Review of Vision Science, 1 (1),
417-446. (PMID: 28532370) DOI: 10.1146/annurev-vision-082114-035447

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity
analysis-connecting the branches of systems neuroscience. Frontiers in Systems
Neuroscience, 2 , 1–28.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., . . . Bandettini,
P. A. (2008). Matching categorical object representations in inferior temporal cortex
of man and monkey. Neuron, 60 (6), 1126–1141.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, &
K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 25,
pp. 1097–1105). Curran Associates, Inc.

Kubilius, J., Schrimpf, M., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., . . .
DiCarlo, J. J. (2019). Brain-like object recognition with high-performing shallow
recurrent anns. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. B. Fox, & R. Garnett (Eds.), Advances in neural information processing systems
32: Annual conference on neural information processing systems 2019, neurips 2019,
december 8-14, 2019, vancouver, bc, canada (pp. 12785–12796).

Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L. K., & DiCarlo, J. J.

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://www.biorxiv.org/content/early/2018/06/05/133504
https://www.biorxiv.org/content/early/2018/06/05/133504
https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

(2018, 09/2018). Cornet: Modeling the neural mechanisms of core object recognition
[preprint]. bioRxiv . Retrieved from https://www.biorxiv.org/content/10.1101/

408385v1.full.pdf DOI: https://doi.org/10.1101/408385
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553), 436–444.
Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N., & Kietzmann, T. C. (2021).

An ecologically motivated image dataset for deep learning yields better mod-
els of human vision. Proceedings of the National Academy of Sciences , 118 (8).
DOI: 10.1073/pnas.2011417118

Mohsenzadeh, Y., Mullin, C., Lahner, B., Cichy, R. M., & Oliva, A. (2019). Reliability
and generalizability of similarity-based fusion of meg and fmri data in human ventral
and dorsal visual streams. Vision, 3 (1), 8.

Mur, M., Meys, M., Bodurka, J., Goebel, R., Bandettini, P., & Kriegeskorte, N. (2013).
Human object-similarity judgments reflect and transcend the primate-it object
representation. Frontiers in Psychology , 4 , 128. DOI: 10.3389/fpsyg.2013.00128

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014,
April). A toolbox for representational similarity analysis. PLoS Computational
Biology , 10 (4), e1003553. DOI: 10.1371/journal.pcbi.1003553

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library.
In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, &
R. Garnett (Eds.), Advances in neural information processing systems 32: Annual
conference on neural information processing systems 2019, neurips 2019, december
8-14, 2019, vancouver, bc, canada (pp. 8024–8035).

Peng, R. D. (2011). Reproducible research in computational science. Science, 334 (6060),
1226–1227. DOI: 10.1126/science.1213847

Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2018). Evaluating (and improving) the
correspondence between deep neural networks and human representations. Cognitive
science, 42 (8), 2648–2669.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., . . . others (2021).
Learning transferable visual models from natural language supervision. arXiv .

Rush, A. (2018, July). The annotated transformer. In Proceedings of workshop for NLP
open source software (NLP-OSS) (pp. 52–60). Melbourne, Australia: Association for
Computational Linguistics. DOI: 10.18653/v1/W18-2509

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Li, F.
(2015). Imagenet large scale visual recognition challenge. Int. J. Comput. Vis.,
115 (3), 211–252. Retrieved from https://doi.org/10.1007/s11263-015-0816-y

DOI: 10.1007/s11263-015-0816-y
Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., . . .

Fedorenko, E. (2020). The neural architecture of language: Integrative reverse-
engineering converges on a model for predictive processing. bioRxiv . Retrieved from
https://www.biorxiv.org/content/early/2020/10/09/2020.06.26.174482

DOI: 10.1101/2020.06.26.174482
Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., . . . DiCarlo,

J. J. (2018). Brain-score: Which artificial neural network for object recognition is
most brain-like? bioRxiv . Retrieved from https://www.biorxiv.org/content/

early/2018/09/05/407007 DOI: 10.1101/407007
Schrimpf, M., Kubilius, J., Lee, M. J., Murty, N. A. R., Ajemian, R., & DiCarlo, J. J.

(2020). Integrative benchmarking to advance neurally mechanistic models of human

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://www.biorxiv.org/content/10.1101/408385v1.full.pdf
https://www.biorxiv.org/content/10.1101/408385v1.full.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://www.biorxiv.org/content/early/2020/10/09/2020.06.26.174482
https://www.biorxiv.org/content/early/2018/09/05/407007
https://www.biorxiv.org/content/early/2018/09/05/407007
https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

intelligence. Neuron.
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale

image recognition. In Y. Bengio & Y. LeCun (Eds.), 3rd international conference on
learning representations, ICLR 2015, san diego, ca, usa, may 7-9, 2015, conference
track proceedings (pp. 1–14).

Storrs, K. R., Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2020). Noise ceiling on
the crossvalidated performance of reweighted models of representational dissimilar-
ity: Addendum to khaligh-razavi & kriegeskorte (2014). bioRxiv . Retrieved from
https://www.biorxiv.org/content/early/2020/03/25/2020.03.23.003046

DOI: 10.1101/2020.03.23.003046
Storrs, K. R., Kietzmann, T. C., Walther, A., Mehrer, J., & Kriegeskorte, N. (2020).

Diverse deep neural networks all predict human it well, after training and fitting.
bioRxiv . Retrieved from https://www.biorxiv.org/content/early/2020/05/08/

2020.05.07.082743 DOI: 10.1101/2020.05.07.082743
Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., &

Liang, J. (2016). Convolutional neural networks for medical image analysis: Full train-
ing or fine tuning? IEEE Trans. Medical Imaging , 35 (5), 1299–1312. Retrieved from
https://doi.org/10.1109/TMI.2016.2535302 DOI: 10.1109/TMI.2016.2535302

Van Lissa, C. J., Brandmaier, A. M., Brinkman, L., Lamprecht, A.-L., Peikert, A.,
Struiksma, M., & Vreede, B. (2020). Worcs: A workflow for open reproducible code
in science. PsyArXiv .

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polo-
sukhin, I. (2017). Attention is all you need. In I. Guyon et al. (Eds.), Advances in
neural information processing systems 30: Annual conference on neural information
processing systems 2017, december 4-9, 2017, long beach, ca, USA (pp. 5998–6008).

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., . . . Bowman, S. R.
(2019). Superglue: A stickier benchmark for general-purpose language understanding
systems. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox,
& R. Garnett (Eds.), Advances in neural information processing systems 32: Annual
conference on neural information processing systems 2019, neurips 2019, december
8-14, 2019, vancouver, bc, canada (pp. 3261–3275).

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). GLUE:
A multi-task benchmark and analysis platform for natural language understanding.
In T. Linzen, G. Chrupala, & A. Alishahi (Eds.), Proceedings of the workshop:
Analyzing and interpreting neural networks for nlp, blackboxnlp@emnlp 2018, brussels,
belgium, november 1, 2018 (pp. 353–355). Association for Computational Linguistics.
DOI: 10.18653/v1/w18-5446

Xu, S., Zhang, Y., Zhen, Z., & Liu, J. (2021, May). The face module emerged in a
deep convolutional neural network selectively deprived of face experience. Frontiers
in Computational Neuroscience, 15 . Retrieved from https://doi.org/10.3389/

fncom.2021.626259 DOI: 10.3389/fncom.2021.626259
Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J.

(2014). Performance-optimized hierarchical models predict neural responses in higher
visual cortex. Proceedings of the National Academy of Sciences , 111 (23), 8619–8624.
DOI: 10.1073/pnas.1403112111

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://www.biorxiv.org/content/early/2020/03/25/2020.03.23.003046
https://www.biorxiv.org/content/early/2020/05/08/2020.05.07.082743
https://www.biorxiv.org/content/early/2020/05/08/2020.05.07.082743
https://doi.org/10.1109/TMI.2016.2535302
https://doi.org/10.3389/fncom.2021.626259
https://doi.org/10.3389/fncom.2021.626259
https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Appendix

In the code example below, we demonstrate both the flexibility and ease of use of our toolbox
compared to using solely PyTorch. THINGSvision is more versatile and does not require the user
to be adept in PyTorch, whereas when using PyTorch more knowledge about neural network
architectures and tensor dimensions is crucial. This might not cause difficulties for someone
experienced in Python programming and Machine Learning, but is not trivial for researchers
who are not as familiar with this area of Computer Science.

THINGSvision

import torch

import thingsvision.vision as vision

from thingsvision.model_class import Model

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model = Model(

model_name='vgg16',

pretrained=True,

model_path=None,

device=device,

backend='pt',

)

dl = vision.load_dl(

root=IMG_PATH,

out_path='.\tests`,

batch_size=64,

transforms=model.get_transformations(),

backend='pt',

)

features, targets = model.extract_features(

data_loader=dl,

module_name='features.10',

batch_size=64,

flatten_acts=True,

device=device,

)

vision.save_features(features, `.\test`, `.npy`)

PyTorch

import os

import torch

import numpy as np

import torchvision.models as models

from torch.utils import DataLoader, TensorDataset

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

from torchvision import datasets, transforms as T

device = torch.device(`cuda` if torch.cuda.is_available() else `cpu`)

model = models.vgg16()

model.to(device)

model.eval()

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

transforms = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor(), normalize])

Note: since loading images into memory, converting them into the correct format,

and subsequently creating a dataset involves more lines of code

and additional imports, we use pseudo-code for this part

load in images ...

(e.g., tuple(torch.from_numpy(skimage.io.imread(...)) for ... in os.listdir(IMG_PATH)

if ... img.endswith(...))

create a dataset ...

(e.g., TensorDataset(...))

data_loader = DataLoader(dataset, batch_size=32, shuffle=False)

Note: we register a forward hook as it is the most elegant and versatile

way to store activations of a neural network model, and is recommended by PyTorch.

We know, however, that there are other ways to do this, such as simply truncating

the model at the point of extraction, but we deem registering a forward hook superior.

module_name = `classifier.3`

def get_activation(name):

"""Store hidden unit activations at each layer of model."""

def hook(model, input, output):

try:

activations[name] = output.detach()

except AttributeError:

activations[name] = output

return hook

def register_hook(model):

"""Register a forward hook to store activations."""

for n, m in model.named_modules():

m.register_forward_hook(get_activation(n))

return model

initialise dictionary to store hidden unit activations on the fly

global activations

activations = {}

register forward hook to store activations

model = register_hook(model)

Note: it is not feasible to use the entire dataset as an input to the model,

which is why we have to iteratively process subsamples of the data

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

features = []

with torch.no_grad():

for batch in data_loader:

batch = batch.to(device)

out = model(batch)

act = activations[module_name]

features.append(act)

features = np.asarray(features)

with open(os.path.join(OUT_PATH, `features.npy`, `rb`) as f:

np.save(f, features)

Note: be aware of the fact that above code will not work

for every neural network architecture and every layer,

and does neither involve computing nor storing target vectors

or softmax probabilities which may be of interest to the user

(e.g., if the desired module is an early layer of the model,

and the format should be .txt, more lines of code are necessary)

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.03.11.434979doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.11.434979
http://creativecommons.org/licenses/by-nc-nd/4.0/

