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Abstract

Super-resolution structured illumination microscopy (S M) has become a widely used method
for biological imaging. Sandard reconstruction algorithms, however, are prone to generate
noise-specific artefacts that limit their applicability for lower signal-to-noise data. Here, we
present a physically realistic noise model that explains the structured noise artefact and that
is used to motivate new complementary reconstruction approaches. True Wiener-filtered SM
optimizes contrast given the available signal-to-noise ratio, flat-noise SM fully overcomes the
structured noise artefact while maintaining resolving power. Both methods eliminate ad-hoc
user adjustable reconstruction parameters in favour of physical parameters, enhancing
objectivity. The new reconstructions point to a trade-off between contrast and a natural noise
appearance. This trade-off can be partly overcome by additional notch filtering, but at the
expense of a decrease in signal-to-noise ratio. The benefits of the proposed approaches are
demonstrated on focal adhesion and tubulin samples in 2D and 3D, and on nano-fabricated
fluorescent test patterns.

INTRODUCTION

Structured lllumination Microscopy (SIM) is a super-resolution technique that offers two-fold
increased spatial resolution along two or three dimensions plus optical sectioning with strongly
enhanced contrast compared to conventional widefield fluorescence microscopy using uniform
illumination*23#%58 and is compatible with live cell imagih$® Further reduction of resolution
below the 100 nm length scale can be achieved by making use of the non-linear fluorescence
respons¥111213 Current image reconstruction methdt¥->®depend on ad-hoc tuneable
parameters and are susceptible to various types of artéfdcthe effort to distinguish ‘real’
structural resolution improvement from noise-related deconvolution artefacts in SIM has
recently inspired much controversy in the fi€i#. The root causes of this confusion are (i) the
lack of insight into the mechanism of image formation which requires a reconstruction
procedure of considerable mathematical complexity, (ii) the use of ad-hoc parameters with large
impact on the final image but with unclear physical meaning, and (iii) the absence of an
unambiguous method to separate true signal from noise.
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Here, we address these issues first by an in-depth analysis of the propagation of noise through
the image reconstruction chain of state-of-the-art linearly filtered SIM. We use this to elucidate
the structured noise artefact of SIM, the amplification of noise structures at intermediate length
scales at low signal conditions. In particular, the analysis clarifies the role of ad-hoc filtering
operations such as regularization. In a next step, the understanding of noise propagation is
applied in new SIM reconstruction methods. These methods are designed for optimizing
contrast or optimizing a natural noise appearance, and for eliminating ad-hoc reconstruction
parameters. The underlying goal is to make the representation of objects in SIM images as
objective as possible.

RESULTS

Propagation of noise through theimage reconstruction chain of SIM

The goal of the image reconstruction is to provide an estiepé&téwith k = 1,---, N the index
denoting the different pixels) of the underlying fluorescent obfgcihis estimate depends
linearly on the images acquired for the different rotations and; different translations of

the illumination pattern via a sequence of Fourier (spatial frequency) space manipulations (see
Supplementary Information 1). The reconstructed objeef®® is a sum of a terna, that
corresponds to the reconstruction in the absence of noise and a pertu¥batadrthat ideal
reconstruction due to noise. The Fourier transforms, éindéde, are denoted a& anddé;,
respectively, where the hat indicates the Fourier transform and thejimdkeates the Fourier

pixel with spatial frequency;.

The signal power and the noise variance in Fourier spaee|é; ’ andh; = (|6¢; *) are used

here to quantify the noise and signal level. The noise variance can be determined empirically
by makingK repeated acquisitions of a fixed specimen, and cdingpthe variance over thé
reconstructions in Fourier space. We have analysed the propagation of noise through the
reconstruction chain (full theory iBupplementary Information 2) and found an analytical
expression for the signal power and noise variance:
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Herefj is the spatial frequency spectrum of the underlying fluorescent ofjeetyy_, f; is

the sum fluorescence signdl; is the apodization filtét, which has a low-pass character for
avoiding halo, negative pixel and edge ringing artefawtss the regularization filter, andis

the root-mean-square camera readout noise. State-of-the-art SIM reconstructions use a
regularization filter that is ad-hoc chosen to be independent of spatial frequgre for
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Whereg(ﬁj) is the microscope's Optical Transfer Function (QTF;) are the Fourier order

strengths, am!?l)rm are the centre spatial frequencies of the orders. The noise variance is the sum
of contributions due to shot noise and due to readout noise. For current SCMOS or EM-CCD
cameras the readout noise is zero or very nearly so. For that reason we will henceforth neglect
the readout noise term. Our theory predicts that in general the noise variance is not constant
across Fourier space, implying that SIM suffers from spatial frequency dependent noise
amplification. This is the explanation of the structured noise artefact of SIM.

The noise model also enables the assessment of the expected noise power averaged over a
neighbourhood of a pixdl in real space (seaupplementary Information 2). The expected

noise power is used to compute the fractigrof the reconstruction that can be attributed to

noise in the neighbourhood of pixel khis noise fraction may be used as a feature denée

map, quantifying the impact of noise enhancement in different sub-regions of the final SIM
reconstruction.

In the limit where shot noise is the only noise source we can also use another noise assessment
based on a single SIM acquisition, one that is model independent. The detected photo-electrons
in each pixel of the set of raw images are randomly assigned to two new datasets according to
a binomial distribution. If the number of photo-electrons per pixel is a statistical variable
following Poisson statistics then it can be shown that the number of photo-electrons per pixel
of the two split datasets also follow Poisson stat&tiesd that the two Poisson distributions

are independent, implying that the noise in the two split datasets is uncorrelated. By processing
the split datasets two noise independent SIM reconstructions (at half the average signal level)
can be generated. The noise level in the SIM reconstruction derived from the original full
dataset can now be assessed from the correlations between the two reconstructions derived from
the split data (see Supplementary Information 2 for proofs).

We have tested the theoretical noise analysis by imaging a fixed sample of GFP-labelled zyxin,
a building block of focal adhesioftsin U20S cellsk = 10 times (experimental details in
Methods). The signal level is kept low (sdeégure la-b) to make the effects of noise
amplification better visible. Figure 1c-Bhow the widefield image and SIM reconstruction for
different settings of the regularization parametersvith clear noise enhancement for small

Figure 1i-I shows that the noise variance according to our model agrees well with the empirical
multi-image noise variance, as well as with the model-independent noise assessment from
processing the split datasets, providing two controls that validate our noise model. The noise
enhancement at intermediate spatial frequencies for decreagrayearly present. The impact

of w on the reconstruction, the noise fraction map thaantifies the level of noise
enhancement, and the spectral noise variance is shown in Supplementary Movie 1.

Figure 1m shows the spectral Signal-to-Noise R&KSNR = §]/IV] (averaged over rings in
Fourier space) as a function of spatial frequency. For the low signal levels in the current
experiment SIM only provides a gain over widefield imaging in the region around the widefield
diffraction limit, for length scales larger than ab@ayiVA = 382 nm there is no difference in
SSNR. This is attributed to the relatively low effectifiest order modulation in view of the
non-zero thickness of the sample. The limited improvement due to the low signal level is also
revealed by the experimental Fourier Ring Correlation (FR&yves Figure 1j), indicating

an improvement of FRC-resolution in SIM (1492 nm) over widefield (239+2 nm) with a factor
1.6, and significantly less than the extended SIM diffraction lili{ZNA/A + 2/p) = 103


https://doi.org/10.1101/2021.03.11.434940
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434940; this version posted March 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

nm for the estimated pattern pitgh= 444 nm), and the diffraction limit for widefield
(A/2NA = 192 nm), respectively.

Noise-controlled SIM reconstructions
TheSSNR according to our noise propagation model appedns #qual to the product of two

factors. The first factovifj|2/f0 depends only on the spatial frequency spectrumhef t
underlying object, the fluorescent labelling density, and the detected fluorescence brightness.

The second factdﬁjz/l?]- depends only on the imaging system (the micros€»pe and the
illumination patterns). Th&SNR is independent of the regularization filt@y and of any
subsequent apodization filté;.Arhe implication is that several, physically equivalent, choices

for these filters can be made, each revealing or emphasizing different aspects of image quality,
such as contrast or a natural noise appearance, but rooted in exactly the same underlying
information content. It is also clear that these different choices cannot tune signal level and
contrast independent from the noise appearance.

The first choice of noise-controlled filtering follows the Wiener principle, which optimizes
contrast by making the OTF as close as possible to a target OTF (e.g. the apodization filter),
subject to available signal-to-noise ratio. Mathematically, we seek the minimum of the noise
averaged quadratic difference between reconstruction and underlying object, low-pass filtered
by the target OTF (see Supplementary Information 3). This implies a regularization filter:
W = Vifo __ D (3)
] ~ 1 A
BIfF  SSNR
that increases with decreasid§NR, different from state-of-the-art SIM with constant
regularization. The key problem in applying true-Wiener filtering is that it requires an estimate

of theSSNR from the image itself. The reconstructi@+ 5¢;|* = S; + 2Re{;6¢;"} + N; is

a sum of the signal powéj, the noise podej, and a signal-noise cross-term. Averaging over

rings in spatial frequency space effectively eliminates the signal-noise cross-term, leaving the
sum of signal and noise power. The proposed noise model enables a direct computation of the

noise variancevj, which can subsequently be used to estimate the signal pfpvaed the
SSNR.

True-Wiener filtered SIM provides a high-contrast representation of the object, but it suffers,
just as state-of-the-art SIM, from an elevated noise level at intermediate spatial frequencies,
especially in cases with low photon count or low (effective) modulation of the illumination
pattert®. The current noise analysis points to a second novel reconstruction scheme, one from
which this structured noise artefact is eliminated altogether. According to Equation (1b), the
spectral noise variance can be made independent of spatial frequency by using a regularization
filter:

and by discarding the apodization filter altogeth@r:é 1). This flat-noise SIM reconstruction
provides a reconstruction that is independent of the object content and from which all ad-hoc
tuneable parameters are eliminated, but instead is fully determined by physical parameters only.

j
to the final flat-noise SIM reconstruction. This can result in a relatively low OTF compared to

The resulting OTR;'™ = Dj/\/;j is a direct measure for the transfeS§NR from the object
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true-Wiener or state-of-the-art reconstructions, implying a reduced contrast. A mitigation may
be found in additional notch filtering of the image Fourier orders. This method has been
introduced to suppress the 2D-SIM specific honeycomb artefact and/or background arising
from out-of-focus layerd'® Here, we use it to optimize the image contrast, while keeping the
noise spectrum flat. The depth and width of the notch filters per image Fourier order influence
the reconstructions functiond; and V; and thereby the flat-noise SIM-OTF (see
Supplementary Information 3). These notch filter parameters can thus be tuned to minimize
the difference between the flat-noise SIM-OTF and a target OTF such as the apodization filter
A]-. This procedure improves the contrast of flat-noise SIM across all spatial frequencies,
without introducing any user-adjustable parameters. A drawback is that the S9&iRllevel

for the lower spatial frequencies is decreased, i.e. the overall noise level is higher.

We have tested the three proposed noise-controlled reconstructions on the GFP-zyxin datasets
of Figure 1. Figure 2a-c show the widefield, and true-Wiener, flat-noise, and notch-filtered
SIM reconstructions,Figure 2d-f show the corresponding empirical noise variances.
Supplementary Figure 1 shows these reconstructions in combination with the noise fraction
maps. True-Wiener SIM corresponds visually to the optimum regularization setting for state-
of-the-art SIM, providing a high contrast representation and avoiding over- or under-
regularization. The structured noise artefact has disappeared in flat-noise SIM, at the expense,
however, of a loss in contrast. Notch-filtered SIM fixes the loss in contrast, but at the expense
of an increase in overall noise level. The measured spectral noise variances show a noise ring
at intermediate spatial frequencies for true-Wiener SIM that is about an order of magnitude
higher than the constant plateau for flat-noise SIM. Further evidence for these assessments is
provided by the noise-independent reconstructions and the aveffatpe & reconstructions

for the inset (seSupplementary Movie 2). The regularization parameters as a function of
spatial frequency for true-Wiener and flat-noise SIM, showfigare 2g, appear to have low-

pass and band-pass character, respectively. The experiSg@sfabver theK reconstructions

(Figure 2h) for true-Wiener and flat-noise SIM are identical and higher tharSSe&R for
notch-filtered SIM at lower spatial frequencies, and agree reasonably well with the single-image
estimates used in the true-Wiener approach. The MTF (Modulation Transfer Function, absolute
value of the OTF) for the three reconstructiolRigre 2h) show a reduced contrast for flat-

noise SIM compared to true-Wiener and notch-contrast SIM.

Noise-controlled SIM reconstructions provide representations with strongly reduced noise
enhancement in case of poor illumination pattern modulaBapplementary Figure 2), in
contrast to state-of-the-art SIM. Similar results are also obtained for different illumination
patterns than line patterns (see Supplementary Information 3), in particular for a system that
uses a Digital Micro-mirror Device (DMD) for scanning a multi-spot array across the $ample
(Supplementary Figure 3).

Trade-off between contrast, noise and signal-to-noise

Next, we have imaged nano-fabricated test structures (experimental details in M.ethods
Figure 3a-d shows a widefield image and the three noise-controlled SIM reconstructions of a
chirped line structure, demonstrating improved resolution of SIM and the trade-offs between
contrast, noise level, and signal-to-noise ratio between the three novel SIM reconstructions. The
average and standard deviation along the test object kigeg € 3e-h) show about a two-fold

lower noise level in flat-noise SIM. The modulations as a function of line spacing in relation to
the noise level point to an identic’lf NR and an image resolution of approximately 160 nm,
close to the FRC estimate for the GFP-zyxin samplegire 1. Flat-noise SIM does provide

better visibility of very high spatial frequencies, close to the image resolution, as demonstrated
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on 140 nm pitch line patterns 8upplementary Figure4. The trade-offs are also evident from
reconstructions of mCherry-CSYCP3 protein in the synaptonemal conflpplémentary

Figure 5), where the SIM reconstructions resolve the internal two-line structure with line
distance of about 200 nm, but differ in modulation, contiguous line structure, and background
noise.

Noise-controlled SIM reconstructionsin 3D

So far, results have been shown for 2D-SIM reconstructions of single focal slices of image
acquisitions on relatively thin objects. The trade-off between contrast and noise enhancement
as in 2D-SIM reconstructions is observed in 3D-SIM as well, exacerbated by the degree of
optical sectioning along the optical axifigure 4, Supplementary Figure 6 and
Supplementary Movies 3 to 6 show full 3D-SIM reconstructions and noise fraction maps of a
tubulin sample at different signal leveBupplementary Figure 7). Comparison of state-of-
the-art SIM with a fixed regularization parametérg(r e 4b-d) to true-Wiener SIMKigure

4e) shows that th6SNR and spatial frequency dependent regularizatiomua-Wiener SIM
(Supplementary Figure 8) results in a reasonable reconstruction for all signal levels, avoiding
over and under-regularization in all cases, and resulting in a satisfactorySudptémentary

Figure 9). Flat-noise SIM Figure 4e) improves resolution somewhat, indicated by the
reduction of the width of the tubulin flaments both laterally and axially, and shows no noise
amplification. The degree of optical sectioning, however, is poor compared to true-Wiener SIM,
making this representation not so valuable for 3D-SIM. This can be substantially improved by
contrast-optimized flat-noise SIM using notch filterirkggur e 4f), albeit at the expense of a
small decrease iSSNR (Supplementary Figure 7 and 8). We have observed similar
characteristics of the different noise-controlled SIM reconstructions in SIM images of a bead
layer datasetSupplementary Figure 10), of a three-color labelled bovine pulmonary artery
endothelial cell (BPAEC)Supplementary Figure 11 and Supplementary Movies7), of a
two-color labelled C127 celBupplementary Figure 12 and Supplementary Movies8), and

of a live HelLa cell dataset at low signal conditioBapplementary Figure 13 and14 and
Supplementary Movie9).

Deconvolution and denoising

Richardson-Lucy (RL) deconvolution is known to improve the sharpness of point, line and edge
features in an image, which, depending on the sample, slightly extends the spatial frequency
content above the diffraction limift?8 It is also a suitable benchmark for the noise-controlled
linear SIM reconstructions considered so far, as RL-deconvolution is also free from ad-hoc user
adjustable parameters. RL-deconvolution is appropriate when the noise on the input images is
Poisson-distributed. Flat-noise SIM offers this to a good degree, as opposed to other pre-
processed inputsFigure 5 and Supplementary Figure 15 show the results of RL-
deconvolution applied to the widefield and the flat-noise SIM reconstructions of the zyxin
sample, showing an improvement in resolution in both, which is reflected in slightly better
FRC-resolution values (187+2 nm for widefield and 131+3 nm for SIM), but at the expense of
noise enhancement, similar to state-of-the-art or true-Wiener SIM. It therefore seems that RL-
deconvolution is constrained by the same trade-off between contrast and noise enhancement as
linear SIM reconstructions.

We have further applied a recent Deep Learning (DL) based deconvolution fetiach is

trained to transform widefield images into images with SIM level resolution, to the GFP-zyxin
dataset.Figure 5 and Supplementary Figure 15 show a trade-off between precision and
accuracy of this method. Up sampling the input widefield image to 40 nm pixel size leads to a
reasonable representation of image features with moderate improvement in resolution (142+3
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nm FRC resolution), up sampling to 65 nm pixel size leads to a largely inaccurate outcome, but
with high precision, indicated by a large improvement in the overall FRC curve (123+6 nm
FRC resolution). Both settings lead to an anisotropic noise enhancement, larger in magnitude
than for RL-deconvolutionFigure 5 andSupplementary Figure 15 also show the result of
denoising with a Hessian (H) regularizafio#. This method does indeed reduce the noise level

for high spatial frequencies, but unfortunately at the expense of resolution (158.7+£0.1 nm FRC
resolution) and a varying, anisotropic, noise variance in Fourier space.

CONCLUSION

In summary, we have proposed three new, complementary image reconstruction methods for
SIM. They reduce or fully eliminate ad-hoc user adjustable reconstruction parameters. In
general, it is recommended to use the true-Wiener reconstruction as the default reconstruction,
as this method seems to give the best overall compromise between contrast, resolution and noise
profile. The noise fraction map can be used to quantitatively assess the noise enhancement
artefact. Based on the examined datasets we propose that noise enhancement can be
characterized as severe, mild or nihil when associated with noise fraction Fgnge®4,

04 >7, > 0.2, and 0.2 > Z,, respectively. In case of severe noise enhancement it is
recommended to either use the flat-noise (2D) or the notch-filtered (3D) reconstruction,
specifically for image features on the intermediate length scale of aAgiNwi, typically in

the range 200-400 nm. As to additional deconvolution it appears that the RL-method applied to
(flat-noise) SIM gives the best overall performance in terms of simplicity, resolution and degree
of noise enhancement.

The currently proposed reconstructions can also be used for SIM with a reduced number of
acquired imageéd and also for other modalities. True-Wiener filtering can be directly
generalized to widefield imaging, as well as image scadhifigind rescan microscopy
approache$263and, with an analysis of noise propagation, be extended to lattice light sheet
microscopy® and to tomographic imaging modaliffé®. In depth knowledge of noise and

noise propagation in complex computational imaging techniques can also be used to steer or
optimize different regularized approactfeas well as DL based deconvolution, reconstruction

or denoising®**?>*3methods. Finally, the use of spectral SNR and the generation of image
representations with a flat noise spectrum open up objective methods to assess the relative
benefits of any super-resolution or deconvolution method.
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Methods

Microscope setups

Images forFigure 1, 2, 3 and 5 and Supplementary Figure 1, 2, 4, and 5 are acquired with a
commercial Zeiss Elyra PS1 system, using a 63%/1.40 oil immersion objective and a
1004x1002, um pixel, Andor iXon3 885 EM-CCD camera. A magnification adapted tube
lens is used giving rise to a 79 nm back-projected pixel size. Raw images are acquired for five
rotations and five translations of the line illumination pattern.

Images foFigure 4 andSupplementary Figure 9, 10, and 11 are acquired with a commercial
DeltaVision OMX V3 Blaze (GE Healthcare) instrument, using a 60x/1.42 PlanApo oil
immersion objective (Olympus) and a 2048x2048, (% pixel, PCO edge 4.2 sCMOS
cameras with a magnification adapted tube lens giving rise to a 82 nm back-projected pixel size.
Raw images are acquired for three rotations and five translations of the line illumination pattern.

The raw images used for the reconstructions shov@Bupplementary Figure 3 are recorded

with a DMD-SIM setup described in detail elsewR&ri short, multi-spot arrays with a pitch

of 10 DMD-pixels (DMD pixelsize 13.68m) were created using 488 nm despeckled laser
illumination and projected onto the sample via a relay path and a 60x/0.7 air objective
(projected DMD-pixel size 137 nm) of an Olympus IX71 microscope and subsequently scanned
across the sample. The images were captured on a 2048x204®, pixXels Hamamatsu Orca
Flash 4.0 camera (projected pixel size 108 nm).

Samples

Figure 1, 2 and5, andSupplementary Figure 1 show data of GFP-zyxin expressing U20S
cells. Zyxin is an integral protein in focal adhesions, protein complexes that form a connection
between the extracellular matrix through integrin receptors and the actin cytoskeleton, through
its interaction witho-actinir’® and the stretch sensitive protein p®3Mh which it acts as one

of the mechanosensing components in focal adhésinSterile high precision coverslips
#1.5H (Marienfeld Superior) were incubated with 10 pg/ml purecol (Advanced Biomatrix)
overnight at 4°C and subsequently washed three times with PBS. U20S cells were grown in
DMEM and transfected with GFP-zyxin (a kind gift from Johan de Rooij). The cells were fixed
for 20 min in 4% formaldehyde/PBS and mounted on a glass slide in Vectashield antifade
mounting medium (Vectorlabs). Cells grown on collagen coated coverslips typically show rod
shaped focal adhesions, consisting of parallel linear strué¢tuaeslitionally zyxin is observed

to be present on actin fibers in distinct patches.

Figure 3 andSupplementary Figure4 show data of nano-fabricated fluorescent test structures
patterned using a previously published metAdtiat was slightly adopted for higher resolution
patterning. In short, a monolayer of 3-[Methoxy(polyethyleneoxy)propyl]trimethoxysilane
(ABCR, Germany) was covalently grafted onto ITO-coated no.1 cover glass (Optics Balzers)
and locally exposed to a focused electron beam following the defined patterns. After removal
from the SEM, the sample was incubated for 45 minutes with a 100nM IgG-Alexa Fluor 488
solution in 1X TE buffer. Samples were then washed with TE buffer and deionized water,
followed by drying and transfer to the optical microscope.

Supplementary Figure 5 show data of the mCherry-SYCP3 protein in the synaptonemal
complex. Mouse oocytes from mice expressing mCherry-SYGRS3e isolated and spread

on #1.5H high precision coverslips and embedded in prolong gold (Invitrogen). SYCP3 is part
of the lateral element of the synaptonemal complex (SC) that is formed during meiosis prophase
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|. The synaptonemal complex is comprised of two lateral elements that form parallel linear
protein assemblies at a distance of ~220 nm Rpart

Figure 4 andSupplementary Movies 3 to 6 show data of collected of 4% formaldehyde fixed
mouse C127 cells grown on #1.5H high precision coverslips, immunostained for microtubules
using DM1A mouse monoclonal anrtTubulin primary antibodies (Sigma-Aldrich) and
donkey anti-mouse Alexa Fluor 488 secondary antibodies (ThermoFisher), and mounted in
Vectashield H-1000 medium (Vector LabSupplementary Figure 10 shows data of a
monolayer of 100 nm yellow-green Fluosphere beads (ThermoFisher), dried and mounted in
glycerof®. Supplementary Figure 12 and Supplementary Movie 8 show data of a 2%
formaldehyde fixed C127 cell immune-labelled with rabbit anti-histone H3K4me3 primary
antibodies (Active Motif) and goat-anti rabbit Alexa Fluor 488 secondary antibodies
(ThermoFisher), counterstained with DAPI and mounted in Vectasteloplementary
Movie 9 and Supplementary Figure 13 show live cell data of stably expressing histone H2B-
GFP grown in a 35 mm p-Dish with high precision glass bottom (lbidi) and imaged at 37° and
5% CQ. A time series was recorded with 2s intervals. For each time point 7 z-sections with z-
distance of 0.125 um were acquired (in total 7x3x5=105 raw images per time point).

Supplementary Figure2, 3, 11 and Supplementary M ovie 7show data of a bovine pulmonary
artery endothelial cell (BPAEC), with mitochondria labelled with MitoTracker Red, actin
labeled with Alexa Fluor 488, and DNA labeled with DAPI, and embedded in hardening
mounting medium (Thermo Fisher Fluo Cells slide #1).

SM processing and reconstruction

The data shown ifigure 1, 2, 3, and5 andSupplementary Figure 1, 2, 4 and5 pertain to
2D-SIM reconstructions made from a single focal slice of a 3D-SIM acquisition, i.e. made with
a three-beam interference illumination pattern. The data showrFignre 4 and
Supplementary Figure 10, 11, 12, 13 and 14 pertain to full 3D-SIM reconstructions. A flow
diagram illustrating the different steps in making (2D and 3D) SIM reconstructions is shown in
Supplementary Figure 16, and consists of pre-processing steps, illumination pattern
estimation and image Fourier order computation steps, and filtering and reconstruction
operations.

Pre-processing steps

The set of pre-processing operations starts with a gain and offset calibration for providing image
signals that represent the number of detected photo-eleétrdine EM-CCD or sCMOS
cameras that are used have zero or negligible readout noise so that the image signals follow
Poisson statistics to a good approximation. Some effects of fixed pattern noise (pixel-to-pixel
variations in offset and gain) are visible in sSCMOS based images, but are ignored here for the
sake of simplicity. In a future study this could possibly be incorporated by an additional
calibration step as in ref. 45, or by extending the method of ref. 44. Optionally, the images are
grouped in sets of five images acquired with the same illumination pattern angle, and registered
in an all-to-one manner in order to correct for drift. It turns out that leaving out the step of drift
correction does not substantially deteriorate the reconstruction outcomes for the imaged
specimens.

The illumination pattern modulation in 3D-SIM can be characterized by the Modulation
Contrast to Noise Ratio (MCNR), a quality measure for faithful illumination pattern retrieval,
part of the SIMcheck quality control software packdgehe proposed method of computation

of the MCNR in ref. 17 involves images acquired at different focal planes, and can therefore
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not be directly applied to 2D-SIM. To that end we use an alternative way to compute the MCNR
that can be computed per pixel/voxel. Starting point is a 1D Fourier Transform (FT) of the five
phase step images for each pixel/voxel to the set of photon dguaiteach pixel (voxel) for

the phase stegs= 1,2, ..., M, resulting in the fit:

21 4mj
IVj = AO + A1 Ccos (_ + (p1> + Az CoS (_ + (p2> (5)
Mt Mt

The modulation is taken as twice the root-squared average of the first and second order Fourier
coefficientsA; and 4,, and the shot noise level is the square root of the zeroth Fourier

coefficientA4,. This leads to:
2 /A12 + A2

6

Vo ©
The results obtained with the current proposal for computing the MCNR agree well with the
results obtained with SIMcheck, although small quantitative differences appear. For example,
the lack of averaging Fourier coefficients over focal slices gives a more noisy appearance of
the MCNR across the FOV for low signal acquisitions. The rule-of-thumb for reliable pattern
parameter estimation is to have sufficient foreground pixels/voxels with MENR The
MCNR is actually a SIM reconstruction in itself, which generalizes the original SIM préposal
by including the second order Fourier coefficients, and shows some degree of optical sectioning
(seeSupplementary Figure 7). The peak MCNR averaged over the pattern orientations per
focal slice has a maximum as a function of the focal slice Sgpplementary Figure 17).
Having a satisfactory MCNR only for a limited range of focus positions may be attributed to
not just a limited axial extent of the sample, but also to spherical aberration caused by refractive
index mismatch. For typical high-NA immersion microscopes the refractive index of the
immersion medium must be controlled at fiee 3 level for optimum result§, and the axial
range of images with useful modulation appears to be typically only arfewor 2D-SIM
processing we take the focal slice with the maximum illumination pattern modulation.

MCNR =

So-called z-wrapping artefaétsnay arise for datasets with a limited number of focal slices, as
e.g. many live cell 3D datasets. The periodic boundary conditions of the FT then perturb the
first and final few of the slices of the reconstruction. This can be mitigated by preferably
ignoring these, or by only representing the final SIM reconstruction by a Maximum Intensity
Projection of the reconstruction stack. Another method to mitigate the impact of z-wrapping
artefacts is by adding a number of extra, fictitious, focus layers. The reconstructions for the live
cell dataset oBupplementary Movie 9 andSupplementary Figure 13 and 14, which is based

on just 7 focal slices, are made using 14 extra layers. It is estimated that the required number of
extra layers is in the range from 10 to 20. These extra focus layers interpolate linearly between
the first and last slice of the focus stack. Further, they are blurred by convolution with a
Gaussian kernel to mimic the effect of defocus. The kernel size ranges from one pixel for the
layers directly adjacent to the first and last focal slice, to 20 pixels for the layer(s) in the middle
of the fictitious additional stack. Finally, artificial shot noise is added for maintaining Poisson
statistics.

The next step in pre-processing is to apply a window to the data cube in order to enforce
continuity in the periodic boundary conditions assumed in subsequent FTs, i.e. for eliminating
streaking along the coordinate axes in the FTs. For the voxel injdieds..., N along any of

the three coordinate axes we can define a scaled coordjnaté2j —1 — N)/(2N), the
windowing is applied to the edges definedly® — |r;| < b, where we také in the range 0.1-

0.2 along the lateral directions € x andr = y) andb = 0 along the axial directionr (= z).
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Over these boundary region voxels, the window function is taken tot;be

sin(m(1 — 2|r;])/(4b))’, for the inner voxels;== 1 is taken. The overall window function is

the product of the window functions for the three orthogonal coordinate axes. No windowing
is applied in the axial direction because it appears to have limited use there. The first and last
focal slice typically show no recognizable structure as all object features are drowned by
defocus and spherical aberration induced loss of illumination pattern modulation, which implies
that the discontinuity arising from the FT periodic boundary conditions in the axial direction is
not that harmful. The additional fictitious layers that interpolate between the first and last focal
slice, with features that are gradually blurred away, plays the same role for datasets with limited
number of focal slices. An additional factor here is that the axial Fourier streak is suppressed
anyway by the low-pass filtering step with the 3D-OTF of the microscope, which has the well-
known missing cone.

The windowing operation by a simple pointwise multiplication of the image data cube with the
window function compromises Poisson statistics of the image signals. This can be overcome
by applying the random binomial data splitting approach%seelementary I nformation 2).

The image signal for a pixel is written As= n + ¢, wheren = round(I). The value of the
window function for this pixet satisfiedd < 7 < 1 and is used as the probability in a binomial
probability distribution for each of the integerphoton counts, giving a random total 10f

counts satisfying) < n’ < n. The remaindet is reduced by the ratio’/n. This procedure
preserves Poisson statistics across the entire data cube.

The next pre-processing step is up-sampling in order to accommodate the extended cut-off of
the SIM OTF (typically by a factor of 2 in the lateral directions, no up-sampling in the axial
direction) by zero padding in Fourier space. This operation compromises Poisson statistics, but
this can be solved by artificially filling the extra high spatial frequency Fourier pixels, that are
created by zero padding, with noise. For each voxel in the up-sampled image with up-sampled
image signaln a random variabled’ is generated using the signalas Poisson rate. The
differencen’ — n, the artificially created noise, is Fourier tranmgfied and masked to fill the

new Fourier pixels created by zero padding, while keeping the original Fourier pixels obtained
from the FT ofn unaltered. Inverse FT then gives an up sampledenttzat follows Poisson
statistics.

[llumination pattern parameters and OTF

The illumination pattern parameters (pitch, orientation and phases) are estimated using a 2D-
projection of the pre-processed 3D dataset. This projection is the (weighted) sum over all focal
slices, where the average MCNR values over each focal slice is taken as weight. This improves
SNR by averaging over noise in the individual images and over the 3D-structure of the
fluorescent object, but under the assumption that these gains are bigger than possible residual
shifts in the illumination patterns between different focal slices, left after possible drift
correction. Next, the cross-correlation image matrix foMalk M, image combinations with
different pattern phases is computed, zoomed in at regions around integer multiples of the
expected Fourier peaksat;. The peak in the root mean square of the cross-correlation matrix

is used to update the estimate of the pattern spatial frequency ggct@eeSupplementary
Information 1 for more detail). The precision of peak detection is aided by the zooming
capability of the chirp z-transform for evaluating ¥, reaching a relative precision in
determining the pitch equal to 6x3@ver theK = 10 noise independent acquisitions of the
GFP-zyxin dataset and 8x¥@ver the 15 frames of the live cell histone H2B-GFP dataset. The
pattern phases are estimated from the phase of the autocorrelatidii, peakking a precision

of around 1 deg for the GFP-zyxin and for the live cell histone H2B-GFP datasets.
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The retrieved values for the pitch, orientations, and phases of the illumination patterns are used
to compute the different image Fourier orders (Oth, 1st, 2nd) per orientation of the line
illumination pattern, and to shift these orders in the lateral direction to the correct location in
Fourier space.

The 3D-OTF is obtained from a bead calibration experitAeifitsuch data is available. The
illumination pattern parameters are used to create laterally shifted copies of the different Fourier
orders per orientation of the line illumination pattern. An alternative to the calibration OTF is
computation using a vectorial Point Spread Function (PSF) model, taking all effects of high NA
and polarization into account (see e.g. ref. 46 and references therein). For 3D datasets, this
requires an additional axial separation of the two branches of the 1st Fourier order. The
theoretical valuec, = +n,,.4(1 — cos8) /1., is used, withd,, the excitation wavelength,

Nnmeq the medium refractive index, ardn 8 = A,/ (Myeqp), Wherep is the estimated
illumination pattern pitch.

Finally, the 1st and 2nd order strengthsanda, are estimated from the image data itself by
requiring consistency across order overlap regions, as the different orders depend on the spatial
frequency spectrum of the same underlying fluorescent object %applementary
Information 1 for more detail). It turns out that the retrieved order strengths depend on the
signal-to-noise ratio and sparsity of the sample, leading to lower estimates for relatively dense
samples and/or samples recorded under adverse signal-to-noise conditions. The estimated order
strengths should therefore be seen as effective order strengths, not as the true underlying ground
truth values. A fixed set of order strengths in the range of values found for the sparse tubulin
set ofFigure 4 measured at high signal levets (= 0.30 anda, = 0.45) is used for all SIM
reconstructions.

Reconstruction

The functionsﬁj andl7]- (defined in theSupplementary Infor mation 2) are computed from the
copies of the incoherent (2D or 3D) OTF, shifted in Fourier space, and from the order strengths
a; anda,. This is sufficient to obtain the regularization filter for flat-noise SIM. For state-of-
the-art and true-Wiener SIM we use as apodization filter the trianglexAjlterA,” with A;

the triangular filter (interpolating linearly between 1 at zero spatial frequency to O at the
extended SIM cutoff) and = 0.4 a numerical coefficient, because this has also heed in

the literaturé®'4 The triangular filter withc = 1 gives a visually similar reconstruction as the
Lukosz-bound filtet!, and is more benign for artefacts, such as the structured noise artefact and
the z-wrapping artefact that arises for low number of focal slices, than the trianglex-filter with
x = 0.4.

An initial pre-Wiener filtered SIM reconstruction is made by low-pass filtering the different
image Fourier orders with the corresponding shifted copy of the incoherent OTF, and then
adding all contributions weighted with order strengths. Overall Wiener filey$D; + w )

and 1/(13]- + w; ) = 1/\/;] are applied and a subsequent inverse FT is exetutggherate the

state-of-the-art and flat-noise SIM reconstructions, respectively.

The pre-Wiener filtered SIM reconstruction is used to make an estimate of the Spectral Signal-
to-Noise Ratio§SNR) needed for the true-Wiener filtered SIM recondiaut The initial SIM

el +66L|” = |ei]” + 2Re{el 561} +

] . )
reconstructione;““" has a spectral powgé;“'|" =
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|5é}c . Averaging over rings in spatial frequency space effectively eliminates the signal-noise

—~ . 2 L. .
cross-term. The averagdV; ),y of the noise powefdé}c Is independent of the object

spectrum and is proportional to the noise variance funﬁji(see Equation (1b)). The estimate
for theSSNR is then found as:

( éjrec,i
SSNR; = — 7

g (le)ring ( )

which can subsequently be used with Equation (3) to find the regularization filter for the final
true-Wiener filtered reconstruction. A minor drawback of ring averaging is that azimuthal
variations in SSNR are not accounted for. Averaging schemes based on e.g. Gaussian blurring
over regions in spatial frequency space can possibly provide an alternative in case these

azimuthal variations become relevant.

|2>ring _

The error in the estimatesiSNR becomes comparable to tS8NR for the highest spatial
frequencies, where there is too little signal (seeFegure 1m). This issue can be solved by
extrapolating the regularization filter from low spatial frequencies to high spatial frequencies.
The simplest extrapolation is to take the maximum@f) for spatial frequencies in the region
(SSNR(§))ring > SSNRy,» and use this as a constant regularization in the region
(SSNR(@))ring < SSNR¢p,. Here,SSNR., is a threshold value that can typically be selected
from the range between about 1 and 10. A bit more complex is a quadratic extragala)icn
a|G|?, where the parameter is estimated from the spatial frequency region rakefi by
(SSNR(Q))ring > SSNRy,,. This corresponds to a regularization function in real spiige]?,

with V the 2D or 3D-gradient operafér A more general power-law extrapolation(g) =
a|q|? works fine in many cases as well, where now both parametarsl are estimated
from the spatial frequency region definekBINR(§))ying > SSNR,,-. Typical values found

for the power-law exponerft are in the rangé.2 < f < 2.7. For the sake of simplicity we
have used the quadratic extrapolation scheme with $SNR 5 for all datasets.

Notch filtering of the different image Fourier orders has been applied to improve the optical
sectioning in SIM, mostly for 2D-SIM reconstructiéh¥. The retrieved orders (prior to lateral
shifting in Fourier space) are multiplied with filter kernels as defined in Equation (3.21), (3.22),
and (3.23) inSupplementary Information 3. The notch depths,, a,, a5, the lateral notch

width Ag,, and, for 3D-SIM, the axial notch widtly,, appearing in the filters are in principle
user-adjustable parameters. Instead of an ad-hoc choice, we fix the parameter values to optimize

the contrast of flat-noise SIM by making the flat-noise QJFF 5™ = ﬁj/\/;j as close as

possible to a target OTF, which we take to be equal to the Lukosz-bound apodization function.
A suitable OTF error function for this optimization is defined in Equation (3.26) in
Supplementary Information 3. Reasonably good results can be obtained for notch widths that
scale with the cut-off frequencyAq, =2p NA/A.,, and, for 3D-SIM Aq, =

P (Nmea — VMmea® — NA2) /2o, Where we take the numerical pre-fagtox 1.25. For 2D-

SIM it is sufficient to apply the notch filtering to the zeroth order only,d;e= a, = 0. The
remaining non-zero notch depth & 1 — 10~% is determined using Matlab's fminbnd to find
the optimum value of the notch dip expondpt The procedure converges within about 10
iterations with a precision of around-30Typically this results in values in the rantyg <

do < 3. The final notch filtered images do not depend huga the initial choice for the
parametep, generally a valug > 0.75 will suffice, but small differences can arise betwe
different datasets. The task of optimizing the flat-noise OTF is more complex for 3D-SIM,
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because the requirement on the axial transfer function comes on top of the requirement on the
lateral transfer function, and because the native flat-noise OTF has rather pronounced peaks at
the centre spatial frequencies of the contributing orders. It turns out that now applying a notch
filter to all contributing orders is necessary, especially as this appears beneficial for diminishing
the susceptibility for hexagonal background imprint artefacts. For the sake of simplicity we take
oy =0, =a, =1—10"%, and again use Matlab's fminbnd to find the optimum value of the
notch dip exponent,d Typically, this results in values in the rargje < d,, < 5.5. It is quite
conceivable that more sophisticated designs for the (notch) filters could improve the current
results.

Noi se assessment

The noise model is validated by the spectral noise varianc8S&#l that are obtained from

theK = 10 noise independent acquisitions of the GFP-zyxiagkitby computing the unbiased
sample variance over thi€ reconstructions. The spectral noise variance ferwidefield
reconstruction obtained by summing over Mierotations andV, translations appears to be
constant across the spatial frequency spectrum with variations up to several peréagt(see

1i). The small peak at low spatial frequencies is attributed to residual effects of photo-bleaching,
illumination variations, and drift. This small peak gives rise to satellite peaks in the
experimental spectral noise variance for the SIM reconstructions at the centre spatial
frequencies of the orders, that do not correspond to actual noise enhancement. FRC curves are
computed®for all K(K — 1) /2 pairs of reconstructions, the mean and standafietitn over

all these reconstruction pairs are plotted in all FRC-results. FRC-curves need no bleaching
correction, as they are independent of overall intensity variations of the two input images. The
model independent noise assessment via the random binomial data splitting method is described
in Supplementary Information 2.

Noise fraction map

The noise model enables the assessment of the fragtmirthe SIM reconstruction that is due

to noise, based on the average signal and noise level in a neighbourhood around e&ch pixel
(seeSupplementary Information 2). We have implemented the computation of this noise
fraction by Gaussian smoothing with a widt)2NA, which corresponds to about four SIM
pixels. It is expected thd& < Z, < 1, but values higher than one can arise due to intmp
averaging of noise in the pixel neighbourhood.

Deconvolution and denoising

Starting point for the 2D Richardson-Lucy (RL) deconvolution is a gain recalibration by fitting

a straight line through the mean vs. variance curve obtained froi tlese independent
reconstructions. This corrects for any possible changes to intensity level during the
reconstruction and so ensures the best approximation to Poisson statistics for the signal at each
pixel. The OTF used in the RL deconvolution algorithm is either the incoherent OTF (widefield)

or the flat-noise SIM OTF (SIM). The iterative procedure is stopped when the error
(el —eM?)/Cr(eM)?), with ef the nth estimate, is less than 10 The resulting RL-

SIM deconvolution has been compared to the joint RL deconvot&fithor this dataset, which

gave visually the same outcome. For that reason joint RL results are not shown.

The publicly available code for deep learning based deconvaltitias been applied with no
modification to up sampled widefield representations. The up sampling has been performed by
zero padding in Fourier space and subsequent filling the added zeros with noise components,
just as done for the SIM pre-processing. The publicly available code for HessidhiSIM
applied in the denoise mode with the recommended parameter settings.
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Image data visualisation

All images are rendered with full dynamic range, i.e with no clipping whatsoever. The 3D live
cell dataset of histone H2B-GFP is representefuipplementary Movie 9 by a Maximum
Intensity Projection, in view of the limited number (7) of focal slices.

Data and Matlab code will be made available to the whole community upon publication of the
manuscript athttps://doi.org/10.4121/uuid:25815b3e-c58f-4b34-afae-9d5851d236ax)

and https://github.com/gnano/simnoideode). ImageJ code for 2D-SIM is available at
https://github.com/fairSIM
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Figure 1 | Noise propagation in SIM reconstructiona) Example raw image of a SIM
acquisition of GFP-zyxin in focal adhesions, at) Kodulation Contrast to Noise Ratio
(MCNR), indicating muted stripe contrast due to low signal leveld) Widefield and state-
of-the-art SIM reconstruction with constant regularization (e-f) Insets of the boxed region

in (d), showing the widefield image and SIM reconstructions with different regularization
parametersy. A noise pattern builds up when is decreasedi-() Measured noise variance

(N) in Fourier space over the 10 independent SIM rdoacttons, averaged over rings in
Fourier space, indicating that the noise enhancement in SIM at isveoncentrated in a ring

in Fourier space. The measured noise variance agrees well with the prediction of the proposed
noise model, and with the assessment from the randomly split dataset$h¢ SSNR
determined from the 10 independent acquisitions for widefield and SIM (and averaged over
rings in Fourier space) agrees well with the estim&&dR for a single SIM reconstruction
based on the proposed noise model, and based on the randomly split d&jeSetsidr Ring
Correlation (FRC) curve for widefield and SIM. The intersection of the FRC curves with the
resolution threshold 1/7 (dashed curve) gives FRC resolution values 239+2 nm (widefield, red
arrow) and 149+2 nm (SIM, blue arrow) below and above the widefield diffraction limit
A/2NA =191 nm.
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Figure 2 | Noise controlled SIM reconstructiong) State-of-the-art SIM with regularization
w=5x%x10"* (b) True-Wiener SIM, ¢ flat-noise SIM, and d) notch-filtered SIM
reconstructions for the inset shown in Fig. 1e-h. The two-line sub-structure is a recognizable
true feature, the pronounced small-scale twirls (‘hammer finish pattern’) is an artefact of
reconstructed noise componergh) Corresponding measured noise variance in 2D Fourier
space over the 10 independent SIM reconstructions. State-of-the-art SIM has a noise ring at
medium to high spatial frequencies, True-Wiener SIM has a noise ring at somewhat lower
spatial frequencies, flat-noise SIM has a constant noise plateau, notch-filtered SIM has a
constant, but elevated noise platedaly.Regularization parameter (averaged over rings in
Fourier space) as a function of spatial frequerjgyii{fe SSNR (averaged over rings in Fourier
gpace) for state-of-the-art, true-Wiener and flat-noise SIM is identicalfSN& for notch-

filtered SIM is lower for smaller spatial frequencig$.The FRC curves for state-of-the-art,
true-Wiener and flat-noise SIM are identical, BRC curve for notch-filtered SIM is lower for
smaller spatial frequenciedl) (The MTF (averaged over rings in Fourier space) of the four
reconstructions, indicating a lower contrast for flat-noise SIM compared to the other three
reconstructions.
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Figure 3 | Trade-off between noise and contrast in SIM reconstructierdh. (Videfield and

the three noise-controlled SIM reconstruction of a chirped nano-patterned streg)réléan

and standard deviation of the chirped line pattern over the boxed regitr ithe four images.
True-Wiener SIM has high contrast, at the expense of spatial frequency dependent noise
enhancement. Flat-noise SIM shows two times less noise as quantified by the standard deviation
of the line response, but with less contrast. Contrast is restored in notch-filtered SIM, but at the
expense of a noise enhancement that is constant over all spatial frequencies.
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Figure 4 | Noise-controlled 3D SIM reconstructions. Cross-sections of 3D-reconstruations (
and yz) for four different signal levels (camera exposindicated) &) widefield, @-d) state-
of-the-art SIM for low, medium and high regularizati¢e), true-Wiener SIM(f) flat-noise
SIM, and(g) notch-filtered SIM. The dashed lines in (a) indicate the location of tlamadzy
dlices.
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Figure 5 | Resolution improvement and noise enhancement in deconvolution of GFP-zyxin
dataset(a) RL-deconvolution of widefield imagéh) DL-deconvolution of widefield image at

40 nm pixel size(c) DL-deconvolution of widefield image at 65 nm pixel size, i)-
deconvolution of (flat-noise) SIM imagé) H denoised SIM. Arrows indicate features where
a significant difference is observed. (f§pectral noise variance (on a logarithmic scale) over
the K = 10 independent outcomes of the deconvolution for tifferdnt methods, showing
different types and degrees of noise enhancement. Note the differences in deateview

of the different pixel size. (KfRC curves of widefield based deconvolutions in comparison to
the curve for widefield. The FRC-resolution improves from 239+2 nm to 187+2 nm (RL),
142+3 nm (DL 40 nm), and 123+6 nm (DL 65 nifh) FRC curves of SIM based deconvolutions
in comparison to the curve for SINThe FRC-resolution changes from 149+1 nm to 131+3 nm
(RL) and 159+0.1 nm (H).
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state-of-art SIM true-Wiener SIM

Supplementary Figure 1| Noise-controlled SIM reconstructions of GFP-zyxin protein in focal
adhesions (green) and noise fraction map (magenta), full F&d), State-of-art SIM W =

5 x 10~%), true-Wiener SIM, flat-noise SIM, and notch-filtered SIM reconstructions. Contours
of the noise fraction map are added in white with contour level indicated. In all reconstructions
the noise fraction is lowest in the foreground features and highest in the background region
outside the cell. Overall, flat-noise SIM and true-Wiener SIM offer the lowest, and notch-
filtered SIM the highest noise enhancement.
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Supplementary Figure 2 | Multi-colour noise-controlled 2D SIM reconstructions)
Combined widefield, true-Wiener SIM, flat-noise SIM, and notch-filtered SIM reconstructions
of a fluorescent test slide of a bovine pulmonary artery endothelial cell (red channel:
mitochondria labeled with MitoTracker Red, green channel: actin labelled with Alexa Fluor
488, blue channel: DNA labeled with DAPI). Note that due to embedding in hardening
mounting medium, cells are flattened and 3D nuclear morphology is comprothigthsets

of the DAPI-channel comparing state-of-the-art SIM with clear noise amplification artefact to
the noise-controlled SIM reconstructions. BS&/R in the DAPI channel is low in this example
case, due to reduced signal intensity and compromised morphology. TEEN®Rnis properly

taken into account by the noise-controlled SIM reconstructions, without introducing artefacts,
but not by the state-of-the-art SIM reconstruction.
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Supplementary Figure 3 | Noise propagation in DMD-SIMa) Reconstructions of Alexa

Fluor 488 labelled actin filaments in a bovine pulmonary artery endothelial cell with the
iterative pattern-illuminated Fourier Ptychography (piFP) algorithm &eplementary

I nfor mation) and with a band-pass regularization approach for flat-noise(8)NM.omparison

of flat-noise SIM to a widefield reconstruction obtained by summing the whole set of acquired
images.(c-e) Insets of the boxed region (a) and(b). Both piFP and flat-noise SIM offer a
resolution improvement, but piFP has better contrast than flat-noise SIM. The piFP
reconstruction shows corrugated line structures and punctuated features (upper right of insets),
similar to the structured noise artefact in state-of-the-art SIM with line illumination patterns,
flat-noise SIM shows this to a lesser degree.
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widefield true-Wiener SIM flat-noise SIM notch-filtered SIM

Supplementary Figure 4 | Flat-noise SIM provides better visibility of high spatial frequency
structures(a-d) Widefield, true-Wiener, flat-noise, and notch-filtered SIM reconstructions of

a nano-fabricated test structure of lines with 140 nm pitch. The line pattern is just visible in flat-
noise, and notch-filtered SIM but overshadowed by the noise pattern with uneven distribution
of noise over spatial frequencies in true-Wiener SIM.
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Supplementary Figure 5 | Noise-controlled SIM of synaptonemal compléxd) Widefield,

and true-Wiener, flat-noise and notch-filtered SIM reconstructions of the mCherry-CSYCP3

protein in the synaptonemal complée:h) Line profiles along the lines indicated (in). The

SIM reconstructions reveal the two cable sub-structure with a line distance of around 200 nm,
flat-noise SIM has less contrast but shows smoother lines and no background noise structure.
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Supplementary Figure 6 | Cross-sectionsf andyz) of 3D-reconstructions (green) and noise
fraction maps (magenta) for four different signal levels (camera exposure indicgted) (
widefield, (p-d) state-of-the-art SIM for low, medium and high regularizationtr(e-Wiener
SIM, (f) flat-noise SIM, andg) notch-filtered SIM. The dashed lines in (a) indicate the location
of the xzandxy slices.
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Supplementary Figure 7 | Variation in signal level and modulation in the raw images of the
3D tubulin datase(a-d) Example raw images, with signal level indicated in photon counts for
the different camera exposure times used (0.3 ms, 1 ms, 3 ms, and(6-mdYlodulation
Contrast to Noise Ratio (MCNR) obtained from the raw images, showing the anticipated
increase of MCNR with signal level.
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Supplementary Figure 8 | Spectral Signal-to-Noise Ratio and regularization filters for the 3D
tubulin dataset(a-d) EstimatedSSNR as a function of axial spatial frequengy and lateral

spatial frequency,,, using the SIM noise model for the different camera exposure tieal}s.
EstimatedSSNR as a function of axial spatial frequengy and lateral spatial frequengy,,

using the two randomly split sub-datasets of the original dataset. The good agreement between
the two noise estimates confirms the proposed noise model and the validity of the shot noise
only treatment that is followed. The decrease&s&WVR with exposure time is according to
expectations. The data is averaged over rings in Fourier space and the plot is on a logarithmic
scale according tlng,,(1 + SSNR). The red line indicates the (ring averaged) suppbittie
SIM-OTF, the white line indicates th&SNR =5 region in Fourier space used for the
extrapolation of the true-Wiener regularization filtgsl) EstimatedSNR as a function of axial

spatial frequency gand lateral spatial frequency,qusing the SIM noise model for the notch-
filtered reconstruction showing the decreaseSWR compared to the case without notch-
filtering, especially for the lowest spatial frequencigd) True-Wiener regularization as a
function of axial spatial frequeney, and lateral spatial frequengy,,, showing a decrease in
regularization with increasin§SNR. (q,r) The flat-noise regularization for normal and notch-
filtered reconstructions. The flat-noise regularization is independent of signal level and shows
a decrease of regularization from values arow@icf for lower spatial frequencies to values
around10~° close to the 3D-SIM cut-off. Contrast optimization with notch filtering results in

a flat-noise regularization that has a lower value for lower spatial frequencies compared to the
case without notch filtering, arourid~*. The regularization data is averaged over rings in
Fourier space and the plot is on a logarithmic scale according o)
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Supplementary Figure 9 | MTF and noise variance for the 3D tubulin dataget) True-
Wiener SIM MTF (averaged over rings in Fourier space) as a function of axial spatial frequency
q, and lateral spatial frequenqy,, for different camera exposure times, showing an increase
of the achievable contrast level willSNR. (e-f) Flat-noise MTF (averaged over rings in
Fourier space) without and with optimized notch filtering, showing an unsatisfactory contrast
level for flat-noise reconstructions without notch filtering, and a substantial increase in contrast
level by notch filtering(g-j) Noise variance (averaged over rings in Fourier space) of true-
Wiener SIM reconstructions as a function of axial spatial frequenpcand lateral spatial
frequency g, for different camera exposure times, showing spatial frequency dependent noise
enhancement and an overall increase in noise level with camera exposurg-imgoise
variance (averaged over rings in Fourier space) of flat-noise SIM reconstructions without and
with optimized notch filtering, showing the expected flat-noise level, somewhat elevated in the
case of notch filtering. The noidgis plotted on a logarithmic scale accordindpg,,(1 + N).

The red line indicates the (ring averaged) support of the SIM-OTF.
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Supplementary Figure 10 | Widefield and noise-controlled 3D-SIM reconstructions of a 100
nm bead layer sampl@) Widefield,(b) true-Wiener SIM(c) flat-noise SIM(d) notch-filtered

SIM. The white box in(b) indicates the insetge,f) SSNR of the SIM reconstructions without

(e) and with (f) notch filtering. The data is averaged over rings in Fourier space and the plot is
on a logarithmic scale accordingltg,,(1 + SSNR). The red line indicates the (ring averaged)
support of the SIM-OTF, the white line indicates 8#VR = 5 region in Fourier space used

for the extrapolation of the true-Wiener regularization filigr FRC curves for SIM obtained

from 4 repeated acquisitions of the bead layer sample. The FRC resolution is 106.3+0.5 nm,
very close to the extended SIM diffraction limjt(2NA/A + 2/p) = 99 nm for the estimated
pattern pitchp = 416 nm, consistent with the relatively high signal lefpeak pixel intensities
above 10 detected photons) and the broad suppodSafR above one in spatial frequency
space.

35


https://doi.org/10.1101/2021.03.11.434940
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434940; this version posted March 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Xy

widefield
true-Wiener

flat-noise
notch-filtered

Supplementary Figure 11 | Widefield and 3D noise-controlled SIM reconstructions of a
bovine pulmonary artery endothelial cell (BPAEC, red channel: mitochondria labelled with
Alexa Fluor 594, green channel: actin labelled with FITC, blue channel: DNA labelled with
DAPI).
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Supplementary Figure 12 | Widefield and 3D noise-controlled SIM reconstructions of a mouse
C127 cell (magenta channel: DNA labelled with DAPI, green channel: H3K4me3 labelled with
Alexa Fluor 488, blue channel: DNA labelled with DAPI).
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Supplementary Figure 13 | Widefield, state-of-the-art SIM and noise-controlled 3D-SIM
reconstructions for one time frame of the 15 time-frame, 7-layer dataset of H2B-GFP histone
in a live HelLa cell.
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Supplementary Figure 14 | Widefield, state-of-the-art SIM and noise-controlled 3D-SIM
reconstructions (green) and noise fraction maps (magenta) for one time frame of the 15 time-
frame, 7-layer dataset of H2B-GFP histone in a live HelLa cell.
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RL WF DL WF, 40 nm DL WF, 65 nm

Supplementary Figure 15 | Resolution improvement and noise enhancement in deconvolution
of GFP-zyxin datasefla) RL-deconvolution of widefield imaggp) DL-deconvolution of
widefield image at 40 nm pixel siz) DL-deconvolution of widefield image at 65 nm pixel
size, (d) RL-deconvolution of (flat-noise) SIM imagé) Hessian denoised SIM. The white
square indicates the image region showhigure5.
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Supplementary Figure 16 | Flow diagram illustrating the different steps in making SIM
reconstructions. The different processing steps can roughly be grouped into (i) pre-processing,
(i) estimating the illumination pattern parameters and the subsequent separation of the different

orders in Fourier space and shifting of orders and OTF copies in Fourier space, (iii) generating
the different SIM reconstructions.
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Supplementary Figure 17 | Through-focus MCNR for the different 3D-SIM datase8y. (
tubulin dataset ofFigure 4, (b) bead layer dataset 8tipplementary Figure 10, (c) BPAEC-

cell dataset oBupplementary Figure 11, (d) C127-cell dataset @upplementary Figure 12.

The values are the average of the top 7.5% MCNR-values, averaged over pattern angle. The
widths of the peaks are indicative of the thickness of the sample and/or loss of modulation due
to spherical aberration. Asymmetry of the peak is indicative of the 3D density of the sample
and/or refractive index mismatch induced spherical aberration.
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Supplementary Information
1. Imageformation and reconstruction for SIM

Preliminaries

A central element of the theory described here is that we use a discrete pixelated representation
of the raw images, the image reconstructions and the fluorescent object. Transformations
between these domains are then expressed as finite sums over pixels in real or Fourier space.
This stands in contrast to the continuous representation of object and image and the use of
continuous transforms between these in terms of convolution integrals that is often used. The
key reason is that such a discrete representation of the image is closer to the physical process
of digital imaging, where photons are collected during the frame time over the pixel area of the
sensor, as well as to the practice of image processing, which is based on the manipulation of
matrices that represent the images. Another reason is that it turns out that the mathematics of
tracing the impact of noise in an image reconstruction procedure is simplified to some extent in

a discretized treatment. A small drawback is that the truly continuous character of the
underlying object is dealt with in an approximate manner. If the sampling density of the
recorded images is sufficient it may be expected that numerical errors arising from this
deviation from the continuous description of the underlying object can be neglected.

The fluorescent object is represented by vafiyest pixels k = 1,2,---,N. The Point Spread
Function (PSF) is represented by the matrix= g(#, — 7;) = 0 connecting object to image
pixels. The PSF only depends on the difference between the object and image pixel coordinates
7, and7y, i.e. the imaging is taken to be shift invariant. The optical magnification from object

to image space is accounted for by rescaling the coordinates with the magnification. The PSF
is taken to be normalized to unity:

N
z g =1 (1.1)
. . k=1 .
We will frequently work with the Fourier representation:

N

1 o

I = Nz gjeznlqj'(rk_rl) (12)

j=1

with ¢; the spatial frequency vector of Fourier pixet 1,2,--, N and wherej; = g(cij) IS the
Optical Transfer Function (OTF). In our notation quantities with a hat indicate Fourier space
functions. For widefield fluorescence microscopy, the expected photon count @t igigélen

by:

N
Uk = Z Irihi (1.3)
=1
The fluorescent object is the product of factors:
fe =nHyy (1.4)

with H the illumination dose per pixely the overall system photon detection efficiency (the
product of fluorophore quantum yield, optical detection efficiency and photon detection
efficiency of the image sensor), apg the amount of fluorophores in the region imaged by
pixel k.

Least Squaresimage reconstruction SIM
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In SIM, the sample is illuminated wi¥ illumination patternﬁ{’ withp = 1,2,---, M resulting
in a set of observed imagés The expected set of images is:

N
W= guhlf (15)
=1

which differ from the observed imagé,S by noise. The goal of image reconstruction or
deconvolution applied to SIM is to find object variabégsthat provide an estimate for the
ground truth fluorescent objefit that fits best with the actually observed images. The estimate
ey for the ground truthf, according to the regularized Least Squares (LS) image reconstruction
is based on the minimization of the function:

M N N 2 N
E=l P - hPe +l Wy e e (1.6)
> k Ikl € ) kl€Kk €1 .
=1

p=1k=1 k=1
with the regularization filter functiomw,;. This function is taken to depend only on the
difference between the pixel coordinateandr,, implying that it can be expressed as:
N

Wi = %z w;e2mid; =T (1.7)
j=1
wherew; is the regularization filter kernel. The regularization is usually taken to be constant
across the spatial frequency spectrim= w, leading tow,; = wédy,;. The error functiolt is
optimized if the gradient w.r.t. the object variables is set equal to zero:

aE M N N N
Je. Z Z 'gkjh]p (Ilz: - Z gklh?el> + Z wjrer =0 (1.8)
g =1 k=1

p=1k=1
This may be written as the set of coupled linear equations:
N
Z T]'lel = b] (19)
. =1
with the vector:
M N
b, = Z Z R g 17 (1.10)
p=1k=1
and the matrix:
Ty = wj + (9" 9) 1Cyy (1.11)

where g7 denotes the transpose of the PSF and where the nfattepends on the set of
illumination patterns:

M
¢y = z RPRY (1.12)
p=1
The reconstructed image is given by the solution of the set of coupled linear equations (1.9):
N
e = Z T_ll]'b]' (113)
j=1

This solution may be expressed as a linear filter operation on the set of acquired/Jmages

M N
>R (114)

p=1k=1

€

where theV filters are:
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Fj = ZT‘ ih! gij (1.15)

The key advantage of the (regularlzed) LS image reconstruction is that the final reconstruction
can be obtained from the raw data by a set of linear filter operations. Non-linear operations that
can substantially alter the qualitative character of image features are avoided.

For arbitrary illumination patterns, as can e.g. be generated by DMD-baséd’Sthe
inversion of the matrix},; defined in Eqg. (1.11) and needed in the general reconstruction Eq.
(1.13) is not straightforward. In that case a steepest descent iterative approach, recently
presented as ‘'pattern-illuminated Fourier Ptychography (piFP)' is an appropriate solution
method®2 In this method the steepest descent update:

=% — P (L16)
x . = x —_— — .
o T e
with B, a constant is split into sub-steps
yj =R e (1.17)
D, = ;g (1.18)
yP = )7,- +B,4;(IF — §;97) (1.19)
I ﬁ

ej=e+ ﬂ" hP(y?' — hPe;) — Byv; (1.20)

with 8, a constant. Compared to the piFP implementation without regularization this scheme
has an additional sub-step in the form of Eq. (1.18), and a modification of the sub-step given
by Eg. (1.20). An alternative to regularization is to stop the iteration prior to convefgence

Application to 2D-SIM
We will now apply the preceding formalism to classical 2D-SIM, in which there- are
1,---, M, rotations anch = 1, ---, M; translations of a periodic line pattern, so the illumination
patterns have a double lahek (r,n) and the total number of illumination patterngvis=
M,M,. The illumination patterns are given by:

b = Z e 2 Rrm (7 =tirm) (1.21)

meM

whereM is the (finite) set of non-zero Fourier ordersloé periodic line pattern, th,, are

Fourier coefficients, k, = mk, is the spatial frequency for rotatiorand order mand #, is

the displacement of the line pattern. These displacements are chosen such that:
M;

Z ezﬂl(%rm_ﬁrml)ﬁrn = Mtamm’ (1.22)

n=1
The normalization of the illumination patterns is chosen such that:

zr: zt: K™ =1 (1.23)

r=1n=
In particular, this normalization leadsdg = 1/M,.M,. The expected set of images is given

by:
N
Z gk hrn Z ame—zmﬁrm.a’m Z karm r]f (1'24)

meM
which has an FT:
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A=) e on g (G, + Ko (1.25)
- - . mEM . .
For an explicit formulation of the reconstruction we need to evaluate the matrix elefpents

defined in Equatlon (1.12). Usmg (1.21) |t follows that:

]l = Z Z hrnhrn Z Z Z am a ezm[’;rm (Fj=trn)- —Kymsr(F1=Tpn)]

r=1n= r=1 mm "eM n=
- NZ Cre?m T (1.26)
. =1
with:
My
Cl = NM; Z z |am|25(c_il - I_()rm) (1.27)
r=1meM
whered(.) is the delta-function. We then find that:
N My
(9" DiiCij = Nz > Ml 21gi 2e2 @) (o)
1 r=1meM
= Nz Dye?miar(7=7)) (1.28)
with:

M,
=~ N bd 2
D= M, )" > 1aml[3(G = Kom)| (1.29)

r=1meM
which is a weighted sum of squared OTF's displaced in Fourier space with the spatial

frequencies of the Fourier components of the illumination patterns. Using Equations (1.28),
(1.29), and (1.7) the matrik defined in Equation (1.11) follows as:
N

1 o in n
T = NZ 7, 2miir (Fe)) (1.30)
=1

with:
Tl = Wl + 51 (131)
In summary, the overall reconstruction, the solution (1.13) of the set of linear equations (1.9),
may be seen as a process consisting of the following steps:
(1) The acquired set of imaggg' for all rotations and translations is Fourier transformed
to I'™.
(2) The so-called "image Fourier orders" or "spatial frequency baghfisare extracted by
suitable linear combinations:
M
"lrm — Z e—zmﬁrm-ﬁmilrn (1.32)
n=1
(3) The spatial frequency banfi§* are low-pass filtered with the (adjoint of the) microscope
OTF:

Lm=gnm (1.33)
(4) The low-pass filtered spatial frequency banflg are shifted in Fourier space with the
centre band spatial frequencigs, to giveL’ ™ (G, — kym).
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(5) A weighted sum over the shifted, low-pass filtered, spatial frequency ffé’f’(dﬁ — Erm)
is taken which yields a weighted-sum-of-bands intage# Equations (1.10) with FT:

My
Bl = Z Z am Zrm(c'l’l - krm)
r=1meM
M, M;
= Z Z amg(q)l - krm) Z e—2nikrm-ﬁrni‘rn(q’l - krm) (1-34)
r=1meM n=1

(6) This weighted-sum-of-bands imalges filtered with a linear filter (the inverse of the matrix
T;;) that has a Fourier space kernel:
i1 1
W, + D,
Usually a final step is added in the form of an ad-hoc apodization with filter kén€his
apodization filter suppresses edge ringing, halo and negative pixel artefacts. Now th&;matrix

appearing in the filter definition (1.31) must be modified to incorporate the apodization. The
overall reconstruction is then given by:

(1.35)

Albl
W, + D,
With this sequence of steps a closed-form solution of the regularized LS image reconstruction
problem can be found for the illumination patterns of 2D-SIM.

&, = (1.36)

[llumination patternsfor 2D and 3D-SIM
The illumination pattern is usually made by interfering two (2D-SIM) or three (single focal
slice of a 3D-SIM acquisition) plane waves. For the sake of generality we only consider the
case of three interfering plane waves and obtain the case of two interfering plane waves as a
limiting case. The three plane waves have spatial frequencies:
ko = (1/2)(0,0,1) (1.37)
Eil = (1/1)(x sin O cos ¢,-, £sin 6 sin ¢, , cos B) (1.38)
with A1 the excitation wavelength (inside the illuminatgge@men),f the polar angle of
incidence (inside the illuminated specimen) apdhe azimuthal angle for rotatien The ratio
of the intensities of the obliquely incident and the normally incident plane wak#s=id, /I,
with I, and } the intensities of the incident plane waves. The interference pattern is given by:
2mi(1—cos 0)z 21T Sin 6 2
h"(x,y,z) =N|1+2be 1 cos( (cos @, x +sing,y) + 1/;m> (1.39)
whereN = 1/((1 + 2b®)M,.M,) is a normalization factor, anp}., = 27k, - ii,,, the phase of
the pattern. When a single focal slice is imaged 0, 2D-SIM) the interference pattern has a
basis 2D spatial frequency vect@in 6 /1)(cos ¢, , sin ¢,) leading to a set of participating
ordersM = {—2,—-1,0,1,2} with centre 2D spatial frequenciml_c)r = mq(cos ¢, , sin @,.).
Here1/q = A/sin @ is the periodicity of the line pattern aggl is ther-th orientation. The
phase steps arg,, = (n/M.q)(cos ¢, ,sing,) for n =0,1,2,---,M; — 1. The illumination
pattern Fourier components afig = 1/M,M,, 4+, = a;/M, M, anda,, = a,/M, M, with
a, = 2b/(1 + 2b?) anda, = b?/(1 + 2b?) the first and second order modulations. The ideal
sinusoidal pattern from two-beam interference is obtained in theHimito for whicha; = 0
and a, = 1/2.

Estimation illumination pattern parameters

a7
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The pattern spatial frequency vecﬁ;rcan be estimated from the peaks in the auto and cross-
correlation combinations of the raw images:
N

Cotin, (4) = Z(If T = 1] 8, )RR st Ty (1.40)

whereﬁr,est is the estimate of the pattern spatial frequency vd_f;torT he second term in
between brackets in the sum over all pixel values serves to mitigate the impact of shot noise on
the image correlation matrix. This makes the expectation value:

<Crﬁn2(q))>= Z amldmze_i(mlwrnl—mzwrnz) X

mq,mz
L1, S (. 1. . )
g (qj + 2 (CI - mkr,est)> g <Qj 3 (q - mkr,est))

(. 1, - R
f (QJ + 3 (q mkr est) + ml )f (qj - E(q - mkr,est) + mzkr) (1-41)
The dominant contrlbutlons to this sum comes from orggrandm, satisfyingm = m, —
m,. Redefiningj, = §; + (m, — m/2)k, = §; + (m, + m/2)k, it follows that:

(CTrlrile (51))) = Z Sm’ml_mz dmlamze_i(mlwrn1_m2¢rn2) X

‘Mz

my,mp
N N1, o o
Z ( q + m(k r,est)) - mlkr) g (ql - E (q + m(kr - kr,est)) - mzkr)

=1
L 1., S, L 1., - S :
f <QI + E (q + m(kr - kr,est))) f <QI - E (q + m(kr - kr,est))) (1-42)
This function has a peak ét= m(k,. ... — k,), as then the Fourier space shifted components

have a maximum overlap. Finding this peak can be used to improve the e@mam‘ the
pattern spatial frequency vector, typically in an iterative manner. A good merit function for
finding this peak can be found by combining the information from all possible auto and cross-

correlation combinations, as well as non-zero shifts:
1/2

N¢
AD =D ) ez, @I’ (143)

m>0nq,n,
After convergence, the (expectation value of the) image correlation matrix peak values are
found as:

(Crﬁnz(o)>: Z e—i(m1¢rn1_mzwrn2)(Dm1m2(0)) (14.4)

with the (expectation value of the) image Fourier order cross-correlation matrix:
N

— q 1 Al = 1 > :
1) 1 = E 1 f —— . —_

j=1
Al S m\ - Al my\ - \*
X f (qj + (m1 - ?) kr)f (q]- + (mz + E) kr) (1.45)
The phaseg,.,, can be estimated from the argument of the auto-correlation peak®alues
CR(0) = &= X DI (0) (1.46)

ml
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Alternatively, the phases can be estimated by computing the order cross-correlation matrix
elementDy ... (0), and optimizing the phases to minimize the merntfion'4:

CWmD= D |DRm,@"

mq,My,M#+Fm;—m;
The modulations,,, = a,,/d, for m > 0 can be estimated making use of the redundancy that
arises when the different orders overlap. The expected values for the disentangled and spatial

frequency shifted ordef&™ (g, — mk,.) is:

(1.47)

(Jm(G; — mk,.)) = @ng(d; + mk,)f; (1.48)
The estimate of the order modulatioy) ean thus be obtained from the minimization of:
N
>\ - 7 Af > T\ > 2
Ew = ) 19(@)I™ (@) - mk,) - ang (@ + mk: )™ (@))| (149)
j=1

A more elaborate algorithm in which the overlap between all possible orders is taken into
account is conceivable, but may be less robust in practice.

Extension to 3D-SIM
In 3D-SIM several aspects of the formalism are chahife@he illumination pattern of (1.21)
changes to one that depends on object voaall image voxdl:
y = 2 Gl (21— 27) 2™ Frm (7y=m) (1.50)
meM
where the position vectors afe= (xj,yj,zj), ﬁrm andi,,, remain the same lateral vectors
(zeroz components), and whehg, (z) are axial functions. According to Eq. (1.38),(z) =
cos(2mk,z) with k, = (1 — cos8)/A andhy(z) = hy,(z) = 1. The expected 3D-FT of the
acquired images changes tf {s now a 3D spatial frequency vector):
G =) e e n g (G, + K (1.51)
meM
where the OTF-per-ord@{m) = g™ (q,) is the 3D-FT of the product of the axial illumireati
function h,,, (z) with the incoherent 3D-PS(#). This gives§@ () = §*2(4) = §(¢) and
GEV(@) = ((G + k,8,) + §(G — k,é,))/2. The axial shift of the OTF for the first orders is

responsible for optical sectioning or equivalently for filling in the "missing cone' of the
incoherent 3D-OTF.

SIM with array illumination patterns

The reconstruction can also be extended to other illumination patterns than stripe patterns. In
particular we may consider patterns that are periodic in two dimensions and shifted in both

dimensions to acquire a full set of raw images. Implementations of this scheme are spot array
illumination and Hadamard-pattern illumination. The set of illumination patterns is now:

R = Z o(7 — @y, — 1) (1.52)
n
where d,, = n,d; + n,dé, is the position of the unit-cell labelled by= (n,,n,), a two-
component index, ¢(#) describes the distribution of light within each tuoell, andp =
1,---, M, labels the translations, of the illumination pattern. The vectafg andc?2 span the
Bravais lattice. The FT of the illumination patterns is:
h=¢ Z e 2 5(G; — km)

m
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- Z Qe 2T Em o 5(G; — k) (1.53)
N m
wherek,, = m;p; + m,p, is the position of the unit-cell in reciprocal space labellechby
(m4,m5,), a two-component index, and where the two recipreace basis vectogg andp,
satisfycfj *Pr = S, and wheréi,,, = é(ﬁm). It is assumed that the total set of displacements
i, satisfies the orthogonality constraint:
My
z e2mi(ki Kty = M, 5, (1.54)
p=1
With these preliminaries, the analysis of the image reconstruction proceeds along very similar
lines as described above. The resulting expression for the FT of the Madietined in
Equation (1.29) changes to:

—~ L o 42
Dy = M, ) 1anl?|3(d; — Fn)| (84)
m

al other elements of the formalism remain the same.
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2. Noisepropagation in structured illumination microscopy reconstruction

Noisein widefield fluorescence microscopy
The actually observed photon count for pikeh widefield fluorescence microscopydiffers
from the expected imags, by the noisey:

Iy = Wy + Sk (2.1)
The noise correlation function is given by:
(sisi) = (U + 0%) 8, (2.2)

whereo is the root mean square (rms) readout noise, atdbyyithe Kronecker delta-function.

This model includes shot noise (the first term in brackets on the right-hand side of Eq. (2.2))
and readout noise (the second term in brackets on the right-hand side of Eq. (2.2)). In addition,
we take all signals to be normalized to measure the number of detected photons on each pixel,
i.e. we assume a gain and offset calibration has been done and applied to the raw camera frames.

The noise correlation in Fourier space is:
N N

($18n") = > > {51 2T = (G, = G) + NPy 23)
j=1k=1
It appears that the noise correlation function is bandlimited because the image itself is
bandlimited. In particular we have a spectral noise variance:

(I8m1?) = o + No? (2.4)
where the subscript “0” for Fourier space quantities is a shorthand for the DC-component:
N
o= 0) = ) 1 (25)

k=1

and similarly for other FT quantities. It appears that the spectral noise variance of Eq. (2.4) is
the same for all spectral componenis i.e. the noise is white. In subsequent analyses th
spectral signal-to-noise ratiSYNR)?? plays a crucial role. We define it here for widefield
fluorescence microscopy as:

N 2 r 12
o) _ g2 26)
(Isml ) fO + NUZ
Apparently, theSSNR is proportional to the square of the OTF. It hdttla good approximation
(sinceN > 1) that:

SSNR =

N
(13m1%) = Iy + No? = No? + Z I (2.7)
k=1
i.e. the sum image directly gives the spectral noise variance. If the mean signal over all pixels
is much larger than the variance of the readout noise then the shot noise dominates and the

SSNR factorizes in an object dependent functlﬁmz/ﬁ, (linear in the detected brightness)
and an imaging system dependent transfer functign=Q g,, |%.

The current treatment differs from an approach introduced by SomekRebaded on the
concept of the so-called Stochastic Transfer Function (STF), which is defined for a continuous
range of spatial frequencies. The mean and variance of the STF provides the MTF and the
spectral noise variance. Here, we focus instead on a direct computation of the noise correlation
function using a discretized representation of object and image as opposed to a continuous one.

Theoretical analysis of propagation of noise through 2D-SIM reconstruction
For 2D-SIM, a set of images for the= 1,2, ---, M, rotations anch = 1,2,---, M, translations
are recorded, with pixel values:
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L™ = pi™ + si” (2.8)
N

"= guh™, 29

where thef; represent the ground truth object fluorescence and whergtrere the actual
noise patterns with correlation function:

(sk"'si"') = (Ui" + %) SykrOrrs O (2.10)
The reconstructed image is the sum of the expected image in the absenceeafamasenoise
pattern in the reconstruction 6e

e/ % = e, + b¢; (2.11)

The spectral content of the expected image is found by combining the reconstruction (1.36)
with the forward model (1.5):

A My Mt A~

s > AlDl A
™ T2 T — - 2.12
K1+Dlzzzz i GjkH; Wl"'lel ( )

r=1n=1 j=1k=
leading to an overall OTF:

~SIM _ AlDl

3" =5 (2.13)
It is noted that the imaging process characterized by this OTF suffers from edge ringing for low
regularizationw; if no apodization is applied. The spectral signal power of the reconstruction
is:
A Al'|D
S, =18% = 2N l|2| I’ (2.14)

W, + Dy

We now proceed with the computation of the noise correlation function of the reconstructed
image in the Fourier domain. We will follow the six steps of the reconstruction algorithm
defined in section 3. The first step is taking the FT which gives the noise correlation function
of the raw images in Fourier space:

<Arn ar'n’ * (Srrlannl Z(u 27'”(‘11 q}l) Tk

3@ -d;) Z Qe FrmTm f(G, = G + Bppg) + No28,;,| (2.15)
meM
The second step, taking linear combination for retrieving the spatial frequency bands, gives a

noise correlation function for the noise on the ord¢7§l:
(6 "]rm ]"}‘,m ) = (Srrtham—mlg\(Eij - Ei}")f(q)j - C_I)J" +krm — kr’m')

= Opr1Onn

+NG M8y Smmi B (2.16)
It is noted that the noise variance for each pixel inside each order is a constant:
(677™°y = Me@ofy + No?M, (2.17)

but it will appear that intra and inter-band noise correlations play a crucial role in the final
result. The third step, low-pass filtering with the (conjugate of the) microscope OTF results in
noise SZ"‘ with correlation function:

(5E§m5z;,’m’*> = 5rr,Mtam_m,g(ﬁj)*g(qj,)g(qj — qj,)f(qj — G+ Kpm — l?rm,)
Al = ]2
+No*M,|G(G;)|" 8rrOmmiSjjn (2.18)

The fourth step, shifting in Fourier space with the centre band spatial frequencies results in a
noise correlation function:

(5Zrm(q’j _ ]_érm)azwm’(c_ijl _ Errml)*> =
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5rrtham—m’§(q)j - ]_C)rm)*g\(c_l)jr - Erml)g(ﬁj - C_I)j’ - Erm + ]_()rmr)f(ﬁj - C_I)j’)

L o 2

+N?M¢|G(G; — krm)| SrriGmmiBij0 (2.19)
The fifth step, taking the weighted sum of shifted, low-pass filtered, spatial frequency bands
results in noise gwith noise correlation function:

(85,08, = M, ). Z ol By (8 = Krm) 8y = K

r=1 m,mIEM

X g(ﬁ] krm + krm )f(q] )
+N025jertz z la,,|? |g(q] rm)| (2.20)
r=1meM

Finally, the sixth step of Wiener filtering gives the noise correlation function in the
reconstruction as:
My
(6/\ 6;\ *) A A ~ A * A
e]- e]', Z Z AmAp' Amem!
( +D )(W]’ +D]’) r=1mmreM

X g\(C_I)] - rm) g(qj’ — ko )g(CI] - q] Erm + Erm')f(q)j - C_I)J")

|A |"Na?D,
7 (2.21)
|W] + D |
In particular, the spectral noise variance turns out to be:
A2/ A —~
— A" (V:fo + No?D;

|w; + Dy
with the function:
M,

v = Mtz z G B 9(d; = Frm) 9(@; = Frm )G (Rt — o) (2.23)
r=1mm’eM

We see that the shot noise component of the spectral noise variance only depends on the DC-
component of the object variable, i.e. it has the same spectral shape independent of object type.
It appears that neither the shot noise component nor the readout noise component gives rise to
a noise spectrum that is white, i.e. independent of spatial frequency. This stands in stark contrast
to the standard widefield case in which we do have a white noise spectrum. The noise spectrum
predicted by Equation (2.22) lies at the heart of the structured noise artefact of SIM. It is further
mentioned that neglecting the intra and inter-band noise correlations would lead to a noise
spectrum for shot noise that has the same functional form as the noise spectrum for readout
noise.

The spectral signal-to-noise ratio follows as:

A ~ 2] 212

'i_]: _ |ADJ| |f}| _ (224)

]Vj V]fO + NO'ZD]'

Interestingly, the filtering step with kernd}/(w; + D;) does not affect th6SNR at all. In
particular, theSSNR is thus independent of the regularization filteatthas been chosen, as

well as of any subsequent apodization filter. In this sense regularization and apodization have
no real physical significance, although they do impact the visual appearance of both the image
and the noise spectrum. The concept of spectral signal-to-noise ratio is intimately connected to
the resolution concept of Fourier Ring CorrelatiBR €)?%2>°" which quantifies the smallest
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length scale at which information is present in the image. The expectation valueF&Cthe
over different noise realizations and the average of#dR over rings in Fourier space are

approximately related byFRC) ~ (SSNR)ing/ (1 + (SSNR)iny)-

Extension to 3D-SIM and to SIM with array illumination patterns
The noise analysis can be repeated for 3D-SIM. The same result is found for the noise variance

per voxel in 3D-Fourier space, provided we redefine the funciipasd / to:
My

—~ L - 2
Dy =M ) D 1aml?[g™(d — Kom)) (2.25)

r=1meM
M,

B=MY D nly
r=1mm’'eM
g\(m)(c—i]_ - krm) g\(ml)(q’j - krm')g(m_m,)(krm’ - krm) (2.26)
The SSNRin 3D Fourier space has the same form as Equai@da)

Similarly, the noise analysis can be repeated for other periodic illumination patterns. The shot
noise contribution to the spectral noise variance defined by the furﬁ;tianquation (2.23)
is then modified to:
v =M, Z Q" G § (= ) §(Gj = e )Gy — k) (227)
mm’
The theoretical framework described here may be used to compare the noise behaviour of

different spatially regular illumination patterns. The extension to pseudo-random illumination
patterns seems considerably more complicated and is delegated to future study.

Signal and noisein real space
The spectral analysis of noise so far can be used to assess the expected noise level averaged

over all pixels in real space:
N a

N
1 1 Y fo
By == Y (el = (|88 = 70 + Ao (2.28)
k=1 j=1
where, using (2.11):
N _ A 42
1 A; .
0= _Z J — V: 2.29
A (2.29)
j=1t ;
A—lzN:- A -25 (2.30)
T NLi|w+Dy] 7 '
j=1t ;

The contribution to the average expected noise level originating from readout noise is simply a
constant, the contribution originating from shot noise turns out to be directly proportional to the
detected fluorescence signal, averaged over all pixels. From this it seems reasonable to assume
that the typical noise level in a neighbourhood around a pixel is proportional to the fluorescence
signal, averaged over that neighbourhood, with the same proportionality cdhsi&et use

this assumption to quantify the local noise level by:
N

1 "
Enk ::RFEZE:<|5¢f

j=1

%y G:e?™di Tk ~ Of, + Ag? 231
]

with:
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N
fi= ) fiGemam (232)
j=1

and whereG; is the Fourier transform of a smoothing kernel with a width of at least several
pixels. The smoothing operation over a region around each pixel makes it possible to compute
fi directly from the noisy SIM reconstructiop ¢ &ey:

N

~ N 5 5 O 2}
= i ¢ e2mid; T o Laef(;.ezmﬁj'?k ~ &+ 0e (2.33)
k ~SIM J gsm gs™ .
j=177 j=1 < °

where éf[M is the resulting effective OTF for the SIM reconstruction, and where we have used
that the noise contribution will approximately average out to zero over the pixel neighbourhood,
and that the smoothing kernéy- is sufficiently narrow in Fourier space that we may
approximate the division by the SIM OTF by a division by its peak value at zero spatial
frequency. This peak OTF value is equal to one if the SIM reconstruction is properly
normalized. The average level of the sum of signal and noise in the pixel neighbourhood can

likewise be evaluated by convolving with the smoothing kerpel G
N

1 T NP
Esing = FZ( & + 6¢;|) Gie?™4i Tk (2.31)
j=1
This leads to the local SNR:
E —F
SNR, = ZStNk TNk (2.32)
Ey i
and a local fraction of the reconstruction that can be attributed to noise:
E
Z, = |2k (2.33)
ES+N,k

This noise fraction provides a quantification for the local degree of noise enhancement and can
be used as a confidence measure for the absence of this artefact.

Model independent noise assessment with random binomial data splitting

In the limit in which shot noise dominates over readout noise, we can split the set of acquired
images into two noise independent halves. These can be fed into the image reconstruction
procedure separately, and in this way enable a model independent assessment of noise
propagation through the image reconstruction chain.

The proof of these statements is based on Fri¢le important steps are reproduced here.
Consider first a single Poisson random variableith rateu, e.g. a single pixel of one of the
raw images. The observed photon counis split in two partsh = n4 + nf according to
binomial statistics with success probability Starting with the original Poisson probability
distribution:

e Hu™
PPoisson(nlﬂ) = iy (2.34)
and the binomial distribution with success probabitity
A B[, A B (n” +n")! n4 nB
Ppinomiar(n”,n”|n” + n®,p) = AT P (1-p) (2.35)

the probability of observing partg' andn? given the original Poisson-rateand the binomial
success probability follows as:
P(nA;nBlﬂ' p) = Pbinomial (nArnBInA + nB; p)PPoisson(nA + nB Ip)
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'p"A(l _ p)nBe—uﬂnAmB e‘p”(py)"A e—(1—p)u((1 _ p)‘u)"B
- nAalnB! - nAl nB!
disson (nAlpﬂ)PPoisson(nB (1 —pu) (2.36)
This proves that the split variable$ andn® independently satisfy Poisson statistics with rates
pu and(1 — p)u. Takingp = 1/2 and applying this procedure per pixel and per ilhation
pattern we can split the dataset into two noise independent halves.

Applying an FT to the two final reconstructions of the two dataset halvasde, gives a
mean(é; + é,)/2 and a variance:

V= |, — (& + é2)/2|2 +1&, — (& + é2)/2|2 ==lé - é2|2 (2.37)
The spectral noise variance in the séim é;, + &, must then b/ = 2V = |é; — &,|>. The
signal power thus follows as$ |&; + é,|> — |é; — é,|?> and theSSNR as:

S & + 6,2 4Re{é,8,"
SSNR=:—|1 2| _ {616,7}

N| =

= 1l=— (2.38)

|é; — é;1? &, — &;1°
The statistical accuracy by which tB8NR is found per spatial frequency vector in this way
can be improved by repeating the random image splitting and averaging the result. This is,
however, rather inefficient from the point of view of the required computational effort. By
averaging over rings in Fourier space a reasonable approximation can be computed in a
reasonable amount of time, but at the expense of averaging over any anisotropic features that
might be present.

The random binomial data splitting procedure is also used for the anti-Fourier streaking
windowing pre-processing step described in the Methods section. Another possible extension
of random binomial data splitting could be the compensation for photo-bleaching induced
intensity variations over pattern angle and focus level. By taking the windmwersely
proportional to the overall intensity level per focal slice in a through focus scan or per time
point in a time lapse experiment the intensity value can be equalized across the dataset. A
drawback is that the final equalized intensity level corresponds to the lowest intensity, reducing
signal level for the recorded images with relatively higher intensities.
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3. Noisecontrolled SIM reconstructions

True-Wiener SIM reconstruction

One way to define an optimum reconstruction is to require that the reconstruction must be as
close as possible to the underlying object structure according to a suitably defined measure.
This idea underlies the concept of Wiener filtering. The error function that is minimized is:

N
E=)
=1

WhereA]- is the desired OTF of the system (the apodization function, assumed to be real), and
where the expectation value is over different noise realizations of the reconstaclitis
approach makes the actual Oél}Ffj as close as possible to the target Gi;l’,l%lnd can therefore

be interpreted as a method to optimized contrast in the image (subject to noise conditions). The

task of minimizing the error metri€ can be solved using the low-pass filtered sum iffesh
orders as Ansatz:

& — Aifi) (3.1)

M
éj = TJ Z Z amg\(fl)j - Erm)*jrm(ﬁj - Erm) (32)
r=1meM

with T‘] a filter kernel to be determined by the Wiener criterion (3.1). Using the results of section
2 the Wiener metric evaluates to:

N
E= Y (LI {IBI"I5 " + %o + No*D} - 2Re(TDYA A" + 4715]  (33)
j=1
Minimization results in:

A o~ X
]

A2

_ fil

T a 121212 ~ A 28
- B +0h+Ne2D,
This is completely equivalent to the LS image reconstruction, provided we choose a
regularization function:

(3.4)

N _V]fo+NO'2D\]_ D}
YTTBFE T SSNR
which appears to depend 6SNR in a relatively simple way. Using Equation (2.18gt
effective OTF of this true Wiener filtered SIM reconstruction is:
s SSNR;
g L - — .
J. T SSNR+1°/
which differs from the desired OTF dependingSSWR, pushing the OTF down to zero when

the SSNR drops substantially below one. This prevents ameplibn of noise when there is
insufficient signal.

(3.5)

(3.6)

The problem in applying true-Wiener filtering lies in the dependence on the spatial frequency
spectrum of the underlying object, which is generally unknown. This problem may be overcome
to a reasonable degree by applying the Wiener filtering step in a self-consistent manner, i.e. by
estimating thesSNR from the image data itself. The idea is to firskema SIM reconstruction

by adding the low-pass filtered shifted orders but prior to the Wiener filtering step, i.e. by
computingb; defined in Equation (1.34). The second step is to average (the signal power of)
this reconstruction over regions in Fourier space. This results in:

(IB7ec]’y = (|B;|") + (2Re{B; "85, + (|65;[)
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~|B|*If|") + () + No*(D)) 3.7)
which is the sum of a signal power term and a noise power term (variance), as the signal-noise
cross term approximately averages out to zero. The averaging regions in Fourier space should
be large enough for averaging out this cross-term, but small enough to capture essential
variations of the imaging system and/or the underlying object with spatial frequency. The most
straightforward choice is to average over rings in Fourier space, but more sophisticated choices
can be envisioned as well. The DC object fluorescence can be estimated from the cumulative

signal:
r Mt

fo = Z Z z = z b/ (3.8)

r=1n=1j=
The third step is to use Equation (3.7) for an estlmate foS‘StN@ according to:

~ 2] 212 ~ 2 A a ~
sonp = ADLIAE 4B/ — Wpfo = No™(D))
! l7]']80‘|‘NUZ’D\]' (‘7j>fo+N02(Dj)
This approximation to th€SNR can subsequently be applied in the final Wiengeriihg step
using the regularization function defined in Equation (3.5).

(3.9)

Flat-noise SIM reconstruction

The structured noise artefact of current SIM reconstructions is rooted in the non-flat noise
spectrum found from the current theoretical analysis. Having a noise spectrum that is white, i.e.
a noise variance independent of spatial frequencyould therefore solve this artefact. This

can be achieved with the right tailoring of the regularization filter kernel, in particular by
choosing it to have a band-pass character. In addition, the ad-hoc apodization can be eliminated
from the reconstruction process altogether. These choices for the regularization and apodization
imply that adjustable parameters with unclear physical significance are eliminated from the
reconstruction process, which is an advancement in itself. Instead, all parameters are fully
determined by the Fourier space functi@;sandl?,-, which in turn are expressed in terms of

the physical properties of the microscope (the @fFand of the illumination pattern (the

Fourier componentd,, and the centre band spatial frequengi,e,s) alone.

A flat noise spectrum cannot be created for an arbitrary object when both shot noise and readout
noise are equally important, as the noise variance for both noise sources depend on spatial
frequency in a different way. For that reason, we will treat the shot noise dominated regime and
the readout noise dominated regime separately. Shot noise typically dominates when the

average cumulative signal per pixel is much larger than the readout noise variance:
M, Mg

NZZZI”‘~—>>J (3.10)

r=1n=1j=
i.e. when the object is sufficiently dense and/or bright (Rilshof when a camera is used with
almost negligible readout noise @.g. for current EMCCD or sCMOS cameras.

For the shot noise dominated regime a regularization filter kernel:

w; = \/; - D, (3.11)

is required, leading to a flat spectral noise variance:
N; = fo (3.12)
and an overall OTF:
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g™ =—= (3.13)

This regularization filter has band-pass character because in the limit of zero spatial frequency
we get 5,- ~1/M,.M, and 17] ~ 1/M,*M,* leading to K; ~ 0, and for non-zero spatial

frequencies it appears tH?;t> |5j|2. Zero regularization for low spatial frequencies matches
the intuition that for large length scales SIM does not improve widefield imaging and that
simply adding all images acquired for the different rotations and translations of the line
illumination pattern provides the best reconstruction. For the spatial frequencies close to the
extended cut-off of SIM there is essentially no signal, implying that zero regularization and
adding all acquired images is also appropriate in that regime. Non-zero regularization is thus
only necessary for the intermediate spatial frequencies, in particular for the regions where the
central spatial frequency band overlaps with the side bands. There little true signal is gained
because of the relatively low value of the microscope OTF but the noise level is increased due
to contributions from the overlapping bands, implying that a relatively high regularization is
needed.

It is mentioned that the noise pattern follows the Poissonian statistics of independent shot noise
per pixel to a good approximation but not exactly, even though the noise variance is now
constant across the spatial frequency spectrum. The reason is that the noise correlation terms
predicted by Equation (2.21) do not exactly match the widefield shot noise correlation function
Equation (2.3). In practice, this residual difference with shot noise behaviour does not seem to
be an important effect.

The spectral signal-to-noise-ratio can now be written as:

SSNR; = |g§™ 2% (3.14)
0
and factorizes in the product of an imaging system depersi$é&fk transfer functior()j =
13™|"and a factoff;|*/f, that depends on the object and the detected beghitThis is
similar to the widefield case.

Interestingly, a similar approach can be followed in case the readout noise dominates over the
shot noise, although this is not likely to be the case in practice. The regularization filter kernel
should then be chosen as:

=~

The spectral noise variance is now again flat:
N; = No? (3.16)
The effective OTF is given by:
gi™ = |D; (3.17)
and the spectral signal-to-noise-ratio by:
A2
_ | ASIM|? |fJ|
SSNR; = |gi™| NoZ (3.18)

which factorizes in an object and camera noise dependent f@(itzq’rNaz and an imaging

system dependeSSNR transfer functiorg; = |§$"™|”. This readout noise dominated regime
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corresponds formally to a weighted averaging approach described by Wibleesed on the
assumption of Gaussian white noise on the disentangled bands, i.e. on the neglect of intra and
interband noise correlations that play a crucial role in the shot noise dominated regime. Shroff
et al. a6I330 incorrectly assume uncorrelated noise with constant variance in an analysis of SNR
in SIM®°,

Contrast optimization with notch filtering

Additional notch filtering of the retrieved bands has been introduced to suppress the honeycomb
artefact and/or background arising from out-of-focus ld§éfs This approach can be
incorporated into the LS image reconstruction method provided the error function is changed

to:
1 M M N N
E= Ezzz Qerer <1p nglh fl) <Ikr ng'lhlfl>
p=1s=1k=1ki=1
1
ts Z Wiafih (3.19)
k,l=1
where the set of matricesias elements
t = 1SS gperntotecr)ntiya (.20
~ N j=1meM
The filter kernelsQ" are usually taken to be high-pass notch-type filters of the form:
00 = 1 — ap e~(0x*+ay*)/200y*~a5% /20, (3.21)
@]1 =1-q o~ (ax*+ay?)/28q°~ (@ +kz)?/40q1 2 ~(az~k;)? /40q,* (3.22)
0% = 1 — a e~(0x*+ay")/200y*~a5%/2a,? (3.23)

whereq; = (qx, qy) qz) is the spatial frequency filtes,, oy, anda, are the notch depths, and
whereAq, andAgq, are the lateral and axial width of the filters. For 2D-SIM the axial parts of
the filters are left out. The rationale behind these filters is that background light originating
from out-of-focus layers is blurred due to the defocus and has no high spatial frequency content.
Restricting the data mismatch term in Equation (3.19) to the high-frequent content only
generates a reconstruction with suppressed cross-talk in the low-frequency regime from the out-
of-focus layers.

The effect of the additional filter kernels in the reconstruction is that the low-pass filtering and
weighting operation per order is changed f@gG(G; — kym) 10 @nQ™(d; — Ky )3 (d; —
I_c)rm)*. This changes the FT of the matfixdefined in Equation (1.29) to:

My

—~ ~ A~ 5 - PR — 2
Dy =M ) D 18nlPQ™ (@) — Krm)|3(3; — Frm)| (3.24)
r=1meM ) . )
and step 5 of the reconstruction defined in Equation (1.34) to:
My
Bl = Z Z am (CIZ rm)

r=1meM
Z z amQ (Ql rm)g(QI rm) Z —2mkrm uMITn(Ql rm) (3 25)
r=1meM
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The shot noise contribution to the spectral noise variance defined by the flf’g\dxlicﬁquation
(2.23) is modified to:

My
f/} = M, Z Z amdm’*dm—m’ém(c_ij - Erm)ém’(ﬁj - Erml)
r=1mm’eM
X ﬁ(ﬁ, - krm) ﬁ(ﬁ, - krm’)g(krm’ - krm) (3-26)
The overall formalism remains unchanged in all other aspects.

The additional degrees of freedom of the notch filters (notch depth peroggdand notch

width Ag,,) can be used to optimize the contrast of the flat-noise SIM reconstruction. This can
be achieved by minimizing the difference between the flat-noise (ﬁ“l”?@ Equation (3.13),

which now depends on the notch filter parameters via Equations (3.25) and (3.26), and a desired
target OTFAj, a function such as the apodization function of state-of-the-art or true-Wiener
SIM, e.g. by minimizing:

N
1 R A N2
K= EZ(ozgf’“ - 4) (3.27)
j=1

where normalisation of the flat-noise OTF at zero spatial frequency is taken into account by the

constantr = 1/g3"™. This minimization must be done numerically, asftienoise OTFg;"™

depends on the notch filter parameters in a non-linear way. For the sake of simplicity, we use
Gaussian filters as in Equations (3.21), (3.22), and (3.23). Other choices, tailored towards
achieving a flat-noise OTF that approximates the desired OTF even better could possibly be
devised.

Additional references

60.M. G. Somekh, K. Hsu, and M. C. Pitter, “Stochastic transfer function for structured
illumination microscopy,” J. Opt. Soc. Am. A 26, 1630-1637 (2009).

61.S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence
imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22, 20856-20870
(2014).

62.K. Wicker, “Increasing resolution and light efficiency in fluorescence microscopy”, PhD
thesis, King's College London, 2010.

63.S. A. Shroff, J. R. Fienup, and D. R. Williams, “OTF Compensation in Structured
lllumination Superresolution Images,” Proc. SPIE 7094, 709402 (2008).

61


https://doi.org/10.1101/2021.03.11.434940
http://creativecommons.org/licenses/by-nd/4.0/

