

1 **Genome features of common vetch (*Vicia sativa*) in natural habitats**

2 Running title: **The genome of common vetch**

3

4 Kenta Shirasawa^{1*}, Shunichi Kosugi^{1†}, Kazuhiro Sasaki^{2‡}, Andrea Ghelfi¹, Koei Okazaki¹, Atsushi
5 Toyoda³, Hideki Hirakawa¹, Sachiko Isobe¹

6

7 ¹Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan, ²Institute for Sustainable
8 Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of
9 Tokyo, Nishitokyo, Tokyo 188-0001, Japan, and ³National Institute of Genetics, Mishima, Shizuoka
10 411-8540, Japan

11

12 [†]Present address: RIKEN, Yokohama, Kanagawa 230-0045, Japan

13 [‡]Present address: Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki
14 305-8686, Japan

15

16 *Corresponding author: Kenta Shirasawa (shirasaw@kazusa.or.jp)

17 Tel. +81-438 52 3935

18

19 **Highlight**

20 Sequence analysis of the common vetch (*Vicia sativa*) genome and SNP genotyping across natural
21 populations revealed nucleotide diversity levels associated with native population environments.

22

23 **Abstract**

24 Wild plants are often tolerant to biotic and abiotic stresses in their natural environments, whereas
25 domesticated plants such as crops frequently lack such resilience. This difference is thought to be
26 due to the high levels of genome heterozygosity in wild plant populations and the low levels of
27 heterozygosity in domesticated crop species. In this study, common vetch (*Vicia sativa*) was used as
28 a model to examine this hypothesis. The common vetch genome ($2n = 14$) was estimated as 1.8 Gb
29 in size. Genome sequencing produced a reference assembly that spanned 1.5 Gb, from which 31,146
30 genes were predicted. Using this sequence as a reference, 24,118 single nucleotide polymorphisms
31 were discovered in 1,243 plants from 12 natural common vetch populations in Japan. Common vetch
32 genomes exhibited high heterozygosity at the population level, with lower levels of heterozygosity
33 observed at specific genome regions. Such patterns of heterozygosity are thought to be essential for
34 adaptation to different environments. These findings suggest that high heterozygosity at the
35 population level would be required for wild plants to survive under natural conditions while allowing
36 important gene loci to be fixed to adapt the conditions. The resources generated in this study will
37 provide insights into *de novo* domestication of wild plants and agricultural enhancement.

38

39 **Keywords:** Common vetch; ddRAD-Seq; Genome sequence; Natural populations; Nucleotide
40 diversity; Single nucleotide polymorphism

41

42 Introduction

43 Wild plants, including weeds that have not yet been domesticated or cultivated, generally possess
44 characteristics that allow them to survive and propagate in their natural environments when
45 challenged by local biotic and abiotic stresses (Mammadov *et al.*, 2018). The resilience exhibited by
46 wild plants is thought to be due to their high levels of genetic heterogeneity (Cancado, 2011).
47 Indeed, genetic heterogeneity was effective in suppressing disease when populations of genetically
48 diversified crops were planted together in the same fields (Zhu *et al.*, 2000).

49 In contrast with wild plants, crop plants have lost their natural survival traits as a result of the
50 extremely low levels of genetic heterogeneity found in monoculture crop species (Mundt, 2002).
51 Therefore, disease-, insect-, and weed-controls are essential in commercial crop cultivation to reduce
52 losses and maximize yields. This requires additional crop management costs for farmers, for example,
53 for labor and agrochemicals. There are two main reasons for the low genetic heterogeneity in crop
54 species. One reason is crop domestication (Izawa *et al.*, 2009), in which only a few plants possessing
55 desirable phenotypes, such as large fruit size, non-seed shattering, and long-seed dormancy, are
56 selected from the broad genetic pools of wild plants. The second reason is selective breeding for
57 desirable traits. While valuable for stabilizing crop phenotypes such as yield, these selective
58 processes have reduced genetic diversity in monoculture crops by purging diverse germplasms (Fu,
59 2015). During domestication and selective breeding, small numbers of alleles that have large effects
60 on phenotypic variations have often been targeted, further reducing the genetic diversity within
61 cultivated varieties (Fernie and Yan, 2019).

62 While remaining more diverse than crop species, wild plant populations have also experienced
63 loss of genetic heterogeneity at some loci, though in wild plants this is due to directional selection
64 and genetic drift. For example, natural populations of *Arabidopsis* have lost genetic heterogeneity at
65 flowering loci to synchronize flowering time (Mendez-Vigo *et al.*, 2011), which is beneficial for
66 propagation under natural conditions. This suggests that genome-wide genetic heterogeneity is not
67 necessarily required for wild plant populations and that small numbers of loci could become fixed

68 under certain selective conditions. This suggests that it would be possible to generate new plant
69 populations with a) fixed domestication loci with suitable alleles for agricultural traits and b) high
70 general levels of genetic diversity elsewhere in the genome. Such plant populations could be used as
71 crop species, as proposed by Litrico and Violle (Litrico and Violle, 2015), and would possess natural
72 resistance and suppression traits, as a result of high heterogeneity, that would enhance population
73 resilience to biotic and abiotic stresses. As favorable agricultural alleles would be fixed, the benefits
74 of genetic heterogeneity would exist alongside desirable agricultural traits. Mixtures of heterozygous
75 plant populations have already been used as crops in allogamous species such as onion and clover.
76 However, the potential benefits of genetic heterogeneity for autogamous plants such as legumes
77 remain unclear.

78 Common vetch (*Vicia sativa*), a wild legume commonly found in open fields, was partially
79 domesticated and cultivated in the past (Bryant and Hughes, 2011). Common vetch therefore has
80 crop potential and can serve as a model for examination of genetic heterogeneity and domestication.
81 The first step is to evaluate the levels of genetic heterogeneity in wild common vetch populations.
82 However, no genome sequence data is available in common vetch. At least three different
83 chromosome numbers ($2n = 10, 12$, and 14) have been reported (Ladizinsky, 1998; Ladizinsky and
84 Waines, 1982). In this study, a reference sequence for common vetch was developed and single
85 nucleotide polymorphism (SNP) analysis with double-digest restriction-site associated DNA
86 sequencing (ddRAD-Seq) was used to evaluate heterogeneity in genomes of common vetch
87 populations.

88

89 **Materials and methods**

90 *Plant materials*

91 A standard inbred line of common vetch (*V. sativa*), KSR5, was established from a wild plant
92 collected from Kisarazu, Chiba, Japan, by self-pollination for more than three generations. KSR5
93 was used for genome and transcriptome sequencing analysis. For genetic diversity analysis, 1,243

94 plants were collected from 12 locations across the latitude from 31.3°N to 38.8°N in Japan (Figure 1,
95 Supplementary Table S1). In addition, eight accessions from France, Germany, Greece, Iran, Italy,
96 and Tunisia were obtained from the NIAS Genebank, Tsukuba, Japan (Supplementary Table S1).
97 Genomic DNA was extracted from young leaves with a DNeasy Plant Mini Kit (Qiagen, Hilden,
98 Germany).

99

100 *Chromosome observation*

101 Root tips of two-day-old seedlings of KSR5 were treated with 0.05% colchicine for 18 hours, fixed
102 with 1:3 acetate:ethanol for 2 hours, and washed three times with water. Cell walls of the root tips
103 were digested with 2% cellulase (SERVA Electrophoresis GmbH, Heidelberg, Germany), 2%
104 macerozyme (SERVA Electrophoresis GmbH), and 0.1 M sodium acetate for four hours at 37°C.
105 The root tip cells spread on a slide glass were fixed again with 1:3 acetate:ethanol and dried at room
106 temperature. Chromosomes were stained with 1 ug/mL DAPI (4,6-Diamidino-2-phenylindole) in
107 Fluoro-KEEPER Antifade Reagent (Nacalai Tesque, Kyoto, Japan) and were observed under a
108 confocal laser scanning microscope, LSM700 (Carl Zeiss, Oberkochen, Germany). Chromosome
109 length was measured with ImageJ (Schneider *et al.*, 2012).

110

111 *Sequencing analysis of the common vetch genome*

112 Genomic DNA from KSR5 was used to construct one paired-end (insert size of 500 bp) and four
113 mate-pair sequencing libraries (insert sizes of 2, 5, 10, and 15 kb) in accordance with manufacturer
114 protocols (Illumina, San Diego, CA, USA). Libraries were then sequenced using a HiSeq2000
115 instrument (Illumina). A long insert library for KSR5 was also prepared and sequenced on an RSII
116 instrument (PacBio, Menlo Park, CA, USA). The paired-end sequence reads were used for genomic
117 size estimation based on *k*-mer frequency (*k* = 17) using Jellyfish (Marcais and Kingsford, 2011).
118 The paired-end and mate-pair reads were assembled and scaffolded with SOAPdenovo2 (Luo *et al.*,
119 2012). Gaps, represented by Ns in the scaffold sequences, were filled by PBjelly (English *et al.*,

120 2012) with PacBio reads, in which sequence errors were corrected with the paired-end reads by
121 proovread (Hackl *et al.*, 2014). Contaminated sequences were removed by BLASTN search
122 (Altschul *et al.*, 1990), with an E-value cutoff of 1E-10 and length coverage of $\geq 10\%$, against
123 sequences from potential contaminating resources such as organelles (the plastid and mitochondrion
124 genome sequences of *L. japonicus* and *V. faba*: KF042344, AP002983, JN872551, and KC189947),
125 bacteria and fungi (NCBI bacteria and fungi), human (hg19), and artificial sequences (UniVec and
126 PhiX). The resulting sequences that were $\geq 1,000$ bp in size were selected and designated VSA_r1.0
127 as a draft common vetch genome. Completeness of the assembly was assessed with sets of a
128 Benchmarking Universal Single-Copy Orthologs (BUSCO) (Simao *et al.*, 2015).

129

130 *RNA sequencing and assembly*

131 Total RNA was extracted from ten tissue samples (roots, seedlings, stems, apical buds, immature and
132 mature leaves, tendrils, flower buds, flowers, and pods) using an RNeasy Mini Kit (Qiagen) and
133 treated with RQ1 RNase-Free DNase (Promega, Madison, WI, USA) to remove contaminating
134 genomic DNA. RNA libraries were constructed in accordance with the TruSeq Stranded mRNA
135 Sample Preparation Guide (Illumina). Nucleotide sequences were obtained with a MiSeq instrument
136 (Illumina) in the paired-end 301 bp mode. Low-quality reads were removed using PRINSEQ
137 (Schmieder and Edwards, 2011) and adapter sequences were trimmed with fastx_clipper (parameter,
138 -a AGATCGGAAGAGC) in the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). The
139 resulting reads were assembled using Trinity (Grabherr *et al.*, 2011) with parameters of
140 –min_contig_length 100, –group_pairs_distance 400, and –SS_lib_type RF to generate a
141 non-redundant gene sequence set.

142

143 *Repetitive sequence and RNA coding gene analysis*

144 A *de novo* repeat sequence database for VSA_r1.0 was built using RepeatScout (Price *et al.*, 2005)
145 (version 1.0.5). Repetitive sequences in VSA_r1.0 were searched for using RepeatMasker (version

146 4.0.3) (<http://www.repeatmasker.org>) based on known repetitive sequences registered in Repbase
147 (Bao *et al.*, 2015) and the *de novo* repeat libraries. Transfer RNA genes were predicted using
148 tRNAscan-SE (version 1.23) (Chan and Lowe, 2019) with the default parameters, and ribosomal
149 RNA (rRNA) genes were predicted using BLASTN searches with an E-value cutoff of 1E-10, with
150 the *Arabidopsis thaliana* 18S rRNA (accession number: X16077) and 5.8S and 25S rRNAs
151 (accession number: X52320) used as query sequences.

152

153 *Protein-coding gene prediction and annotation*

154 Putative protein-coding genes in VSA_r1.0 were identified with a MAKER pipeline (version 2.31.8)
155 (Cantarel *et al.*, 2008) including *ab-initio*-, evidence-, and homology-based gene prediction methods.
156 For this prediction, the non-redundant gene sequence set generated from the RNA-Seq analysis and
157 peptide sequences predicted in the genomes of four Fabaceae members, namely, *Arachis duranensis*
158 (V14167.a1.M1) (Bertioli *et al.*, 2016), *Lotus japonicus* (rel. 3.0) (Sato *et al.*, 2008), *Medicago*
159 *truncatula* (4.0v1) (Young *et al.*, 2011), and *Phaseolus vulgaris* (v1.0) (Schmutz *et al.*, 2014), were
160 used as a training data set. In addition, BRAKER1 (version 1.3) (Hoff *et al.*, 2016) was used to
161 complete the gene set for VSA_r1.0. Genes related to transposable elements (TEs) were detected
162 using BLASTP searches against the NCBI non-redundant (nr) protein database with an E-value
163 cutoff of 1E-10 and by using InterProScan (version 4.8) (Jones *et al.*, 2014) searches against the
164 InterPro database with an E-value cutoff of 1.0.

165 Putative VSA_r1.0 genes were clustered using CD-hit (version 4.6.1) (Li and Godzik, 2006)
166 with the UniGene set of the four Fabaceae members as above with the parameters $c\Delta = 0.6$ and aL
167 $= 0.4$. The predicted genes were annotated with plant gene ontology (GO) slim categories and
168 euKaryotic clusters of Orthologous Groups (KOG) categories (Tatusov *et al.*, 2003), and mapped
169 onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) reference pathways (Ogata *et al.*,
170 1999).

171 Gene expression was quantified by mapping the RNA-Seq reads onto VSA_r1.0 using HISAT2
172 (Kim *et al.*, 2015) followed by normalization to determine fragments per kilobase of exon per
173 million mapped fragments (FPKM) values using StringTie (Pertea *et al.*, 2015) and Ballgown
174 (Frazee *et al.*, 2015) in accordance with the published protocol (Pertea *et al.*, 2016).

175

176 *Genetic diversity analysis*

177 Genome-wide sequence variations in wild vetch populations were analyzed by a double-digest
178 restriction-site associated DNA sequencing (ddRAD-Seq) technique (Peterson *et al.*, 2012). In
179 accordance with the workflow established in our previous study (Shirasawa *et al.*, 2016), genomic
180 DNA samples from each line were digested with the restriction enzymes *Pst*I and *Eco*RI to prepare
181 ddRAD-Seq libraries, which were then sequenced on a HiSeq2000 (Illumina) instrument in
182 paired-end 93 bp mode. Low-quality sequences were removed and adapters were trimmed using
183 PRINSEQ (Schmieder and Edwards, 2011) and fastx_clipper in the FASTX-Toolkit
184 (http://hannonlab.cshl.edu/fastx_toolkit), respectively. The remaining high-quality reads were
185 mapped onto VSA_r1.0 as a reference using Bowtie2 (Langmead and Salzberg, 2012). The resultant
186 sequence alignment-map format (SAM) files were converted to binary sequence alignment-map
187 format (BAM) files and subjected to SNP calling using the mpileup option of SAMtools (Li *et al.*,
188 2009) and the view option of BCFtools. High-confidence SNPs were selected using VCFtools
189 (Danecek *et al.*, 2011) with the following criteria: (1) depth of coverage ≥ 5 for each line, (2) SNP
190 quality scores of 999 for each locus, (3) minor allele frequency ≥ 0.05 for each locus, and (4)
191 proportion of missing data < 0.5 for each locus. The effects of SNPs on gene function were predicted
192 using SnpEff v4.2 (Cingolani *et al.*, 2012).

193 Nucleotide divergency (π) values and heterozygosity levels for SNP sites of each population
194 were calculated using the site-pi and het options in VCFtools (Danecek *et al.*, 2011), respectively.
195 Principal component analysis (PCA) was performed to determine the relationships among samples
196 using TASSEL (Bradbury *et al.*, 2007) and population structure was investigated using

197 ADMIXTURE (Alexander *et al.*, 2009). The R package WGCNA (Langfelder and Horvath, 2008)
198 was used for SNP module detection.

199

200 **Results**

201 *Chromosome number of a common vetch line, KSR5*

202 A total of 14 chromosomes, including two mini chromosomes, were observed in metaphase cells of
203 root tips of the standard inbred line, KSR5 (Figure 2, Table 1). Relative length of the chromosomes
204 was measured in five cells and sorted by the length order. In accordance with the chromosome length,
205 the 14 chromosomes were grouped into seven pairs (I to VII), suggesting that the genome of KSR5
206 was $2n = 14$. The relative length of the longest chromosome (I) was 22.3% of the total length of
207 haploid genome, followed by 21.0% (II), 18.6% (III), 16.1% (IV), 10.3% (V), 9.3% (VI), and 2.7%
208 (VII).

209

210 *Sequencing and genome assembly*

211 The standard inbred line of common vetch (*V. sativa*), KSR5, was sequenced. In total, 1.8 billion
212 paired-end reads corresponding to 186.7 Gb (Supplementary Table S2) were obtained. The
213 distribution of distinct k -mers ($k = 17$) showed a single main peak at multiplicities of 78 with minor
214 peaks (Figure 3). The size of the common vetch genome was estimated to be 1,769 Mb. The
215 paired-end reads (105 \times genome coverage) were assembled with mate-pair reads of four libraries
216 (146 \times genome coverage in total) to obtain 6,487 thousand (k) scaffold sequences of total length 2.5
217 Gb with an N50 of 30.5 kb. After removing 6,421 k contaminated sequences and short scaffolds (<1
218 kb), sequence gaps presented by Ns in the remaining sequences were filled with PacBio long reads
219 (3 \times genome coverage) to obtain a draft sequence of the common vetch genome, namely, VSA_r1.0.
220 The total length of VSA_r1.0 was 1,541 Mb and consisted of 54,083 sequences with an N50 of 90.1
221 kb (Table 2). Although 513 k gaps occupied 501 Mb in total (32.5%), the gene space was well
222 represented in accordance with BUSCO examination, indicating 94.1% ortholog completion.

223

224 *Repeat sequence analysis*

225 Sequences totaling 782 Mb (51.9%) were identified as repeat elements such as transposons and
226 retrotransposons (Table 3). Of this, sequences totaling 267 Mb were repeat sequences reported in
227 other organisms, and sequences in the remaining 531 Mb were uniquely identified in VSA_r1.0. Of
228 the previously reported repeats, long terminal repeat retroelements were predominant (200 Mb).
229 Furthermore, 109,151 simple-sequence repeats with 52,874 di-, 39,198 tri-, 12,354 tetra-, 3,414
230 penta-, and 1,311 hexa-nucleotide repeat motifs were also found.

231

232 *Gene prediction and annotation*

233 In total, 31,146 protein-encoding genes, with average length of 1,008 bp and N50 of 1,419 bp, were
234 predicted in VSA_r1.0 (Table 2). For the evidence-based MAKER pipeline, 166 million (M) RNA
235 reads from ten tissue samples (Supplementary Table S2) were assembled into 181,211 transcribed
236 sequences and used to predict 27,880 genes (genes with .mk suffix). A further 3,266 genes were
237 predicted using an *ab-initio*-based method (genes with .br suffix). GO classification assigned 8,878,
238 4,059, and 13,752 genes to the GO slim terms of biological process, cellular component, and
239 molecular function, respectively (Supplementary Table S3). KOG analysis revealed 2,766, 4,888,
240 and 4,424 genes with significant similarities to genes involved in information storage and processing,
241 cellular processing and signaling, and metabolism, respectively (Supplementary Table S4). Finally,
242 1,720 genes were mapped to KEGG metabolic pathways (Supplementary Table S5). Gene clustering
243 analysis revealed 5,566 gene clusters that were common to the five legume species tested (*V. sativa*,
244 *A. duranensis*, *L. japonicus*, *M. truncatula*, and *P. vulgaris*) and 12,321 clusters that were unique to
245 common vetch (Figure 4). In addition to mRNA sequences, 58 rRNA- and 1,437 tRNA-encoding
246 genes were predicted.

247

248 *Single nucleotide polymorphisms in natural populations*

249 Genome-wide SNPs were identified across the 12 common vetch populations from Japan, consisting
250 of 1,243 lines, and eight lines from France, Germany, Greece, Iran, Italy, and Tunisia from the
251 NARO GeneBank (Tsukuba, Japan) (Supplementary Table S1). Approximately 1.1 million
252 ddRAD-Seq reads per sample were obtained (Supplementary Table S2) and 84.4% of the reads
253 aligned to the VSA_r1.0 reference sequence. The ddRAD-Seq reads covered 2.4 Mb (0.16%) of the
254 reference assembly with ≥ 5 reads. Sequence alignments detected 46,715 high-confidence SNPs
255 (30.9% transitions and 69.1% transversions). SNP density was calculated as 1 SNP per 51 bp. When
256 only the 12 populations from Japan were considered, the number of SNPs decreased to 24,118 (1
257 SNP per 100 bp), ranging from 4,709 SNPs in the SDI population (1 SNP per 510 bp) to 10,040
258 SNPs in the ABK population (1 SNP per 239 bp) (Table 4).

259 PCA and admixture analysis indicated that there were 2–11 subpopulations in each of the 12
260 populations from Japan (Figure 5, Table 3, Supplementary Figures S1). The observed heterozygosity
261 scores were lower than the expected values (Table 4). Nucleotide divergency scores (π) at SNP sites
262 were similarly distributed across ten of the populations from Japan, with median values of 0.31–0.34.
263 The remaining two populations, NGT and SDI, exhibited median values of ~ 0.25 (Table 4). Of the
264 46,715 high-confidence SNPs, 24,118 clustered according to their π scores to generate 82 modules
265 (Supplementary Figure S2). Of these, the π scores of one cluster, ‘cyan’, which contained 190 SNPs,
266 negatively correlated with the latitude of sampling location (Figure 1 and 6). In total, 88 genes were
267 associated with the 190 SNPs, and one of the genes (Vsa_sc30698.1_g030.1.mk) showed sequence
268 similarity to the *Arabidopsis* gene for a MADS-box protein, SUPPRESSOR OF
269 OVEREXPRESSION OF CONSTANS1 (SOC1), known to be involved in the flowering pathway in
270 plants. Vsa_sc30698.1_g030.1.mk was predominantly transcribed in tendrils (FPKM = 5.0) followed
271 by apical buds (0.5) and stems (0.4), whereas no expression was observed in the other seven tissues,
272 i.e., roots, seedlings, immature and mature leaves, flower buds, flowers, and pods.

273

274 **Discussion**

275 A draft common vetch (*V. sativa*) genome sequence was generated in this study. Although several
276 legume genome sequences were released previously (Bauchet *et al.*, 2019), this is the first report of a
277 genome from the genus *Vicia*, which contains several agronomically important legume crops such as
278 fava bean (*V. faba*). *Vicia* genomes are large (e.g., 1.8 Gb for *V. sativa* and 13 Gb for *V. faba*) due to
279 their massive repetitive sequences, including TEs (Bryant and Hughes, 2011; Hill *et al.*, 2005;
280 Nouzova *et al.*, 2001; Pearce *et al.*, 1996), hampering *de novo* genome assembly in this genus
281 (Bauchet *et al.*, 2019). As might therefore be expected, more than half of the *V. sativa* genome
282 assembly was comprised of repetitive sequences (Table 3). The assembly contained up to 54,083
283 contig sequences and included 513 k gaps occupying >500 Mb (Table 2). The short-read technology
284 employed for sequencing might therefore be insufficient to span the repeats. Although construction
285 of contiguous sequences from the short reads was challenging, a near complete gene set was
286 successfully identified in the assembly (Table 2). Whereas it was impossible to compare the genome
287 structure of common vetch with those of relatives due to the fragmented genome sequences,
288 clustering analysis of the gene sequences would provide insights into the gene homoeology in
289 legume species (Figure 4). The genome resources developed in this study will be invaluable for
290 forthcoming gene discovery studies, such as transcriptome analysis and allele mining, in *Vicia*.

291 We reproducibly observed seven pairs of chromosomes (I to VII) in the root-tip cells of KSR5
292 (Figure 2), among of which one pair (VII) was so small occupying only 2.7% of the total length of
293 the seven chromosome pairs (Table 1). One type of mini chromosomes, so called B chromosomes
294 which are comprised of repetitive sequence, have been reported in numerous groups of plants so far,
295 but the biological function has not been known (Houben, 2017). B chromosomes are not necessary
296 for the growth and normal development of organisms and show non-Mendelian inheritance patterns
297 (Houben, 2017). This could be one of the reasons for the different chromosome numbers in *Vicia*
298 *sativa* (Ladizinsky, 1998; Ladizinsky and Waines, 1982; Navratilova *et al.*, 2003). Further
299 chromosome observations and fluorescence *in situ* hybridization with the repetitive sequences as
300 probes across multiple lines would characterize and identify the mini chromosomes observed in this

301 study. Alternatively, sterility of F1 hybrids derived from crosses between plants with different
302 chromosome numbers should be analyzed to gain insights into the function of the small
303 chromosomes.

304 Twelve common vetch populations from Japan were examined, each of which contained 2–11
305 subpopulations (Figure 5, Table 4, Supplementary Figures S4). This suggested that the numbers of
306 founder plants were limited even in populations grown under natural environmental conditions.
307 Heterozygosity is thought to contribute strongly to the survival of plant populations under natural
308 conditions (Cancado, 2011). Here, the observed heterozygosity was lower than expected (Table 4),
309 indicating that heterozygosity in common vetch populations was high at the population level but low
310 at the individual level due to self-pollination. This suggested that high heterozygosity at the
311 population level is sufficient to allow adaptation and survival under natural conditions in autogamous
312 common vetch.

313 Human domestication of wild plant species for agriculture involved selection of individual
314 plants with desirable traits (Izawa *et al.*, 2009; Vaughan *et al.*, 2007). More recently, elite cultivars
315 have been developed with enhanced yield performance to satisfy global food requirements (Hickey
316 *et al.*, 2019). The successive selection of small numbers of individual plants during these processes
317 produced severe bottleneck effects and resulted in decreased genetic diversity and lower tolerance to
318 biotic and abiotic stresses (Cancado, 2011). Heterozygosity at specific genome regions was also
319 lost in some wild plants (Figure 6), as reported previously (Mendez-Vigo *et al.*, 2011). This
320 suggested that genome-wide genetic heterogeneity is not necessarily required for plants to survive
321 under natural conditions. Recent studies have proposed *de novo*-, super-, or neo-domestication
322 (Fernie and Yan, 2019; Hickey *et al.*, 2019; Vaughan *et al.*, 2007), whereby genetic loci for
323 agronomically important traits are introduced to cultivated crop varieties from wild plants. However,
324 the high genetic heterozygosity levels from the wild donor plants should be retained during the
325 development of new crops to avoid the bottleneck effects sustained during historic domestication of
326 crop varieties (Litrico and Violette, 2015). Therefore, we propose that new domestication of wild

327 plants should retain high heterozygosity at the population level to capitalize on beneficial traits that
328 increase tolerance to abiotic and biotic stresses, but that agronomically important genetic loci should
329 be fixed to maximize crop potential. The resources generated in this study will provide insights into
330 the *de novo* domestication of wild plants to develop enhanced crop varieties.

331

332 **Supplementary Data**

333 **Supplementary Table S1** Plant materials.

334 **Supplementary Table S2** Genome and transcriptome data.

335 **Supplementary Table S3** Number of KOG functions for protein-encoding genes.

336 **Supplementary Table S4** Number of genes mapped to KEGG pathways.

337 **Supplementary Table S5** Number of GO terms for protein-encoding genes.

338 **Supplementary Figure S1** Cross-validation errors for 12 natural populations of *Vicia sativa* from
339 Japan in admixture analysis.

340 **Supplementary Figure S2** Nucleotide diversity of SNP modules across 12 natural populations of
341 *Vicia sativa* from Japan.

342

343 **Acknowledgments**

344 We are grateful to Dr. H. Masumoto (Kazusa DNA Research Institute) for his kind support. We
345 thank T. Fujishiro, K. Kawashima, Y. Kishida, M. Kohara, C. Minami, S. Nakayama, K. Nanri, S.
346 Sasamoto, C. Takahashi, H. Tsuruoka, A. Watanabe, and M. Yamada (Kazusa DNA Research
347 Institute) and staff of the Department of Technical Development at the Institute for Sustainable
348 Agro-ecosystem Services (University of Tokyo) for their technical assistance. Plant materials were
349 provided by the NIAS GeneBank (Tsukuba, Japan). This work was supported by KAKENHI
350 (24710237 and 221S0002) and the Kazusa DNA Research Institute Foundation.

351

352 **Data Availability**

353 Sequence data are available from the Sequence Read Archive (DRA) of DNA Data Bank of Japan
354 (DDBJ) under accession numbers DRA004347 for whole genome sequencing, DRA004313 for
355 RNA-Seq, and DRA004301-DRA004312 for ddRAD-Seq (Supplementary Table S2). The DDBJ
356 accession numbers of the assembled sequences are BLWO01000001-BLWO01054083. Genome
357 information is available at Plant GARDEN (<https://plantgarden.jp>).
358

359 **References**

360 **Alexander DH, Novembre J, Lange K.** 2009. Fast model-based estimation of ancestry in unrelated
361 individuals. *Genome Res* **19**, 1655-1664.

362 **Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.** 1990. Basic local alignment search tool.
363 *J Mol Biol* **215**, 403-410.

364 **Bao W, Kojima KK, Kohany O.** 2015. Repbase Update, a database of repetitive elements in
365 eukaryotic genomes. *Mob DNA* **6**, 11.

366 **Bauchet GJ, Bett KE, Cameron CT, Campbell JD, Cannon EKS, Cannon SB, Carlson JW,**
367 **Chan A, Cleary A, Close TJ, Cook DR, Cooksey AM, Coyne C, Dash S, Dickstein R, Farmer**
368 **AD, Fernández-Baca D, Hokin S, Jones ES, Kang Y, Monteros MJ, Muñoz-Amatriaín M,**
369 **Mysore KS, Pislaru CI, Richards C, Shi A, Town CD, Udvardi M, Wettberg EB, Young ND,**
370 **Zhao PX.** 2019. The future of legume genetic data resources: Challenges, opportunities, and
371 priorities. *Legume Science* **1**.

372 **Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D,**
373 **Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B,**
374 **Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Kim KD, Burow MD, Varshney RK,**
375 **Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz**
376 **RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P.** 2016.
377 The genome sequences of *Arachis duranensis* and *Arachis ipaensis*, the diploid ancestors of
378 cultivated peanut. *Nat Genet* **48**, 438-446.

379 **Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES.** 2007. TASSEL:
380 software for association mapping of complex traits in diverse samples. *Bioinformatics* **23**,
381 2633-2635.

382 **Bryant JA, Hughes SG.** 2011. *Vicia*. In: Kole C, ed. *Wild Crop Relatives: Genomic and Breeding*
383 *Resources*. Berlin Heidelberg: Springer-Verlag, 273-289.

384 **Cancado G.** 2011. The Importance of Genetic Diversity to Manage Abiotic Stress. In: Shanker A,
385 ed. *Abiotic Stress in Plants - Mechanisms and Adaptations*: InTech, 351-366.

386 **Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A,**
387 **Yandell M.** 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model
388 organism genomes. *Genome Res* **18**, 188-196.

389 **Chan PP, Lowe TM.** 2019. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences.
390 *Methods Mol Biol* **1962**, 1-14.

391 **Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM.**
392 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms,
393 SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* **6**,
394 80-92.

395 **Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,**
396 **Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis G.** 2011. The variant
397 call format and VCFtools. *Bioinformatics* **27**, 2156-2158.

398 **English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley**
399 **KC, Gibbs RA.** 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read
400 sequencing technology. *PLoS One* **7**, e47768.

401 **Fernie AR, Yan J.** 2019. De Novo Domestication: An Alternative Route toward New Crops for the
402 Future. *Mol Plant* **12**, 615-631.

403 **Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT.** 2015. Ballgown bridges the
404 gap between transcriptome assembly and expression analysis. *Nat Biotechnol* **33**, 243-246.

405 **Fu YB.** 2015. Understanding crop genetic diversity under modern plant breeding. *Theor Appl Genet*
406 **128**, 2131-2142.

407 **Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,**
408 **Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F,**
409 **Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A.** 2011. Full-length
410 transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol* **29**,
411 644-652.

412 **Hackl T, Hedrich R, Schultz J, Forster F.** 2014. proovread: large-scale high-accuracy PacBio
413 correction through iterative short read consensus. *Bioinformatics* **30**, 3004-3011.

414 **Hickey LT, A NH, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID,**
415 **Hayes BJ, Wulff BBH.** 2019. Breeding crops to feed 10 billion. *Nat Biotechnol* **37**, 744-754.

416 **Hill P, Burford D, Martin DM, Flavell AJ.** 2005. Retrotransposon populations of *Vicia* species
417 with varying genome size. *Mol Genet Genomics* **273**, 371-381.

418 **Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M.** 2016. BRAKER1: Unsupervised
419 RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. *Bioinformatics* **32**,
420 767-769.

421 **Houben A.** 2017. B Chromosomes - A Matter of Chromosome Drive. *Front Plant Sci* **8**, 210.

422 **Izawa T, Konishi S, Shomura A, Yano M.** 2009. DNA changes tell us about rice domestication.
423 *Curr Opin Plant Biol* **12**, 185-192.

424 **Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell**
425 **A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R,**
426 **Hunter S.** 2014. InterProScan 5: genome-scale protein function classification. *Bioinformatics* **30**,
427 1236-1240.

428 **Kim D, Langmead B, Salzberg SL.** 2015. HISAT: a fast spliced aligner with low memory
429 requirements. *Nat Methods* **12**, 357-360.

430 **Ladizinsky G.** 1998. *Plant Evolution under Domestication*. Netherlands: Kluwer Academic
431 Publishers.

432 **Ladizinsky G, Waines G.** 1982. Seed protein polymorphism in *Vicia sativa* agg. (Fabaceae). *Plant*
433 *Systematics and Evolution* **141**, 1-5.

434 **Langfelder P, Horvath S.** 2008. WGCNA: an R package for weighted correlation network analysis.
435 *BMC Bioinformatics* **9**, 559.

436 **Langmead B, Salzberg SL.** 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**,
437 357-359.

438 **Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,**
439 **Genome Project Data Processing S.** 2009. The Sequence Alignment/Map format and SAMtools.
440 *Bioinformatics* **25**, 2078-2079.

441 **Li W, Godzik A.** 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or
442 nucleotide sequences. *Bioinformatics* **22**, 1658-1659.

443 **Litrico I, Violle C.** 2015. Diversity in Plant Breeding: A New Conceptual Framework. *Trends Plant*
444 *Sci* **20**, 604-613.

445 **Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G,**
446 **Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian**
447 **Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J.** 2012. SOAPdenovo2: an
448 empirically improved memory-efficient short-read de novo assembler. *Gigascience* **1**, 18.

449 **Mammadov J, Buzyrapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla**
450 **SP.** 2018. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to
451 Biotic and Abiotic Stresses. *Front Plant Sci* **9**, 886.

452 **Marcais G, Kingsford C.** 2011. A fast, lock-free approach for efficient parallel counting of
453 occurrences of k-mers. *Bioinformatics* **27**, 764-770.

454 **Mendez-Vigo B, Pico FX, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C.** 2011. Altitudinal
455 and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in
456 *Arabidopsis*. *Plant Physiol* **157**, 1942-1955.

457 **Mundt CC.** 2002. Use of multiline cultivars and cultivar mixtures for disease management. *Annu*
458 *Rev Phytopathol* **40**, 381-410.

459 **Navratilova A, Neumann P, Macas J.** 2003. Karyotype analysis of four *Vicia* species using in situ
460 hybridization with repetitive sequences. *Ann Bot* **91**, 921-926.

461 **Nouzova M, Neumann P, Navratilova A, Galbraith DW, Macas J.** 2001. Microarray-based
462 survey of repetitive genomic sequences in *Vicia* spp. *Plant Mol Biol* **45**, 229-244.

463 **Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M.** 1999. KEGG: Kyoto Encyclopedia
464 of Genes and Genomes. *Nucleic Acids Res* **27**, 29-34.

465 **Pearce SR, Harrison G, Li D, Heslop-Harrison J, Kumar A, Flavell AJ.** 1996. The Ty1-copia
466 group retrotransposons in *Vicia* species: copy number, sequence heterogeneity and chromosomal
467 localisation. *Mol Gen Genet* **250**, 305-315.

468 **Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL.** 2016. Transcript-level expression analysis
469 of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc* **11**, 1650-1667.

470 **Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL.** 2015. StringTie
471 enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotechnol* **33**,
472 290-295.

473 **Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE.** 2012. Double digest RADseq: an
474 inexpensive method for de novo SNP discovery and genotyping in model and non-model species.
475 *PLoS One* **7**, e37135.

476 **Price AL, Jones NC, Pevzner PA.** 2005. De novo identification of repeat families in large genomes.
477 *Bioinformatics* **21 Suppl 1**, i351-358.

478 **Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono
479 A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S,
480 Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M,
481 Fukui K, Baba T, Nakamichi T, Mori H, Tabata S.** 2008. Genome structure of the legume, *Lotus
482 japonicus*. *DNA Res* **15**, 227-239.

483 **Schmieder R, Edwards R.** 2011. Quality control and preprocessing of metagenomic datasets.
484 *Bioinformatics* **27**, 863-864.

485 **Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song
486 Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K,
487 Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL,
488 Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J,
489 Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson
490 SA.** 2014. A reference genome for common bean and genome-wide analysis of dual domestications.
491 *Nat Genet* **46**, 707-713.

492 **Schneider CA, Rasband WS, Eliceiri KW.** 2012. NIH Image to ImageJ: 25 years of image analysis.
493 *Nat Methods* **9**, 671-675.

494 **Shirasawa K, Hirakawa H, Isobe S.** 2016. Analytical workflow of double-digest restriction
495 site-associated DNA sequencing based on empirical and in silico optimization in tomato. *DNA Res*
496 **23**, 145-153.

497 **Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.** 2015. BUSCO:
498 assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*
499 **31**, 3210-3212.

500 **Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM,
501 Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S,
502 Wolf YI, Yin JJ, Natale DA.** 2003. The COG database: an updated version includes eukaryotes.
503 *BMC Bioinformatics* **4**, 41.

504 **Vaughan DA, Balazs E, Heslop-Harrison JS.** 2007. From crop domestication to
505 super-domestication. *Ann Bot* **100**, 893-901.

506 **Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer
507 KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung**

508 **F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD,**
509 **Naoumkina MA, Rosen B, Silverstein KA, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V,**
510 **Bardou P, Bechner M, Bellec A, Berger A, Berges H, Bidwell S, Bisseling T, Choisne N,**
511 **Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S,**
512 **Franken C, Gibelin C, Gish J, Goldstein S, Gonzalez AJ, Green PJ, Hallab A, Hartog M, Hua**
513 **A, Humphray SJ, Jeong DH, Jing Y, Jocker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C,**
514 **Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar**
515 **FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF,**
516 **Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens**
517 **B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang**
518 **BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley**
519 **GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Denarie J, Dixon**
520 **RA, May GD, Schwartz DC, Rogers J, Quetier F, Town CD, Roe BA.** 2011. The *Medicago*
521 genome provides insight into the evolution of rhizobial symbioses. *Nature* **480**, 520-524.
522 **Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng**
523 **PS, Wang Z, Mundt CC.** 2000. Genetic diversity and disease control in rice. *Nature* **406**, 718-722.
524

525 **Table 1** Relative chromosome length of *Vicia sativa*, KSR5

Chromosome	Relative length (%)	S.d.*
I	22.3	0.7
II	21.0	0.7
III	18.6	1.3
IV	16.1	1.6
V	10.3	0.7
VI	9.1	0.6
VII	2.7	1.0

526 *Standard deviation (n = 10)

527

528 **Table 2** Assembly statistics of the common vetch (*Vicia sativa*) genome assembly VSA_r1.0

VSA_r1.0	
Number of scaffolds	54,083
Assembly size (bp)	1,541,180,487
Scaffold N50 (bp)	90,105
Maximal scaffold (bp)	871,438
Number of gaps	513,235
Gap size (bp)	501,483,283
Complete and single-copy BUSCO	77.5%
Complete and duplicated BUSCO	16.6%
Fragmented BUSCO	2.9%
Missing BUSCO	2.9%
Number of genes predicted	31,146

529

530 **Table 3** Repeat sequences in the VSA_r1.0 assembly

Repeat type	Length occupied (bp)	%
SINEs ^b	85,029	0.0
LINEs ^b	10,462,622	0.7
LTR elements ^b	200,723,246	13.0
DNA elements	15,595,575	1.0
Helitrons	1,469,970	0.1
Satellites	17,496,670	1.1
Simple repeats	17,496,670	1.1
Low complexity	4,468,370	0.3
Novel repeats	531,016,543	34.5
Total^a	782,834,201	50.8

531 ^aNon-redundant sequence length of the repeats overlapping in the genome.

532 ^bSINEs: short interspersed nuclear elements; LINEs: long interspersed nuclear elements; and LTR:

533 long terminal repeat.

534

535 **Table 4** Cluster, heterozygosity, and nucleotide diversity calculated from SNPs of 12 common vetch natural populations in Japan

Population	Sampling location ^a	Number of individuals	Number of SNPs	Number of clusters (K)	Expected heterozygosity (He)	Observed heterozygosity (Ho)	Nucleotide divergency (π)
ABK	Abiko, Chiba, Japan	102	10,040	4	0.313	0.189	0.314
FKO	Fukuoka, Japan	97	9,795	7	0.318	0.057	0.319
KGS	Kagoshima, Japan	109	5,189	8	0.330	0.106	0.330
KMT	Kimitsu, Chiba, Japan	95	7,256	9	0.336	0.087	0.336
KSR	Kisarazu, Chiba, Japan	88	6,450	4	0.340	0.111	0.340
KYT	Kyoto, Japan	104	8,974	8	0.339	0.114	0.338
KZS	Kazusa, Chiba, Japan	97	7,243	4	0.334	0.147	0.334
NGT	Niigata, Japan	100	6,658	3	0.247	0.085	0.248
NGY	Nagoya, Aichi, Japan	102	6,891	5	0.335	0.140	0.335
OKY	Okayama, Japan	99	9,649	11	0.337	0.085	0.336
SDI	Sendai, Miyagi, Japan	100	4,709	2	0.264	0.161	0.262
TNS	Tanashi, Tokyo, Japan	150	7,939	10	0.326	0.153	0.325

536 ^aGeographical positions are indicated in Figure 1 and Supplementary Table S1.

537 **Figure Legends**

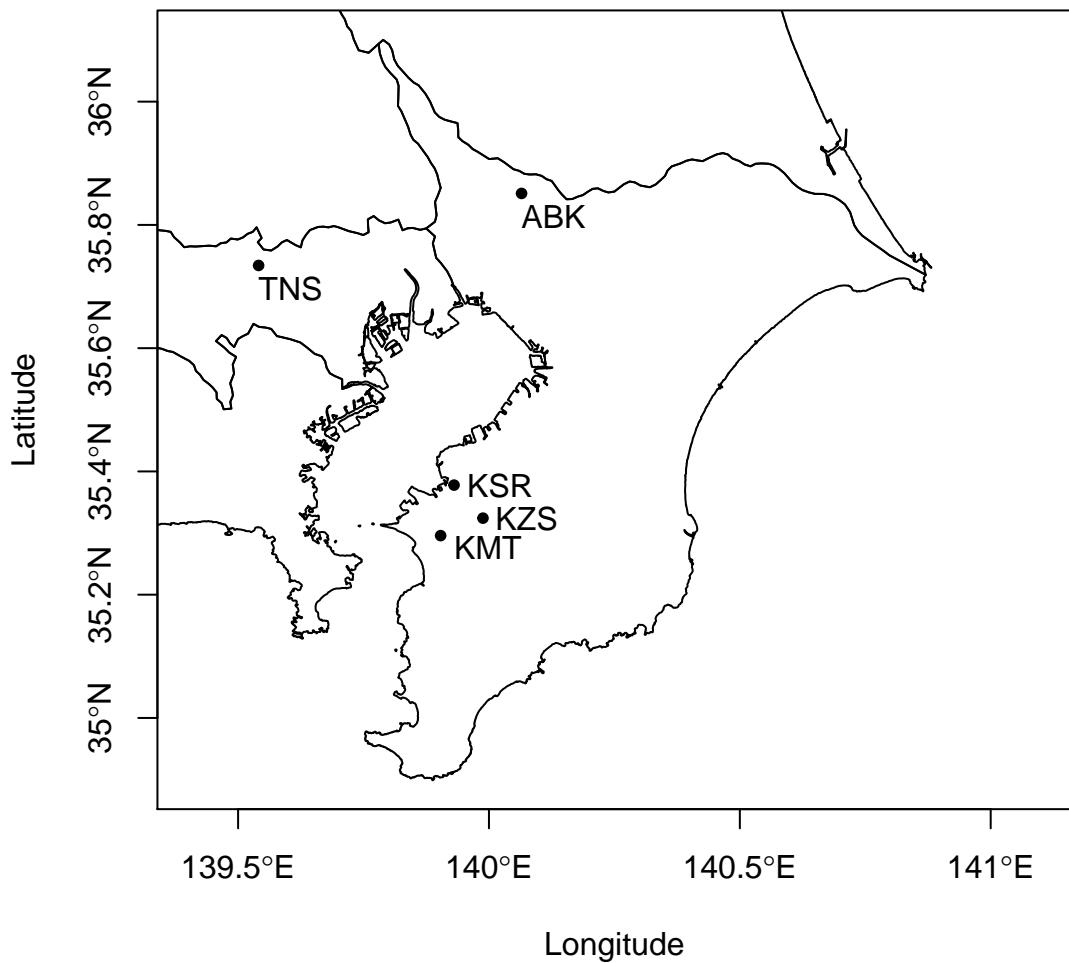
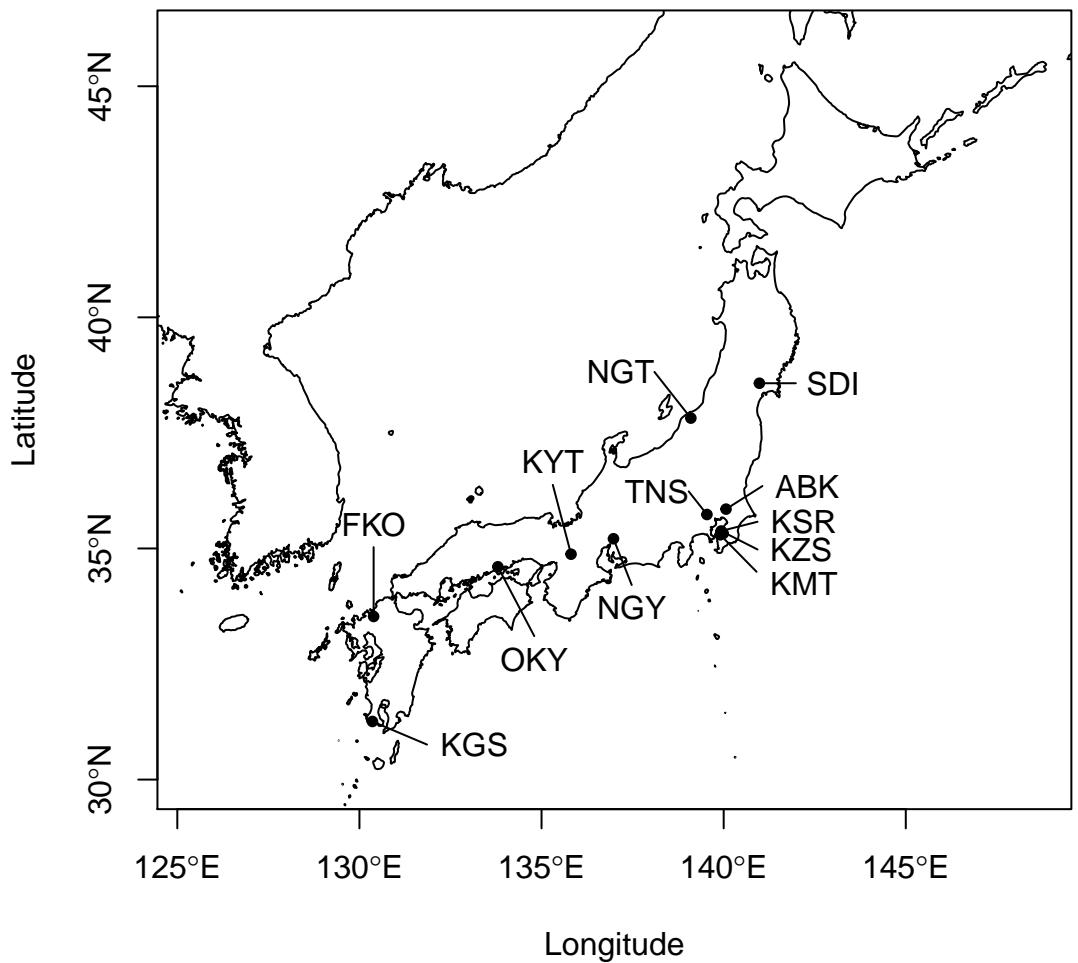
538 **Figure 1** Sampling locations in Japan.

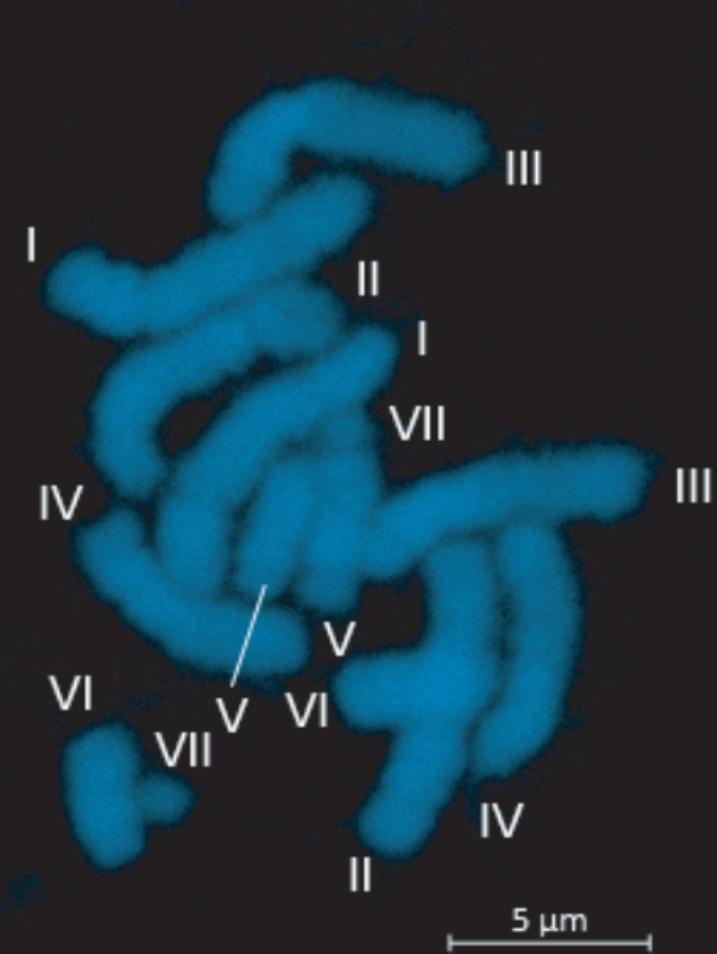
539 Three-letter codes indicate sampling locations in Japan: ABK: Abiko, Chiba; FKO: Fukuoka;
540 KGS: Kagoshima; KMT: Kimitsu, Chiba; KSR: Kisarazu, Chiba; KYT: Kyoto; KZS: Kazusa,
541 Chiba; NGT: Niigata; NGY: Nagoya, Aichi; OKY: Okayama; SDI: Sendai, Miyagi; and
542 TNS: Tanashi, Tokyo.

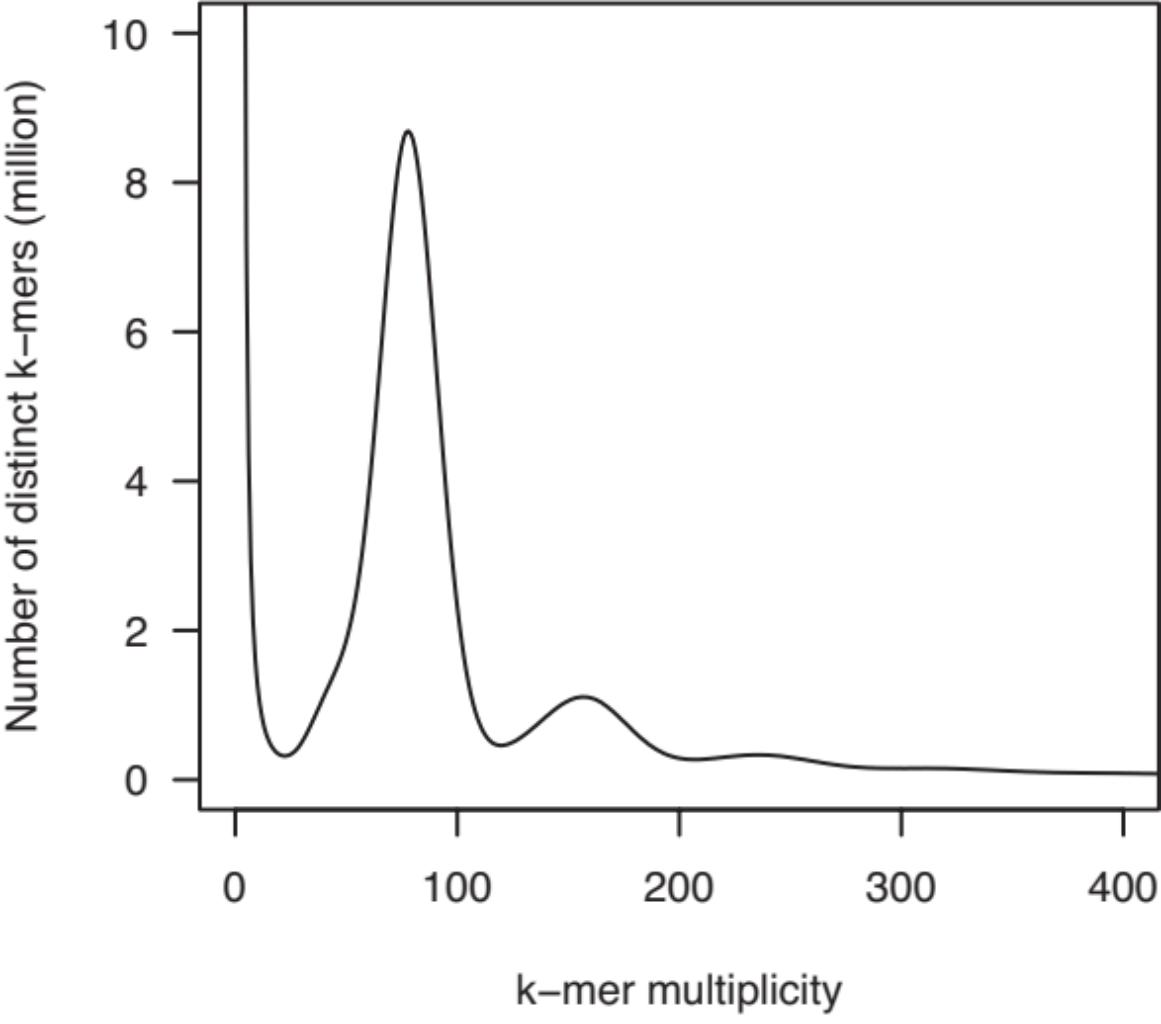
543 **Figure 2** Chromosomes of the common vetch KSR5.

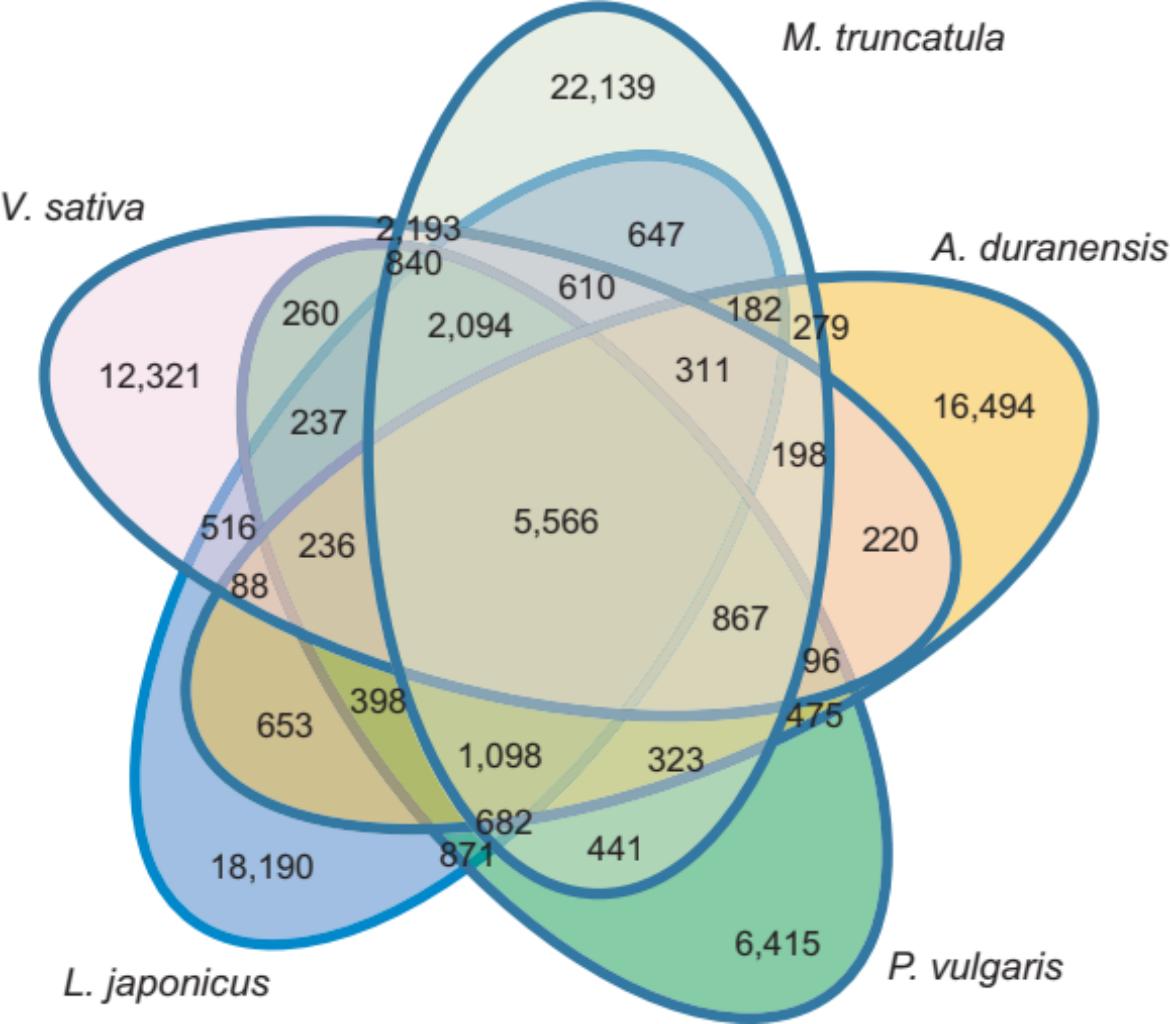
544 Roman numerals indicate chromosome pairs, which order is based on chromosome length (I
545 to VII). Bar = 5 μ m.

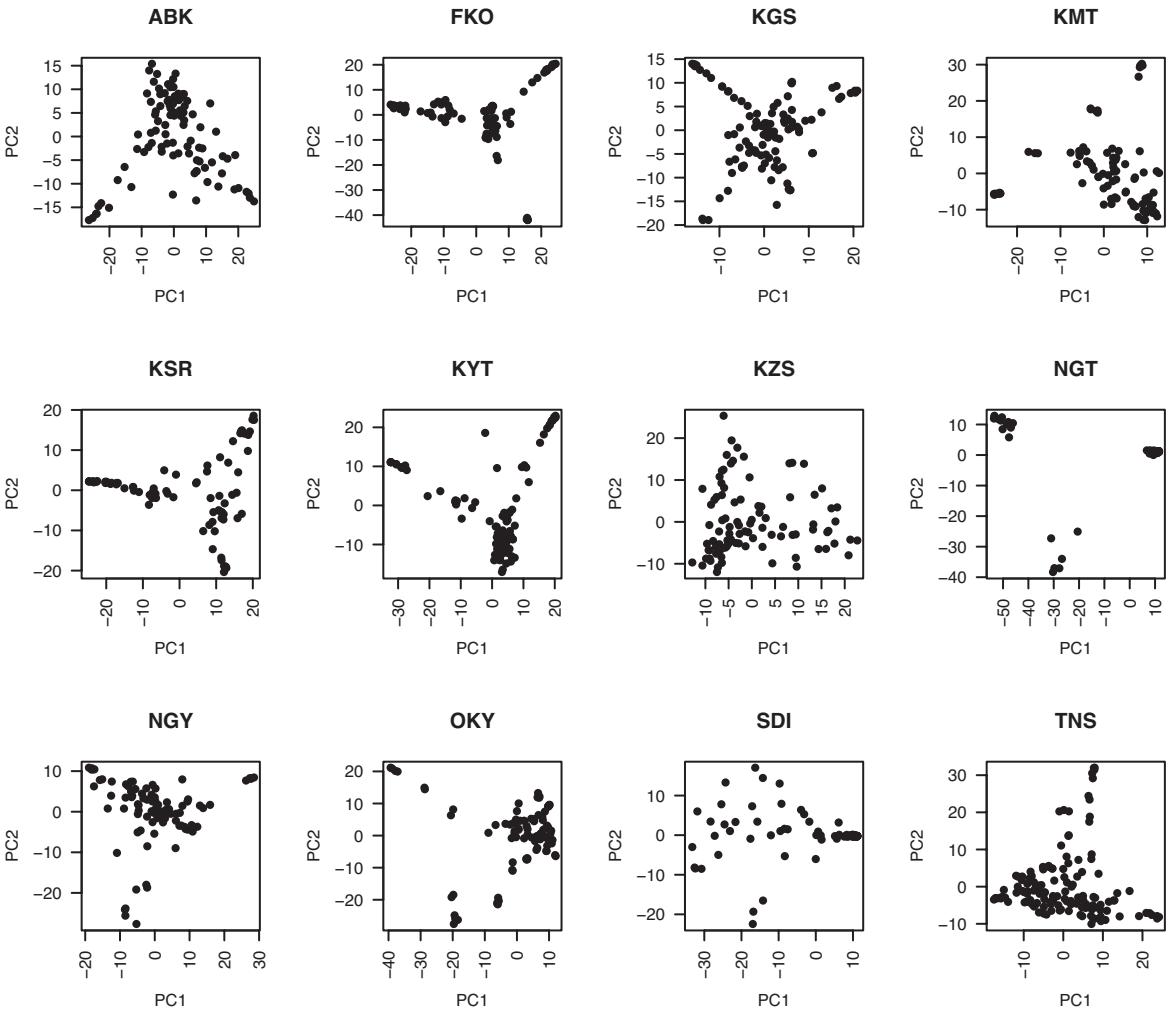
546 **Figure 3** Genome size estimation for *Vicia sativa* with the distribution of the number of
547 distinct k -mers ($k=17$) with the given multiplicity values.



548 **Figure 4** Venn diagram showing numbers of gene clusters in *Vicia sativa* and four additional
549 Fabaceae species.


550 **Figure 5** Principal component analysis of 12 natural populations of *Vicia sativa* from Japan.


551 **Figure 6** Nucleotide diversity (π) of the SNP module ‘cyan’ (n=190) across 12 natural
552 populations of *Vicia sativa* in Japan.


553 Three-letter codes indicate sampling locations in Japan: ABK: Abiko, Chiba; FKO: Fukuoka;
554 KGS: Kagoshima; KMT: Kimitsu, Chiba; KSR: Kisarazu, Chiba; KYT: Kyoto; KZS: Kazusa,
555 Chiba; NGT: Niigata; NGY: Nagoya, Aichi; OKY: Okayama; SDI: Sendai, Miyagi; and
556 TNS: Tanashi, Tokyo.


557

