

1	SeqWho: Reliable, rapid determination of sequence file identity using <i>k</i>-mer frequencies
2	Authors: Bennett, Christopher ¹ ; Thornton, Micah ¹ ; Park, Chanhee ¹ ; Henry, Gervaise ¹ ; Zhang, Yun ¹ ;
3	Malladi, Venkat S.¹; and Kim, Daehwan^{1*}
4	¹ Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas,
5	TX, USA
6	*Corresponding Author
7	Email addresses:
8	CB: Christopher.Bennett@UTSouthwestern.edu
9	MT: Micah.Thornton@UTSouthwestern.edu
10	CP: Chanhee.Park@UTSouthwestern.edu
11	GH: Gervaise.Henry@UTSouthwestern.edu
12	YZ: Yun.Zhang@UTSouthwestern.edu
13	VM: Venkat.Malladi@UTSouthwestern.edu
14	DK: Daehwan.Kim@UTSouthwestern.edu
15	Table of Contents
16	Abstract: 3
17	Introduction: 4
18	Results and Discussion: 6
19	Algorithmic Design 6
20	Model Selection and Measurement Determination..... 6
21	Resulting Design 8
22	Classification Results: 9
23	Mixed Samples and Integration into Consortia RNA-seq pipeline: 11

24	Heuristic FASTQ(A) quality information	13
25	<i>Conclusions:</i>.....	15
26	<i>Materials and Methods:</i>	16
27	Program versions and code development:	16
28	Design Principles.....	16
29	Model Building	16
30	File Testing.....	17
31	Acquisition of Data	18
32	Model Testing and Validation	18
33	<i>Acknowledgements</i>	20
34	<i>Authors' contributions</i>	20
35	<i>Competing interests</i>.....	20
36	<i>Availability of data and materials</i>.....	21
37	<i>References</i>.....	22
38		
39		

40 **Abstract:**

41 With the vast improvements in sequencing technologies and increased number of protocols,
42 sequencing is finding more applications to answer complex biological problems. Thus, the amount
43 of publicly available sequencing data has tremendously increased in repositories such as SRA, EGA,
44 and ENCODE. With any large online database, there is a critical need to accurately document study
45 metadata, such as the source protocol and organism. In some cases, this metadata may not be
46 systematically verified by the hosting sites and may result in a negative influence on future studies.
47 Here we present SeqWho, a program designed to heuristically assess the quality of sequencing files
48 and reliably classify the organism and protocol type. This is done in an alignment-free algorithm
49 that leverages a Random Forest classifier to learn from native biases in *k*-mer frequencies and
50 repeat sequence identities between different sequencing technologies and species. Here, we show
51 that our method can accurately and rapidly distinguish between human and mouse, nine different
52 sequencing technologies, and both together, 98.32%, 97.86%, and 96.38% of the time in high
53 confidence calls respectively. This demonstrates that SeqWho is a powerful method for reliably
54 checking the identity of the sequencing files used in any pipeline and illustrates the program's
55 ability to leverage *k*-mer biases.

56 **Introduction:**

57 Over the years, there has been an explosion in the applications of sequencing technologies and of
58 sequenced organisms ^{1,2}. Due to the variety, recent advancements, and the reduced costs of these
59 technologies, there has been a substantial increase in the number of raw and processed read files
60 produced ³. As the use of sequencing finds further applications, the depth of sequencing increases,
61 and as more data becomes publicly available, proper storage, maintenance, and documentation
62 become crucial. Fortunately, there are a number of public repositories where raw and/or processed
63 files can be stored such as ENCODE and the Sequence Read Archive (SRA) ^{4,5}. Some of these
64 repositories are well maintained, requiring extensive validation of the submitted files, while others
65 traditionally rely on user reporting. This has led to some inconsistencies and possible errors in
66 experimental protocol and/or the species of origin in the metadata provided for some of the files ⁶.
67 Indeed, It is well documented that errors propagating from these mislabeled calls in metadata do
68 negatively impact data integrity ^{7,8}. Furthermore, it is often important to ensure users have proper
69 input files before running a time-intensive analysis, pipeline, or program. This need for a validation
70 check extends to receiving data from less well-curated or private databases that may have less than
71 ideal documentation.

72

73 To overcome these issues, some researchers have developed thresholds and other methods for
74 filtering out files inconsistent with expected criteria or are otherwise suspicious when compared to
75 the literature ^{6,9}. However, these imposed restrictions limit the available data one can use for large
76 analyses and are reliant upon the assumption that the criteria used to filter can catch all potentially
77 erroneous files. The most accurate way of determining a file's origin is to search through the
78 originating source studies for indication of identity of the file. In fact, a previous study sought to

79 validate files in these databases by word association in source texts with limited success ⁹. Some
80 major limitations of these methods include their frequent inability to be applied to unpublished
81 data and the excessive time-consumption during manual checking. An alternative method is to align
82 the files to different species genomes starting with the reported species and ensure that the
83 alignments match those expected from the experimental protocol. This method, while accurate, is
84 computationally intensive and not as conducive on large scale data projects where thousands of
85 files may be analyzed and thus thousands of alignments need to be performed.

86

87 Thus, we reasoned that a more rapid and resilient way to assess the identity of a sequence file is
88 the use of sequences in an alignment-free algorithm. There have been a number of studies
89 demonstrating the ability to leverage *k*-mer identity and frequency biases to distinguish species in
90 metagenomics studies and to validate *de novo* genome assembly ^{10,11}.

91

92 Here we present SeqWho, an accurate method for rapid validation of origin species and sequencing
93 type from FASTQ(A) data and heuristically measuring basic read quality metrics. SeqWho exploits
94 the principle of *k*-mer frequency biases between different genomes and regions of the genome in
95 the differentiation of origin species and sequencing type ¹². In this study, we demonstrate that
96 SeqWho can accurately categorize the source species and technology from new sequencing data
97 (greater than 95% on high confidence calls), using a Random Forest classification model.
98 Furthermore, SeqWho is designed to be a very rapid and efficient software, taking less than 30
99 seconds per file to run and having low memory requirements (approx. 750 MB). Taken together, we
100 show that SeqWho is a powerful program that can reliably and quickly classify a diverse range of

101 sequencing files for use in validation or downstream analysis preprocessing. SeqWho is open-source
102 software freely available at <https://github.com/DaehwanKimLab/seqwho>.

103

104 **Results and Discussion:**

105 Algorithmic Design

106 Model Selection and Measurement Determination

107 When designing the algorithm used by SeqWho, we first needed to determine classification-critical
108 parameters such as the number of reads needed, the numeric determinants to be used, and the
109 classification model. Previous studies in metagenomics and transcript qualification have
110 demonstrated the ability to use frequency biases between k -mers as a method for making
111 determinations^{13,14}. Thus, we started by calculating the frequencies of 1-7mers using only a portion
112 of reads from the sequencing files. We used the smallest file sampling as possible to ensure rapid
113 processing time. To this end, we determined that any selection beyond 25,000 reads produced
114 diminishing returns for k -mer frequency array changes (Figure 1).

115

116 Next, we sought to test a number of supervised learning models on their ability to classify species of
117 origin and sequencing type. We tested these models on 9 different sequencing technologies
118 between two different species resulting in 18 total categories. We found that these initial 1-7mer
119 frequency arrays were sufficient for better-than-random classification of species and sequencing
120 type in all tested machine learning paradigms (Table 1). We chose to use the Random Forest
121 Classifier as the workhorse of SeqWho's algorithm due to its superior gains in classification accuracy
122 with optimized parameters and ease of development.

123

124 Table 1: Classifier Performance

125 *All classifiers tested with resulting call accuracy for both species and file type, species, and file type.*

	Overall	Species	Type
Random Forest	88.15%	96.22%	90.74%
Neural Net Binary	84.80%	95.58%	87.64%
Neural Net Categorical	84.41%	95.85%	87.34%
Multi-Layer Perceptron	84.27%	95.65%	87.00%
Logistic Regression	79.78%	93.53%	82.66%
Linear SVM	70.21%	84.31%	76.79%
k-Nearest Neighbor	70.15%	93.15%	77.69%
Naïve Bayes	43.87%	75.19%	66.86%
Decision Tree	37.28%	85.22%	63.64%
Quadratic Discriminant	26.47%	80.20%	32.40%

126

127 We then tested classification accuracies for various k -mer lengths to determine how many
128 datapoints were needed for optimal classification (data not shown). While larger k -mers, around
129 31-mers, tended to produce better classification accuracy, the memory space needed to naïvely
130 count k -mers at this level increases exponentially and makes the process very slow. Ultimately, we
131 determined that 1-5mers were sufficient for classifying data at less than 90% overall accuracy. To
132 improve this performance, we sought to include a small subset of common, highly deterministic 31-
133 mers that are likely to appear within a sample of 25,000 reads of a FASTQ(A) file. Repetitive
134 elements in the genome are very common and have been shown to be biased in species and
135 genome location, and therefore useful in classification on species type and sequencing type^{15,16}.
136 Furthermore, we recently developed HISAT2, a read alignment program that builds and utilizes a
137 repeat element database from the genome, making this data very easy to obtain¹⁷. Thus, we
138 hypothesized that a combination of common k -mer indicators from repetitive genomic regions,
139 designated here as repeat k -mers, as well as the initial frequency array would substantially enhance
140 classification accuracy.

141

142 Resulting Design

143 We developed an algorithm to construct a training frequency array set using repeat 31-mers and 1-

144 5mers to train a set of core Random Forest Classifiers (Figure 2). We began with a set of FASTQ(A)

145 files, labels, and HISAT2 repeat indices. For this initial test we used two different species, Human

146 and Mouse, and nine different file types: Amplicon-seq, ATAC-seq, Bisulfite-seq, ChIP-seq, DNase-

147 seq, miRNA-seq, RNA-seq, Whole Genome Sequencing (WGS), and Whole Exome Sequencing (WES).

148 We attempted to download 1000 random files of each type from the SRA marked for public use

149 totaling 18,000 files. However, some of the files failed to download, were outdated color-space

150 reads, or had other formatting issues that lead to a loss of file integrity, mostly in the Human

151 Amplicon category. We ended up with 17,489 total files of which 1,004 did not meet quality

152 standards resulting in 16,485 files used in model training (Table 2).

153

154 Table 2: Number of files used in database training

155 *Count of files of each species and file type used to build the original SeqWho model*

	Amplicon -seq	ATAC -seq	Bisulfite -seq	ChIP -seq	DNase -seq	miRNA -seq	RNA- seq	Whole Genome Seq	Whole Exome Seq
Human	621	1000	991	990	995	993	988	994	993
Mouse	1000	999	985	982	960	1000	1000	1000	998

156

157 We built 1-5mer frequency arrays and 31-mer repeat frequency arrays for each file and added them

158 to a training frequency matrix (Figure 2A). To minimize the space needed to store repeat *k*-mers,

159 after every 100 files processed, we purged the repeat *k*-mer index for any repeats that had less than

160 a sliding threshold of hits. This allowed us to reduce the size of the index during building and limit

161 repeats to only the most abundant in each file type. To keep from biasing the *k*-mer index purge to

162 one type of file such as biasing to WGS, we randomized the selection of the files from the 16,485
163 pool. The resulting index contained 1095 of the most common repeat k -mers. These repeats were
164 sorted and mapped to an array and frequencies were appended to the 1-5mer arrays. Through our
165 multiple rounds of testing, we found that using binary Random Forest classifiers for each category
166 were more accurate than categorical classification, easily reaching above 90% accuracy. However,
167 we noted that there were some rare instances where no models were able to classify files and the
168 inclusion of the combined classifications for species and type is necessary to serve as a second
169 phase fail-safe for files that failed to be properly classified. Thus, the resulting frequency matrix was
170 used to build 13 different Random Forest models, one for each classification: mouse, human,
171 Amplicon, ATAC, Bisulfite, ChIP, DNase, microRNA, RNA, WGS, and WES; and two for categorical
172 classifications, species and type. We also included metadata regarding model building so that the
173 same steps can be used when typing incoming files against the index.

174

175 Classification Results:

176 We validated the model, trained using the aforementioned dataset, using 1,665 novel files (~100 of
177 each species and sequencing type) not used during training. We found that we could correctly
178 classify the species of the file ~98% of the time, sequencing technology ~95% of the time, and both
179 combined ~93% of the time (Figure 3 and Table 3).

180

181 Table 3: Random Forest classification metrics

182 Metrics for random forest model in SeqWho. Equations for each metric are located in the column heading. TP = True positive, T =
 183 Total, TN = True Negative, N = Called Negative, P = Called Positive. Models were build using N=16,485 files (Table 2)

		Sensitivity/ Recall (S) TP/T	Specificity TN/N	Pos Pred Value/ Precision (PPV) TP/P	Neg Pred Value TN/N	F1 2SxPPV/(S+PPV)	Detection Rate	Detection Prevalence	Balanced Accuracy
Human	Amplicon	0.784	0.996	0.870	0.992	0.825	0.027	0.031	0.890
	ATAC	1.000	1.000	1.000	1.000	1.000	0.064	0.064	1.000
	Bisulfite	1.000	1.000	1.000	1.000	1.000	0.062	0.062	1.000
	ChIP	0.943	0.996	0.930	0.997	0.936	0.044	0.048	0.970
	DNase	0.976	0.999	0.976	0.999	0.976	0.054	0.055	0.987
	miRNA	0.990	0.996	0.942	0.999	0.965	0.065	0.069	0.993
	RNA	0.926	0.998	0.962	0.996	0.943	0.050	0.052	0.962
	WGS	0.938	0.998	0.962	0.996	0.950	0.051	0.053	0.968
Mouse	WES	0.985	0.999	0.970	0.999	0.977	0.043	0.044	0.992
	Amplicon	0.935	0.992	0.782	0.998	0.851	0.029	0.037	0.963
	ATAC	1.000	1.000	1.000	1.000	1.000	0.066	0.066	1.000
	Bisulfite	1.000	0.999	0.980	1.000	0.990	0.065	0.066	0.999
	ChIP	0.955	0.996	0.913	0.998	0.933	0.042	0.046	0.975
	DNase	0.967	0.999	0.989	0.998	0.978	0.058	0.059	0.983
	miRNA	0.968	0.999	0.989	0.998	0.979	0.062	0.062	0.984
	RNA	0.957	0.998	0.967	0.997	0.962	0.059	0.061	0.977
184	WGS	0.926	0.999	0.978	0.995	0.951	0.058	0.060	0.962
	WES	0.990	1.000	1.000	0.999	0.995	0.064	0.064	0.995

185 Through this test, we observed that we could tag each call with a confidence based on which
 186 Random Forest models were used to make the classification. For example, files that only needed
 187 the first 11 binary classification models for a proper full classification producing a single species
 188 classification and a single technology classification were considered high confidence calls. In cases
 189 where classifications were absent, the categorical classification model was used and considered low
 190 confidence. Out of the 1,665 files, only two showed double sequencing type classification, and both
 191 cases were assigned a dual WGS and ChIP-seq classification with the truth set indicating WGS. This
 192 is not surprising as WGS files and ChIP-seq types are among the most commonly confused
 193 classifications in the model (Figure 3B-C). We suspect this is due to the k-mer and repeat bias in the
 194 intergenic regions of the genome being captured in both sets and used to determine classification.
 195 We found that the most difficult classification is human amplicon vs mouse amplicon with ~22%
 196 misclassified (Figure 3C). We are not surprised by this result as amplified regions can be highly
 197 diverse between different experiments and may lead to extraneous biases that confound the

198 model's ability to properly classify the files. Interestingly, we noted that RNA-seq also has some
199 ambiguity in its classification of species. This could be due to the conservation of critical coding
200 sequences between human and mouse genes. Overall, our Random Forest classifiers produce
201 excellent results with high Sensitivity, Specificity, Precision, and Recall with the exception of Human
202 Amplicon as mentioned above (Table 3).

203
204 To begin to understand what features determine whether a file will be classified high confidence or
205 low confidence, we gathered read and file quality metrics and performed a student's t-test between
206 all numeric variables measured with a Bonferroni correction. We found that Mean Read Quality was
207 significantly different between the two categories and may help explain why some files are easier to
208 classify (Figure 3D). This result makes sense as lower quality reads may impact the *k*-mer bias
209 between files since there is no error correction or *k*-mer omission in the model.

210
211 *Mixed Samples and Integration into Consortia RNA-seq pipeline:*
212 We wanted to stress-test SeqWho's call function on data other than SRA data and apply SeqWho to
213 a real-world use case for further development. An RNA-seq analysis pipeline for two NIH consortia
214 was being developed and released during the same timeframe as SeqWho. This initiative
215 experienced longer than ideal file validation due to using alignment-based validation methods. We
216 partnered with the project lead to incorporate SeqWho and its prebuilt models into their process.
217 We were able to confirm SeqWho's processing time of approximately 20 seconds, 20-200 times
218 faster than their previous method, and accuracy of greater than 95% confidence.

219

220 A regular challenge presented to the pipeline is of mixed or contaminated data (ie mouse data in
221 human data). We tested SeqWho on a set of synthetic and real mouse, human, RNA-seq, and ChIP-
222 seq data mixtures randomly generated or sampled from real data (Table 4). We found that in all
223 cases where human sequences were present in mouse sequences, the data was classified as human.
224 Furthermore, when RNA-seq data was present with ChIP-seq data, the call was always presented as
225 RNA-seq. Interestingly, only a few of these calls had low confidence, indicating that the model may
226 preferentially look for Human and DNA specific sequences or signatures over Mouse or RNA
227 signatures. In one sense, this is surprising as we would expect an equal chance of Mouse or Human
228 in a mixture. On the other hand, it is not surprising for the sequencing type call since RNA
229 sequences are a subset of DNA sequences. It makes sense to look for DNA-specific markers. Of
230 particular interest is the inclusion of single cell RNA-seq (scRNA) files in the test. Even though
231 SeqWho was not trained on scRNA-seq files, it was able to accurately call the files as RNA-seq with
232 one file having a low confidence tag.

233

234 Table 4: Mixed data type stress test

235 *Table shows results of stress test on SeqWho using files containing mixed data. Mouse and Human RNA-seq and ChIP-seq used.*
236 *Human:Mouse ratio is percent of file with human data with remainder representing mouse data. RNA-seq:ChIP-seq ration is*
237 *percent of file with RNA-seq data with remainder representing ChIP-seq data. Single Cell RNA-seq indicates whether the sample*
238 *is from single cell RNA-seq experiment. Call confidence is reported by SeqWho up arrow = high confidence, down arrow = low*

239 confidence. Call species and call sequence type are the results from SeqWho. Count is number of iterations that result was found
240 in the combination of the previous columns of the table.

Human : RNA-seq :		Call			Call		
Mouse Ratio	ChIP-seq Ratio	Single Cell RNA-seq	Call Confidence	Call Species	Sequence Type	Count	
1.0	0.0	✗	↑	Human	<u>ChIP-seq</u>	1	
1.0	0.3	✗	↓	Human	RNA-seq	5	
1.0	0.4	✗	↓	Human	RNA-seq	5	
1.0	0.5	✗	↓	Human	RNA-seq	2	
1.0	0.5	✗	↑	Human	RNA-seq	3	
1.0	0.6	✗	↑	Human	RNA-seq	5	
1.0	0.7	✗	↑	Human	RNA-seq	5	
1.0	1.0	✗	↑	Human	RNA-seq	2	
0.7	0.3	✗	↑	Human	RNA-seq	1	
0.7	0.3	✗	↓	Human	RNA-seq	4	
0.7	1.0	✗	↑	Human	RNA-seq	5	
0.6	0.4	✗	↑	Human	RNA-seq	5	
0.6	1.0	✗	↑	Human	RNA-seq	5	
0.5	0.5	✗	↑	Human	RNA-seq	5	
0.5	1.0	✗	↑	Human	RNA-seq	5	
0.4	0.6	✗	↑	Human	RNA-seq	5	
0.4	1.0	✗	↑	Human	RNA-seq	5	
0.3	0.7	✗	↑	Human	RNA-seq	5	
0.3	1.0	✗	↑	Human	RNA-seq	5	
0.0	1.0	✗	↑	<u>Mouse</u>	RNA-seq	11	
0.0	1.0	✓	↓	<u>Mouse</u>	RNA-seq	11	
0.0	1.0	✓	↓	<u>Mouse</u>	RNA-seq	1	
0.0	1.0	✓	↑	<u>Mouse</u>	RNA-seq	1	

241
242 Heuristic FASTQ(A) quality information
243 Our goal is to make SeqWho as useful as possible for upstream processes in all major bioinformatic
244 pipelines. Thus, we wanted to further expand SeqWho by reporting quality metrics on the files it
245 processes, modeling the reports of another popular QC program FASTQC¹⁸. The main metrics we
246 focused on were: 1) %GC content 2) average read quality 3) number of reads in the file and 4)
247 sequence/adapter content (Figure 4). These metrics were easily added to the processing steps
248 taken when constructing frequency vectors with constant time changes to the algorithm. We
249 wanted to avoid processing all reads in the file and maintain a rapid processing time for SeqWho's

250 as opposed to FASTQC which processes all reads in the file and is many times slower. However,
251 while 25,000 reads are sufficient for classification, we wanted to make sure we captured sufficient
252 quality information resulting in doubling the read number to 50,000. Compared to FASTQC as run
253 on the 17 Platinum Whole Genome Sequences previously reported ¹⁹, we found that SeqWho is
254 ~200 times faster and has very similar percent GC and average read quality metrics (Figure 4A).
255 Though we added a naïve adapter detection step, SeqWho was not able to detect any adapters in
256 the files tested. This may be a byproduct of the more stringent cutoffs SeqWho uses to assess bias
257 in the ends of the reads, or a byproduct of focusing on the end 10 nucleotides of the reads for
258 detection.

259
260 We added a heuristic estimation of number of reads in a file using the ratio of the number of reads
261 in a chunk to the size of the chunk and the size of the file. Interestingly, this method produces read
262 estimates very similar to the true value as captured by FASTQC (Figure 4b). Only one file's estimates
263 did not coincide with the true read numbers. We suspect this was due to less efficient compression
264 of a part of the file that threw off the ratio of our estimate.

265
266 Furthermore, we added plots to represent the quality information in a manner similar to FASTQC
267 (Figure 4C). All plots that SeqWho produces contain highly similar data and trends as those
268 produced by FASTQC. Thus, SeqWho can rapidly and reliably capture representative quality
269 metadata from processed files. Additionally, this information can be read visually or by a computer
270 program as all raw data is exported as a JSON and TSV file for later use.

271

272 **Conclusions:**

273 Here we presented SeqWho, a rapid and reliable software for classifying a read file's original
274 organism and sequencing type, and for assessing quality information. We utilized the bias in *k*-mer
275 frequencies to train 13 Random Forest classifier models. This provides us with a reliable way to
276 assess the confidence of the call and allows us to achieve upwards of ~97% accuracy in high
277 confidence classifications. Furthermore, SeqWho allows us to rapidly assess the quality metrics of
278 the reads and file as a whole with constant time addition to the algorithms. By using only 25,000-
279 50,000 reads, we were able to keep the run time of SeqWho to ~20 seconds, ~200 times faster than
280 another commonly used QC program, FASTQC, with the additional ability to classify the file.
281 Additionally, SeqWho runtime is independent of input file size due to subsampling. While there are
282 some errors in the heuristic assessment of quality, SeqWho remains able to very accurately
283 characterize the file's quality substantially faster than FASTQC. Furthermore, we report this data in
284 a graphical format for human interpretation and as a JSON-formatted text file to be read in
285 downstream automated processes. We consider this aspect to make SeqWho a critical and versatile
286 program for use in standard sequence QC, in large scale data pipelines with extensive automation,
287 or in individual cases to confirm data from dubious origins. Future work will focus on improving the
288 algorithms classification to achieving the desired goal of >99% accuracy as well as improving the
289 heuristic determination of quality information. Further implications of this work include that we are
290 capable of drawing highly valuable information can be drawn from biases in *k*-mer frequencies
291 without the time expensive step of read alignment. Overall, SeqWho is a versatile, rapid, and
292 reliable program that lays the framework for extensive future work into utilizing *k*-mer frequency
293 and repeat information in unique, rapid ways.

294 **Materials and Methods:**

295 Program versions and code development:

296 Unless otherwise noted, SeqWho was developed in a conda environment under python version
297 3.7.4 using package versions noted in supplemental_file_1.txt file. All codes, analyses, and plots
298 were performed or developed within this environment on a Linux workstation running CentOS
299 version 7 with a Xeon® E5-1650 3.60 GHz 12 core CPU and 64GB of ECC RAM. In addition to python,
300 we used Nextflow version 0.31.0, SRA-toolkit version 2.10.9, seqtk version 1.3, R version 4.0.3,
301 FASTQC version 0.11.8, Keras version 2.2.4, and tensorflow version 1.14.0.

302

303 Design Principles

304 **Model Building**

305 Model building is divided into two minor processes: 1) the 1-5 mer frequency generation and 2)
306 repeat index consolidation. A list of training files is first read from a directory specified by the user
307 and randomized. Then for each file for each read in the first 25,000 reads every 1-, 2-, 3-, 4-, and 5-
308 mer without ambiguous nucleotides are counted and each count is added to a 1,364 long array
309 position corresponding to a sorted list of k -mers. The resulting count array is converted to k -mer
310 frequencies by k -mer set size and added to a matrix with the file label recorded. The second
311 process, repeat index consolidation, involves building a sorted array of repeat 31-mers from the
312 repeat indeces for mouse and human provided by HISAT2 v2.2. As each file is processed, each read
313 is scanned for 31-mers matching sequences in the repeat array and counted in a count array. After
314 every 100 processed files any repeat with a total number of hits less than the number of files
315 processed divided by 100 are removed and their corresponding entries are removed from all other
316 file count arrays. After all files have been processed a final purging step is performed to remove

317 repeats with high similarity between species using the variance of the repeat frequencies. Any
318 variance less than half the variance of a perfectly determining repeat (frequency of 1 for a single
319 species) is removed. The resulting counts were converted into a frequency by dividing the counts
320 for each file by the sum of the file counts and were added to the 1-5 mer frequency matrix. From
321 this model building data, a binary Random Forest classifier was trained for each label and species,
322 resulting in our case with 9 sequencing type and 2 species models. Two further models were trained
323 using all sequencing type classification and all species classification resulting in a total of 13 Random
324 Forest models with the result from each mapped to a result array. Metadata, including information
325 needed to rebuild the vectors and repeat information, and the Random Forest classifiers in a
326 python pickle were saved into a SeqWho index for use in file testing.

327

328 [File Testing](#)

329 File classification makes use of the metadata present from the building step to assemble a
330 compatible frequency array that can be used in the Random Forest classifiers using steps identical
331 to the building step except for the repeat purging procedure, which is not needed. Furthermore,
332 read quality metrics: length, quality per base, average quality, nucleotide biases etc. were measured
333 to be reported simultaneously to *k*-mer counting. An estimate of the total read number was
334 calculated by multiplying the total number of reads read processed by the ratio between the total
335 compressed size of the file on disk and the compressed size of the file chunk read in by Seq-Who.
336 The binary classifiers were used first to determine if an accurate call can be made. If 1 species and 1
337 sequencing type call were generated the quality metrics and call were reported. Any other call
338 generated results in a double check against the backup categorical Random Forest classifiers for
339 species and sequencing type. In this case a low confidence flag was appended and included tag to

340 delimitate which classification (species or sequencing type) had to be validated. A number one
341 indicated that classification was a high confidence validation and a zero indicated a lower
342 confidence classification with the first number indicating species classification and the second
343 number indicating sequencing type classification (ex “low confidence1:0” indicated species was
344 called with high confidence and sequencing type needed to be validated). Calls and quality data are
345 returned as a JSON and tab delimited text file with read quality information also being reported in a
346 plot PNG file.

347

348 *Acquisition of Data*

349 A Nextflow script was used to download specific sequencing read files from the SRA database. A
350 metadata file for SRA, obtained from <https://ftp.ncbi.nlm.nih.gov/sra/reports/Metadata/>, was
351 filtered for publicly available data. 19,800 files corresponding to whole genome sequencing, whole
352 exome sequencing, ChIP-seq, amplicon sequencing, ATAC-seq, DNase-seq, Bisulfite-seq, RNA-seq,
353 and micro-RNA-seq for each of two species, Mouse and Human, 1,100 files for each type, were
354 randomly selected for download. We downloaded 1 million reads from each selected file using SRA-
355 toolkit with the –maxSpotId option and Nextflow. The file retrieval process was run using the
356 BioHPC (UT Southwestern) and up to ten files were retrieved simultaneously. The final database
357 consisted of a total of 18,151 FASTQ(A) files gzip compressed, consuming approximately 164 GB of
358 disk space. Data for the RNA-seq pipeline validation can be found at
359 <https://doi.org/10.5281/zenodo.4429315>.

360 *Model Testing and Validation*

361 Model testing and selection was performed using scikit-learn for the following models: Logistic
362 Regression, Decision Tree, Naïve Bayes, k-Nearest Neighbor, Linear SVM, Multi-Layer Perceptron,

363 Quadratic Discriminant, and Random Forest. Keras with Tensorflow was used for building and
364 testing Neural Nets. To rapidly test the models and parameters, 100 files for each file sequencing
365 type for each species were used to build a pre-calculated 1-7-mer count matrix with labels. To
366 determine the number of reads needed, reads were drawn from the first 1 million reads in 100
367 increments and counts were added to the matrix. At each increment, frequencies were calculated
368 by dividing the individual counts by the total counts and the percent change was calculated
369 between the previous increment and the current increment. 25,000 reads were selected as
370 sufficient for model testing. Thus, the count matrix was built with the top 25,000 reads of each file.
371 Two frequency matrices were generated from the count matrix, with one, calculated by dividing the
372 individual counts by the total counts and the other calculated by dividing each k -mer count set by
373 the sum of the set. Each model was tested multiple times using an 80/20 split of each matrix with
374 varying optimization parameters, levels, nodes, etc. RandomForestClassifier module was selected
375 for use with `n_estimators` parameter set to 500.
376
377 The complete SeqWho algorithm was tested by building an index from the aforementioned SRA
378 data. 16,485 files (Table 2) were used to build the model while the remaining 1,665 files were used
379 for validation. Confusion matrices were built in R using the caret package version 6.0 and plotted
380 using ggplot2 version 3.3.3. Statistics performed were student's t-test with Bonferroni correction to
381 account for multivariate testing. Seq-Who quality metrics were tested against FASTQC on 17
382 Platinum Genome sequencing files that we reported on previously¹⁷.
383
384 Four replicate's FASTQ's were manually downloaded from the GUDMAP consortium data-hub
385 website. The replicates represent three different sequencing modalities (bulk RNA-seq, scRNA-seq,

386 and ChIP-seq), as well as two species (human, and mouse). To create RNA-seq (bulk) and ChIP-seq -
387 as well as - human and mouse admixtures, the FASTQ's were randomly sampled and concatenated
388 in order to generate varying amounts of sequence type and species mixtures. Each mixture was
389 then randomly sampled to one million reads, using different seeds to create multiple replicates of
390 the same admixtures. Seqtk (version 1.3) was use for the random sampling of the FASTQ's. The
391 resulting FASTQ's were then analyzed using SeqWho to call sequencing types and species.

392

393 **Acknowledgements**

394 This work was supported in part by the National Institute of General Medical Sciences (NIH) under
395 grants R01-GM135341 and by the Cancer Prevention Research Institute of Texas (CPRIT) under
396 grant RR170068 to D.K. Work for the RNA-seq pipeline was supported by NIH 5U24DK110814-05
397 and CPRIT grant Cancer Prevention and Research Institute of Texas (RP150596). All authors read
398 and approved the final manuscript.

399

400 **Authors' contributions**

401 C.B., M.T., C.P., G.H., Y.Z, V.M., and D.K. performed validation analysis and discussed the results of
402 SeqWho. C.B., and D.K. designed and implemented Seq-Who. G.H., and V.M. integrated SeqWho
403 into RNA sequencing analysis pipeline and performed stress tests. C.B., M.T., Y.Z., and D.K. wrote
404 the manuscript.

405

406 **Competing interests**

407 The authors declare no competing financial interests.

408

409 **Availability of data and materials**

410 Project name: SeqWho

411 Project home page: <https://daehwankimlab.github.io/seqwho>

412 Operating system(s): Linux, Mac OS X and Windows

413 Programming language: Python

414 License: GPLv3 license

415

416 **References**

417 1. Green, E. D., Rubin, E. M. & Olson, M. V. The future of DNA sequencing. *Nature* vol. 550 179–
418 181 (2017).

419 2. Mukherjee, S. *et al.* Genomes OnLine database (GOLD) v.7: Updates and new features.
420 *Nucleic Acids Res.* **47**, D649–D659 (2019).

421 3. Muir, P. *et al.* The real cost of sequencing: Scaling computation to keep pace with data
422 generation. *Genome Biol.* **17**, 53 (2016).

423 4. Dunham, I. *et al.* An integrated encyclopedia of DNA elements in the human genome. *Nature*
424 **489**, 57–74 (2012).

425 5. Kodama, Y., Shumway, M. & Leinonen, R. The sequence read archive: Explosive growth of
426 sequencing data. *Nucleic Acids Res.* **40**, 2011–2013 (2012).

427 6. Bouadjenek, M. R., Verspoor, K. & Zobel, J. Automated detection of records in biological
428 sequence databases that are inconsistent with the literature. *J. Biomed. Inform.* **71**, 229–240
429 (2017).

430 7. Brenner, S. E. Errors in genome annotation. *Trends Genet.* **15**, 132–133 (1999).

431 8. Promponas, V. J., Iliopoulos, I. & Ouzounis, C. A. Annotation inconsistencies beyond
432 sequence similarity-based function prediction - phylogeny and genome structure. *Standards*
433 *in Genomic Sciences* vol. 10 (2015).

434 9. Nakazato, T., Ohta, T. & Bono, H. Experimental Design-Based Functional Mining and
435 Characterization of High-Throughput Sequencing Data in the Sequence Read Archive. *PLoS*
436 *One* **8**, e77910 (2013).

437 10. Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: Confident and fast metagenomics
438 classification using unique k-mer counts. *Genome Biol.* **19**, 198 (2018).

439 11. Mapleson, D., Accinelli, G. G., Kettleborough, G., Wright, J. & Clavijo, B. J. KAT: A K-mer
440 analysis toolkit to quality control NGS datasets and genome assemblies. *Bioinformatics* **33**,
441 574–576 (2017).

442 12. Dubinkina, V. B., Ischenko, D. S., Ulyantsev, V. I., Tyakht, A. V. & Alexeev, D. G. Assessment of
443 k-mer spectrum applicability for metagenomic dissimilarity analysis. *BMC Bioinformatics* **17**,
444 38 (2016).

445 13. Plaza Onate, F. *et al.* Quality control of microbiota metagenomics by k-mer analysis. *BMC*
446 *Genomics* **16**, 183 (2015).

447 14. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq
448 quantification. *Nat. Biotechnol.* **34**, 525–527 (2016).

449 15. Sulovari, A. *et al.* Human-specific tandem repeat expansion and differential gene expression
450 during primate evolution. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 23243–23253 (2019).

451 16. Lu, J. Y. *et al.* Genomic Repeats Categorize Genes with Distinct Functions for Orchestrated
452 Regulation. *Cell Rep.* **30**, 3296-3311.e5 (2020).

453 17. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment
454 and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **2019** **1** (2019)
455 doi:10.1038/s41587-019-0201-4.

456 18. Andrews, S. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput
457 Sequence Data. <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (2010).

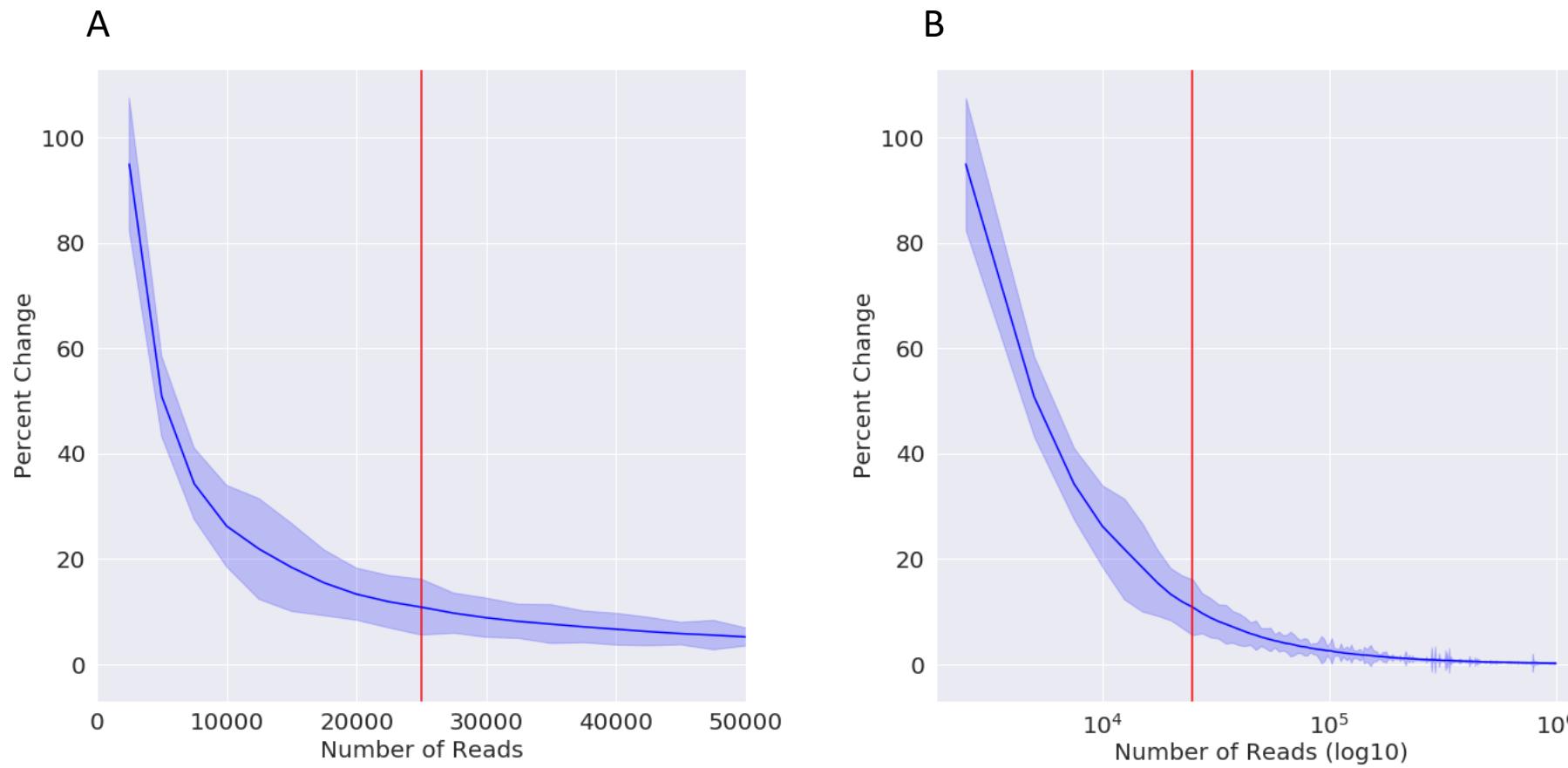
458 19. Eberle, M. A. *et al.* A reference data set of 5.4 million phased human variants validated by
459 genetic inheritance from sequencing a three-generation 17-member pedigree. *Genome Res.*
460 **27**, 157–164 (2017).

461

SeqWho - Figures

Version 2 – 022021

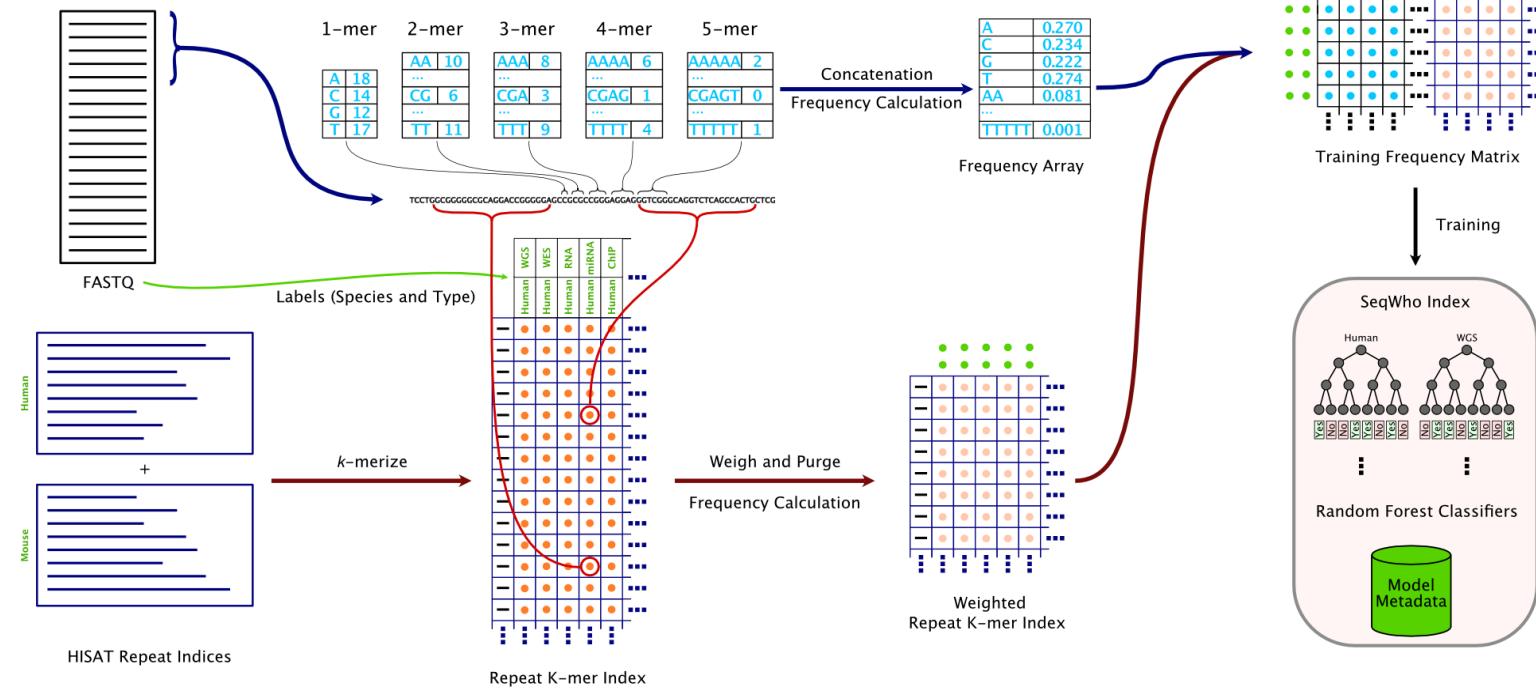
Figure 1



Plot of average percent change during k-mer table update as more reads are added. A) Shows number of reads maxed at 50,000 verses percent change. B) Shows log number of reads verses percent change. Red lines mark 25,000 reads

Figure 2

A



B

```

Pseudo-code: Building
File_Labs <- Load file names and labels
H2_Repeats <- Load HISAT2 repeat kmers
Rep_Index <- Build repeat index from File_Labs and H2_Repeats
For each file in File_Labs:
  Count_Array <- Make count array for file
  For each read in the first 25,000 reads of file:
    Count_Array += Count the 1-5'mer frequencies in read
    Rep_Index += Count repeat kmers in read
  If file index is multiple of 100:
    Purge Rep_Index
  Final Purge Rep_Index
  Training_Matrix <- Merge Count_Array's and Rep_Index and calculate
  Frequencies
  Random_Forests <- Train Random Forest Classifiers using Training_Matrix
  Save SeqWho_Index

Pseudo-code: Typing
File_Names <- Load file names
SeqWho_Index <- Load SeqWho Index
For each file in File_Names:
  Freq_Array <- Initialize Frequency Array based on SeqWho_Index
  For each read in the first 25,000 reads of file:
    Freq_Array += Count the 1-5'mer frequencies in read
    Freq_Array += Count repeat kmers in read
  Result <- Run primary Random Forest classifier from SeqWho_Index using Freq_Array
  If Result is empty:
    Result <- Run secondary Random Forest classifier from SeqWho_Index using
    Freq_Array
  Set Result as Low Confidence
  Results <- Concatenate Result
Return Results

```

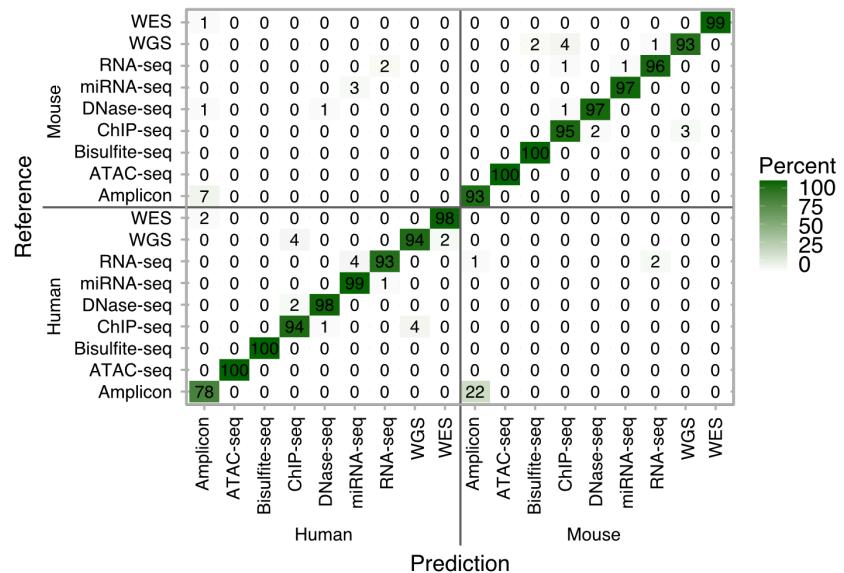
Model design for SeqWho Random Forest classification training. A) Graphical flow of data read in and processed into different arrays B) Pseudo-code for the whole process of building the indices needed and typing from the indices.

Figure 3

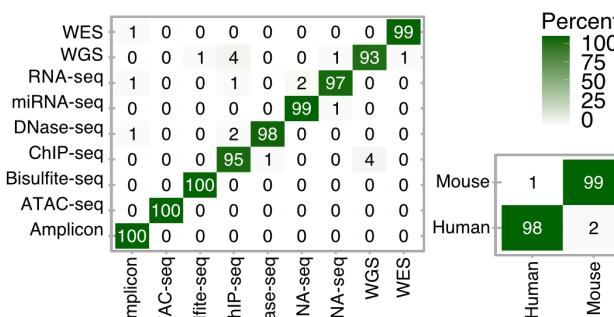
A

	Species of Origin	Sequence Technology	Full Call
Combined Calls	98.03%	95.64%	93.92%
High Confidence Calls	98.32%	97.86%	96.38%
Low Confidence Calls	94.81%	71.11%	66.67%

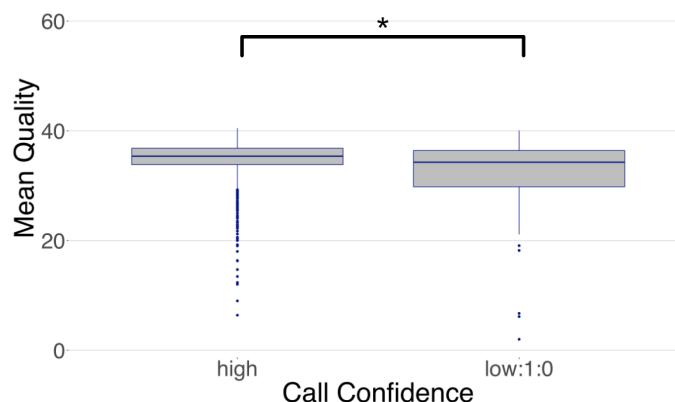
C



B

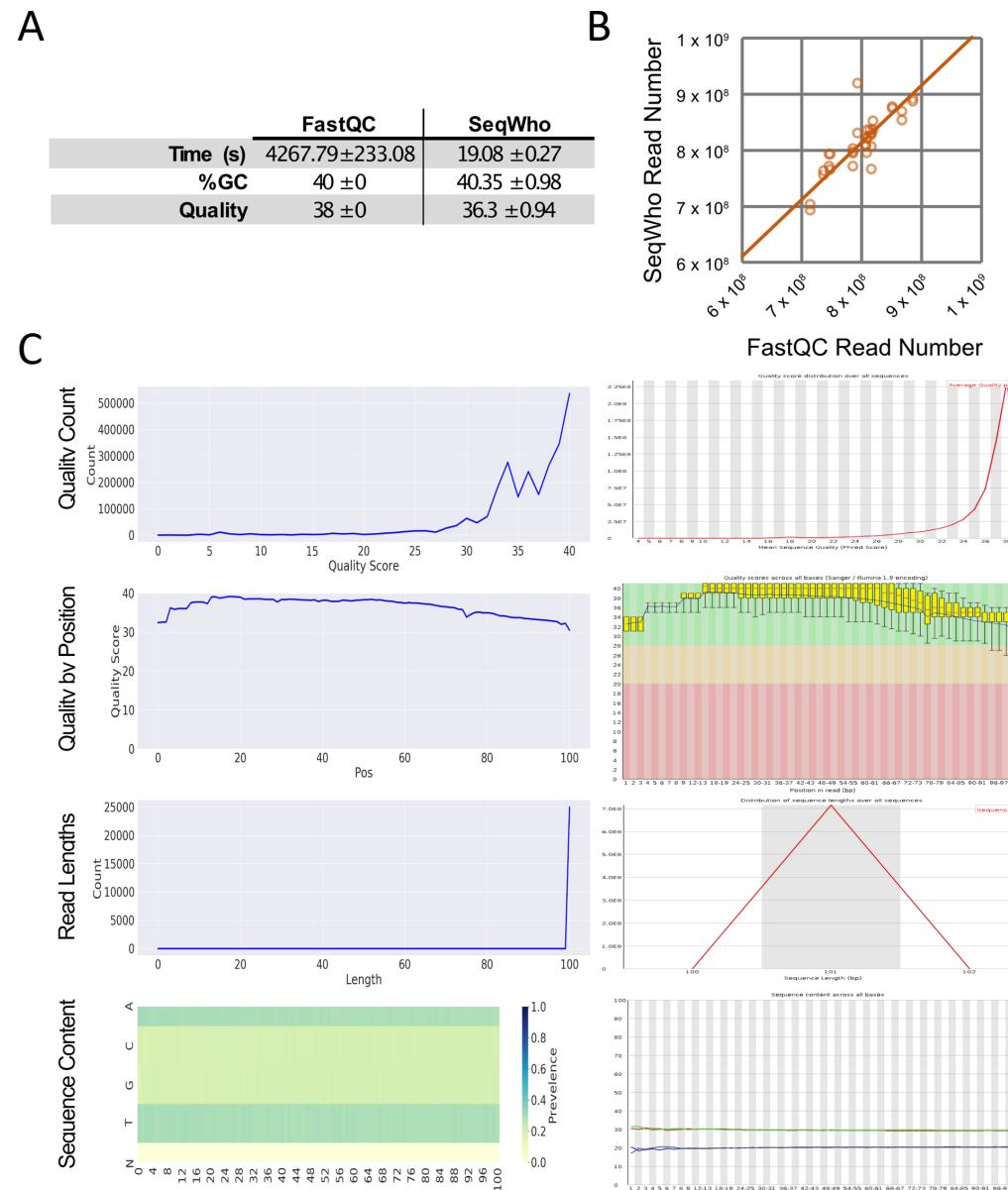


D



Classification accuracy of SeqWho's Random Forest models. A) Percent correct calls for Species, Sequencing Type, and all together for all calls, high confidence calls, and low confidence calls. B) Confusion matrix for Species calls and Sequence type calls for high confidence calls in percent. C) Confusion matrix for full correct calls for high confidence calls in percent. D) Box-n-whisker plot showing differences between Mean Read Quality between high and low confidence calls. * indicates adjusted $p < 0.0001$

Figure 4



Comparison of SeqWho quality information to FASTQC. A) Comparison of times, %GC, and average read quality with standard deviations. B) Linear correlation between the true FASTQC file read number and the estimated SeqWho read numbers. C) Plot and data distribution comparison between SeqWho (left) and FASTQC (right).