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Highlight
Sequence analysis of the common vetch (Vicia sativa) genome and SNP genotyping across natural

populations revealed nucleotide diversity levels associated with native population environments.

Abstract

Wild plants are often tolerant to biotic and abiotic stresses in their natural environments, whereas
domesticated plants such as crops frequently lack such resilience. This difference is thought to be
due to the high levels of genome heterozygosity in wild plant populations and the low levels of
heterozygosity in domesticated crop species. In this study, common vetch (Vicia sativa) was used as
amodel to examine this hypothesis. The common vetch genome (2n = 14) was estimated as 1.8 Gb
in size. Genome sequencing produced a reference assembly that spanned 1.5 Gb, from which 31,146
genes were predicted. Using this sequence as areference, 24,118 single nucleotide polymorphisms
were discovered in 1,243 plants from 12 natural common vetch populations in Japan. Common vetch
genomes exhibited high heterozygosity at the population level, with lower levels of heterozygosity
observed at specific genome regions. Such patterns of heterozygosity are thought to be essential for
adaptation to different environments. These findings suggest that high heterozygosity at the
population level would be required for wild plants to survive under natural conditions while allowing
important gene loci to be fixed to adapt the conditions. The resources generated in this study will

provide insights into de novo domestication of wild plants and agricultural enhancement.

Keywords: Common vetch; ddRAD-Seq; Genome sequence; Natural populations; Nucleotide

diversity; Single nucleotide polymorphism
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I ntroduction

Wild plants, including weeds that have not yet been domesticated or cultivated, generally possess
characteristics that allow them to survive and propagate in their natural environments when
challenged by local biotic and abiotic stresses (Mammadov et al., 2018). The resilience exhibited by
wild plants is thought to be due to their high levels of genetic heterogeneity (Canc “lado, 2011).
Indeed, genetic heterogeneity was effective in suppressing disease when populations of genetically
diversified crops were planted together in the same fields (Zhu et al., 2000).

In contrast with wild plants, crop plants have lost their natural survival traits as aresult of the
extremely low levels of genetic heterogeneity found in monoculture crop species (Mundt, 2002).
Therefore, disease-, insect-, and weed-controls are essential in commercial crop cultivation to reduce
losses and maximize yields. This requires additional crop management costs for farmers, for example,
for labor and agrochemicals. There are two main reasons for the low genetic heterogeneity in crop
Species. One reason is crop domestication (Izawa et al., 2009), in which only a few plants possessing
desirable phenotypes, such as large fruit size, non-seed shattering, and long-seed dormancy, are
selected from the broad genetic pools of wild plants. The second reason is selective breeding for
desirable traits. While valuable for stabilizing crop phenotypes such as yield, these selective
processes have reduced genetic diversity in monoculture crops by purging diverse germplasms (Fu,
2015). During domestication and selective breeding, small numbers of alleles that have large effects
on phenotypic variations have often been targeted, further reducing the genetic diversity within
cultivated varieties (Fernie and Y an, 2019).

While remaining more diverse than crop species, wild plant populations have also experienced
loss of genetic heterogeneity at some loci, though in wild plants thisis due to directional selection
and genetic drift. For example, natural populations of Arabidopsis have lost genetic heterogeneity at
flowering loci to synchronize flowering time (Mendez-Vigo et al., 2011), which is beneficia for
propagation under natural conditions. This suggests that genome-wide genetic heterogeneity is not

necessarily required for wild plant populations and that small numbers of loci could become fixed
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under certain selective conditions. This suggests that it would be possible to generate new plant
populations with a) fixed domestication loci with suitable alleles for agricultural traits and b) high
general levels of genetic diversity elsewhere in the genome. Such plant populations could be used as
crop species, as proposed by Litrico and Violle (Litrico and Violle, 2015), and would possess natural
resistance and suppression traits, as aresult of high heterogeneity, that would enhance population
resilience to biotic and abiotic stresses. As favorable agricultural aleles would be fixed, the benefits
of genetic heterogeneity would exist alongside desirable agricultural traits. Mixtures of heterozygous
plant populations have aready been used as crops in allogamous species such as onion and clover.
However, the potential benefits of genetic heterogeneity for autogamous plants such as legumes
remain unclear.

Common vetch (Vicia sativa), awild legume commonly found in open fields, was partially
domesticated and cultivated in the past (Bryant and Hughes, 2011). Common vetch therefore has
crop potential and can serve as a model for examination of genetic heterogeneity and domestication.
Thefirst step isto evaluate the levels of genetic heterogeneity in wild common vetch populations.
However, no genome sequence datais available in common vetch. At least three different
chromosome numbers (2n = 10, 12, and 14) have been reported (Ladizinsky, 1998; Ladizinsky and
Waines, 1982). In this study, a reference sequence for common vetch was developed and single
nucleotide polymorphism (SNP) analysis with double-digest restriction-site associated DNA
sequencing (ddRAD-Seq) was used to evaluate heterogeneity in genomes of common vetch

populations.

Materials and methods

Plant materials

A standard inbred line of common vetch (V. sativa), KSR5, was established from awild plant
collected from Kisarazu, Chiba, Japan, by self-pollination for more than three generations. KSR5

was used for genome and transcriptome segquencing analysis. For genetic diversity analysis, 1,243
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94  plants were collected from 12 locations across the latitude from 31.3°N to 38.8°N in Japan (Figure 1,
95  Supplementary Table S1). In addition, eight accessions from France, Germany, Greece, Iran, Italy,
96 and Tunisiawere obtained from the NIAS Genebank, Tsukuba, Japan (Supplementary Table S1).
97  Genomic DNA was extracted from young leaves with a DNeasy Plant Mini Kit (Qiagen, Hilden,
98 Germany).
99
100  Chromosome observation
101  Root tips of two-day-old seedlings of KSR5 were treated with 0.05% colchicine for 18 hours, fixed
102  with 1:3 acetate:ethanol for 2 hours, and washed three times with water. Cell walls of the root tips
103  weredigested with 2% cellulase (SERVA Electrophoresis GmbH, Heidelberg, Germany), 2%
104  macerozyme (SERVA Electrophoresis GmbH), and 0.1 M sodium acetate for four hours at 37°C.
105 Theroot tip cells spread on a slide glass were fixed again with 1:3 acetate:ethanol and dried at room
106  temperature. Chromosomes were stained with 1 ug/mL DAPI (4,6-Diamidino-2-phenylindole) in
107  Huoro-KEEPER Antifade Reagent (Nacalai Tesgue, Kyoto, Japan) and were observed under a
108 confocal laser scanning microscope, LSM 700 (Carl Zeiss, Oberkochen, Germany). Chromosome
109 length was measured with ImageJ (Schneider et al., 2012).
110
111 Sequencing analysis of the common vetch genome
112  Genomic DNA from KSR5 was used to construct one paired-end (insert size of 500 bp) and four
113  mate-pair sequencing libraries (insert sizes of 2, 5, 10, and 15 kb) in accordance with manufacturer
114 protocols (Illumina, San Diego, CA, USA). Libraries were then sequenced using a Hi Seq2000
115  instrument (Illumina). A long insert library for KSR5 was also prepared and sequenced on an RSI|
116  instrument (PacBio, Menlo Park, CA, USA). The paired-end sequence reads were used for genomic
117  size estimation based on k-mer frequency (k = 17) using Jellyfish (Marcais and Kingsford, 2011).
118  The paired-end and mate-pair reads were assembled and scaffolded with SOAPdenovo2 (Luo et al.,

119  2012). Gaps, represented by Ns in the scaffold sequences, were filled by PBjelly (English et al .,
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120  2012) with PacBio reads, in which sequence errors were corrected with the paired-end reads by

121  proovread (Hackl et al., 2014). Contaminated sequences were removed by BLASTN search

122 (Altschul et al., 1990), with an E-value cutoff of 1E-10 and length coverage of >10%, against

123 sequences from potential contaminating resources such as organelles (the plastid and mitochondrion
124  genome sequences of L. japonicus and V. faba: KF042344, AP002983, JN872551, and KC189947),
125  bacteriaand fungi (NCBI bacteria and fungi), human (hg19), and artificial sequences (UniVec and
126  PhiX). The resulting sequences that were >1,000 bp in size were selected and designated VSA_r1.0
127  asadraft common vetch genome. Completeness of the assembly was assessed with sets of a

128  Benchmarking Universal Single-Copy Orthologs (BUSCO) (Simao et al., 2015).

129

130  RNA sequencing and assembly

131  Tota RNA was extracted from ten tissue samples (roots, seedlings, stems, apical buds, immature and
132  mature leaves, tendrils, flower buds, flowers, and pods) using an RNeasy Mini Kit (Qiagen) and
133 treated with RQ1 RNase-Free DNase (Promega, Madison, WI, USA) to remove contaminating

134  genomic DNA. RNA libraries were constructed in accordance with the TruSeq Stranded mRNA
135  Sample Preparation Guide (I1lumina). Nucleotide sequences were obtained with a MiSeq instrument
136  (lllumina) in the paired-end 301 bp mode. Low-quality reads were removed using PRINSEQ

137  (Schmieder and Edwards, 2011) and adapter sequences were trimmed with fastx_clipper (parameter,
138 -aAGATCGGAAGAGC) inthe FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). The

139  resulting reads were assembled using Trinity (Grabherr et al., 2011) with parameters of

140 —min_contig_length 100, —group_pairs_distance 400, and —SS lib_type RF to generate a

141  non-redundant gene sequence Set.

142

143  Repetitive sequence and RNA coding gene analysis

144 A denovo repeat sequence database for VSA_r1.0 was built using RepeatScout (Price et al., 2005)

145  (version 1.0.5). Repetitive sequencesin VSA_r1.0 were searched for using RepeatM asker (version
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146 4.0.3) (http://www.repeatmasker.org) based on known repetitive sequences registered in Repbase
147 (Baoet al., 2015) and the de novo repeat libraries. Transfer RNA genes were predicted using

148 tRNAscan-SE (version 1.23) (Chan and Lowe, 2019) with the default parameters, and ribosomal
149 RNA (rRNA) genes were predicted using BLASTN searches with an E-value cutoff of 1E-10, with
150 the Arabidopsis thaliana 18S rRNA (accession number: X16077) and 5.8S and 25S rRNAs

151  (accession number: X52320) used as query sequences.

152

153  Protein-coding gene prediction and annotation

154  Putative protein-coding genesin VSA_r1.0 wereidentified with aMAKER pipeline (version 2.31.8)
155 (Cantarel et al., 2008) including ab-initio-, evidence-, and homology-based gene prediction methods.
156  For this prediction, the non-redundant gene sequence set generated from the RNA-Seq analysis and
157  peptide sequences predicted in the genomes of four Fabaceae members, namely, Arachis duranensis
158 (V14167.a1.M1) (Bertioli et al., 2016), Lotus japonicus (rel. 3.0) (Sato et al., 2008), Medicago

159  truncatula (4.0v1) (Young et al., 2011), and Phaseolus vulgaris (v1.0) (Schmutz et al., 2014), were
160 used asatraining data set. In addition, BRAKERL1 (version 1.3) (Hoff et al., 2016) was used to

161  complete the gene set for VSA_r1.0. Genesrelated to transposable elements (TES) were detected
162  using BLASTP searches against the NCBI non-redundant (nr) protein database with an E-value

163  cutoff of 1E-10 and by using InterProScan (version 4.8) (Jones et al., 2014) searches against the
164  InterPro database with an E-value cutoff of 1.0.

165 Putative VSA_r1.0 genes were clustered using CD-hit (version 4.6.1) (Li and Godzik, 2006)
166  with the UniGene set of the four Fabaceae members as above with the parameterscl” = [ 0.6 and aL
167 =0.4. The predicted genes were annotated with plant gene ontology (GO) slim categories and

168 euKaryotic clusters of Orthologous Groups (KOG) categories (Tatusov et al., 2003), and mapped
169  onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) reference pathways (Ogata et al.,

170 1999).
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171 Gene expression was quantified by mapping the RNA-Seq reads onto VSA_r1.0 using HISAT2
172  (Kim et al., 2015) followed by normalization to determine fragments per kilobase of exon per

173 million mapped fragments (FPKM) values using StringTie (Perteaet al., 2015) and Ballgown

174  (Frazeeet al., 2015) in accordance with the published protocol (Perteaet al., 2016).

175

176  Genetic diversity analysis

177  Genome-wide sequence variations in wild vetch populations were analyzed by a double-digest

178  restriction-site associated DNA sequencing (ddRAD-Seq) technique (Peterson et al., 2012). In

179  accordance with the workflow established in our previous study (Shirasawa et al., 2016), genomic
180 DNA samples from each line were digested with the restriction enzymes Pstl and EcoRI to prepare
181  ddRAD-Seq libraries, which were then sequenced on a Hi Seq2000 (IIlumina) instrument in

182  paired-end 93 bp mode. Low-quality sequences were removed and adapters were trimmed using
183  PRINSEQ (Schmieder and Edwards, 2011) and fastx_clipper in the FASTX-Toolkit

184  (http://hannonlab.cshl.edu/fastx_toolkit), respectively. The remaining high-quality reads were

185 mapped onto VSA rl.0 as areference using Bowtie2 (Langmead and Salzberg, 2012). The resultant
186  sequence alignment-map format (SAM) files were converted to binary sequence alignment-map
187  format (BAM) files and subjected to SNP calling using the mpileup option of SAMtools (Li et al.,
188  2009) and the view option of BCFtools. High-confidence SNPs were selected using V CFtools

189 (Danecek et al., 2011) with the following criteria: (1) depth of coverage >5 for each line, (2) SNP
190 quality scores of 999 for each locus, (3) minor alele frequency >0.05 for each locus, and (4)

191  proportion of missing data <0.5 for each locus. The effects of SNPs on gene function were predicted
192  using SnpEff v4.2 (Cingolani et al., 2012).

193 Nucleotide divergency () values and heterozygosity levels for SNP sites of each population
194  were calculated using the site-pi and het optionsin VCFtools (Danecek et al., 2011), respectively.
195  Principal component analysis (PCA) was performed to determine the relationships among samples

196 using TASSEL (Bradbury et al., 2007) and population structure was investigated using
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197 ADMIXTURE (Alexander et al., 2009). The R package WGCNA (Langfelder and Horvath, 2008)
198  was used for SNP module detection.

199

200 Results

201  Chromosome number of a common vetch line, KSR5

202 A tota of 14 chromosomes, including two mini chromosomes, were observed in metaphase cells of
203  root tips of the standard inbred line, KSR5 (Figure 2, Table 1). Relative length of the chromosomes
204  was measured in five cells and sorted by the length order. In accordance with the chromosome length,
205 the 14 chromosomes were grouped into seven pairs (I to V1), suggesting that the genome of KSR5
206 was 2n = 14. Therelative length of the longest chromosome (1) was 22.3% of the total length of
207  haploid genome, followed by 21.0% (I1), 18.6% (I11), 16.1% (1V), 10.3% (V), 9.3% (VI), and 2.7%
208 (V).

209

210  Sequencing and genome assembly

211  Thestandard inbred line of common vetch (V. sativa), KSR5, was sequenced. In total, 1.8 billion
212  paired-end reads corresponding to 186.7 Gb (Supplementary Table S2) were obtained. The

213  distribution of distinct k-mers (k = 17) showed asingle main peak at multiplicities of 78 with minor
214  peaks (Figure 3). The size of the common vetch genome was estimated to be 1,769 Mb. The

215  paired-end reads (105% genome coverage) were assembled with mate-pair reads of four libraries
216  (146x genome coverage in total) to obtain 6,487 thousand (k) scaffold sequences of total length 2.5
217  Gbwith an N50 of 30.5 kb. After removing 6,421 k contaminated sequences and short scaffolds (<1
218  kb), sequence gaps presented by Nsin the remaining sequences were filled with PacBio long reads
219  (3x genome coverage) to obtain a draft sequence of the common vetch genome, namely, VSA _rl1.0.
220 Thetota length of VSA_r1.0 was 1,541 Mb and consisted of 54,083 sequences with an N50 of 90.1
221 kb (Table 2). Although 513 k gaps occupied 501 Mb in total (32.5%), the gene space was well

222  represented in accordance with BUSCO examination, indicating 94.1% ortholog completion.
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223

224  Repeat sequence analysis

225  Sequencestotaling 782 Mb (51.9%) were identified as repeat elements such as transposons and
226  retrotransposons (Table 3). Of this, sequences totaling 267 Mb were repeat sequences reported in
227  other organisms, and sequences in the remaining 531 Mb were uniquely identified in VSA_r1.0. Of
228  thepreviously reported repeats, long terminal repeat retroelements were predominant (200 Mb).
229  Furthermore, 109,151 simple-sequence repeats with 52,874 di-, 39,198 tri-, 12,354 tetra-, 3,414
230 penta, and 1,311 hexa-nucleotide repeat motifs were also found.

231

232  Gene prediction and annotation

233 Intotal, 31,146 protein-encoding genes, with average length of 1,008 bp and N50 of 1,419 bp, were
234  predictedin VSA_r1.0 (Table 2). For the evidence-based MAKER pipeline, 166 million (M) RNA
235  reads from ten tissue samples (Supplementary Table S2) were assembled into 181,211 transcribed
236  sequences and used to predict 27,880 genes (genes with .mk suffix). A further 3,266 genes were
237  predicted using an ab-initio-based method (genes with .br suffix). GO classification assigned 8,878,
238 4,059, and 13,752 genes to the GO slim terms of biological process, cellular component, and

239  molecular function, respectively (Supplementary Table S3). KOG anaysisreveaed 2,766, 4,888,
240 and 4,424 genes with significant similarities to genes involved in information storage and processing,
241  cellular processing and signaling, and metabolism, respectively (Supplementary Table $4). Finally,
242 1,720 genes were mapped to KEGG metabolic pathways (Supplementary Table S5). Gene clustering
243 analysisrevealed 5,566 gene clusters that were common to the five legume speciestested (V. sativa,
244 A duranensis, L. japonicus, M. truncatula, and P. vulgaris) and 12,321 clusters that were unique to
245  common vetch (Figure 4). In addition to mMRNA sequences, 58 rRNA- and 1,437 tRNA-encoding
246  genes were predicted.

247

248  Sngle nucleotide polymorphisms in natural popul ations
10
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249  Genome-wide SNPs were identified across the 12 common vetch populations from Japan, consisting
250 of 1,243 lines, and eight lines from France, Germany, Greece, Iran, Italy, and Tunisiafrom the

251 NARO GeneBank (Tsukuba, Japan) (Supplementary Table S1). Approximately 1.1 million

252  ddRAD-Seq reads per sample were obtained (Supplementary Table S2) and 84.4% of the reads

253  dlignedtothe VSA_rl.0 reference sequence. The ddRAD-Seq reads covered 2.4 Mb (0.16%) of the
254  reference assembly with >5 reads. Sequence alignments detected 46,715 high-confidence SNPs

255  (30.9% transitions and 69.1% transversions). SNP density was calculated as 1 SNP per 51 bp. When
256  only the 12 populations from Japan were considered, the number of SNPs decreased to 24,118 (1
257  SNP per 100 bp), ranging from 4,709 SNPs in the SDI population (1 SNP per 510 bp) to 10,040

258 SNPsinthe ABK population (1 SNP per 239 bp) (Table 4).

259 PCA and admixture analysis indicated that there were 2—11 subpopulations in each of the 12
260 populations from Japan (Figure 5, Table 3, Supplementary Figures S1). The observed heterozygosity
261  scoreswere lower than the expected values (Table 4). Nucleotide divergency scores () at SNP sites
262 weresimilarly distributed across ten of the populations from Japan, with median values of 0.31-0.34.
263  Theremaining two populations, NGT and SDI, exhibited median values of ~0.25 (Table 4). Of the
264 46,715 high-confidence SNPs, 24,118 clustered according to their & scores to generate 82 modules
265 (Supplementary Figure S2). Of these, the it scores of one cluster, ‘cyan’, which contained 190 SNPs,
266 negatively correlated with the latitude of sampling location (Figure 1 and 6). In total, 88 genes were
267  associated with the 190 SNPs, and one of the genes (Vsa sc30698.1 g030.1.mk) showed sequence
268  similarity to the Arabidopsis gene for aMADS-box protein, SUPPRESSOR OF

269 OVEREXPRESSION OF CONSTANSI (SOC1), known to be involved in the flowering pathway in
270 plants. Vsa sc30698.1 g030.1.mk was predominantly transcribed in tendrils (FPKM = 5.0) followed
271 by apical buds (0.5) and stems (0.4), whereas no expression was observed in the other seven tissues,
272 i.e, roots, seedlings, immature and mature leaves, flower buds, flowers, and pods.

273

274  Discussion
11
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A draft common vetch (V. sativa) genome segquence was generated in this study. Although severa
legume genome sequences were released previously (Bauchet et al., 2019), thisis thefirst report of a
genome from the genus Vicia, which contains several agronomically important legume crops such as
fava bean (V. faba). Vicia genomes are large (e.g., 1.8 Gb for V. sativa and 13 Gb for V. faba) due to
their massive repetitive sequences, including TEs (Bryant and Hughes, 2011; Hill et al., 2005;
Nouzova et al., 2001; Pearce et al., 1996), hampering de novo genome assembly in this genus
(Bauchet et al., 2019). As might therefore be expected, more than half of the V. sativa genome
assembly was comprised of repetitive sequences (Table 3). The assembly contained up to 54,083
contig sequences and included 513 k gaps occupying >500 Mb (Table 2). The short-read technology
employed for sequencing might therefore be insufficient to span the repeats. Although construction
of contiguous sequences from the short reads was challenging, a near complete gene set was
successfully identified in the assembly (Table 2). Whereas it was impossible to compare the genome
structure of common vetch with those of relatives due to the fragmented genome sequences,
clustering analysis of the gene sequences would provide insights into the gene homoeology in
legume species (Figure 4). The genome resources developed in this study will be invaluable for
forthcoming gene discovery studies, such as transcriptome analysis and allele mining, in Vicia.

We reproducibly observed seven pairs of chromosomes (I to VII) in the root-tip cells of KSR5
(Figure 2), among of which one pair (V11) was so small occupying only 2.7% of the total length of
the seven chromosome pairs (Table 1). One type of mini chromosomes, so called B chromosomes
which are comprised of repetitive sequence, have been reported in numerous groups of plants so far,
but the biological function has not been known (Houben, 2017). B chromosomes are not necessary
for the growth and normal development of organisms and show non-Mendelian inheritance patterns
(Houben, 2017). This could be one of the reasons for the different chromosome numbersin Vicia
sativa (Ladizinsky, 1998; Ladizinsky and Waines, 1982; Navratilova et al., 2003). Further
chromosome observations and fluorescence in situ hybridization with the repetitive sequences as

probes across multiple lines would characterize and identify the mini chromosomes observed in this
12
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study. Alternatively, sterility of F1 hybrids derived from crosses between plants with different
chromosome numbers should be analyzed to gain insights into the function of the small
chromosomes.

Twelve common vetch populations from Japan were examined, each of which contained 2—-11
subpopulations (Figure 5, Table 4, Supplementary Figures $4). This suggested that the numbers of
founder plants were limited even in populations grown under natural environmental conditions.
Heterozygosity is thought to contribute strongly to the survival of plant populations under natural
conditions (CanclTado, 2011). Here, the observed heterozygosity was lower than expected (Table 4),
indicating that heterozygosity in common vetch populations was high at the population level but low
at theindividual level due to self-pollination. This suggested that high heterozygosity at the
population level is sufficient to allow adaptation and survival under natural conditions in autogamous
common vetch.

Human domestication of wild plant species for agriculture involved selection of individual
plants with desirable traits (Izawa et al., 2009; Vaughan et al., 2007). More recently, elite cultivars
have been developed with enhanced yield performance to satisfy global food requirements (Hickey
et al., 2019). The successive selection of small numbers of individual plants during these processes
produced severe bottleneck effects and resulted in decreased genetic diversity and lower toleranceto
biotic and abiotic stresses (Cancl_ado, 2011). Heterozygosity at specific genome regions was also
lost in some wild plants (Figure 6), as reported previously (Mendez-Vigo et al., 2011). This
suggested that genome-wide genetic heterogeneity is not necessarily required for plantsto survive
under natural conditions. Recent studies have proposed de novo-, super-, or neo-domestication
(Fernie and Yan, 2019; Hickey et al., 2019; Vaughan et al., 2007), whereby genetic loci for
agronomically important traits are introduced to cultivated crop varieties from wild plants. However,
the high genetic heterozygosity levels from the wild donor plants should be retained during the
development of new crops to avoid the bottleneck effects sustained during historic domestication of

crop varieties (Litrico and Violle, 2015). Therefore, we propose that new domestication of wild
13
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plants should retain high heterozygosity at the population level to capitalize on beneficial traits that
increase tolerance to abiotic and biotic stresses, but that agronomically important genetic loci should
be fixed to maximize crop potential. The resources generated in this study will provide insights into

the de novo domestication of wild plants to develop enhanced crop varieties.
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525 Table 1l Relative chromosome length of Vicia sativa, KSR5

Chromosome  Relativelength (%) S.d.”

| 223 07
1 21.0 0.7
Il 18.6 13
v 16.1 16
\ 103 07
VI 9.1 0.6
VI 2.7 1.0
526  Standard deviation (n = 10)
527
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528 Table 2 Assembly statistics of the common vetch (Vicia sativia) genome assembly VSA _r1.0

VSA rl1.0
Number of scaffolds 54,083
Assembly size (bp) 1,541,180,487
Scaffold N50 (bp) 90,105
Maximal scaffold (bp) 871,438
Number of gaps 513,235
Gap size (bp) 501,483,283

Complete and single-copy BUSCO  77.5%

Complete and duplicated BUSCO 16.6%

Fragmented BUSCO 2.9%
Missing BUSCO 2.9%
Number of genes predicted 31,146

529
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530 Table 3 Repeat sequencesin the VSA_r1.0 assembly

Repeat type Length occupied (bp) %

SINES’ 85,029 0.0
LINES’ 10,462,622 0.7
LTR elements’ 200,723,246 13.0
DNA elements 15,595,575 10
Helitrons 1,469,970 0.1
Satellites 17,496,670 11
Simplerepeats 17,496,670 11
Low complexity 4,468,370 0.3
Novel repeats 531,016,543 34.5
Total® 782,834,201 50.8

531  “Non-redundant sequence length of the repeats overlapping in the genome.
532  PSINEs: short interspersed nuclear elements; LINES: long interspersed nuclear elements; and LTR:
533 longterminal repeat.

534
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S

535 Table4 Cluster, heterozygosity, and nucleotide diversity calculated from SNPs of 12 common vetch natural populations in Japan gg
Population Sampling location® Number of  Number of  Number of Expected Observed Nucleotide éi
individuals SNPs clusters (K) heterozygosity (He)  heterozygosity (Ho)  divergency () (;fg%

ABK Abiko, Chiba, Japan 102 10,040 4 0.313 0.189 0.314 éé

FKO Fukuoka, Japan 97 9,795 7 0.318 0.057 0.319 ., %é

KGS Kagoshima, Japan 109 5,189 8 0.330 0.106 0.330 %é;i E

KMT Kimitsu, Chiba, Japan 95 7,256 9 0.336 0.087 0.336 égg

KSR Kisarazu, Chiba, Japan 88 6,450 4 0.340 0.111 0.340 %gg

KYT Kyoto, Japan 104 8,974 8 0.339 0.114 0.338 g% é

KZS Kazusa, Chiba, Japan 97 7,243 4 0.334 0.147 0.334 g %é

NGT Niigata, Japan 100 6,658 3 0.247 0.085 0.248 i:’g%

NGY Nagoya, Aichi, Japan 102 6,891 5 0.335 0.140 0.335 g %E

OKY Okayama, Japan 99 9,649 11 0.337 0.085 0.336 :2 %

SDI Sendai, Miyagi, Japan 100 4,709 2 0.264 0.161 0.262 ;:fé

TNS Tanashi, Tokyo, Japan 150 7,939 10 0.326 0.153 0.325 %D%

536  ?Geographical positions are indicated in Figure 1 and Supplementary Table S1. % g
24 %é
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537  Figurelegends

538  Figure 1 Sampling locationsin Japan.

539  Three-letter codes indicate sampling locations in Japan: ABK: Abiko, Chiba; FKO: Fukuoka;
540 KGS: Kagoshima; KMT: Kimitsu, Chiba; KSR: Kisarazu, Chiba; KYT: Kyoto; KZS: Kazusa,
541  Chiba; NGT: Niigata; NGY: Nagoya, Aichi; OKY: Okayama; SDI: Sendai, Miyagi; and

542  TNS: Tanashi, Tokyo.

543  Figure 2 Chromosomes of the common vetch KSR5.

544  Roman numerals indicate chromosome pairs, which order is based on chromosome length (I
545 toVIIl). Bar =5 pm.

546  Figure 3 Genome size estimation for Vicia sativa with the distribution of the number of

547  distinct k-mers (k=17) with the given multiplicity values.

548  Figure 4 Venn diagram showing numbers of gene clustersin Vicia sativa and four additional
549  Fabaceae species.

550  Figure5 Principal component analysis of 12 natural populations of Vicia sativa from Japan.
551  Figure 6 Nucleotide diversity () of the SNP module ‘cyan’ (n=190) across 12 natural

552  populations of Vicia sativa in Japan.

553  Three-letter codes indicate sampling locations in Japan: ABK: Abiko, Chiba; FKO: Fukuoka;
554 KGS: Kagoshima; KMT: Kimitsu, Chiba; KSR: Kisarazu, Chiba; KYT: Kyoto; KZS: Kazusa,
555  Chiba; NGT: Niigata; NGY: Nagoya, Aichi; OKY: Okayama; SDI: Sendai, Miyagi; and

556  TNS: Tanashi, Tokyo.

557
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