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Abstract:

With the vast improvements in sequencing technologies and increased number of protocols,
sequencing is finding more applications to answer complex biological problems. Thus, the amount
of publicly available sequencing data has tremendously increased in repositories such as SRA, EGA,
and ENCODE. With any large online database, there is a critical need to accurately document study
metadata, such as the source protocol and organism. In some cases, this metadata may not be
systematically verified by the hosting sites and may result in a negative influence on future studies.
Here we present SeqWho, a program designed to heuristically assess the quality of sequencing files
and reliably classify the organism and protocol type. This is done in an alignment-free algorithm
that leverages a Random Forest classifier to learn from native biases in k-mer frequencies and
repeat sequence identities between different sequencing technologies and species. Here, we show
that our method can accurately and rapidly distinguish between human and mouse, nine different
sequencing technologies, and both together, 98.32%, 97.86%, and 96.38% of the time in high
confidence calls respectively. This demonstrates that SeqWho is a powerful method for reliably
checking the identity of the sequencing files used in any pipeline and illustrates the program’s

ability to leverage k-mer biases.
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Introduction:

Over the years, there has been an explosion in the applications of sequencing technologies and of
sequenced organisms 2. Due to the variety, recent advancements, and the reduced costs of these
technologies, there has been a substantial increase in the number of raw and processed read files
produced 3. As the use of sequencing finds further applications, the depth of sequencing increases,
and as more data becomes publicly available, proper storage, maintenance, and documentation
become crucial. Fortunately, there are a number of public repositories where raw and/or processed
files can be stored such as ENCODE and the Sequence Read Archive (SRA) #°. Some of these
repositories are well maintained, requiring extensive validation of the submitted files, while others
traditionally rely on user reporting. This has led to some inconsistencies and possible errors in
experimental protocol and/or the species of origin in the metadata provided for some of the files ©.
Indeed, It is well documented that errors propagating from these mislabeled calls in metadata do
negatively impact data integrity 8. Furthermore, it is often important to ensure users have proper
input files before running a time-intensive analysis, pipeline, or program. This need for a validation
check extends to receiving data from less well-curated or private databases that may have less than

ideal documentation.

To overcome these issues, some researchers have developed thresholds and other methods for
filtering out files inconsistent with expected criteria or are otherwise suspicious when compared to
the literature ®°. However, these imposed restrictions limit the available data one can use for large
analyses and are reliant upon the assumption that the criteria used to filter can catch all potentially
erroneous files. The most accurate way of determining a file’s origin is to search through the

originating source studies for indication of identity of the file. In fact, a previous study sought to
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79  validate files in these databases by word association in source texts with limited success °. Some

80  major limitations of these methods include their frequent inability to be applied to unpublished

81 data and the excessive time-consumption during manual checking. An alternative method is to align
82 thefiles to different species genomes starting with the reported species and ensure that the

83  alignments match those expected from the experimental protocol. This method, while accurate, is
84  computationally intensive and not as conducive on large scale data projects where thousands of

85 files may be analyzed and thus thousands of alignments need to be performed.

86

87  Thus, we reasoned that a more rapid and resilient way to assess the identity of a sequence file is
88  the use of sequences in an alignment-free algorithm. There have been a number of studies

89  demonstrating the ability to leverage k-mer identity and frequency biases to distinguish species in
90 metagenomics studies and to validate de novo genome assembly 1011,

91

92  Here we present SeqWho, an accurate method for rapid validation of origin species and sequencing
93  type from FASTQ(A) data and heuristically measuring basic read quality metrics. SeqWho exploits
94  the principle of k-mer frequency biases between different genomes and regions of the genome in
95 the differentiation of origin species and sequencing type 2. In this study, we demonstrate that

96 SeqWho can accurately categorize the source species and technology from new sequencing data
97  (greater than 95% on high confidence calls), using a Random Forest classification model.

98  Furthermore, SeqWho is designed to be a very rapid and efficient software, taking less than 30

99  seconds per file to run and having low memory requirements (approx. 750 MB). Taken together, we

100  show that SeqWho is a powerful program that can reliably and quickly classify a diverse range of
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101 sequencing files for use in validation or downstream analysis preprocessing. SeqWho is open-source

102  software freely available at https://github.com/DaehwanKimLab/seawho.

103

104  Results and Discussion:

105  Algorithmic Design

106  Model Selection and Measurement Determination

107  When designing the algorithm used by SeqWho, we first needed to determine classification-critical
108 parameters such as the number of reads needed, the numeric determinants to be used, and the
109 classification model. Previous studies in metagenomics and transcript qualification have

110  demonstrated the ability to use frequency biases between k-mers as a method for making

111 determinations 34, Thus, we started by calculating the frequencies of 1-7mers using only a portion
112  of reads from the sequencing files. We used the smallest file sampling as possible to ensure rapid
113  processing time. To this end, we determined that any selection beyond 25,000 reads produced

114  diminishing returns for k-mer frequency array changes (Figure 1).

115

116  Next, we sought to test a number of supervised learning models on their ability to classify species of
117  origin and sequencing type. We tested these models on 9 different sequencing technologies

118  between two different species resulting in 18 total categories. We found that these initial 1-7mer
119  frequency arrays were sufficient for better-than-random classification of species and sequencing
120  typein all tested machine learning paradigms (Table 1). We chose to use the Random Forest

121 Classifier as the workhorse of SeqWho's algorithm due to its superior gains in classification accuracy

122  with optimized parameters and ease of development.

123
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124  Table 1: Classifier Performance

125 All classifiers tested with resulting call accuracy for both species and file type, species, and file type.

Overall Species Type
Random Forest 88.15% 96.22% 90.74%
Neural Net Binary 84.80% 95.58% 87.64%
Neural Net Categorical 84.41% 95.85% 87.34%
Muli-Layer Perceptron 84.27% 95.65% 87.00%
Logistic Regression 79.78% 93.53% 82.66%
Linear SVM 70.21% 84.31% 76.79%
k-Nearest Neighbor 70.15% 93.15% 77.69%
Naive Bayes 43.87% 75.19% 66.86%
Decision Tree 37.28% 85.22% 63.64%
Quadratic Discriminant 26.47% 80.20% 32.40%

126

127  We then tested classification accuracies for various k-mer lengths to determine how many

128  datapoints were needed for optimal classification (data not shown). While larger k-mers, around
129  31-mers, tended to produce better classification accuracy, the memory space needed to naively
130  count k-mers at this level increases exponentially and makes the process very slow. Ultimately, we
131 determined that 1-5mers were sufficient for classifying data at less than 90% overall accuracy. To
132  improve this performance, we sought to include a small subset of common, highly deterministic 31-
133  mers that are likely to appear within a sample of 25,000 reads of a FASTQ(A) file. Repetitive
134  elements in the genome are very common and have been shown to be biased in species and
135 genome location, and therefore useful in classification on species type and sequencing type >,
136  Furthermore, we recently developed HISAT2, a read alignment program that builds and utilizes a
137  repeat element database from the genome, making this data very easy to obtain '’. Thus, we
138  hypothesized that a combination of common k-mer indicators from repetitive genomic regions,

139  designated here as repeat k-mers, as well as the initial frequency array would substantially enhance

140 classification accuracy.
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141

142  Resulting Design

143  We developed an algorithm to construct a training frequency array set using repeat 31-mers and 1-
144  Smers to train a set of core Random Forest Classifiers (Figure 2). We began with a set of FASTQ(A)
145 files, labels, and HISAT2 repeat indices. For this initial test we used two different species, Human
146  and Mouse, and nine different file types: Amplicon-seq, ATAC-seq, Bisulfite-seq, ChIP-seq, DNase-
147  seq, miRNA-seq, RNA-seq, Whole Genome Sequencing (WGS), and Whole Exome Sequencing (WES).
148  We attempted to download 1000 random files of each type from the SRA marked for public use
149  totaling 18,000 files. However, some of the files failed to download, were outdated color-space
150  reads, or had other formatting issues that lead to a loss of file integrity, mostly in the Human

151 Amplicon category. We ended up with 17,489 total files of which 1,004 did not meet quality

152  standards resulting in 16,485 files used in model training (Table 2).

153

154  Table 2: Number of files used in database training

155 Count of files of each species and file type used to build the original SeqWho model

Amplicon ATAC Bisulfite ChiP DNase miRNA RNA- Whole Whole
- Genome . Exome
-seq ~ -seq  -seq  -seq -seq  -seq  seq =

; ; ; 5 : : . Seq  Seq
duman [~21 T To0 | 991 | 50 | 995 | s s st | o
Mouse 1000 999 985 982 960 1000 1000 1000 998

156

157  We built 1-5mer frequency arrays and 31-mer repeat frequency arrays for each file and added them
158  to atraining frequency matrix (Figure 2A). To minimize the space needed to store repeat k-mers,
159  after every 100 files processed, we purged the repeat k-mer index for any repeats that had less than
160  asliding threshold of hits. This allowed us to reduce the size of the index during building and limit

161 repeats to only the most abundant in each file type. To keep from biasing the k-mer index purge to
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162  one type of file such as biasing to WGS, we randomized the selection of the files from the 16,485
163  pool. The resulting index contained 1095 of the most common repeat k-mers. These repeats were
164  sorted and mapped to an array and frequencies were appended to the 1-5mer arrays. Through our
165  multiple rounds of testing, we found that using binary Random Forest classifiers for each category
166  were more accurate than categorical classification, easily reaching above 90% accuracy. However,
167  we noted that there were some rare instances where no models were able to classify files and the
168 inclusion of the combined classifications for species and type is necessary to serve as a second

169  phase fail-safe for files that failed to be properly classified. Thus, the resulting frequency matrix was
170 used to build 13 different Random Forest models, one for each classification: mouse, human,

171 Amplicon, ATAC, Bisulfite, ChIP, DNase, microRNA, RNA, WGS, and WES; and two for categorical
172  classifications, species and type. We also included metadata regarding model building so that the
173  same steps can be used when typing incoming files against the index.

174

175  Classification Results:

176  We validated the model, trained using the aforementioned dataset, using 1,665 novel files (~100 of
177  each species and sequencing type) not used during training. We found that we could correctly

178  classify the species of the file ~98% of the time, sequencing technology ~95% of the time, and both
179  combined ~93% of the time (Figure 3 and Table 3).

180

181 Table 3: Random Forest classification metrics
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182 Metrics for random forest model in SeqWho. Equations for each metric are located in the column heading. TP = True positive, T =
183 Total, TN = True Negative, N = Called Negative, P = Called Positive. Models were build using N=16,485 files (Table 2)

Sensitivity/ Pos Pred Value/
Recall (S) | Specificity | Precision (PPV) |Neg Pred Value F1 Detection Detection Balanced
TP/T TN/N TP/P TN/N 2SxPPV/(S+PPV) Rate Prevalence | Accuracy
Amplicon 0.784 0.996 0.870 0.992 0.825 0.027 0.031 0.890
ATAC 1.000 1.000 1.000 1.000 1.000 0.064 0.064 1.000
Bisulfite 1.000 1.000 1.000 1.000 1.000 0.062 0.062 1.000
= ChiP| 0.943 0.996 0.930 0.997 0.936 0.044 0.048 0.970
5 DNase| 0.976 0.999 0.976 0.999 0.976 0.054 0.055 0.987
I miRNA 0.990 0.996 0.942 0.999 0.965 0.065 0.069 0.993
RNA 0.926 0.998 0.962 0.996 0.943 0.050 0.052 0.962
WGS 0.938 0.998 0.962 0.996 0.950 0.051 0.053 0.968
WES 0.985 0.999 0.970 0.999 0.977 0.043 0.044 0.992
Amplicon 0.935 0.992 0.782 0.998 0.851 0.029 0.037 0.963
ATAC| 1.000 1.000 1.000 1.000 1.000 0.066 0.066 1.000
Bisulfite 1.000 0.999 0.980 1.000 0.990 0.065 0.066 0.999
@ ChiP 0.955 0.996 0.913 0.998 0.933 0.042 0.046 0.975
3 DNase 0.967 0.999 0.989 0.998 0.978 0.058 0.059 0.983
< miRNA| 0.968 0.999 0.989 0.998 0.979 0.062 0.062 0.984
RNA| 0.957 0.998 0.967 0.997 0.962 0.059 0.061 0.977
WGS 0.926 0.999 0.978 0.995 0.951 0.058 0.060 0.962
1 84 WES 0.990 1.000 1.000 0.999 0.995 0.064 0.064 0.995

185  Through this test, we observed that we could tag each call with a confidence based on which

186  Random Forest models were used to make the classification. For example, files that only needed
187  the first 11 binary classification models for a proper full classification producing a single species
188 classification and a single technology classification were considered high confidence calls. In cases
189  where classifications were absent, the categorical classification model was used and considered low
190  confidence. Out of the 1,665 files, only two showed double sequencing type classification, and both
191 cases were assigned a dual WGS and ChlP-seq classification with the truth set indicating WGS. This
192 s not surprising as WGS files and ChIP-seq types are among the most commonly confused

193  classifications in the model (Figure 3B-C). We suspect this is due to the k-mer and repeat bias in the
194  intergenic regions of the genome being captured in both sets and used to determine classification.
195  We found that the most difficult classification is human amplicon vs mouse amplicon with ~22%
196  misclassified (Figure 3C). We are not surprised by this result as amplified regions can be highly

197  diverse between different experiments and may lead to extraneous biases that confound the

10
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198  model’s ability to properly classify the files. Interestingly, we noted that RNA-seq also has some

199  ambiguity in its classification of species. This could be due to the conservation of critical coding

200  sequences between human and mouse genes. Overall, our Random Forest classifiers produce

201 excellent results with high Sensitivity, Specificity, Precision, and Recall with the exception of Human

202  Amplicon as mentioned above (Table 3).

203

204  To begin to understand what features determine whether a file will be classified high confidence or

205 low confidence, we gathered read and file quality metrics and performed a student’s t-test between
206  all numeric variables measured with a Bonferroni correction. We found that Mean Read Quality was
207  significantly different between the two categories and may help explain why some files are easier to
208  classify (Figure 3D). This result makes sense as lower quality reads may impact the k-mer bias

209  between files since there is no error correction or k-mer omission in the model.

210

211 Mixed Samples and Integration into Consortia RNA-seq pipeline:

212  We wanted to stress-test SeqWho’s call function on data other than SRA data and apply SeqWho to
213  areal-world use case for further development. An RNA-seq analysis pipeline for two NIH consortia
214  was being developed and released during the same timeframe as SeqWho. This initiative

215  experienced longer than ideal file validation due to using alignment-based validation methods. We
216  partnered with the project lead to incorporate SeqWho and its prebuilt models into their process.
217  We were able to confirm SeqWho's processing time of approximately 20 seconds, 20-200 times
218 faster than their previous method, and accuracy of greater than 95% confidence.

219

11
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220  Aregular challenge presented to the pipeline is of mixed or contaminated data (ie mouse data in
221 human data). We tested SeqWho on a set of synthetic and real mouse, human, RNA-seq, and ChIP-
222  seq data mixtures randomly generated or sampled from real data (Table 4). We found that in all
223  cases where human sequences were present in mouse sequences, the data was classified as human.
224 Furthermore, when RNA-seq data was present with ChIP-seq data, the call was always presented as
225  RNA-seq. Interestingly, only a few of these calls had low confidence, indicating that the model may
226  preferentially look for Human and DNA specific sequences or signatures over Mouse or RNA

227  signatures. In one sense, this is surprising as we would expect an equal chance of Mouse or Human
228  in a mixture. On the other hand, it is not surprising for the sequencing type call since RNA

229  sequences are a subset of DNA sequences. It makes sense to look for DNA-specific markers. Of

230  particular interest is the inclusion of single cell RNA-seq (scRNA) files in the test. Even though

231 SegWho was not trained on scRNA-seq files, it was able to accurately call the files as RNA-seq with
232  one file having a low confidence tag.

233

234  Table 4: Mixed data type stress test

235 Table shows results of stress test on SeqWho using files containing mixed data. Mouse and Human RNA-seq and ChIP-seq used.
236 Human:Mouse ratio is percent of file with human data with remainder representing mouse data. RNA-seq:ChlP-seq ration is
237 percent of file with RNA-seq data with remainder representing ChIP-seq data. Single Cell RNA-seq indicates whether the sample

238 is from single cell RNA-seq experiment. Call confidence is reported by SeqWho up arrow = high confidence, down arrow = low

12
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239 confidence. Call species and call sequence type are the results from SeqWho. Count is number of iterations that result was found
240 in the combination of the previous columns of the table.
Human: RNA-seq: call
Mouse ChiP-seq Single Cell Call Sequence
L Ratio Ratio RNA-seq Confidence Call Species Type Count
Bl | o0 P iy Human  ChIP-seq 1
B | 0.3 ¥ 4 Human RNA-seq 5
Bl | 0.4 b4 4 Human RNA-seq 5
B | 0.5 * 4 Human RNA-seq 2
Bl (B os b4 @ Human  RNA-seq 3
B | 0.6 * 4@ Human RNA-seq 5
B0 0.7 b4 @ Human RNA-seq 5
B | 1.0 P4 @ Human RNA-seq 2
Wi 0.3 b4 @ Human RNA-seq 1
o7 0.3 P4 3 Human RNA-seq 4
Wi 1.0 *® @ Human RNA-seq 5
I o6 0.4 * @ Human RNA-seq 5
Y 1.0 b4 1@ Human RNA-seq 5
I ols 0.5 * o'y Human RNA-seq 5
L obs 1.0 * @ Human RNA-seq 5
I Dba 0.6 b 4 Human  RNA-seq 5
I Dba 1.0 b4 @ Human RNA-seq 5
o3 0.7 ® @ Human  RNA-seq 5
I o3 1.0 p-4 1 Human  RNA-seq 5
0.0 1.0 * @ Mouse RNA-seq 11
0.0 1.0 * @ Mouse RNA-seq 11
0.0 1.0 o 4 Mouse RNA-seq 1
241 0.0 1.0 4 @ Mouse  RNA-seq 1

242  Heuristic FASTQ(A) quality information

243  Our goal is to make SeqWho as useful as possible for upstream processes in all major bioinformatic
244  pipelines. Thus, we wanted to further expand SeqWho by reporting quality metrics on the files it
245  processes, modeling the reports of another popular QC program FASTQC . The main metrics we
246  focused on were: 1) %GC content 2) average read quality 3) number of reads in the file and 4)

247  sequence/adapter content (Figure 4). These metrics were easily added to the processing steps
248  taken when constructing frequency vectors with constant time changes to the algorithm. We

249  wanted to avoid processing all reads in the file and maintain a rapid processing time for SeqWho's
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250  as opposed to FASTQC which processes all reads in the file and is many times slower. However,
251 while 25,000 reads are sufficient for classification, we wanted to make sure we captured sufficient
252  quality information resulting in doubling the read number to 50,000. Compared to FASTQC as run
253  onthe 17 Platinum Whole Genome Sequences previously reported *°, we found that SeqWho is
254  ~200 times faster and has very similar percent GC and average read quality metrics (Figure 4A).
255  Though we added a naive adapter detection step, SeqWho was not able to detect any adapters in
256  the files tested. This may be a byproduct of the more stringent cutoffs SeqWho uses to assess bias
257  inthe ends of the reads, or a byproduct of focusing on the end 10 nucleotides of the reads for

258  detection.

259

260  We added a heuristic estimation of number of reads in a file using the ratio of the number of reads
261 in a chunk to the size of the chunk and the size of the file. Interestingly, this method produces read
262  estimates very similar to the true value as captured by FASTQC (Figure 4b). Only one file’s estimates
263  did not coincide with the true read numbers. We suspect this was due to less efficient compression
264  of a part of the file that threw off the ratio of our estimate.

265

266  Furthermore, we added plots to represent the quality information in a manner similar to FASTQC
267  (Figure 4C). All plots that SeqWho produces contain highly similar data and trends as those

268  produced by FASTQC. Thus, SeqWho can rapidly and reliably capture representative quality

269  metadata from processed files. Additionally, this information can be read visually or by a computer
270  program as all raw data is exported as a JSON and TSV file for later use.

271
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272  Conclusions:

273  Here we presented SeqWho, a rapid and reliable software for classifying a read file’s original

274  organism and sequencing type, and for assessing quality information. We utilized the bias in k-mer
275 frequencies to train 13 Random Forest classifier models. This provides us with a reliable way to
276  assess the confidence of the call and allows us to achieve upwards of ~97% accuracy in high

277  confidence classifications. Furthermore, SeqWho allows us to rapidly assess the quality metrics of
278  the reads and file as a whole with constant time addition to the algorithms. By using only 25,000-
279 50,000 reads, we were able to keep the run time of SeqWho to ~20 seconds, ~200 times faster than
280  another commonly used QC program, FASTQC, with the additional ability to classify the file.

281 Additionally, SeqWho runtime is independent of input file size due to subsampling. While there are
282  some errors in the heuristic assessment of quality, SeqWho remains able to very accurately

283  characterize the file’s quality substantially faster than FASTQC. Furthermore, we report this data in
284  agraphical format for human interpretation and as a JSON-formatted text file to be read in

285  downstream automated processes. We consider this aspect to make SeqWho a critical and versatile
286  program for use in standard sequence QC, in large scale data pipelines with extensive automation,
287  orinindividual cases to confirm data from dubious origins. Future work will focus on improving the
288  algorithms classification to achieving the desired goal of >99% accuracy as well as improving the
289  heuristic determination of quality information. Further implications of this work include that we are
290 capable of drawing highly valuable information can be drawn from biases in k-mer frequencies

291 without the time expensive step of read alignment. Overall, SeqWho is a versatile, rapid, and

292  reliable program that lays the framework for extensive future work into utilizing k-mer frequency

293  and repeat information in unique, rapid ways.

15


https://doi.org/10.1101/2021.03.10.434827
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434827; this version posted March 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

294 Materials and Methods:

295  Program versions and code development:

296  Unless otherwise noted, SeqWho was developed in a conda environment under python version
297  3.7.4 using package versions noted in supplemental_file_1.txt file. All codes, analyses, and plots
298  were performed or developed within this environment on a Linux workstation running CentOS

299  version 7 with a Xeon® E5-1650 3.60 GHz 12 core CPU and 64GB of ECC RAM. In addition to python,
300  we used Nextflow version 0.31.0, SRA-toolkit version 2.10.9, seqtk version 1.3, R version 4.0.3,

301 FASTQC version 0.11.8, Keras version 2.2.4, and tenserflow version 1.14.0.

302

303  Design Principles

304  Model Building

305  Model building is divided into two minor processes: 1) the 1-5 mer frequency generation and 2)
306 repeat index consolidation. A list of training files is first read from a directory specified by the user
307  and randomized. Then for each file for each read in the first 25,000 reads every 1-, 2-, 3-, 4-, and 5-
308  mer without ambiguous nucleotides are counted and each count is added to a 1,364 long array
309  position corresponding to a sorted list of k-mers. The resulting count array is converted to k-mer
310 frequencies by k-mer set size and added to a matrix with the file label recorded. The second

311 process, repeat index consolidation, involves building a sorted array of repeat 31-mers from the
312  repeat indeces for mouse and human provided by HISAT2 v2.2. As each file is processed, each read
313  isscanned for 31-mers matching sequences in the repeat array and counted in a count array. After
314  every 100 processed files any repeat with a total number of hits less than the number of files

315  processed divided by 100 are removed and their corresponding entries are removed from all other

316 file count arrays. After all files have been processed a final purging step is performed to remove

16


https://doi.org/10.1101/2021.03.10.434827
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434827; this version posted March 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

317  repeats with high similarity between species using the variance of the repeat frequencies. Any

318  variance less than half the variance of a perfectly determining repeat (frequency of 1 for a single
319  species) is removed. The resulting counts were converted into a frequency by dividing the counts
320 for each file by the sum of the file counts and were added to the 1-5 mer frequency matrix. From
321 this model building data, a binary Random Forest classifier was trained for each label and species,
322  resulting in our case with 9 sequencing type and 2 species models. Two further models were trained
323  using all sequencing type classification and all species classification resulting in a total of 13 Random
324  Forest models with the result from each mapped to a result array. Metadata, including information
325 needed to rebuild the vectors and repeat information, and the Random Forest classifiers in a

326  python pickle were saved into a SeqWho index for use in file testing.

327

328  File Testing

329  File classification makes use of the metadata present from the building step to assemble a

330 compatible frequency array that can be used in the Random Forest classifiers using steps identical
331 to the building step except for the repeat purging procedure, which is not needed. Furthermore,
332  read quality metrics: length, quality per base, average quality, nucleotide biases etc. were measured
333  to be reported simultaneously to k-mer counting. An estimate of the total read number was

334  calculated by multiplying the total number of reads read processed by the ratio between the total
335  compressed size of the file on disk and the compressed size of the file chunk read in by Seq-Who.
336  The binary classifiers were used first to determine if an accurate call can be made. If 1 species and 1
337  sequencing type call were generated the quality metrics and call were reported. Any other call

338  generated results in a double check against the backup categorical Random Forest classifiers for

339  species and sequencing type. In this case a low confidence flag was appended and included tag to
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340  delimitate which classification (species or sequencing type) had to be validated. A number one

341 indicated that classification was a high confidence validation and a zero indicatred a lower

342  confidence classification with the first number indicating species classification and the second

343  number indicating sequencing type classification (ex “low confidence1:0” indicated species was
344  called with high confidence and sequencing type needed to be validated). Calls and quality data are
345  returned as a JSON and tab delimited text file with read quality information also being reported in a
346  plot PNG file.

347

348  Acquisition of Data

349 A Nextflow script was used to download specific sequencing read files from the SRA database. A

350 metadata file for SRA, obtained from https://ftp.ncbi.nlm.nih.gov/sra/reports/Metadata/, was

351 filtered for publicly available data. 19,800 files corresponding to whole genome sequencing, whole
352  exome sequencing, ChIP-seq, amplicon sequencing, ATAC-seq, DNase-seq, Bisulfite-seq, RNA-seq,
353  and micro-RNA-seq for each of two species, Mouse and Human, 1,100 files for each type, were

354  randomly selected for download. We downloaded 1 million reads from each selected file using SRA-
355  toolkit with the —-maxSpotld option and Nextflow. The file retrieval process was run using the

356  BioHPC (UT Southwestern) and up to ten files were retrieved simultaneously. The final database
357  consisted of a total of 18,151 FASTQ(A) files gzip compressed, consuming approximately 164 GB of
358  disk space. Data for the RNA-seq pipeline validation can be found at

359 https://doi.org/10.5281/zenodo.4429315.

360 Model Testing and Validation

361 Model testing and selection was performed using scikit-learn for the following models: Logistic

362 Regression, Decision Tree, Naive Bayes, k-Nearest Neighbor, Linear SVM, Multi-Layer Perceptron,
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363  Quadratic Discriminant, and Random Forest. Keras with Tenserflow was used for building and

364  testing Neural Nets. To rapidly test the models and parameters, 100 files for each file sequencing
365  type for each species were used to build a pre-calculated 1-7-mer count matrix with labels. To

366  determine the number of reads needed, reads were drawn from the first 1 million reads in 100
367  increments and counts were added to the matrix. At each increment, frequencies were calculated
368 by dividing the individual counts by the total counts and the percent change was calculated

369  between the previous increment and the current increment. 25,000 reads were selected as

370  sufficient for model testing. Thus, the count matrix was built with the top 25,000 reads of each file.
371  Two frequency matrices were generated from the count matrix, with one, calculated by dividing the
372  individual counts by the total counts and the other calculated by dividing each k-mer count set by
373  the sum of the set. Each model was tested multiple times using an 80/20 split of each matrix with
374  varying optimization parameters, levels, nodes, etc. RandomForestClassifier module was selected
375  for use with n_estimator parameter set to 500.

376

377  The complete SeqWho algorithm was tested by building an index from the aforementioned SRA
378  data. 16,485 files (Table 2) were used to build the model while the remaining 1,665 files were used
379  for validation. Confusion matrices were built in R using the caret package version 6.0 and plotted
380  using ggplot2 version 3.3.3. Statistics performed were student’s t-test with Bonferroni correction to
381 account for multivariate testing. Seq-Who quality metrics were tested against FASTQC on 17

382  Platinum Genome sequencing files that we reported on previously *’.

383

384  Four replicate's FASTQ's were manually downloaded from the GUDMAP consortium data-hub

385  website. The replicates represent three different sequencing modalities (bulk RNA-seq, scRNA-seq,
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386  and ChlP-seq), as well as two species (human, and mouse). To create RNA-seq (bulk) and ChIP-seq -
387  aswell as - human and mouse admixtures, the FASTQ’s were randomly sampled and concatenated
388 in order to generate varying amounts of sequence type and species mixtures. Each mixture was
389  then randomly sampled to one million reads, using different seeds to create multiple replicates of
390 the same admixtures. Seqtk (version 1.3) was use for the random sampling of the FASTQ's. The
391 resulting FASTQ's were then analyzed using SeqWho to call sequencing types and species.

392
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409 Availability of data and materials

410  Project name: SeqWho

411  Project home page: https://daehwankimlab.github.io/seqwho
412  Operating system(s): Linux, Mac OS X and Windows

413  Programming language: Python

414  License: GPLv3 license
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Plot of average percent change during k-mer table update as more reads are added. A) Shows number of reads maxed
at 50,000 verses percent change. B) Shows log number of reads verses percent change. Red lines mark 25,000 reads
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Figure 2

Pseudo-code: Building
File Labs <- Load file names and labels

—_— l1-mer 2-mer 3-mer 4-mer S—mer :: H2 Repeats <- Load HISAT2 repeat kmers
- Rep Index <- Build repeat index from File Labs and H2_ Repeats
—_— [ [ Concatenation . For each flle in File Labs:
P - . Count Array <- Make count array for fle
— Frequency Calculation T PR s e For each read in the first 25,000 reads of fAle:
JR— T R EEEEE Count_Array += Count the 1-5'mer frequencies in read
JE— Frequency Array Training Frequency Matrix If ﬂlle:P_i:::x.xis ;ultt:il:{: ;’?P‘;:;:kmers in read
P Purge Rep Index
P — ] Training Final Purge Rep_ Index
— Training Matrix <- Merge Count Array’s and Rep Index and calculate
8 Frequencies
FASTQ — 1 rE Random Forests <- Train Random Forest Classifiers using Training Matrix
Labels (Species and Type) 3 / SeqWho Index \ Save SegWho_Index
- Human WGS
= Pseudo-code: Typing
- - — File Names <- Load file names
. " — SegWho_Index <- Load SegWho Index
— - e R For each flle in File Names:
" : CEEEEEEE anEEEEEE Freq Array <- Initialize Frequency Array based on SegWho_Index
+ k-merize \‘ - Weigh and Purge — H H For each read in the first 25,000 reads of fle:
By - — Freq Array += Count the 1-5'mer frequencies in read
- Frequency Calculation — Random Forest Classifiers Freq Array += Count repeat kmers in read
- - — Result <- Run primary Random Forest classifier from SegWho_Index using Freq Array
- - et If Result is empty:
- \O " . Result <- Run secondary Random Forest classifier from SegWho_ Index using
— _:_ Weighted Freq Array .
ot Rl et R Repeat K-mer Index Set Result as Low Confidence
] Results <- Concatenate Result
HISAT Repeat Indices Return Results

Repeat K-mer Index

Model design for SeqWho Random Forest classification training. A) Graphical flow of data read in and processed into
different arrays B) Pseudo-code for the whole process of building the indices needed and typing from the indices.
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Classification accuracy of SeqWho’s Random Forest models. A) Percent correct calls for Species, Sequencing Type, and all
together for all calls, high confidence calls, and low confidence calls. B) Confusion matrix for Species calls and Sequence type
calls for high confidence calls in percent. C) Confusion matrix for full correct calls for high confidence calls in percent. D) Box-n-

whisker plot showing differences between Mean Read Quality between high and low confidence calls. * indicates adjusted p <
0.0001
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Comparison of SeqWho quality information to FASTQC. A) Comparlson of times, %GC, and average read quality with standard
deviations. B) Linear correlation between the true FASTQC file read number and the estimated SeqWho read numbers. C) Plot
and data distribution comparison between SeqWho (left) and FASTQC (right).
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