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Abstract 
 
Mutations in the SARS-CoV-2 Membrane (M) gene are relatively uncommon. The M gene 
encodes the most abundant viral structural protein, and is implicated in multiple viral functions, 
including initial attachment to the host cell via heparin sulfate proteoglycan, viral protein 
assembly in conjunction with the N and E genes, and enhanced glucose transport. We have 
identified a recent spike in the frequency of reported SARS-CoV-2 genomes carrying M gene 
mutations. This is associated with emergence of a new sub-B.1 clade defined by the previously 
unreported M:I82T mutation within TM3, the third of three membrane spanning helices 
implicated in glucose transport. The frequency of this mutation increased in the USA from 
0.014% in October 2020 to 1.62% in February 2021, a 116-fold change. While constituting 0.7% 
of the isolates overall, M:I82T sub-B.1 lineage accounted for 14.4% of B.1 lineage isolates in 
February 2021, similar to the rapid initial increase previously seen with the B.1.1.7 and B.1.429 
lineages, which quickly became the dominant lineages in Europe and California over a period of 
several months.  A similar increase in incidence was also noted in another related mutation, 
V70L, also within the TM2 transmembrane helix. The rapid emergence of this sub-B.1 clade 
with recurrent I82T mutation suggests that this M gene mutation is more biologically fit, perhaps 
related to glucose uptake during viral replication, and should be included in ongoing genomic 
surveillance efforts and warrants further evaluation for potentially increased pathogenic and 
therapeutic implications.  
 
Introduction 
 
Genomic surveillance is critical for identification of SARS-CoV-2 variants of concern (VOCs) 
(1). Children’s Hospital Los Angeles (CHLA) has routinely sequenced all viral isolates from 
over 2,900 pediatric and adult COVID-19 cases since March 2020. Using the CHLA COVID-19 
Analysis Research Database (CARD), we have routinely performed local genomic epidemiology 
and genomic surveillance of viral sequences submitted to GISAID and NCBI GenBank (2, 3, 4). 
This allowed us to identify SARS-CoV-2 haplotypes and their localized transmission patterns 
that arose early and became dominant (5), specifically the D614G S spike protein mutation that 
was unidentified prior to April but which was identified in 99.3% of viral isolates from our 
pediatric COVID-19 patients by June of 2020 (6). We also identified the potential association of 
phylogenetic clade 20C with more severe pediatric disease (6). Here we report a new VOC with 
a signature mutation in the M protein gene, an otherwise overlooked but potentially significant 
site of increasing numbers of mutations, reminiscent of accumulating mutations in the Spike 
gene of previously reported VOCs, such as B.1.1.7 and B.1.351.  
  
Methods 
 
Ethics approval. Study design conducted at Children’s Hospital Los Angeles was approved by 
the Institutional Review Board under IRB CHLA-16-00429.  
 
SARS-CoV-2 whole genome sequencing. Whole genome sequencing of the 2900 samples 
previously confirmed at Children’s Hospital Los Angeles to be positive for SARS-CoV-2 by 
reverse transcription-polymerase chain reaction (RT-PCR) between March, 2020 to February 
2021 was performed as previously described (6).   
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SARS-CoV-2 sequence and variant analysis. Full-length SARS-CoV-2 sequences have been 
periodically downloaded from GISAID and NCBI GenBank. They are combined with sequences 
from CHLA patients, annotated, and curated using bioinformatics tools previously described (5). 
 
Phylogenetic analysis.  Phylogenetic analysis was conducted using the NextStrain phylogenetic 
pipeline (version 3.0.1) (https://nextstrain.org/). Mafft (v7.4) was used in multiple sequence 
alignment (7), IQ-Tree (multicore version 2.1.1 COVID-edition) and TreeTime version 0.7.6 
were used to infer and time-resolve evolutionary trees, and reconstruct ancestral sequences and 
mutations (8, 9). 
 
Protein structure prediction. M protein structural predictions were carried out using the 
Missense3D service hosted online by the Imperial College London 
(http://www.sbg.bio.ic.ac.uk/~missense3d/) (10).  
 
Results 
 
We evaluated 143,609 USA SARS-CoV-2 viral genomes, including 2,900 from our own 
patients, and 622,033 global viral genomes, reported to GISAID and NCBI GenBank through 
late-February 2021. By measuring the ratios of the genomes carrying at least one missense 
mutation and genomes carrying at least one synonymous mutation in comparison to the reference 
genome (NC_045512) we identified distinctively different mutation profiles over time across 
SARS-CoV-2 genes (Figure 1). To evaluate these profiles, we performed exhaustive 
permutations of all possible changes at each base pair position of the SARS-CoV-2 gene to 
estimate missense mutations that could occur by chance. Using this approach, we estimated 
missense mutations should occur at least 2.7 times more frequently than synonymous mutations 
in the Envelope (E) gene, 3.1 times more frequently in the M gene, and as much as 3.8 times in 
ORF6 gene.  
 
However, only the M gene has a ratio of missense to synonymous mutation carrying genomes 
consistently below 1.0 since the beginning of the pandemic. Further, this ratio has generally 
decreased over time. Among viral genomes from the USA as of late-February 2021, 6616 
isolates (4.6%) carried missense and 22908 (16.0%) carried synonymous mutations in the M 
gene, for a ratio of 0.29.  Globally, the ratio is even lower for the same period: there were 29,431 
(4.73%) missense, and 197,205 (31.7%) synonymous mutations in the M gene, for a ratio of 
0.149. This suggests that the M gene is highly conserved and potentially under strong purifying 
selection. It is thus of great potential interest that the incidence of some missense M gene 
mutations has recently increased over 100 fold in the past four months and continues to increase. 
The reason for this remains unclear but may suggest an underlying biologic advantage yet to be 
identified. 
 
Other SARS-CoV-2 genes, notably the S (spike) gene and the large ORF1ab gene, appear to be 
tolerant of missense mutations, with multiple mutations in virtually every isolate. Indeed, some 
Spike missense mutations, like D614G and E484K, are advantageous, leading to rapid spread 
and increased frequency in the overall population and the emergence of a number of VOCs that 
uniformly include mutations like the D614G, which is now found in nearly every isolate 
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worldwide but was unreported a year ago (11, 12). A different pattern is evident in ORF1ab 
where the relatively large size of this gene coupled with mutational tolerance has led to 
essentially all isolate showing one or more mutations in ORF1ab, producing a ratio close to 1.  
 
For each M gene missense mutation, we calculated the percentage of mutation-carrying viral 
genomes at country and in USA state levels, and then compared the frequency increase vs 
previous months, to determine the timing and fold increase. The M gene is relatively silent, with 
only 4 missense mutations that together account for 0.4% or more of the global viral genomes in 
the month of February 2021 (M:A2S at 1.01%, M:V70L at 1.004%, M:I82T at 0.68%, and 
M:F28L at 0.41%). However, the percentage of viral genomes carrying missense M mutations 
has increased over time, and the accumulation of some mutations in the M protein appear to have 
surged recently both in the USA and globally. In the USA, 2.21%, 3.66% and 5.96% of reported 
viral genomes in April, August and December 2020 had missense M mutations. There has been a 
sharp increase in these missense mutations over the last three months, rising to 6.6% in the USA 
by February 2021 (Figure 1).  
 
We identified six mutations which showed a significant increase in frequency, reaching 0.4% 
during the recent months and which could potentially account for this acceleration of M 
mutations (Figure 2). The M:I48V mutation is highly specific to the USA at 1.18% in January 
2021 (Table 1, Table S1), 87 times that observed in samples from outside the USA (0.014%). 
Most (78.3%) of the mutation-carrying isolates belong to the B.1.375 lineage (Table S3). This 
mutation also shows considerable geographic variability, with the greatest frequency in isolates 
from the northeast and along the East coast: Rhode Island - 68.8%; Connecticut - 24.0%; New 
Hampshire - 17.8%; Florida - 15.9%; Massachusetts - 15.7%; Tennessee - 11.8%; Arkansas - 
11.1% as of December 2020. Over the last three months, 129 of the 293 viral sequences from 
Rhode Island had the same M:I48V missense mutation, an approximately 9.5 fold higher 
frequency than in other USA locations. After peaking in December, the M:I48V missense 
mutation appear to be diminishing with a current 0.13% frequency in the USA (Table 1, Table 
S1, Figure 2).   
 
In contrast, the M:I82T mutation increased in frequency 116 fold from 0.014% in October 2020 
to 1.62% in February 2021 in the USA and continues to grow. While it predominately circulated 
in New York and New Jersey, over the past 2 months M:I82T has surged outside the USA 
including Aruba (5.2%) and Nigeria (33.1%) (Table 1, Table S1). This mutation presents mainly 
within the B.1 (44.0%) and B.1.525 (38.1%) lineages. Currently, 99.7% of the B.1.525 lineage 
isolates carry the M:I82T mutation. While this mutation is scattered across multiple phylogenetic 
clades, most cases cluster in two recent clades (Figure 3, Figure 4), suggesting a likely selective 
advantage in certain haplotype backgrounds.  
 
The largest M:I82T carrying clade is part of a young M:I82T sub-B.1 lineage that has surged 
over the past 3 months to account for 14.4% of B.1 lineage isolates in February, and now 
constitutes 0.7% of all B.1 lineages. There were 10 other missense mutations present in at least 
90% of the isolates in this clade and 8 of them were enriched by 73 to 146 fold compared to the 
general B.1 lineage including the 3 signature mutations in the spike protein (S:S494P, the 
S:P681H and S:T716I) found in the B.1.1.7 lineage (Table 2). Thus, the M:I82T clade is 
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significantly phylogenetically separated from other B.1 lineage clades, and may deserve 
consideration for a separate lineage designation (Figure 3 & 4). 
 
This new sub-B.1 clade warrants close surveillance given the similarity to the initial patterns of 
B.1.1.7 and B.1.429, which quickly became the dominating lineages in Europe and California, 
respectively. The second largest M:I82T carrying clade arose only recently in December 2020 
and is mainly circulating in Europe and Africa, where it was co-segregating with the S:E484K 
Spike protein mutation, forming lineage B.1.525 (Table S2, https://cov-
lineages.org/global_report_B.1.525.html). This clade is smaller than the M:I82T clade in the 
USA, as described above, which lacks the S:E484K mutation. This suggests that M:I82T may 
confer a biologically selective advantage independent of the S:E484K, a known predictor of 
more severe viral infection. Another mutation carried by most isolates in this clade (98%) that is 
worth noting is N:T205I, because it is present in multiple VOCs including CAL.20C (B.1.429 
and B.1.427) and B.1.351, and that M and N proteins are both important for viral assembly. The 
novel combination of M:I82T, the three signature Spike mutations (S:S494P, the S:P681H and 
S:T716I) from B.1.1.7, and the N:T205I mutation is therefore of particular concern.  
  
Other M gene mutations have also increased in frequency. In the UK, M:V70L first appeared in 
September 2020 and the frequency increased 382 fold from 0.004% in October to 1.5% in 
February 2021, when it was also present in Switzerland at 3.6% and in Belgium at 3.0%. The 
M:V70L-carrying virus isolates are part of the minor lineages under the B.1.1.7 lineage. Another 
mutation in the same codon, M:V70F, has persisted at low frequencies across multiple countries 
since March 2020. M:F28L first appeared in November 2020 and is highest in Austria (02/2021, 
39.3%), Ghana (01/2021, 6.4%) and Japan (01/2021, 2.3%) but also observed in Spain (2.1%), 
Belgium (0.4%), and the Netherlands (0.8%), by February 2021. Within the USA (0.6%), this 
mutation is present at high levels in isolates from Virginia (13.1%) and Maryland (3.8%). It 
presents mainly within the R.1 (34.2%) and B.1.1.7 (48.9%) lineages, with 98% of the R.1 
lineage isolates carry the M:F28L as a signature mutation. M:A2S has existed widely across the 
world since last March, peaked to 0.9% in July globally, and has re-emerged globally at 1.0%, 
with levels of up to 3.22% in Spain and 1.76% in UK. Between November to February, about 
87% (1537/1760) of the M:A2S -carrying virus isolates belong to the B.1.1.7 lineage. During the 
same period of October 2021 to February 2021, M:M84I increased from 0.1% to 0.23% in the 
USA. Further location and date details of these variants can be found in Table S1.  
 
Focusing on the above-mentioned M mutations, we collected viral genomes from our own cases, 
GISAID, and GenBank that carried any of these mutations, as well as viral genomes that carried 
other M mutations by a haplotype similarity search which allowed a difference of up to five 
mutations across the genome than were the likely ancestral or descendant isolates in evolutionary 
context. This yielded 5,557 sequences that were analyzed for their phylogenetic relationships. 
The USA and UK sourced isolates were dominant in most clades, whereas limited mixtures exist 
in some cases (Figure 5). Cross checking the country of origin and Pangolin lineage assignment, 
we observed that many of the isolates belong to the B.1.1.7 lineage, while most I48V mutation 
isolates belonged to lineage B.1.375. The timing of recent increases in both the number and ratio 
of the M-gene mutation carrying isolates in Europe, especially UK, were most likely closely 
related to the B.1.1.7 (Figure 6). The B.1.1.7 lineage also carries a synonymous M mutation, and 
hence significantly reduced the ratio of missense to synonymous mutations in worldwide 
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isolates. The M:V70L and M:A2S mutations both stayed within a narrow range of 1.1% to 1.5% 
within the B.1.1.7 lineage between December 2020 and February 2021, suggesting that a 
hijacking effect may account for these observed changes.  However, the surge in other M 
mutations, and the emergence of a potentially new sub-B1 M:I82T carrying clade exceed what 
would be expected by a hijacking effect alone.  
 
Patient age information was collected for cases reported beginning in October and was divided 
into a group of cases carrying one of four M gene mutations (M:A2S,  M:F28L, M:I82T, and 
M:V70L),  which are the four more interesting mutations from above analysis.  Frequencies of 
the other two mutations, M:I48V and M:M4T, were not increasing lately and hence excluded 
from this analysis. Each of the four M mutation groups had between 188-424 cases, and were 
compared against all the remaining cases without one of these M mutations, a total of 86,252 
cases. One-way ANOVA analysis revealed significant difference in the patient age distribution 
among groups (p = 0.00092). Pairwise T-test, with Bonferroni multiple testing correction, 
indicates statistically significant patient age difference between each of the four M mutation 
carrying groups with the remaining group (adjusted p-values between 2.0e-4 to 9.5e-10), but not 
between each other (Figure 7).  Mean patient ages of the four M-gene mutation groups were 4.6 
- 6.3 years younger than the mean patient age in the “other” group (37.138.8 years compared to 
43.4 years). We speculate that these M gene mutations may be associated with increased 
transmissibility among the younger population.  
 
Discussion  
 
The M gene encodes the most abundant of three SARS-CoV-2 structural proteins, in this case a 
222 amino acid protein that is highly conserved between SARS-CoV and SARS-CoV-2 (identity: 
90.5%; similarity: 98.2%) (13). Comparatively little attention has been paid to the M protein in 
the COVID-19 pandemic literature but it is known to be important for viral assembly, and in 
addition it markedly inhibits type I and III interferon production and thus dramatically inhibits 
the innate immune response (14, 15). That in turn blunts the T-cell mediated immune response 
which is known to be important in overall immunity to SARS. In SARS due to SARS-CoV, the 
M protein is the dominant immunogen for T-cell response (16). In COVID-19 due to SARS-
CoV-2, T-cell response has been identified as a critical determinant of outcome, with poor T-cell 
response to M protein epitopes found in patients with fatal outcome (17, 18). T-cell responses are 
a critical part of the successful immune response against emerging VOCs that may enable 
immune evasion (19, 20). Therapeutic strategies that target the M protein and thus modulate T-
cell responses have recently been proposed as promising alternatives to current ones (21).  
 
In silico analysis revealed that the M protein structure was similar to that of the glucose 
transporter SemiSWEET with three transmembrane helical domains, based upon which the M 
protein is thought to be involved in enhanced glucose transport in host cells with replicating 
virus, and thus may aid in rapid viral proliferation, replication, and immune evasion (22). The 
M:I82T mutation falls in the third transmembrane helical domain (22). These transmembrane 
domains vary in number in the SWEET - 7, SemiSWEET – 3, and GLUT1 - 14 glucose transport 
family and are thought to bind and transport glucose, yet  another function of the M protein that 
also initiates viral binding to the cell membrane heparin sulfate proteoglycan (via the N terminal 
exposed fragment), viral protein assembly via the internal carboxyterminal fragment, and 
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immune evasion by inhibition of nuclear transport of NFκB signal transducers involved in 
interferon induction. Structural prediction however, did not suggest significant impact of 
structural changes to be caused by the M:I82T mutation which is a hydrophobic to slightly polar 
amino acid change (Figure 8).  
 
We have identified that the M gene, though otherwise highly conserved throughout most of the 
pandemic, is now undergoing rapidly increasing mutation with a recent surge in isolates carrying 
previously unreported M gene mutations in the USA and globally.  In particular, we identified 
the emergence and rapid growth over the last three months of a novel M:I82T clade in the 
eastern USA and a V70L mutation in the UK.   Both mutations involve the putative glucose 
transport transmembrane helices of the M protein. Isolates carrying the M:182T in the USA have 
increased from 0.014% in October 2020 to 1.62% in February 2021, a 116-fold change, and now 
represents 3.33% of isolates reported (February 16th thru March 4th 2021). We also noted a 
reduced average age for patients carrying these M missense mutations. Given its rapid 
emergence, and the role of the M protein in multiple critical viral functions including host cell 
binding, innate immune and T cell responses, immune evasion, and potential alterations in 
glucose transport, this novel M:I82T clade warrants inclusion in ongoing SARS-CoV-2 genomic 
surveillance and further evaluation for potential pathogenicity.  
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Figure legend 
 
 
Figure 1. Percent of missense or synonymous mutations in viral isolates from USA over 14 
months. 
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Figure 2. Percent of specific M mutations in viral isolates from USA and UK over 14 
months.  
 
 

 
 
 
 
 
  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.11.434758doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434758
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3.  Phylogenetic tree of viral genomes carrying missense M mutations (left), colored 
by the genotypes at M:82 (I: green; T: yellow), overlaid on the global SARS-CoV-2 
phylogenetic tree (right and grey).  
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Figure 4.  Detailed view of phylogenetic tree of viral genomes carrying missense M 
mutations colored by the genotypes at M:82 (I: green; T: yellow), demonstrating proposed 
new clade B.1 M:I82T (middle), falling between B.1.375 clade that carries M:I48V (top) 
and B.1.525 clade that also carries M:I82T (bottom).  
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Figure 5.  Phylogenetic analysis of viral genomes carrying missense M mutations, colored 
by country of origin. The USA viral genomes are represented by the larger dots to differentiate 
from the UK genomes.  
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Figure 6.  Phylogenetic analysis of viral genomes carrying missense M mutations, colored 
by lineage background.  
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Figure 7.  The ANOVA and t-test statistics between the five mutation groups. The plot was 
generated with R ggpubr package. Within each violin are the boxplot with error bars, and the 
horizontal lines at the quantiles 0.25, 0.50 and 0.75 of the density estimates. The pairwise t-test 
adjusted p-values and significance are shown to the upper part.  
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Figure 8. Missense3D prediction of 3D structures of the wide type (ILE82, green) and 
mutant (THR82, red) M proteins. (Based on PDB: qhd43419; 
https://zhanglab.ccmb.med.umich.edu/COVID-19/) 
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Supplemental Table 1. Summary of the frequencies of M gene missense mutations in 
isolates over 14 months.  
 

Mutation Month # in USA % in USA % non-USA % world 

M:V70L 2021-02 5 0.047 1.255 1.004 

M:V70L 2021-01 137 0.373 0.745 0.642 

M:V70L 2020-12 41 0.237 0.302 0.288 

M:V70L 2020-11 2 0.02 0.064 0.057 

            
M:F28L 2021-02 67 0.631 0.355 0.413 

M:F28L 2021-01 72 0.196 0.186 0.189 

M:F28L 2020-12 27 0.156 0.115 0.124 

M:F28L 2020-11 1 0.01 0.004 0.005 

            
M:I82T 2021-02 172 1.62 0.435 0.683 

M:I82T 2021-01 150 0.408 0.223 0.275 

M:I82T 2020-12 40 0.231 0.043 0.082 

M:I82T 2020-10 1 0.014   0.002 

M:I82T 2020-08 1 0.016 0.004 0.007 

M:I82T 2020-07 1 0.012 0.006 0.008 

            
M:I48V 021-02 14 0.132 0.037 0.057 

M:I48V 2021-01 331 0.901 0.008 0.255 

M:I48V 2020-12 275 1.592 0.02 0.345 

M:I48V 2020-11 67 0.669 0.016 0.118 

M:I48V 2020-10 7 0.097 0.075 0.078 

M:I48V 2020-09 6 0.119 0.153 0.148 

M:I48V 2020-01 1 1.613   0.148 

            
M:M84T 2021-02 24 0.226 0.032 0.073 

M:M84T 2021-01 43 0.117 0.025 0.05 

M:M84T 2020-12 19 0.11 0.017 0.036 

M:M84T 2020-11 1 0.01 0.009 0.009 

M:M84T 2020-10 6 0.083   0.011 

M:M84T 2020-09 1 0.02 0.004 0.006 

M:M84T 2020-08 1 0.016 0.086 0.072 

            
A2S 2021-02 11 0.104 1.248 1.01 

A2S 2021-01 35 0.095 0.871 0.657 

A2S 2020-12 12 0.069 0.467 0.384 
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A2S 2020-11 5 0.05 0.093 0.087 

A2S 2020-10 5 0.07 0.055 0.057 

A2S 2020-09 5 0.1 0.049 0.057 

A2S 2020-08 7 0.115 0.289 0.253 

A2S 2020-07 24 0.289 1.174 0.888 

A2S 2020-06 52 0.467 0.349 0.401 

A2S 2020-05 18 0.223 0.007 0.082 

A2S 2020-04 19 0.158 0.039 0.069 

A2S 2020-03 3 0.023 0.008 0.012 
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Supplemental Table 2. Potential signature mutations in the B.1 sub-clade that 
carries the M:I82T mutation 

# Isolates in 
clade  Mutations Gene Aino Acid 

Change 
Annotation 

# Isolates w/ 
mutation 

% Isolates in 
clade w/ 
mutation 

348 T26767C M I82T missense 348 100
348 C28887T N T205I missense 341 97.99
348 T23042C S S494P missense 332 95.4
348 C23709T S T716I missense 316 90.8
348 C23604A S P681H missense 336 96.55
348 A23403G S D614G missense 347 99.71
348 G25563T ORF3a Q57H missense 332 95.4
348 A6851C orf1ab T2196P missense 174 50
348 C16375T orf1ab P5371S missense 328 94.25
348 C6936T orf1ab S2224F missense 215 61.78
348 C11514T orf1ab T3750I missense 327 93.97
348 C10029T orf1ab T3255I missense 328 94.25
348 C1059T orf1ab T265I missense 336 96.55
348 C14408T orf1ab P4715L missense 343 98.56
348 A1180G orf1ab P305P synonymous 317 91.09
348 T20748C orf1ab Y6828Y synonymous 329 94.54
348 A1180G orf1ab P305P synonymous 317 91.09
348 T20748C orf1ab Y6828Y synonymous 329 94.54
348 C6730T orf1ab N2155N synonymous 260 74.71
348 C3037T orf1ab F924F synonymous 345 99.14

348 C241T 
5UTR_orf1
ab 

. upstream_gene 343 98.56

348 C29719T 
ORF10_3U
TR 

. intergenic 318 91.38
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