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Abstract

To understand the diabetic wound healing microenvironment, we profiled 174,962 single
cells from foot, forearm, and PBMCs using single-cell RNA sequencing (scRNASeq)
approach. Our analysis shows enrichment of a unique population of fibroblasts
overexpressing MMP1, MMP3, MMP11, HIF1A, CHI3L1, and TNFAIP6 genes and M1
macrophage polarization in the DFU patients with healing wounds. Further, sScRNASeq
of spatially separated samples from same patient and spatial transcriptomics (ST)
revealed preferential localization of these healing associated fibroblasts toward deep
wound/ulcer bed as compared to wound edge or non-wounded skin. ST also validated
our findings of higher enrichment of M1 macrophages in healers and M2 macrophages in
non-healers. Our analysis provides deep insights into the wound healing
microenvironment, identifying cell types that could be critical in promoting DFU healing,
and may inform novel therapeutic approaches for DFU treatment.

Introduction

Diabetic foot ulceration (DFU) is a major problem in diabetic patients as more than 15%
of them are expected to develop DFUs within their lifetime. DFUs significantly impair
quality of life, lead to prolonged hospitalization, and result in more than 70,000 lower
extremity amputations per year in the USA alone [1]. Notably, more than half of the
patients undergoing amputation due to DFU are expected to die within 5 years, a mortality
rate which is higher than most cancers [2]. With the expected increase of Diabetes
Mellitus (DM), DFUs will represent an even bigger burden for health systems worldwide
and may prove to be one of the costliest diabetes complications [3].

Impaired wound healing leading to the development of chronic wounds in diabetic patients
manifests exclusively in the foot in the presence of neuropathy and/or vascular disease
[4, 5]. Various cell types, including endothelial cells, fibroblasts, keratinocytes, and
immune cells play an important role in the wound healing process, but little is understood
about their involvement in impaired wound healing in DFU. Dissecting cell differences
within the foot ulcers between DFU patients whose ulcers are healed and those who fail
to heal and go on to develop a chronic ulcer, the differences between DM patients and
non-DM healthy controls, and the differences between foot with DFU and intact forearm
skin in both DM and healthy subjects, along with differences in blood immune cells, can
considerably increase our understanding of DFU pathogenesis/healing.

Single-cell RNA-sequencing (scRNASeq) analysis provides deep insight into cell function
and disease pathophysiology by allowing the profiling of the transcriptome landscape of
individual cells in heterogeneous tissues. Currently, sScCRNASeq is widely used in the
complex biosystems of various cancers to map their microenvironment and discover
molecular mechanisms and therapeutic targets [6], and concerted efforts of the human
cell atlas initiative aim to fully profile all tissues of the human body [7]. Initial studies in our
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groups have reported that DM and DFU patients have increased inflammatory cells and
different fibroblast clusters with a distinctive injury response-associated gene expression
profile, which is believed to be the result of DM related chronic inflammation [8]. Spatial
transcriptomics (ST) is a more recent and novel method which enables the visualization
and quantitation of the transcriptome in individual tissue sections, retaining spatial
molecular information unlike scRNASeq [9].

In the present study, we primarily focused on differences between DFU patients who heal
their ulcers (Healers) and DFU patients who fail to heal them (Non-healers) within 12
weeks. We hypothesize that diabetic patients with impaired wound healing have aberrant
gene and protein expression profiles that leads to dysregulation of epithelial remodeling
and inflammation pathways. To this end, we investigated the molecular changes via
scRNASeq analysis of DFUs and forearm skin biopsies, and peripheral blood
mononuclear cells (PBMCs) from patients with healing and non-healing DFUs. As control
group we also performed scRNASeq analysis of the foot and forearm biopsies and
PBMCs from DM patients with no DFU, and healthy non-DM patients. We also studied
different sites of DFU (wound site, wound periphery, and healthy skin) to validate our
findings. We finally employed immunostaining and ST on DFU sections, as well as in vitro
experiments to confirm our most striking findings associated with DFU wound healing.

Methods

Subjects

Our study includes non-DM patients (n=10) who underwent foot surgery for various
reasons, such as hallux valgus correction, as the healthy controls and DM patients without
foot ulceration (n=6) who had similar foot surgery. Discarded skin specimens from the
dorsum of the foot were collected for analysis. We also enrolled DM patients with plantar
foot ulceration (DFU) (n=11), who underwent surgical resection of the ulcer, providing
sufficient wound and peri-wound tissue for analysis. Subjects with any conditions, other
than DM, or medications that could affect wound healing were excluded from the study.
Four non-DM subjects, two DM patients with no DFU, and five DM patients with DFU
(Healers; n=3, Non-healers; n=2) provided two 3-mm forearm skin biopsies and 20 ml of
blood, from which PBMCs were isolated, within one week of the foot surgery. DFU
patients were followed for 12 weeks post-surgery and were divided into two subgroups:
those who healed their ulcers and those who failed to heal them (healers; n=7, non-
healers; n=4). There were no major differences among the main characteristics of the
studied groups (Supplementary Table 1). All patients were enrolled and followed at the
Joslin-Beth Israel Deaconess Foot Center, Boston, MA, and the study was approved by
the Beth Israel Deaconess Medical Center IRB (Reference number 2018P000581). For
the scRNASeq analysis of spatially separated samples, multiple samples were collected
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from an ischial pressure sore at the Yale Plastic and Reconstructive Surgery — Wound
Center (New Haven, CT). Informed consent was obtained from all study participants.

PBMCs isolation
PBMCs were separated using Ficoll-Paque density gradient fractionation, as previously

described [10], and cryopreserved in freshly prepared freezing media (90% FBS and 10%
DMSO).

Single cell preparation from skin samples

Skin specimens were kept in sterile PBS on ice until processing, normally within 3h post-
surgery. The skin was cleaned by sequentially immersing in 10% Betadine, 70% ethanol,
and PBS for 1 min at a time. Then it was incubated in 5 mg/ml Dispase Il (Thermo Fisher
Scientific, 17105041) in HBSS (STEMCELL Technologies, 37150) overnight at 4°C. The
next day, the epidermis was peeled off using forceps, and the tissue was finely minced
with a No. 10 disposable scalpel. The skin pieces were then placed in an enzyme cocktail
consisting of 3.3 mg/ml Collagenase-P (Roche, 11249002001), 3.3 mg/ml Dispase Il and
1.5 mg/ml DNase | (STEMCELL Technologies, 07470) in 0.25% Trypsin-EDTA (Thermo
Fisher Scientific, 25200072) and incubated for 90 min at 37°C with constant shaking,
using glass pipettes for trituration every 20 min. Enzymes were then inactivated with the
addition of complete DMEM (+10%FBS, +1% Pen/Strep). The single-cell suspension was
passed through 70 um and 40 um cell strainers and centrifuged for 10 min, 500g at 4°C.
For RBC lysis, ACK buffer (Lonza, 10-548E) was added. The process resulted in highly
viable, typically >90%, single cell suspensions. For immediate single cell capture, the
cells were re-suspended in 0.04% Ultra-Pure BSA in PBS (Thermo Fisher Scientific) and
concentration was adjusted to 1000 cells/pl. If not processing for scRNASeq immediately,
the cells were cryopreserved in freshly prepared freezing media (90% FBS and 10%
DMSO).

Single cell RNA sequencing
The single cell preparations of the foot, forearm, and PBMC samples were used fresh or

after thawing of viably frozen samples with final resuspension in PBS with 1% BSA. A
droplet based ultra-high throughput scRNA-Seq system was utilized to capture single
cells along with uniquely barcoded primer beads together in tiny droplets, enabling large-
scale parallel single-cell gene expression studies. The gene expression (GEX) libraries
were prepared using the Chromium 3'V2/3 reagent kits (10x Genomics, 120237 and
1000075). Briefly, gel bead-in-emulsions (GEMs) were generated and barcoded by
loading single cell suspensions along with gel beads and reverse transcription (RT)
master mix in 10x Genomics Single cell chip (A chip kit,120236; B chip kit, 1000153) and
running on the chromium controller (10x Genomics, 110211). Following RT, the cDNA
was amplified and used to generate 3’ GEX libraries. The cDNA and GEX libraries were
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quantified using Qubit 3.0 fluorometer (Life technologies, 15387293), and quality was
assessed using HS DNA chips (Agilent technologies, 5067-4627) with 2100 Bioanalyzer
(Agilent technologies, G2939BA). Sequencing was performed using massively parallel
sequencing on the Novaseq S4 platform (lllumina). We produced ~40,000 - 50,000 reads
per cell capturing the expression of ~1,000 - 2,000 transcripts per cell.

Data processing and analysis
Raw scRNASeq data was demultiplexed, aligned to the reference human genome

(Hg38), and processed for single cell gene counting using the Cell Ranger Software from
10X Genomics Inc. The single cell count data was normalized using the SCTransform
algorithm in Seurat v3.0 Bioconductor package [11] that uses regularized negative
binomial models for normalizing sparse single cell data. The normalized expression
profiles of the samples were merged, and undergone quality control, pre-processing,
unsupervised and supervised analysis using various R and Bioconductor packages. The
quality filtering on scRNASeq data was performed by multiple filtering parameters
including: >50% of mitochondrial genes, cells expressing the lower number of genes (<
200 genes), and genes only uniquely expressed in < 3 cells.

The unsupervised analysis using principal component analysis (PCA) was performed on
variable genes to identify principal components which captured the most variance across
the samples. These principal components were used as an input for Uniform Manifold
Approximation and Projection (UMAP) analysis [12] to determine the overall relationship
among the cells. Cells with similar transcriptome profiles clustered together, and the
clusters were subsequently annotated to different cell types based on the expression of
specific well established cell marker transcripts. Comparative analysis of the single cell
landscape of healing and non-healing DFUs, along with healthy non-DM subjects and
non-DFU DM patients as controls, was performed using split UMAP plots, for determining
heterogeneity (based on clusters of cells) and abundance of cell types. The significance
testing change in abundance of cell types across clinical groups was performed either
using one-way ANOVA or Welch’s t-test (p-value <.05). Similar analysis was also
performed for the 3 different anatomical sites separately from where the samples were
collected, i.e., foot, forearm, and peripheral blood. To further characterize cell type
specific differences among clinical groups, we performed comparative analyses using
multiple tests corrected non-parametric Wilcoxon Rank Sum test (P Adjusted value=0.01,
Fold Change=1.2) on individual cell types like fibroblasts, keratinocytes, T-lymphocytes,
natural killer cells, monocytes, macrophages, mast cells, B-lymphocytes, plasma cells
and dendritic cells.

Pathways and Systems Biology analysis
To precisely characterize the cell types and understand the molecular mechanism of
wound healing, we performed pathways enrichment and systems biology analysis. The
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analysis was performed on transcripts that were significantly dysregulated in the specific
cells by comparing healed vs non-healed samples. Pathways and systems biology
analysis was performed using the Ingenuity Pathway Analysis software package (IPA 9.0)
(Qiagen). A detailed description of IPA is available at the Ingenuity Systems’ website
(http//www.ingenuity.com). Systems biology analysis was performed by analyzing the
upstream transcriptional regulators. The regulatory analysis helps in identifying
significantly activated or inhibited transcriptional regulators based on upregulation or
downregulation of its target genes. The significance of transcriptional regulators
activation/inhibition was determined using one-tailed Fisher ‘s exact test. The regulators
with a p-value <.01 and absolute z-score 2 were considered statistically significant.

Ligand and receptor-based Cell Interaction analysis
NicheNetR [13] was used to identify ligands produced by healer-specific fibroblasts which

could uniquely regulate other healer-specific fibroblasts. NicheNetR uses a prior model
of ligand-target interactions derived from a meta-analysis of multiple sources to identify
ligands which may explain expression differences in a given gene set. In this workflow,
cells are classified as either senders or receivers. The expression of sender cells is used
to identify possible ligands, while the receiver cells are used to generate a gene set. In
this case, Cluster 3 with overexpression of MMP1, MMP3, CHI3L1, CCL20, and TIMP1
from the healer-specific fibroblasts was treated as a sender cluster, while other healer-
specific clusters (Fig. 5; clusters 4, 6, 13) or non-specific clusters (Fig. 5; 0, 2, 5) were
treated as receivers. The gene sets used were the markers differentially expressed
between DFU-healers specific clusters and non-specific clusters within the receiver
subsets. The top markers are combined with NicheNetR’s ligand-target weights to
compute the Pearson correlation coefficient between ligands and expression changes in
the receiver subset. A high Pearson correlation coefficient between ligand and target
gene set indicate that expression of ligand might be responsible for expression
differences. For a ligand to be considered for interaction analysis, it must be expressed
in at least 5% of the sender cell population, and its corresponding receptor must be
expressed in 5% of the receiver cell population.

Immunofluorescence staining and imaging
5 pm thick frozen sections from healing and non-healing DFUs were fixed in 80% ice cold

acetone for 10 min, blocked with 5% donkey serum in 0.2% PBS-Tween for 30 min at
room temperature and incubated overnight in a humidified chamber at 4°C with primary
antibodies: mouse monoclonal anti-FAP (1:50, clone F11-24, sc-65398, Santa Cruz
Biotechnologies), rabbit polyclonal anti-CHI3L1 (1:100, ab77528, Abcam) and goat
polyclonal anti-TIMP1 (1:100, AF970, R&D Systems). Alexa Fluor donkey anti-rabbit 488-
, anti-mouse 594- and anti-goat 647-conjugated secondary antibodies (1:1,000, 1:500
and 1:1,000 respectively, all Abcam) were added the next day for 1 hour at room
temperature. DAPI was included for nuclear counterstaining. TrueVIEW
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Autofluorescence Quenching Kit (Vector Labs, SP-8400) treatment was employed to
enhance staining. Tissue sections were mounted in ProLong Gold Antifade (Thermo
Fisher Scientific, P36930) and visualized with a Zeiss LSM 880 (Carl Zeiss) inverted
confocal microscope and images processed with ZEN 2011 (Carl Zeiss) and ImageJ/F1JI
(NIH) software packages.

Spatial transcriptomics
The spatial transcriptome profiling was performed using NanoString’s GeoMx Digital

Spatial profiling platform on unfixed frozen 5 pym tissue sections. Samples were
processed as follows: 1) 10% neutral buffered formalin (NBF) fixation overnight, 2) target
retrieval (1X Tris EDTA, pH 9.0 for 20 min), 3) proteinase K digestion (1 pg/mL for 15
min), 4) post-fixation (10% NBF, Tris-glycine stop buffer), 5) in-situ hybridization overnight
with the GeoMx Cancer Transcriptome Atlas probe panel (1800-plex), 6) stringent washes
(50:50 formamide/4X SSC), and 7) fluorescent antibody/marker (aSMA, Clone: 1A4,
Abcam; CD45, Clone: 2B11+PD7/26, Novus; PanCK, Clone: AE1/AE3, Novus)
incubation, 1 h at room temperature. Sections were then loaded onto the GeoMx® Digital
Spatial Profiler (Nanostring, GMX-DSP). For profiling, circular regions of interest (ROIs),
approximately 500 ym in diameter, located within the ulcers or in neighbouring non-
ulcerated tissue were selected to include high concentrations of CD45+ immune cells in
close proximity to vessels (aSMA+ structures). After ROl selection, the GeoMx instrument
illuminated each ROI separately with UV light to cleave, aspirate, and deposit the
oligonucleotides from the hybridized ISH probes for downstream sequencing into a 96-
well plate. Library preparation (PCR, AMPure bead purification) was performed, followed
by paired-end sequencing with an Illumina NextSeq 550. Sequencing data (FASTQs) was
then processed with a custom GeoMx NGS pipeline (DCCs) to be analysed in part with
the GeoMx Data Analysis Suite. Raw reads were processed for high quality with
TrimGalore and FLASH [14]. Reads were then aligned to analyte barcode with Bowtie2
[15]. PCR duplicates were discarded using UMI-tools with the Hamming distance set at
three. Poorly performing probes were removed from analysis if they were outliers (Grubbs
test) or had low counts relative to other probes targeting the same gene. Raw probe count
data (up to 5 unique probes per gene) were condensed into gene level count data and
normalized with the quartile 3 gene count value per ROI individually. Complete-linkage
hierarchical clustering was performed on normalized counts and represented by heatmap
using the R function pheatmap. Unpaired t-test with Benjamini-Hochberg procedure for
adjusted p-values was used to calculate differentially expressed genes with a threshold
p<0.05. Significantly expressed genes were entered on Metascape (Version 3.5,
http://metascape.org) for enrichment analysis with Gene Ontology (GO) Biological
Processes (Version 2020-09-16). All genes in the human genome were used as the
enrichment background. P-values were calculated based on cumulative hypergeometric
distribution and Q-values were calculated using the Benjamini-Hochberg procedure for
multiple testing. A term was considered overrepresented when p<0.01, had a minimum
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count of 3 and an enrichment factor >1.5, which is the ratio between the observed counts
and the counts expected by chance.

Cell culture
Normal human dermal fibroblast cells (BJ CRL-2522) were obtained from ATCC and

maintained in Eagle's minimum essential medium (EMEM) (ATCC, 30-2003),
supplemented with 1% (v/v) penicillin/streptomycin (P/S) and 10% (v/v) fetal bovine
serum (FBS) (Sigma-Aldrich, F1435). For passaging, cells at ~80% confluence were
detached through a 5- to 10-min incubation with 0.05% Trypsin/EDTA and further
resuspended in complete EMEM. Cells were then centrifuged at 1,200 rpm for 5 min. The
cells were replated at a concentration of 6,000 cells/cm? and/or cryopreserved with 90%
FBS and 10% DMSO freezing media. Cells were maintained in 95% O3, 5% CO2 at 37°C
and routinely tested for mycoplasma contamination (PromoKine, PK-CA91-1096).

Transduction of fibroblasts with Precision LentiORF viral vectors
Cells were seeded in 6-well culture plate at 150,000 cells per well and pre-incubated with

5 pg/ml polybrene for 10 min at 37 °C. Afterwards, cells were incubated overnight with
culture medium containing 5 uyg/ml polybrene and the viral particles carrying the CHI3L1
gene (OHS5899-202624268, Horizon Discoveries) or the positive control viral particles
(OHS5833) at a multiplicity of infection of 10. After removal of the particles containing
medium, cells were incubated in culture medium with 10 pg/ml Blasticidin to positively
select transduced cells. Transduction efficiency was evaluated with assessment of GFP
expression, for both target and control constructs and RFP expression, for the control
construct, on a K2 Cellometer (Nexcelom Bioscience) and with live cell imaging on a Zeiss
LSM 880 microscope.

Real time qPCR
RNA was extracted from 100,000 cells using the miRNeasy Mini Kit (Qiagen, 217004).

RNA quantification was done by using the Qubit RNA BR Assay kit (Cat. No. Q10210)
and the Qubit 3 Fluorometer. cDNA was used at a concentration of 15 ng/ml from 1 pg of
RNA and reverse transcribed with the miScript Il RT kit (Cat No. 218161). RT qPCR
analysis was run for the samples using a miScript SYBR Green PCR Kit (Cat. No. 218073)
on a Stratagene Mx3005P (Agilent Technologies). Housekeeping gene GAPDH primers
were purchased from Qiagen (Cat. No. QT00079247) and CHI3L1 primers, were obtained
from MGH-HMS primer bank with the following sequences: FW: 5’-GAA GAC TCT CTT
GTC TGT CGG A-3 and RV: 5-AAT GGC GGT ACT GAC TTG ATG-3'. Data were
normalized to the expression of GAPDH and were analyzed using the 222CT method.

Western blotting
500,000 cells were centrifuged at 130xg for 5 min at 4 °C, washed with ice-cold PBS, and

centrifuged again at 2,400xg for 5 min at 4 °C. The pellet was then resuspended in ice-
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cold RIPA buffer (Prod# 89901) supplemented with 10 pl/ml protease and phosphatase
inhibitors (Prod# 78430 and 78420) and incubated for 15 min on ice with periodical
pipetting and vortexing. Samples were then centrifuged at 14,000xg for 15 min at 4 °C
and supernatants were collected. Protein concentration was measured using the Pierce™
BCA Protein Assay Kit (Cat. No. 23225). The protein samples were reduced by using a
6x Laemmli buffer, and boiled at 95°C for 5 min. 30 ug of protein per sample was loaded
into 12% SDS-PAGE gels and run at a constant 200 V for 40 min. The gel was washed
with Tris-buffered saline-Tween 20 (TBST), and incubated in blotting buffer for 10 min.
The transfer ran overnight in a cold room at a constant 90 mA. Once transfer was
complete, the blot was washed in TBST, and blocked with 5% BSA for 1 h at room
temperature. Blot was then incubated in 5% BSA with CHI3L1 (Abcam, ab77528 1:1,000)
or GAPDH (ab9485, 1:5000) antibodies for 1 h at room temperature. Afterwards, the blot
was washed in TBST, and incubated with a secondary antibody (ab205718 1:10,000) for
1 h at room temperature. Finally, a chemiluminescent substrate (Cat. #1705062) was
added and the blot was visualized using the ChemiDocTM Touch Imaging System (Bio-
Rad). For stripping, the blot was washed in TBST and incubated in stripping buffer (Prod#
46430) for 45 min at room temperature. After stripping, the blot was washed with TBST,
blocked with 5% BSA for 1 h at room temperature and reprobed as previously described.

Adhesion assay
Transduced BJ cells were plated at 50,000 cells per well in 12-well plates pre-coated with

10 pg/ml human fibronectin (Prod# 33016-015) and incubated for 1 h at 37 °C. Afterwards,
cells were washed with PBS, fixed with 4% paraformaldehyde for 15 min, and stained
with 0.05% crystal violet for 30 min at room temperature. Pictures of the adherent cells
were taken on a Primo Vert inverted microscope (Carl Zeiss) with an Axiocam 105
camera. Pictures of two random fields were taken per well, for at least three wells per
condition, and cells were counted using ImageJ/FIJI software. Three independent
experiments were performed.

Scratch assay
Transduced BJ cells were plated at 50,000 cells per well in 24-well plates. The cell

monolayer was scratched in a straight line using a 200 pl pipette tip. Debris were removed
by washing once with media, then cells were incubated in medium supplemented with 5%
FBS throughout the experiment. Images were taken immediately after the scratch, in 6 h,
and in 12 h for four wells per condition. Scratch areas were analyzed using ImageJ/FIJI.
Three independent experiments were performed.

Data availability
Spatial transcriptomics and scRNASeq data have been submitted to NCBI's Gene

Expression Omnibus (GEO) and are accessible through GEO accession numbers
GSE166120 and GSE165816. An interactive data resource and analytical tool developed
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based on this DFU single cell data is available online at
https://bhasinlab.bmi.emory.edu/Diacomp.

Results:

DFU healing is significantly associated with a subset of fibroblasts

To identify local and systemic factors associated with DFU healing, we examined the
cellular landscape of DFUs by scRNASeq analysis of skin specimens from DFU, foot,
forearm, and PBMC samples. We analyzed 54 samples from 17 diabetic patients (11 with
and 6 without DFU) and 10 healthy non-DM subjects. The study cohort, objectives, and
analysis strategy are outlined in Fig. 1a. In total, we sequenced 174,962 cells (94,325
from foot, 37,182 from the forearm, and 43,455 from PBMC samples) and created a genes
expression matrix for each cell, which we used to perform dimensionality reduction by
UMAP and graph-based clustering, thereby identifying 37 orthogonal clusters of cells.
The expression of established cell-specific marker genes assisted in the annotation of
these 37 cell clusters into 21 distinct cell types (Fig. 1b, c). We identified most of canonical
cell types observed in the human skin [16, 17] and PBMCs [18], namely: smooth muscle
cells, SMCs (TAGLN?*, ACTAZ2"); fibroblasts, Fibro (DCN*, CFD"); vascular endothelial
cells, VasEndo (ACKR1"); T-lymphocytes, T-lympho (CD3D"); CD14* monocytes, CD14-
Mono (CD14*, S100A9%); differentiated keratinocytes, DiffKera (KRT1+, KRT10"); basal
keratinocytes, BasalKera (KRT5*, KRT14"); natural killer cells, NK (CCL5*, GZMB*); NK
and T cells, NKT (CD3D*, CCL5%); CD16" monocytes, CD16-Mono (FCGR3A*/CD16%);
M1 macrophages, M1-Macro (/IL1B*); M2 macrophages, M2-Macro (CD163%);
melanocytes and Schwann, Melano/Schwann (MLANA®*, CDH19%); sweat and sebaceous
gland cells, Sweat/Seba (DCD"); lymphatic endothelial cells, LymphEndo (CCL27%),
erythrocytes, Erythro (HBB"); dendritic/Langerhans cells, DCs (GZMB®, IRF8); B-
lymphocytes, B-lympho (CD79A*, MS4A1*); plasma cells, Plasma (MZB1*), and mast
cells, Mast (TPSAB17") (Fig. 1c). Comparative analysis of cell type abundance revealed
substantial variations in the enrichment across clinical groups (Fig. 1d). Interestingly, our
analysis showed significant heterogeneity in the transcriptome profile of fibroblasts and
identified a unique population of fibroblasts that are over-represented in the samples from
DFU-healers (Fig 1b, d). We will refer to these as Healing Enriched - Fibroblasts “HE-
Fibro” in the rest of the article. Further, the gene signature for each cell cluster was
defined by comparing the expression profile of the target cluster with the rest of cells
based on non-parametric Wilcoxon Rank Sum test (P-value <0.01 and Fold Change >2)
(Fig. 1e). In-depth analysis of the HE-Fibro cell cluster revealed high expression of
multiple extracellular matrix (ECM) remodeling (MMP1, MMP3) and immune/inflammation
(CHI3L1, TNFAIPG6) associated genes (Fig. 1f). MMP1 (Matrix metalloproteinase-1) [19]
interacts with CD49b [20], an integrin alpha subunit involved in cell adhesion and cell-
surface-mediated signaling in T, NK, and NKT cells [21], fibroblasts, and platelets.
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CHI3L1 (Chitinase-3-like protein 1) is a secreted glycoprotein that has been previously
associated with pathogenic processes related to inflammation and ECM remodeling [22].
TNFAIP6 (Tumor necrosis factor Alpha Induced Protein) is known to be involved in ECM
stability and cell migration, and its expression is correlated with proteoglycan synthesis
and aggregation [23]. This protein has shown anti-inflammatory effects in various models
of inflammation, which suggest that it is a component of a negative feedback loop capable
of downregulating the inflammatory response [24]. The distinct and previously
undescribed subtype or state of fibroblasts, HE-Fibro, with overexpression of matrix
remodeling, immune and inflammatory genes, may contribute to successful wound repair
in DFU healers. The top 10 overexpressed genes from the annotated cell clusters are
included in Supplementary Table 2.

Exploring cellular heterogeneity across different anatomical sites

To assess tissue specific cellular heterogeneity along with gene expression and
molecular pathway alterations, we generated the UMAP rendering spilt based on foot,
forearm, or PBMC samples (Fig. 2a). The analysis depicted significant variations in the
abundance of cell types based on anatomical sites (Fig. 2b). Fibroblasts, smooth muscle
cells, melanocytes, sweat gland cells, vascular and lymphatic endothelial cells were
enriched in the foot samples. The analysis on keratinocytes revealed a predominance of
basal and differentiated keratinocytes in the foot and forearm samples respectively (Fig.
2a, b). Interestingly, 99.94+1.58% (mean = stderr) of HE-Fibro cells, were identified in the
foot samples (Fig. 2a, b, supplementary table 3), indicating that these are foot specific
cells. The analysis demonstrated that a significant fraction of immune cells was
contributed by the PBMC samples. CD14* (98.47+1.06%) and CD16* (99.63+1.11%)
monocytes were observed predominantly in the PBMC samples. Dendritic, NK and NKT
cell populations were also predominantly present in PBMC samples. The highest
abundance of M2 macrophages (71.28+1.27%) and mast cells (82.51+1.49%) was
observed in the foot samples, with lower proportions in the forearm samples, and lowest
in the PBMCs. On the adaptive immune system side, 31.27+0.27% of T-lymphocytes
came from the foot samples, 12.42+0.35% from the forearm, and the remaining 56.31
+1.21% from the PBMCs (Fig. 2b, supplementary Table 3). In contrast, more than half of
plasma cells were derived from foot (66.01+1.89%), and the remaining were almost
equally proportioned between forearm and PBMCs. Most of the B-lymphocytes (84.49
+1.63%) originated from PBMCs.

To more closely examine the gene expression landscape of cells with differential
abundances between foot and forearm i.e., fibroblasts and keratinocytes, we performed
comparative analysis on their transcriptome profiles (Fig 2 c-f). The foot fibroblasts
exhibited upregulation of multiple molecules associated with ECM remodeling and
immune response. This may be attributed to the enrichment of HE-Fibro population in the
foot samples (Fig 2c). Genes that were overexpressed in foot fibroblasts include gene for
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Whnt signaling antagonist, secreted frizzled-related protein 4 (SFRP4) and genes directly
related to ECM organization, asporin (ASPN) and tenascin C (TNC). Wnt signaling is
crucial for effective wound healing [25, 26] and its modulation is closely linked with TGFf
expression [27] , which is in line with the enhanced expression of TGFB17 in these
fibroblasts. Tenascin C is known to upregulate TGFB1 as well as promote expression of
type | collagen in fibroblasts, which is essential for maintaining ECM integrity [27]. The
cellular development (TSPANS, WIF1) and immune cell trafficking (CCL19) related genes
were significantly overexpressed in the fibroblasts from the forearm (Fig. 2c). Pathway
analysis on fibroblast differentially expressed genes (DEGs) revealed significant (P value
< .01) activation of ILK, leukocyte extravasation signaling, RhoA signaling, and actin
cytoskeleton signaling in the fibroblasts from the foot samples (Fig. 2d). The comparative
analysis between foot and forearm keratinocytes showed significant upregulation of basal
(KRT6A, KRT16, KRT17) and differentiated (KRT2, KRT10) keratinocyte associated
genes in the foot and forearm samples, respectively. This discrepancy can be explained
by the fact that forearm biopsies represent unwounded tissues with fully stratified
epidermis, as opposed to foot samples that include DFUs with partially formed epithelium,
and therefore fewer differentiated keratinocytes. Moreover, the differences between
plantar glabrous skin and forearm hairy skin could contribute to the disparity [28]. In
addition to upregulation of alarmins like KRT6A/16/17 at the wound site [29], we also
observed upregulation of inflammatory molecules including ST00A8 and S7100A9, known
to activate the immune system in response to skin injury [30]. Further pathway analysis
on foot keratinocyte DEGs uncovered significant activation of immune and inflammatory
pathways including ILK and IL-8 signaling (Fig. 2f).

Systemic dysregulations revealed by comparative analyses of PBMCs across
clinical groups

To better understand the impact of DFU at a systemic level, we performed separate
analysis on PBMC samples alone from 4 clinical groups, viz “Healthy” (healthy subjects
without DM), “DFU-Healer” (DM patients with healing DFUs), “DFU-Non-healer” (DM
patients with non-healing DFUs), and “Diabetic” (DM patients without DFU) (Fig. 3a). The
cell annotation was done using well established marker genes (supplementary material
1). The DFU-Healers were observed to have higher proportions of naive and early
differentiated progenitor T-lymphocytes, T-lympho, expressing CCR7, shown to have a
role in activation of various T cell subsets [31] (Fig. 3b). On the other hand, DFU-Non-
healers had a higher proportion of cytotoxic NKT cells (IL7R, GZMB, KLRD1), indicating
a shift in T-cell subpopulations correlating with DFU healing (Supplementary material 2).
We observed statistically significant higher CCR7+ T-lympho cells to NKT cells ratio (P
value <.01) in the DFU-Healers as compared to DFU-Non-healers and DM patients
without DFU, indicating the association of these T-cells with successful wound healing
(Fig. 3b). A significantly higher proportion of CCR7+ CD8+ T cells (cluster CD8T2 in
Figure 3a) was also observed in DFU-Healers as compared to DFU-Non-healers (Fig.
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3c). Further DEGs analysis on these T-lympho, CD8T2 and NKT cells indicated
overexpression of T-cell specific genes like IL7R, TCF7, and CCRY in the DFU-Healers,
whereas DFU-Non-healers overexpressed NKT lineage genes like NKG7, GNLY, CCL5,
and KLRD1 (Fig. 3c). Pathways analysis on these T/NKT cells DEGs demonstrated
inhibition of key immune and inflammation pathways including IL-6, IL-8, CD28 Signaling
in T helper cells, and iCOS-iCOSL pathways and activation of RhoGDI and EIF2 signaling
in the DFU-Healers, as compared to DFU-Non-healers at systemic level (Fig. 3d). Further
systems biology analysis revealed inhibition of several upstream regulators of immune
pathways including CD44, TGFB1, CCL5, and NFKBIA in the T cells from PBMCs of
patients with healing DFUs (Fig. 3e). This was in accordance with the observed reduced
gene expression of NFKBIA, CCL5 and TGFB1 in DFU-Healers compared to high
expression in DFU-Non-healers (Fig. 3f). In aggregate, these results underscore the
enrichment of naive T cells with a prevalence of immune inhibitory pathways and
processes for DFU-Healers, and a state of chronic inflammation for DFU-Non-healers, at
the systemic level.

T, NK and NKT cells exhibit distinct cell subpopulations in DFU-Healers and DFU-
Non-healers

The focused sub-clustering analysis on the T, NK and NKT cell populations identified 17
subclusters (Fig. S1a). CD4+ (subclusters 0, 4, 10) and CD8+ (subcluster 14) naive T
cells (CCRY7*, LEF1*), that can self-renew and proliferate readily into other T cells, were
enriched in DFU-Healers (Fig. S1b, c¢; Supplementary material 3 c, d). Cluster 6, CD8"
effector T cells (CCLS*, GZMB*, IL32%, GZMK®), enriched in DFU-Healers, also
expressed higher levels of CD27, a key molecule in generation and maintenance of T cell
immunity [32].

NKT (CD8*, CCL5*, GZMB", IL32*, GZMH") cells subclusters 5 and 7 were enriched in
Diabetic and DFU-Non-healer groups respectively (Fig. S1a, b; Supplementary material
3 c,d). The DFU-Non-healer enriched subcluster 7 also had high expression of T cell
exhaustion marker, TIGIT (Supplementary material 3 d). Sample site specific split t--SNE
plots revealed separate clustering of T, NK/T and NK cells from skin and PBMC
(Supplementary material 3 a). Subclusters 1,2,9,11 and 13, expressing activation markers
CD69 and CD44, were largely made up of skin samples derived from foot (Supplementary
material 3 b-d). Clusters 1 and 9 were positive for T cell exhaustion markers (T/IGIT",
HAVCRZ2*, LAGZ2") (supplementary material 3c). In PBMCs, DFU-Healers appeared to
have more nonpolarized central memory and naive T-cells (Fig S1b, ¢, supplementary
material 3). CD27 (supplementary material 3c), which characterizes central memory T-
cells that lack immediate cytotoxicity [33], was also more in the DFU-Healers. In contrast,
DFU-Non-healers were enriched with cytotoxic NKT cells (cluster 7), expressing GZMH,
GZMA and GZMB (Fig. S1b, supplementary material 3c). These granzyme molecules
have been previously implicated in impaired wound healing development by promoting
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chronic inflammation, vascular dysfunction, and reduced cell adhesion [34]. We also
observed a unique CD4" cluster (cluster 10, Fig. S1a) that was predominantly present in
DFU-Non-healers and enriched for GIMAP1 and GIMAPA4, both shown to be implicated
in T helper cell differentiation towards the Th1 lineage [35]. In the Diabetic group, a
GZMH*, GNLY* and CCLS5" expressing cluster (cluster 5) was prominent, pointing toward
the presence of specialized DM associated NKT cells. CCL5 or RANTES, a potent
chemoattractant of immune cells, has been reported to be strongly downregulated in
DFUs compared to acute wounds, and could represent a potential therapeutic target [36].
In summary, while skin samples derived T/NKT cells did not show significant differences
between DFU-Healers and DFU-Non-healers, potentially due to the low number of
recovered T cells, a definitive enhancement of naive T cells was seen in PBMCs of DFU-
Healers compared to more cytotoxic NKT cells in DFU-Non-healers.

Analysis of foot ulcer cells reveals the significance of localized inflammation in
diabetic wound healing

To map the transcriptome and cellular landscape of the site for DFUs, we performed
focused analysis on single cell profile of 94,325 cells from 26 foot samples. Split UMAP
analysis indicated differential abundance of cell types among the four clinical groups (Fig
4a, Supplementary material 4). The DFU-Healers had a significantly higher number of
HE-Fibro cells (P value <.05) as compared to DFU-Non-healers, Diabetic patients and
non-DM healthy controls (Fig 4b). Additionally, the DFU-Healer group also showed a
significantly higher proportion of M1 macrophages (classically activated macrophages
that promote inflammation) than M2 macrophages (alternatively activated macrophages
with anti-inflammatory properties), as opposed to DFU-Non-healers (Fig. 4c). Also, a
group of SMCs, SMC2, with overexpression of proliferation markers CENPF, PTTG1,
MKI67 andTOP2A was significantly enriched in DFU-Healers (Fig. 4d, supplementary
table 4), highlighting the presence of a highly proliferative SMC cluster in healing DFUs.
Other cell types also exhibited variation across clinical groups but did not achieve
statistical significance due to intragroup variation among patients (Fig. 4e). DEGs analysis
on DFU-Healers vs. Non-healers and M1 macrophages vs. M2 macrophages identified a
signature comprising of 195 genes that were differentially expressed in M1 macrophages
from DFU-Healers (Fig 4f). DFU-Healer enriched macrophages overexpressed
inflammatory genes including IL1B, ST100A8, and S7100A9 to mount an acute inflammatory
response for promoting wound healing. On the other hand, DFU-Non-healer
macrophages overexpressed genes from the complement system like C1QA/B/C, which
are associated with M2 macrophage like anti-inflammatory responses [37] (Fig 4f).
Pathway analysis showed activation of the IL-17 signaling pathway, a known regulator of
inflammatory response [38], in DFU-Healers (Fig. 4g). The upstream regulators activated
in DFU-Healers included HIF1A, TNF, STAT5a/b, TLR7, TLR9 and IL17R/C (Fig. 4h),
whereas SOX4, TGFB1, and NANOG, were inhibited (Fig. 4i).
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Similar analyses were also conducted on the forearm cells (Fig S2a, supplementary
material 5). Differentiated keratinocytes were enriched in DFU-Healers compared to DFU-
Non-healers (Fig S2b). We found that LGALS7 or Galectin-7, which has been previously
implicated in keratinocyte migration during re-epithelialization of wounded epidermis
[39], is the top differentially expressed gene in the forearm keratinocytes of DFU-Healers
(Fig S2c).

Healing associated fibroblasts drive DFU healing by promoting matrix remodeling
and inflammatory response

To further delineate the role of fibroblasts in wound healing, we performed focused
analysis on fibroblasts that produced 14 subclusters, representing different molecular
states or subtypes of fibroblasts (Fig. 5a). The majority of subclusters showed distinct
expression profiles indicating heterogeneity in the fibroblast population (Fig 5b).
Subclusters 0, 1, 2 and 5 comprised most of the cells from unwounded skin. Subcluster
0 was characterized by the expression of reticular fibroblast marker MGP [40] and multiple
adipocyte associated genes (APOE, APOD, CFD), consistent with the enhanced
adipogenic potential of these cells [41]. Subclusters 2 and 5 contained cells expressing
papillary fibroblast markers PTGDS, APCDD1 and COL23A1 [42, 43], while subcluster 1
was enriched for WISP2, PI16, SLPI and SFRPZ2 which describe fibroblasts residing both
in the papillary and reticular dermis and are believed to contribute to ECM homeostasis
[44-46]. The evaluation of cellular makeup of clusters unveiled a higher proportion of cells
(58% - 90%) from DFU-Healers in specific subclusters; clusters 3, 4, 6 and 13. These four
sub-clusters represent four heterogeneous states or subtypes of the HE-Fibro (Fig 5a,
marked area). Further generation of gene signatures for these subclusters revealed that
cluster 3 was significantly enriched with cells expressing genes related to ECM
remodeling including MMP1 and MMP3 (Fig 5b, c). Matrix metalloproteinases MMP1 and
MMP3 have been well-known early responders to tissue injury, actively regulating the
inflammatory phase of healing by degradation of the ECM, stimulating leukocyte
infiltration for resolution of inflammation and transition to the proliferative phase [47].
Cluster 4 exhibited overexpression of POSTN and ASPN (Fig. 5c) that are associated
with ECM signaling, adhesion and migration. POSTN (Periostin) is a ligand for alpha-
V/beta-3 and alpha-V/beta-5 integrins and supports adhesion and migration of epithelial
cells [48], and has been shown to play a regulatory role in fibroblast proliferation and
inflammation [49, 50]. ASPN (Asporin) is an ECM protein that has been found to inhibit
TLR2- and TLR4-induced NF-kB activity and pro-inflammatory cytokine expression in
macrophages [51]. TLR4 mediated inflammation drives the synergistic effect of hypoxia
and hyperglycemia on impairment of diabetic wound healing [52], hence overexpression
of ASPN might be an important determining factor for healing of DFUs. In a recent study,
a distinct ASPN and POSTN enriched cluster of fibroblasts was described as
mesenchymal and shown to have a more reticular dermis localization [45]. These
subclusters (3,4,6 and 13) were also enriched with genes like IL6, CHI3L1, PLA2G2A and
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TIMP1, commonly associated with an inflammatory signature (Fig. 5b, ¢, supplementary
table 5). Based on our analysis, we identified a healing associated fibroblast signature
consisting of ECM remodeling and inflammatory response related genes: MMP1, MMP3,
IL6, CHI3L1, ASPN, POSTN, PLA2G2A.

Further analysis of these fibroblasts revealed that IL6/TIMP1/PLA2G2A and CHI3L1
transcripts were detected simultaneously in ~38% of the cells suggestive of a common
regulatory mechanism in HE-Fibro. We also noticed that 99.8% of CHIL3L1 expressing
cells exhibited significant expression of at least one of the ECM remodeling genes
including MMP1, MMP3, MMP11, indicating a role of these genes in tissue repair. Based
on these preliminary results we posit that CHIL3L1 is one of the key players in driving the
healing phenotype of HE-Fibro by expressing proinflammatory and ECM genes together
to improve wound repair. Several lines of evidence have previously implicated CHI3L1 in
dampening of chronic inflammation [53] , promoting M1 macrophage activation [54] and
stimulating fibroblast proliferation [55] and ECM remodeling [56]. DEGs analysis on these
DFU-Healers vs. other fibroblast clusters revealed some ubiquitous markers (HIF1A,
TNFAIP6) that are overexpressed in HE-Fibro cells (Fig 5).

Pathway analysis indicated the activation of multiple immune and inflammatory pathways
including IL6, HIF1A and ILK signaling in the fibroblasts from DFU-Healers (Fig. 5d).
Moreover, upstream regulator genes like TNF, HIF1A, and IL6, were activated (Fig. 5e)
in the DFU-Healers. HIF1A (Hypoxia-inducible factor 1-alpha) is a master-regulator that
activates multiple factors to enhance wound healing by promoting cellular motility and
proliferation, angiogenesis, re-epithelialization, and cell survival [57]. HIF1A also
upregulates IL6 expression by binding to its promoter region [58], thereby promoting
inflammation and cell proliferation.

Another notable gene in the molecular interaction network is TNF (Fig 5e), a potent
proinflammatory cytokine that has been previously implicated in the wound healing
process [59], and is known to be elevated shortly after wounding. TNF has also been
shown to upregulate the expression MMP1 and MMP3 in human dermal fibroblasts via
NFkB/p65 activation [60].

Deciphering communication among Healing associated Fibroblasts

Further, to determine possible communication among heterogeneous healing associated
Fibroblasts (HE-Fibro subclusters 3,4, 6 and 13), we performed ligand, receptor and
target gene co-expression analysis using the NicheNetR algorithm [13]. NicheNet predicts
which ligands from one or more cell population(s), termed ‘sender/niche’, will most likely
affect gene expression in interacting cell population(s), termed as ‘receiver/target’. Also,
this algorithm can predict which specific target genes in the “receiver” cell populations are
affected by the predicted ligands in the “sender” cell population(s). Subcluster 3 of the
HE-Fibro with enrichment of both inflammatory and ECM remodeling genes (i.e., IL-6,

17


https://doi.org/10.1101/2021.03.11.434413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434413; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CHI3L1, MMP1) was selected as ‘sender’ cell population, while the remaining HE-Fibro
subclusters (4, 6, 13) (‘healers’ fibroblasts) were treated as receiver cells. To filter out
non-specific ligand and receptors, we also included control fibroblast sub-clusters (0,2,5),
enriched in healthy non-DM and diabetic without DFU patients, as receiver cells. The
analysis identified multiple ligands including IL6, CCL2 and TIMP1 with high correlation
between differential expression of ligands in ‘sender’ fibroblasts and their target genes in
the ‘healer’ fibroblasts (subclusters 4,6 and 13) but not in the ‘control’ fibroblasts
(subclusters 0,2 and 5) (Fig. 5f) This indicates that fibroblasts from subcluster 3 are
primarily interacting with other three subclusters of HE-Fibro subset enriched in DFU-
healers rather than the ‘control’ fibroblasts subset enriched in healthy non-DM and
diabetic with no-DFU patients. FN1 was enriched in all the HE-Fibro subclusters (3,4,6
and 13), while IL6, MMP13, CCL2, PTGS2 and VEGFA were enriched in only HE-Fibro
subcluster 3 (Supplementary material 6). A heatmap displaying the connection between
these key ligands that are expressed by HE-Fibro subcluster 3 (rows) and marker genes
for the other HE-Fibro sub-clusters ( 4, 6, and 13) (columns) is shown in Fig 5g. For
example, CCL2 overexpression in the ‘receiver’ HE-Fibro sub-clusters can be strongly
predicted by the presence of IL6 in the ‘sender’ HE-Fibro sub-cluster, indicating possible
molecular interaction between them. The circos plot shows association between ligands
from “sender” cells, subcluster 3 (lower hemi-circle), and DEGs in receiver subclusters
4,6 and 13 (upper hemicircle) (Fig. 5h). The analysis identified IL6, MMP13, CCL2,
CXCL12, CTGF, TIMP1 and VEGFA as key regulatory ligands in the HE-Fibro subcluster
3, altering the expression of downstream target genes in the HE-Fibro subcluster 4, 6 and
13. These identified ligands and their downstream targets might be responsible for the
healing associated phenotype of HE-Fibro.

Based on enrichment and specific regulatory interaction among HE-Fibro subclusters in
DFU-Healers, we postulate that their role consists of creating a beneficial physiological
environment for accelerated DFU healing.

Spatial transcriptomics and immunohistochemistry further elucidate gene
expression patterns in healing and non-healing DFUs

We subsequently selected well defined surgically excised DFU sections from healers and
non-healers for additional characterization. They both displayed blood vessel proliferation
and chronic inflammatory cell infiltrates predominantly with perivascular distribution (Fig.
6a,c). We stained for inflammatory fibroblast markers CHI3L1 and TIMP1 together with
pan-fibroblast marker fibroblast activation protein (FAP) and discovered elevated
numbers of triple positive cells within the ulcer area of healing DFUs, with the cells forming
dense aggregates (Fig. 6d). However, in the non-healing ulcers these cells were far fewer
and scarcely distributed (Fig. 6b). We also evaluated gene expression using a spatial
transcriptomics approach. The GeoMx® platform enables spatial, high-plex quantitation
of gene expression in tissue through the use of in-situ hybridization (ISH) probes that
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target mMRNA in tissue; attached to the probes are photocleavable and indexed
oligonucleotides than can be liberated via UV light and counted with an Illumina®
sequencer. Regions of interest (ROIs) were chosen after staining for immune cell marker
CD45, vasculature marker aSMA and epithelial marker pan-Cytokeratin along with
nuclear counter stain DAPI, to represent areas within the ulcer, at the edge of ulcer and
adjacent non-injured tissue (Fig. 6a, ¢ and Supplementary Fig S5a, b). Hierarchical
clustering analysis of representative healing and non-healing specimens revealed
dissimilar gene expression profiles according to location within the sample: ROIs at
similar dermal depth grouped together. (Fig. 6e, f). The non-healing ulcer ROl was
particularly distinct from neighboring ROIs (Fig. 6e), while the healing ulcer ROls
appeared more transcriptionally similar (Fig. 6f). Focusing on the ulcer localized ROls,
DE analysis from two healers (9 ROls in total) and two non-healers (4 ROls in total)
showed 148 genes upregulated in healers and 57 in non-healers (Fig. 6g and
Supplementary Fig S5c-f for additional DFUs). Among the most notable ones, HE-Fibro
marker PLA2G2A and M1 macrophage marker FOS were overexpressed in healers (Fig.
6h, i), while M2 macrophage markers TYMP and ANXA1 were upregulated in non-healers
(Fig. 6j,k). Finally, gene ontology (GO) enrichment analysis unveiled cellular response to
TNF as top biological function activated in healing ulcers and myeloid leukocyte migration
in non-healing (Fig. 61). Taken together, these findings verify our previous observations
at the protein level and specify the location and functional roles of cell types reported in
our scRNASeq dataset.

To further validate the finding based on spatial profiling that HE-Fibro mainly form niches
in the wound bed to promote wound healing, we performed scRNA-seq analysis on
multiple samples from the same patient. sScCRNA-Seq analysis was performed on skin
specimens of the same patient from three different sites: wound bed, wound edge, and
non-wound excess skin from a pressure sore excision (Supplementary Fig S4,
supplementary material 7). The unsupervised analysis and cellular annotation revealed
that HE-Fibro were enriched in the wound bed, but not in the wound edge and non-
wounded samples (Supplementary Fig S4a, b). This unique wound bed enriched cell
cluster exhibited significantly higher expression of HE-Fibro associated genes like /L6,
TNFAIP6, MMP1 and CHI3L1 (Supplementary Fig. S4c). The absence of any other
fibroblast cluster for the wound bed sample suggests that HE-Fibro originate from
‘normal” fibroblasts. These results further affirm an association of HE-Fibro with the
wound healing process in an additional type of chronic wound and points toward
heterogeneity of fibroblasts across different regions of ulcers.

Induced overexpression of CHI3L1 in dermal fibroblasts influences cell behavior

To explore the effects of inflammatory marker genes expression in vitro, we selected one
of the top enriched genes CHI3L1 and generated dermal fibroblast cell lines transduced
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with lentiviral vectors overexpressing CHI3L1 (CHI3L1-OE) or a control sequence
(CTRL). Western blotting demonstrated a complete lack of expression in untreated cells
and RT-gPCR analyses confirmed a significant upregulation of CHI3L1 with construct 2
(Supplementary Fig S5 a,b), which we selected for further experiments. In adhesion
assays, more CHI3L1-OE cells attached to fibronectin coated surfaces compared to
CTRL (Fig Sbc,d), while diminished migration was observed in scratch wound
experiments (Fig S5e,f). Altogether, these findings shed light on the potential functional
roles of the HE-Fibro, indicating that they possess enhanced adherent and decreased
migratory capacities and suggest that they are firmly anchored on the ECM and mediate
healing through secretion of molecules.

Discussion:

In this study we performed large-scale unbiased scRNASeq to accurately and
systematically profile patients with healing and non-healing DFUs, together with healthy
non-DM subjects, and DM patients without DFUs, as controls. For a subset of patients,
we also characterized forearm biopsies and PBMCs to evaluate any potential systemic
effects of DM in presence of DFUs. To the best of our knowledge, we were the first groups
to employ this approach in DFU samples [8], and we have now substantially expanded
the number of cells sequenced, and incorporated state-of-the-art techniques like spatial
transcriptomics, in order to gain novel insights into the transcriptomic landscape of DFU
healing.

We identified a hitherto unreported fibroblast cell type associated with healing and
expressing multiple immune and ECM remodeling related genes. We then corroborated
the results at the protein level and with the additional sequencing modality of spatial
transcriptomics, demonstrating their localization within the ulcer area. It has become
increasingly apparent that dermal fibroblasts are a diverse and highly heterogeneous
population with different functional roles in wound healing [61-65]. Fibroblasts at sites of
inflammation, for instance within tertiary lymphoid structures, have been shown to acquire
immune cell features [66], while in murine wounds’ granulation tissue, a large proportion
of fibroblasts is of myeloid cell origin [67]. A number of studies have also emphasized the
interactions between fibroblasts and monocytes or macrophages in the context of
inflammation and wound healing, implying a reciprocal relationship [68-70]. Our data
suggest that specific fibroblast subtypes are key players in healing of DFUs and targeting
them could be a therapeutic option.

Mapping the immune landscape of healers and non-healers revealed the presence of
more M1 macrophages in healers and M2 in non-healers, as well as higher numbers of
naive and central memory T-cells, as opposed to more NK and NKT cells in non-healers.
Impairment in the recruitment of macrophages and neutrophils in DFUs was recently
demonstrated [71]. A dysregulation in the differentiation of peripheral blood derived T-
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cells and diminished T-cell receptor repertoire diversity has been previously reported for
DFU patients [72]. The majority of T-lymphocytes in our study originated from the blood
samples, while macrophages were mostly located at the foot. Interestingly, in PBMCs of
healers, inflammation pathways were mostly inhibited. These findings underline
fundamental differences between systemic inflammation and the local wound
inflammatory milieu. Overall, our results provide further evidence to support the claim that
localized activated inflammatory response is required to surmount the chronic
inflammation in DFUs, and progress to the next phases of wound healing [73, 74], while,
conversely, inhibition of inflammatory processes at the systemic level appears beneficial
for healing.

In summary, we present a comprehensive characterization of the DFU biosystem and
report novel cell types and interactions. Our dataset will be a valuable resource for
diabetes, dermatology, and wound healing research, and can serve as the baseline for
designing in vitro and in vivo experiments for the assessment of therapeutic interventions
focusing on one or more cell types. Future studies utilizing pre-enrichment via flow or
magnetic cell sorting could further characterize specific populations and lead to the
discovery of rare cells.
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Figure 1. Single-cell RNA sequencing mediated identification and characterization
of unique healing enriched fibroblasts in Diabetic Foot Ulcers (DFUs)

(a) Schematic overview of the study design and number of samples per clinical group. (b)
Uniform Manifold Approximation and Projection (UMAP) embedding of the entire dataset
consisting of 174,962 cells. The cells are colored by orthogonally generated clusters, and
labeled by manual cell type annotation (HE-Fibro: Healing Enriched Fibroblasts, Fibro:
Fibroblasts, SMCs: Smooth Muscle Cells, BasalKera: Basal Keratinocytes, DiffKera:
Differentiated Keratinocytes, Sweat/Seba: Sweat and Sebaceous gland cells;
Melano/Schwann: Melanocytes and Schwann cells; Mast: Mast cells; VasEndo: Vascular
Endothelial cells; LymphEndo: Lymphatic Endothelial cells; CD14-Mono: CD14+
Monocytes, CD16-Mono: CD16+ Monocytes, M1-Macro: M1 Macrophages, M2-Macro:
M2 Macrophages, Erythro: Erythrocytes, NK: Natural Killer cells, T-Lympho: T-
Lymphocytes, NKT: NK cells and T lymphocytes; B-Lympho: B-Lymphocytes, Plasma:
Plasma cells, DCs: Dendritic Cells). (c) Dot plot showing expression of different cell type
specific marker genes, used to annotate the cell types. Size of dots indicates percentage
of cells in each cell cluster expressing the marker gene; color represents averaged scaled
expression levels; cyan: low, red: high. (d) Stacked bar plots showing the proportion of
different cell types across the 4 clinical groups. Green: Healthy subjects, Orange: DFU-
Healers, Red: DFU-Non-healers, PurpleDiabetic patients. (e) Heatmap showing the top
highly expressed (red) genes in each of the cell clusters. (f) Feature plots depicting the
expression of key genes (I) MMP1, (Il) MMP3, (Ill) CHI3L1, (IV) TNFAIP6, that were
significantly overexpressed in the healing enriched fibroblasts associated with healing of
DFUs.
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Figure 2. Comparative single cell transcriptome analysis profiles of foot, forearm,
and PBMCs, delineating gene signatures and biological pathways across
anatomical sites. (a) Split UMAP of Foot, Forearm, and PBMC samples. The cell clusters
were annotated manually according to various canonical and novel cell types based on
expression of specific markers (as described in Fig. 1b). (b) Stacked bar plots showing
the proportion (y-axis) of different cell type from Foot, Forearm, and PBMC. Dark brown:
Foot, Beige: Forearm, Red: PBMCs. (c) Heatmap showing significantly differentially
expressed genes between foot and forearm fibroblast cell clusters. Relative gene
expression is shown in pseudo color, where green represents down regulation, and red
represents up regulation. (d) Pathway enrichment analysis on genes that are significantly
differentially expressed between foot and forearm cell fibroblast clusters. The pathways
analysis was performed using Ingenuity Pathways analysis (IPA) tool that calculate
significance of impact on pathways using one-tailed Fisher’s exact test and Z-score. The
pathways with P value <.01 and Z score >2 were considered significantly activated. (e)
Heatmap showing significantly differentially expressed genes in keratinocytes cell
clusters between foot and forearm samples. (f) Pathway enrichment analysis on genes
that are significantly differentially expressed between foot and forearm keratinocytes cell
clusters.
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Figure 3. Comparative transcriptome profiles analysis of PBMCs in different clinical
groups, uncovering differences in systemic immune landscape associated with
wound healing response in DFUs. (a) UMAP dimensionality reduction embedding of
PBMCs from DFU-Healers, DFU Non-healers, Healthy subjects, and non-DFU DM
patients. The identified cell types were DCs: dendritic cells; VasEndo: vascular
endothelial cells; T-lympho: T lymphocytes; CD8T1: CD8* T lymphocytes cluster 1;
CD8T2: CD8" T lymphocytes cluster 2; NK: natural killer cells; NKT: natural killer and T
cells; B-lympho: B lymphocytes; CD14Mono: CD14* monocytes; CD16Mono: CD16*
monocytes (b) Bar plots showing percentage of T-lymphocyte (T-lympho) and CD8* T cell
cluster 2 (CD8T2) per percentage of NKT cells in the CD45" subset of cells across various
clinical groups. DFU-healers depict significantly higher ratio of T-lympho and CDT2 cell
cluster in comparison to DFU-Non-healers and Diabetic. Bars were plotted with standard
error of the mean (SEM). Pvalue was calculated by Welch’s t-test. *Pvalue <.05,
**Pvalue<.01 (c) Heatmap showing significant DEGs in healers compared to Non-healers
in the T-lympho, CD8T2 and NKT cell clusters. (d) Biological pathways that are
significantly (P value <.01) activated (Z score >1.5) /inhibited (Z score <-1.5) in T-lympho,
CD8T2 cells of healers in contrast to NKT cells of non-healers. Activation and inhibition
of key upstream regulators is shown in pseudo color, where blue represents inhibition,
and red represents activation. (e) Upstream regulatory molecules significantly inhibited
(blue) in the T-lympho and CD8T2 cells of healers as compared to non-healers at
systemic level. (f) Violin plots showing expression levels of 3 key upstream regulator
molecules- NFKBIA, CCL5, and TGFB1, in the NKT, T-Lympho, and CD8T2 clusters.

29


https://doi.org/10.1101/2021.03.11.434413
http://creativecommons.org/licenses/by-nc-nd/4.0/

b HE-Fibro =

Healthy DFU-Healer DFU-Non-healer Diabetic
1000 ** ok
) 800-
§ 600
0
O 400
200-
0
S & & e
€ &S @"&.
S
¢ M1-Macro
g *
N| g * | %
% g'so
= 8
D = 40
3
F 20
k]
§° o
= Q@&*\ oﬂ\x" R ‘9,,0
d smc2 ¥
*k
80- ok *
'gso
o
10 g
[
UMAP_1 O
0
ST e
%‘yy"" & &
&
e f
1.00-
M1vs M2
M1 & Healers
] SC1QA  SLC40A1 |
@ 158 300 SELENDP ‘93&632
L [©)] e .
075 © \ Down Up
< W [
s 195 .«
o 2001
3 Y .
] = > . .
050 S SRGN  5100A8
1
91 .r-tﬂsoﬂjé\-lma
1007 2= TIMP1
Healer vs Non-healer o8
0.25- '3 ——+5100A9
Fo s
B Healthy oL ! ! !
[ DFU-Healer 4 ) 0 2
0.00- = Bi';g;e';lign_healer Log, fold change
' ¢ N ‘ - : . 5 < @
s g s35 83588 Ls8zed s
S u T E EI-I,-_‘E"EZELUE(%W_CE
[ZI > E T 4 g 3 2 8§ = § o &
> T o =z T ©c N T £ o 0
= = o S o g =
a @
g -
CXCR4 Signaling B Activated
Phospholipase C Signaling I Inhibted
Chemokine Signaling
CCRS5 Signaling in Macrophages
CD28 Signaling in T Helper Cells
Complement System
PPAR-A/RXR-A Activation | —————"«
NFAT in Regulation of the Immune Response { = ———————=
Apelin Endothelial Signaling Pathway
IL-8 Signaling {=—
PKR in INF Induction and Antiviral Response
Relaxin Signaling {=————
iNOS Signaling-_
9 B Cell Receptor Signaling {—
g HMGB1 Signaling {=—
£ LXR/RXR Activation
E IL-6 Signaling
HIF1A Signaling
IL-17 Signaling Je—
Sirtuin Signaling Pathway
Th17 Activation Pathway e
Osteoarthritis Pathway

Hypoxia Signaling-%'_I
2 4 6 8

-log P value

o



https://doi.org/10.1101/2021.03.11.434413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434413; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 4. Comparative analysis of transcriptome profiles of foot samples in the
different clinical groups, elucidating differences in cell type composition, gene
expression and biological pathways. (a) UMAP dimensionality reduction embedding of
foot cells from DFU-Healers, DFU-Non-healers, Healthy subjects, and non-DFU DM
patients. The cellular clusters depicting significant enrichment in the healers are marked
with blue asterisks. Comparative analysis depicted (b) HE-Fibro, (c) M1 Macrophages
and (d) SMC2 cellular enrichment in the foot sample from DFU healers. Results are
expressed using bar graphs representing the mean and SEM values in the groups (*p-
value < 0.05, ** p-value < 0.01 by One way ANOVA with Fisher's LSD post hoc test). (e)
Stacked bar plots showing the proportions of different cell types across the different
clinical groups (Green: Healthy subjects, Orange: DFU-Healers, Red: DFU-Non-healers,
Purple: non-DFU DM patients). (f) Venn diagram analysis to compare genes that are
differentially expressed between M1 and M2 Macrophages and macrophages between
healers vs. non-healers. The comparison identified 195 genes that are differently
expressed in M1 macrophages from the healers. Volcano plot showing the genes that are
significantly differential expressed (red dots) in M1 macrophages of healers (Benjamini
Hochberg corrected P-value <0.00001, FC>1). (g) Selected biological pathways that are
significantly (P value <0.01) effected in the healing associated M1 macrophages. Each
bar represents a pathway with significance of enrichment determined using the one tail
Fisher's Exact t-test (-log10 P.value is shown on primary X-axis). The directionality of
each pathway is depicted using a pseudocolor (red for activated, blue for inhibited).
Regulators that are significantly (h) activated and (i) inhibited in the M1 macrophages
from the healers. The activation and inhibition of pathways was measured based on Z-
score calculation using IPA analysis platform.
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Figure 5. Identification and characterization of distinct subpopulations of
fibroblasts with specific gene signature associated with healing DFUs. (a) t-
distributed Stochastic Neighbor Embedding (t-SNE) analysis depicting 14 sub-clusters of
fibroblasts. The subclusters enriched in DFU-Healers are marked with lasso. (b) Heatmap
showing the top highly expressed genes (red) in subclusters. (c) Feature plots depicting
the expression of key genes (MMP1, CHI3L1, HIF1A, IL6, TNFAIP6) and HE-Fibro
signature (MMP1, MMP3, IL6, CHI3L1, ASPN, POSTN, PLA2G2A) across healing
associated fibroblast subclusters. (d) Selected biological pathways that are significantly
(P value <0.01) affected in the healing enriched fibroblasts. The directionality of each
pathway is depicted using a pseudo color (red for activated, blue for inhibited). (e)
Regulators that are significantly activated in the healing enriched fibroblasts. The detailed
map of two key activators IL6 and TNF along with target genes is also shown. (f) Heatmap
showing the Pearson correlation between ligands from ‘sender’ subcluster 3 and target
gene expression in ‘healer fibroblasts, i.e., the other HE-Fibro subclusters 4,6,13 (left
column), and ‘control’ fibroblasts sub-cluster 0,2,5 (right column). A darker orange color
indicates a higher Pearson correlation between the ligand and gene expression within the
receiver cell population. (g) This heatmap of select ligands expressed by HE-Fibro
subcluster 3 (rows) to regulate the genes which are differentially expressed by the ‘healer’
fibroblasts (columns). Well established ligand-target gene interactions shown with a
darker shade of purple. (h) Circos plot displaying the association between ligands
expressed in the subcluster 3 (bottom semi-circle) with their interactive differentially
expressed genes in the subcluster 4,6 and 13.

31


https://doi.org/10.1101/2021.03.11.434413
http://creativecommons.org/licenses/by-nc-nd/4.0/

5=
-PLCB4
g 4- TRAFT  INFSF11
° MIF _SELP
H] o g
©
> 34 "
= 3 Fig 6
ROI4 ROI6 ROI2 ROI1 ROI3 e 5. s
— g
. —BAPI
.—_:E\ TRAC 0 T T T T T
., o —FEPOR 20 -16 -10 -056 0.0 056
- . SEEE—
—————— Log?2 (fold change)
h 150 p =003 i p =0.007
—CDK4 A 110 —
[ ]
‘g PLA2G2A n * FOS
8 100+ 3
—HDACHY = . o 100
0 - 2
= N
= o
£ 50 g 90
204 ° 5
B Ulcer O Ulcer edge - z z
B Non - Ulcer
0 T T 80 T T
. Nonhealer  Healer Nonhealer  Healer
Py ] p = 0.001 k p=0.04
200+ 200
- TYMP . ANXAI
S 150 S 150
| 8 3
ROI8 ROI12 ROI7 ROI9 ROI10 ROI 11 B - T
— . S 1004 & 1004
= s sse— = =
- ; — = E
—=—— __ M
—API5
—— o : ' . : '
— —— Nonhealer  Healer Nonhealer  Healer
e _JOCRI ] I
—_—
R — 5L G0:0048729 Tissue morphogenesis
G0:0001819 Positive regulation of cytokine production
== 3= G0:0001568 Blood vessel development
_ﬁ —JAG? GO0:0043410 Positive regulation of MAPK cascade
5 G0:0071356 Cellular response to tumor necrosis factor
E2F5
GO0:0031098 Stress-activated protein kinase signaling cascade
G0:0002221 Pattern recognition receptor signaling pathway
G0:0043408 Regulation of MAPK cascade
GO0:0042060 Wound healing
B Ulcer O uvtcer edge G0:0097529 Myeloid leukocyte migration

-logP


https://doi.org/10.1101/2021.03.11.434413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434413; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 6. Exploring the spatial transcriptome of DFU-Healers and DFU-Non-healers.
(a, c) Representative H&E-stained sections from a non-healing (a) and a healing (c) DFU.
Yellow box demarcates the ulcer area and numbered circles the ROIs selected for
sequencing. (b, d) Immunofluorescence staining for HE-Fibro markers TIMP1 (pink),
CHI3L1 (green) and pan-fibroblast marker FAP (red) performed on a serial section from
the same sample. DAPI was used for nuclear counterstain. The location of the image
capture is noted with an orange box on (a) and (c). (e, f) Hierarchical clustering analysis
heatmaps depict the transcriptomic profiles of the selected ROIs. The most highly
expressed gene per ROI is highlighted. ROIs were annotated based on their location as
Ulcer (red), Non-Ulcer (green), Ulcer edge (orange) and Epidermis (light blue).
Expression levels are shown according to the gradient middle right (blue low to red high).
(g) Volcano plot showing DE analysis results from ROls within the ulcer in Healers (N=2
patients, 9 ROIs) vs Nonhealers (N=2 patients, 4 ROIs). Each dot represents a gene, with
red ones being above the significance threshold. The top five genes are highlighted. (h-
k) Selected notable genes upregulated in Healers (h,i) and Nonhealers (j,k). (I) GO
analysis for biological processes enriched in Healers (top, red) and Nonhealers (bottom,
yellow). Scale bars are 1 mm in (a,c) and 100 pm in (b,d).
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