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Abstract: 40 

With the vast improvements in sequencing technologies and increased number of protocols, 41 

sequencing is finding more applications to answer complex biological problems. Thus, the amount 42 

of publicly available sequencing data has tremendously increased in repositories such as SRA, EGA, 43 

and ENCODE. With any large online database, there is a critical need to accurately document study 44 

metadata, such as the source protocol and organism. In some cases, this metadata may not be 45 

systematically verified by the hosting sites and may result in a negative influence on future studies. 46 

Here we present SeqWho, a program designed to heuristically assess the quality of sequencing files 47 

and reliably classify the organism and protocol type. This is done in an alignment-free algorithm 48 

that leverages a Random Forest classifier to learn from native biases in k-mer frequencies and 49 

repeat sequence identities between different sequencing technologies and species. Here, we show 50 

that our method can accurately and rapidly distinguish between human and mouse, nine different 51 

sequencing technologies, and both together, 98.32%, 97.86%, and 96.38% of the time in high 52 

confidence calls respectively. This demonstrates that SeqWho is a powerful method for reliably 53 

checking the identity of the sequencing files used in any pipeline and illustrates the program’s 54 

ability to leverage k-mer biases.  55 
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Introduction: 56 

Over the years, there has been an explosion in the applications of sequencing technologies and of 57 

sequenced organisms 1,2. Due to the variety, recent advancements, and the reduced costs of these 58 

technologies, there has been a substantial increase in the number of raw and processed read files 59 

produced 3. As the use of sequencing finds further applications, the depth of sequencing increases, 60 

and as more data becomes publicly available, proper storage, maintenance, and documentation 61 

become crucial. Fortunately, there are a number of public repositories where raw and/or processed 62 

files can be stored such as ENCODE and the Sequence Read Archive (SRA) 4,5. Some of these 63 

repositories are well maintained, requiring extensive validation of the submitted files, while others 64 

traditionally rely on user reporting. This has led to some inconsistencies and possible errors in 65 

experimental protocol and/or the species of origin in the metadata provided for some of the files 6. 66 

Indeed, It is well documented that errors propagating from these mislabeled calls in metadata do 67 

negatively impact data integrity 7,8. Furthermore, it is often important to ensure users have proper 68 

input files before running a time-intensive analysis, pipeline, or program. This need for a validation 69 

check extends to receiving data from less well-curated or private databases that may have less than 70 

ideal documentation.  71 

 72 

To overcome these issues, some researchers have developed thresholds and other methods for 73 

filtering out files inconsistent with expected criteria or are otherwise suspicious when compared to 74 

the literature 6,9. However, these imposed restrictions limit the available data one can use for large 75 

analyses and are reliant upon the assumption that the criteria used to filter can catch all potentially 76 

erroneous files. The most accurate way of determining a file’s origin is to search through the 77 

originating source studies for indication of identity of the file. In fact, a previous study sought to 78 
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 5 

validate files in these databases by word association in source texts with limited success 9. Some 79 

major limitations of these methods include their frequent inability to be applied to unpublished 80 

data and the excessive time-consumption during manual checking. An alternative method is to align 81 

the files to different species genomes starting with the reported species and ensure that the 82 

alignments match those expected from the experimental protocol. This method, while accurate, is 83 

computationally intensive and not as conducive on large scale data projects where thousands of 84 

files may be analyzed and thus thousands of alignments need to be performed.  85 

 86 

Thus, we reasoned that a more rapid and resilient way to assess the identity of a sequence file is 87 

the use of sequences in an alignment-free algorithm. There have been a number of studies 88 

demonstrating the ability to leverage k-mer identity and frequency biases to distinguish species in 89 

metagenomics studies and to validate de novo genome assembly 10,11. 90 

 91 

Here we present SeqWho, an accurate method for rapid validation of origin species and sequencing 92 

type from FASTQ(A) data and heuristically measuring basic read quality metrics. SeqWho exploits 93 

the principle of k-mer frequency biases between different genomes and regions of the genome in 94 

the differentiation of origin species and sequencing type 12. In this study, we demonstrate that 95 

SeqWho can accurately categorize the source species and technology from new sequencing data 96 

(greater than 95% on high confidence calls), using a Random Forest classification model. 97 

Furthermore, SeqWho is designed to be a very rapid and efficient software, taking less than 30 98 

seconds per file to run and having low memory requirements (approx. 750 MB). Taken together, we 99 

show that SeqWho is a powerful program that can reliably and quickly classify a diverse range of 100 
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sequencing files for use in validation or downstream analysis preprocessing. SeqWho is open-source 101 

software freely available at https://github.com/DaehwanKimLab/seqwho. 102 

 103 

Results and Discussion: 104 

Algorithmic Design 105 

Model Selection and Measurement Determination 106 

When designing the algorithm used by SeqWho, we first needed to determine classification-critical 107 

parameters such as the number of reads needed, the numeric determinants to be used, and the 108 

classification model. Previous studies in metagenomics and transcript qualification have 109 

demonstrated the ability to use frequency biases between k-mers as a method for making 110 

determinations 13,14. Thus, we started by calculating the frequencies of 1-7mers using only a portion 111 

of reads from the sequencing files. We used the smallest file sampling as possible to ensure rapid 112 

processing time. To this end, we determined that any selection beyond 25,000 reads produced 113 

diminishing returns for k-mer frequency array changes (Figure 1).  114 

 115 

Next, we sought to test a number of supervised learning models on their ability to classify species of 116 

origin and sequencing type. We tested these models on 9 different sequencing technologies 117 

between two different species resulting in 18 total categories. We found that these initial 1-7mer 118 

frequency arrays were sufficient for better-than-random classification of species and sequencing 119 

type in all tested machine learning paradigms (Table 1). We chose to use the Random Forest 120 

Classifier as the workhorse of SeqWho’s algorithm due to its superior gains in classification accuracy 121 

with optimized parameters and ease of development. 122 

 123 
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Table 1: Classifier Performance 124 

All classifiers tested with resulting call accuracy for both species and file type, species, and file type. 125 

 Overall Species Type 

Random Forest 88.15% 96.22% 90.74% 

Neural Net Binary 84.80% 95.58% 87.64% 

Neural Net Categorical 84.41% 95.85% 87.34% 

Muli-Layer Perceptron 84.27% 95.65% 87.00% 

Logistic Regression 79.78% 93.53% 82.66% 
Linear SVM 70.21% 84.31% 76.79% 

k-Nearest Neighbor 70.15% 93.15% 77.69% 
Naïve Bayes 43.87% 75.19% 66.86% 

Decision Tree 37.28% 85.22% 63.64% 
Quadratic Discriminant 26.47% 80.20% 32.40% 

 126 

We then tested classification accuracies for various k-mer lengths to determine how many 127 

datapoints were needed for optimal classification (data not shown). While larger k-mers, around 128 

31-mers, tended to produce better classification accuracy, the memory space needed to naïvely 129 

count k-mers at this level increases exponentially and makes the process very slow. Ultimately, we 130 

determined that 1-5mers were sufficient for classifying data at less than 90% overall accuracy. To 131 

improve this performance, we sought to include a small subset of common, highly deterministic 31-132 

mers that are likely to appear within a sample of 25,000 reads of a FASTQ(A) file. Repetitive 133 

elements in the genome are very common and have been shown to be biased in species and 134 

genome location, and therefore useful in classification on species type and sequencing type 15,16. 135 

Furthermore, we recently developed HISAT2, a read alignment program that builds and utilizes a 136 

repeat element database from the genome, making this data very easy to obtain 17. Thus, we 137 

hypothesized that a combination of common k-mer indicators from repetitive genomic regions, 138 

designated here as repeat k-mers, as well as the initial frequency array would substantially enhance 139 

classification accuracy.  140 
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 141 

Resulting Design 142 

We developed an algorithm to construct a training frequency array set using repeat 31-mers and 1-143 

5mers to train a set of core Random Forest Classifiers (Figure 2). We began with a set of FASTQ(A) 144 

files, labels, and HISAT2 repeat indices. For this initial test we used two different species, Human 145 

and Mouse, and nine different file types: Amplicon-seq, ATAC-seq, Bisulfite-seq, ChIP-seq, DNase-146 

seq, miRNA-seq, RNA-seq, Whole Genome Sequencing (WGS), and Whole Exome Sequencing (WES). 147 

We attempted to download 1000 random files of each type from the SRA marked for public use 148 

totaling 18,000 files. However, some of the files failed to download, were outdated color-space 149 

reads, or had other formatting issues that lead to a loss of file integrity, mostly in the Human 150 

Amplicon category. We ended up with 17,489 total files of which 1,004 did not meet quality 151 

standards resulting in 16,485 files used in model training (Table 2).  152 

 153 

Table 2: Number of files used in database training 154 

Count of files of each species and file type used to build the original SeqWho model 155 

 

Amplicon
-seq 

ATAC
-seq 

Bisulfite
-seq 

ChIP
-seq 

DNase
-seq 

miRNA
-seq 

RNA-
seq 

Whole 
Genome 

Seq 

Whole 
Exome 

Seq 
Human 621 1000 991 990 995 993 988 994 993 
Mouse 1000 999 985 982 960 1000 1000 1000 998 

 156 

We built 1-5mer frequency arrays and 31-mer repeat frequency arrays for each file and added them 157 

to a training frequency matrix (Figure 2A). To minimize the space needed to store repeat k-mers, 158 

after every 100 files processed, we purged the repeat k-mer index for any repeats that had less than 159 

a sliding threshold of hits. This allowed us to reduce the size of the index during building and limit 160 

repeats to only the most abundant in each file type. To keep from biasing the k-mer index purge to 161 
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 9 

one type of file such as biasing to WGS, we randomized the selection of the files from the 16,485 162 

pool. The resulting index contained 1095 of the most common repeat k-mers. These repeats were 163 

sorted and mapped to an array and frequencies were appended to the 1-5mer arrays. Through our 164 

multiple rounds of testing, we found that using binary Random Forest classifiers for each category 165 

were more accurate than categorical classification, easily reaching above 90% accuracy. However, 166 

we noted that there were some rare instances where no models were able to classify files and the 167 

inclusion of the combined classifications for species and type is necessary to serve as a second 168 

phase fail-safe for files that failed to be properly classified. Thus, the resulting frequency matrix was 169 

used to build 13 different Random Forest models, one for each classification: mouse, human, 170 

Amplicon, ATAC, Bisulfite, ChIP, DNase, microRNA, RNA, WGS, and WES; and two for categorical 171 

classifications, species and type. We also included metadata regarding model building so that the 172 

same steps can be used when typing incoming files against the index.  173 

 174 

Classification Results: 175 

We validated the model, trained using the aforementioned dataset, using 1,665 novel files (~100 of 176 

each species and sequencing type) not used during training. We found that we could correctly 177 

classify the species of the file ~98% of the time, sequencing technology ~95% of the time, and both 178 

combined ~93% of the time (Figure 3 and Table 3).  179 

 180 

Table 3: Random Forest classification metrics 181 
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 10 

Metrics for random forest model in SeqWho. Equations for each metric are located in the column heading. TP = True positive, T = 182 
Total, TN = True Negative, N = Called Negative, P = Called Positive. Models were build using N=16,485 files (Table 2) 183 

 184 

Through this test, we observed that we could tag each call with a confidence based on which 185 

Random Forest models were used to make the classification. For example, files that only needed 186 

the first 11 binary classification models for a proper full classification producing a single species 187 

classification and a single technology classification were considered high confidence calls. In cases 188 

where classifications were absent, the categorical classification model was used and considered low 189 

confidence. Out of the 1,665 files, only two showed double sequencing type classification, and both 190 

cases were assigned a dual WGS and ChIP-seq classification with the truth set indicating WGS. This 191 

is not surprising as WGS files and ChIP-seq types are among the most commonly confused 192 

classifications in the model (Figure 3B-C). We suspect this is due to the k-mer and repeat bias in the 193 

intergenic regions of the genome being captured in both sets and used to determine classification. 194 

We found that the most difficult classification is human amplicon vs mouse amplicon with ~22% 195 

misclassified (Figure 3C). We are not surprised by this result as amplified regions can be highly 196 

diverse between different experiments and may lead to extraneous biases that confound the 197 
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model’s ability to properly classify the files. Interestingly, we noted that RNA-seq also has some 198 

ambiguity in its classification of species. This could be due to the conservation of critical coding 199 

sequences between human and mouse genes. Overall, our Random Forest classifiers produce 200 

excellent results with high Sensitivity, Specificity, Precision, and Recall with the exception of Human 201 

Amplicon as mentioned above (Table 3). 202 

 203 

To begin to understand what features determine whether a file will be classified high confidence or 204 

low confidence, we gathered read and file quality metrics and performed a student’s t-test between 205 

all numeric variables measured with a Bonferroni correction. We found that Mean Read Quality was 206 

significantly different between the two categories and may help explain why some files are easier to 207 

classify (Figure 3D). This result makes sense as lower quality reads may impact the k-mer bias 208 

between files since there is no error correction or k-mer omission in the model. 209 

 210 

Mixed Samples and Integration into Consortia RNA-seq pipeline: 211 

We wanted to stress-test SeqWho’s call function on data other than SRA data and apply SeqWho to 212 

a real-world use case for further development. An RNA-seq analysis pipeline for two NIH consortia 213 

was being developed and released during the same timeframe as SeqWho. This initiative 214 

experienced longer than ideal file validation due to using alignment-based validation methods. We 215 

partnered with the project lead to incorporate SeqWho and its prebuilt models into their process. 216 

We were able to confirm SeqWho’s processing time of approximately 20 seconds, 20-200 times 217 

faster than their previous method, and accuracy of greater than 95% confidence.  218 

 219 
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A regular challenge presented to the pipeline is of mixed or contaminated data (ie mouse data in 220 

human data). We tested SeqWho on a set of synthetic and real mouse, human, RNA-seq, and ChIP-221 

seq data mixtures randomly generated or sampled from real data (Table 4). We found that in all 222 

cases where human sequences were present in mouse sequences, the data was classified as human. 223 

Furthermore, when RNA-seq data was present with ChIP-seq data, the call was always presented as 224 

RNA-seq. Interestingly, only a few of these calls had low confidence, indicating that the model may 225 

preferentially look for Human and DNA specific sequences or signatures over Mouse or RNA 226 

signatures. In one sense, this is surprising as we would expect an equal chance of Mouse or Human 227 

in a mixture. On the other hand, it is not surprising for the sequencing type call since RNA 228 

sequences are a subset of DNA sequences. It makes sense to look for DNA-specific markers. Of 229 

particular interest is the inclusion of single cell RNA-seq (scRNA) files in the test. Even though 230 

SeqWho was not trained on scRNA-seq files, it was able to accurately call the files as RNA-seq with 231 

one file having a low confidence tag. 232 

 233 

Table 4: Mixed data type stress test 234 

Table shows results of stress test on SeqWho using files containing mixed data. Mouse and Human RNA-seq and ChIP-seq used. 235 

Human:Mouse ratio is percent of file with human data with remainder representing mouse data. RNA-seq:ChIP-seq ration is 236 

percent of file with RNA-seq data with remainder representing ChIP-seq data. Single Cell RNA-seq indicates whether the sample 237 

is from single cell RNA-seq experiment. Call confidence is reported by SeqWho up arrow = high confidence, down arrow = low 238 
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confidence. Call species and call sequence type are the results from SeqWho. Count is number of iterations that result was found 239 

in the combination of the previous columns of the table. 240 

 241 

Heuristic FASTQ(A) quality information 242 

Our goal is to make SeqWho as useful as possible for upstream processes in all major bioinformatic 243 

pipelines. Thus, we wanted to further expand SeqWho by reporting quality metrics on the files it 244 

processes, modeling the reports of another popular QC program FASTQC 18. The main metrics we 245 

focused on were: 1) %GC content 2) average read quality 3) number of reads in the file and 4) 246 

sequence/adapter content (Figure 4). These metrics were easily added to the processing steps 247 

taken when constructing frequency vectors with constant time changes to the algorithm. We 248 

wanted to avoid processing all reads in the file and maintain a rapid processing time for SeqWho’s 249 

Human : 
Mouse 
Ratio

RNA-seq : 
ChIP-seq 

Ratio
Single Cell 
RNA-seq

Call 
Confidence Call Species

Call 
Sequence 

Type Count
1.0 0.0 Human ChIP-seq 1
1.0 0.3 Human RNA-seq 5
1.0 0.4 Human RNA-seq 5
1.0 0.5 Human RNA-seq 2
1.0 0.5 Human RNA-seq 3
1.0 0.6 Human RNA-seq 5
1.0 0.7 Human RNA-seq 5
1.0 1.0 Human RNA-seq 2
0.7 0.3 Human RNA-seq 1
0.7 0.3 Human RNA-seq 4
0.7 1.0 Human RNA-seq 5
0.6 0.4 Human RNA-seq 5
0.6 1.0 Human RNA-seq 5
0.5 0.5 Human RNA-seq 5
0.5 1.0 Human RNA-seq 5
0.4 0.6 Human RNA-seq 5
0.4 1.0 Human RNA-seq 5
0.3 0.7 Human RNA-seq 5
0.3 1.0 Human RNA-seq 5
0.0 1.0 Mouse RNA-seq 11
0.0 1.0 Mouse RNA-seq 11
0.0 1.0 Mouse RNA-seq 1
0.0 1.0 Mouse RNA-seq 1
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as opposed to FASTQC which processes all reads in the file and is many times slower. However, 250 

while 25,000 reads are sufficient for classification, we wanted to make sure we captured sufficient 251 

quality information resulting in doubling the read number to 50,000. Compared to FASTQC as run 252 

on the 17 Platinum Whole Genome Sequences previously reported 19, we found that SeqWho is 253 

~200 times faster and has very similar percent GC and average read quality metrics (Figure 4A). 254 

Though we added a naïve adapter detection step, SeqWho was not able to detect any adapters in 255 

the files tested. This may be a byproduct of the more stringent cutoffs SeqWho uses to assess bias 256 

in the ends of the reads, or a byproduct of focusing on the end 10 nucleotides of the reads for 257 

detection. 258 

 259 

We added a heuristic estimation of number of reads in a file using the ratio of the number of reads 260 

in a chunk to the size of the chunk and the size of the file. Interestingly, this method produces read 261 

estimates very similar to the true value as captured by FASTQC (Figure 4b). Only one file’s estimates 262 

did not coincide with the true read numbers. We suspect this was due to less efficient compression 263 

of a part of the file that threw off the ratio of our estimate.  264 

 265 

Furthermore, we added plots to represent the quality information in a manner similar to FASTQC 266 

(Figure 4C). All plots that SeqWho produces contain highly similar data and trends as those 267 

produced by FASTQC. Thus, SeqWho can rapidly and reliably capture representative quality 268 

metadata from processed files. Additionally, this information can be read visually or by a computer 269 

program as all raw data is exported as a JSON and TSV file for later use.  270 

 271 
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Conclusions: 272 

Here we presented SeqWho, a rapid and reliable software for classifying a read file’s original 273 

organism and sequencing type, and for assessing quality information. We utilized the bias in k-mer 274 

frequencies to train 13 Random Forest classifier models. This provides us with a reliable way to 275 

assess the confidence of the call and allows us to achieve upwards of ~97% accuracy in high 276 

confidence classifications. Furthermore, SeqWho allows us to rapidly assess the quality metrics of 277 

the reads and file as a whole with constant time addition to the algorithms. By using only 25,000-278 

50,000 reads, we were able to keep the run time of SeqWho to ~20 seconds, ~200 times faster than 279 

another commonly used QC program, FASTQC, with the additional ability to classify the file. 280 

Additionally, SeqWho runtime is independent of input file size due to subsampling. While there are 281 

some errors in the heuristic assessment of quality, SeqWho remains able to very accurately 282 

characterize the file’s quality substantially faster than FASTQC. Furthermore, we report this data in 283 

a graphical format for human interpretation and as a JSON-formatted text file to be read in 284 

downstream automated processes. We consider this aspect to make SeqWho a critical and versatile 285 

program for use in standard sequence QC, in large scale data pipelines with extensive automation, 286 

or in individual cases to confirm data from dubious origins. Future work will focus on improving the 287 

algorithms classification to achieving the desired goal of >99% accuracy as well as improving the 288 

heuristic determination of quality information. Further implications of this work include that we are 289 

capable of drawing highly valuable information can be drawn from biases in k-mer frequencies 290 

without the time expensive step of read alignment. Overall, SeqWho is a versatile, rapid, and 291 

reliable program that lays the framework for extensive future work into utilizing k-mer frequency 292 

and repeat information in unique, rapid ways.  293 
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Materials and Methods: 294 

Program versions and code development: 295 

Unless otherwise noted, SeqWho was developed in a conda environment under python version 296 

3.7.4 using package versions noted in supplemental_file_1.txt file. All codes, analyses, and plots 297 

were performed or developed within this environment on a Linux workstation running CentOS 298 

version 7 with a Xeon® E5-1650 3.60 GHz 12 core CPU and 64GB of ECC RAM. In addition to python, 299 

we used Nextflow version 0.31.0, SRA-toolkit version 2.10.9, seqtk version 1.3, R version 4.0.3, 300 

FASTQC version 0.11.8, Keras version 2.2.4, and tenserflow version 1.14.0. 301 

 302 

Design Principles 303 

Model Building 304 

Model building is divided into two minor processes: 1) the 1-5 mer frequency generation and 2) 305 

repeat index consolidation. A list of training files is first read from a directory specified by the user 306 

and randomized. Then for each file for each read in the first 25,000 reads every 1-, 2-, 3-, 4-, and 5- 307 

mer without ambiguous nucleotides are counted and each count is added to a 1,364 long array 308 

position corresponding to a sorted list of k-mers. The resulting count array is converted to k-mer 309 

frequencies by k-mer set size and added to a matrix with the file label recorded. The second 310 

process, repeat index consolidation, involves building a sorted array of repeat 31-mers from the 311 

repeat indeces for mouse and human provided by HISAT2 v2.2. As each file is processed, each read 312 

is scanned for 31-mers matching sequences in the repeat array and counted in a count array. After 313 

every 100 processed files any repeat with a total number of hits less than the number of files 314 

processed divided by 100 are removed and their corresponding entries are removed from all other 315 

file count arrays. After all files have been processed a final purging step is performed to remove 316 
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repeats with high similarity between species using the variance of the repeat frequencies. Any 317 

variance less than half the variance of a perfectly determining repeat (frequency of 1 for a single 318 

species) is removed. The resulting counts were converted into a frequency by dividing the counts 319 

for each file by the sum of the file counts and were added to the 1-5 mer frequency matrix. From 320 

this model building data, a binary Random Forest classifier was trained for each label and species, 321 

resulting in our case with 9 sequencing type and 2 species models. Two further models were trained 322 

using all sequencing type classification and all species classification resulting in a total of 13 Random 323 

Forest models with the result from each mapped to a result array. Metadata, including information 324 

needed to rebuild the vectors and repeat information, and the Random Forest classifiers in a 325 

python pickle were saved into a SeqWho index for use in file testing. 326 

 327 

File Testing 328 

File classification makes use of the metadata present from the building step to assemble a 329 

compatible frequency array that can be used in the Random Forest classifiers using steps identical 330 

to the building step except for the repeat purging procedure, which is not needed. Furthermore, 331 

read quality metrics: length, quality per base, average quality, nucleotide biases etc. were measured 332 

to be reported simultaneously to k-mer counting. An estimate of the total read number was 333 

calculated by multiplying the total number of reads read processed by the ratio between the total 334 

compressed size of the file on disk and the compressed size of the file chunk read in by Seq-Who. 335 

The binary classifiers were used first to determine if an accurate call can be made. If 1 species and 1 336 

sequencing type call were generated the quality metrics and call were reported. Any other call 337 

generated results in a double check against the backup categorical Random Forest classifiers for 338 

species and sequencing type. In this case a low confidence flag was appended and included tag to 339 
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delimitate which classification (species or sequencing type) had to be validated. A number one 340 

indicated that classification was a high confidence validation and a zero indicatred a lower 341 

confidence classification with the first number indicating species classification and the second 342 

number indicating sequencing type classification (ex “low confidence1:0” indicated species was 343 

called with high confidence and sequencing type needed to be validated). Calls and quality data are 344 

returned as a JSON and tab delimited text file with read quality information also being reported in a 345 

plot PNG file.  346 

 347 

Acquisition of Data 348 

A Nextflow script was used to download specific sequencing read files from the SRA database. A 349 

metadata file for SRA, obtained from https://ftp.ncbi.nlm.nih.gov/sra/reports/Metadata/, was 350 

filtered for publicly available data. 19,800 files corresponding to whole genome sequencing, whole 351 

exome sequencing, ChIP-seq, amplicon sequencing, ATAC-seq, DNase-seq, Bisulfite-seq, RNA-seq, 352 

and micro-RNA-seq for each of two species, Mouse and Human, 1,100 files for each type, were 353 

randomly selected for download. We downloaded 1 million reads from each selected file using SRA-354 

toolkit with the –maxSpotId option and Nextflow. The file retrieval process was run using the 355 

BioHPC (UT Southwestern) and up to ten files were retrieved simultaneously. The final database 356 

consisted of a total of 18,151 FASTQ(A) files gzip compressed, consuming approximately 164 GB of 357 

disk space.  Data for the RNA-seq pipeline validation can be found at 358 

https://doi.org/10.5281/zenodo.4429315.  359 

Model Testing and Validation 360 

Model testing and selection was performed using scikit-learn for the following models: Logistic 361 

Regression, Decision Tree, Naïve Bayes, k-Nearest Neighbor, Linear SVM, Multi-Layer Perceptron, 362 
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Quadratic Discriminant, and Random Forest. Keras with Tenserflow was used for building and 363 

testing Neural Nets. To rapidly test the models and parameters, 100 files for each file sequencing 364 

type for each species were used to build a pre-calculated 1-7-mer count matrix with labels. To 365 

determine the number of reads needed, reads were drawn from the first 1 million reads in 100 366 

increments and counts were added to the matrix. At each increment, frequencies were calculated 367 

by dividing the individual counts by the total counts and the percent change was calculated 368 

between the previous increment and the current increment. 25,000 reads were selected as 369 

sufficient for model testing. Thus, the count matrix was built with the top 25,000 reads of each file. 370 

Two frequency matrices were generated from the count matrix, with one, calculated by dividing the 371 

individual counts by the total counts and the other calculated by dividing each k-mer count set by 372 

the sum of the set. Each model was tested multiple times using an 80/20 split of each matrix with 373 

varying optimization parameters, levels, nodes, etc. RandomForestClassifier module was selected 374 

for use with n_estimator parameter set to 500. 375 

 376 

The complete SeqWho algorithm was tested by building an index from the aforementioned SRA 377 

data. 16,485 files (Table 2) were used to build the model while the remaining 1,665 files were used 378 

for validation. Confusion matrices were built in R using the caret package version 6.0 and plotted 379 

using ggplot2 version 3.3.3. Statistics performed were student’s t-test with Bonferroni correction to 380 

account for multivariate testing. Seq-Who quality metrics were tested against FASTQC on 17 381 

Platinum Genome sequencing files that we reported on previously 17. 382 

 383 

Four replicate's FASTQ’s were manually downloaded from the GUDMAP consortium data-hub 384 

website. The replicates represent three different sequencing modalities (bulk RNA-seq, scRNA-seq, 385 
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and ChIP-seq), as well as two species (human, and mouse). To create RNA-seq (bulk) and ChIP-seq - 386 

as well as - human and mouse admixtures, the FASTQ’s were randomly sampled and concatenated 387 

in order to generate varying amounts of sequence type and species mixtures. Each mixture was 388 

then randomly sampled to one million reads, using different seeds to create multiple replicates of 389 

the same admixtures. Seqtk (version 1.3) was use for the random sampling of the FASTQ’s. The 390 

resulting FASTQ’s were then analyzed using SeqWho to call sequencing types and species. 391 

 392 
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Figure 1
A B

Plot of average percent change during k-mer table update as more reads are added. A) Shows number of reads maxed 
at 50,000 verses percent change. B) Shows log number of reads verses percent change. Red lines mark 25,000 reads
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Figure 2
A B

Model design for SeqWho Random Forest classification training. A) Graphical flow of data read in and processed into 
different arrays B) Pseudo-code for the whole process of building the indices needed and typing from the indices.
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Figure 3
A B

C

D

Classification accuracy of SeqWho’s Random Forest models. A) Percent correct calls for Species, Sequencing Type, and all 
together for all calls, high confidence calls, and low confidence calls. B) Confusion matrix for Species calls and Sequence type
calls for high confidence calls in percent. C) Confusion matrix for full correct calls for high confidence calls in percent. D) Box-n-
whisker plot showing differences between Mean Read Quality between high and low confidence calls. * indicates adjusted p < 
0.0001
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Figure 4
A B

C

Comparison of SeqWho quality information to FASTQC. A) Comparison of times, %GC, and average read quality with standard 
deviations. B) Linear correlation between the true FASTQC file read number and the estimated SeqWho read numbers. C) Plot 
and data distribution comparison between SeqWho (left) and FASTQC (right).
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